
Theses - Daytona Beach Dissertations and Theses

Spring 2006

Dynamics of Nonlinear Diffusion Processes Dynamics of Nonlinear Diffusion Processes

Dustin A. Sipka
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/db-theses

 Part of the Aerospace Engineering Commons, and the Physics Commons

Scholarly Commons Citation Scholarly Commons Citation
Sipka, Dustin A., "Dynamics of Nonlinear Diffusion Processes" (2006). Theses - Daytona Beach. 186.
https://commons.erau.edu/db-theses/186

This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at
ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an
authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/db-theses
https://commons.erau.edu/dissertation-theses
https://commons.erau.edu/db-theses?utm_source=commons.erau.edu%2Fdb-theses%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fdb-theses%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=commons.erau.edu%2Fdb-theses%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/db-theses/186?utm_source=commons.erau.edu%2Fdb-theses%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

DYNAMICS OF NONLINEAR DIFFUSION
PROCESSES

By

Dustin A. Sipka

A thesis Submitted to the
Physical Sciences Department

In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Space Science

Embry-Riddle Aeronautical University
Daytona Beach, Florida

Spring 2006

UMI Number: EP32095

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform EP32095

Copyright 2011 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Copyright by Dustin Andrew Sipka 2006
All Rights Reserved

DYNAMICS OF NONLINEAR DIFFUSION
PROCESSES

by

Dustin A. Sipka

This thesis was prepared under the direction of the candidate's thesis committee chair, Dr.

M. Anthony Reynolds, Department of Physical Sciences, and has been approved by the

members of his thesis committee. It was submitted to the Department of Physical

Sciences and was accepted in partial fulfillment of the requirements for the

Degree of

Master of Science in Space Science

THESIS COMMITTEE:

Dr. M. Anthony p(eyn<£lds, Cfiair

Dr. J^ehm^t Sozeh, Member

/r./JamesTVanliss, Member

</%Z
Dr. Peter Erdman, MSSPS Graduate Program Coordinator

^vgro^epartment^Chair, Physical Sciences

Dr. John Watret, Associate Provost ff Date

in

ACKNOWLEDGEMENTS

To my family and friends. Without all of you I would not be the person I am

today. A special thanks goes to my parents who instilled in me the values of

perseverance and hard work without which I would not have been able to complete this

endeavor.

To my wonderful fiancee, Shari Lynn DiSalvo, who has shown me another side of

life that I have never known. Your support and encouragement has been tremendous.

Thank you for taking this journey with me.

iv

ABSTRACT

Author: Dustin A. Sipka

Title: Dynamics of Nonlinear Diffusion Processes

Institution: Embry-Riddle Aeronautical University

Degree: Master of Science in Space Science

Year: 2006

The purpose of this thesis is to analyze nonlinear diffusion processes. In

particular, some of the results arrived at by Newman and Sagan in their 1981 paper

"Galactic Civilizations: Population Dynamics and Interstellar Diffusion," will be

reproduced by different means. First, a thorough analysis of the linear diffusion equation

will be performed in order to test a numerical algorithm that can solve the nonlinear

diffusion equation and look at the processes of interest with sufficient accuracy. Once

the algorithm is tested and shows good resolution it is used to solve the nonlinear

equation. The post processing is then done to compare the numerical results with the

analytical solution and then they are related to the results arrived at by Newman and

Sagan. More precisely, the timescales over which these processes take place are of great

interest. A study of the dynamics of these diffusion processes that take place will bring

about a better understanding of the nature of nonlinear diffusion and some of its

applications.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

1. Introduction 1

1.1 Synopsis 5

2. Background 10

2.1 Diffusion 10

2.2 Nonlinear Science 11

2.3 Plasmas 13

2.4 Population Expansion 14

3. The Linear Diffusion Equation 16

3.1 Modeling the Linear Diffusion Equation 16

3.2 Developing the Code 20

3.3 LU Decomposition 24

3.4 Crank-Nicolson Method 27

3.5 Comparison of the Numerical Results to the Analytic Result 32

4. The Nonlinear Diffusion Equation 42

4.1 Development of the Nonlinear Diffusion Equation 42

4.2 Time Linearization 44

vi

4.3 Steady-State 46

4.4 Specific Condition of Interest 49

4.5 Linear Regime of Nonlinear Equation 50

4.5.1 Steady-State of Selected Initial Condition 50

4.6 Nonlinear Regime 52

4.6.1 Derivation of Theoretical Timescale of Nonlinear Equation 52

4.6.2 Results of the Numerical Analysis of the Nonlinear Diffusion Equation. 57

4.6.3 Relation to Interstellar Population Expansion 62

5. Conclusions 66

References 69

Appendix A: Additional Derivations 71

A. 1 Calculating the Stability of the Explicit Method (von Neumann stability

analysis) 71

A.2 Adding a Source Term 72

Appendix B: Code 76

B.l ConstantSourceGoodTimeNonlinearDiffusion.m 76

B.2 FinalAlgorithmNonlinear.m 79

B.3 FinalCrankNicolsonAlgorithmNonlinear.m 83

B.4 GoodDiffusion.m 90

B.5 GoodTimeNonlinearDiffusion.m 95

B.6 HomoNonlinearDiffusion.m 98

B.7 InitialConditionoflnterest.m 99

B.8 SourceGoodTimeNonlinearDiffusion.m 101

vii

B.9 TimeConstantsNonlinear.m 105

B.10 VaryingParameter.m 107

B.ll VaryingParameter2.m 112

B.12 WavefrontVelocity.m 116

viii

LIST OF TABLES

Table 1. Comparison of Lowest Absolute RMS Error for Crank-Nicolson Method 31

ix

LIST OF FIGURES

Figure 1. Steady-State Solutions to the Nonlinear Diffusion Equation 2

Figure 2. Initial Conditions of Interest 3

Figure 3. Value of Parameter that Yields Lowest Absolute RMS Error 29

Figure 4. Initial Waveform used to Verify Code 34

Figure 5. Time Lapse of Initial Waveform 35

Figure 6. Decay of Amplitudes of Different Modes of Initial Waveform 36

Figure 7. Absolute Error Relative to Position 37

Figure 8. RMS Error Comparison between Numerical and Exact Solutions 38

Figure 9. Comparison of Amplitudes of Selected Order Mode 39

Figure 10. Absolute Error between Amplitudes of Numerical and Exact Solutions 40

Figure 11. Absolute Error between Amplitudes of Numerical and Exact Solutions for

Smaller Time-step 41

Figure 12. Steady-State Solutions for Various Powers of Nonlinearity 48

Figure 13. Initial Condition with n = 0 50

Figure 14. Theoretical Prediction of Timescale Compared to Actual Values 58

Figure 15. Position of Profile when Timescale is Calculated 59

Figure 16. Time History of Mode Amplitudes 60

Figure 17. Time History of Mode Amplitudes 61

Figure 18. Self-Similar Solutions of the Expanding Wavefront (n = 4) 62

Figure 19. Position vs. Time Graph in Order to see Velocity of Expansion Wavefront. 63

Figure 20. Steady-State Waveform for n = 1 74

x

Figure 21. Relative Error between Numerical and Exact Steady-State Solutions 75

XI

1. Introduction

The easiest way to teach a topic in physics is to make ideal assumptions. Certain

parameters are ignored for the sake of pure physics. Ignoring friction and looking at

linear systems are just two examples of how society teaches physics topics to students.

While this brings ease in understanding, it is incorrect. Nature is not ideal; it is very

chaotic. This brings in the topic of nonlinearity. Nature can be very nonlinear.

Phenomena in Nature are very complex and do not always occur in nice straight-line

patterns. Heat transfer, weather, avalanches, and the interaction with the Earth-Space

environment are examples of very nonlinear phenomena. One phenomenon that is of

particular interest to me is nonlinear diffusion. I propose to investigate nonlinear

diffusion processes, in general, and specifically the timescales over which these processes

occur.

The problem will be addressed by means of both analytic approximations as well as

numerical code. First, an analytical solution to the linear diffusion equation will be

derived to give theoretical predictions of how the numerical code should behave. These

analytic predictions will allow a good comparison to the numerical code. A numerical

code that solves the general diffusion equation for the linear case is developed and the

results are compared to the analytic predictions. The main focus is to see if certain initial

1

conditions behave as desired when they are modeled in the computer. The condition of

interest is related to the steady-state of the nonlinear diffusion equation.

For example, consider a metal bar of unit length whose ends are fixed at (scaled)

temperatures 0 and 1, respectively. What is the steady-state temperature profile? Of

course, the well-known answer is that it is linear. However, if the thermal diffusion

coefficient is not constant, the temperature diffusion equation becomes nonlinear. The

form assumed in this thesis is

dt dx\ dx

Where n is a nonlinear parameter.

Steady State Nonlinear Diffusion Equation for Varying Powers

Figure 1. Steady-State Solutions to the Nonlinear Diffusion Equation.

2

(1)

In Figure 1 I show the temperature profiles for various values of n. The case n = 0

reproduces the well-known linear result, but the larger the value of |w|, the more

nonlinear the steady-state temperature profile becomes. In addition to these unusual

steady-state profiles, the time history of the approach to equilibrium will be studied. That

is, it is of interest to see how long these profiles take to reach equilibrium and the

timescale at which they approach their respective final states.

Initial Conditions of Interest

Figure 2. Initial Conditions of Interest.

Of course, one hallmark of nonlinear dynamics is a sensitivity to initial conditions. In the

present case, the route to the steady-state profile can be highly dependent on the initial

profile. Because one of the physical motivations for this work is to investigate the

propagation of a species outward from an initially localized region (as in the case of

3

humans expanding into the galaxy [Newman and Sagan, 1981]), the initial profile is

shown in Figure 2. Of course, since the dependent variable in Equation (1) can be

interpreted as population density as well as thermal energy density (i.e., temperature),

Equation (1) holds for the latter case.

Because Equation (1) is difficult to solve exactly, a linear approximation of the nonlinear

equation will be solved to obtain an approximate analytic solution, which will give

theoretical predictions of the timescale over which the diffusion processes occur. To

correctly interpret this linear approximation, we first solve the usual linear diffusion

equation in great detail, and ultimately apply those results to our approximate solution to

the nonlinear equation. After the linear case, our analysis of the nonlinear diffusion

equation will investigate key features that are entirely nonlinear in character and have no

counterpart in the linear case. Once this is done the numerical results will be compared

to the analytical solution of the equation where necessary. A major goal is to compare

the numerical results with the results arrived at by Newman and Sagan (1981) in their

paper on intergalactic population expansion.

A study of the dynamics of the diffusion processes that take place will bring about a

better understanding of the nonlinear nature of diffusion and its applications.

4

1.1 Synopsis

Chapter 2 describes the motivation for this thesis. The topics of diffusion, nonlinear

science, plasmas, and population expansion are discussed in more detail.

Section 2.1 explains different phenomena that can be described by diffusion and

goes into mathematical detail of the underlying principles for this work.

Equation (2) becomes the basis for all the work in this thesis.

Section 2.2 points out reasons why it is important to study nonlinear phenomena.

From hurricane models and predicting the weather it is clear that

improvements need to be made on several current models. The Madden-

Julian Oscillation [Fell, 2005] is one such phenomenon for which

mathematical modeling is used in helping forecast the nonlinear behavior

of weather patterns.

Section 2.3 describes another example of an inherently nonlinear phenomenon.

This physical situation, described by Equations (6) and (7), is the

motivation for the power law dependence of the diffusion coefficient seen

in Equation (1).

Section 2.4 gives a brief explanation of factors that contribute to how fast or

when a population chooses to expand. Newman and Sagan (1981) give an

enlightening treatment of intergalactic population expansion and the

methods that will be used in this thesis are described in more detail.

5

Chapter 3 goes into detailed analysis of the linear diffusion equation (Equation 8). The

equation is solved via the method of separation of variables, and then scaled to

make the solution unitless. This scaled equation is then used to develop a

numerical code that models the behavior of this equation. The results from the

numerical code are then compared to the theoretical predictions of the exact

analytic solution before the thesis is expanded to the nonlinear case. This chapter

is only concerned with developing a numerical code, and can be skipped by the

reader who is interested only in the nonlinear results.

Section 3.1 goes through the separation of variables technique utilized to solve

Equation (8) and arrives at the exact analytic solution, Equation (18). The

process of "scaling" is then explained to set up the comparison to the

scaled equation (Equation 27) that the numerical code will model.

Section 3.2 explains the finite differencing techniques that are utilized in this

thesis to model the diffusion equation. The spatial and temporal grid is

explained along with the von Neumann stability analysis, Equation (38),

used to ensure a viable numerical solution. The section then sets up the

system of equations that will be solved via the Crank-Nicolson method.

Section 3.3 is a brief explanation of the method that is the basis for the numerical

code. This method provides a fast means to calculating the matrix inverse

which is necessary to solve the system of equations described by Equation

(41).

Section 3.4 is a different means at solving the diffusion equation. It provides an

6

average of the explicit and implicit methods explained in Section 3.2. A

brief analysis of Equation (54) is performed to see if the average chosen

by Crank and Nicolson provides the lowest error or if a different

percentage of the two methods, explicit and implicit, yield a lower error.

The results of which are shown in Figure 3.

Section 3.5 compares the numerical results to the analytic result. It provides

support for the code to be expanded to the nonlinear case. Figure 6 shows

that the modes decay according to Equation (19) and that the error in the

solution decreases when At decreases (comparison of Figure 10 and

Figure 11).

Chapter 4 provides the analysis of the nonlinear diffusion equation. It begins with the

development of Equation (58) and transforms it into a finite difference equation

that can be modeled numerically. It then goes through the time linearization of

the equation that makes all of the results easier to calculate. After that it presents

the steady-state case of the equation which is used to simulate population

expansion and the results are then analyzed.

Section 4.1 develops the nonlinear diffusion equation (Equation 58) and

transforms it into a finite difference equation that can be modeled

numerically (Equation 64).

Section 4.2 explains the tool of time linearization. This assumption (Equation

7

66) ensures that the difference in temperature from one time step to the

next is so small that it can be assumed to behave linearly. It performs a

Taylor expansion on the dependent variable T with respect to time. This

provides ease in computation.

Section 4.3 provides the steady-state solution to the nonlinear diffusion equation

(Equation 80). Several profiles are provided in Figure 12.

Section 4.4 takes the steady-state solution from Section 4.3 and allows it to

expand into open space, Figure 13.

Section 4.5 looks at the linear regime of the nonlinear equation (i.e., when n = 0).

Section 4.5.1 solves for the exact analytic solution to the initial condition

described in Section 4.4. The solution subtracts out the known

steady-state profile to allow for easier calculation of the time-

constants of interest.

Section 4.6 looks at the nonlinear regime of the nonlinear diffusion equation

(Equation 58).

Section 4.6.1 derives the theoretical prediction of the timescales, Equation

(115), that are present in the solution. This result is used as the

basis for comparison to the numerical results calculated in Section

4.6.2.

Section 4.6.2 provides the results to the analysis of the nonlinear diffusion

equation. Figure 14 shows the theoretical and numerical

calculations of the time-constants subject to the initial conditions

shown in Figure 15.

8

Section 4.6.3 relates the results calculated in Section 4.6.2 to population

expansion and relates them to the paper written by Newman and

Sagan (1981). Figure 18 shows the self-similarity that arises out of

the solution and Figure 19 shows the position versus time to allow

the reader to get a feel for the velocities of the expanding profile.

The velocities are shown to decrease with increasing nonlinearity

which is in good agreement to the results arrived at by Newman

and Sagan (1981).

9

2. Background

2.1 Diffusion

Diffusion phenomena occur widely in nature. From problems in filtration, phase

transition, biochemistry and dynamics of biological groups, diffusion is a very important

phenomenon deserving intense scrutiny. Diffusion is very prevalent in understanding the

Earth-Space environment and how it affects those on the surface. The Earth's

magnetosphere is a very complex environment and one process that drives its dynamics is

diffusion. One important diffusion process occurring in this environment is thermal

diffusion. This is described by the partial differential equation

^-4/>^l. GO
dt dx\ dx J

where D is the diffusion coefficient. Equation (2) comes from the basic continuity

equation

f + V.(?)-0 (3)

which is a statement of energy conservation and Fick's law

J = -DVT (4)

which is a linear assumption (if D is constant) for the energy flux. This doesn't apply to

all situations, but it is a simplifying assumption [Newman and Sagan, 1981]. This type of

diffusion occurs when gradients in the spatial temperature profile are small, and Equation

10

(4) describes the fact that heat energy diffuses from regions of high temperature to

regions of lower temperature. This is called linear diffusion because the unknown

function T and its partial derivatives are raised to the first power and at most one of these

appears in any one term of the equation. The diffusion coefficient, D, scales in the

following manner

£ ~ - (5)
r

where X is the "mean-free path," and r = 1/v is the time between collisions, and v is the

collision frequency.

