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Abstract 

The development of models for a human-in-the-loop with hardware is an area of 

ongoing research. The ability to simulate a human-in-the-loop with hardware provides 

a platform for better understanding the dynamics of human and machine cognition. 

A human-in-the-loop model provides information that can be used to design more 

efficient human interfaces and smarter autonomous assistant controllers. This can 

make a complex task such as flying an aircraft safer and more accessible. This thesis 

explores different possibilities for human operator models to be modeled in the loop 

with a vehicle. A human is modeled as a linear state feedback controller in the loop 

with the task of controlling a simple solid ball. The human arm is modeled controlling 

a joystick as the human is considered to control the ball with a joystick. Nonlinear 

sliding mode observers are developed to estimate the gains of a feedback control law 

and nonlinear sliding mode observers are developed to estimate the torques on the 

shoulder, elbow, and joystick joints. The nonlinear observers are simulated on a 

human-in-the-loop system to show the accuracy of the observers. 
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Chapter 1 

Introduction 

1.1 Human and Machine Cognition 

Everyday, humans interact with many kinds of machines. Most machines are designed 

with a particular function and then an interface is put in place so a human can 

interact with it. Some devices end up being more user friendly than others. In the 

case of motorized vehicles, when a human is controlling something that is beyond 

its own physical capabilities, the human interface becomes a large safety issue. An 

increase in the ability for the human to naturally control the vehicle will lead to a 

decrease in human related accidents. A machine could be designed for the purposes 

of helping a human perform a function, rather than designing a machine to do a 

function and then designing how the human controls the machine after the fact. This 

would be an example of human centered cognition where a product is designed to fit 

the human, rather than fitting a human to the product. A human controlled system 

should be designed such that the respective strengths are exploited and the respective 

weaknesses are mitigated [11]. There are many ways vehicle control could be modified 

to improve safety and efficiency for the human controller, whether driving a car, flying 

1 
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an aircraft or controlling a spacecraft. 

In particular, piloting an aircraft is an example of a situation where a human is 

required to process a lot of information in order to safely control the aircraft. This 

includes processing visual information from outside references as well as instruments 

inside the cockpit and auditory information from radio communication simultaneously 

while properly maintaining aircraft performance, orientation and collision avoidance. 

The workload on a pilot is very high. The safety and effectiveness of the pilot can be 

greatly increased by efficiently organizing the information into the most manageable 

form for a human [25]. 

There are many examples of how current aircraft interfaces can be improved. 

These improvements can be more passive or more active. A major example would be 

to change the format of the visual displays of the instrumentation. Another example 

would be to change the way information is sent to the pilot, such as a Tactile Situation 

Awareness System vest worn by the pilot [25]. The ability to implement any of these 

innovations is based on the fact that there are now very good models of aircraft in 

flight [11]. 

1.2 Semi-autonomous Control 

In addition to these improvements, a more intelligent semi-autonomous autopilot 

could be developed to smoothly aid a human controlling an aircraft. This could be 

used to aid the human controller in emergency situations, such an engine failure or 

a stall, where immediate and precise action is required. This could also be used in 

potentially dangerous situations where the pilot has become tired, distracted or in

capacitated. It is important for the semi-autonomous control system to intelligently 

decide wdien it is appropriate to take control of the aircraft or when it is more ap-
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propriate to just inform the pilot of an abnormal situation; there could also be a 

combination of the two. This is important so as not to impede the pilot's ability to 

control the aircraft when necessary. 

1.2.1 Two Philosophies 

With the progression of technology over the past century, technology has played 

a growing part in aviation. Part of this involves a growing amount of information 

available to the pilot and part of this involves a growing amount of automation. There 

are different philosophies debated about how much and what kind of automation 

should be used in aviation. 

Two major aircraft manufactures have taken two opposing approaches to the use 

of automation in commercial aircraft. The argument basically comes down to whether 

the pilot or the autopilot should have the ultimate authority in regards to flying an 

aircraft. Airbus has chosen to design the flight computer to have the final authority. 

particularly when an aircraft reaches its design limits in an emergency. This way 

attempts to remove the human from the loop as much as possible under the pretense 

that human error is the cause of most accidents. Boeing takes the opposite approach, 

allowing the pilot to override the autopilot if the pilot deems it necessary. 

This difference in philosophy really only resides in the phase of intervening with 

the pilot. Both aerospace companies have sophisticated autopilot control systems 

that can monitor the aircraft and calculate when it is unstable. Once the system 

has been determined to be close to instability. Boeing's aircraft will just warn the 

pilot of this but allow them to continue, while the Airbus aircrafts will implement a 

set of hard limits on the controls to keep the system from becoming unstable. This 

difference can be argued from a psychological standpoint about which way mav be 

better to intervene with the pilot so as to produce the safer outcome. 
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Consider the example of a pilot performing an abrupt maneuver to avoid a mid 

air collision. In an Airbus plane, the pilot can simply pull the joystick to its limits 

(perhaps up and to the left) and the aircraft will respond by pitching up and to left 

as much as it can without exceeding the limitations of the aircraft that could make 

it unstable. In a Boeing plane, when the pilot avoids the collision, the pilot will 

only be warned if the aircraft is exceeding stability limits, but the pilot still has full 

control and can exceed the limits if they choo&e. Both ways have advantages and 

disadvantages. The Airbus design alleviates the workload on the pilot and removes 

pilot error in an emergency situation and provides the plane with the best chance for 

success. This reasoning comes from the point of view that if the limits have to be 

exceeded in order to avoid the collision then there was no way to avoid it. Boeing 

would argue that the pilot should have the ability to exceed the limits just enough 

so as to make the difference that could end up avoiding the collision. This is because 

the limitations are based on the design of the aircraft and have built in margins for 

error. Exceeding the limits does not necessarily mean instant instability or instant 

structural failure. Or it may be to the point that some structural failure might be 

manageable and worth avoiding the collision. 

Having the ability to monitor the human-in-the-loop may provide access to a 

hybrid of both Boeing's and Airbus's autopilot implementation. The pilot could be 

allowed to continue beyond the aircraft limitations, like Boeing, but only if it is 

determined that the human is still in proper control. If it is determined that human 

is not in proper control, then the autopilot could take over like in Airbus. The ability 

to make this determination could help in the situation where the plane is heading 

to an unstable configuration, but with two different pilot configurations. Consider 

an example of the extremes where an aircraft is determined to be flying beyond its 

design limitations and it could be determined whether the pilot was maintaining 
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proper control of the aircraft, or has just fallen unconscious on the control stick. The 

ability to monitor and determine the human's performance and the corrective action 

that should be taken are still two separate issues. But this information could be used 

to help the flight computer make a more informed decision. 

1.2.2 Relevant Situations 

There are many examples of situations when an autopilot should have full control, 

when the pilot should have full control and when a combination of the two would be 

best. Examples where autopilot is most useful involve situations where maintaining 

aircraft stability in straight and level flight become a monotonous task for the pilot. 

This is true because sustained monotonous activity can tire a human out. This also 

alleviates the pilot to be able to concentrate on other tasks such as navigation and 

radio communication. This implementation is commonly used on commercial flights. 

Examples where human control is more useful is in situations where more complex 

maneuvers are required such as take off and landing. The human can better adapt to 

unforeseen changing variables in the system. 

The more interesting examples involve situations where a mix between human 

control and autopilot control are more useful. One example of this could be in the 

situation of an engine failure. For a single engine plane, an engine failure means 

complete loss of forward thrust. The highest priority of a pilot is to fly the aircraft. 

In this case flying the aircraft means establishing and maintaining the best glide 

airspeed. Best glide speed is always the same for a particular aircraft and provides 

the maximum horizontal distance per vertical height lost during powered off flight. 

The best glide speed is maintained through attitude control. Emergency procedures 

during an engine failure calls for the pilot to maintain best glide speed, search for 

the closest suitable landing site, attempt to restart the engine and use the radios to 
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provide others with information about the emergency. Obviously all this provides a 

heavy work load on the pilot during a stressful situation. An automatic "co-pilot" 

could provide support for the pilot in command. The simplest way would be for 

the autopilot to detect the engine failure and immediately establish best glide speed, 

relieving the pilot of this continuous task which takes up so much of the pilot's 

concentration. 

Other examples include cases where a pilot becomes tired, distracted or incapac

itated. The autopilot could be used in these cases as a pilot monitor that can detect 

when the pilot is not responding correctly and take corrective action, which may in

clude alerting the pilot or taking over control. A simple example of this kind is when 

a pilot is maintaining straight and level flight while looking inside the cockpit to do 

navigation calculations. The pilot's hand remains on the yoke and may begin to drop 

slightly causing the plane to drift off course and possibly into an unusual attitude with 

no way for the pilot to know. In this situation the control of the human-in-the-loop 

could be monitored and the pilot could be alerted when the aircraft begins to drift 

towards an unstable position. If the pilot does not respond the autopilot could then 

take corrective action by actively controlling the aircraft. 

An autopilot as described in the previous examples would be less of an autopi

lot that is switched either on or off, and more of a computer based uco-pilot" that 

monitors the system and the human-in-the-loop and smoothly assists the pilot in 

command to help mitigate the workload associated with flying an aircraft. The first 

step to designing a more intelligent control system as such involves the ability the 

observe the state of the human-in-the-loop with the hardware. In this case a model of 

the human must be known and included. In order to better design a system around 

the human, a better understanding of the human-in-the-loop is required. 
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1.3 Modeling the Human 

The human being is a very complex system, and therefore it is very difficult to pre

dict and model. The human is in part complex because of its controlling center, the 

brain, which is a highly complex neural nodal structure [3]. It is therefore common to 

model the brain as an artificial neural network. A neural network has the ability to 

process and learn information from the environment by recognizing common inputs, 

recognizing common relationships between inputs, and recognizing common associa

tions between inputs and outputs. Different states or features are stored in different 

nodes of the neural network and the relationships between nodes can be reinforced 

by increasing the weights or values between nodes based on information from the 

environment. Neural networks therefore rely on temporal information as well, in that 

previous states are measured against current states to make decisions [12, 13, 15, 16]. 

Because a complete and general model of a human would be so complex and so 

chaotic, it would seldom be useful in practice. A more reasonable approach is to build 

a human model based on a particular situation or a particular task that the human 

would be performing. A human model could also be simplified by breaking down the 

human into different aspects. In total, the human model involves a series of outputs 

based on a series of inputs. The inputs could be the state of the environment and 

the outputs could be the actions, behaviors, or decisions of the human. The state 

of the environment is known through the senses and processed in the brain [12. 13]. 

The environment can be manipulated by the human through the body. In general a 

human acts in a heuristic manner. The same person in the same situation does not 

necessarily behave the same way [36]. 

For the purpose of this thesis, the human can be simplified to only be modeled 

as its function as a controller of a vehicle. In this way, the human operator can be 
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modeled as a standard linear feedback control. The human corrects the states of the 

system, the vehicle, to some desired state. Human operators are commonly modeled 

as a standard PID state feedback controller [18, 19, 26, 27]. A PID controller works by 

multiplying PID gains by the errors of the Proportional, Integral and Derivative states 

of the system. If it is assumed that human controls a vehicle with this scheme, then 

it could be said that a skilled operator uses optimal gains to correct the system to a 

desired location. The limitations of using this approximation are the same limitations 

that arise when using linear state feedback controllers. The linear feedback controller 

will only work well for the conditions the gains are designed for. If the states of the 

system are changing too quickly or are too far off from the desired states then the 

system could become too unstable for the feedback control system to compensate. At 

this point the PID model for the human would become inaccurate because the human 

can in fact adapt to the changing conditions and in a sense reprogram itself with a 

new control law that can compensate for a different environment. 

In any case the feedback control law is built and processed in the brain. The 

brain measures the states of the system through the senses and controls the system 

mechanically with the body. The manipulation of the system, in the case of the 

aircraft, comes from the manipulation of the joystick which controls the aerodynamic 

surfaces on the aircraft. Therefore a complete model of the human pilot should include 

the brain as a state feedback controller and the mechanical actuator dynamics of a 

human arm controlling a joystick. 

1 A Human-in-the-loop 

By developing a model of a human operator, it is now possible to model a human-in-

the-loop with a vehicle. Understanding how the human controls a vehicle is crucial 
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in developing a semi-autonomous control system that can smoothly aid a human in 

the control of a vehicle. 

A standard feedback control system is shown in Figure 1.1. The feedback control 

law, u, is designed to drive the error of the states of the system, y, to zero in order 

to move the system to some desired state, ?/*, by manipulating the input actuators of 

the system. 

a 
System 

Feedback Control 

y 

y 

. 4 -

fry 
\ £ A ^ 

Figure 1.1: Block diagram of state feedback control. 

For modeling a human-in-the-loop. a human is placed in the feedback loop much 

like the feedback control law in Figure 1.1. Figure 1.2 shows a human-in-the-loop 

with a system. The "Feedback Control" block is replaced by the model of a human. 

The complete model of the human is shown as three parts: the "Senses", the "Human 

Brain" and the "Human Arm" The "Senses" block simply identifies the method by 

which the human gathers information about the system. The uHuman Brain1* block 

contains the control law and may additionally decide the desired configuration of the 

system along with the method for determining the error of the system. The "Human 

Arm" block represents the mechanical method of interaction that the control law of 

the brain has with the system. The "System" block in Figure 1.1 is broken down into 

two parts in Figure 1.2: the "Controls" block and the "Vehicle" block. The "Controls" 

block represents the step between the human and the control inputs of the "Vehicle" 

For instance, a human does not move the wheels of a car, but instead moves the 
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steering wheel which moves the wheels. In an aircraft the human manipulates a 

joystick which moves the aerodynamic control surfaces of the aircraft. The "Human 

Arm" and the "Controls" represents a step between the "Human Brain" and the 

"Vehicle" which has particular dynamics that the brain must then incorporate into 

the control law. 

u 
r* 4. 
^ U l l l l U l S 

nuiiiciii I\L i n 

veincie 

Human Brain 

y 

Senses 

Figure 1.2: Block diagram of human-in-the-loop with hardware. 

The ability to simulate a human controlling a vehicle offers a quantitative way to 

develop observers that could identify important parameters of a real human control

ling a vehicle and possibly predict human behavior in certain situations. This could 

also be used to obtain information about the human, which in turn could be used to 

determine how an autopilot could best assist the human operator. 

1.5 Problem Statement 

A human-in-the-loop cannot always perform as well as a computer controller, and 

a computer controller cannot always perform as well as a human controller. This 

becomes more substantial as the complexity of the system to be controlled increases. 

This is particularly true in the case of a human flying an aircraft. A better under

standing of the dynamics of a human-in-the-loop can provide insight into designing 

vehicle interfaces and semi-autonomous assistant controllers that could amplify the 
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strengths and mitigate the weaknesses of both the human and the computer controller. 

A better understanding of human-in-the-loop dynamics relies on the ability to 

simulate the human-in-the-loop with hardware. This requires a model of the hu

man controller. This thesis explores different types of decision making models and 

mechanical models that could be used to describe the human operator. 

The ability to simulate the human-in-the-loop provides a model that can be used 

to identify key parameters and predict human behavior. This thesis will develop 

nonlinear sliding mode observers that can estimate immeasurable states of the human. 

With a model of the human-in-the-loop these observers can now be designed and 

tested and could eventually be used to observe those parameters of a real human 

controlling a vehicle. 

This thesis will develop nonlinear observers that can estimate the torques involved 

in a human arm operating a joystick. Nonlinear observers will also be developed to 

estimate the gains of a linear feedback control system that is designed for controlling 

a simple solid ball. 



Chapter 2 

Mathematical Methods 

This chapter provides the key mathematical concepts used throughout this thesis. 

