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ABSTRACT 

Author- Justin O Karl 

Title* Filtering of Acoustic Emission Data Through Principal Frequency 

Component Extraction 

Institution Embry-Riddle Aeronautical University, Daytona Beach, FL 

Degree- Master of Science in Aerospace Engineering 

Year- 2006 

Rapid editing of acoustic emission (AE) data is required in order to make real-time 

acoustic emission flaw growth systems a viable testing method for materials and setups 

that contain noisy signals. It was hypothesized that extracting major frequency 

components from the acoustic emission signal would therefore provide a representative 

acoustic signature of the major waveforms occurring due to defect growth This research 

has verified that the aforementioned filtering technique does, in fact, extract a 

representative signal from the composite and metal specimens utilized herein These 

findings were verified both through visual analysis of the data as well as the low error 

occurrence in backpropagation neural network predictions and good classification in self-

organizing map type neural networks applied to the testing data. 
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1.0 INTRODUCTION 

1.1 Overview 

The goal of this research was to verify major frequency extraction as a viable method for 

editing noisy acoustic emission data. Acoustic emission filtering of this type was given a 

number of requirements that were to be met in order to consider the filtering technique a 

success. Listed below are the requirements that were strictly adhered to during filter 

development. 

• Filter must offer significant data reduction -- number of acoustic emission data 

points (hits) after filter is to be no more than 20% of the original number of hits. 

• Filter must remove frequencies in the audible and near-audible ranges (< 50kHz) 

as well as excessively high frequencies in the megahertz range (> 2MHz). 

• Filter must remove frequencies that commonly carry mechanical noise and 

multiple-hit data (low frequencies). 

• Filter must identify frequencies that, when common AE plots are made, the plots 

closely resemble the ideal shapes and features shown in theoretically correct AE 

plots. 

• Filter must identity frequencies that, when analyzed with a neural network or 

similar mathematical modeling system, produce low (<5%) error in prediction-

type networks and clear patterns in classification-type networks. 



The goals of the filter mentioned above were met aftei sexeial iterations None of the 

filter iterations were far from meeting all of the requirements, and therefore it was never 

considered that the filtering mechanism might be logically or theoretically invalid in 

nature A complete overview of filter development w ill be covered in the section on filter 

theory 

1.2 Specimen and Test Types 

The data for this research initially came only from composite specimens, but were later 

expanded to include metallic specimens in order to test the overall validity of the filtering 

technique, since logically it should work for all types of material systems 

The composite specimens used in this research were a set of 15-mch diameter 

graphite/epoxy over-wrapped pressure vessels manufactured in 1997 for use as test 

subjects at the NASA Marshall Space Flight Centei (MSFC) These composite over-

wrapped pressure vessels (COPVs) were comprised of an unknown graphite filament and 

an unknown epoxy matrix type, wrapped over a thin aluminum liner The COPVs were 

cured in different manners, including rotissene and non-rotissene cures Rotissene cures 

are designed to ensure even matrix material distribution during cure The COPVs were 

artificially damaged in three different ways to simulate damage that might occur during 

storage, shipping, and installation into vanous spacecraft systems The damage included 

blunt and sharp impacts of varying energies, and lacerated hoop fibers Also, some of the 

COPVs were left undamaged 
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The data from the COPV specimens were taken during a number of proof tests of the 

pressure vessels Pressunzation schemes and rates were varied in an effort to simulate 

usage in different types of systems In addition to varying pressunzation schemes and 

rates, some of the COPVs were tested at ambient temperature while others were tested at 

cryogenic temperatures It should be noted that a large array of tests were being 

performed at once, thus, acquisition of acoustic emission data did not appear to be of 

pnmary concern Moreover, the acoustic emission system was not set up properly it 

therefore captured a large amount of low-level noise and multiple hit data This of course 

was another positive aspect for this filtering mechanism evaluation, because the noisy 

data presented a more difficult problem to solve 

It would appear that the primary idea behind the testing at MSFC was to produce 

multivariate conditions that reflect realistic uses of the COPVs It was actually fortunate 

that this research was able to use this test data, because a success validates use of this 

type of filtering technique under widely varying conditions 

The data from the metal specimens were somewhat less complicated The metallic 

specimen data came from a series of 7075-T6 aluminum tensile test specimens that were 

fatigued to failure in an MTS tensile test machine The specimens were tested and the 

data collected as part of a thesis project [Ibekwe, 2003] Subsequently, re-tests and re-

filtenng of the data were explored because the initial test results did not seem to correlate 
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with the available data It is possible that the data files were corrupted or partially lost 

This mixture of known good data and partially lost or noisy data represented another 

challenge for the filtering technique, which in this case was employed in a completely 

different material system to verify its geneial applicability 

1.3 Validation Methods 

The validation of the filtering technique will be accomplished through the comparison of 

the filtered and unfiltered data This comparison will be accomplished through well-

documented and historically utilized methods - visual comparison of standard acoustic 

emission plots and analysis of prediction-type as well as classification-type neural 

network outputs 

Visual comparison of acoustic emission plots first requires that the analyst understands 

what standard acoustic emission plots look like The three standard plots that this study 

used to examine the effectiveness of the filtering method were 

• Duration vs counts, 

• Amplitude vs duration, and 

• Differential amplitude distribution 

The first plot, duration vs counts, is a representation of the length of the acoustic 

emission signal vs the numbei of times the waveform of the signal exceeds the threshold 

value The plot ideally should be a scatter plot of data points that follow a highly linear 

function This linear tunction represents the frequency of the dominant failure 
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mechanism in the material. Oftentimes the ideal case is not observed. Instead, the most 

ideal case one can hope for during analysis is a set of several frequencies indicating the 

primary frequencies of oscillation associated with the most dominant failure mechanisms 

in the material. 

X D = kC 

Counts 

Figure 1: Idealized duration vs. counts plot 

In the composite specimens, between one and five mechanisms are expected, while in the 

metal specimens one to three mechanisms are expected. In the case of this example plot, 

a linear trend line (which represents the mean frequency) is superimposed over the data. 

The constant, k, is used to describe the relationship between duration and counts, which 

again represents the mean or predominant frequency. 

The second plot type, amplitude vs. duration, is another scatter plot that compares the 

maximum amplitude of an event with the length of the event. In this plot, it is common 



for groupings of data points to occur that represent the different failure mechanisms in the 

material Citing the composite as an example, it is easy to understand that different 

mechanisms will have certain fixed relationships between amplitude and duration For 

instance, a fiber break is expected to have a high amplitude and a short duration, while a 

matrix crack would be expected to have a longer duration and small amplitude 
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Figure 2 Sample duration vs amplitude plot [ASNT AE Handbook, 2005] 

In Figure 2, three failure mechanisms are seen in the fatigue test of a bolted aluminum 

specimen with a notch in it to promote fatigue cracking The short duration/low-to-

medium amplitude mechanism is plastic deformation ahead of the crack tip, and a longer 

duration/high amplitude mechanism represents the fatigue cracking itself The longest 

duration events in this plot are from the specimen rubbing within the bolted joints during 

cycling 



The third plot, the differential amplitude distribution, often referred to as an "amplitude 

histogram," is a representation of how many acoustic emission hits occur at each 

amplitude between 0 and lOOdB. This plot often displays a number of high points 

("humps") and low points in the distribution, where these "humps" can be identified with 

certain failure mechanisms. 

t 
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Amplitude 

Figure 3: Idealized amplitude histogram 

These "humps" in the histogram are well-defined in clean acoustic emission data but are 

generally blended together by noise in real world acoustic emission data sets. In this 

example it can be seen that there is a large failure mechanism at low amplitudes and a 

smaller failure mechanism at higher amplitudes. 
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Neural networks, a complicated set of iterative mathematical tools modeled after the 

mammalian brain, provide another way to validate acoustic emission data filters Self-

organizing maps (SOMs) are a type of neural network that are used foi classification 

The weight values of the network will cluster together after several iterations, leading to 

groupings that correspond to the failure mechanisms in the data SOMs commonly 

provide better classification than visual inspection of the duration vs amplitude plot and 

were used herein to show the improvement in the quality of both the composite and 

metallic specimen data after editing 

Backpropagation, which are prediction-type neural networks, were also used to con*elate 