Often, however, the diffusion occurring in nature is nonlinear, and as is shown later the

spatial-partial derivative becomes nonlinear. The time history of the temperature profile,

the velocity at which the front of the profile expands, and more specifically the timescale,

over which this occurs, is the focus of this thesis. Three different numerical methods will

be employed to explore this equation. The three methods are an explicit method, an

implicit method, and a method that is a mixture of the two known as "Crank-Nicolson".

All three of these methods have benefits and drawbacks that are useful in analyzing this

equation, but ultimately the Crank-Nicolson method will be utilized.

2.2 Nonlinear Science

In order to better understand the processes occurring in Nature it is necessary to look at

the nonlinearities existing in Nature. Several common nonlinear phenomena are weather

11

patterns, avalanches, fluid dynamics, forest fires, hurricanes and tornados, and global

warming. These phenomena affect everyday life on the surface of the planet.

Mathematical models have been developed to describe some of theses systems, but

unfortunately nature does not always comply with what the model will predict. The

Madden-Julian Oscillation [Fell, 2005], the Climatology and Persistence model, and the

Beta and Advection Model (two models used in the forecast of hurricanes [Hurricane

Alley, 2005]) are some examples of mathematical models used to help predict nonlinear

phenomena. Improvements need to be made to these models in order to fully describe

what is occurring in nature. One phenomenon of great importance is nonlinear diffusion

processes in plasmas. These processes can help explain the complex interaction of the

Earth's magnetosphere with the space environment, namely, how the magnetic field

interacts with plasmas [Smolyakov and Khabibrakhmanov, 1998]. Other important

nonlinear processes arise in population expansion. Reduction of the amount of

homozygotes in a population, the drunkard's walk, and colonial expansion in the early

United States are all examples that can be explained by a diffusion process. For the

latter, the diffusion coefficient should be decreased to simulate the difficulties of

overland travel while it should be increased to simulate the relative ease of ocean travel

to get to California [Newman and Sagan, 1981]. For population-dependent diffusion, the

coefficient can be employed to represent social and territorial influences which make

population expansion nonlinear.

12

2.3 Plasmas

Heat diffusion in plasmas is another example of an inherently nonlinear phenomenon.

This is because the diffusion coefficient is dependent on the collision frequency between

the charged particles. A collision between two charged particles is significantly different

from a collision between two hard, billiard-ball-like spheres. The Coulomb force, which

is an inverse square force (and hence long range), implies that the collision frequency

decreases as the relative velocity of the particles increases. Since temperature is simply a

measure of the random velocity, the collision frequency decreases as the temperature

increases as well. All these facts conspire to create a diffusion coefficient (parallel to any

background magnetic field) that depends on the temperature,

Inserting this into the diffusion equation results in a nonlinear partial differential equation

that cannot be solved exactly. In addition, because any background magnetic field

restricts particle motion perpendicular to that field, the diffusion coefficient in the

perpendicular direction is reduced,

D± oc T~]//l. (7)

This anisotropy and nonlinearity presents a difficult theoretical problem. Clearly, this

rich physical system deserves attention. This was the initial motivation for looking at a

nonlinear D.

13

2.4 Population Expansion

Many factors contribute to whether or not a species will expand to new territory.

Population growth, saturation of an environment, the carrying capacity of a planetary

environment, technological advances in society, how long the society is in the expansion

phase, and the sheer distance between new habitable worlds are all contributing factors to

how long it will take an expanding population to reach a new equilibrium. Several

examples already exist: the muskrat and the drunkard's walk (random motion) are two

common examples of population expansion that can be modeled by diffusion. The above

factors all contribute to the level of nonlinearity in the diffusion of a species. The goal is

to determine the timescales over which this expansion occurs and how fast the population

will reach the new equilibrium. Newman and Sagan (1981) give an adequate treatment

of interstellar population expansion and some of their results will be reproduced by

different methods throughout the course of this thesis.

In particular, the steady-state temperature profiles seen in Figure 1 are used as a basis for

an initial population distribution. The linear case can be solved for exactly and this

solution is paramount in developing a numerical code that can properly model the

nonlinearity of Equation (1). These steady-state profiles are used as a basis for the

expansion of a particular population distribution. The more nonlinear the problem gets,

the steeper the "front" of the distribution becomes. Figure 2 shows how the steady-state

profiles are going to be modeled as "expanding" out into the galaxy from some initial

region. Since we are interested in a time history of the solution, Figure 2 shows how the

14

various initial conditions now have the ability to expand out into free space. The velocity

of the "front" and how long the solution takes to approach equilibrium are going to be

compared to the exact solution of the linear case (i.e., how long does it take Figure 2 to

look like Figure 1). Of course, some simplifying assumptions will be made to make

some of the values easier to calculate. This is discussed in greater detail later in the

thesis.

15

3. The Linear Diffusion Equation

3.1 Modeling the Linear Diffusion Equation

Before expanding the analysis to the nonlinear diffusion equation, the linear equation will

be looked at first. In order to solve the linear diffusion equation it is useful to non-

dimensionalize the equation. This means to scale the equation in such a way that it

becomes dimensionless. This is due to the fact that the computer doesn't care what the

physical units of the equation are, but the numbers it has to calculate. It also allows the

solution to be expressed in terms of universal parameters.

The general diffusion equation can be solved exactly [Chen, 1984]. Starting with the

general one-dimensional linear diffusion equation

^ = Da-^, (8)
dt dx2 w

and applying Dirichlet boundary conditions, f(6) = f{L) = 0, the exact solution can be

found using the common technique of separation of variables. Here, the solution is

assumed to be of the form

f(xj)=g(x)h{t). (9)

Plugging this assumption into Equation (8) and separating variables Equation (8) takes

the form

16

h dt g dx2 '

where C is the separation constant. The solution to the temporal equation

^ = -Ch,
dt

(10)

(ID

is an exponential

h(t) = < -a (12)

while the general solution to the spatial portion of Equation (10)

d2g_-C

dx2 D g (13)

is, in the present case, most usefully expressed in terms of trigonometric functions

g(x) = A sin — X

JD J
+ B cos — X

y,D ,
(14)

However, the boundary condition f(0)=0 requires that B = 0. Also, the boundary f(L)=0

quantization condition implies

-L = nn for n - 1,2,3,.... (15)

The separation constant therefore takes on discrete allowable values:

Cn=—rn27t2 for n = 1,2,3,... (16)

Each mode of the exact solution decays exponentially with a time constant

1
(17)

The most general solution is a linear combination of all the product solutions. In other

words, it is a Fourier series.

17

f(x,i) = 'Y_iAne
 / r" sin nn — U X^

(18)

with

L2

T»=TT^ (19)

Dn n

Note that each spatial scale, i.e., each mode n, decays on a different time scale rn. In

particular, shorter wavelength structures (higher n) decay more quickly. Now that the

exact solution to the linear diffusion equation is known the next step is to scale the

equation for a numerical solution. In order to eliminate units, the solution will be
expressed in terms of dimensionless variables t and x that are defined as follows:

i = j (20)

and

x = j , (21)

Where T and X are constants that are appropriate for the problem of interest. For

example, if T = Is and X = \m then x and t are simply expressed in SI units. A more

"physical" approach is to choose "natural" length and time scales, those that are natural

for the particular system of interest.

For this analysis all spatial scales, from large to small, are of interest. So the only spatial

scale is determined by the boundary conditions. Therefore, X = L. Since all spatial

scales are of interest, from Equation (18), all temporal scales are of interest as well.

Hence, the "natural" temporal scale associated with the length scale X = L can be

obtained by forcing the dimensionless coefficients in the differential equation to be unity.

18

idf_D d2/ (2 2)
2 - 2 T dt XL
 d-

or

VJ°T)?f (23)
dx dt \L2

It follows from Equation (23) that in order for the coefficient of the derivatives to be

unity, the timescale must take on the value

]}
T = — (24)

D

or

T = n \ , (25)

and the dimensionless linear diffusion equation becomes

df _ d2f

d't dx2 '

n=\

where

t _tT _ tn• TX _ - 2 2

(26)

So expressing the exact solution in terms of the new, dimensionless variables,

/ (x j) = X ^ e " M V ? s i n ^ x) (27)

2 ^

= tn2nz (28)

and

x —
nn— = nnx (29)

Hence, while Equation (18) is the solution to Equation (8) over the domain 0 < x < Z,

Equation (27) is the solution to Equation (22) over the domain 0 < x < 1.

19

Unlike most cases, the appearance of n can be eliminated simply by reseating x and t.

Let the new scalings be

X = - (30)
n

and

T=^-h (31)

The differential equation is still Equation (26) because the coefficient is still unity

Br-0^4-1 (32)
X1 Dn1 L

and the solution becomes

/(x^^e-"1'sin(nx) (33)
rt=l

But now the domain of the new solution is 0 < x < n . Either of the two scalings

mentioned above are perfectly acceptable. Ultimately, the numerical solution must be

expressed in terms of real, dimensional variables, and the inverse transforms

\t -> t,x -> xj need to be made.

3.2 Developing the Code

In order to address this subject to its fullest extent modeling needs to be performed. This

requires a numerical code that can accurately model the general diffusion equation. The

general diffusion equation is a second order partial differential equation of the parabolic

20

type. This means that it is first order in one of its independent variables and second order

in the other; hence, it is similar in form to that of a parabola y = x2. However, in order to

solve the equation numerically, the continuous derivatives must be approximated by

finite differences. The most straightforward way to numerically model the linear

diffusion equation is to use what is commonly referred to as an explicit method. This

method provides an "explicit" means to compute the spatial values for a future time based

on the present values [Chapra and Canale, 2002]. This method takes the known values of

the dependent variable / and uses them to predict the subsequent values in time. The

explicit method uses two differencing techniques to solve the equation: a forward

difference for the time variable, and a centered difference for the spatial variable.

Utilizing these two differencing techniques the diffusion equation is transformed into the

following form,

T;*-T; _T;+1-2T;+T;_,

At (Ax)2 ' ^ V

Here T\ =T(XJJ1) and

t,=t.+iAt i = \,...,M, (35)

Xj=x.+jAx j = l,...,N (36)

respectively, and t9 and *„ are the initial temporal and spatial points. As was shown in

the previous section, the diffusion coefficient D can be "scaled away" by a judicious

choice of length and time scales. In addition, the dependent variable/has been replaced

by T because this is the finite difference form of the diffusion equation and we are

looking at temperature. Note that in the above form of the equation the subscript /

represents the value in space and the superscript i represents the value in time. The two

21

terms At and (Ax) represent the temporal and spatial resolution of the environment.

Solving this equation for T/+1 leads to the following,

c ' ^ + ^ f c . - ^ + r ; . ,) . (37)

It is easy to see with this form of the equation that the future temperature values (T^+l for

ally) are calculated based on the current known temperature values (Tl for ally). While

this is the easiest way to numerically solve the equation, the explicit method does have

one drawback; it is only conditionally stable. This means that the numerical equation has

to meet certain requirements in order for the solution to make sense as time goes on.

Specifically, the time-step must satisfy

At<^f. (38)

This is known as von Neumann stability analysis (see Appendix A: Additional

Derivations). This condition places limits on how finely the region of interest is resolved

and how short of a time step can take place [Chapra and Canale, 2002]. This is not good

enough to do a thorough analysis. It restricts the choice of time step to be small making

computation time long so if the desired analysis requires a larger time step this method is

not valid. So a method that is unconditionally stable needs to be developed. This is

found in the implicit method. This method has a solution that is stable regardless of the

time-step used in the numerical algorithm. Unfortunately, this method solves for the

temperature at the next time step in terms of the values of the temperature at the next time

step. In a sense it tries to solve the equation by "implying" what the solution will look

like. It uses the same differencing techniques utilized by the explicit method, but instead

22

of using the values at the current time step, the values at the next time step are used. The

finite difference equation becomes,

-»/+l rpl rpl+\ r\rpl + \ /JT/+1 nnl + l rpl rpl + l sjrpl + l rpl+\
L_± £J _ lJ+\ Li J + i 7 - l

At (Ax)2

Manipulating this equation to collect like terms puts it into the following form.

- AT;H +(I +2A)r;+1 - xr;x = T;

(39)

(40)

Note that in the above form of the equation the substitution X - Atj{Axf has been used.

The parameter X shows that the values of Ax and At are not important independently,

but only the combination that appears in X. This is simply a reflection of the stability

condition in Equation (38). This equation leads to a set of algebraic equations that needs

to be solved simultaneously. It is, in effect, a matrix equation

[A]{x}={B) (41)

Where A is the tri-diagonal coefficient matrix,

A =

"(1 + 2A) -X 0 0

-X (1 + 2A) -X 0

0 -X (1 + 2A) '•.

0 0

(42)

x is the function vector (Tj+ for all j = l,...,N), and B is the current time-step vector

(T't for all / = 1,..., N). The matrix A is an NxN matrix, where N is the number of grid

points in the spatial dimension, and Ax = l/(N -1) is the spatial resolution. Several

techniques can be utilized to solve this system of equations. Gauss elimination is one

technique that can exactly solve systems of linear algebraic equations [Chapra and

Canale, 2002]. Gauss elimination involves two steps: forward elimination and backward

23

substitution. The forward elimination portion of the technique utilizes the bulk of the

computing time and does not prove to be efficient when the resolution of the spatial

dimension is very high (i.e., large matrices), because Gauss elimination takes

approximately N3/3 computations to complete [Chapra and Canale, 2002]. In other

words, the Gauss elimination method is very inefficient in general at calculating the

matrix inverse because it is an exact method. However, because A is tridiagonal (most of

the matrix elements are zero), exact methods can be employed efficiently.

3.3 LU Decomposition

A faster means to calculate multiple solutions of the matrix inverse is necessary. This

leads to the LU Decomposition method which is a different means of expressing Gauss

elimination. Chapra and Canale explain this method in the following way: it provides an

efficient means to compute the matrix inverse. It "separates the time-consuming forward

elimination of the matrix [A] from the manipulations of the right-hand side {B}. Thus,

once [A] has been "decomposed," multiple right-hand-side vectors can be evaluated in an

efficient manner" [Chapra and Canale, 2002].

Now suppose that Equation (41) can be expressed as an upper triangular system. Here,

elimination is used to reduce the system to upper triangular form.

(43)

lu

0
0

un

u22

0

" 1 3 "

"23

W 3 3 _

V
<x2

* 3 .

> = <

dx

d2

A.

24

Where I have used a 3 x 3 matrix as an example. In reality, the matrix will be N x N,

where N is the number of spatial grid points. Written concisely Equation (43) takes the

form

[U]{x}-{D} = 0 (44)

Next assume there exists a lower diagonal matrix with Ts on the diagonal.

[L} =

1

21

0 0

1 0

'31 '32 1

(45)

This has the property that when left-hand multiplication is performed on Equation (44),

the result is Equation (46).

MMM-M-MM-M c«)
If this equation is true, then it follows from matrix multiplication that

[Llu]=[A] (47)

and

[L]{D} = {B] (48)

There is a simple two-step strategy that can be used to obtain solutions utilizing LU

Decomposition:

1. LU decomposition step, [A] is factored or "decomposed" into lower [L]

and upper [ll] triangular matrices.

2. Substitution step, [l] and [if] are used to determine a solution {x} for a

right-hand side {B}. This step consists of two steps itself. First, Equation

(48) is used to generate an intermediate vector (l)} by forward

25

substitution. Then, the result is substituted into Equation (44) which can

be solved by back substitution for {x}.

In order to decompose [A] it is necessary to multiply row 1 by a factor

f -En
J2\ —

A n

(49)

and subtract the result from the second row to eliminate a2l. This is a specific choice for

Z, but not the only one (this is the Doolittle method for determining Z and U). Utilizing

Equation (49) matrix [A] can therefore be written (after the elimination step) as

a, au au

fix a
22 ^ 2 3

32 ^33

(50)

Where a and a are the values of the upper triangular matrix (the " ' " indicates that an

elimination was performed on the row and these are the resulting values after the

respective multiplications and subtractions). From this the forward-substitution step can

be written concisely as

dt =d(-Yjaubj fori = 2,3,...,n (51)
/=1

In a similar fashion the back-substitution step can be written concisely as

x = d la

dl~Y.aljxj
J'l+ — fori = n-\,n-2,...,\ x. =
a„

(52)

(53)

This reduces the computation in the linear case, where the forward substitution is the

same for each time step, but in the nonlinear case, it's different for each step.