This includes linear control theory, linear and nonlinear observer theory, and the 

least square method. 

2-1 State Space 

To begin with, the equations that describe a system should be given in state-space 

form. Consider a differential equation of the form 

x = f(x). (2.1) 

where x = (x\ xn)
T and / = (/^ .. , f n ) T The ^-dimensional vector space is 

called state-space, where x is the state vector and / is the vector field [38]. 

Linear control and observer methods commonly use a linear time invariant state-

12 
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space system represented in the form 

x = Ax + Bu (2.2a) 

y = Cx, (2.2b) 

where x G 5Rn, ?/ £ sRrr\ and U G K 9 are the state, output, and input vectors, respec

tively. A is a constant nxn matrix, B is a constant n x q matrix, and C is a constant 

77? x n matrix [38]. 

2.2 Linear State Control 

Given a linear time invariant system in state-space form. 

x = Ax + Bu. (2.3) 

a control law input u can be designed so that the state vector of the system i is 

driven to some desired point x* 

2.2.1 Linear Controllability 

A system is considered controllable if there exists an input u(t) that will transfer 

any state x(t0) to any state x(ti) in a finite time t\ > t0. The controllability of the 

system from equation (2.3) can be tested by determining the rank of the controllability 

matrix. The controllability matrix is an n x (nq) matrix of the form 

B AB A2B .. An~lB (2.4) 
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The system is controllable if and only if the controllability matrix has rank n [38]. In 

this case, rank n also denotes full rank. Full rank means that all the rows are linearly 

independent. 

2.2.2 Stability 

Consider a nonlinear dynamic system described as 

i=f(x.t), (2.5) 

where x = (x\... . ,xn)
T is the state vector. An equilibrium point is denoted by i'*, 

where 

f(x\t) = 0 (2.6) 

for all t. 

An isolated equilibrium point has Lyapunov stability if for any e > 0 there exists 

a real positive number S(e,t0) such that for all t > to 

\\x(t0)-.r*\\<6=>\\x(t)-x*\\<e, (2.7) 

where ||x|| denotes the Euclidean norm of the vector r defined as 

||;r|| = v 7 ^ . (2.8) 

An isolated equilibrium point is locally asymptotically stable if it has Lyapunov 

stability and 

\\x{t0) - x*\\ < 6 => x(t) ^ x* (2.9) 

as t —> oo. 
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An equilibrium point is globally asymptotically stable if it has Lyapunov stability 

and 

x{t) -+x* (2.10) 

as t —> oc for any initial condition x(t0). 

A linear system is stable about an equilibrium point x* if all eigenvalues of matrix 

A have non-positive real parts and no repeated eigenvalues on the imaginary axis [38]. 

2.2.3 State Feedback Control 

Consider a linear time-invariant dynamic system described in terms of the errors. 

T = Ax + Bu, (2.11) 

where x and u denote the error defined as 

x =x-x* (2.12) 

u =u-u* (2.13) 

and where x* is the desired state and u* is the feedforward control and where J G K " 

and u G ffl The feedfoward control input u* should be chosen to satisfy the equation 

x* = Ax* + Bu* (2.14) 

The control input u can be designed such that a control gain matrix K multiplies the 

state vector x and drives the system to some desired state x* as 

u = -Kx< (2.15) 
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where A' G ?Rqxn From equations (2.13) and (2.15) it follows that the full state 

feedback and feedforward control law is 

u = H + u* (2.16) 

or 

u = -Kl + u* (2.17) 

The closed loop system then becomes 

x = {A-BK)x (2.18) 

and the characteristic equation becomes 

\sl -A + BK\ = 0. (2.19) 

Here, K can be chosen so the closed loop system is stable using the method of 

pole placement. Pole placement arbitrarily chooses the eigenvalues of (A — BK) to 

have negative real parts and complex conjugate pairs so that the system is stable. 

The characteristic equation can then be used to calculate K. The eigenvalues can 

arbitrarily be chosen with the previouslv stated conditions if the system is controllable 

[38]. 

2.3 PID Controller 

The most basic form of feedback control is one in which the output is proportional 

to the error given as [22] 

u = KPx. (2.20) 
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where the error, x = e(t). and where 

e(t) = r(t) - y(t) f2.2i: 

as shown in Figure 2.1, where r is the reference signal and y is the output of the 

system. However this may not be able to control steady-state error. The steady-state 

can be controlled by introducing an integral component to the control given as [22] 

u = KPx + Kj / xdt. (2.22) 

Adding a derivative component can have the advantage of providing large correc

tions before the error becomes too large [22]. It can also improve the transient state 

response. Adding the derivative component is described as [24] 

u = Kpr + Ki \ xdt + KDx 1 (2.23) 

r(t) + / ^ \ e(t) 
PID Controller 

u(t) 
System 

Figure 2.1: Block diagram of a PID controller. 

y(t) 

The resultant controller is known as a proportional-integral-derivative, or PID 

controller. The PID controller is one of the most common feedback control laws [38]. 

It can be implemented as the control for many systems. The gains of the PID control 

law, given as Ap, KD, and A'/, are what need to be determined and tuned to best 
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control any particular system. The PID controller can be implemented into a system 

as shown in Figure 2.1. 

2.4 State Observers 

This section explores methods for designing both linear and nonlinear observers. The 

goal of an observer is to estimate the states of a system that cannot be measured. 

2.4-1 Linear Observability 

Consider a linear time invariant state-space system, 

x = Ax + Bu 

y = Cx, 

(2.24a) 

(2.24b) 

where x G 3£n. u G ffi. and y G 9?m and where y is the output vector of the measured 

states. A system is considered observable at t0 if the knowledge of the control input 

u(t) and the output y(t) over a finite time period t0 < t < t\, suffices to determine 

the state x(t0) • The observability of the system from equation (2.24) can be tested 

by determining the rank of the observability matrix. The observability matrix is a 

(qn) x n matrix of the form 

C 

AC 

A2C (2.25) 

An'lC 

The system is observable if the observability matrix has rank n [38]. 
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2.4.2 Linear State Observers 

A state estimator, or observer, can be used to estimate the states of a system that 

cannot be directly measured. Consider a linear system, 

x = Ax + Bu (2.26a) 

y = Cx, (2.26b) 

where x G 3ft71, y G 3ft777, and a G 3ft9 and matrix C denotes which output variables are 

measured. Consider an asymptotic state observer. 

£ = Ax + Bu + L(y - Cx), (2.27) 

where x denotes an estimate of x, and L denotes the gain matrix with dimensions 

n x q. The error between the actual state and the estimated state, x, is defined as 

x = x-x. (2.28) 

The estimate error equation can then be described as 

£=(A- LC)x. (2.29) 

If the gain matrix L is chosen such that the eigenvalues of (.4 — LC) have negative 

real parts, then the error, x, is driven to zero [38]. 

2.4.3 Sliding Mode 

Sliding mode control uses a variable structure control with a high speed switched 

feedback. The switching control law drives the states of a system to a predetermined 
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sliding surface, a, in state-space. The switching control law works by having two 

gains; one for when the state trajectory is "above" the surface one for when the 

state trajectory is "below" the surface. Sliding mode control is therefore inherently 

discontinuous [7]. This is accomplished by implementing the sign function given as 

{ - 1 i f x < 0 
(2.30) 

+ 1 i f x > 0 

Consider a first order system 

x{t) = U(T), (2.31) 

with the control law 

u(i,t) = -sign(x), (2.32) 

so that 

x = —sign(x), (2.33) 

as shown in Figure 2.2. Here the control u(x< t) switches around the surface <r(x, t) = 

x = 0 so that for any initial condition x0 there exists a finite time t\ for which x(t) = 0 

for all t > ti. Ideally, once the sliding surface is intercepted, the state trajectory will 

remain on the sliding surface: the system is then considered to be in shding mode [7] 

An ideal sliding mode exists only when the state trajectory i (t) satisfies cr(x(/). t) = 

0 at every t > t\ for some t\. However an ideal sliding mode requires infinitely fast 

switching to have the trajectory exactly remain on the surface, and real switching 

control systems will be limited to a finite frequency. As such the trajectory will oscil

late within the vicinity of the sliding surface. This is called chattering and is shown 

in Figure 2.3. If the frequency is sufficiently high enough relative to the dynamic 

response of the system, the chattering may become negligible [7]. 
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x0>0 
State trajectories 

> • t 

Figure 2.2: State trajectories for x = —sign(x) [7]. 

PI -° 

Origin 
x = 0 

Figure 2.3: Sliding mode on the intersection of two surfaces with chattering [7]. 
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For the explanation of equivalent control, consider the nonlinear system 

x(t) = f{xJ) + B(x,t)u{x,t), (2.34) 

where x(t) G 9ftn, u(t) G 3ft9 and B G 3ftnv<7 Equivalent control is the continuous form 

of sliding mode control when the system is on the sliding surface. As such, since 

a(x(t)j) = 0 for all t > £i, it follows that a(x(t),t) = 0. Using the chain rule, the 

equivalent control, ueq< becomes the input for 

da da . da da ... . da . 
(2.35) 

If f^i?(x, t) is nonsingular for all x and i, ueq can be calculated as 

^eq or 

da da . 
— + —f(x,t) 
at ox 

(2.36) 

The dynamics of the system under these conditions can then be written as 

m = I-B(x.t) 
da 

dx 
B(x,t) ~X?1 

dx 
f(x,t)-B(x,t) 

da 

dx 
B{x,t) 

-'da 

dt' 
(2.37) 

The equivalent control can be used to determine the dynamics of the system on the 

sliding surface [7]. 

The equivalent value is denoted as [.. .}eq. For sliding mode control, [sign(x)]e(? 

is an average value of the chatteling as described earlier The value [sign(x)]eg can 

be obtained by using a low pass filter tuned sufficiently so as to be large enough 

to eliminate the high frequency component caused by unideal switching but not too 

large as to eliminate the slow component of the motion which is the equivalent control 

[10]. 
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Sliding mode observers are analogous to sliding mode controllers, just like linear 

state feedback controllers and observers, in that controllers attempt to drive a system 

to a desired point, x -» x*, and observeis attempt to drive the state estimates of a 

system to the actual states as i —> x. For sliding mode this means that the sliding 

mode surface of an observer is the actual trajectory of the system and the estimate of 

the states should converge on that sliding surface. Design of a sliding mode observer 

is described in general in Section 2.4.4 and then for the specific case of estimating a 

disturbance in Section 2.4.5. 

2.4.4 Sliding Mode State Observers 

A sliding mode observer has the advantage of being more robust and applicable to 

nonlinear systems as compared to standard full order observers. A sliding mode 

observer can be used on a linear system, as denoted by equation (2.2), similar in form 

to equation (2.27) as 

£ = Ax + Bu + Lsign{y - Cx). (2.38) 

With a suitable choice of the gain matrix L, the sliding vector (y — Cx) will converge 

to zero [10]. 

Now consider a nonlinear system, 

x = f(x) (2.39a) 

y = h(x). (2.39b) 
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where x e !Rtt, (/ G F , and 

/ ( * ) = 

"/1(a)1 

/2U) 

/ s ( i ) 

_/„(*)_ 

(2.40) 

In general the sliding mode observer can be designed in terms of the estimated states 

of the system, x, bv implementing the formula 

J = (^Tr) (̂*)sign(V(0 - H(x)). (2.41) 

The H(x) vector is comprised of the output function h(x) and its repeated Lie deriva

tives where 

H(i) = 

hi(x) 

h2(x) 

M-0 

hn(x)_ 

= 

h(x) 

Lfh(x) 

L2Mx) 

Lnflh{x) 

h(i) 

dhn-i(x) 
dx / ( * ) 

(2.42) 

and where L)h is the ith Lie derivative of the output function h along the vector / 

The matrix L(x). is a diagonal n x n matrix of gains shown as 

U{x) 

L2(r) 

L = U(i (2.43) 

Ln{x) 
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where Lt(x) > 0 must be suitably large enough to reach sliding mode. The vector 

V(t) is the observer vector shown as 

V{t) = 

MO 

v3(t) 

y(t) 

[Li{i)siga(vi(t) -/i1(i))]e«7 

[L2(r)sign(v2(/) - h2(x))]eq 

[L„_i(x)sign(i;n_1(i) - hn-^x))] eq 

(2.44) 

where [.. ]eq denotes the equivalent value of a discontinuous function in sliding mode 

[9]. There are two drawbacks to this method. One drawback is that the Jacobian of 

the vector H(x), dJ\ must remain nonsingular so that it is invertible. The other 

drawback is that observer vector V(t) is determined by successive steps of taking the 

equivalent value. This can lead to a propagation of chattering noise produced by a 

finite frequency of the switching feature of the sliding mode observer. 

2-4.5 Sliding Mode Disturbance Observers 

Sliding mode observers have the ability to observe a disturbance on the system without 

having to know the functional form of the disturbance. Consider a nonlinear system 

with a disturbance described as 

A/(x)r = /(r,±) + £, (2.45) 

where the functional form of the disturbance £ is unknown. Equation (2.45) can be 

solved for i which produces 

£ = Arl(x)f(x,x) + A/_1(ar)£. (2.46) 
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Equation (2.46) can then be represented in state-space by letting 

j-i = x (2.47a) 

x2 = x, (2.47b) 

and so is described in the form 

i-i = x2 = x (2.48a) 

x2 = A/-1(x1)/(x1 ,x2) + i \ /-1(x1)e (2.48b) 

Assuming all the states of the system can be measured, x and x. the disturbance £ 

can estimated using an observer of the form 

xi = x2 + Lisign(xi - Xi) (2.49a) 

| 2 = M-l{Xl)f{TUh) + M~1{x1)L2sign(x2 - x2). (2.49b) 

The errors between the observed states and the actual states can be expressed as 

xi = xi — Xi (2.50a) 

x2 = x2 - x2. (2.50b) 

The equations from (2.49) can be experssed in terms of the errors as 

xi = x2 + Ljsign(xi) (2.51a) 

X2 = i \ /"1(x1)/(x1 ,x2) - A / - 1 ^ ! ) / ^ ! , J 2 ) + A r ^ x ^ ^ s i g n ^ ) + A / " 1 ^ . 
(2.51b) 
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When sliding mode begins the errors are driven to zero, 

Xi = xi - xi -» 0 (2.52a) 

x2 = x2 - x2 -» 0, (2.52b) 

and so the first two terms in equation (2.51b) will then cancel and x2 will also go to 

zero, shown as 

(2.53) 

M-l(x1)f(xux2) - M-l(h)f(xi,i2) -> 0. 

This leaves equation (2.51b) as 

0 = 0 + Arl{r1)L2sign(x2) + M"l{xx)^ (2.54) 

And so when rearranged the disturbance can now be calculated as [10] 

Z=[L2sign(x2-x2)}€q. (2.55) 

Therefore by using a sliding mode observer it is possible to estimate a disturbance 

on a system without the need for a functional form of the disturbance. This method 

could be described as having the ability to measure a system with a known model 

and estimate a disturbance that deviates the system from some expected trajectory. 

2-5 Least Square Method 

The least square method is a mathematical tool derived from linear algebra that can 

calculate the "best fit'' line of a set of data points. Given a linear equation of the 
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form 

XC = B, (2.56) 

where A' is an N x n matrix, C is an n x 1 matrix and B is an N x 1 matrix shown 

generally as 

•ri(l) •• x n ( l ) 

X!(7V) . xn(N) 

Matrix C can be solved for as 

C\ 6i 

>>JV 

(2.57) 

AX' = B 

XTXC = XTB 

C = (XTX)-1XTB. 