COPV amplitude histograms with their corcespondmg results - burst pressures Aftei a 

number of amplitude histograms have been used for training, the backpropagation neural 

network can make predictions based on the historical data If the acoustic emission data 

are clean and well defined, the neural network can pick out patterns and correlate them to 

an output result within a small error margin Here it was desired to obtain a burst 

pressure to within 10% of what was observed during testing in order to consider that the 

neural network was making an accurate prediction, but manual filtering methods 

developed previously [Karl, Dion, Spivey, 2006] obtained results that were within 5% 

error Therefore, a 5% worst case error was set as the goal in this filtering exercise as 

well 
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2.0 THEOR\ 

2.1 Acoustic Emission Overview 

Acoustic emission, by definition, is the release of transient elastic waxes propagating 

from flaw growth actmty This flaw growth actmty has a number of sources on the 

microscopic as well as macroscopic levels On the microscopic level, gram boundaries 

and microxoids can slip, coalesce, or slide against one another to release stress that is 

built up by deformation of the material This reorganization of the atomic structure 

naturally brings the o\erall state of the system to a lower energy lex el, and the principle 

of conservation of energy dictates that energy must therefore be released This release of 

energy occurs as a wa\e propagating in all directions from the source of the change in the 

material This wa\e then undergoes reflections, mode conversions, and dispersion 

consistent with its path through the material - continuing on until it is dampened out or 

transfers all or a part of its energy to another medium In the case of AE instrumentation, 

this medium is the piezoelectric material w ithin the transducer 

In metals, the flaw growth actmty is primarily microscopic with the acoustic emission 

coming from sources like grain boundary slippage and rubbing, microvoids, microcracks, 

and particularly from plastic deformation associated with strain hardening of stress 

concentrated areas In composite materials, the same types of microscopic emissions are 

detected, but they are often eclipsed by higher-energy actmt\ that is primarily 

macroscopic in nature The sources that will now be discussed assume a common 
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aerospace composite comprised of a high strength fiber embedded in a polymer matrix, 

arranged in layers of a laminate. The first source, matrix cracking of a macroscopic 

nature, occurs due to stress in excess of the ultimate strength of the matrix (which is 

typically much lower than the fiber material). Fiber breakage occurs at high stress when 

fibers begin to fail. Fiber pullouts occur when a broken fiber is pulled out of the matrix 

due to a lack of fiber/matrix adhesive strength. Delaminations occur in order to relieve 

shear stresses between layers of composite (lamina); and the final source, mterlaminar 

rubbing, occurs when these separated lamina are brought back to their original positions 

after stress relief. 

With a basic understanding of the possible sources, the next logical step is to gain an 

understanding of the operation of the acoustic emission data acquisition system. The 

propagation of the wave into the piezoelectric material in the AE transducer causes the 

piezoelectric material to vibrate, and the piezoelectric effect converts this vibration 

directly into a voltage. This fluctuating potential is picked up by a (positive) wire 

embedded in the piezoelectric material, with the reference (ground) being the metallic 

casing of the transducer itself, as seen in Figure 4. 

Case Electrical lead 

Damping material -

Wear plate 

Piezoceramic element 

Cou plant layer 

Figure 4: Wideband AE transducer (cross section) [ASNT AE Handbook, 2005] 
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Built into the casing of the AE transducer is a BNC connector, and a coaxial cable can be 

connected to the transducer to carry the signal from the piezoelectric material to the data 

acquisition system. Some transducers have a preamplifier built into the transducer casing 

while others do not. A standard acoustic emission acquisition system is shown in the 

following block diagram. 

Display 

Printec, 
diher 
output 

devices) 

Figure 5: A standard AE system 

After leaving the AE transducer, the signal first passes through a series of filters. 

Generally, these filters are band pass filters that are used to remove any electronic or 

mechanical noise in the signal. Electronic noise and mechanical noise are characterized 

by very high and very low frequencies, respectively. After this initial bandpass filtering, 

the signal, which even if pre-amplified is still very weak, passes through a variable 

amplifier. This amplifier has the effect of changing the signal from a maximum value in 

the range of microvolts up to the range of volts. Acoustic emission systems commonly 
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have an overall gain between 60 and 120dB from the original AE signal, depending upon 

if a preamplifier (commonly either 40dB or 60dB) is used. 

After amplification, additional filtering may be used to further reduce the noise in the 

signal. This filtering is dependent upon the application and type of system being used. 

The portion of the signal remaining after amplification and filtering is passed on to a set 

of circuitry that calculates waveform parameters based on the signal. These waveform 

quantification parameters are the commonly referred to AE parameters that are used in 

this and many other research papers. Pictured in Figure 6 is an illustration of an arbitrary 

AE waveform and how the parameters are defined. 

*-
Duration 

(relative scale) ' 

Figure 6: AE waveform parameters [ASNT AE Handbook, 2005] 

A threshold is set by the user of the AE system to eliminate low-level noise. This simple 

technique instructs the system to ignore any signals that are not energetic enough to have 

an amplitude value above the threshold. A common threshold value for composite 

material testing is 60dB. Waveforms that do meet all of the filtering requirements and 
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are strong enough to exceed the threshold are characterized by the system into the AE 

parameters seen in Figure 6. Maximum amplitude (usually referred to as simply 

"amplitude") is a measure of the highest amplitude of the waveform. Rise time is the 

length of time (in microseconds) from the first crossing of the threshold to the maximum 

amplitude. Duration is the length of time from the first crossing of the threshold to the 

last crossing of the threshold (in microseconds), while counts is the number of times the 

waveform crosses the threshold. Energy counts (or commonly just "energy") is the 

computed value of the area under the entire rectified waveform that exceeds the 

threshold. This area is referred to as the MARSE (mean area under the rectified signal 

envelope) and is pictured in Figure 7. 

Rectified Waveform 

Figure 7: Mean area under the rectified signal envelope 

The final parameter, which is used in this research but is generally not computed in other 

studies, is the mean frequency. Mean frequency can be expressed simply as the counts 

value divided by the duration. This average frequency value can be used in filtering of 

data during post-processing and is the basis for this research. 
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It should be noted that the circuitry that determines the parameters for the waveforms 

does not operate instantaneously; hence, if the parameters for a waveform cannot be 

computed before another waveform is encountered, the incoming waveform is sent to a 

buffer where it stays in its raw form until the system can determine its AE parameters 

All incoming waves are given a timestamp before entering the buffer (or if there are none 

in the queue, the analyzer circuitry) so that they are not out of sequence even if the 

amount of data in the buffer becomes quite large 

After the AE parameters have been determined for each waveform, they are logged 

sequentially by the acoustic emission system The logged waveforms and their 

parameters are stored in permanent storage, usually a hard drive of the acoustic emission 

system From this location, they can be recalled, replayed, or otherwise reanalyzed at 

will during post-processing 

A common problem with large acoustic emission data sets is multiple hit data This type 

of event occurs when two or more waveforms arrive at a transducer within a short period 

of time Here the second waveform arrives before the first waveform diminishes below 

the threshold and therefore causes the AE system to log both superimposed waveforms as 

one This type of multiple hit waveform will have falsely identified quantification 

parameters that do not correlate with the rest of the single hit data Multiple hit data must 

therefore be removed from the set To better visualize multiple hit data, Figure 8 shows 

two waveforms that arrive in the AE system at nearly the same time 
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WAVEFORM 2 
NORMAL AE DATA 

Threshold 

AA/yVv^/vvw <*%., f\mrtm,r\j\/\jr^m^ /\ 

WAVEFORM 1 AND 2 OCCURRING TOGETHER 

v v V ^ A " A/* "•"• "•"•.ft'W.^. 

MULTIPLE HIT DATA 

Figure 8: Regular AE vs. a multiple hit AE event 
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2.2 Artificial Neural Networks Overview 

Artificial neural networks (ANNs) are a diverse set of robust mathematical tools used to 

classify data into clusters, recognize patterns, process signals, and do predictive modeling 

and forecasting. ANNs are patterned after the mammalian brain. This sort of 

arrangement is accomplished by interconnecting numerous artificial neurons called 

processing elements (PEs). A single PE has very little processing capability; however, 

when many are interconnected, a massively parallel system can be constructed that is 

capable of biological learning and problem solving. ANNs share many similarities to 

their biological counterparts, such as learning, memory, and judging new data based on 

previous experience. 