26

3.4 Crank-Nicolson Method

A common method that is often used is the Crank-Nicolson method. This method is

second-order accurate in both space and time [Chapra and Canale, 2002]. The increase in

accuracy is due to the fact that it averages both the explicit and implicit methods;

combining them into one difference equation.

rpl+\ rpl

J J

At

rl -2T1 +Tl
1
J+\ z-1 j ^ I j - \

l+\ , rpl+l

(Ax)2

rpl + l ryrpl+l rpl+l
1 7+1 ~Z1j ~h l 7-1 (54)

This equation can be rearranged to resemble the fully implicit method.

- XT]:] + 2(1+x)r;+1 - xr^ = xr_x + 2(1 - A)T; + xrj+,. (55)

It can be seen that this is similar in form to Equation (40). All of the terms on the right-

hand side are known. This makes the determination of the solution more accurate. Since

the terms on the right-hand side of Equation (55) are known the same LU Decomposition

algorithm can be utilized.

It is of theoretical interest to determine if the average chosen by Crank and Nicolson

indeed results in the minimum error. To answer this, Equation (54) can be modified to

change the ratio of implicit to explicit used in the calculation. This modified version of

the difference equation introduces a parameter #.

rpl + \ rpl

J J

At

T1 _?T' +T'
+ 0

(rpl+\ _<~\rpl + \ ,rpl + \ \

(Ax)2 (56)

27

This form is chosen because the sum of the coefficients must be unity in order to be

consistent with the original differential equation. Here the parameter 0 can vary between

0 and 1. When 6 is 0 the method becomes fully explicit and when 6 is 1 the method

becomes fully implicit. It is important to note that the Crank-Nicolson method is a

special case where 6 is equal to 1/2. When 0 is less than 1/2 the solution becomes

unstable if the time-step does not satisfy the stability condition for the explicit method

(see Equation 38); when 0 is greater than 1/2 the solution behaves more like a fully

implicit method. The parameter 6 can be varied to find the value that will yield the

lowest error between the numerical and exact solutions. Since the exact solution is

known, a good "figure of merit" is the Absolute Root Mean Squared (RMS) error.

28

RMS Error Between Numerical and Exact Solutions
id"

s io- '

GO

O

3 -2
< 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter Value

Figure 3. Value of Parameter that Yields Lowest Absolute RMS Error.

In Figure 3 the lowest Absolute RMS error occurs when the parameter 0 is equal to 0.57.

The exact case used to create this graph is shown in the appendix. It is important to note

that as the ratio of At/{Ax)2 increases, the value of 0 that yields the lowest RMS error

also increases, making the method more implicit (See Appendix B: Code

VaryingParameter.m). This means that the above figure will change according to the

different initial conditions that it is given. This is due to the nature of the explicit method

and its stability condition.

It turns out that for the case of interest in this thesis, the total RMS error is only weakly

dependent on the value of 0. For example, in one case discussed later, the specific

29

-i 1 r

j i i

conditions are Ax = 1/300 and At « 1 * 10"3. With these particular values the minimum

error for the Crank-Nicolson method is within one order of magnitude from the errors for

fully explicit and fully implicit, Table 1 (i.e., 0 = 0,1). For this reason, it is not critical

which value of 0 is used. However, for reasons of stability, we choose the Crank-

Nicolson method.

30

Table 1. Comparison of Lowest Absolute RMS Error for Crank-Nicolson Method.

Parameter (0) Value
0.01
0.01
0.08
0.13
0.17
0.20
0.22
0.24
0.26
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.34
0.35
0.35
0.36
0.37
0.37
0.37
0.38
1.00
1.00

Lowest Absolute RMS Error
0.9186
0.8469
0.7801
0.7176
0.6591
0.6042
0.5527
0.5044
0.4588
0.4159
0.3754
0.3371
0.3008
0.2665
0.2340
0.2031
0.1736
0.1457
0.1190
0.0935
0.0692
0.0459
0.0237
0.0024
0.0139
0.0334

At value
0.0005
0.0006
0.0007
0.0008
0.0009
0.0010
0.0011
0.0012
0.0013
0.0014
0.0015
0.0016
0.0017
0.0018
0.0019
0.0020
0.0021
0.0022
0.0023
0.0024
0.0025
0.0026
0.0027
0.0028
0.0029
0.0030

31

Table 1 shows how the minimum RMS error of the Crank-Nicolson method varies with

various values of At. The first column is the parameter value that yields the lowest RMS

error (middle column) for the given At (last column). It is important to note that since

the difference in the error from lowest value to highest value (when comparing the

modified Crank-Nicolson to the fully implicit method) only differs by an order of

magnitude, unless At falls into a specific range that is very small, it does not matter

which method of analysis is used. Therefore, certain parts of the analysis were done

utilizing the fully implicit method while others were done utilizing the Crank-Nicolson

method.

3.5 Comparison of the Numerical Results to the Analytic

Result

Now that the exact solution is known the next step is to solve the linear diffusion

equation (Equation 8) numerically and compare to the exact solution. Equation (8) is

written in such a way as to resemble Equation (41). It can now be combined with the LU

Decomposition algorithm and solved. It is important to note that Equation (8) does not

produce a completely filled coefficient matrix when expanded. It produces a special

matrix known as a tri-diagonal matrix. This type of matrix only has the main diagonal

plus the two adjacent diagonals filled with non-zero terms reducing the number of

operations significantly (from N to N operations [Chapra and Canale, 2002]).

32

The algorithm is well-known and standard—it only uses the three diagonals and ignores

the other elements (because they are zero). For the linear diffusion equation the constant

vector on the right-hand side of Equation (41) is the current known temperatures of the

field at time tt. The upper and lower diagonals of the coefficient matrix are - X and the

main diagonal is a = 1 + 2Z. This can easily be seen when looking at Equation (40).

The rest of the development of the algorithm can be seen in Appendix B: Code

Gooddiffusion.m.

In order to verify that the algorithm is solving the diffusion equation correctly an initial

waveform has to be given in order to view the diffusion taking place. The first initial

condition chosen is a linear combination of modes with equal amplitudes,

T[x,t = 0)= sin(;rx)+ sin(2^x)+... + sin(l0;rx) (57)

The initial wave form is shown in Figure 4.

33

Initial Condition of Linear Diffusion Equation
8 I 1 1 1 1 1 1 1 1 1 1

- 4

. 1 I I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

Figure 4. Initial Waveform used to Verify Code.

Note that the scales are unitless and the boundary conditions chosen are Dirichlet. Here a

negative Temp is not relevant for the diffusion equation—only in the physical case.

Three main ideas must be verified before expanding the code to handle the nonlinear

case. First, the exponential decay of the mode amplitudes with rn as derived has to be

shown; second, the initial waveform has to decay to zero; and third, the numerical

solution should closely match the exact solution in both mode amplitude decay and

waveform decay.

For the following analysis, a fully implicit method with a Ax = 1/500, and a At = 0.0001

was used. The results are shown in Figure 5.

34

Solution of Linear Diffusion Equation

tbar = 0
tbar = 0.0025
tbar = 0.01

-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

Figure 5. Time Lapse of Initial Waveform.

Figure 5 verifies the numerical code. It shows the initial waveform decaying away to

zero. It also shows the higher order modes decaying away faster than the lower order

modes as expected. This is due to the fact that there are Dirichlet boundary conditions

and no source term present. This means that all the energy in the system should flow out

of the boundaries (at a rate proportional to the slope at the boundaries).

The next idea that needs to be verified is that the mode amplitudes tend to zero over time.

The initial waveform has ten modes that comprise its shape. Each mode decays at a

different rate. According to Equation (27) the higher order modes should decay faster

than the lower order modes. A discrete Fourier transform was performed on the

35

numerical solution in order to extract the amplitudes of the different modes. This is a

very common technique [Press, et al, 1987]. Figure 6 shows a time-history of the mode

amplitudes.

Decay of Amplitudes Over Time
1

0.9

0.8

0.7

0.6

< 0.5

0.4

0.3

0.2

0.1

0
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

t/r

Figure 6. Decay of Amplitudes of Different Modes of Initial Waveform.

The exponential decay is very prevalent in Figure 6 with the higher order modes decaying

faster than the lower order modes. These decay rates match the analytic solution

(Equation 27).

Finally, the comparison to the exact solution needs to be made. Since the initial

waveform is a sine series the exact solution will take the same form. This makes

36

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
Mode 8
Mode 9
Mode 10

comparison of the two easier. The following figures show the results of the comparison

of the numerical and exact solutions.

Figure 7 shows the absolute error (exact minus numerical) between the two waveforms

with respect to position.

Absolute Error

Figure 7. Absolute Error Relative to Position.

Note that Figure 7 shows the absolute error at t = 0.01. It can be seen from Figure 7 that

the maximum error is less than 1% (since the value of T is on the order of 1, the absolute

error is approximately equal to the relative error).

37

The error as a function of time is also of interest. In order to incorporate all spatial

locations, the RMS (root-mean-squared) error (summed over all spatial locations) is

calculated at each time step, and shown in Figure 8.

Error Between Solutions over Time

x10

Figure 8. RMS Error Comparison between Numerical and Exact Solutions.

Figure 8 shows that the two solutions are in very good agreement at the start of the

solution. Unfortunately, this has no meaning because the initial conditions chosen are, by

default, identical. Then the error peaks, typical of exponential processes, and slowly

decays away. Eventually the error will go below machine precision due to the nature that

the solutions will decay to zero. The peak in the error is on the order of 10"2. Again,

since the temperature is on the order of one, this absolute error is approximately

equivalent to relative error.

38

The amplitudes of the different orders need to be compared as well. Figure 6 shows the

different modes of the numerical solution decaying exponentially with time. Comparing

these amplitudes to the analytic prediction will reveal how closely the code solves the

linear diffusion equation.

Amplitude of Mode 10

Exact Solution
Numerical Solution

0.008 0.01 0.012

Figure 9. Comparison of Amplitudes of Selected Order Mode.

Figure 9 shows the decay of the amplitudes of both the numerical and exact solutions of

mode 10. There is a clear discrepancy between the two amplitudes. Figure 10 shows the

absolute error between the two modes.

39

Error Between Amplitudes of Solutions

x 1 0 '

Figure 10. Absolute Error between Amplitudes of Numerical and Exact Solutions.

Here again, as in Figure 8, the two amplitudes show good agreement at the start of the

solution, but as time goes on the error peaks and then fades away eventually to zero. In

addition, the peak in the error is of the order 10"2 which is similar to the RMS error

between the two waveforms. It is important to note that the graphs for the other modes

are similar to both Figure 9 and Figure 10 with the peak error being of the same order.

While the maximum error is pretty high, which can be decreased by decreasing At, its

decay shows that the two solutions will agree over time.

40

Error Between Amplitudes of Solutions

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
t/T

Figure 11. Absolute Error between Amplitudes of Numerical and Exact Solutions for Smaller Time-

step.

Figure 11 shows how the error decreases with decreasing At. The same simulation is run

as above with the only change being At = 0.00001 (a factor of 10 smaller). With this

change the maximum error decreases by almost an order of magnitude to 10"3. Since the

maximum error is shown to decrease with decreasing At (comparison of Figure 10 and

Figure 11) the code is then expanded to handle the nonlinear diffusion equation.

41

4. The Nonlinear Diffusion Equation

4.1 Development of the Nonlinear Diffusion Equation

The linear diffusion equation (Equation 8) was useful in verifying that the algorithm

developed was stable. Since we are interested in nonlinear phenomena such as thermal

diffusion in plasmas, and population expansion, the equation of real interest is the

nonlinear diffusion equation,

dt dx\ dx)
(58)

where the diffusion coefficient is a function of temperature. In particular, the case of

interest is a power-law dependence.

D = 8Tn (59)

This goes along with how thermal diffusion occurs in plasmas (Equation (6) and

Equation (7)). This is also the chosen diffusion coefficient by Newman and Sagan

(1981). Here the diffusion coefficient is no longer a constant and depends on the

temperature of the distribution. Note that 8 is an arbitrary constant not to be confused

with the Dirac delta function. In order for the equation to be dimensionally correct

[D] = Length2/Time and therefore 8 must have the units

[8] = Length2 l\Time * Temperature"). It is useful to rewrite Equation (58) in the form

42

W S d ^

dt (n + \) dx2

When «=0, Equation (60) reverts to the well-known linear diffusion equation discussed

above. Again, it is useful to nondimensionalize this equation. The following scaling

factors will be utilized:

/ = ! ,;=* r = f (6i)
T L To

Note that because of the nonlinearity of T, it is necessary to scale the (dependent variable)

temperature, in addition to the independent variables. This will be chosen for ease of

analysis. After plugging in the scaling factors, Equation (60) becomes

5T

8t

8TT" d2T

dx2
(62)

L2(n + l)_

If the quantity in brackets is chosen to be unity, then in addition to arbitrarily scaling the

size of the volume of interest to L (as before), this choice automatically determines the

time scale r = [L2 (n + l))/[8To
nJ. It is important to note that the coefficient on the right

hand side of Equation (62) is defined in the code prior to the LU decomposition

algorithm and is therefore omitted from the finite difference equation (See Appendix B:

Code GoodTimeNonlinearDiffusion.m). The same forward and centered differencing

techniques used on Equation (8) (that resulted in the implicit method) will be applied to

Equation (62)

43

Rearranging terms to place all the terms evaluated at t = tl+l on the left, and those at

t = tt on the right

—i+\

Tj -X = Tj. (64)

Here the same substitution \X = At/[Ax) j has been made. In this (nonlinear) form, it is

not possible to use neither LU decomposition nor any (linear) method such as Gaussian

elimination. A technique known as time linearization will be utilized to transform

Equation (64) into a linear equation that is amenable to LU decomposition. Time

linearization is a technique that employs a Taylor expansion of the dependent variable T

with respect to time; all values of T at different spatial locations are Taylor expanded in

the same manner.

4.2 Time Linearization

Time linearization, when applied to Equation (64), makes the following assumptions:

TT = f\ + AT, for all j (65)

where

ATj«T\ (66)

Physically, this means that over the interval of one time step, the temperature at each

spatial location changes by a small amount, and only the first order corrections to the

temperature are kept. In practice, this requires that the time step chosen be sufficiently

44

small (i.e. At«10"6). This ensures that both Equations (38) and (66) are satisfied. The

higher order terms in Equation (64) then become

[f:f ^YLl^^UzY .(n^Af, forattj (67)
v T J)

Plugging Equation (67) back into Equation (64) and rearranging so that it can be viewed

as a matrix equation for AT,, the final form of the finite difference equation becomes

- X(n + l)(7Vi j ATJ+X + (l + 2X(n + iff) j j AT, - X(n + l)(r)-i J AT M

= X\flj+i j ' - 2X\f'j j ' + X\flj-x)

Equation (68) can be written more concisely as

cx ATj+\ + c2 AT j + c3ATj-i = b (69)

where

cx=-X(n + \)\flj+x) (70)

c 2 = l + 2 ^ + l)(r / j (71)

c,=-X(n + \)\Tl
}-x) (72)

b = Xfj+x) - 2X\r)) + Zlf'j-i j + 1 (73)

are all constants that must be reevaluated at every successive time step (See Appendix B:

Code GoodTimeNonlinearDiffusion.m). It is clear now that Equation (68) is similar in

form to Equation (40) and can utilize the LU Decomposition algorithm developed. The

power of LU decomposition method is that the Gaussian elimination portion must only be

performed once, and only the back substitution portion needs to be done each time step,

thus reducing the number of computations by half. Unfortunately, because the

45

coefficients cx, c2, and c3 now depend on the values of T at time t = tt, both halves of

the algorithm must be performed at each step. However, the fact that the matrix is still

tridiagonal means that the method is still efficient, and hence will continue to be used. In

practice, an extra step is needed to update the new temperatures using Equation (65). The

algorithm then updates the constants and continues on with the solution. What is actually

solved for with the nonlinear case is the change in temperature between each time

interval, not the actual temperatures.

It is important to note that the Crank-Nicolson method is expanded in the same fashion.

The only difference being the right hand side of Equation (73) and the addition of terms

that constitute the explicit portion of the Crank-Nicolson method.

4.3 Steady-State

Now that Equation (58) can actually be solved numerically it is important to know what

the steady-state solution would look like. Since one of the phenomena we are interested

in is population expansion it is important to know how a given "population distribution"

will look like after an advancement in technology (so to speak) allows them to travel into

the galaxy away from their "home base", or what does the temperature profile look like in

a plasma or a bar for which the diffusion coefficient is not constant. It is important to

note that the steady-state solution is what the profile would look like given a constant

source term in the environment. What this means is that by setting the left boundary to a

specific temperature it is implying that there is a source of energy, or population growth

46

that feeds the distribution. Another means of providing this source is to actually put a

source term into the equation (see Appendix A: Additional Derivations Adding a Source

Term). Here the temporal derivative is set to zero (definition of steady-state) and

Equation (60) becomes

j ^ — = 0 (74)
[n + l) dx2

The solution for the quantity Tn+l must, of course, be a straight line (as long as n^-l,

which will not be considered). So the steady-state solution assumes the following form.