(2.58) 

(2.59) 

(2.60) 

If A'TA" is nonsingular and so invertible. then there exists a least square solution. Copt, 

by minimizing the error \\E\\2 —> mm, where the error is described as 

E = XC - B. (2.61) 

So the least square solution is given by [20] 

Copt = (X1X)~1X1B (2.62) 

where Copt is a vector of the optimal solution for the coefficients that describe a abest 

fit" line for a series of data points. 
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2.6 Summary of Mathematical Methods 

The methods described in this chapter will be used in this thesis to investigate the 

ability to observe important parameters of a human-in-the-loop that cannot be di

rectly measured. The particular states of interest include the feedback control gains 

a human-in-the-loop uses that would be calculated and processed in the brain and 

the torques involved in the human motion dynamics of a human arm controlling a 

joystick. The observers rely on the ability, in a sense, to observe the deviation of a 

system's trajectory from an expected trajectory. To do this, it is then required to 

have a model of the system. And so the next chapters aim to investigate different 

models that can be used for the human brain, the human arm and different vehicles 

that a human can control. 



Chapter 3 

Human Decision Making Models 

3-1 Introduction to Human models 

In order to be able to simulate a human-in-the-loop control system, a model of the 

human is essential. As discussed in Section 1.4, the model of the human can be 

split into to major parts; human motion, which represents the humans ability in me

chanically interact with the environment, and the human brain, which represents the 

control center for processing information, decision making and subsequently control

ling human motion through the muscular system. This chapter will focus on different 

model considerations for the human brain and then human motion will be discussed 

in Chapter 4. 

There are many different approaches to designing accurate models of the human 

brain which may be more or less useful depending on the type of application for which 

it is going to be used. There are biologically inspired neural networks [16], biologically 

inspired macroscopic neural populations [17]. mathematically inspired neural network 

models [5, 6, 15, 21, 32], mathematical models describing the brain as a mapping of 

inputs to outputs, where human behavior is described as a path from perception 

30 
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to processing to action [12, 13], the states of the human could be described by the 

measurements of EEG (Electroencephalography) data [3, 17, 31], or the brain could 

be modeled as a decision making center for only specific tasks. The brain could be 

modeled analogous to a control system if the human is in the loop with a system and 

the human is only tasked with controlling that system. It is common to then describe 

the human mathematically as a PID controller [18, 19, 26, 27]. 

In general the human brain is made up of many complex connections between 

many neurons in a large neural network [3]. The network is chaotic on the neural level 

and highly dynamical on a large scale due to the coupling of neurons in both physical 

space and time. Any mathematical model that attempts to map out this network 

must consist of nonlinear differential equations taking the chaos into account [3, 12, 

13, 17, 30, 36. 37]. With these main parameters in place, the mathematical model 

can take different forms. It may include properties of neurotransmitters, neurons, and 

chemical reactions that take place within the brain. This would be an example of a 

biologically inspired model [15, 17, 30]. Other forms may just consist of theoretical 

mathematics that could be applied in general to many types of networks [5, 6, 21, 32]. 

Another important aspect of an efficient and accurate model is its ability to adapt 

and change itself to better suite the changing sensory input coming from a changing 

environment. This can include the use of pattern storage and recognition instead of 

storing every bit of sensory data. A competitive network is also an important aspect 

to include so as to have the system itself decide what sensory input should be saved 

or thrown out. This can be helpful not only to throw out bad data, such as low signal 

to noise input or supersaturated input, but also to determine which inputs are useful 

or relevant bits of information. In this way, what is relevant will also be assessed by 

how it matches the current pattern. So the pattern and competitive nature of the 

network would work in tandem [12, 15, 16]. 
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3.2 Neural Networks 

The success of a neural network depends on neurons working in a competitive form. 

The neurons are subject to upper and lower bounds of signal saturation and low 

signal to noise. In a competitive system the neuron or population of neurons with 

the strongest intact signal can be chosen and all others can be dismissed [16]. Small 

signal to noise can be typical given that neurons operate near the quantum range. If 

the signal is too strong it could be spread over a population of interacting neurons, or 

perhaps shunted so as to reduce the signal below the upper threshold. If the signal is 

low a feedback amplification function could be used to increase the signal more than 

it would increase the noise. One such model can work well at both these processes 

by using a Sigmoid function [15]. 

Friston describes the brain as an collection of dynamical systems relating inputs to 

outputs. The model to describe this neural activity sufficiently must consist of activity 

at the current time and its recent history. An important aspect to the description 

of the brain is the idea that "the dynamics of neural systems can be viewed as a 

succession of transient spatiotemporal patterns of activity that mediate perceptual 

synthesis and adaptive sensorimotor integration.1' The description will only be useful 

with an explicit temporal domain. A problem with describing the complexities of 

the brain is that not all of the state variables are directly observable. However, 

measurements of whole cells or populations could be possible. The two main points 

to the adequate description of brain activity are a mathematical relationship between 

the inputs and outputs and the fact that the measurable output of one system is the 

input of other systems [13]. 

Neural activity of the brain is stochastic in nature. It is a complex dynamical 

system including a significant portion of random noise. This can biologically come 
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from random opening ion channels or synaptic conductance and voltage noise. Be

cause of the degree of randomness in the system, it is necessary to use a numerical 

computational model in computer simulation to accurately model neural activity in 

the brain [30]. 

The nebulous cartesian system is probabilistic description of states as cloudy pack

ets obeying quantum rules. A description of the brain-body-mind construct must in

clude uncertain causalities and multiple uncertain causalities. This is because of the 

nonlinear behavior of the neuronal electricity which can be seen as chaotic behavior 

measured by E E C The "Nebulous Cartesian System" is even a step above a hyper-

probabilistic construct by including aspects of sentiments, emotions and creativity. 

The nebulous system is a description that aims to predict future behaviors through 

probabilities [3]. 

Macroscopic neural populations is an appropriate level for modeling neural func

tions in perception, cognition and consciousness. Nonlinear dynamics can be used 

to describe the neural mechanics by which large scale patterns of brain activity are 

self organized. Brains are chaotic systems that do more than just filter and process 

sensory input; chaotic dynamics give rise to intelligence and creative powers [12]. 

The brain has a fundamental uncertainty in its states analogous to the Heisenberg 

uncertainty principle in quantum physics. There are a number of reasons why the 

brain behaves as a chaotic system. There are several structures of the brain that are 

made up of several groups of neural oscillators in at least five frequency channels. 

Therefore, the brain has a large number of degrees of freedom related to those activ

ities. Also the dimension of possible states of the substructures of the brain or the 

brain as a whole is high. These facts lead to a chaotic system in which small changes 

in initial conditions may give way to large changes in the trajectories of the system. 

At the other end of the spectrum, the uncertain behavior of the brain structure can be 
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seen by observing only a few neurons. This is not a chaotic matter, but a probabilistic 

outcome as in the quantum efficiency of a neuron to fire or not fire when excited [3]. 

Freeman describes one type of perception that starts with the sensing of a stim

uli. Then there is a binding of parallel activitv of multiple features to represent 

objects that are filtered, normalized and matched with retrieved representations from 

storage. Perception is the binding of the representations of an object from multiple 

sensory systems. Another mode of perception that is more intentional is organized by 

large scale neural interactions whereby representations are formed within an existing 

framework constructed from experiences. Patterns are formed with the guidance of a 

chaotic attractor. Perceptions are shaped by connectivity patterns from past learning 

[12]. 

Cortical activity is the product of interactions among neuronal populations. The 

macroscopic features of cortical activity can be modeled in terms of the microscopic 

behavior of neurons. Another proposal aims use a model of neural activity to esti

mate physiological parameters from electrophysical data. The model assumes neurons 

are dynamical, random units organized into populations of similar biological prop

erties and response characteiistics. Multiple populations then can interact to form 

a network. This uses the idea of a changing probability density in state-space. The 

trajectories correspond to the state of a neuron. By taking the expectation of these 

probability densities, measurements can be modeled. The dynamics of a neuron can 

be highly random but the dynamics of the density mav not be random [17]. 

The coupling among hierarchies of neural populations lead to neural responses 

and sensory information propagated through the system. Biophysical parameters can 

control this coupling. Electroencephalographv (EEG) measures electrical activitv 

generated by the brain. The electrochemical activity of coupled neurons generate a 

distribution of current sources in the cortex This is based on the electrical properties 
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of the nervous tissues. These electrical traces can give an interesting expression of 

large scale coordinated patterns of electrical potential [17]. 

Nonlinear chaotic mathematical modeling of neural networks can be applied to 

and help make sense of data from EEGs. Understanding the chaos in EEG readings 

in patients can be used to help understand how epilepsy and depression can manifest 

in the human brain [31]. 

3.2.1 Neural Network Models 

In Cohen and Grossberg's "Absolute Stability of Global Pattern Formation and Par

allel Memory Storage by Competitive Neural Networks" [6], the process by which 

input patterns are transformed and stored by competitive neural networks is consid

ered. The model which can exhibit the absolute stability property is 

dxt ( 

— =al{x1) 
bl(xl) - ^clkdk(xk) 

k=\ 

(3.1) 

where i = 1.2,. . ,n, and the matrix C = \\clk\\ is symmetric and the system as a 

whole is competitive. The model is capable of approaching one of perhaps infinitely 

many equilibrium points in response to arbitrary input patterns and initial data. The 

global Liapunov function used to analyze the system used was 

V(x) = - £ r MZMtt)^ + i ]T cjkd3{x3)dk{xk). (3.2) 
i=i J o ~ jk=i 

The analysis showed that all the trajectories converge. But each trajectory would not 

necessarily converge to a unique equilibrium point [6]. 

Another consideration of the Cohen-Grossberg model is made by Liao et. al. [21]. 

They use a modified model that includes distributed delays. The importance of the 



3.2. NEURAL NETWORKS 36 

distributed delayed feedback provides an approximation of propagated delays due to 

the physical separations between large numbers of neurons in a network. Their neural 

network model is 

x(t) = -al(i1(t)) t>iMt)) ~ Yl UrjSjMt)) ~ Yl WV / A''j(* ~ s)sAxAs))ds + Jx 
3 = 1 3 = 1 J~^ 

(3.3) 

where ? = 1, 2, ,77, Jx denotes the constant inputs from outside of the system, r%3 > 

0 are the delays caused during the switching and transmission processes. al(xl(t)) > 0 

is the amplification function. bl(xl(t)) is the self-signal function, wl3 is the delayed 

connection weight matrix, s3 are the neuron activation functions, and K%3 are the 

delay kernels. They have also developed and shown criteria and conditions for global 

exponential stability [21]. 

The dynamic causal model for neural networks that can be used as the framework 

for inferring neural mechanisms from fMRI (functional Magnetic Resonance), EEG 

and MEG (Magnetoencephalography) measurements is described by 

dr ( m n \ 

— =[A + 'y uzB
M + Y u2D^ )x + Cu, (3.4) 

dt V tr U I 
where matrix A represents the fixed strength of connections between the modeled 

regions, matrix B represents the context-dependent modulation of these connections. 

and matrix C represents the influence of external inputs such as sensory stimuli [32]. 

The model discussed by Chumbly is also based on use for application in brain 

imaging such fMRIs and EEGs described as 

z= [A + Y^UtBn zt + Cuu (3.5) 

where zt is the neuronal activity, ut is the input, and matrix A describes input inde-
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pendent or "regional" connectivity among the states. Some of the parameters may 

be biological. Because in reality neuronal networks cannot diverge exponentially to 

infinity, the real component of the eigenvalues of matrix A must be negative. In fact 

when the largest real eigenvalue is negative, the stable mode is a point attractor [5]. 

3.3 Human Chaotic Behavior 

Human behavior is both unpredictable and nonrandom. The behavior of a person 

does not come from external cause. This includes the physiological state of a person. 

The implication of no external cause makes the behavior of a human unpredictable. 

And yet a human cannot behave randomly when asked to do so. One description 

of this is that humans behave in a heuristic manner. A heuristic procedure does 

not guarantee the correctness of a solution to a particular problem. This would be 

opposite to an algorithm. Heuristic behavior could mean that the same person in the 

same situation would not necessarily behave the same way. The person could behave 

unpredictably but not randomly. The decision of a human is based on what comes to 

mind first. This could be based on the nodal structure of the neural network of that 

person [36]. 

Ward and West explored the possibility of a human responding randomly by 

developing a model that could simulate a human attempting to mimic a nonlinear 

system. The system used was a logistic difference equation, 

Yn+i = aYn(l - I k ) , (3.6) 

where a is a constant and therefore the current value of >^+1 is produced from a 

previous value Yn. The chaotic attractor, a, determines how random the series appears 

to be. Values between 3.5 and 4 are where the function appears most random. Ward 
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and West chose a to be 3.66 [36]. 

3.3.1 An Experiment 

Subjects were asked to respond with the next number in the series based on the 

previous "seed" number. The subjects were trained by the nonlinear function 

Y = aX(l-X). (3.7) 

The subjects would make a guess based a on a given seed, A", and presented with 

the correct response, Y. as feedback. This was iterated until the subject's accuracy 

became asymptotic [36]. Once the subjects had sufficiently learned with feedback. 

they then tried to iterate equation (3.6) without feedback. Starting with an initial 

random seed, each subsequent response was used as the seed for the next response. 

Figure 3.1 shows a computer generation of equation (3.7) with n number of iterations, 

where n = 100. a = 3.66, and Yxnitmi = 0.5. Each value was multiplied by 1000 

before being plotted. Figure 3.1(a) shows the logistic map generated from equation 

(3.7). Figure 3.1(b) shows the logistic map generated by iterating equation (3.6). 

And Figure 3.1(c) shows the output of equation (3.6) as per iteration. This shows 

how Figure 3.1(b) is generated in time. Notice that this could appear as the values 

chaotically "jumping" around the function and would be difficult for a human to 

accurately reproduce. If a subject was to perfectly iterate the function the logistic 

map would match Figure 3.1(b) [36]. 

Figure 3.2 shows how close the subject approximated the logistic iteration. In 

order to quantify the accuracy, Ward and West best fitted equation (3.7) to the 

subject's data by adjusting the value of a. The subject from Figure 3.2 approximated 

a chaotic attractor of 3.47 with an adjusted R2 value of 0.851 [36]. 
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(a) Logistic Map (b) Logistic Map Iterated 
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Figure 3.1: Computer generated plots of a nonlinear function Y = aX{\ — X) 
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Two approaches were then taken to reproduce the plot of Figure 3.2 in order to 

gain some insight into the decision making of the human. The first approach was to 

simply add -), a Gaussian noise distribution with a mean of zero, to equation (3.6) as 

[36] 

Yn+l=aYn(l-Yn) + ~l. (3.8) 

Figure 3.3 shows the results when adding a Gaussian distribution with a standard 

deviation of 509c. Figure 3.3 shows some clear resemblance to Figure 3.2. but there 

are some key differences. By having the added noise, the model more closely resembles 

the human. Figure 3.2, than the computer, Figure 3.1b. and so can account for the 

unpredictability in the heuristics of the human. However, the added noise is an over 

generalization [36]. 

In order to more precisely mimic the human, Ward and West attempted to map 

out the decision making method of the human. They employed a memory pair in

terpolation scheme along with a "fuzzy" memory scheme. The memory pairs and 

interpolation precision was catered to each of the subjects individually bv inspection 

of their data set. This is because the memory pairs come about from each subjects' 

learning history. The memory pairs were also afuzzified" by adding Gaussian noise 

with a standard deviation of 40% to each subject in order to account for the non-

precision of the human. The results of this approach can be seen in Figure 3.4. and 

clearlv shows the fuzzy memory pair scheme can closely reproduce the subject's data 

plot [36]. 