ANNs and biological systems do differ, though: While the human brain is estimated to 

contain 100 billion neurons, artificial neural networks are currently much, much smaller. 

This is due to the fact that although the human brain is massively parallel, it operates at a 

maximum of 30 Hz whereas common modern computer processors approach 4 GHz. The 

computer's speed is over 100 million times as many calculations per second. This high 

speed processing capability has led to resurgence in the use of artificially intelligent 

systems where network sizes are not required to have anywhere near as many neurons as 

the human brain to have the same capabilities. 

ANNs thrive at solving problems where there is no explicit solution or there are multiple 

interactions that are too complicated to separate and/or express with a known function. 

16 



The first network type utilized in this research, the backpropagation neural network, is 

used to generate predictions based on patterns it can find in the aforementioned variable 

interactions To be more specific, this research's neural network analyzes the complex 

patterns in acoustic emission amplitude histograms and makes predictions of failure 

strength of the materials The use of backpropagation ANNs in this research involves 

comparing the predicted failure strength to actual failure strength in an attempt to validate 

that the data fed into the neural network were sufficiently well-filtered to remove 

extraneous noise Low error in these predictions (< 5%) usually signifies clean acoustic 

emission data 

The second type of ANN used in validating the quality of acoustic emission data in this 

research was the Kohonen self-organizing map SOMs use a multi-dimensional matrix of 

network weights that respond to input values as well as other weights near the weight in 

question. This process has the overall effect of shifting like-valued weights together and 

reducing other weight values to zero The end result is a matrix of weights that have 

well-defined groupings and that correspond closely to the major features in the data set 

In the case of the materials-oriented testing in this research, the major features are the 

failure mechanisms in the data If the acoustic emission data are clean, well-defined 

patterns in the weights associated with each failure mechanism will be evident 
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2.3 Previous Research 

Acoustic emission specialists have asserted for a long time that the greatest advantage of 

AE testing is also its greatest disadvantage This statement refers to the sensitnity of AE 

testing, which, while allowing for the detection of minute changes in a material, also 

allows tor the introduction of a large amount of non-usable signals and noise into the data 

collected Filtering mechanisms of some kind are therefore necessary so that the relevant 

acoustic information can be sorted from the rest of the data. 

Historically, filtering was done by controlling the frequency bandwidth that was sent to 

the AE analyzer system through appropriate selection of transducei and band pass filters 

placed on the amplified signal These rudimentary analog methods have been successful, 

but there are several difficulties associated with them First, the decisions for transducer 

and filter application must be made by a highly-trained individual These setup choices 

will vary from expert to expert and application to application Next, a trained individual 

must be present for analysis to look for recognizable patterns in the data amidst a variable 

level of noise Finally, in cases where a large amount of noise is generated, e\en trained 

individuals have a difficult time picking out failure modes and mechanisms of a material 

In recent years, growth of AE usage in more complex (and noisy) materials systems has 

prompted researchers to look for new ways to extract a meaningful signal from the data 

A brief look at the three most widely used methods is appropriate here 
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Manual Filtering - Filtering AE data manually based on previous AE or material system 

knowledge is probably the most widely used technique. In some cases this method is 

done without considering the fact that the researcher is filtering the data at all. The 

manual filtering method usually involves removal of data points that have characteristics 

that lead the research to believe they are not characteristic of the type of signal expected. 

Some examples would be the removal of longer (or shorter) than expected durations, 

removal of long (and short) rise times, zero energy events, etc. These types of decisions 

are generally regarded as obvious to most users of AE and have been referred to as the 

"obvious" or "dummy" filtering done after AE data is taken. Some AE systems support 

setting parametric constraints, so that this type of filtering can be built into a test at the 

AE analyzer level. 

Statistical Analysis Filtering - Knowing the ideal characteristics of AE data parameters in 

advance of gathering data has led some researchers to attempt to use statistical analysis 

and modeling techniques to aid in the removal of noise. For instance, an AE amplitude 

distribution usually takes the shape of a right-skewed beta distribution; researchers can 

curve-fit the data and remove outliers that would cause the data to have a poor fit. 

Another technique involves fitting a linear curve to a "duration vs. counts" plot, which 

should be linear, assuming a single prevalent failure mechanism. In this case, points that 

do not fall within a set number of standard deviations from the line can be considered 

outliers and removed from the data set. 
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Neural Network Filtering - The increase in computing power over the past decade has led 

to faster, more powerful neural networks Some neural networks are built to classify and 

group similar types of data together Specifically, Kohonen-type learning used in SOMs 

can usually separate AE sources into well-defined groupings of data points in n-

dimensional space This allows for the removal of outliers that do not fit into the defined 

data groupings, as well as per-mechanism type analyses not possible with most manual or 

statistical techniques 

Numerous researchers have worked with complex manual and neural network methods 

It has been found that in both cases, the filters and/or network must be changed and 

tailored to each type of test and material system It has also been shown that a large 

amount of human intelligence and time must be spent on these methods, thus leading to 

this attempt to develop a filtering technique that is more self-contained in its operation 
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3.0 METHOD 

3.1 Filter Background 

Several different aspects of the data and the way they were acquired led to the idea of 

filtering using the principal frequencies in a data set The first aspect that led toward the 

ultimate use of frequency analysis in filtering was the relative ease with which the overall 

cleanliness of an acoustic emission data set could be determined from the duration vs 

counts plot An ideal duration vs counts plot will display linear data sets corresponding 

to the most prominent frequencies found in the acoustic emission signals It was 

surmised that if a valid approach of throwing away data that did not fall along these lines 

was available, it would leave only the acoustic emission data that were representative of 

the mechanisms at work within the material 

The second aspect that was considered has more to do with the acquisition method and 

equipment than the actual data This consideration was with regard to the frequency 

response of the transducers used in the test Acoustic emission transducers rely on 

piezoelectnc materials to pick up the small vibrations in the specimen, and the 

piezoelectric material (which could be of varying size and geometry) is susceptible to 

different interference and harmonics that make it easier to acquire certain frequencies and 

more difficult to acquire others This essentially means that the frequencies that aie 

favored by the transducer and/or stmcture are going to carry the most information about 

what is actually going on inside the specimen It is logical to assume that if there are 

principal frequencies in the data set, the transducer response is factoied into those, and 
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this is therefore a positive aspect of the data gathering process. Transducers that have 

areas of greatly favored response, or areas that have peak response, such as resonant 

frequencies in a narrowband transducer, are never extremely high or low in the frequency 

response range of the transducer. This is a positive aspect, because most noise is 

expected to be in the low frequency (mechanical noise, multiple-hit data) and high 

frequency (EMI) ranges. This idea reinforces the fact that the areas of favored response 

will not acquire an overwhelming amount of noise, which would taint the entire acoustic 

emission data set. 

COMPARISON OFSE150-M WITH SE1000-HI AND SE1000-H 

80 

75 

70 

65 

60 

55 

ffl 50 

45 

40 

35 

30 

t\ 

L--
! 

JSE1000-H 

1 x 
'--, . 

SE1 

_^* w — -

»10DB S E 1 

j$ 

000-HI 

* — ^ 
50-M + IODB; 

*/ 
_j4£L... -^_<— 

/\_ .- . — _- _ 

—_ —----—- nr 

-

•^.-r - • , —
 _J 

s*\ ,•• ^—' 

V 

^ i y 

\ \ t 

. , - • 

___.-—^ 

/ 

\ 
i 

^^A 
\ V 

50 100 150 200 250 

FREQUENCY (KHZ) 

300 350 

Figure 9: Sample transducer frequency response graphs 

The blue transducer in the example frequency response curves of Figure 9 shows a 

common occurrence in the respect that 150kHz can become a favored frequency in the 

400 
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spectrum, but otherwise these transducers have nearly equal response across all 

frequencies. 