T(x)=(Ax + Bf{n+l)
9 (75)

where A and B are two arbitrary constants of integration and are determined by the

boundary conditions. Let T(o) = TQ = 1 be some initial temperature at the left boundary,

then

T(0) = To=(B)l/{n+]) (76)

B = To
n+l (77)

Now let

T(L) = TL=(AL + Trlf"+l) (78)

Rearranging terms to solve for A

rpn+\ rpn + \

A = L (79)

and Equation (78) becomes

y/M)
T(X)=(-(T?+I -T:+I)X+T:+I (80)

47

Now given boundary temperature values, the steady-state temperature distribution can be

calculated using this equation. What this implies is that the higher temperature boundary

is acting like a source and the lower temperature boundary is acting like a sink. Figure 12

shows the various steady-state distributions.

Steady State Nonlinear Diffusion Equation for Varying Powers

Figure 12. Steady-State Solutions for Various Powers of Nonlinearity.

Note that the solutions for negative n are concave up and the positive n are concave

down. This can be explained by looking at Equation (59). For the linear case (n=0) the

diffusion coefficient is essentially 1. When n takes on negative values it turns into a

fraction of 1 (similar to y = l/x) and vice versa for positive values it becomes greater

than 1 (depending on the temperature of course). One important note is that for the

48

linear case (n=0) the solution is a straight line as expected. Also, the case n=-l is

undefined.

4.4 Specific Condition of Interest

Now that the code is working properly, it will be expanded to analyze a certain condition.

The interest is to see how a profile expands out into space given an initial distribution.

This is important because we are interested in how a species populates the galaxy. In

particular how fast the population reaches a steady-state and the timescale at which the

population approaches the respective steady-state solution. Since the steady-state of the

diffusion equation is known the goal is to then see how this steady-state solution will

expand out into space. More specifically, the rate at which the solution expands out into

space in order to reach a new equilibrium is of great importance. The distribution of

interest is made up of two parts. First, in one region of space [x < 1/2 j the initial

condition is determined by Equation (80) where TL = 0 and To =1, and in the other

region of space [x > 1/2 j the solution is set to zero.

49

Initial Condition with n=0

Figure 13. Initial Condition with n = 0.

Figure 13 shows a sample of the initial condition. Note that the initial condition for

x < 1/2 will change with increasing values oin.

4.5 Linear Regime of Nonlinear Equation

4.5.1 Steady-State of Selected Initial Condition

The solution to the initial condition mentioned above (Figure 13) can be solved for

analytically. Beginning with the linear diffusion equation

50

du _ 2 d2u

dt ~ dx2

subjected to the following boundary conditions,

u(0,t) = Tleft

which is the temperature on the left boundary,

u(L,t) = Tngh,

(81)

(82)

(83)

is the temperature on the right boundary, and

u(x,0) = f(x) (84)

is the initial condition given by the following piecewise equation to describe the region of

interest

/ (*) =

T -T
x right M left

right

x+Tleft o<x<y2
(85)

A/ <x<L

The solution of which is given by the following

u[x, t) = ux (x) + u2 [x, t)

where

(86)

«iW=
fT —T ^

1 right l left x + T, left (87)

is the known steady-state solution of the linear diffusion equation with fixed boundary

temperatures and

u2{x,t)=^bne
 Ki sin

(nn ^

V ^ j
(88)

is the solution arrived at from separation of variables with

51

X = cnn (89)

and

2\
6„=y/ (/ (*) -" , (*)) s in

1nn ^
dx (90)

V ^ J

is used to solve for the coefficients. The only thing left to do is solve for bn; which after

splitting up the integral and solving looks like this

"P ~ ^V right * left)

sin
'nn^

\ * J
2 2

n n
n = odd (91)

So the exact solution takes the following form

i(x,t) =
(T —T ^

1 right L left X +
n=odd \ L»

(92)

It is important to note that u} (x) is the steady-state solution to the given problem. Since

this is subtracted out of the general solution, the boundary temperatures are zero which

means that only the odd sine modes exist. This is true only for the linear diffusion

equation.

4.6 Nonlinear Regime

4.6.1 Derivation of Theoretical Timescale of Nonlinear Equation

How fast does the temperature approach the steady-state solution? We can answer this

question in the limiting case where the temperature T is infinitesimally close to the

52

steady-state condition. Analytically, we start with some initial temperature profile (that

will later be chosen to be near the steady-state profile). The short time behavior can be

obtained by assuming that the temperature changes very little from this initial condition

T = Tin + Tx (similar to the time-linearization procedure developed above), and in this

regime the equation for Tx is simply the linear diffusion equation. Starting with the

nonlinear diffusion equation

dT d2T

dt ~P dx =p^h- (93)

where

m = n + l (94)

fi = -D. (95)

m

We make these replacements to reduce notational burden. Let T expand in the following

manner

T(x,t) = Tln +Tl*T(x9tQ)+Tl(x9t) (96)

Where Tm is some "initial" state and Tx is the difference between the current state and

"initial" state. All the time dependence is in Tx. The left side of Equation (93) becomes

^ = ̂ + £?L, (97)
dt dt dt v J

where dTin/dt = 0 since the "initial" state is independent of time. The right hand side of

Equation (93) becomes

d-£r^(r; ,mr:-x)-^+m^(T;-%), (98)

where we have used

53

Tm = (Tm +T1)
m= T: + mTr„-% . (99)

Since the quantity T"'XTX appears, it is useful to rewrite the time derivative

—=-^r-fcr1^)- (ioo)

dt T"-x dr x'

After these approximations, Equation (93) becomes 2rrm

ft(Tr%)= {m^:-^{T:-%)+prrn-'^-, CIOD

which is a linear diffusion equation for the function T™~l(x)Tx{x,i) with an effective

diffusion coefficient m(3T™~1 and a constant term—that acts like a source. If Tm is close

to the steady-state profile Tss, then

9 C _ 1 = 0 , (102)
dx2 m

as concluded in Equation (74), and the source term in Equation (101) is zero. That is, our

"initial condition" is almost steady-state, and this linear approximation analyzes the

approach to equilibrium of the nonlinear system. Equation (101) is a linear diffusion

equation with a spatially dependent diffusion coefficient. However, if we make the

additional approximation that T(x = 0)> T(L), then the spatial dependence of this

coefficient is weak, and we can use the tools developed above for analysis. Scaling

Equation (93) by using scalings similar to Equation (61)

f" = - 5 i = - , r = — (103)
T L Tscale

it turns into the following

f XTYTT" ^d2T"+l
dT (SDTTs"cale

dt ml}

54

(104)
dx

Setting the term in parentheses to unity automatically determines T.

(n + l)L2

T =

So

<K>C

- = L=rSDTs"cale

(105)

T (n + \)L2

Similarly, scaling Equation (101) leads to

(106)

dtK '

™DT.Tn
scale d2 - » -

dx
IT,) (107)

where T. is the scaled initial state of the temperature. Note that the term in brackets will

be known as Deff. Essentially what is left is

— f-D — f
-T.J U*ff - 2 /
dt dx

(108)

This, of course, is the linear diffusion equation (Equation 2) whose solution has already

been found (Equation 18) which can be written as

/=IV"

where r7 is similar to Equation (19) with

sin
J7CX

\^#max j
(109)

T i = "

- 2
Xmax

/ V D ,
(110)

>-ff

and equivalent to the reciprocal of X„ in Equation (89). Looking at the form of one of

the modes

f = e/x> sin

55

(• ~ \ jnx

\^Xmax
(i l l)

and taking the temporal and spatial derivatives

Ĉ = - J - / (112)
dt Tj '

^ - ^ f (U3)
OX Xmax

the timescale r} is found to be (setting j = I since the lowest order mode has the most

influence when the solution approaches the steady-state)

- 2
; _ x m « _ _ (1 1 4)

After expanding all terms and inserting Z)^and setting xmax = 1 the timescale of interest

is

TI=
 1—=^ (115)

7i2(n + \)Tno

which is equivalent to the terms mentioned earlier from Equations (19) and (89). Again,

this timescale is of interest because the lowest order mode has the most influence on the

solution as it approaches steady-state. This allows for calculation of time-constants that

let us know how fast a particular profile (be it a population or temperature profile) will

approach the known steady-state solution. Note that To is the average (the sum of the

temperature over all the spatial points divided by the total number of spatial points then

raised to the nth power, (To)) temperature of the steady-state distribution (this is

explained in the next section and seen in Figure 14). Also, this is the theoretical

prediction of the rate at which the temperature profile (already close to steady-state) will

approach the steady-state.

56

4.6.2 Results of the Numerical Analysis of the Nonlinear Diffusion

Equation

When looking to see how the timescale of the initial condition (see Figure 2) of interest

behaves with nonlinearity a comparison was made between a modified version of

Equation (115) (Equation 116) and the timescale values calculated from the numerical

results \n2z\). These values were calculated by looking at the different modes that are

present in the solution. Since the steady-state solution is separate from the time-

dependent portion of the solution in Equation (92) all that is of interest is the decay rates

of the different amplitudes present,

, (116)

The above quantity is plotted for values of n ranging from 0 to 10 and is compared to the

values calculated from the numerical results. The timescale values are calculated when

the temperature profile is close to steady-state and exhibit linear decay when plotted on a

natural log scale.

57

Theoretical Prediction of Timescale Compared to Actual Values

((n+1)<T>V

((n + l) ^) ' 1

Figure 14. Theoretical Prediction of Timescale Compared to Actual Values.

Figure 14 shows how closely the calculated timescales follow the theoretical prediction.

It is important to note that these timescales are calculated when the profile is very close to

the steady-state solution (see Figure 15). The value for the timescale is the value of

decay for every mode present in the solution once the wavefront nears the steady-state

solution (see Figure 17).

58

Position of Profile when Timescale is Calculated
nr

Figure 15. Position of Profile when Timescale is Calculated.

As can be seen in Figure 15 the numerical solution is very close to the steady-state

solution when the timescales are calculated. In this case Tx « Tm . Also, Tm happens to

be close to the steady-state solution (Tss), but that simply helps in the evaluation of the

timescales. The above figure represents the case where n = 4, which was chosen

arbitrarily to show the nonlinear behavior of the system. In order to get the timescales

out of the solution, the different modes had to be separated.

59

. 3 l ' 1 1 1 i i i I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 16. Time History of Mode Amplitudes.

Figure 16 shows the behavior of the different modes present in the temperature profile. It

is important to note that the even modes eventually decay away while the odd modes

increase to some steady-state value. This is related to Equation (92) since the steady-

state is subtracted out of the solution only the odd modes of the solution should be

present (as explained in Section 4.5). This is vastly different than the decay seen in

Figure 6. This difference shows how this nonlinear diffusion equation is fundamentally

different. We want to know how fast these modes approach their respective steady-state

values. For these purposes the modes are calculated after subtracting out the steady-state

solution from the numerical result.

60

Time History of Mode Amplitudes

Mode 1
Mode 2
Mode 3
Mode 4

0.4

Figure 17. Time History of Mode Amplitudes.

Figure 17 shows the time history of the mode amplitudes (n = 4). Also, the above plot

is that of bne~Kt found in Equation (92) where the known steady-state solution is

subtracted out from the numerical solution (T-TSS) when the mode amplitudes are

calculated. It is important to note that when the profile nears the steady-state solution

(/ > 0.35), all of the modes decay at the same rate and exhibit linear behavior as desired.

This is a very interesting phenomenon that needs further exploration.

61

4.6.3 Relation to Interstellar Population Expansion

As the order of nonlinearity increases, the leading edge of the profile becomes steeper

(see Equation 80). This suggests self-similarity in the solutions [Newman and Sagan,

1981], which means that the shape of the temperature profile is preserved in the solution.

This is true when the solution is not close to the right-hand boundary.

Self-Similar Solutions

1

0.9

0.8

0.7

0.6

i - 0.5

0.4

0.3

0.2

0.1
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

Figure 18. Self-Similar Solutions of the Expanding Wavefront (n = 4).

Figure 18 shows the self-similarity of the solution. What is meant by this is that each line

shown in the figure represents the corresponding steady-state solution for that particular

value of T{x)=0.

62

This leading edge can be thought of as the Population Expansion Front. Since this

leading edge is so well-defined its velocity is relatively easy to calculate numerically.

First, a specific value of Temperature (or population) is chosen. For the purposes of this

thesis the value of 0.1 is chosen as the point to follow. Due to the nature of the solution,

and the fact that the graph consists of a number of finite points, an algorithm was written

to pick out the values of 0.1 and where they occur (See Appendix B: Code

WavefrontVelocity.m).

This algorithm picks out those points and then plots their position as a function of time.

Position vs Time for Specific Point on Profile

Figure 19. Position vs. Time Graph in Order to see Velocity of Expansion Wavefront.

63

Figure 19 shows the position as a function of time for the 0.1 Temperature point. The

two dashed lines in the figure correspond to the n = 0 and n = 1 values for nonlinearity.

These two values are dashed because they do not behave the same as the higher orders of

nonlinearity (see Newman and Sagan, [1981]). The order of each solid line follows from

n = 2 having the highest average slope and n = 10 having the lowest average slope.

What can be concluded from the above graph is that as the value of nonlinearity increases

it takes the profile a longer time to reach the equilibrium state. This means that the

profile travels slower as it becomes more nonlinear. The physical reason for this is that

with the nonlinearity, it becomes harder for the "population" to expand. The power-law

dependence of the diffusion coefficient slows down the diffusion process. More

obstacles are getting in the way. This corresponds to results arrived at by Newman and

Sagan (1981).

This is related to the decay constants calculated in Figure 14 and in Equation (116).

Many factors could be attributed to this result. It tells us that when the population of a

given species expands according to nonlinear diffusion, the higher the nonlinearity, the

different array of factors that contribute to an individuals need to expand. These factors

could be one of many: technological advances, the capacity of a planet to support life,

how much space does an individual need to survive, or the sheer distance between

habitable planets. Technological advances such as better space travel or increased life

expectancy would decrease n making it easier for the population to expand. The farther

64

the distance a population would have to travel would increase the value of n making it

more difficult to reach the next habitable planet.

65

5. Conclusions

Nature itself is nonlinear and having a better understanding of this nonlinearity is

important. As can be seen from the above thesis the nonlinear diffusion equation is a

marvelous equation that deserves greater attention.

From my research I have learned that nonlinear science is very complex. The nonlinear

diffusion equation (solved by Newman and Sagan [1981]) is tricky to solve analytically;

it has to be solved numerically. This brings up new challenges in deciding the best

method to solve the equation. While there is no single correct way to solve this type of

an equation the method of choice, if done properly, will expand the knowledge of the

dynamics of this equation.

There is always error associated with any numerical analysis. The problem with this is

just how much error is realistic to keep. There are ways to minimize the error or

eliminate it completely, but for ease of computation and timeliness, a little error is always

present, and helps divulge secrets about the nonlinear diffusion equation that are of great

importance.

The main goal of this thesis was to determine the timescales over which the diffusion

equation expands out into space, and more precisely, how fast does an initial temperature

66

profile approach a known steady-state solution. This allows us to compare to Newman

and Sagan (1981) and their results on intergalactic population expansion. Theoretical

predictions were made via exact analytical solutions and then compared to the numerical

results. Several assumptions were made in order to simplify these calculations. For one,

the equation was linearized leaving only one main component in the temperature profile

allowing for analytical solutions to be derived with ease. This meant that we had to

assume that the difference in temperature from one time-step to the next was

insignificant. This might not necessarily be the case in Nature.

Different phenomena occur as the diffusion equation expands from the linear case to the

nonlinear. For one, the curvature of the steady-state solution increases when the

boundary conditions are non-zero. This is shown in Figure 12. Second, when a source

term is present, it takes much longer for the solution to reach the steady-state as the

nonlinearity increases. This is related to Figure 19 in that the initial condition can be

thought of as having a source term for x < 1/2 and as the nonlinearity increases the

average velocity of the wavefront decreases. Thirdly, the particular case of interest leads

to self-similar solutions that develop timescales independent of spatial or temporal scales.

This means that the shape of the temperature profile is preserved in the solution. All

modes that are present in the solution decay at the same rate as the temperature profile

approaches the steady-state solution. This is due to the fact that the steady-state portion

of the solution is subtracted out of the numerical solution.