The fuzzy memory pair model can represent certain psychological processes, such 

as memory, calculation, and decision. The drawback is that it cannot be represented 

by a nonlinear difference equation. Its behavior could be described by equation (3.8) 

with parameter a approximating the particular memory pairs used by a certain sub-
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ject. But more importantly, the unpredictable aspect of the subject's behavior comes 

from the noisy term and not the nonlinear function part of equation (3.8). The 

chaotic factor comes from a combination of human memory and performance limita

tions. During complex tasks, a human will perform heuristic behavior to approximate 

a desired output [36]. 

3.4 Human Based PID Controller 

Modeling the human operator as a linear controller of a vehicle has been a developing 

area of study for many decades [18]. 

Basing the function of a human on a PID controller depends on designing the 

gains of the controller so that it would mimic the actions of a human in its place. A 

controller based on the input of skilled human is developed developed by Koiwai, et. 

al [19]. Neural networks could be an effective design for controlling such nonlinear 

systems, but Koiwai, et. al. [19], suggest a Cerebellar Model Articulation Controller 

(CMAC) that can be used in place of an artificial neural network. It has the advantage 

of a faster learning time and is based on a simpler structure. In particular, it can be 

used as a learning center for a human based PID controller. The gains of the PID 

controller can be tuned based on the input of a human expert in a particular skill. 

With enough data from the human expert, the system could continue to be controlled 

autonomously. This method could be used in many applications for autonomous 

control of systems normally controlled by a human operator [19]. The PID controller 
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is developed as 

u(t) = u(t- 1) 

+ KP{y(t-l)-y(t)} 

+ Kie(t) 

+ KD{2y(t-l)-y(t)-y(t-2)}, 

(3.9) 

where e(t) is the error defined as 

e(t)~r(t)-y(t). (3.10) 

and r(t) is the reference signal. Each CMAC computes the weights from r(t), e{t), 

and Ae(f). The change in the error, Ae(t), is defined as 

Ae(t) = e(t)-e{t-l). (3.11) 

The gains of the PID controller, (Ap, A'/, KD), are each tuned by the weights of 

three CMACs, 

A 

(3.12a) 

(3.12b) 

(3.12c) 
h=\ 

where h = 1, 2,..., K\ and K is the total number of weights selected from the CMAC. 

The weights are driven so that u(t) approaches u*(t) by the following steepest descent 

KP: 

A'/ = 

KD-

h 

= 5> 
h=\ 
K 

= E" 

>,h(<) 

/.*(*) 

D/,(0. 
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Figure 3.5: Block diagram of CMAC based controller method [19]. 
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Figure 3.6: Block diagram of learning process [19]. 
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method 

iroldi^ ,.sdJ 1 W^'(t) = Wf«h(t) - g(t)f^x (3.13a) 

rold,-^ . . ^ J 1 
W%»(t) = Wf%(t) - 9(t)^j: (3.13b) 

f) 1 1 
WffiW) = W&it) - 9(t)-£^± (3.13c) 

ohD A 

where g(t) and J are defined as 

g ^ =
 c + a . e(-b\u*(t)-u(t)\) (3-14) 

J = \<t? (3-15) 

e = u*( f ) -u( i ) , (3.16) 

and where a. 6, c are the appropriate positive constant. Each partial differential from 

equation (3.13) is developed as 

dJ __ dJ de(i)du(f)=e{t){m_^_l)} ( l l 7 a ) 

dKP de(t) du{t) dKP 

dJ dJ de(t)dujt) 
dK~r ~ de{t)du{t) dh'i 
dJ _ dJ de{t) du(t) 

8KD ~ de(t)du{t) dh'D 

= -e(t)e(t) (3.17b) 

= e(t){y(t)-2y(t-l) + y(t-2)}. (3.17c) 

The results from Koiwai et. al. [19] are shown in Figures 3.7 and 3.8. Figure 

3.7 shows the controlled trajectory of the skilled human, j / * , to a desired trajectory, 

r, and the machine trajectory y based on the learned control gains which are shown 

in Figure 3.8. These results show that training a CMAC with multiple trails from 

a skilled operator can optimize the gains of the control law which a machine can 

then repeat by implementing the measured control law. It is important to note that 



3.4. HUMAN BASED PID CONTROLLER 46 

100 

80 

| 60 

tit 

jj 40 

* 20 

0 

-20 

i V/ 

•_•; ; ; ^y -

o 15 
ifsec] 

?~\ 

I 

^2J, 

i 

i 

, - - ^ . . 

i 

. _ / y 

1 

^ ^ ^ — ^ T ~ 
_ _ 

1 

-

i 

*• - — — • — -

u* 

15 
t[sec] 

Figure 3.7: Human and machine control results [19]. 

although PID control is normally a linear control with constant gains, the results of 

Koiwai et. al. [19] show that the skilled human operator used variable PID gains 

based on the assumption that the human was actually acting as a PID controller. 

Phatak and Weinert [26] attempt to identify human operator parameters from 

measured data for an optimal control model. The control is based on standard plant 

dynamics 

±(t) = Ax(t) + bu{t) + w{t) 

y(t) = Cx(t)+v(t), 

(3.18a) 

(3.18b) 

where w(t) and v(t) are zero-mean, Gaussian white noise with covariance matricies W 

and V, respectively. Phatak and Weinert [26] also postulate that the human chooses 
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Figure 3.8: PID gains learned from the skilled human operator [19]. 

a feedback control law that specifically minimizes a quadratic cost function 

J = E{{x,Qx) + gu2}. (3.19) 

where Q is a constant non-negative definite matrix and g is a positive constant. The 

proposed optimal control law is then given by 

t(t) = -XTxd(t), (3.20) 

where A is the optimal gain vector and xd{t) is the solution to the Kalman filter 

equation, 

xd(t) = Axd(t) + bu(t) + Ku{t) 

u(t) = y(t)-Cxd(t). 

:3.2i: 

(3.22) 



3.4. HUMAN BASED PID CONTROLLER 48 

where Â  is the steady-state Kalman gain. The optimal control model for the human 

operator is made up of equations (3.20) and (3.21) and combined into 

rd = Axd + Ku, (3.23) 

where A = A - b\f [26]. 

Phillips and Repperger [27] propose an informatic model of a human operator 

as a linear, time invariant function, that can describe a feed-forward human control 

system involving a single input with a single output. The model incorporates the 

time delav of the human operator including reaction time and movement time as 

y0 = A[l-e-aAl{t-TD)] , (3.24) 

where the output y0 depends on A, the unit-step input magnitude, aM, the movement 

informatic frequency, and TD, the reaction time delav. The human response, or action 

time (AT), is a sum of the reaction time (RT) and the movement time (MT) given 

&sAT = RT + MT [27]. 

Anderson [1] also proposes a linear feedback control model of a human operator. 

Anderson uses a mix between a ucross-over" model in frequency space and an "optimal 

control" model based on the linear-quadratic-gaussian control in state-space. The 

cross over model is given by 

P(s) = H{s)e-T\ (3.25) 

where P(s) is the human operator, r is the time delav and H(s) is the control function 

described as 

H(s) = A p ^ ± T , (3.26) 
T/S + 1 

wdiere Kv is the static gain, rL is a lead time constant and 77 is a lag time constant. 
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3,5 Summary of Human Models 

As evident from this chapter there are many different approaches describing the hu

man brain. The neural networks may provide a more complete or accurate model of 

the human brain but the complexities present a level of chaos with so many variables 

and are not necessarily useful for describing a human operator. 

Several examples of papers were given that provided a human operator model 

as a linear feedback controller and different methods were proposed for learning the 

specific gains of a human operator. This is a reasonable assumption for a human only 

tasked with the function of controlling a vehicle. Many autonomous control systems 

for vehicles and other systems use linear feedback control successfully. 

However, this may only be accurate for relatively stable conditions. The value 

of a human-in-the-loop control system is the human's ability to adapt to changing 

environment and learn new control methods for unforeseen disturbances. For instance, 

a human could be modeled with the added feature of being able to learn a disturbance 

and add an additional control law to compensate as shown in Figure 3.9 and by the 

following equations: 

y = Ay + Bu, (3.27a) 

u = KPy + Ki y + KDy, (3.27b) 

y = Ay + Bu + f. (3.28a) 

u = KPy + I\! y + KDg, (3.28b) 
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y = Ay + Bu + / , (3.29a) 

u = KPy + A'/ / y + KDg + uf< (3.29b) 

where y = e(t) is the error defined as 

y = \y-y*l (3.30) 

and y* = r(f) is the desired state. Equation (3.27) shows a standard system and a 

standard PID controller and refers to Figure 3.9(a). Equation (3.28) shows a standard 

system with an added disturbance, / . and a standard PID controller and refers to 

Figure 3.9(b). Equation (3.29) shows a standard system with the added disturbance 

and a standard PID controller with an added term. Uf. designed to compensate for 

the disturbance. This refers to Figure 3.9(c). 

Future study of human-in-the-loop control should also base the human operator 

on a nonlinear multiparameter model that can include the features of adaptation and 

learning. 
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Figure 3.9: Block diagrams of PID controller with added disturbance. 



Chapter 4 

Human Arm Models 

4.1 Introduction to Human Motion 

Modeling human motion through the medium of mathematical equations of motion is 

an area of ongoing research that has produced many useful mathematical descriptions 

of human motion. The human body can be described as a system of rigid links ' 

connected by joints. The assumption that each body part is a rigid body is a good 

approximation for the purposes of studying human motion. However, since the human 

body can be modeled as a sjstem of 148 links, it still proves to be a very complex 

system [39]. 

The complete human body can be modeled with as many as 148 movable bones 

connected by 147 joints as shown in Figure 4.1. Figure 4.1 shows one side of the body 

with each joint numbered. There are three classes of joints; there are 29 3rd class 

joints with 3 DOF (Degrees of Freedom), 33 4th class joints with 2 DOF and 85 5th 

class joints with 1 DOF. The total DOF can be calculated from the following formula 

[39]: 
5 

F = 6N-J2ih- (4-1) 

1=3 

R9 
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Figure 4.1: Mobility of the human body [39]. 
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where F is the total number of DOF, N is the number of movable bones, i is the class 

of the joint, and j} is the number of joints of class / The class of the joint is calculated 

as i = 6 - / where / is the number of DOF. The complete human body can then 

be calculated to have 244 DOF [39]. The complete human body described as such 

provides a highly redundant skeletal system. With 244 DOF and a maneuverability 

of 238. the brain must specify 244 variables to place an end-effector in space where 

238 variables are redundant and can be used to perform the motor task in an optimal 

way [39]. 

Clavicle (2 

Upper trunk 
joint (3) 

Lower trunk 
joint(3) 

Neck (3) 
Shoulder (3) 

Wrist (2 or 3) 

Hip (3) 

Knee(l or 2) 

Ankle (2 or 3) J> ^Metatarsal (1) 

Figure 4.2: Kinematic model of the human body [39]. 

Figure 4.2 shows a kinematic model of the human body where the filled circles 

represent joints that are usually included in models and the open circles represent 

joints tha t are only included in some models. The numbers in the parentheses show 

the number of DOF for that joint. This simplified model has a maximum of 18 

segments connected by 17 joints for a total 41 DOF. This is known as gross bodv 

model where many of the smaller joints are not included. Using this reduced model 

the human arm has 7 DOF. This still allows for a redundant system where there are 
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many joint angle solutions for the same end-effector motion [4. 28, 39]. 

4.2 Human Arm Controlling a Joystick 

The human arm is the mechanical link between the control law calculated by the 

human brain and the actuator control of the system. It is an important step for a 

human-in-the-loop because the control law calculated in the brain must take all the 

actuator dynamics into account. Flying an aircraft involves the pilot's arm manipu

lating a joystick where the joystick's position is proportional to the control surfaces of 

the aircraft [22]. To more accurately understand the control law of the human brain. 

a model of the human arm controlling a joystick needs to be developed. 

Manipulation of the joystick by the human arm is accomplished mechanically 

through the application of torques and forces placed on the various joints and con

nection points of the system. The human accomplishes this through contraction and 

extension of muscles in the arm. The movement of these muscles is controlled by the 

brain through signals sent back and forth along the central nervous system [4, 39]. 

In this case, input control for the position of the arm are the torques placed on the 

shoulder and elbow joints which results in a net force placed on the end of the joystick 

by the hand [14]. This net force placed on the end of the joystick bv the arm results 

in a torque placed on the joystick which controls the angle of the joystick. From all 

of this it is a reasonable approximation to say that the control law designed in the 

human brain controls the torques to achieve a desired joystick position which results 

in the desired aircraft configuration. This is analogous to a robotic arm controlled by 

the output torques of electric motors placed at the joints [14, 39]. 

The total system can be simplified from a three dimensional system so as to be 

studied as two separate two dimensional systems. One system for aircraft roll control 
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and one system for aircraft pitch control. Only the system for pitch control will be 

considered in this thesis. 

4.3 Pi tch Control Modeled with Arm and Joystick 

as One System 

One way to model a human arm manipulating a joystick for pitch control is to repre

sent the system as a three link chain fixed at each endpoint. In this way the system 

would only have 1 DOF With the endpoints fixed, the angles of the upper arm and 

fore arm would depend on the angle of the joystick. 

Figure 4 3: Pitch control system diagram with arm and joystick. 

Figure 4.3 represents the system where h is the length of the upper arm. l2 is the 

length of the forearm, and l3 is the length of the joystick. The length dx locates the 

center of mass of the upper arm and d2 locates the center of mass of the forearm The 

masses mx and m2 are the masses of the upper arm and forearm, respectively, and 
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rn3 is the mass of the hand and the joystick. The location, in Cartesian coordinates, 

of r??!, r/72. ™3< and the base of the joystick are denoted by (yu ci), (y2, z2), (2/3, c3). 

and (2/4,-4)1 respectively. The shoulder is located at the origin. The shoulder and 

base of the joystick are fixed positions. The angle (pi is the angle between the --axis 

and the upper arm. The angle (p2 is the angle between a base line from the elbow in 

the z direction and the forearm. The angle <p is the angle between a base line from 

the base of the joystick in the z direction and the joystick. 

The equations of motion can be derived using the Lagrangian of the system defined 

as [2] 

L = T- V, (4.2) 

where T is the kinetic energy and V is the potential energy of the system. For the 

system shown in Figure 4.3, the Lagrangian becomes 

L = - [mi(yi2 + ii2) + m2(y2
2 + z2

2) + m3(y3
2 + z3

2)] 
2 (4.3) 

- g [midi cos 0i + m2(/i cos </>i + d2 cos <p2) + m3Z3 cos 0], 

where g is the acceleration due to gravity. The angles </>i, (j)2 and (f) are the angles 

of the shoulder, elbow and joystick, respectively. The Cartesian coordinates of the 

system are defined by 

2/1 = d\ sin (pi, z\ = d\ cos <p\, 

y2 = 1] sin d\ + d2 sin &2. z2 = l\ cos 4>\ + &2 cos cj)2. (4-4) 

y3 = li sin (pi + l2 sin <p2, z^ = /1 cos 0i + l2 cos ^2-
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The time derivatives of the equations from (4.4) become 

y\ = dicos^i^x, ii = - d i sin (/>!</>!, 

y2 = li cos d\(p\ + d2 cos (p2(p2, z2 = —h sin <pi<pi - d2 sin (p2(p2, (4.5) 

2/3 = f I c o s ^i0i + h cos 0202^ £3 = —f 1 sin 0i0i — l2 sin 02</>2-

For the purpose of substitution, y2 + z2, for each, z = 1. 2, 3, become 

o 
(</i2 + ~'i2) = diVi*\ (4.6a) 

(*/22 + -22) = h2<l>i" + d2
2(p2 + lid2d>\(p2 Qos{(pi - 02), (4.6b) 

(</s2 + z3
2) = /i20i2 + h24>2 + hh<t>\<t>2cos((^i - (p2). (4.6c) 

By substituting the equations from (4.6) into equation (4.3), L can be written in 

terms of </>i. (p2, 0. 0i, and 02 as 

1 > 1 -2 

Z, = - (Tnidi2 + m2l
2 + mzl

2) <p{ + - (7772̂ 22 + rr73/2
2) 02 

+ - {m2lxd2 + rn^lih) (pi(J)2 cos(0x - <£2) - (^1^1 + 7772/2) ̂ cos0! (4.7) 
— m2d2g cos 02 — msfag cos 0. 