The final aspect considered deals with the mechanics of the material system and what 

actually produces acoustic emission. Because acoustic emission is produced by flaw 

growth activity, it is arguable that acoustic emission relies on the weak points in the 

material to produce emission indicative of the worst case in the specimen. This case is 

our primary interest, because the weak points (areas of high acoustic emission activity) 

are the points where failure is going to occur. Two conclusions can be ascertained from 

this information. First, the makeup of the material system does not matter: as long as a 

filter is applied that extracts the principal frequencies, it will be extracting the frequencies 

associated with the failure mechanisms because those will be most prominent. Second, 

specimen geometry does not matter: the weak points in the material may be in different 

locations and therefore different amounts of damping will occur on the way to the 

transducer, but as long as the signals reach the transducer they will be recognized as 

important frequencies (whatever they may be) because they occur more often than others. 

The way the weak points in a specimen produce large amounts of acoustic emission also 

has another positive effect that was initially overlooked. Noise and multiple hit data 

generally come from many frequencies, which spreads it out all over the spectrum. The 

nature of some tests may cause this noise to be more pronounced at low (as in the COPV 

tests) or high frequencies, where it is entirely possible for a principal frequency to exist. 
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The fact that the weak points in the material produce so much activity at certain 

frequencies means that these frequencies, although surrounded by noise, are easily sorted 

out by the obvious peaks in the frequency response plot seen in Figure 10. 
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Figure 10: Sample frequency distribution 

The primary frequencies in this example specimen are evidenced by peaks at 142kHz, 

180kHz, and 125kHz. Note that there are peaks lower in the frequency range where a 

great deal of noise is expected, but the noise does not form peaks -- instead it is spread 

out in the 50kHz to 170kHz range and is unable to conceal the more prolific signals in the 

overall frequency distribution. 

24 



3.2 Utilization of the Filter 

This section is structured to give a step-by-step representation of what the frequency-

based filtering program does when it is run. This program was created in MATLAB, and 

the code can be found in Appendix A. 

3.2.1 Step 1: Import Data File 

The first step is to import the data into MATLAB. Modem acoustic emission systems 

output AE parameter data in tab-delimited column format in a text document. This can 

be imported directly into MATLAB with the data import function, as long as the data is 

oriented as follows: 

Table 1: Data file architecture 

Column 

1 

2 

3 

4 

5 

6 

7 

8 

Parameter 

Data point 

User-defined parameter 

Channel 

Rise time 

Counts 

Energy 

Duration 

Amplitude 
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This data format is like what would be found in a text file such as the example shown in 

Figure 11. 
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Figure 11: Excerpt from sample data file 

In the case of this example, the user-defined parameter was pressure, which was used in 

the COPV testing. The test took data from seven AE transducers, and some preliminary 

data reduction has already been done to lower the number of data points, as evidenced by 

the data points missing from the first column, which were removed by a computer to 

reduce the data file size. 

3.2.2 Step 2: Set Filter Program Parameters 

There are two user-defined parameters that need to be set in the program before it can be 

run. The variable "frequencyrange" will set the size of the "sorting bins" used in the 

frequency spectrum analysis. This variable has a default setting of 700Hz for composite 
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specimens, which means that the program will consider that any two frequencies that are 

different by less than 700Hz can be grouped together. The default values for composite 

(700Hz) and metallic (500Hz) specimens were determined empirically and work well for 

the materials and specimens used in this research. The variable "freqstofind" 

(frequencies to find) is an indicator of how many frequencies are to be determined by the 

program as principal frequencies. This variable has default values of 10 for composite 

specimens and 5 for metallic specimens. Generally, there are 5 or less failure 

mechanisms in the specimens analyzed, but there are other areas of high activity that 

were determined to cany useful information. It should be noted that the code currently 

only analyzes Channel 1, which was determined to cany the most information. The 

Channel 1 transducer on the COPV specimens was mounted on the polar boss of the 

specimens, and the Channel 1 transducer for the metal specimens was mounted on the 

upper grip of the tensile testing machine. Future versions of this program will determine 

the most active channel automatically. 

3.2.3 Steps 3-7: Running the Filter Program 

(Step 3: Preliminary Calculations) 

Because frequency is not one of the commonly output acoustic emission parameters, it is 

necessary to first loop through all of the data points and calculate the frequency 

associated with each hit. The first part of the program divides the information from 

column 5 (counts) by that from column 7 (duration) of the imported data and thereby 

calculates the mean frequency of the waveform. Column 5 is counts expressed as an 
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integer, and column 7 is the duration in microseconds, so column 7 must be convened 

from microseconds to seconds in order to have the frequency in the base unit of Hertz 

(cycles per second). Note that this calculated frequency is identified as the mean 

frequency, due to the fact that it may change throughout the duration of the waveform. 

For the sake of simplicity, the mean frequency will be hereafter identified only as 

"frequency" in this research. 

(Step 4: Initial Filter) 

The first actual filtering of the data takes place in a part of the program that applies some 

techniques based on acoustic emission-driven logic. This initial filter steps through all of 

the data points and removes data in the auditory and near-auditory ranges (0 to 50kHz) as 

well as any data above 2MHz, which is generally known to be outside the normal range 

of mechanisms detectable by acoustic emission. During the primary check for falling 

within the acceptable frequency range, any zero energy events, which contain no usable 

data, are also removed. 

(Step 5: Principal Frequency Determination) 

During the frequency determination phase, the program orders all of the frequencies 

encountered during the initial filtering from largest to smallest frequency of occurrence. 

After this is complete, the program picks out the number of frequencies to isolate as 

determined by assignment of the "freqstofind" variable and stores those as the principal 

frequencies. 
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(Step 6: Data Extraction) 

Utilizing only the data points that correlate with the principal frequencies would 

oftentimes extract a data set that does not have sufficient data points from which to draw 

any statistically significant conclusions. Therefore, the program uses the principal 

frequencies as a starting point and extracts data from the principal frequency as well as 

data within a range of ±2% around the principal frequency. The 2% value is determined 

by dividing the total frequency range observed in the data set by 50. After the extraction 

procedure has been perfonned for each of the selected frequencies, the data is prepared as 

a new set for creating plots, as well as potentially being output to a file or another 

program. 

(Step 7: Generation of Visual Analysis Plots) 

The plots used in the visual analysis are generated at this final phase in the filtering 

process. After plotting the principal frequencies, a duration vs. counts plot of the original 

data set is plotted, with an overlaying plot in a different color of the new data set so that 

an immediate comparison can be made between the original and the edited data. An 

amplitude histogram is generated of the original data set with an overlay of the edited 

data set, but because the edited data set is often orders of magnitude smaller and more 

difficult to view, a separate plot of the edited data is generated for visual reference. 

Similarity in shapes of the original and filtered data plots indicate that no vital 

information was lost in the filtering process. Sample plots are shown in Figure 12. 
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Figure 12: Sample filter program output 
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4.0 RESULTS 

4.1 Visual Data Set Comparison 

4.1.1 Composite Specimens 

In the composite specimens, the visual data comparison results were clear. The unfiltered 

data were very difficult to match to any of the expected acoustic emission plot forms, but 

the filtered data seemed to match the theoretical cases very well. 

The duration vs. counts plot for COPV-009 is shown in Figure 13. It is readily apparent 

that the data shown in red, which is the original data, is certainly not linear and does not 

have any separated linear segments that are discernible. 
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Figure 13: Composite specimen duration vs. counts output 

It is also apparent that the filter has concentrated on 4 or 5 failure mechanisms while 

ignoring the large amount of low-frequency noise (the large red mass at the bottom-left of 

the plot) in this specimen. Zooming in on the origin of the plot confirms that the filtered 

data is from 5 mechanisms and that those points representing those mechanisms form five 

distinct straight lines. 
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Duration vs. Counts for Filtered and Raw Data 
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Figure 14: Composite specimen duration vs. counts output (zoomed to origin) 

Analysis of the other plots immediately generated by the filter program will further 

confirm that the composite specimen data sets have been cleaned and appear to behave 

like idealized acoustic emission data. The plots shown in Figure 15 are first, an 

amplitude distribution of the old and new data sets on top of each other, and second, the 

new data set only. 
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Figure 15: COPV unfiltered (left) and filtered (right) amplitude histograms 