67

Finally, in the case of interstellar population expansion, as the order of nonlinearity

increases the rate at which the population expansion wavefront expands decreases. This

is related to the decay constants calculated in Figure 14 . Many factors could be

attributed to this result. It tells us that when the population of a given species expands

according to nonlinear diffusion, the higher the nonlinearity the slower the process.

Several different factors contribute to an individuals' need to expand. Technological

advances such as better space travel or increased life expectancy would decrease n

making it easier for the population to expand. The farther the distance a population

would have to travel would increase the value of n making it more difficult to reach the

next habitable planet.

The main conclusion is that theoretical predictions were made and then verified by

numerical means. This shows that numerical simulation is a valid technique that can be

used to analyze complex physical phenomenon such as diffusion. Knowing that

assumptions can be made in order to simplify calculations is a powerful tool. From these

simple assumptions conclusion can be drawn about the nature of diffusion, and future

research can expound upon these ideas to divulge further into the complex phenomenon

known as diffusion.

68

References

Chapra, Steven C, and Raymond P Canale. Numerical Methods for Engineers. New

York: McGraw-Hill, 2002.

Chen, Francis F. Introduction to Plasma Physics and Controlled Fusion. New York:

Plenum Press, 1984.

Fell, Andy. wCNew Models of Weather Pattern." UC Davis News & Information. Dec.

2005. University of California, Davis. 16 April 2006

http://www.news.ucdavis.edu/search/news_detail.lasso?id=7561.

Hurricane Alley. "Hurricane Models Information." Hurricane Alley.net. 2005.

HurricaneAlley.net. 16 April 2006 http://www.hurricanealley.net/hurmdls.htm.

Mandelis, A. "Diffusion waves and their uses." Phys. Today. August 2000. page 29.

Newman, William I., and Carl Sagan. "Galactic Civilizations: Population Dynamics and

Interstellar Diffusion." Icarus Volume 46 (1981): Pages 293-327.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes. New York: Cambridge University Press, 1987.

69

http://www.news.ucdavis.edu/search/news_detail.lasso?id=7561
http://Alley.net
http://HurricaneAlley.net
http://www.hurricanealley.net/hurmdls.htm

Smolyakov, A. I., and I. Khabibrakhmanov. "Nonlinear Diffusion of the Magnetic Field

in Weakly Ionized Plasmas." Physical Review Letters Volume 81, Number 22

(1998).

70

Appendix A: Additional Derivations

A. 1 Calculating the Stability of the Explicit Method (von

Neumann stability analysis)

In order to determine the stability condition let V} equal fj and Tl
J+x and Tl

}_x equal

f;e
llcAx and f}e~lkt* respectively. This is known as von Neumann stability analysis

[Chapra and Canale, 2002]. Making the previously mentioned substitutions for Tinto the

finite difference equation leads to the following.

/ ;+ 1 = / ; + (^ - (/ / ^ - 2 / ; + fje"k&x) a 17>

Manipulating this equation and making use of the trigonometric identities

cosx = [elx +e~lx)/2 and sin2 a = 1 - cos(2#)/2 the equation can be rewritten as the

following.

From this form of the equation it can be seen that for the solution to converge the

quantity in brackets, called the amplification factor, has to be less than 1 and greater than

-1. The former is trivial to satisfy since all quantities in brackets are greater than one.

The latter condition when satisfied leads to the stability condition, Equation (38), for the

explicit method.

1-
4Af

(Ax)2 -sin
Mxl

(118)

71

A.2 Adding a Source Term

Instead of setting the boundary temperature of the profile one could use a source term in

the equation to provide the energy, or population growth needed to sustain the shapes of

the temperature profiles. Adding in the source term changes Equation (60) into the

following

dT 8 d2T"+l ^ v / 1 i m

a-RiJ-a?-^0- (119)

where Q is the energy per unit volume per unit time added to the "environment". Here

we assume that the variable T actually represents the thermal energy density (energy-per-

unit volume). We assume that Q is spatially localized—in practice a Dirac 5-fiinction

works well. This represents the physical situation in which the source term is a constant

point source. The finite difference equation (Equation (68)) then becomes

- X(n + lWj+i J ATj+i + [1 + 2X(n + \W})\AT, - X(n + l) TYi f AT j-i
A / ^ 'V / J A / (1 2 0)

= X^lj+x Y - 2X^/) + X^rU)+ At(Q(x~t))

The LU decomposition algorithm can be utilized to solve Equation (120) as before, with

Q added to the constant b (see Equation (73)). With a constant source term the algorithm

can be run for a long time to obtain the steady-state solution. This can then be compared

to the steady-state solution found analytically, Equation (80). This provides support for

replacing the steady temperature boundary conditions with a source.

S d2T"+l

(w + l) dx2

When looking at Equation (121), if

72

• + 0(x,f)=O (121)

dt

and for all x where

Q(x,t)=0

then as shown earlier

(122)

(123)

dx'
-(r+1)=o (124)

T"+l=Ax + B (125)

Assume that the units of T are energy per volume and the units of Q are energy per time

per volume. Now let

& = £*(*) (126)

After multiplying by dx on both sides and integrating

j0.<fr = £ (127)

and in the discrete case (as in the numerical algorithm)

£ = & « A x (128)

Taking Equation (121) and integrating, the constants A and B can be solved for.

£(» + !)
A =

28
(129)

and

B = rr -AL

Plugging these results back into Equation (125) and rearranging terms

(130)

T„(x) = T?x+(L-x¥
28

'n+l

(131)

73

Assuming that the temperature at the source occurs at x=0, Equation (131) can be

rearranged to match Equation (80), which is the steady-state solution to the diffusion

equation.

Now that the steady-state solution is known, a comparison can be made between the

steady-state equation (Equation (131)) and what the LU decomposition algorithm will

arrive at. For a value of n=l, the steady-state profile is shown in Figure 20.

1.25

1.2

1.15

03
i—
CD

£
CD

1.05

Comparing Theoretical and Numerical Steady State Solutions

Numerical Soultion
Steady-State Solution

Fi2ure 20. Steady-State Waveform for n = 1.

and the relative error between the two solutions is shown in Figure 21.

74

10'
-4

10"

Error Between two Steady States
T 1 1 1 i 1 1 1 r

_ i I l l _

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

Figure 21. Relative Error between Numerical and Exact Steady-State Solutions.

75

Appendix B: Code

B. 1 ConstantSourceGoodTimeNonlinearDiffusion.m

%Created by Dustin Sipka
%EP 700
%Time Dependent Nonlinear Diffusion Equation
%October 26, 2005
%Solves the time dependent nonlinear equation using the
implicit method and
%lets it run to get the steady state distribution and
compare it to the
%theoretical prediction

clear
clc
format long g

%Defining Initial Conditions and Constants
Diffusion =
Length = 1;
TempL =
TempO =
SteadyO
SteadyL

1;

5;
5;
=1.2247
= 1;
= 0.5;

%Diffusion coefficient
%Length of the space
%Temp at end of space
%Temp at beginning of space

sLength
N = 1; %Constant factor for dimensionless
variables (decrease N decrease penetration depth, increase
N increase penetration depth)
n = 1; %Different values for nonlinear solution
space = 100; %Spatial resolution
sx = 0:sLength/(space):sLength;
sxbar = sx/sLength;

%Number of spatial points
%Unitless Space
%Spatial resolution
%Unitless Space
%Frequency of boundary

x = 0:Length/space:Length;
xbar = x/Length;
dx = Length/space;
dxbar = dx/Length;
w = 0.01*pi;
temperature
time = 200000;
t = 1:1:time;
tconstant = 1000;
elapse
T = (Length.A2*N)/(Diffusion*TempO

%Number of time steps
%Time step vector
%Number of time constants that

vn %Time constant

76

tbar = (1000)/ (tconstant*T);%Unitless time
dt = dx.A2/2; %Time resolution
dtbar = dt/tbar; %Unitless time resolution
Temp = zeros (2,length(x)); %Size of temperature matrix
lambda = dtbar/((n+1)*dxbar.A2); %Coefficient in
numerical algorithm
Q = zeros(1,space+1); %Source Term
Q(l,space/2) = 100;
periodtimesteps = round(2*pi/(w)); %Number of time steps
in one period of oscillation

%Initial Conditions

%Solving for the initial Temperature distribution
for j = 1:length(sx)

Steadyl(j) = ((1/sLength)*(SteadyL.A(n+1)-
SteadyO.~(n+1))*sxbar(j)...

+SteadyO./N (n+1)) . ~ (l/(n+l)) ;
end
for j = (space/2)+1:-1:1

Steady2(52-j) = Steadyl(j);
end
Steady3 = zeros (1,length (x));
for i = 1:51

Steady3(i) = Steady2(i);
Steady3(i+50) = Steadyl(i);

end

Temp(l,:) = 5;
Temp(2,1) = 5;
Temp(2,length(x)) = 5;

%Scaling Temperature to TempO
Temp = Temp/TempO;

%Nonlinear LU Decomposition

%Note: boundary nodes are ignored for this computation.
Decompositions
%starts at] = 2 and ends at j = length(x)-l

%Filling Three Vectors of the Tridiagonal Matrix
d = zeros(size(x));
u = zeros(size (x));
1 = zeros(size (x));
%Note: u(space-l)=0 and 1(1) = 0

77

D = zeros(size(d)); %Intermediate vector for LU
decomposition
deltaTemp = zeros(size(Temp));
deltaTemp(:,1) = 0;
deltaTemp(:,length(x)) = 0;

h = waitbar(0,'There is no spoon...');
for m = 2:time

waitbar(m/time)
for i = l:space-l

%Setting up B
B(l,i) = lambda*(Temp(l,i)) .A (n+1)-

2*lambda*(Temp(l,i+1))."(n+1)+lambda*(Temp(l,i+2)). "(n+1) +
dtbar*Q(l,i);

%Setting up the three diagonal vectors
d(i) = (1+2*(n+1)*lambda*(Temp(l,i)).~n);
if (i == 1)

Mi) = 0;
else

l(i) = -l*lambda*(n+1)*(Temp(lfi-1))."n;
end
if(i == space-1)

u(i) = 0;
else

u(i) = -l*lambda* (n+1) * (Temp (l,i+l)) ./Nn;
end

%Decomposition of coefficient matrix
factor = Mi+1) /d(i) ;
l(i+l) = factor;
d(i+l) = d(i+l) - factor*u(i);

%Forward Substitution
if(i == 1)

D(i) = B(l,i);
else

D(i) = B(l,i) - l(i)*D(i-l) ;
end

end
for i = space:-1:2

%Backward substitution
if (i == space)

deltaTemp(l,i) = D(i-1)/d(i-l);
else

78

deltaTemp(l,i) = (D(i-l) - u(i-
1) *deltaTemp(l,i+l))/d(i-l);

end
end

%Solving for the new temperatures
for i = 2:space

Temp(2,i) = Temp(l,i) + deltaTemp(1,i);
Temp(l,i) = Temp(2,i);

end
end
close(h);

Error = abs(Temp(2,:)-Steady3)./Steady3;

figure(1)
plot(x,Temp(2,:),x,Steady3);
xlabel('xbar');
ylabel('Temperature');
title(fComparing Theoretical and Numerical Steady State
Solutions');
legend('Numerical Soultionf, ' Steady-State Solution');

figure(2)
semilogy(x, Error) ;
xlabel('xbar');
ylabel('Relative Error');
title('Error Between two Steady States1);

B.2 FinalAlgorithmNonlinear.m

%Created by Dustin Sipka
%EP 700
%Time Dependent Nonlinear Diffusion Equation
%January 30, 2006
%Solves the time dependent nonlinear equation using the
implicit method and
%lets it run to get the steady state distribution and
compare it to the
%theoretical prediction, also puts into one file all of the
analysis that
%has been done so results can be arrived at easily

clear
clc

79

format long g

%Defining Initial Conditions and Constants
Diffusion = 1;
Length = 1;
TempL = 1;
TempO = 1;
sLength = 0.5;
solution for constant source
sLength2 = 1;
solution with constant null
N = 1;

%Diffusion coefficient
%Length of the space
%Temp at end of space
%Temp at beginning of space
%Length of steady-state

%Length of steady-state

%Constant factor for
dimensionless variables (decrease N decrease penetration
depth, increase N increase penetration depth)
n = 5; %Different values for
nonlinear solution
space = 100;
sx = 0:sLength/(space):sLength;
steady-state
sxbar = sx/sLength;
state
x = 0:Length/space:Length;
xbar = x/Length;
dx = Length/space;
dxbar = dx/Length;
w = 0.01*pi;
time = 4000;
t = 1:1:t ime;
tconstant = 1000;
that elapse
T = (Length.A2*N)/(Diffusion*TempO."n
tbar = (1000)/(tconstant*T);
dt = dx.A2/2;
dtbar = dt/tbar;
resolution
Temp = zeros(time,length(x));
temperature matrix
lambda = dtbar/((n+1)*dxbar.A2);
numerical algorithm
Q = zeros(time,space+1);
Q(l,space/2) = 100;
periodtimesteps = round(2*pi/(w));
steps in one period of oscillation
SteadyL = 1;
steady-state solution

%Spatial resolution
%Spatial resolution for

%Unitless space for steady-

%Number of spatial points
%Unitless space
%Spatial resolution
%Unitless space
%Frequency of source

time steps
vector
time constants

INumber of
%Time step
INumber of

%Time constant
%Unitless time
%Time resolution
%Unitless time

%Size of

%Coefficient in

%Source Term
%source Term
%Number of time

%Temp at end for

80

SteadyO = (SteadyL. 'N (n+1) + (Length-
0.5) .*((Q(l,space/2)*dxbar*(n+1))/(2*Diffusion))) .A (l/(n+l)
); %Temp at source for steady-state solution

%Initial Conditions

%Solving for the initial Temperature distribution
%Calculates the initial temperature distribution
for j = 1:length(sx)

Steadyl(j) = ((1/sLength)*(SteadyL.A(n+1)-
SteadyO./x (n+1)) *sxbar (j) . . .

+SteadyO.~(n+l))."(l/(n+l));
end

%Calculates the steady-state for distribution with constant
null
for j = 1:length(sx)

SteadySS(j) = ((l/sLength2)*(SteadyL."(n+1)-
SteadyO./N (n+1)) *sxbar (j) . . .

+SteadyO.A(n+1)) ." (l/(n+l));
end

%For distribution with extended null area
for i = 1:51

Steady3(i) = Steadyl(i);
Steady3(i+50) = SteadyL;

end

Temp(l,:) = Steady3;

%Putting in the boundary conditions for all time
for i = l:time

Temp(i,1) = Temp(1,1);
Temp(i,length(x)) = Temp(1,length(x));

% Q(i,space/2) = 100; %Steady source
% Q(i, (space/2)) = Q(i,space/2) + 100*sin(w*(i-1));
%Oscillating source with steady source
end

%Scaling Temperature to TempO
%Temp = Temp/Temp(1,1); %For symmetric
distribution with constant source
Temp = Temp/Temp(1,length(x)); %For distribution with
extended null area

%Nonlinear LU Decomposition

81

%Note: boundary nodes are ignored for this computation.
Decompositions
%starts at j = 2 and ends at j = length(x)-l

%Filling Three Vectors of the Tridiagonal Matrix
d = zeros(size (x));
u = zeros(size (x));
1 = zeros (size (x));
%Note: u(space-l)=0 and 1(1) = 0

D = zeros(size(d)); %Intermediate vector for LU
decomposition
deltaTemp = zeros(size(Temp));
deltaTemp(:,1) = 0;
deltaTemp(:,length(x)) = 0;

h = waitbar (0, !There is no spoon...');
for m = 2:time

waitbar(m/time)
for i = l:space-l

%Setting up B
B(m-l,i) = lambda*(Temp(m-l,i)) ." (n+1)-

2*lambda*(Temp(m-1,i+1)).A(n+1)+lambda*(Temp(m-
l,i+2)).A(n+1);% + dtbar*Q(m-1,i);

%Setting up the three diagonal vectors
d(i) = (1+2*(n+1)*lambda*(Temp(m-1,i)). ~n);
if (i == 1)

Mi) = 0;
else

l(i) = -l*lambda*(n+1)*(Temp(m-1,i-1)). ~n;
end
if(i == space-1)

u(i) = 0;
else

u(i) = -l*lambda*(n+1)*(Temp(m-1,i+1))."n;
end

%Decomposition of coefficient matrix
factor = l(i+l)/d(i);
1 (i + 1) = factor;
d(i+l) = d(i+l) - factor*u(i);

%Forward Substitution
if(i == 1)

D(i) = B(m-l,i);

82

else
D(i) = B(m-l,i) - l(i)*D(i-l);

end
end
for i = space:-1:2

%Backward substitution
if (i == space)

deltaTemp(m-1,i) = D(i-1)/d(i-1);
else

deltaTemp(m-1,i) = (D(i-l) - u(i-
l)*deltaTemp(m-l,i+l))/d(i-l) ;

end
end

%Solving for the new temperatures
for i = 2:space

Temp(m,i) = Temp(m-1,i) + deltaTemp(m-1,i);
end

end
close(h);