The equations of motion can then be found using the Lagrangian method as [2] 

d(f> dt \d<t>) 

where by the chain rule, % and ^ are defined as 

d<p~jr[\d^d<p + d0tdd>) ( ' 
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and 

8L ^-^ dL c>0, 
7 ; = E 7 ; ^ 4.10) 

d(p ~ d(pt d(p 

Because the system is a closed three link chain, a relationship between <pl% <p2 and 

(p can be derived geometrically. Two equations can to be derived, <j>i{(/>), where (px 

depends only on <p, and <p2(<p), where (p2 depends only on (p. These two equations 

need to be derived to solve the components of equations (4.9) and (4.10). 

Two independent equations can be written from Figure 4.3 as 

y2 + z2 = h2 (4.11) 

(y-y3)
2 + ^-z3)

2 = l2
2 (4.12) 

Equation (4.11) describes the circle traced out by the elbow rotating about the shoul

der fixed at the origin. Equation (4.12) describes the circle traced out by the elbow 

rotating about the hand centered the point (#3,-3). This system of equations can 

be solved with two unique solutions to the location of the elbow, (y, z). These two 

solutions would be at the intersection of the two circles. One solution places the 

elbow locked in the upper position and one solution places the elbow locked in the 

lower position. For the purposes of modeling the human arm only the lower position 

of the elbow will be considered. This solution is unique based on a unique angle, 0, 

as 2/3 and c3 depend on (p. Clearly. y3 and z$ are expressed as 

2/3 = VA + h sin0 (4.13) 

z3 = c 4 + /3cos0. (4.14) 

By substitution and separation of variables of equations (4.11) and (4.12). z can be 
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written in terms of j / 3 and c3 as 

•[/l2^3 - fe2~3 + '£/32^3 + ^3a 

2(j/32 + ~32)' 

- [ - j / 3 2 ( / i 4 + ( - ^ 2 + y32 + ^32)2 

-2 / 1
2 ( / 2

2 + y3
2 + ~V))]1/2]-

and therefore be written in terms of (p as 

(4.15) 

-[h2{z4+ l3 COS (f>) 
2((y4 + ksm4>)2 + (zA + kcoscf))2) 

- l2
2(zA + h cos4>) + (t/4 + h sin<p)2(z4 + l3 cos<f>) + (c4 + h cos</>)3 

- [-(2/4 + hsin(t>)2{h4 + {-h2 + (2/4 + h sin<j>)2 + (z4 + hcos0)2)2 

- 2h2(l2
2 + (2/4 + 3̂ sin <t>? + (~4 + h cos 0)2))]1/2]. 

(4.16) 

0 1 5 

0.1 I-

0.05 

'in 

£ 0 
<D 

E 

J -0.05 
o a. 
£ -0.1 
Q) 

.c 
I -0 15 
.g 
LU 

-0 .2 

- 0 25 
-0 .3 

upper solution 
• lower solution 

-0.4 - 0 2 0 0.2 0 4 0.6 0.8 
Joystick angle <t> (radians) 

Figure 4.4: Plot of elbow position as a function of joystick angle. 
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Figure 4.4 shows the height of the elbow position, c, as a function of the joystick 

angle, 0. Since equation (4.16) is a quadratic formula there are two solutions to the 

height of the elbow position. The lower height position represents the more realistic 

solution for the human arm. Note that when both solutions are equal the arm is 

straight at maximum extension. 

Since z can also be written in terms of <j)\ as 

c = / l Cos0i , (4.17) 

the angle 0i can be written as a function of 0 as 

(f)j0) = C O S - 1 [ — — , , . , . 9 , , - ; T ^ 1 2 ( ~ 4 + /3COS0) 
v u ' l2h((y4 + ksm(j))2 + (zA + hcos(p)2)1 

-k2(~4 + hcos(j)) + (y4 + ksm4>)2{z4 + /3cos0) + (z4 + /3cos0)3 

- [-(2/4 + hsin4>)2(h4 + (~k2 + (2/4 + ^3sin4>)2 + (~4 + ^cos0)2)2 

- 2Z1
2(/2

2 + (2/4 + hsm<P)2 + (z4 + /3cos0)2))]1/2]]. 

(4.18) 

Since z4 can be expressed as 

z4 = h COS 4>i + U COS 02 + 3̂ cos 0, (4.19) 

the angle 02 can be solved in terms of 0 and 0i and therefore in terms of only (p bv 
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substitution of (4.18) as 

02(0) = COS •[ / l2(~4 + / 3 C O S O ) 
2/2((2/4 + h sin <b)2 + (~4 + /3 cos0)2)' 

/•22(~4 + /3cos0) + (y4 + /3sin0)2(c4 + h cos 0) + (z4 + /3COS0)3 

• [-(2/4 + /3 sin0)2(/!4 + (-/2
2 + (j/4 + l3 sin0)2 + (z4 + l3 cos <£)2)2 

• 2/r(/22 + (y4 + /3sin<p)2 + (c4 + /3COS0)2))]1/2] 

+ -COS0J. 

(4.20) 
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Figure 4.5: Angular relations of the shoulder, elbow and joystick. 

Figure 4.5 shows the shoulder and elbow angles, di and d>2. respectively, as func

tions of the joystick angle, (p. Note that when both angles are equal the arm is straight 

at maximum extension. However, the maximum range for the joystick at ±0.36rad 

from Table A.3 shows that the arm would never fully extend to control the joystick. 
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Using equations (4.18) and (4.20) the components of equations (4.9) and (4.10) 

can be then be derived as 

8L 1 
TT— = - - {m2lid2 + 77?3/i/2)0i02sin(0i - <j>2) + {migdi + m2gl2) sin fa, (4.21) 

d(p2 

8L 

dL 1 
— 7: {^2hd\ + 7773/1/2) 0i02sin(0i — <p2) + m2gd2 sin02, (4.22) 

dL 

{mid2 + m2l
2 + mzl

2) (pi + - (m2hd2 + m3lil2) (p2 cos(0i - cp2), (4.23) 

3L • 1 
—-r- = (?77idi2 + m2l

2 + msh2) (p2 + - {m2l\d2 + m3hl2) (pi cos(0i - <f>2). (4.24) 
d(p2 ^ 

The other components, ^ , ^ - , ^ , ^ , ^ , and ^ , can all be evaluated but prove 

to be very large equations as (p\((p) and (p2((p) are very large equations. Because <pi 

and (p2 depend on (p, the model of a three link closed chain proves to be very complex. 

4.4 Pitch Control Modeled with Arm and Joystick 

as Two Systems 

Another approach to modeling the system this two dimensional system is to model 

the arm and the joystick separately and then constrain ends of each together. The 

arm can be modeled as two link, planer, double pendulum with 2 DOF [40], and 

the joystick can be modeled as an inverted pendulum with 1 DOF. The ends of each 

pendulum are then constrained to be at the same location by using equations (4.18) 

and (4.20) which constrain the shoulder and elbow angles. <\>\ and <p2. respectively, to 

be only dependent on the angle of the joystick, &. The end-effector forces for each 

pendulum are taken into account and become a reaction force placed on the end of 

the other pendulum. 
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4.4.1 Joystick as an Inverted Pendulum 

This section develops the model of the joystick based on a modified inverted pendu

lum. Figure 4.6 shows just the joystick portion of Figure 4.3 with the torques and 

forces added, where r3 is the net torque placed on the joystick and F is an arbitrary 

force on the end the joystick. Fy and Fx are the Cartesian components of the force 

F. The forces FTy and FTz are the components of Fy and Fx perpendicular to the 

joystick, respectively. 

Figure 4.6: Joystick as an inverted pendulum diagram with an arbitrary end-effector 
force. 

The equations of motion of an inverted pendulum are [2] 

msh2(p = rn3gl3 sin (p + r3, (4.25) 

where 7773. /3, 0. and r3 are shown in Figure 4.6. Clearly. r3 would be any additional 

torque placed on the inverted pendulum. Equation (4.25) assumes a point mass at 

the end of a pendulum. To complete the model of the joystick, the restoring force of 
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the spring and friction should be added to the equations of motion as 

m3l3
2cp = m3gl3 sin (p — kscp - k^d + r3, (4.26) 

where ks is the spring constant and k^ is the coefficient of friction. 

The applied torque to the system. r3, could applied by either an actuator at the 

base of the joystick, or as the result of an applied force at the end of the joystick. It 

is useful to derive both the torque as a function of the end-effector force. r3(F). and 

the end-effector force as a function of the torque. F(T3). 

The torque as a function of the end-effector force, r3(F). can be derived by in

spection from Figure 4.6 as 

T3 = h(Fyr-Far), (4.27) 

where Fyr and FZr can be calculated as 

Fyr = Fycos((P) (4.28) 

FZT = Fz COS(TT/2 - (p) = Fz sin(0). (4.29) 

Equation (4.29) can then be subtracted from equation (4.28) to form 

Fyr - FZT = Fy c o s <p - Fz s i n <t>. (4.30) 

Equation (4.30) can then be substituted into (4.27) to conclude 

r3 = Z3 (Fy cos o - Fzsin(p) (4.31) 

Equation (4.31) can then be substituted into equation (4.26) so that the equations of 
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motion of the joystick can be written as 

m3l3
2cp = m3gl3 sin (p - kscp - k^(p + /3 (Fy cos (p - Fz sin <b), (4.32) 

so as to include end-effector force terms. 

Figure 4.7: Joystick as an inverted pendulum diagram with an end-effector force due 
to an applied torque. 

Figure 4.7 is similar to Figure 4.6 but with the end-effector force, F(r3), due to 

an applied torque, r3. FVT and FXr are the Cartesian components of the force F(r3). 

The end-effector force as a function of the torque, F(r3), can be derived by inspection 

from Figure 4.7 as 

T3 = 13F(T3). (4 33) 

Equation (4.33) can be rearranged and substituted with the Cartesian components 
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as 

FVT = ^ C o s ( - 0 ) (4.34) 
3̂ 

R =^sin(-</>), (4.35) 

where FVr and FZr are the Cartesian components of the force applied at the end of 

the joystick due to an applied torque, r3, at the base of the joystick. 

4.4.2 Human Arm as a Double Pendulum 

Figure 4.8: Human arm as a double pendulum diagram with an arbitrary end-effector 
force. 

The human arm can be modeled as a double pendulum with 2 DOF. Figure 4 8 

shows just the arm portion of Figure 4.3 with the torques and forces added, where 

T\ and r2 are the net torques placed on the shoulder and elbow, respectively, and 

F is an arbitrary force placed on the end of the arm. Fy and Fz are the Cartesian 

components of the force F. 
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A simple double pendulum is classically defined to have the center of mass of 

each link at the end of that link. For the purpose of modeling the human arm. it 

is accurate to observe the center of mass of each segment located at a specific point 

along the segment [40]. The location of the centei of mass of each segment is denoted 

by the distance, d, from the beginning of each link as shown in Figure 4.8. 

The equations of motion for the double pendulum can once again be solved from 

the Lagrangian of the system as [2] 

L = T - V, (4.36) 

where T is the kinetic energy and V is the potential energy of the system. For the 

system shown in Figure 4.8, the Lagrangian becomes 

777i / . o . o\ 777-2 / . o . ov 

L = -^(yi2 + z^) + —(y2
2 + z2

2) 
2 2 (4.37) 

— rriigdi cos 0i + m>(li cos (pi + d2 cos <p2), 

where g is the acceleration due to gravity, and 0i, (p2 and <p are the angles of the 

shoulder, elbow and joystick, respectively. The Cartesian coordinates of the system 

are defined by 

y1 = d\ sin (pi, ~i = d\ cos (p\, 
(4.38) 

y2 = li sin (pi + d2 sin 02, z2 = /i cos 0i + d2 cos (p2. 

The time derivatives of the equations from (4.38) become 

yx = d\ cos 0i0i, ii = —d\ sin 0i0i, 

y 2 = /2 COS 0101 + d2 COS 0202^ -2 = — ̂ 1 sm <t>10\ ~ ^2 s in <p2(p2. 
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For the purpose of substitution, y2 + z2. for each, /' = 1,2. become 

(y\2 + ~'i2) = rfi20i2, (4.40a) 

• 9 9 

(j/22 + z2
2) = / i 2 0 r + d2(p2 + hd2<pi<p2 cos(0i - 02). (4.40b) 

By substituting the equations from (4.40) into equation (4.37), L can be written in 

terms of 0i. <p2, 0. 0!, and 02 as 

L = - (777id!2 +7772/i2) 0! + — | - ^ (^202^ + /l 0102 COS(01 - <j>2j) 
2 2 V / ( 4 > 4 1 ) 

1 , 2 9X • 2 m2d 
- (rr?idi + m 2 / r ) 0 i + —— 

— (?77idi + m2l2) g cos <pi — m2d2g cos <p2. 

The equations of motion can then be found using the Lagrangian method as [2] 

d L d (dL\ (A >,o^ 

+ T 7 7 = r i ' ( 4 ' 4 2 ) 302 rf< \<902 

where i = 1, 2 for each joint. Each component can be derived separately for joint 1 

as 

= —m9O?2/i0i0^sin(0i — 02) + {midi + m2l2)g sin (pi, (4.43) 
301 2 

dL , . 9 7 2\ ' Tu2d2 • , N / A A A\ 

—— = \m\d\" + 777-2/1 )?>H —/i02cos(0i - 02). (4.44) 
301 2 

7 / r\ T \ 1 

' » =(rnidi2 + m2l
2)(pi + -m2d2l\<p2 cos(0i — 02) 

dt\d<pj 2
 ( 4 4 5 ) 

- -777.2^2^102 Sill(0i - 02)(01 ~ 02)-

By substituting each of the previous components into equation (4.42) the total equa-

file:///m/d/


4.4. PITCH CONTROL MODELED WITH ARM AND JOYSTICK AS TWO 
SYSTEMS 70 

tion for joint 1 becomes 

( m ^ i 2 + 7772/i
2)0i + ~m2d2li(p2 cos(0i - 02) 

1 • 2 
+ -7772^102 Sin(0! - 0 2 ) - (777iG?i + 7 7 7 , 2 / 2 ) 5 ^ 0 1 = ~i. 

(4.46) 

Each component can be derived separately for joint 2 as 

— - = -7772rf2/i0i02 sin(0i - 02) + rn2gd2 sin < 
O02 2 

(4.47) 

—-- = m2d2 ( rf202 + - / i0 i cos(0i - 02) J , 
(902 v 2 / 

— ( —-- I =m2d2
2(p2 + -m2d2li(pi cos(0i — 02) 

dt V302 

-m2d2h<pi sin(0i - 02)(0i - 02). 

(4.48) 

(4.49) 

By substituting each of the previous components into equation (4.42) the total equa

tion for joint 2 becomes 

1 
7772^2 02 + -7772^2^101 COs(0i ~ 02) 

1 
(4.50) 

- m2gd2sin<p2 - ^rn2d2/i0i sin(0i - 02) = r2. 