It can be seen from these plots that the original data set has little or no definition in the 

histogram that would indicate anything other than one large failure mechanism. This 

appears to be a consequence of the overwhelming number of hits in the first data set. The 

second data set, seen by itself on the right, has more definition in the main part of the 

distribution, showing one large and one less dominant failure mechanism between 60dB 

and 75dB. What it has that the original data set lacks completely, however, is the clear 

definition of the additional three failure mechanisms seen between 75dB and lOOdB. It is 

also important to note the scale ~ the filter has reduced the AE occurrences at 62dB from 

over 5500 hits to a more manageable 425. This leads to a data set that is more easily 

broken down into its constituent failure mechanisms. Thus, both human and computer 

based analysis of the reduced data set will be accomplished much faster and more 

accurately than with the original data set. 
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4.1.2 Metallic Specimens 

Because the filter is theoretically based on principles that should not change with 

specimen geometry or makeup, the next important thing to do was to look for similar 

results in the metallic specimens. Shown in Figure 16 is the comparative duration vs. 

counts plot for Specimen 003 tested by Ibekwe in 2004. 
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Figure 16: 7075 specimen duration vs. counts plot 

As expected, the acoustic emission data from the metallic specimen does not look like the 

activity seen in the composite. However, the important effects of the filtering can 
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certainly be seen. There has been a significant reduction in data, and the highlighted blue 

region shows two very clearly defined linear failure mechanisms. 
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Figure 17: 7075 specimen unfiltered (left) and filtered (right) amplitude histograms 

The amplitude histogram also shows very positive results. The original amplitude 

histogram was defined heavily by activity between 30dB and 40dB, but the filtering 

technique has revealed that all of that activity was some type of noise. The filtered 

histogram now shows two definite failure mechanisms at low amplitude levels, one of 

which is dominant. This filtered histogram has also revealed what could be a third, weak 

mechanism at slightly higher amplitude levels. The filter, in this case, has shown that the 

raw data set had valuable information about the failure of the specimen embedded in it 

that was not perceptible in the original data plot. 
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4.2 Neural Network Data Set Comparison 

4.2.1 Backpropagation Neural Network Analysis 

Due to the fact that the accuracy of backpropagation neural network predictions have 

been previously shown to directly relate to the relative amount of noise in the acoustic 

emission data, these results can be used as a gauge for the effectiveness of experimental 

filtering techniques. This research will analyze the burst pressure predictions generated 

by a network built in Neuralware's Neuralworks Professional Il/Plus software using both 

the original and filtered data sets. As per the usual in the case of designing neural 

networks, the primary measure of success will be the quantity of the maximum error in 

the testing sets. 

The first backpropagation neural network was run on data sets that had only basic manual 

filtering applied. Exceedingly low and high durations were removed, and short rise times 

were removed in an attempt to eliminate any electromagnetic interference. The results 

are shown in Table 2. 
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Table 2: Manually filtered composite data neural network prediction results 

S/N 

2 

3 

9 

10 

13 

14 

18 

20 

25 

26 

Damage 

Impact 

Impact 

None 

None 

None 

None 

Lacerated 

Impact 

Lacerated 

Lacerated 

Purpose 

Train 

Train 

Test 

Test 

Train 

Train 

Train 

Test 

Test 

Train 

Burst Pressure 

[psig] 

1880 

2004 

2544 

2460 

2874 

2390 

2864 

1967 

2393 

2675 

Predicted Burst Pressure 

[psig] 

1892.014 

2076.125 

2138.136 

2238.825 

2888.485 

2429.957 

2845.314 

1865.053 

2052.189 

2654.171 

Error 

0.64% 

3.60% 

-15.95% 

-8.99% 

0.50% 

1.67% 

-0.65% 

-5.18% 

-14.24% 

-0.78% 

Although the manual filtration had been applied, the neural network was still producing a 

maximum error in excess of 15% in the testing set. The filtered data was then used to 

train and test a network of identical architecture, and the results improved considerably, 

as seen in Table 3. 
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Table 3: Results for network after automated filter 

S/N 

2 

3 

9 

10 

13 

14 

18 

20 

25 

26 

Damage 

Impact 

Impact 

None 

None 

None 

None 

Lacerated 

Impact 

Lacerated 

Lacerated 

Purpose 

Train/Test 

Train/Test 

Test 

Test 

Train/Test 

Train/Test 

Train/Test 

Test 

Test 

Train/Test 

Burst Pressure 

[psig] 

1880 

2004 

2544 

2460 

2874 

2390 

2864 

1967 

2393 

2675 

Predicted Burst 

Pressure [psig] 

1885.207 

1981.855 

2576.606 

2345.234 

2871.966 

2397.802 

2859.827 

205 7.60S 

2398.023 

2605.398 

Error 

-0.276% 

1.105% 

-1.281% 

4.655% 

0.070% 

-0.346% 

0.145% 

-4.606° o 

-0.209% 

2.601% 

In this case the network was able to predict within the more restrictive ±5% error 

requirement. The maximum error in the test set was 4.655%. Although lower values 

have been obtained with trial-and-error filtering on a specimen-by-specimen basis in the 

past, it is important to note that this result was obtained from an automated filtering 

technique without human intervention. 
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4.2.2 Self-Organizing Map Analysis 

Previous research has shown that another type of neural network, the Kohonen self-

organizing map, also has performance that depends greatly on the quality of the input 

data. The SOMs used in this research should theoretically shift their weight values into 

recognizable patterns that reflect the failure mechanisms resident within a given material. 

First, a SOM with a matrix of 20x20 weights was used on the composite specimens, as 

seen in Figure 18. 

Freq. Estimates SOM Weights 

Figure 18: Frequency estimates and values of SOM weights 

The frequency estimates (of the weight values) and the distribution of the weight values 

themselves show that no shifting of the weights from their randomly initialized values 

has taken place. In this case, the network was unable to do its job because the data were 

too noisy. 
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Figure 19: Frequency estimates and SOM weight values- filtered data 

Figure 19 shows the results of the same SOM applied to the filtered data. Here the 

weights have shifted to show two major failure mechanisms, with what appears to be two 

smaller mechanisms as well. Because four mechanisms were expected, another SOM 

with a weight matrix of 1x5 (having a total of 5 possible outcomes) was run on the 

filtered data seen in Figure 20. 

Figure 20: Frequency estimates and SOM weights for 1x5 size 

Figure 20 shows a weight distribution that makes it hard to determine the number of 

mechanisms, but the frequency estimates reveal that there are four large weight groupings 
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and one extremely small one. This can be attributed to the main four failure mechanisms 

in the composite and a small amount of remaining noise. 

The same 20x20 SOM that was initially applied to the COPV data was then applied to the 

metallic specimen data. Results of using raw data from Specimen 001 are shown in 

Figure 21. 

Figure 21: Frequency estimates and SOM weights for 7075-001, unfiltered 

In this instance, the network was able to change the weights for the unfiltered data, but 

the grouping that occurred seems to suggest one large failure mechanism where two are 

expected. It was hypothesized that noise was obscuring the true nature of the data and 

therefore the filtered version of the data was run in the same network. These results are 

shown in Figure 22. 
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Figure 22: Frequency estimates and SOM weights for 7075-001, filtered 

In Figure 22 it is easy to observe the effects of filtering on the data -- the network was 

able to reveal two obvious failure mechanism induced groupings in the weights, as 

expected, plus what appear to be two less frequently occurring mechanisms. 

4.3 Additional Data Set Comparisons 

The previous section discussed a number of validation methods, citing COPV Specimens 

002 and 009 as well as metallic Specimens 001 and 003 for example purposes (all COPV 

specimens were used in the backpropagation neural network comparison). 

This section will offer additional side-by-side data set comparisons for each specimen 

type. In the interest of keeping this section to a reasonable length, two data sets from 

each type were selected at random. All of the remaining data sets are contained in 

Appendices B and C. 
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4.3.1 COPV Specimen 003 

COPV Specimen 003 exhibited several strong frequency components near 75kHz as well 

as the expected strong components between 125kHz and 150kHz, the favored range of 

the transducer. 
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Figure 23: Frequency distribution of COPV-003 data 
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Figure 24: Duration vs. counts for COPV-003 

The duration vs. counts plot (Figure 24) as well as the comparative amplitude histogram 

(Figure 25) shows significant reduction in data due to the filtering. The original 

amplitude histogram in Figure 25 appears to have a single large failure mode. 
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Figure 25: Amplitude histograms for filtered and raw data, COPV-003 
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Figure 26: Filtered amplitude histogram for COPV-003 

Figure 26 shows several well-defined failure mechanisms, including a large mechanism 

at 62dB and smaller mechanisms with peaks near 69dB, 78dB, 85dB and 90dB. 
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Side-by-side comparison of the unfiltered and filtered 20x20 SOM data for COPV-003 in 

Figure 27 shows an obvious improvement in data quality and structure for the filtered 

data. The unfiltered data would not shift the SOM weights from their initial values, while 

the filtered data shows two lar^e failure mechanisms and several smaller ones. 