%Plots the Different Time Steps as a movie

%mov = avifile('difmov.avi','fps',10);
for i = 1:time/10

figure (1) ;
plot(x,Temp(10*i,:),x,SteadySS);
title('General Nonlinear Diffusion with Non-Zero

Boundary Conditions');
xlabel ('Length of Wave Solution');
ylabel('Amplitude of Solution');
%legend('Numerical Solution','Exact Solution');
%axis([0 Length 0 2]);
axis([0 Length 0.9 1.3]);
F(i) = getframe;
%mov = addframe(mov,F(i));

end
%mov = close(mov);
movie(F); %Shows Plots as a Movie

B.3 FinalCrankNicolsonAlgorithmNonlinear.m

%Created by Dustin Sipka
%EP 700
%Time Dependent Nonlinear Diffusion Equation

83

%January 30, 2006
%Solves the time dependent nonlinear equation using the
implicit method and
%lets it run to get the steady state distribution and
compare it to the
%theoretical prediction, also puts into one file all of the
analysis that
%has been done so results can be arrived at easily

clear
clc
format long g

%Defining Initial Conditions and
%Parameters that can be controll
parameter = 1/2;
Nicolson variation
%Diffusion = 1;
Length = 1;
%TempL = 1;
%TempO = 1;
SteadyL = 0;
state solution
SteadyO = 1;
steady-state solution
sLength = 0.5;
solution for constant source
sLength2 = 1;
solution with constant null
%N = 1;
dimensionless variables (decreas
depth, increase N increase penet
n = 4;
nonlinear solution
n2 = 0;
space = 100;
%w = 0.01*pi;
time = 40000;
dtbar = le-5;

Constants
ed and changed
^Parameter for Crank-

%Diffusion coefficient
%Length of the space
%Temp at end of space
%Temp at beginning of space
%Temp at end for steady-

%Temp at beginning of

%Length of steady-state

%Length of steady-state

%Constant factor for
e N decrease penetration
ration depth)
%Different values for

%Spatial resolution
%Frequency of source
%Number of time steps
%Resolution of time

%Parameters the algorithm needs to know
sx = 0:sLength/(space):sLength;
resolution for steady-state
sxbar = sx/sLength;
space for steady-state
x = 0:Length/space:Length;
spatial points

%Spatial

%Unitless

%Number of

84

xbar = x/Length;
space
%dx = Length/space;
resolution
dxbar = Length/space;
space
%T = (Length.A2*N*(n+1))/(Diffusion*TempO."n);
constant
%dtbar = dt/T;
time resolution
tbar = time*dtbar;
time
tbarv = 0:dtbar:tbar;
time vector

%Unitless

%Spatial

%Unitless

%Time

%Unitless

%Unitless

%Unitless

^Parameters for analysis
Temp = zeros((time/10),length(x));
temperature matrix
TempF = zeros(10,length(x));
algorithm matrix
lambda = dtbar/(dxbar.A2);
numerical algorithm
%Q = zeros(time,space+1);
%Q(1,space/2) = 100;
%periodtimesteps = round(2*pi/(w));
steps in one period of oscillation
t = 1:1:(time/10);
vector
t = t*10*dtbar;
%SteadyO = (SteadyL."(n+1) + (Length-
0.5) .*((Q(l, space/2) *dxbar* (n+1)) / (2*Dif fusion))) . Ml/(n+1)
); %Temp at source for steady-state solution

%Size of

%Size of

%Coefficient in

%Source Term
%Source Term
%Number of time

%Time step

%tbar vector

>Initial Conditions-

%Solving for the initial Temperature distribution
%Calculates the initial temperature distribution
for j = 1:length(sx)

Steadyl(j) = ((1/sLength)*(SteadyL.A(n+1)-
SteadyO./N (n+1)) *sxbar (j) . . .

+SteadyO./N (n+1)) . A (l/(n+l)) ;
% Steadyl(j) = 0;
end

%Calculates the steady-state for distribution with constant
null
for j = 1:length(sx)

85

SteadySS(j) = ((l/sLength2)*(SteadyL.A(n+1)-
SteadyO.A(n+1))*sxbar(j)...

+SteadyO.~(n+1)) .A (l/(n+l));
end

%For distribution with extended null area
for i = 1: ((space/2)+1)

Steady3(i) = Steadyl(i);
Steady3(i+(space/2)) = SteadyL;

end

Temp(l,:) = Steady3;
%Temp(l,l) = 1;

%Putting in the boundary conditions for all time
for i = 0:((time/10)-1)

Temp(i+1,1) = Temp(1,1);
Temp(i+1,length(x)) = Temp(1,length(x));

% Q(i,space/2) = 100; %Steady source
% Q(i, (space/2)) = Q(i,space/2) + 100*sin(w*(i-1));
%Oscillating source with steady source
end

for i = 1:10
TempF(i,l) = Temp(1,1);
TempF(i,length(x)) = Temp(1,length(x));

end

%Nonlinear LU Decomposition

%Note: boundary nodes are ignored for this computation.
Decompositions
%starts at j = 2 and ends at) = length(x)-l

%Filling Three Vectors of the Tridiagonal Matrix
d = zeros(size (x));
u = zeros(size(x));
1 = zeros(size(x));
%Note: u(space-l)=0 and 1(1) = 0

D = zeros(size(d)); %Intermediate vector for LU
decomposition
deltaTemp = zeros(size(TempF));
deltaTemp(:,1) = 0;
deltaTemp(:,length(x)) = 0;

h = waitbar(0,'There is no spoon...');

86

for q = 1:((time/10)-l)
waitbar(q/(time/10),h)
TempF(l,:) = Temp(q,:);
for m = 2:10

for i = l:space-l

%Setting up B
B(m-l,i) = lambda*parameter*(TempF(m-1,i)).A(n+1)-

2*lambda*parameter*(TempF(m-
l,i+l)) ."(n+l)+lambda*parameter*(TempF(m-1,i+2)) .A (n+l) + (l-
parameter)*lambda*(TempF(m-1,i).~(n+1)-2*TempF(m-
l,i+l) ."(n+l)+TempF(m-l,i+2) ." (n+1));% + dtbar*Q(m-1,i);

%Setting up the three diagonal vectors
d(i) = (1+2*(n+1)*lambda*parameter*(TempF(m-

l,i))."n);
if (i == 1)

Mi) = 0;
else

l(i) = -l*lambda*parameter*(n+1)*(TempF(m-1,i-
D) ."n;

end
if (i == space-1)

u(i) = 0;
else

u(i) = -l*lambda*parameter*(n+1)*(TempF(m-
l,i+l)).~n;

end

%Decomposition of coefficient matrix
factor = l(i+l)/d(i);
l(i+l) = factor;
d(i+l) = d(i+l) - factor*u(i);

%Forward Substitution
if (i == 1)

D(i) = B(m-l,i) ;
else

D(i) = B(m-l,i) - l(i)*D(i-l);
end

end
for i = space:-l:2

%Backward substitution
if (i == space)

deltaTemp(m-1,i) = D(i-1)/d(i-1);
else

87

deltaTemp(m-1,i) = (D(i-l) - u(i-
1)*deltaTemp(m-l,i+l))/d(i-l);

end
end

%Solving for the new temperatures
for i = 2:space

TempF(m,i) = TempF(m-1,i) + deltaTemp(m-1,i);
end

end
Temp(q+1,:) = TempF(10,:);
end
close(h);

[a,b] = find(Temp > 0.099 & Temp < 0.100);

%Calculates error between steady-state and numerical
solution for
%initial condition with constant null area to see how fast
the
%numerical solution is approaching the steady-state
for m = 1:(time/10)

for z = l:space+l
Speed(m,z) = SteadySS(z)-Temp(m,z);

end
end

%This calculates the time constant
tau = abs ((log(Speed(((time/10)-5),51))-
log(Speed(((time/10)-6),51))))/(l*10*dtbar);
time-constant = 1/tau;

%Fourier Transform to look at amplitudes of different modes
for initial
%condition with constant null region
clear q k) i

p = 0:1:10; %Mode of Interest

%Subtracting out the steady-state solution
TempFour = zeros(size(Temp));

for k = 1:(time/10)
for j = l:space+l

TempFour(k, j) = Temp(k,j) - SteadySS(j);
end

end

88

%Fourier Transform
for q = 1:length(p)

for k = 1:((time/10))
for j = 1:space

%Transform(j) =
TempFour(k, j)*exp(2*i*pi*p(q)*(j-1)/(space))/(space);

Transform(j) =
TempFour(k, j)*sin(pi*p(q)*x(j))/(space);

end
Frequency(k) = 2*sum(Transform);

end
Amplitudes(q,:) = Frequency;

end
Amplitudes2 = sqrt(Amplitudes.*(Amplitudes));

%This calculates the time constant of the present sine
modes
tau2 = abs((log(Amplitudes2(2,((time/10)-2500)))-
log(Amplitudes2 (2, ((time/10)-2501)))))/(l*10*dtbar);
time-constant2 = l/tau2;

%Plotting the Time History of the Mode Amplitudes
figure(6)
plot(t,log(Amplitudes2(2,:)),t,log(Amplitudes2(3,:)),t,log(
Amplitudes2(4,:)),t,log(Amplitudes2(5,:)));
xlabel ('tbar');
ylabel('Amplitude');
legend('Mode 1','Mode 2','Mode 3','Mode
4','Location','Best');
title('Time History of Mode Amplitudes');

figure(7)
plot(x,Temp(1,:),x,Temp(time/10,:),x,SteadySS);
xlabel('xbar');
ylabel('Temp');
legend('Initial Condition','Numerical Solution','Steady-
State ','Location','Best');
title('Position of Wavefront when Timescale is
Calculated');

figure(8)
plot(x,Temp(l,:),x,Temp(500,:),x,Temp(1000,:),x,Temp(1500,:
),x,Temp(2000,:),x,Temp(2500,:),x,Temp(3000,:),x,Temp(3500,
:),x,Temp(4 000,:),x, SteadySS) ;
xlabel('xbar') ;
ylabel('Temp');

89

title('Self-Similar Solutions');

B.4 GoodDiffusion.m

%Created by Dustin Sipka
%EP 700
%General Diffusion Equation
%April 6, 2005

clear
clc
format long g

%Note that in T(i,n) "i" represents time and "n" represents
space

%Definition of constants and parameters
order = 10; %Order of Interest
diffusion = 1; %Diffusion Coefficient
L = 1; %Length of Wave
T = L.A2/diffusion; %Makes Coefficient "1"
time = 100; %Time Steps
tconstant = 10; %Number of time constants that
elapse
tbar = (time/tconstant)/T; %Unitless Time
Steps
space = 500; %Resolution of Solution
dx = L/space; %Spatial resolution
dxbar = dx/L; %Unitless Spatial Resolution
dt = ((L/(order*pi)).A2/diffusion); %Time
resolution
dtbar = dt/tbar; %Unitless dt
theta = 0:L/space:L; %Values for Solution
xbar = theta/L; %Unitless Space
lambda = (diffusion*dtbar)/(dxbar.A2); %Constant from
FDE
alpha = l+2*lambda; %Constant from FDE
Temp = zeros(time,space+1);
t = 0:dtbar:(99*dtbar);

%Solving Numerically Using LU Decomposition-

%Boundary Conditions
for i = l:time

Temp(i,1) = 0;

90

Temp(i,space+1) = 0;
end

%Initial Conditions (b vector in LU Decompostion)
Temp(l,:) = sin(pi*xbar) + (1/1)*sin(2*pi*xbar)...

+ (l/l)*sin(3*pi*xbar) + (1/1)*sin (4*pi*xbar) .. .
+ (1/1)*sin(5*pi*xbar) + (1/1)*sin (6*pi*xbar) . ..
+ (1/1)*sin(7*pi*xbar) + (1/1)*sin (8*pi*xbar) ...
+ (1/1)*sin(9*pi*xbar) + (1/1)*sin(10*pi*xbar);

%Filling Three Vectors of the Tridiagonal Matrix
for n = l:space-l

d(n) = alpha;
u(n) = -lambda;
1(n) = -lambda;

end
u(space-l) = 0;
1(1) = 0;
D = zeros(size(d)); %Intermediate Vector in LU
Decomposition

%Decomposition of Tridiagonal Matrix
for k = 2:space-l

factor = l(k)/d(k-l) ;
l(k) = factor;
d(k) = d(k) - factor*u(k-l);

end

%Forward and Backward Substitution to Solve for Next Time
Step
for m = 2:time

B = Temp;
%Forward (only works for tridiagonal sparse matrix)
for i = l:space-l

if (i == 1)
B(m-1,i+1) = B(m-1,i+1) + lambda*B(m-1,i);

elseif (i == space-1)
B(m-1,i+1) = B(m-1,i+1) + lambda*B(m-1,i+2);

end
if (i == 1)

D(i) = B(m-1,i+1); %First element of D
else

D(i) = B(m-l,i+l) - l(i)*D(i-l); %Forward
loop

end
end
%Backward (only works for tridiagonal sparse matrix)

91

for i = space:-1:2
if (i == space)

Temp(m,i) = D(i-1)/d(i-1); %Last element of X
else

Temp(m,i) = (D(i-l) - u(i-1)*Temp(m,i+1))/d(i-
1); %Backward loop

end
end

end

%Performs Fourier Transform to Find Amplitudes of Different
Modes
for i = l:time

for m = 1:10
for n = 1:space

transform(n) =
Temp(i,n)*sin(m*pi*xbar(n))/(space);

end
Amplitude(i,m) = 2*sum(transform);

end
end

%Solving the Exact Solution

%Setting Up Time Constant
for n = 1:10

tau (n) = (L/((n)*pi)) .A2/diffusion;
end

dtexact = tau(order)/(time/tconstant);
texact = 0:dtexact:time*dtexact;

%Setting Up Amplitudes
for i = 1:10

for n = l:time
A(n,i) = exp (-texact(n)/tau(i));

end
end

%Exact Solution
%Boundary Conditions
for i = l:time

Ex(i,l) = 0;
Ex(i,space+1) = 0;

end

%Solution

92

for i = l:time
for n = 2:space

Ex(i,n) = A(i,l)*sin(pi*xbar(n)) +
A(i,2)*sin(2*pi*xbar(n))...

+ A(i,3)*sin(3*pi*xbar(n)) +
A(i,4)*sin(4*pi*xbar(n))...

+ A(i,5)*sin(5*pi*xbar(n)) +
A(i,6)*sin(6*pi*xbar(n))...

+ A(i,7)*sin(7*pi*xbar(n)) +
A(i,8)*sin(8*pi*xbar(n))...

+ A(i,9)*sin(9*pi*xbar(n)) +
A(i,10)*sin(10*pi*xbar(n));

end
end

O.