Equations (4.46) and (4.50) can then be rearranged and combined into the general 

state-space form of [28] 

M(<S>)$ = C{$^) + TA, (4.51) 

where M(<E>) is the inertia matrix defined as 

A/($) = 
rriidl + m2l2 -ym2d2li cos(0i — 02) 

\m2d2li cos(0i - 02) m o d\ 2^2 

(4.52) 
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$ is the angle vector defined as 

$ = 
4>2 

(4.53) 

C($ , 3>) is the coriolis forces matrix, including gravity, and TA are the input torques 

on the system defined as 

C{$.$>) + TA = + 
TA2 

. 9 

(mxgdi + m2gl2)s'm<pi — \m2d2li&2 sin(0i — 02) 
. 9 

m2gd2 sin 02 + \rn2d2li(pi sin(0i — 02) 

(4.54) 

Missing from equation (4.51) are the friction forces and the external constraining 

forces. For the purposes of this thesis the frictional forces will be neglected. The 

external constraining forces can be added by the relationship between a force placed 

at the end of the two link chain and the resulting torques placed at each joint. This 

relationship can be expressed by the transpose of the chain jacobian as [40] 

TF = JTF. (4.55) 

For a planer, two link chain, equation (4.55) can be expressed by as 

TF2 

—l\ cos 0i — I2 cos 02 1̂ sin q>\ + l2 sin <p2 

—/o cos (j>2 /2Sin02 

-1 y 

F. 
(4.56) 

By adding the external forces to the system, the general equation becomes 

M ( $ ) $ = C($ . $) + 7>($) + TA. (4.57) 
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4.5 Combining Arm and Joystick Systems 

The human arm equation of motion and the joystick equation of motion can be 

combined into one system first by constraining the the shoulder and elbow angles, 0X 

and </>2. respectively, to be dependent on the angle of the joystick, 0. by the equations 

(4.18) and (4.20). In addition to this the end-effector force from a torque placed on 

the joystick, F(TI). will be placed on the end-effector of the arm as a reaction force 

so that F = —F(T$). Combining the equations for F(r3) from Section 4.4.1. 

F,= I, cos — c 

F._ = — sin(-

(4.58) 

(4.59) 

and the end-effector force equations for TF = JTF from Section 4.4.2. 

TF, 

Tp2 

—l\ cos 4>i — U cos 4>2 l\ sin 0i + l2 sin 02 

—l2 cos 02 h sin 02 F. 
(4.60) 

the resulting 7V($) from the general human arm equation, 

M ( $ ) $ = C($ , <!>) + 7>($) + TA. (4.61) 

can be combined as 

TFX 

TF2 

—l\ cos 0i - I2 cos 02 h sin 0i + U sin 02 

—/2 cos 02 /2 sin 02 

-7jcos(0) 
(4.62) 

The equations are combined as such for the purpose of designing observers that can 

observe r3 and subsequently TX and r2. b}' measuring only the angle of the joystick. 
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0. The observers will be described in Chapter 6. The observers are designed that 

way because it is more practical to measure the angle of the joystick rather than the 

angle of each joint of the arm while a pilot is flying a plane. 



Chapter 5 

Vehicle System Model 

5.1 Introduction 

A model of a human-in-the-loop with a vehicle obviously requires a model of the 

vehicle. The parameters of a human modeled as a controller depend on the system 

that the human is controlling. In order to model a human as a feedback control 

system, as discussed in Chapter 3, the model of the system is required to calculate 

the gains of the feedback control law. If common environmental disturbances to the 

vehicle are known, additional compensating control laws could be included to improve 

the model of the human. Perhaps more importantly, these standard parameters 

need to be calculated so that when appropriately designed observers estimate the 

parameters of a real human controller, it is possible to determine if that human is 

performing within safety limits. 

In addition to this, the human controller must take into account the actuator 

dynamics. This includes the mechanical dynamics between the human and the con

trolling device, such as a steering wheel or a joystick, as discussed in Chapter 4. This 

also includes the actuator dynamics between the controlling device and the control 

U 
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inputs of the vehicle which are inherent to the vehicle. 

As discussed in Chapter 1, the aircraft presents an interesting vehicle for a human 

pilot to control. The pilot must configure the aircraft in three dimensional space for 

both orientation and position. In addition to this, the three stability axes are coupled 

so that many maneuvers require precise, simultaneous control of all the control sur

faces. And of course the state of the aircraft is nonlinearly dependent on aerodynamic 

forces and in turn atmospheric conditions which can be unpredictable and chaotic. 

Because of all these facts, designing an autopilot becomes a difficult task. In fact, 

different control laws would need to be designed for different situations. A human 

controller can learn to fly a plane in all conditions. The aircraft is one of the most 

prevalent complicated systems that humans control. Because of all this, the aircraft 

is a excellent and relevant place to study the relationship between an autonomous 

control system and a human-in-the-loop. The aircraft system is discussed in Section 

5.2. 

For the purposes of developing and testing nonlinear observers that could eventu

ally be developed for a human-in-the-loop with an aircraft, a simple system is chosen 

as the system for a human to control. Section 5.3 presents a solid ball where the atti

tude of the ball is controlled by a single thruster. This system is used to demonstrate 

linear feedback control and subsequent estimation of the gains of that linear feedback 

control law. 

5.2 Aircraft Equations of Motion 

The configuration of an aircraft can be described with rigid body dynamics and 

aerodynamic forces. These equations are common and can be found in "The Control 

Handbook" [23]. The equations of motion are set up from the body frame references 
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X-Axl* 

X*Axi« 
x ^ „ (Btrtlllty) 
(Wind) 

Figure 5.1: Aircraft body axes reference [23]. 

shown in Figure 5.1, and constructed in the force equations (5.1), the momentum 

equations (5.2), and the kinematic equations (5.4). The force equations are 

U = VR-WQ + -YFX, 

V = WP-UP + — Yy Fy. 

W = UQ-VP+-Y'F„ 

(5.1a) 

(5.1b) 

(5.1c) 

where m is the mass of the aircraft and U. \\ and W are the components of the 

aircraft's velocity vector, and P. Q, and R are the components of the aircraft's body 

rotation speed as shown in Figure 5.1. The momentum equations are 

P 

Q 

R 

^(ix-iy + L)PQ + ^(iyL-i2
z-iL)QR + ^J2L + IfY,x- (5-2a) D 

L - I 
D 

-JlPR+^iR2 - P2) + yJ2M< (5-2b) 

I(/x
2 - IXL + ll)PQ +!£(ly-lx- L)QR + ^ E L + §E A r - (5-2c) 
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where / is the aircraft's inertia tensor and D is defined as 

D = / , / , - /2
C. (5.3) 

The kinematic equations using Euler's angles are 

9 = Q cos <p — R sin (p. (5.4a) 

<p = P + Qsin0tan<9- i?cos<£tan<9, (5.4b) 

^ s i n 0 ^cos0 
«' = Q — 7 - R -^ 5.4c 

C'OS# c o s 0 

where 0, 0. and '̂ are the rotational angles about the x, y, and z body axes, respec

tively. 

The external forces acting on the aircraft, such as gravity, g, aerodynamic and 

propulsive forces, including pilot control inputs, are contained m the force and mo

mentum equations below. The aerodynamic forces are determined by air density, p, 

relative airspeed, U, angle of attack, a, and sideslip angle, ft. Parameters are in

troduced to nondimentionalize the aerodynamic forces. 5 is the wing's area, c is the 

wing's mean aerodynamic chord, b is the wing's span, and q is dynamic pressure given 

as 

q=\p(U2 + V2 + W*)=1-pU2 (5.5) 

The pilot control inputs are given as the control surface deflections, Sa. 5e, 5r. and 

ST- which represent the aileron, elevator, rudder deflections and throttle position, 
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respectively. The force and momentum summation equations are 

J2L = QSb(±ClpP + XclrR + Cl0P + QJa + Clh 6r), (5.6a) 

J^ M = qSc(CmoP + CmQa + ̂ CmqQ + jgCmad + CmJe), (5.6b) 

Y, N = qSb(±CnpP + ^CnrR + Cnpf3 + CnJa + CnJr), (5.6c) 

YlFv = m9sm<f>co69 + qS(^CVpP+^CyrR +CVlifi+ CVSrSrh (5.6d) 

J2 Fz = mgcos<l>cos0 + Tz + qS(-CZaa0L + CZna + +TCZqQ + ^CZaa + Cz6e8e), 

(5.6e) 

J2FX = -mg sine + CX6T§T + qSCx, (5.6f) 

where Tz is the ^-axis component of thrust and QQI is the zero lift angle of attack 

referenced from the ^-stability axis. The coefficients represented by C represent 

nondimentional force and moment coefficients particular to a certain aircraft. 

5.2.1 Linearized Aircraft Model 

In order to design a control system it is common to first linearize the system about 

a nominal operation point and design the control to counteract small perturbations 

or deviations from that point. All the variables of the equations of motion can be 

replaced with the reference value plus some small disturbance shown as [22] 

U = U0 + AU. V = V0 + A\\ i r = Tr0 + AH', 

P = P0 + AP, Q = Q0 + AQ. R = R0 + AR. 

X = A'0 + AX, Y = lo + AV, Z = ZQ + AZ. (5.7) 

M = M0 + AM, N = N0 + AN. L = L0 + AL. 

S = S0 + AS. 
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The momentum equations (5.2) can be rewritten in terms of L. M. and N as 

L = IXP- IXZR + QR(IZ - Iy) - IXZPQ. (5.8a) 

Al = IyQ + RP{IX - Iz) + IXZ{P2 - P2), (5.8b) 

N = -ixzP + IzR + PQ{lv - Ix) + ixzQR- (5.8c) 

And the force equations (5.1) can be rewritten in terms of A', Y. and Z as 

X = mgsmO + m(U + Q]Y-RV), (5.9a) 

y = -mgcos$sin(t) + m(v + RU - PW), (5.9b) 

Z = -mgcos8sin4> + m{w + PV -QU). (5.9c) 

To simplify the model further, only longitudinal control is considered and therefore 

0 = v. = P = i? = 0. (5.10) 

The momentum equations can then be linearized around the point reference point 

where 

A/o = 0. (5.11) 

This assumes that roll and yaw are stead}' in straight flight. The moment pitching 

equation can then be reduced to 

AM = IyA'e. (5.12) 

The remaining states of interest are forward translation in the x direction. b\ vertical 

translation in the z direction, W, pitch angle, 9 and rate of change of pitch angle. 
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Q. The linearized equations of motion could then be written in state-space form in 

general as 

x = Ax + Bu (5.13) 

where x is the state vector, v is the control vector, and matrices A and B contain 

the aircraft's dimensional and stability derivatives. The linearized state-space form 

of the equations of motion are 

AU 

Air 

AQ 

A9 

Xu Xw 0 -g 

Zu Zw u0 0 

Mu + MyJZu MW + AI*ZW Mg + A'UUo 0 

0 0 1 0 

AU 

AW 

AQ 

AO 

+ 

Xs A^T 

Z$ ZsT 

M6 + AUZs AIST + A>UZ8T 

0 0 

A6 

AST 

(5.14) 
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where the longitudinal derivatives are defined as 

_-(CDu+2CDo)qS _-{CDa-CLo)qS 
mU0 mU0 

_-(CLu+2CLo)qS 
u ~ Tr ' 

mUQ 

7 _ ~(CLa +CDo)qS c _ c / m , 
Zw ~ mUQ ' Z » = C^W0

qS/{Uoml 

Za = UoZw* Za = UQZW, 

Zq = CZq^-qSjm, Zde = CZ5eqS/m, (5.15) 

Mu = Cmu 

2U0 

(qSc) 

U0Iy' 

(qSe)_ ±fc 
U0ly IUQ U0ly 

AIa = U0AIW, AIa = U0MW, 

H = Cmq~(qSc)/Iy. At5e = Cmie {qSc)/Iy. 

With a linearized model of the aircraft it is possible to design a linear feedback 

control law using the pole placement method described in Section 2.2.3. The pole 

placement method can be used to calculate the optimal values for any or all of the 

PID control gains depending on the level of control needed. 

Accurately modeling of an aircraft proves to be difficult given the large number 

of aerodynamic coefficients. The aerodynamic coefficients are specific to a particular 

aircraft and they are non trivially dependent on atmospheric conditions. In addition 

to this the coefficients that relate the human control inputs to the control surfaces 

are not widely available. 

A model for an aircraft can be modeled in Simulink using the "complete aircraft'' 

block from the Aerosim blockset made by "Unmanned Dynamics" This blockset also 

includes the necessary parameters for a Navion aircraft along with a PI controller 
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for bank angle and a PID controller for airspeed. Figure 5.2 shows the successful 

convergence of the airspeed and bank angle to a desired value. The desired airspeed 

was 55m/s. The desired bank angle was 0°. The attitude required to maintain the 

desired airspeed is also shown. There were no winds. The PI controller for the bank 

angle is fed to the aileron control surface and the PID controller for the airspeed is 

fed to the elevator control surfaces. 

-0 8 
10 20 30 40 50 60 

time (s) 
70 80 90 100 

Figure 5.2: Aircraft control results. 
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5.3 Simple Case: Controlling A Solid Ball 

As the aircraft is a complex nonlinear model it is more practical to test observer 

methods on a simple system. The solid ball with uniformly distributed mass is con

sidered as a simple system with no external forces. This system would more closely 

represent a spacecraft in orbit. The system is further simplified by only considering 

attitude control in one dimension. 

The equation of motion of a solid ball with one degree of freedom is represented 

as 

J6 = rb, (5.16) 

where 

rb = rbx FT, (5.17) 

and where 

J=\mhrh
2. (5.18) 

5 

where wb is the mass of the ball. rb is the radius of the ball. J is the moment of 

inertia of a solid ball, and rb is the net torque on the ball. The torque placed on the 

ball could be controlled by a thruster on the surface of the ball that could produce a 

variable force, FT- tangent to the ball and in either direction. The equation of motion 

can be rearranged as 

6=^u. (5.19) 

where u = FT is the control input. In general linear state-space is written in the form 

x = Ax + Bu (5.20a) 

y = Cx. (5.20b) 
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Figure 5.3: Solid ball diagram. 

By making the following substitutions: 

X\ = 0. X\ — X2, 

x2 = 6\ x2 = 6. 

(5.21) 

equation (5.19) can be represented in state-space from as 

i i 

j'o 

0 1 

0 0 

2"l 

J"2 

+ 
0 

J 

u, (5.22) 

where 

A = 
0 1 

0 0 
(5.23) 

5 = 
0 

Eh. 
J 

(5.24) 
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and 

C = 
1 0 

0 1 
(5.25) 

indicating that all states are measured in the system. This is also known as full state 

feedback. The linear feedback control can be designed as described in Section 2.2.3 

as 

u = -Kl\ (5.26) 

where x = x — x*. and for this case 

u — kp kd 

JO i 

Xo 

(5.27) 

where kp and kd are the proportional and derivative gains. K can then be chosen 

such that the eigenvalues of (A — BK) have negative real parts. For this example 

let the mass and radius of the ball be mb = 2.5kg, and rb = lm, where the resulting 

state-space equation becomes 

r1 

J-2 

0 1 

0 0 

J l 

•T2 

+ 
0 

1 
u. (5.28) 

If the eigenvalues of {A - BK). or poles, s, are chosen as 

s = - 2 - 4 (5.29) 

the characteristic equation. \sl - A + BK\ = 0, can be used to calculate K. or the 
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place function in Matlab can be used to calculate K to be 

A' = 8 6 (5.30) 

Figure 5.4 shows the successful convergence of system to the desired values. The 

1 

0 5 

0 

-0 5 

-1 

Attitude 
- - Velocity 

2 3 
time <s) 

Figure 5.4: Ball control results. 

initial conditions for the ball were 9 = Irad and 6 = Orad/s. The desired conditions 

for the ball were 6 — Or ad and 9 — Orad/s. 