Freq. Estimates SOM Weights 

Figure 27: Unfiltered (top) and filtered (bottom) COPV-003 data using a 20x20 SOM 
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4.3.2 COPV Specimen 013 

COPV Specimen 013 showed several frequency components in the range 125kHz-

150kHz and appears to have approximately even spacing of the strong components in 

both the higher and lower frequency ranges. 
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Figure 28: Frequency distribution of COPV-013 data 
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Figure 29: Duration vs. counts for COPV-013 

The duration vs. counts plot seen in Figure 29 shows that the filtering technique has 

isolated a number of frequencies from a great deal of low level noise. The comparative 

amplitude histogram, (Figure 30) once again shows a significant reduction in data. The 

raw amplitude histogram in Figure 30, like most of the COPV specimens, displays what 

seems to be a single large failure mode. 
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Figure 30: Amplitude histograms for filtered and raw data, COPV-013 
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Figure 31: Final amplitude histogram for COPV-013 

Figure 31 once again reveals that the specimen had several failure modes instead of the 

one large mode perceived without filtering. COPV-013 appears to exhibit separate 

modes at 62dB, 69dB, 75dB, 80-85dB, and 92dB. 

50 



Side-by-side comparison of the 20x20 SOM data for COPV-013 shows another major 

improvement in data structure. The SOM was again unable to shift the initial weights 

unless the filtering technique had been applied. The filtered SOM clearly shows weights 

shifted to 2 major groupings and 3 minor ones. 

Figure 32: Unfiltered (top) and filtered (bottom) COPV-013 20x20 SOM 

4.3.3 7075 Specimen 007 

From Figure 33, 7075 Specimen 007 appeared to have approximately even spacing of 

strong components in mostly lower frequency ranges. 

51 



Frequency Distribution of Original Data 

5 10 
Frequency(Hz) 

x10 

Figure 33: Frequency distribution of 7075-007 data 

52 



2.5 
x10" Duration vs. Counts for Filtered and Raw Data 

CO 

§ 1.5 
CD 
CO 
O 

2 1 
3 

Q 

0.5 

,fc£ I 

Raw Data 
Filtered Data 

2000 4000 6000 8000 
Counts 

10000 12000 14000 

Figure 34: Duration vs. counts for 7075-007 

The duration vs. counts plot seen in Figure 34 shows that the filter has eliminated 

approximately two-thirds of the lower frequency range data. Figure 35 once again shows 

this significant reduction in data as well as the range within which it occurs. The raw 

amplitude histogram in Figure 35, displays a single large mode that was mostly 

comprised of this low level, low frequency range noise. 
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Figure 35: Amplitude histograms for filtered and raw data, 7075-007 
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Figure 36: Final amplitude histogram for 7075-007 

Figure 36 shows that Specimen 007 had several failure modes obscured by noise, 

including two major modes at 50dB and 70dB, as well as some significant occurrences at 
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higher amplitudes. Side-by-side comparison of the 20x20 SOM data for 7075-007 shows 

significant improvement in data structure. The SOM was unable to shift the initial 

weights before the filtering technique had been applied. The filtered SOM clearly shows 

weights shifted to 2 major groupings. 

Freq. Estimates SOM Weights 

Figure 37: Unfiltered (top) and filtered (bottom) 7075-007 20x20 SOM 
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4.3.4 7075 Specimen Oil 

7075 Specimen 011 had most of its data, as well as its most prominent frequencies, at low 

frequency ranges between 60 and 120 kHz, as seen in Figure 38. 
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Figure 38: Frequency distribution of 7075-011 data 
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Figure 39: Duration vs. counts for 7075-011 

The duration vs. counts plot seen in Figure 39 shows that the filter has deemed 

approximately half of the data above and below the average frequency to be noise. 

Although a large reduction was not accomplished in this case, the following plots will 

show that significant improvement had been made to the structure. Figure 40 shows a 

very significant amount of noise below 45dB in the unfiltered data. 
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Figure 40: Amplitude histograms for filtered and raw data, 7075-011 
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Figure 41: Final amplitude histogram for 7075-011 

Figure 41 shows that Specimen 011 had multiple modes that were not discernible from 

the noise until the data had been filtered. Two major modes at 50dB and 65dB became 
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apparent in the final amplitude histogram. Comparison of the 20x20 SOM data for 7075-

011 (Figure 42) shows that although the network could run with the original data, the 

SOM was only able to shift the weights all the way to a value of -1, leaving very little 

structure in the network before the filtering technique had been applied. The filtered 

SOM was able to shift weights into two major and one minor grouping. 

Freq. Estimates SOM Weights 

Figure 42: Unfiltered (top) and filtered (bottom) 7075-011 20x20 SOM 
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5.0 CONCLUSIONS 

At this time, a number of conclusions can be drawn about the acoustic emission filtering 

technique and its effectiveness The first conclusion is that the technique appears to be a 

valid method for reduction of acoustic emission data The filter was able to reduce the 

data set by at least an oider of magnitude in every case, and this significant reduction in 

data without a loss of defining characteristics can be a saver of both storage space and 

computing power None of the fiequency components encountered after filtering 

exceeded 350kHz, so it is reasonable to conclude that EMI has successfully been 

removed Also, because a large majority of the data points removed by the filtering 

technique were diffuse over low frequency ranges, it can be concluded that the technique 

is also effective at removing mechanical noise 

Secondly, as mentioned before, the defining characteristics of the failuie mechanisms 

become more evident with a reduced data set The filter removes electromagnetic and 

mechanical noise, as well as multiple-hit data Elimination of these common types of 

noise leave a clearly defined signal extracted from the data, which then allows for easy 

visual inspection or mathematical and statistical analysis of the acoustic emission data 
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6.0 RECCOMMENDATIONS 

Given that an effective filtering method exists that can be computerized, it is feasible to 

use it in a wide range of applications Real-time monitoring systems would be able to 

cycle through collected data and reduce it for more effective analysis Proof and ultimate 

strength testing involving acoustic emission could take much less time if the data were 

quickly reduced yet still earned a representative AE signal New handheld acoustic 

emission units gaining popularity in the field could be made more powerful with the 

addition of a fast, smart filter that requires minimal intervention by an untrained operator 

The key to obtaining such goals is further validation of this filtering technique on a wide 

variety of specimens Use on different materials and geometries would provide many 

different cases on which the use of the technique could be confirmed A database of ideal 

settings for the software for different setups should be compiled and made available to 

future users 
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APPENDIX A: MATLAB CODE 

%Import *.txt file into workspace as an 8 column array named "data" 
%The array headers are as follows: 
%point=data(:,l); press=data(:,2); ch=data(:,3); rise=data(:,4); 
%counts=data(:,5); energy=data(:,6); dur=data(:,7); amp=data(:,8) 

%composite specimen default 
% 2% frequency extraction range, 
% 700Hz frequencyrange 
% 10 frequencies 

%metal specimen default 
% 4% frequency extraction range, 
% 500Hz frequencyrange 
% 10 frequencies 

datacount=length(data); 
data(:,9)=0; 
data(:,9)=data(:,5)./(data(:,7)/1000000); % conversion to Hz (frequency) 
data(:,10)=l: 1 :datacount; 

%Set bounds for "obvious" frequency filter... 
initlb=50000; %approx top of auditory range 
initub=2000000; %2 mHz 

frequencyrange=700; % set frequency range for distributions 

freqstofind=10; % set number of frequencies to find 

count= 1; 
newdatacount=l; 
newdata=zeros( 1,10); 
highfreq=0; 
%check to see if C/D is within the range, remove zero energy hits, read 
%channel 1 