%Calculates Error Using RMS of Actual Solution to the
Numerical Solution of
%'order'
ErrorSol = (Temp - Ex).A2;
for i = l:time

RMS(i) = sqrt(sum(ErrorSol(i, :))/ (space+1));
end

%Calculates Error Between Actual and Numerical Amplitudes
ErrorAmp = abs(A(:,order) - Amplitude(:,order));

%Plotting

x = 1:1:time; %Used to Plot Change in Error with Time

figure(1)
plot(theta,Temp(time,:),theta,Ex(time,:));
title('General Diffusion with Dirichlet Boundary
Conditions');
xlabel('Length of Wave Solution');
ylabel('Temperature');
legend('Numerical Solution',!Exact Solution');

figure(2)
semilogy(t(1:100),RMS(1:100));
title('Error Between Solutions over Time1);
xlabel('Number of Time Steps');
ylabel('Error Between Solutions');

figure(3)

93

semilogy(t,ErrorAmp);
title('Error Between Amplitudes of Solutions');
xlabel('tbar');
ylabel('Error Between Amplitudes');

figure(4)
plot(t,A(:,order),t,Amplitude(:,order)) ;
title('Amplitude of Selected Order');
xlabel('tbar');
ylabel('Amplitude of Order');
legend('Exact Solution','Numerical Solution');

%Time Lapse Plot of Solution
figure(5)
subplot(2,2,1)
plot(theta,Temp(1,:));
xlabel('tbar = 1');
ylabel('Amplitude');
axis ([0 L -1 8]);
subplot(2,2,2)
plot(theta,Temp(25,:));
xlabel('tbar = 25');
axis([0 L -1 8]);
subplot(2,2,3)
plot(theta,Temp(50,:));
xlabel('tbar = 50');
ylabel('Amplitude');
axis([0 L -1 8]);
subplot(2,2,4)
plot(theta,Temp(75,:));
xlabel('tbar = 75') ;
axis([0 L -1 8]);

figure(6)
plot(theta,Temp(1,:),theta,Temp(25,:),' —
',theta,Temp(50,:),':',theta,Temp(75,:),'-
.',theta,Temp(100,:),'-');
%plot(theta,Temp(1,:));
ylabel('Temp');
xlabel('Length of Solution');
title('Solution of General Diffusion Equation');
legend('tbar = 0','tbar = 25','tbar = 50','tbar =
= 100');

figure(7)
plot(t,Amplitude);
ylabel('Amplitude');

94

xlabel('tbar');
title('Decay of Amplitudes Over Time');
axis([0 99*dtbar 0 1]);
legend('Mode 1','Mode 2','Mode 3','Mode 4','Mode 5','Mode
6','Mode 7','Mode 8','Mode 9','Mode 10');

figure (8)
plot(theta,sqrt(ErrorSol (100,:)));
xlabel('Length of Wave Solution1);
ylabel('Absolute Error');
title('Absolute Error Relative to Position');

B.5 GoodTimeNonlinearDiffusion.m

%Created by Dustin Sipka
%EP 700
%Time Dependent Nonlinear Diffusion Equation
%September 23, 2005
%Solves the time dependent nonlinear equation using the
implicit method
clear
clc
format long g

%Defining Initial Conditions and Constants
Diffusion = 1; %Diffusion coefficient

%Different

Length = 1;
TempL = 1;
TempO = 5;
N = 1;
variables
n = 5;
space = 100;
x = 0:Length/space:Length;
xbar = x/Length;
dx = Length/space;
dxbar = dx/Length;
time = 1000;
tconstant = 1000;

%Length of the space
%Temp at end of space
%Temp at beginning of space
%Constant factor for dimensionless

values for nonlinear solution
%Spatial resolution
%Number of spatial points
%Unitless Space
%Spatial resolution
%Unitless Space
%Number of time steps
%Number of time constants that

elapse
T = (Length.A2*N)/(Diffusion*TempO.~n); %Time constant
tbar = (1000/tconstant)/ (T);%Unitless time
dt = dx.A2/2; %Time resolution
dtbar = dt/tbar; %Unitless time resolution

95

w = 0.01; %Frequency of boundary
temperature
Temp = zeros(time,length(x)); %Size of temperature matrix
lambda = dtbar/((n+1)*dxbar.A2);

%Initial Conditions

%Solving for the initial Temperature distribution
for j = 1:length(x)

Temp(l, j) = ((1/Length) * (TempL./N (n+1)-
TempO.A(n+1))*xbar(j)...

+TempO.A(n+1)).A(l/(n+l));
end

%Putting in the boundary conditions for all time
for i = 2:time

%Temp(i,l) = TempO - time*dtbar*i;
Temp(i,l) = TempO + sin(w*i);
%Temp(i,1) = 0;
Temp(i,length(x)) = TempL;

end

%Scaling Temperature to TempO
Temp = Temp/TempO;

%Nonlinear LU Decomposition

%Note: boundary nodes are ignored for this computation.
Decompositions
%starts at j = 2 and ends at) = length(x)-l

%Filling Three Vectors of the Tridiagonal Matrix
d = zeros (size (x));
u = zeros(size(x));
1 = zeros(size (x));
%Note: u(space-l)=0 and 1(1) = 0

D = zeros(size(d)); %Intermediate vector for LU
decomposition
deltaTemp = zeros(size(Temp));
deltaTemp(:,1) = 0;
deltaTemp(:,length(x)) = 0;

h = waitbar(0,'There is no spoon...');
for m = 2:time

waitbar(m/time)
for i = l:space-l

96

%Setting up B
B(m-l,i) = lambda*(Temp(m-1,i)).~(n+1)-

2*lambda*(Temp(m-1,i+1)).A(n+1)+lambda*(Temp(m-
l,i+2)).A(n+1);

%Setting up the three diagonal vectors
d(i) = (1+2*(n+1)*lambda*(Temp(m-1,i)).An);
if (i == 1)

Mi) = 0;
else

l(i) = -l*lambda*(n+1)*(Temp(m-1,i-1))."n;
end
if(i == space-1)

u(i) = 0;
else

u(i) = -l*lambda*(n+1)*(Temp(m-1,i+1)). ~n;
end

%Decomposition of coefficient matrix
factor = l(i+l)/d(i);
1 (i + 1) = factor;
d(i+l) = d(i+l) - factor*u(i);

%Forward Substitution
if(i == 1)

D(i) = B(m-l,i) ;
else

D(i) = B(m-l,i) - l(i)*D(i-l);
end

end
for i = space:-1:2

%Backward substitution
if (i == space)

deltaTemp(m-1,i) = D(i-1)/d(i-1);
else

deltaTemp(m-1,i) = (D(i-l) - u(i-
1)*deltaTemp(m-l,i + l))/d(i-l) ;

end
end

%Solving for the new temperatures
for i = 2:space

Temp(m,i) = Temp(m-1,i) + deltaTemp(m-1,i);
end

end
close(h);

97

figure (1)
plot(x,Temp(l, :),x,Temp(10, :) , x,Temp(100,:),x,Temp (500, :) ,x
,Temp(1000,:)) ;
xlabel('Length');
ylabel('Temperature');
title('Solution of Nonlinear Diffusion Equation');
legend('t = l','t = 10', 't = 100', 't = 500', 't = 1000');

B. 6 HomoNonlinearDiffusion.m

%Created by Dustin Sipka
%EP 700
^Homogeneous Nonlinear Diffusion Equation
%September 8, 2005
%Plots the solution to the general homogeneous nonlinear
diffusion equation
%for varying values of n

clear
clc
format long g

%Defining Initial Conditions and Constants
Length = 1; %Length of the space
TempL = 1; %Temp at end of space
TempO = 5; %Temp at beginning of space
n = [- 5 - 4 - 3 - 2 0 1 2 3 4 5]; %Different values for
nonlinear solution
x = 0:Length/100:Length; %Number of spatial points

%Solving for the Temperature distribution
%Note: i = power of the solution and) = spatial
temperature
h = waitbar(0,'There is no spoon...1);
for i = 1:length(n)

waitbar(i/length(n))
for j = 1:length(x)

Temp(i,j) = ((1/Length)*(TempL.A(n(i)+1)-
TempO.A(n(i)+1))*x(j)+TempO.~(n(i)+1)) .A (1/(n(i)+1));

end
end
close(h);

%Scaling Temperature to TempO

98

Temp = Temp/TempO;

%Plotting the Different Solutions
plot(x,Temp)
xlabel('Length');
ylabel('Temperature');
title('Steady State Nonlinear Diffusion Equation for
Varying Powers');
legend('n = -5','n = -4','n = -3','n = -2','n =
0','n=l','n=2','n=3','n=4','n=5');

B. 7 InitialConditionofInterestm

%Created by Dustin Sipka
%EP 700
%Time Dependent Nonlinear Diffusion Equation
%January 30, 2006
%Solves the time dependent nonlinear equation using the
implicit method and
%lets it run to get the steady state distribution and
compare it to the
%theoretical prediction, also puts into one file all of the
analysis that
%has been done so results can be arrived at easily

clear
clc
format long g

%Defining Initial Conditions and Constants
%Parameters that can be controlled and changed
parameter = 1/2; ^Parameter for Crank-
Nicolson variation
%Diffusion = 1; %Diffusion coefficient
Length = 1; %Length of the space
%TempL = 1; %Temp at end of space
%TempO = 1; %Temp at beginning of space
SteadyL = 0; %Temp at end for steady-
state solution
SteadyO = 1; %Temp at beginning of
steady-state solution
sLength = 0.5; %Length of steady-state
solution for constant source
sLength2 = 1; %Length of steady-state
solution with constant null

99

%N = 1
dimens
depth,
n = [0
values
n2 = 0
space
%w = 0
time =
dtbar

; %Constant factor for
ionless variables (decrease N decrease penetration
increase N increase penetration depth)
1 2 3 4 5]; %Different
for nonlinear solution

= 100;
.01*pi
40000

= le-5

%Spatial resolution
%Frequency of source
%Number of time steps
%Resolution of time

%Parameters the algorithm needs to know
sx = 0:sLength/(space):sLength;
resolution for steady-state
sxbar = sx/sLength;
space for steady-state
x = 0:Length/space:Length;
spatial points
xbar = x/Length;
space
%dx = Length/space;
resolution
dxbar = Length/space;
space
%T = (Length. A2*N* (n+1))/(Diffusion*TempO./xn) ;
constant
%dtbar = dt/T;
time resolution
tbar = time*dtbar;
time
tbarv = 0:dtbar:tbar;
time vector

%Spatial

%Unitless

%Number of

%Unitless

%Spatial

%Unitless

%Time

%Unitless

%Unitless

%Unitless

^Parameters for analysis
Temp = zeros((time/10),length(x));
temperature matrix
TempF = zeros(10,length (x));
algorithm matrix
lambda = dtbar/(dxbar.A2);
numerical algorithm
%Q = zeros(time,space+1);
%Q(1,space/2) = 100;
%periodtimesteps = round (2*pi/(w));
time steps in one period of oscillation
t = 1:1:(time/10);
vector
t = t*10*dtbar;

%Size of

%Size of

%Coefficient in

%Source Term
%Source Term
%Number of

%Time step

%tbar vector

100

%SteadyO = (SteadyL."(n+1) + (Length-
0.5) .* ((Q(l, space/2)*dxbar* (n+1)) / (2 *Dif fusion))) .Ml/(n+1)
); %Temp at source for steady-state solution

for z = 1:length(n)
%Initial Conditions

%Solving for the initial Temperature distribution
%Calculates the initial temperature distribution
for j = 1:length(sx)

Steadyl(j) = ((1/sLength)*(SteadyL.A(n(z)+l)-
SteadyO. M n (z) +1)) *sxbar (j) . . .

+SteadyO.Mn(z)+l)) . A (1/(n (z)+1)) ;
% Steadyl(j) = 0;
end

%Calculates the steady-state for distribution with constant
null
for j = 1:length(sx)

SteadySS(j) = ((l/sLength2)*(SteadyL."(n(z)+l)-
SteadyO.A(n(z)+1))*sxbar(j)...

+SteadyO.A (n (z)+1)) .A(1/(n (z)+1));
end

%For distribution with extended null area
for i = 1:((space/2)+1)

Steady3(i) = Steadyl(i);
Steady3(i+(space/2)) = SteadyL;

end

Temp(l,:) = Steady3;
TempSteady(z,:) = Temp(l,:);
end

figure (1)
plot(x,TempSteady);
xlabel('xbar');
ylabel('Temp');
legend('n=0','n=l','n=2','n=3','n=4','n=5');
title('Initial Conditions of Interest1);

B.8 SourceGoodTimeNonlinearDiffusion.m

%Created by Dustin Sipka
%EP 700

101

%Time Dependent Nonlinear Diffusion Equation
%September 23, 2005
%Solves the time dependent nonlinear equation using the
implicit method
clear
clc
format long g

%Defining Initial Conditions and Constants
Diffusion = 1; %Diffusion coefficient
Length = 1; %Length of the space
TempL = 5; %Temp at end of space
TempO = 5; %Temp at beginning of space
N = 1; %Constant factor for dimensionless
variables
n = 3; %Different values for nonlinear solution
space = 100; %Spatial resolution
x = 0:Length/space:Length; %Number of spatial points
xbar = x/Length; %Unitless Space
dx = Length/space; %Spatial resolution
dxbar = dx/Length; %Unitless Space
time = 1000; %Number of time steps
tconstant = 1000; %Number of time constants that
elapse
T = (Length.A2*N)/(Diffusion*TempO.An); %Time constant
tbar = (1000/tconstant)/(T);%Unitless time
dt = dx.A2/2; %Time resolution
dtbar = dt/tbar; %Unitless time resolution
w = 0.01*pi; %Frequency of boundary
temperature
Temp = zeros(time,length(x)); %Size of temperature matrix
lambda = dtbar/((n+1)*dxbar.A2);
Q = zeros(time,space+1); %Source Term

.Initial Conditions-

% %Solving for the initial Temperature distribution
% for j = 1:length(x)
% Temp(l,j) = ((1/Length) * (TempL. Mn+1)-
TempO.A(n+1))*xbar (j) ...
% +TempO.A(n+1)) .A(1/ (n+1));
% end
Temp(1,:) = 5;
Temp(1,50) = 10;
Temp(l,51) = 10;
Temp(1,52) = 10;

102

%Putting in the boundary conditions for all time
for i = 2:time

%Temp(i,l) = TempO - time*dtbar*i;
%Temp(i,l) = TempO + sin(w*i);
Temp(i,1) = TempO;
Temp(i,length(x)) = TempL;
%Q(i,space/2) = 2000; %Steady source
%Q(i,space/2) = 2000*sin(w*(i-1)); %Oscillating

source
end

%Scaling Temperature to TempO
Temp = Temp/TempO;

%Nonlinear LU Decomposition

%Note: boundary nodes are ignored for this computation.
Decompositions
%starts at j = 2 and ends at j = length(x)-1

%Filling Three Vectors of the Tridiagonal Matrix
d = zeros (size(x));
u = zeros(size(x));
1 = zeros(size (x));
%Note: u(space-l)=0 and 1(1) = 0

D = zeros(size(d)); %Intermediate vector for LU
decomposition
deltaTemp = zeros(size(Temp));
deltaTemp(:,1) = 0;
deltaTemp(:,length(x)) = 0;

h = waitbar (0, 'There is no spoon...');
for m = 2:time

waitbar(m/time)
for i = l:space-l

%Setting up B
B(m-l,i) = lambda*(Temp(m-1,i))."(n+1)-

2*lambda*(Temp(m-1,i+1))."(n+1)+lambda*(Temp(m-
l,i+2)) .A (n+1) + dtbar*Q(m-l,i);

%Setting up the three diagonal vectors
d(i) = (1+2*(n+1)*lambda*(Temp(m-1,i))."n);
if (i == 1)

Mi) = 0;
else

103

l(i) = -l*lambda* (n+1) * (Temp (m-1, i-1)) ./Nn;
end
if (i == space-1)

u(i) = 0;
else

u(i) = -l*lambda*(n+1)*(Temp(m-1,i+1))."n;
end

%Decomposition of coefficient matrix
factor = l(i+l)/d(i);
l(i+l) = factor;
d(i+l) = d(i+l) - factor*u(i);

%Forward Substitution
if (i == 1)

D(i) = B(m-l,i);
else

D(i) = B(m-l,i) - l(i)*D(i-l);
end

end
for i = space:-1:2

%Backward substitution
if(i == space)

deltaTemp(m-1,i) = D(i-1)/d(i-1);
else

deltaTemp(m-1,i) = (D(i-l) - u(i-
1)*deltaTemp(m-l,i+l))/d(i-l);

end
end

%Solving for the new temperatures
for i = 2:space

Temp(m,i) = Temp(m-1,i) + deltaTemp(m-1,i);
end

end
close(h);

%Plots the Different Time Steps
%mov = avifile('difmov.avi','fps',10);
for i = 1:time/10

figure(1);
plot(x,Temp(10*i,:));
title('General Nonlinear Diffusion with Non-Zero

Boundary Conditions');
xlabel ('Length of Wave Solution');
ylabel('Amplitude of Solution1);
%legend('Numerical Solution','Exact Solution');

104

axis([0 Length 0 2]);
F(i) = getframe;
%mov = addframe(mov,F(i));

end
%mov = close(mov);
movie(F); %Shows Plots as a Movie

B.9 TimeConstantsNonlinear.m

%Created by Dustin Sipka
%EP 700
%Time Dependent Nonlinear Diffusion Equation
%March 2, 2006
%Calculates the time-constant function and compares to
actual time-constants
%calculated using FinalCrankNicolsonAlgorithm.m

clear
clc
format long g

%Defining Initial Conditions and Constants
^Parameters that can be controlled and changed
parameter = 1/2; ^Parameter for Crank-
Nicolson variation
%Diffusion = 1; %Diffusion coefficient
Length = 1; %Length of the space
%TempL = 1; %Temp at end of space
%TempO = 1; %Temp at beginning of space
SteadyL = 0; %Temp at end for steady-
state solution
SteadyO = 1; %Temp at beginning of
steady-state solution
sLength = 0.5; %Length of steady-state
solution for constant source
sLength2 = 1; %Length of steady-state
solution with constant null
%N = 1; %Constant factor for
dimensionless variables (decrease N decrease penetration
depth, increase N increase penetration depth)
n = 0:0.1:10; %Different values for
nonlinear solution
n2 = 0;
space = 200; %Spatial resolution
%w = 0.01*pi; %Frequency of source