The full system would include the human arm and joystick dynamics. In this way 

the control input u. would control the torques on the shoulder and the elbow, TX and 

r2, respectively, which would determine the position and force of the hand which in 

turn controls the torque placed on the joystick, r3. which determines the angle of the 

joystick which controls the amount of force produced by the thrust er. In this case the 

joystick control could be considered fly-by-wire. The angle of the joystick is limited to 

±0.36rad and this may become a limiting factor in the controllability of the system. 

A proportion gain can be added to increase the sensitivity of the angle of the joystick 
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to the amount of force produced by the thruster. 



Chapter 6 

Observers 

The methods for designing nonlinear sliding mode observers were discussed in Chapter 

2. This chapter will use those methods to design observers for select components of 

the human-in-the-loop system. Observers will be designed to estimate applied torques 

to the shoulder, elbow, and joystick. Observers will also be designed to estimate the 

gains of a PD feedback control law used to control the attitude of a solid ball. 

6-1 Sliding Mode Observer for Inverted Pendulum 

This section derives a nonlinear sliding mode observer that can estimate the applied 

torque to a joystick, or inverted pendulum, by measuring the angle of the joystick. As 

shown in Section 2.4.5. a sliding mode observer can be used to estimate a disturbance 

to a system. For the case of the joystick, the input disturbance to the system is the 

applied torque, r3. 

The dynamic equation for the joystick as given in Section 4.4.1 is 

msh
2(p = msglz sin 4>- {ks<p + k^) + r3. (6.1) 

&£. 
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Equation (6.1) can be re-written by solving for angular acceleration as 

m3/3 

1 9 l ( -\ 
-r^r3 + — sin 0 py ks(\> + kn<f> 
}'3~ h m3l3" \ / 

Equation (6.2) can be written in state-space bv defining 

(6.2) 

xi = (p 

x2 = <P, 

(6.3a) 

(6.3b) 

and so the equations of motions for the joystick become 

X\= 12 = <f> 

x2 = d> 1 9 • 
—oTj, + — s in . m-ih" h mzh 

—2 (ks(f) + k^) 

From this the sliding mode observer for the joystick becomes 

i\ = x2 + Z/isign(</> - x1 

l . . , -. . , g 

h x2 
21/2sign(0 — x2) + — sin < 

<3^3 

~2 (ks<f) + kp<}>) 

where the disturbance r3 can now be calculated as 

(6.4a) 

(6.4b) 

(6.5a) 

(6.5b) 

73 = L2sign(0 — x2 
eq 

(6.6) 

Equation (6.5) assumes that we can measure both <f> and (f). However it is possible to 

design the observer such that only (p is measured and (p is estimated as v expressed 
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as 

i'i = L i s ign (0 -x i ) (6.7a) 

*2 = -^L2sign(t; - j 2 ) + f sin(</>) -* (fcs0 + k,v) , (6.7b) 
™3<3~ *3 ™ 3 / 3 

where r can then be calculated as 

v = [ L i s i g n ( ^ - f i ) ] C 9 , (6.8) 

and subsequently r3 can then be calculated as 

r3 = [L2sign{v - x2)]eq . (6.9) 

This section described an observer that can estimate an applied torque to a joystick 

by tracking the dynamics of the angle of the joystick. Verification and testing of this 

observer are shown in Chapter 7. 

6.2 Sliding Mode Observer for Human Arm 

This section derives a nonlinear sliding mode observer for a human arm, or double 

pendulum, that can estimate the applied torques to the shoulder. rx and elbow. r2. 

The equations of motion for the human arm from Section 4.4.2 are presented in the 

general form 

M($)<1> = C($, 6) + 7>($) + TA, (6.10) 
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where TA is the applied to the shoulder and elbow joints and <J> is the angles of the 

shoulder and elbow joints. Equation (6.10) can be written in state-space by defining 

Xi = $ 

x2 = $. 

(6.11a) 

(6.11b) 

where 

$ = 

$ = 

02 

The equations of motion for the human arm in state-space then become 

(6.12a) 

(6.12b) 

x\ = x2 = <i> 

x2 = $ = M- 1 ($ ) \C($.$) + TF($)+TA 

(6.13a) 

(6.13b) 

From this the sliding mode observer for the human arm becomes 

xi = x2 + Lisign($ — fi) 

| 2 = A/_1($) C($, <J>) + 7>($) + L2sign($ - 12) 

(6.14a) 

(6.14b) 

where the disturbance, or applied torque, T\. on the system can now be calculated 

as 

TA L2sign($ - x2) 
eq 

(6.15) 
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This can be shown individually as 

T , = n 
r2 

L2sign(0! - fa) 

L2sign(02 - 02) 

eg 

e q j 

(6.16) 

This section described an observer that can estimate the applied torques to the shoul

der and elbow joints by tracking the dynamics of the angles of the joints of the human 

arm. Verification and testing of this observer are shown in Chapter 7. 

6-3 Observer for P D Gains 

This section derives a nonlinear sliding mode observer for a PD feedback control 

system that is controlling the attitude of a simple solid ball as described in Section 

5.3. This observer is deigned based on the combined system of the solid ball and PD 

feedback control law. and as such is specific only for this case. The observer will be 

designed using the general nonlinear observer method from Section 2 4.4. The general 

form of the observer is given as 

dH(x) 

dx 
L(x)sign(V(t)-H(x)), (6.17) 

where the nonlinear observer can be designed to observe the states of a system de

scribed by 

x = f(x) 

y = h(i). 

(6.18a) 

(6.18b) 
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For this case the solid ball control system is given by the equation 

6>=^yU. (6.19) 

where u is the PD control input, 

u = -Kp9 - Kd9. (6.20) 

By substitution the complete system model becomes 

ri^-Ti e = ~Kpe--^Kd9. (6.21) 

Equation (6.21) can be redefined in state-space by letting 

Xi =6, xi = x2. 

x2 = 0. x2 = x3xi + x4x2, 

x3 = -ai. .r3 = 0. 

x4 = — a2, i'4 = 0, 

where 

J 
n 
J 

(6.22) 

ai = T A P (6-23a) 

o2 =
 r4h'd. (6.23b) 
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The system can then be put in terms of equation (6.18) where 

/ ( * ) = 

x2 

X%X\ + X4X9 

0 

0 

(6.24) 

and 

h(x) = Xi. (6.25) 

Equation (6.25) represents that the system only measures the state 6. The H{x) 

vector can then be constructed as the repeated Lie derivatives of h(x) with the form 

H(x) = 

\hi(x) 

\h2(xY 

\h(x) 

/ i4(x) 

(6.26) 

where the components of H{x) are calculated starting with h1(x) = Xi. The rest 

follow as 

dhi{x) 
1 0 0 0 

x2 

T3X1 + x4x2 

0 

0 

= x2. (6.27) 

dh2(x) t 
h3{x) = -dx-f = 0 1 0 0 

x2 

X3X1 + X4X2 

0 

0 

= X3X1 + x4x2 (6.28) 
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OX 

so that 

x3 X{ X\ x2 

H(x) 

X'2 

T3X1 + .74X9 

0 

0 

x2 

X3X1 + T4X2 

= J ' 2X3+TiX 3 X 4 +.X 2 X4 2 , ( 6 . 29 ) 

X2X3 + £1X3X4 + X0X4 

The Jacobian of the vector H(x) can then be calculated as 

dH(x) 

dx 

1 

0 

0 

1 

0 

0 

0 

0 

X3 X4 X\ x2 

X3X4 X3 + X4
2 X2 + X1X4 X1X3 + 2x2X4 

As described in Section 2.4.4. the observer vector V(t) becomes 

V(t) 

vi(t) 

v2(t) 

v3(t) 

Xl(t) 

[L1sign(x1(t)-x1(0)] e g 

[L2sigii(v2(t) - x2(t))}eq 

[L3sign(t>3(0 - (X3(t)xi(t) + x2(t)x4(0))W 

(6.30) 

(6.31) 

(6.32) 

With each component defined, the general equation (6.17) can then be simulated. 

However in this case, it becomes difficult to accurately observe all of the states of 
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the system 

x = 

Xl 

x2 

£3 

X4 

(6.33) 

This is most likely due to the fact that the determinant of the Jacobian of the H(x) 

matrix ^ approaches zero. In this case the attitude and angular velocity, X\ and 

x2, respectively, can accurately be estimated as shown in Figure 7.5, in Chapter 7. 

but the values for a1 = —x3 and a2 — — x3 drastically diverge as shown in Figure 7.6, 

in Chapter 7. 

However it is still possible to observe the angular acceleration x2 from the com

ponents of the observer vector V(t). From equation (6.32), 

v2(t) = [L1sigai(xl(t)-xl(t))] 
eg 

(6.34) 

and subsequently 

v3(t) = [L2sign(r2(t) - i 2 ( t ) ) L = ^ (6.35) 

Therefore x3 and x4 can still be estimated by applying the least square method to 

the linear equation of the complete system, 

±2 = X^Xi + X4X2, (6.36) 

which can also be written as 

9 = —QiXi — a2x2. (6.37) 

As described in Section 2.5, the least square method can be used to estimate the 
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values of the constant coefficients of a linear polynomial by using the equation 

Copt = (XTX)-1XTB. (6.38) 

In this case, 

C, opt 
-ax 

—6,o 

A' = 

x i ( l ) x2(l) 

•ri(N) x2(N) 

B = 

0(1) 

6(N) 

where N is the number of time steps. 

The PD gains can then simply be calculed as 

r J 

n 
K J 

KD — —do. 
rb 

(6.39) 

(6.40) 

(6.41) 

(6.42a) 

(6.42b) 

This section derived an observer that can estimate the gains of a PD feedback con

troller of the attitude of a solid ball by tracking the dynamics of the attitude of that 

solid ball. The results of this are shown in Chapter 7. 



Chapter 7 

Human-in-the-loop With Hardware 

As stated before, a human-in-the-loop model aims to simulate a system along with 

its human controller. 

Modeling the system as a vehicle has long been done using the laws of mechanics. 

This is obviously useful because it provides the ability to predict mechanical behavior, 

which can allow design corrections to be made before manufacturing and of course 

provides the ability to design control systems. Understanding the machine is easier 

than understanding the human because the machine follows the well known laws of 

mechanics and because the machine was designed from the ground up. 

The ability to simulate a human-in-the-loop with hardware provides the ability to 

predict human behavior, make design corrections, and make a more informed semi-

autonomous control system for both systems in conjunction. "Development of human 

models supports system designs, development and evaluation of dynamic control sys

tems where humans may have manual or supervisory control responsibilities. It is 

desirable to have a predictive model versus a descriptive model (fitting a model to 

existing data) so that the behavior of the man machine system may be estimated 

before the system is built. Prediction may also be based on ideal behavior from an 

QS 
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expert opinion. Simulation and experimental verification become important steps 

in the validation part of a design process but the information may come too late 

to significantly affect the design. Thus, the need for accurate human performance 

models is needed for better insights into new and cost effective design approaches' 

[25]. Simulating the human-in-the-loop allows for the design of observers that could 

be used to measure whether the vehicle and human controller are in agreement [25]. 

The models for a human controller, a human arm and a vehicle were discussed in 

Chapters 3. 4 and 5, respectively. Taking the linear feedback model for the human, 

the three link model for the arm and the joystick, and the solid ball for vehicle, it is 

now possible to combine all of these into one model. The observers from Chapter 6 

can then be implemented to estimate the unmeasured parameters of the human-in-

the-loop with hardware system. 

7.1 Results 

Sliding mode observers were used to find the gains of a PD feedback control law for 

attitude control of a solid ball, and to find the applied torques to the joints of the 

human arm and the joystick. Simulations were run using aSimulink,' as a numerical 

analysis tool. The simulations used an "ODEl" solver (or an Ordinary Differential 

Equation solver method of order 1) also known as Euler's method. A sufficiently 

small time step was needed to provide fast switching in the sliding mode observers. 

The gains and filters for the observers were tuned manually. 

Results of observing arm-joystick torques 

The applied torques on the joints of the arm were observed using information about 

the angles and the angular velocities of the joints. The angles of the joints of the arm 
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were calculated from the angle of the joystick. 
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Figure 7.1: Testing results of observers for applied torques. 

The accuracy of the sliding mode observers designed to estimate the applied 

torques were tuned and tested by inputing a known dynamic torque to each joint 

of the arm-joystick system. The known torques were inputted into a model of the 

arm and joystick so that the angles could be calculated and then input into the ob

servers. Torques changing as a sin function were input into each of the joints at 
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different phases. This was chosen arbitrarily for testing. The gains of the observers. 

L, the filters used to calculate the equivalent values and the time step of the numerical 

solver were all adjusted until the observed torques matched the input torque. Figure 

7.1 shows successful convergence of the estimated torques to the actual torques. It is 

important to note that the initial condition of the estimate is zero so there is a time t\ 

needed for the estimate to converge on the actual torque depending on how far from 

zero the actual torque is. It is also important to note that although the estimated 

torques are accurate there is a small lag. 

Figures 7.2, 7.3 and 7.4 show the results of the observed applied torques on the 

arm-joystick system given a change in the angle of the joystick. Figure 7.2 shows 

three graphs. The top graph, d>. represents the measured joystick angle. The angle 

changes from zero to a positive value where it remains. This represents a pitch-down 

maneuver a pilot might perform. The middle graph is the angular rate 0. which was 

calculated numerically as the time derivative of the the angle (j). It is important to 

note that for both (p and 0, the estimate covers the actual trajectories so they are 

not visible on the graph. This is another indication that the observer is functioning 

properly. The bottom graph is the observed applied torque r3 which was previously 

unknown. The trajectory of r3 makes sense because it starts at zero when the joystick 

is in equilibrium in the upright position, and then transitions to some higher value 

where it remains in order to hold the joystick forward against the restoring spring. 

Figure 7.3 also shows three graphs. The top graph shows the actual shoulder 

angle d)\ as calculated from the joystick angle 0, along with the estimate trajectory. 

The middle graph shows the angular rate of the shoulder <fii calculated numerically 

as the time derivative of the angle <j>i. Note that for both graphs the estimated 

values overlap the actual value. The bottom graph is the observed applied torque 

T\. Note that there is a finite time t\ needed for the estimated torque to converge. 
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Figure 7.2: Joystick torque observer results. 
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Figure 7.3: Shoulder torque observer results. 
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The observer was run with enough static time to allow for this convergence before 

the pitch-down maneuver was performed. The dynamics of the torque makes sense. 

The initial negative torque shows the torque required on the shoulder to maintain 

the arm in a position that keeps the hand on the joystick. The change in the torque 

represents the increase in torque in the negative direction to move the arm forward 

and also push against the spring of the joystick. 
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Figure 7.4: Elbow torque observer results. 
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Figure 7.4 also shows three graphs for the elbow joint and is similar to Figure 7.3. 