%remember to store highest frequency 
while count <= datacount 

if data(count,9) > initlb 
if data(count,9) < initub 

if data(count,6) > 0 
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ifdata(count,7)< 100000 
if data(count,3)== 1 
newdata(newdatacount,:)=data(count,:); %new data row 
newdatacount=newdatacount+1; %increment counter 
newdata(newdatacount,:)=zeros; % write zeros to next 

if data(count,9)>highfreq 
highfreq=data(count,9); %store highest freq 

end 
end 

end 
end 

end 
end 
count=count+l; 

end 

%show fundamental frequency distribution in bins with size determined by 
%frequencyrange 

bins=fix(highfreq/frequencyrange); 
figure(l); 
hold on 
hist(newdata(:,9),bins); 
axis tight 
xlabel(Trequency (Hz)') 
ylabel('Frequency of Occurence') 
title(Trequency Distribution of Original Data') 

%extract unsorted frequency histogram 
unsortedfreqhist=hist(newdata(:,9),bins); 
x = l ; 
while x <=length(unsortedfreqhist) 

unsortedfrequencies(x, 1 )=unsortedfreqhist(x); 
unsortedfrequencies(x,2)=x*frequencyrange; 

x=x+l; 
end 

frequencies=flipud(sortrows(unsortedfrequencies,l)); 

maxhits = frequencies( l ,2); 
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x = l ; 

while x <= freqstofind 
fundfreq(x)=frequencies(x,2); 
x=x+l; 
end 

% % % % % % % % % % % % % % % o / 0 

%%%%%%%%%%%%%%% OK, now we analyze 2% in either direction of the 
maxfreqs 
% % % % % % % % % % % % % % % % 

%isolate fundamental frequencies 
fundcount= 1; 
finaldatacount= 1; 
finaldata=zeros( 1,10); 

while fundcount <=length(fundfreq) 

lb=fundfreq(fundcount)-(highfreq/50); 
ub=fundfreq( fundcount )+(highfreq/50); 

count=l; 
while count <= length(newdata) 

if newdata(count,9) > lb 
if newdata(count,9) < ub 

finaldata(finaldatacount,:) = newdata(count,:); 
finaldatacount=finaldatacount+1; 

end 
end 

count=count+l; 
end 

fundcount=fundcount+l; 
end 

count= 1; 
cleancount=l; 
while count <= length(finaldata) 

if finaldata(count, 1) > 0 
cleandata(cleancount,:)=finaldata(count, :); 
cleancount=cleancount+l; 

end 
count=count+l; 
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end 

%%%%%%%%%%%%%%%o/o%%o/o%%%%%%%0/o%%%%%%%0/o%%%%0o0/o%0/o 
%% 

% make D v C plot 
%%%%%%%%%%%%%%%%o/0»/0o/0o/0o/0«/X/0%%%%%%%%%%%%%%%%%%% 
%% 
figure(2); 
plot(data(:,5),data(:,7),' r', 'MarkerSize', 1); 
hold all 
plot(cleandata(:,5),cleandata(:,7), 'o b', 'MarkerSize', 2); 
legend('Raw Data','Filtered Data') 
xlabel('Counts') 
ylabel('Duration( microseconds)') 
titleCDuration vs. Counts for Filtered and Raw Data') 

% make comparative amplitude histograms— 
figure(3); 
hold on 
hist(data(:,8),60:100) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r') 
hist(cleandata(:,8),60:100) 
legend('Raw Data','Filtered Data') 
xlabel('Amplitude (dB)') 
ylabel('Frequency of Occurence') 
title('Amplitude Histogram for Filtered and Raw Data') 

% make final amplitude histogram 
figure(4); 
hold on 
set(h,*FaceColor','r') 
hist(cleandata(:,8),60:100) 
legend('Filtered Data') 
xlabel('Amplitude (dB)') 
ylabel('Frequency of Occurence') 
title('Amplitude Histogram for Filtered Data') 
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% % % % % % % % % % % % % % % % o 

% % % % % % % % % % % % % % 

%%%%%%%%VoVo%%%%Vo%%%% 
%%%%%%%%%%%%%%%% 

%%% calculate curve fitting moments 

histogram=hist(cleandata(:,8),41); 

distribution=transpose(histogram); 

%break; 

%compute mu, the mean% 
mu=mean( distribution) 

%compute sigma, the standard deviation% 
sigma=std(distribution) 

%compute m2, the second moment of the distribution 
m2=sigmaA2 

% this will give you the number of rows: 
n = size(distribution,l); 

m31oop=0; m3temp=0; 
%compute m3, the third moment of the distribution 
for i=l:n 

m3temp=(distribution(i)-mu)A3; 
m31oop=m31oop+m3temp; 

end 
m3=m31oop*(l/n) 

m41oop=0; m4temp=0; 
%compute m4, the fourth moment of the distribution 
for i=l:n 

m4temp=(distribution(i)-mu)A4; 
m41oop=m41oop+m4temp; 

end 
m4=m41oop*(l/n) 

%compute betal (relative skewness squared) 
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betal=(m3/((m2)A(3/2)))A2 

%compute beta2 (relative kurtosis) 
beta2=m4/((m2)A2) 
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APPENDIX B: VISUAL COMPARISON DATA 
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7075 Specimen 009 Frequency Distribution of Original Data 
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7075 Specimen 010 Frequency Distribution of Onginal Data 

Duration vs. Counts for Filtered and Raw Data 
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7075 Specimen Oil Frequency Distribution of Original Data 
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APPENDIX C: SELF-ORGANIZING MAP DATA 
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APPENDIX D: BACKPROPAGATION NEURAL NETWORK THEORY 

The mathematical theory behind the application of backpropagation neural networks 

(BPNNs) is complicated, but to gain a basic understanding, a piece-by-piece look at the 

BPNNs used in this research will be explored. BPNNs are an n-dimensional vector-based 

mathematical network that is comprised of three groupings of nodes (neurons). The first 

grouping is referred to as the "input layer", the second as the "hidden layer" (of which 

there may be more than one), and the third is the "output layer". 

The input layer in this research consisted of a 44x1 dimensional vector comprised of the 

following entries: (1) a three-variable categorical variable set, (arranged as 1,0,0 for 

undamaged COPVs, 0,1,0 for impact damaged COPVs, and 0,0,1 for lacerated COPV 

specimens) and (2) the 41 integer variables representing the frequency of event 

occurrence at amplitudes from 60dB to lOOdB that occurred during each acoustic 

emission test. 

The number of neurons in the hidden, or mapping layer (this network used a single 

hidden layer - a common occurrence) was 11. The number of nodes in the hidden layer 

correlates directly to the closeness of fit for the network training data. A low number of 

neurons would not fit the testing data well, while a high number of neurons would fit the 

data too closely, resulting in the network not predicting well when it encounters the test 

data. A goal in constructing and training a prediction-type BPNN is to change the 
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number of neurons in the hidden layer until the test data and tiaining data error lex els are 

within the same order of magnitude At this point the network has been properly trained 

Another approach involves matching the number of expected mechanisms in the material 

with a set of two neuions each It has been shown from a geometric perspective that two 

neurons are required to model the humps in the amplitude histogram data One can 

visualize the way this works by drawing a complex curve representing the histogram 

values and then attempting to fit it with a series of straight lines onented at different 

locations and angles In this example, each straight line correlates to a hidden layer 

neuron 

The final layer is the output layer, which consisted of a single value that is dependent on 

the total of all of the mathematical interactions in the network - in this research, the 

output value was burst pressure (in psi) While the network is training, the weight of the 

connections between the input layer nodes and the hidden layer nodes as well as the 

hidden layer nodes and the output node are continuously updated and shifted to produce a 

result that is further from the initial value and closer to the known (as tested) output 

value When the network meets the convergence criterion set by the user, it is said that it 

has successfully been trained to recognize the pattern of inputs and the appropriate 

output 

At this point the network user runs one more network iteration — this time with a set of 

inputs that is unfamiliar to the network Based on its newly acquired ability to recognize 
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patterns in the similarly structured amplitude histogram data from training, the network 

produces a predicted burst pressure as the output. 
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APPENDIX E: SELF-ORGANIZING MAP THEORY 

1 his brief tutorial aims to teach the reader the self-organizing map and the application of 

SOMs to a simple (hand calculated) problem 

Teuvo Kohonen developed the SOM in the early 80s One of his first applications of a 

SOM was to convert spoken words into computerized text The SOM is a dual layer 

(input layer and PE layer), unsupervised, competitive network The network learns by 

selectively allowing PEs to learn by minimizing the linear geometric distance (Euclidean 

distance) between the input and the weight vectors. The determination of which PEs 

learn is controlled by a user-set neighborhood factor. Additionally, the neighborhood 

factor allows any PEs within that neighborhood of the winning PE to learn 

SOM networks are trained using an iterative process Starting with an initially-random 

set of weights, the algorithm gradually adjusts them to reflect the clustering of the 

training data The Kohonen algorithm iterates a given number of epochs, on each epoch 

executing each training case and selecting the winning PE, then adjusting its weights and 

the weights of the PEs in the winner s neighborhood 

Since the SOM model does not have an output it is a unique system. At a cursory glance 

it might appear to be of little value, however, that assessment is incorrect. SOM 

networks learn the stmcture of the data, and are therefore excellent at pattern recognition 

and exploratory data analysis 
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It is possible to view the results by outputting the n-dimensional weight data onto a two 

dimensional space. However, the detail in the data is lost and cannot be recovered in 2D. 

For example, a 3D image can be viewed on a 2D surface, but only the information about 

the visible plane is available. Therefore, using the same logic, a SOM can display n-

dimensional data on a 2D plane, where clustering and classification will be evident, 

though complex inferences about the data cannot be made unless it is compared to the 

original data set. 

Input 

Calculate distance 
to weight 

Yes 
Least distance PE? 

No 

Within neighborhood of least 
distance PE? 

Yes 
- • • i H 

No 

Keep current 
weight value 

Training over? 
No 

i Yes 

Output 

Figure 43: SOM algorithm flow 
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Output (XY) 

Kohonen Layer 

Figure 44: Kohonen architecture with forced X-Y output 

In order to better understand how the network actually works, it is important to do an 

example that can be worked out by hand. The example in this section can be done with 

simple hand calculations in a few minutes. Consider the following Kohonen self-

organizing network: 

• 6 Neurons 

• Input vector: Xinput=[0.1QQ 0.900 0.200] 

• Learning coefficient: oc = 0.15 

• Initial weights: 

Wij = 

0.300 0.600 0.100 0.400 0.800 0.100 

0.700 0.100 0.400 0.300 0.900 0.800 

0.100 0.200 0.700 0.600 0.100 0.200 

These values of Wy were randomly generated and rounded to the nearest tenth for ease of 

hand manipulation. The first step in the process is to determine the Euclidean distances 

between the input PEs and the individual neurons in the computing layer. 
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D=MW-X y-

D(l) = V K - X , ) 2 + ( W 2 ] - X 2 ) 2 + ( > V 3 I - X 3 ) 2 = 0.458 

D(2) = J(Wl2 - x, )2 + (w22 - x2 )2 + (w32 - x3 )
2 = 0.806 

£(3) = V K -x,)2 +(w23 -x2)2 +(wJ3 -x,)2 = 0.927 

£(4) = V(w,4 - *> )2 + (w24 - x2 )
2 + (w34 - x3 )

2 = 0.781 

Z)(5) = 7(w,5 -x,)2 +(w25 -x2)2 +(w35 -x3)2 =0.141 

D(6) = V(w16 - x, )2 + (w26 - x2 f + (w36 - x3 )
2 = 0.608 

Equation 1: Calculating Euclidean distances 

In this case, D(5) has the distance closest to zero. With a neighborhood factor of 1, that 

means that the winning neuron and the neighbors within a range of 1 neuron, D(4) and 

D(6), will undergo the learning process. 

The neurons that undergo learning will have their weights updated with the following 

equation: 

W9lm)=Wg{M)+aiX,-WIJ(M)) 

Equation 2: SOM weight learning 

Here a is the learning coefficient, a quantity that determines how fast the learning 
neurons will approach the quantities we are sorting for. A high a value can cause 
overshoot, like an underdamped oscillator, while a low a value may cause very slow 
learning, like an overdamped oscillator. 
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The calculations of the new network weights yield: 

W 
//- UJI 

0.300 0.600 0.100 0.550 0.750 0.400 

0.700 0.100 0.400 0.600 0 900 0.850 

0.100 0.200 0.700 0.400 0 150 0.200 

The values in light red are the weights connected to the winning neuron. The dark-red 

values are the neighbors. 

Notice that after running the data through the network, the weights of the winning and 

neighboring PEs have "trained" or "self-organized" to be closer to the input vector's 

values. After five iterations, the weights have shifted to the following values: 

W I/-I1R5 

0.300 0.600 0.100 0.650 0.720 0.600 

0.700 0.100 0.400 0.800 0.900 0.880 

0.100 0.200 0.700 0.260 0.180 0.200 

After 10 Iterations: 

W n-ITRW 

After 20 Iterations: 

0.300 0.600 0.100 0.680 0.710 0.660 

0.700 0.100 0.400 0.860 0.900 0.890 

0.100 0.200 0.700 0.230 0.190 0.200 

w, U-ITR2U 

"0.300 0.600 0.100 0.700 0.700 0.700 

0.700 0.100 0.400 0.900 0.900 0.900 

0.100 0.200 0.700 0.200 0.200 0.200 
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It becomes evident that W,4, W15, and W16 have shifted toward 0.700. W24, W25, and W26 

have shifted toward 0.900, and W34, W35, and W36 have shifted toward 0.200. If multiple 

input vectors had been used to train the network, weights would have shifted toward 

clusters of the input values. Essentially, the SOM would be finding correlations between 

the input vectors and organizing them together in the network weights. 
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APPENDIX F: NEURALWORKS SOFTWARE SETUP 

SELF-ORGANIZING MAP SETUP: 

— —---»•«-• !»_». f _»«_•• KJi t j f j 

Inputs |4 

8 Rows)20 

UCols |20 

Hidden |0 

Output j l 

LCoef 

[0 060 

j >J:5U 

|0 150 

Mapping Layers 

ttS 0 M steps 168409 Learn R ule T ransfer 

Beta 0 000 

Gamma j 1.000 

LCoef Ratio 10 500 

Trans. Pt. 4000 
_J i 

ExtDBD 
QuickProp 
M axProp 
Delta-Bar-Delta 

Sigmoid 
DNNA 
Sine 

W Coord Layer W MinMax Table 

W Output Network [• Interpolate 

Neighborhood: 

\ Diamond 

1 Square 

(• Alternating 

F Start Width 

End Width 

Wrap Around: 

r Horiz T Vert. 

W Connect Prior 

f^ Connect Bias 

r~ Linear Output 

r SoftMax Output 

|22803 Epoch Set Epoch From File i OK Cancel 

I/O Files 

Learn Browse... i 
|10NORM-CEDA.TXT 

Recall/Test Browse... 

I10NORM-CEDA.TXT 

Help 

Figure 45: NeuralWorks setup screen for SOM network 

Figure 45 shows the setup screen for the SOM networks utilized in this research. Four 

inputs (counts, energy, duration, and amplitude parameters) were used in a 20x20 

network in this case. There is no hidden layer, and the output is arbitrary. SOM steps 

and epoch are determined automatically by the software based on specimen data file size. 

Neighborhood size is 2 before transition and 1 after transition. Transition point was set to 
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4000 because many of the data files were very small. A normalized cumulative delta 

learning rule was used with a hyperbolic tangent transfer function. 

BACKPROPAGATION SETUP: 

InstaNet / Back Propagation 
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Figure 46: NeuralWorks setup screen for backpropagation network 

Figure 46 shows the setup screen for the backpropagation networks utilized in this 

research. Fourty-four inputs (one for each amplitude value and 3 categorical variables) 

were used with an 11 neuron hidden layer (5 expected failure mechanisms) and the output 

is a single neuron representing burst pressure. Epoch size is determined automatically by 

the software based on specimen data file size. A normalized cumulative delta learning 

rule was used with a hyperbolic tangent transfer function. All of the other values 
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(momentum, transition point, learning coefficient, F' offset, etc) were set to their default 

values, which had been shown to work well in previous research [Karl, Dion, Spivey, 

2006]. 
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