The top graph shows the the elbow joint angle, the middle graph shows the angular 

rate and the bottom graph shows the observed applied torque T>-
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Figure 7.5: Observable states of PD controlling solid ball. 
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Results of observing P D gains 

Figure 7.5 shows the state trajectories that had their estimated value converge to the 

actual value. The top graph shows the attitude of the ball 9, and the middle graph 

shows the attitude's rate of change, 9. Both of these values are measured from the 

svstem. The bottom graph is the observed angular acceleration, 9. In this case 9 = u 

since J = 1 and rb = 1, so the bottom graph is simply the control input. By the design 

of the sliding mode observei, it is important to note that each successive higher order 

state begins to converge only after the previous state has converged and therefore has 

reached sliding mode. The command to initiate the control of the solid ball to the 

desired point was therefore delayed until 0.5sec in order to allow time for convergence 

so that control observer could estimate as much of the maneuver as possible. Once 

the maneuver began, there was again a delay before the control observer converged 

because there was such a sharp change in the actual control. 
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Figure 7.6: Unobservable states of PD controlling solid ball. 

Figure 7.6 shows that the observed states Kp and KD failed to converge. The 

feedback control gains Kp and KD were instead found using the least square method 
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on the observed control input from Figure 7.5. The least square method was per

formed on data points of u in the range 0.75 < t < 3sec. This was done so the that 

"best fit" was performed on the data points after the estimated control input had 

had a chance to converged on the actual control input. 

In general the gains of the PD feedback control law used to control the attitude of 

the sold ball were calculated using the measured attitude of the system. The results 

are shown in Table 7.1. This shows that the gains of a PD control can be determined 

Gain 
KP 

KD 

Actual 
8.0000 
6.0000 

Estimate 
8.011 
5.860 

Error (%) 
0.142 
2.339 

Table 7.1: PD gain results. 

by just measuring the attitude of the system. The error in the calculated gains are 

due to the inaccuracy of the observer, which is due to lag time for convergence and 

chattering from having a finite switching frequency. 

7.2 Conclusion 

The nonlinear observers developed in this thesis successfully observed parameters of 

the human-in-the-loop for a simplified model of a human and system. These methods 

could be generalized to observe more complicated models of a human-m-the-loop 

with hardwaie. These observers could eventually be used in conjunction with a semi-

autonomous control system that can aid a human-in-the-loop with hardware. 

Figure 7.2 shows a human-in-the-loop with hardware. The "Human" can control 

the "Vehicle" system and receives information about the "Vehicle*" system through 

the "Senses" The "Senses** could be comprised of visual, auditory, and somatic 

information. The "Vehicle" includes any environmental forces on the vehicle such as 

atmospheric and gravitational forces. The "Hardware" is comprised of the ^Vehicle" 
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Figure 7.7: Block diagram of human-in-the-loop with hardware. 

along with the human interface control input, the "Joystick", to the vehicle. The 

"Human * is comprised of the "Senses*1, the control processing center in the "Brain" 

and the mechanical ability to control the machine using the "Arm*". The human-in-

the-loop system shows that the "Observer" can estimate parameters of the human 

controller by tracking the trajectories of the "Joystick** and the "Vehicle*1 as was 

shown in this thesis. This information can be used to inform the automatic "Control" 

of how best to control the "Vehicle" in order to best assist the human operator. The 

black square where the automatic control and joystick meet represents a "black box" 

for all the different ways the human and computer control could be mixed to produce 

the best outcome in different situations. Figure 7.2 also shows that the "Observer** 

could send information directly to the human to inform them of their performance. 

The desired output y* is shown only for the automatic control since the human may 

calculate the error y in a different fashion. However this desired output could perhaps 
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come from the observer if the desired output should be decided for different situations. 

This thesis involved analysis of the dynamics of the mechanical interaction between 

the human and the system and analysis of the human as a feedback control system. 

The summation of both of these parts provide a simple model for human-in-the-

loop behavior with a system. The use of nonlinear observers provides the ability to 

calculate unmeasurable parameters of the human arm and the human mind which 

can be used to gain insight into the condition of a human controller in the loop with 

a system. These methods were tested on the components of a simplified version of a 

human-m-the-loop with a system. 



Chapter 8 

Conclusions and Future Studies 

This thesis is only a first step in understanding human-in-the-loop with a system. 

Only simple models of a human and a vehicle were simulated. More complicated 

models and more generalized observers should be used to gain insight into human 

and machine cognition. 

8.1 Improve Models 

In each case a more complex model is needed to accurately simulate a human-in-the-

loop with a system. 

Improved Vehicle 

The system considered was a simple solid ball with one degree of freedom (only pitch). 

The control actuator was considered to be a simple thruster of variable thrust which 

was proportional to the angle of a joystick. 

The system should be a complete model of the vehicle the human is controlling, 

whether it is an aircraft, a spacecraft, or a car. This would include the complete 

mi 
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actuator dynamics between the system and the control input, i.e. the joystick or 

steering wheel. 

Arm 

The human arm and joystick dynamical system was considered only as a planer three 

link chain with a fixed torso position only suitable for pitch control. 

The human arm should be modeled in three dimensions. This could be accom

plished by modeling a double conical pendulum. More complex dynamics could be 

taken into account such as joint and muscle dynamics including the wrist and the 

hand. 

There are many cases where it is difficult to assume that the shoulder remains 

in a fixed position and so it may not be possible to know the angles of the arm 

just by knowing the position of the control interface. However it is possible to attach 

lightweight gyros to the wrist and body to measure the angles of the arm more directly. 

Joystick 

The joystick was modeled as an inverted pendulum with only a restoring spring to 

keep it upright. This is more indicative of a flv-by-wire system that has no feedback 

from the controlling surfaces. 

The joystick could be modeled as mechanical control input that would be subject 

to the environmental forces on the controlling surfaces. 

Human 

The human mind was only considered as a linear PD feedback control system. 

This model has the most room for improvement. The complexity could first be 

increased by modeling the brain as a nonlinear controller. An even more appropriate 
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model would include a nonlinear feedback controller that could adapt to varying 

tasks and complexity of tasks. This may include variable gains and even observers 

that could estimate unforeseen disturbances that the human could then add to their 

control law and compensate. The control laws designed by the brain should include 

the human arm as a link to the vehicle control. Different types of inputs should 

also be considered such and optical, auditory and tactile information. The types of 

information that would come through each of those channels could be designed into 

the human model. 

And finally, the addition of delay to the humans ability to control should be 

added into the model. The delay can come from the reaction time of a human and 

the processing time, or the speed of thinking. These delays should be dependent on 

the fatigue and stress on the human. The changes in these parameters could be seen 

in changes in the feedback gains. By observing the feedback gains it is possible to 

determine if the human is choosing an unsafe or unstable control law due to fatigue 

or distraction. 

8.2 Semi-Autonomous Control 

With all of these improvements it is possible to more accurately describe a human-

in-the-loop system for a wider range of situations at once. Here again, nonlinear 

observers, similar to those derived in this thesis, could be developed to estimate all 

of the parameters of a human-in-the-loop with hardware system. 

This provides the opportunity to measure abstract parameters of the human on 

line, such as fatigue, efficiency, or stability of the control law in use. This information 

can be used in conjunction with a computer controller. The computer would actually 

become more like a virtual copilot that could monitor the vehicle and the human 
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and make decisions in emergency situation where the vehicle or the human has been 

determined to be unstable. The computer controller could decide to warn the human 

if they or the vehicle are becoming unstable. If the human does not respond the 

computer could decide to completely take over, or just control some critical states 

and allow the human to control the rest. 

All of these improvements can make the task of driving a car safer and more en

joyable. It can also make the complex task of flying an aircraft safer, more enjoyable, 

and more accessible for everyone. 
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Appendix A 

Constants 

Bod}- Segment 
Whole body 
Upper arm 
Forearm 
Hand 

Mass(%) 
100 
3.3 
1.9 
0.6 

Length(%) 
100 
17.2 
15.7 
10.4 

Table A.l: Relative mass and length of select body segments as a percentage of total 
body mass and height for adult males [34]. 

Body Segment 
Whole body 
Upper arm 
Forearm 
Hand 

Mass(kg) 
80 
2.6 
1.5 
0.5 

Length(m) 
1.8 

0.31 
0.28 
N7A 

Table A.2: Mass and length of select body segments as calculated from Table A.l for 
typical total body mass and height of adult males. 

Reasonable values for ks and k^ shown in Table A.3, were chosen by comparing 

the motion of a real joystick to the motion of the simulated joystick as shown in 

Figure A.l. The trajectories shown begin with the same initial condition. 

11Q 
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a> - 0 1 

o -0 2 

(a) Simulated 

© -o 1 h 

o - 0 2 

-0 3 

(b) Measured 

Figure A.l: Simulated and measured results for joystick motion. 



Constant-
Mass 
Length 
Spring constant (A"s) 
Coefficient of friction (k^) 
Range of motion 
Base location relative to shoulder 

Value 
0.5 

0.15 
12 

0.15 
±0.36 

(0.45, -0.3) 

Unit 
kg 
m 

N/m 

rad 
m 

Table A.3: Joystick constants. 

Constant 
Mass 
Radius 

Value 
2.5 
1 

Unit 

kg 
m 

Table A.4: Solid ball constants. 



Appendix B 

Simulink Models 

Simulation solver ODE 1 
time step 0.01 ms 

Run Parameter File : 
ArmJoystickParameters.m 

[T.PD] 
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Figure B.l: Arm and joystick models and observers combined. 
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Figure B.2: Arm Simulink model. 
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Figure B.5: Solid ball Simulink model. 
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Figure B.7: PD Simulink observer. 
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Appendix C 

Mat lab Code 

ArmJoystickParameters.m 

clear all; 

% Joystick 

m_j=.5; %mass of Joystick 

l_j=.15;%length of Joystick 

g=9.8; '/.gravity acce le ra t ion 
k_s=3; ^spr ing constant of Joyst ick 
k_f=. l ; 7,friction coef f ic ien t of Joyst ick 

•/. Arm Stuff 
ml=2.6; 
m2=1.5; 
11=.31; 
12=.28; 
13=.15; 
d l = l l / l ; 
d2=12/2; 
y4=.45; 
z4=- .3 ; 

% Pitch Data from wrist gyro 

load Joystick_Gyro_Data/HGPD.mat 

Time = (x39560917034865-39560917034865).*lCT-9; 
PD(1:length(Time))=0; 

PD(length(Time)+l:2*length(Time)) = -(pitch-pitch(l))*pi/180; 

iaa 
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T(l:length(Time))=Time; 
T(length(Time)+l:2*length(Time)) =... 
Time+Time(end)/length(Time)+Time(end); 

T = T> . 

PD=PD'; 
figure(1); 
plot(T,PD,'c?) 
xlabeH'time (s)J) 
ylabeK'angle phi (rad)') 
title(;Hand Gyro Pitch Down Angle') 

legend('pitch') 

ControlSpmningBallParameters m 

clc 

clear all 
close all 
°/0Control delay 
T = 1, °/0l second 
taubias=0; % b ias torque 

% b a l l s tuff 
m_b=l*2.5; °/0mass of b a l l 
r_b=l*l ; °/0radius of b a l l 
J = (2/5)*m_b*(r_b~2), °/0Rotational Iner t ion 

°/0 Joys t ick 
m_j = . 5 ; °/0mass of Joyst ick 
l_j=. 15;°/0length of Joyst ick 
g=9.8; 70gravity acce le ra t ion 
k_s=12; °/0spring constant of Joyst ick 
k_f=.15; 70friction coef f ic ien t of Joyst ick 

°/0 Arm Stuff 
ml=2.6; 
m2=1.5; 
11=.31; 
12=.28; 
13=.15; 
d l = l l / l ; 
d2=12/2; 
y4=.45; 



24=-.3; 

% state space for xl=theta, x2=thetadot, for PD control 
A=[0 1; 

0 0]; 

B=[0; r_b/J]; 

rank=rank(ctrb(A,B)) 

eA=eig(A) 

p=[eA(l)-2 eA(2)-4] 

[Kp,prec,message]=place(A,B,p) 
eig(A+B*Kp) 
f igure(3) 
p lo t ( r ea l ( eA) , imag(eA) , ' b* ' ) ; 
hold on 
p l o t ( r e a K p ) , imag(p), ' r * ' ) ; 
g r id on 

PlottingArm_AngleRelations.m 

clc 
clear all 

close all; 

11=.31; 

12=.28; 

13=.15; 

7. i=l; 
7, i=l:100:(length(phi)-l)*.5; 

7, T=0:.01:10; 

phi=-.36:.003:.8; 

for i=l:length(phi); 

y4=.45; 

z4=-.3; 

y3=y4+13*sin(phi(i)); 

z3=z4+13*cos(phi(i)); 

zplus(i)=(l/(2*(y3*2+z3"2)))*(ll-2*z3-12"2*z3+y3-2*z3+z3"3... 

+(-y3"2*(ll"4+(-12-2+y3"2+z3-2)"2... 

-2*ll"2*(12-2+y3"2+z3-2)))'(l/2)); 

zminus(i)=(l/(2*(y3~2+z3~2)))*(ll~2*z3-12~2*z3+y3-2*z3+z3"3... 

-(-y3"2*(11^4+(-12~2+y3-2+z3~2)"2... 



-2*11-2*(12~2+y3-2+z3~2)))*(1/2)); 
7.yplus=(l/(2*y3*(y3~2+z3-2)))*(ir2*y3~2-12-2*y3~2+y3~4. . . 
7. +y3~2*z3~2*-z3*(-y3~2*(ll~4+(-12~2+y3~2+z3~2)~2. . . 
7. -2*ir2*(12-2+y3-2+z3~2))r(l/2)); 

ymmus(i) = (l/(2*y3*(y3~2+z3~2)))*(ir2*y3~2-12~2*y3~2+y3~4. . . 
+y3~2*z3~2+z3*[-y3~2*(ll~4+(-12-2+y3~2+z3~2)~2.. 
-2*ll~2*(12~2+y3~2+z3~2))]~(l/2)); 

7.sqart=(-ll~4*y3~2+2*ll~2*12~2*y3~2-12~4*y3~2+2*ll~2*y3~4. . . 
7. +2*12~2*y3~4-y3~6+2*ll~2*y3"2*z3~2+2*12~2*y3~2*z3~2. . . 
7. -2*y3-4*z3-2-y3~2*z3"4); 

ph i l ( i ) = a c o s ( z m m u s ( i ) / l l ) ; 
ph i2( i )=acos( (z4-zminus( i )+13*cos(phi ( i ) ) ) /12) ; 
7o l m e x l = [ 0 ymmus] ; 
7o l ineyl=(zminus/yminus)*lmexl ; 
7o lmex2= [ymmus y3] ; 
7o lmey2=((z3-zminus)/(y3-ymmus))*(lmex2-yminus) +zmmus; 
7. Imex3=[y3 y4] ; 
7. Imey3= ( (z3-z4) / (y3-y4)) *(Imex3-y4) +z4; 

7. f igure(3) 
7. p l o t ( 0 , 0 , ' o b ' , l m e x l , l i n e y l , ' r ' , ymmus ,zmmus , ' o b ' , . . . 
7. I m e x 2 , l m e y 2 , ' r ' , y3 ,z3 , ' ob ' ( l i n e x 3 , l m e y 3 , ' r ' ,y4,z4, ' ob ' ) 
7. xlabel('Y') 
7. ylabel('Z') 
7. axis([0 .6 -.6 0]) 
7. grid on 

7. i=i+l; 
end 

figure(1) 
plot (phi (:) ,phil(:) , 'k—' ,phi(:) ,phi2(:) , 'k' , 'LmeWidth' , 1) 
xlabelC Joystick angle: \phi (rad)') 
ylabelCShoulder and Elbow angles: \phi_l, \phi_2 (rad)') 
legend('\phi_l','\phi_2') 

figure(2) 
plot(phi(:) ,zplus(:), 'k-. ' ,phi(:),zmmus(:), 'k') 
xlabelCJoystick angle: Yphi (radians)') 
ylabeK'Elbow height position (meters)') 
legend('upper solution','lower solution') 
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