105

time = 40000; %Number of time steps
dtbar = le-5; %Resolution of time

%Parameters the algorithm needs to know
sx = 0:sLength/(space):sLength; %Spatial
resolution for steady-state
sxbar = sx/sLength; %Unitless
space for steady-state
x = 0:Length/space:Length; %Number of
spatial points
xbar = x/Length; %Unitless
space
%dx = Length/space; %Spatial
resolution
dxbar = Length/space; %Unitless
space
%T = (Length.A2*N*(n+1))/(Diffusion*TempO."n); %Time
constant
%dtbar = dt/T; %Unitless
time resolution
tbar = time*dtbar; %Unitless
time
tbarv = 0:dtbar:tbar; %Unitless
time vector

%Calculates the steady-state for distribution with constant
null
for k = 1:length(n)

for j = 1:length (sx)
SteadySS(k,j) = ((l/sLength2)*(SteadyL.A(n(k)+l)-

SteadyO.A(n(k)+l))*sxbar(j)...
+SteadyO.Mn(k)+l)) ./N (1/(n (k)+1)) ;

Tavg(k) = sum(SteadySS(k,:))/(space+1);
end
Time-constantfunction(k) = 1/ ((n(k)+l) *Tavg(k) . "n(k)) ;

end

%Calculates the steady-state for distribution with constant
null
for k = 1:length(n)

for j = 1:length(sx)
SteadySS2(k,j) = ((l/sLength2)*(SteadyL.A(n(k)+1)-

SteadyO."(n(k)+l))*sxbar (j) ...
+SteadyO.A(n(k)+l)).A(1/(n(k)+1));

Tavg2(k) = sum(SteadySS(k,:),"n(k))/(space+1);
end
Time-constantfunction2(k) = 1/((n(k)+l)*Tavg(k));

106

end

figure (1)
plot(n,Time-constantfunction,n,Time-
constantfunction2,0,piA2*0.112307,'o',1,piA2*0.08 69 60,'o',2
,piA2*0.0 6857 5,'o',3,piA2*0.05 6119,'o',4,piA2*0.0472 94,'o',
5,piA2*0.04 07 50,'o',6,piA2*0.035710,'o',7,piA2*0.031710,'o'
,8,piA2*0.0284 54,'o',9,piA2*0.025751,'o',10,piA2*0.0234 68,'
o') ;
xlabel('n');
ylabel ('piA2*tau');
legend (' <T>'Nn ' , ' <TAn> ') ;
title('Theoretical Prediction of Timescale Compared to
Actual Values');

figure(2)
plot(n,Time-
constant function, 0, pi A2*0. 112307, 'o',1,piA2*0.086960, 'o»,2,
piA2*0.0 6857 5,'o',3,piA2*0.056119,'o',4,piA2*0.0472 94,'o',5
,piA2*0.0407 50,'o',6,piA2*0.035710,'o*,7,piA2*0.031710,'o',
8,piA2*0.02 8 4 54,'o',9,piA2*0.0257 51,'o',10,piA2*0.0234 68,'o

') ;

xlabel ('n');
ylabel('piA2*tau');

B.10 VaryingParameter.m

%Created by Dustin Sipka
%EP 700
%General Diffusion Equation
%Crank-Nicolson Method
%April 25, 2005
%Varying the Parameter for implicit and explicit

clear
clc
format long g

%Note that in T(i,n) "i" represents time and "n" represents
space

%Definition of constants and parameters
parameter = 0:0.01:1; %Determines how much implicit
and explicit are used
order = 5; %Order of Interest

107

diffusion = 1; %Diffusion Coefficient
L = 1; %Length of Wave
T = L.A2/diffusion; %Makes Coefficient "1"
time = 100; %Time Steps
tconstant = 10; %Number of time constants that
elapse
tbar = (time/tconstant)/T; %Unitless Time
Steps
space = 100; %Resolution of Solution
dx = L/space; %Spatial resolution
dxbar = dx/L; %Unitless Spatial Resolution
dt = ((L/(order*pi)).A2/diffusion); %Time
resolution
dtbar = dt/tbar; %Unitless dt
theta = 0:L/space:L; %Values for Solution
xbar = theta/L; %Unitless Space
lambda = (diffusion*dtbar)/(dxbar.A2); %Constant from
FDE
Temp = zeros(time,space+1);
h = waitbar(0,'How long is this gonna take...');

%Loop that will vary the parameter for mixing explicit and
implicit
for b = 1:length(parameter)
waitbar(b/length(parameter));
alpha = l+2*lambda*parameter(b); %Constant from FDE

%Solving Numerically Using LU Decomposition

%Boundary Conditions
for i = l:time

Temp(i,1) = 0;
Temp(i,space+1) = 0;

end

%Initial Conditions (b vector in LU Decompostion)
Temp(l,:) = sin(pi*xbar) + (1/1)*sin(2*pi*xbar)...

+ (1/1)*sin(3*pi*xbar) + (1/1)*sin (4*pi*xbar) ..
+ (1/1)*sin(5*pi*xbar) + (1/1)*sin(6*pi*xbar)..
+ (1/1)*sin(7*pi*xbar) + (1/1)*sin(8*pi*xbar)..
+ (1/1)*sin(9*pi*xbar) + (1/1)*sin(10*pi*xbar);

%Filling Three Vectors of the Tridiagonal Matrix
for n = l:space-l

d(n) = alpha;
u(n) = -lambda*parameter(b);
l(n) = -lambda*parameter(b);

108

end
u(space-l) = 0;
Ml) = 0;
D = zeros(size(d)); %Intermediate Vector in LU
Decomposition

%Decomposition of Tridiagonal Matrix
for k = 2:space-l

factor = l(k)/d(k-l);
1(k) = factor;
d(k) = d(k) - factor*u(k-l);

end

%Forward and Backward Substitution to Solve for Next Time
Step
for m = 2:time

B = Temp;
for q = 2:space-1

B(m-l,q) = B(m-l,q) + (lambda-
lambda*parameter(b))*(Temp(m-1,q+1)-2*Temp(m-1,q)+Temp(m-
l,q-l));

end
%Forward (only works for tridiagonal sparse matrix)
for i = 1:space-1

if (i == 1)
B(m-1,i+1) = B(m-l,i+l) +

lambda*parameter(b)*B(m-1,i);
elseif (i == space-1)

B(m-l,i+l) = B(m-l,i+l) +
lambda*parameter(b)*B(m-1,i+2);

end
if (i == 1)

D(i) = B(m-1,i+1); %First element of D
else

D(i) = B(m-l,i+l) - l(i)*D(i-l); %Forward
loop

end
end
%Backward (only works for tridiagonal sparse matrix)
for i = space:-1:2

if (i == space)
Temp(m,i) = D(i-1)/d(i-1); %Last element of X

else
Temp(m,i) = (D(i-l) - u(i-1)*Temp(m,i+1))/d(i-

1); %Backward loop
end

end

109

end

%Performs Fourier Transform to Find Amplitudes of Different
Modes
for i = l:time

for m = 1:10
for n = 1:space

transform(n) =
Temp(i,n)*sin(m*pi*xbar(n))/(space);

end
Amplitude(i,m) = 2*sum(transform);

end
end

%Solving the Exact Solution

%Setting Up Time Constant
for n = 1:10

tau(n) = (L/((n)*pi)).A2/diffusion;
end

dtexact = tau(order)/(time/tconstant);
texact = 0:dtexact:time*dtexact;

%Setting Up Amplitudes
for i = 1:10

for n = l:time
A(n,i) = exp(-texact(n)/tau(i));

end
end

%Exact Solution
%Boundary Conditions
for i = l:time

Ex(i,l) = 0;
Ex(i,space+1) = 0;

end

%Solution
for i = l:time

for n = 2:space
Ex(i,n) = A(i,1)*sin(pi*xbar(n)) +

A(i,2)*sin(2*pi*xbar(n))...
+ A(i,3)*sin(3*pi*xbar(n)) +

A(i,4)*sin(4*pi*xbar(n))...
+ A(i,5)*sin(5*pi*xbar(n)) +

A(i,6)*sin(6*pi*xbar(n))...

110

+ A(i,7)*sin(7*pi*xbar(n)) +
A(i,8)*sin(8*pi*xbar(n))...

+ A(i,9)*sin(9*pi*xbar(n)) +
A(i,10)*sin(10*pi*xbar(n));

end
end

"5

%Calculates Error Using RMS of Actual Solution to the
Numerical Solution of
%'order*
ErrorSol = (Temp - Ex).A2;
for i = l:time

RMS(i) = sqrt(sum(ErrorSol(i, :))/(space+1)) ;
end
RMSP(b) = RMS(time);

%Calculates Error Between Actual and Numerical Amplitudes
ErrorAmp = abs(A(:,order) - Amplitude(:,order));
end
close (h);

%Plotting

x = 1:1:time; %Used to Plot Change in Error with Time

figure(6)
plot(theta,Temp(1,:),theta,Temp(25,:),'—
',theta,Temp(50,:),':',theta,Temp(75,:),'-.');
ylabel ('T');
xlabel('Length of Solution');
title('Solution of General Diffusion Equation');
legend('tbar = 0','tbar =25', 'tbar =50', 'tbar = 75');

figure (7)
semilogy(parameter,RMSP);
title('RMS Error Between Numerical and Exact Solutions');
xlabel('Parameter Value');
ylabel('RMS Error')

[C,I] = min(RMSP);
parameter = parameter(I)

111

B.11 VaryingParameter2.m

%Created by Dustin Sipka
%EP 700
%General Diffusion Equation
%Crank-Nicolson Method
%April 25, 2005
%Varying the Parameter for implicit and explicit

clear
clc
format long g

%Note that in T (i,n)
space

'i" represents time and 'n' represents

%Defini
paramet
explici
order =
diffusi
L = 1;
T = L.A

time =
tconsta
elapse
tbar =
Steps
space =
dx = L/
dxbar =
%dt = (
resolut
dt = 0.
dtbar =
theta =
xbar =
lambda
FDE
Temp =
result
%h = wa

tion of constants and parameters
er = 0:0.01:1; %Determines how much implicit and
t are used
6;

on = 1;

2/diffusion;
100;
nt = 1;

%Order of Interest
%Diffusion Coefficient
%Length of Wave
%Makes Coefficient "1"
%Time Steps
%Number of time constants that

(time/tconstant)/T; %Unitless Time

%Resolution of Solution
%Spatial resolution
%Unitless Spatial Resolution

.A2/diffusion); %Time

003; %Time resolution
%Unitless dt
%Values for Solution
%Unitless Space

300;
space;
dx/L;
(L/(order*pi))
ion
0005:0.0001:0.
dt/tbar;
0:L/space:L;

theta/L;
= (diffusion*dtbar)/(dxbar.A2) ;

zeros(time,space+1) ;
= zeros(length(dt),3);
itbar(0,'How long is this gonna take,

%Constant from

') ;

for z = 1:length(dt)
%waitbar(z/length(dt));

%Loop that will vary the parameter for mixing explicit and
implicit

112

for b = 1:length(parameter)
%waitbar(b/length(parameter));
alpha = l+2*lambda(z)*parameter(b); %Constant from FDE

%Solving Numerically Using LU Decomposition

%Boundary Conditions
for i = l:time

Temp(i,1) = 0;
Temp(i,space+1) = 0;

end

%Initial Conditions (b vector in LU Decompostion)
Ternpd,:) = sin(pi*xbar) + (1/1) *sin (2*pi*xbar) . . .

+ (l/l)*sin(3*pi*xbar) + (1/1)*sin (4*pi*xbar) ...
+ (1/1)*sin(5*pi*xbar) + (1/1)*sin(6*pi*xbar)...
+ (1/1)*sin(7*pi*xbar) + (1/1)*sin (8*pi*xbar) . ..
+ (1/1)*sin(9*pi*xbar) + (1/1)*sin (10*pi*xbar);

%Filling Three Vectors of the Tridiagonal Matrix
for n = 1:space-1

d(n) = alpha;
u(n) = -lambda(z)^parameter(b);
1(n) = -lambda(z)^parameter(b);

end
u(space-l) = 0;
Ml) = 0;
D = zeros(size(d)); %Intermediate Vector in LU
Decomposition

%Decomposition of Tridiagonal Matrix
for k = 2:space-1

factor = l(k)/d(k-l);
l(k) = factor;
d(k) = d(k) - factor*u(k-l);

end

%Forward and Backward Substitution to Solve for Next Time
Step
for m = 2:time

B = Temp;
for q = 2:space-1

B(m-l,q) = B(m-l,q) + (lambda(z)-
lambda(z)*parameter(b))*(Temp(m-1,q+1)-2*Temp(m-
l,q)+Temp(m-l,q-l));

end
%Forward (only works for tridiagonal sparse matrix)

113

for i = 1:space-1
if (i == 1)

B(m-l,i+l) = B(m-1,i+1) +
lambda(z)*parameter(b)*B(m-1,i);

elseif (i == space-1)
B(m-l,i+l) = B(m-l,i+l) +

lambda(z)^parameter(b)*B(m-1,i+2);
end
if (i == 1)

D(i) = B(m-1,i+1); %First element of D
else

D(i) = B(m-l,i+l) - l(i)*D(i-l); %Forward
loop

end
end
%Backward (only works for tridiagonal sparse matrix)
for i = space:-1:2

if (i == space)
Temp(m,i) = D(i-1)/d(i-1); %Last element of X

else
Temp(m,i) = (D(i-l) - u(i-1)*Temp(m,i+1))/d(i-

1); %Backward loop
end

end
end

%Performs Fourier Transform to Find Amplitudes of Different
Modes
for i = l:time

for m = 1:10
for n = 1:space

transform(n) =
Temp(i,n)*sin(m*pi*xbar(n))/(space);

end
Amplitude(i,m) = 2*sum(transform);

end
end

%Solving the Exact Solution

%Setting Up Time Constant
for n = 1:10

tau(n) = (L/((n)*pi)) .A2/diffusion;
end

dtexact = tau(order)/(time/tconstant);
texact = 0 .-dtexact: time*dtexact;

114

%Setting Up Amplitudes
for i = 1:10

for n = l:time
A(n,i) = exp(-texact(n)/tau(i));

end
end

%Exact Solution
%Boundary Conditions
for i = l:time

Ex(i,l) = 0;
Ex(i,space+1) = 0;

end

%Solution
for i = l:time

for n = 2:space
Ex(i,n) = A(i,1)*sin(pi*xbar(n)) +

A(i,2)*sin(2*pi*xbar(n))...
+ A(i,3)*sin(3*pi*xbar(n)) +

A(i,4)*sin(4*pi*xbar(n))...
+ A(i,5)*sin(5*pi*xbar(n)) +

A(i,6)*sin(6*pi*xbar(n))...
+ A(i,7)*sin(7*pi*xbar(n)) +

A(i,8)*sin(8*pi*xbar(n))...
+ A(i,9)*sin(9*pi*xbar(n)) +

A(i,10)*sin(10*pi*xbar(n));
end

end

o
o —

%Calculates Error Using RMS of Actual Solution to the
Numerical Solution of
%'order'
ErrorSol = (Temp - Ex).A2;
for i = l:time

RMS(i) = sqrt(sum(ErrorSol(i,:))/(space+1));
end
RMSP(b) = RMS(time);

%Calculates Error Between Actual and Numerical Amplitudes
ErrorAmp = abs(A(:,order) - Amplitude(:,order)) ;
end
%close(h);

115

%Plotting

xt = 1:1:time; %Used to Plot Change in Error with Time

figure(7)
semilogy(parameter,RMSP);
title('RMS Error Between Numerical and Exact Solutions')
xlabel('Parameter Value');
ylabel('RMS Error');
hold on

[C,I] = min(RMSP) ;
result(z,l) = parameter(I) ;
result(z,2) = RMSP(I);
result(z,3) = dt(z);
end
%close(h);

result

B.12 WavefrontVelocity.m

%Created by Dustin Sipka
%EP 700
%Time Dependent Nonlinear Diffusion Equation
%January 30, 2006
%Solves the time dependent nonlinear equation using the
implicit method and
%lets it run to get the steady state distribution and
compare it to the
%theoretical prediction, also puts into one file all of the
analysis that
%has been done so results can be arrived at easily

clear
clc
format long g

%Defining Initial Conditions and Constants
%Parameters that can be controlled and changed
parameter = 1/2; ^Parameter for Crank-
Nicolson variation
%Diffusion = 1; %Diffusion coefficient
Length = 1; %Length of the space
%TempL = 1; %Temp at end of space

116

%TempO = 1;
SteadyL = 0;
state solution
SteadyO = 1;
steady-state solution
sLength = 0.5;
solution for constant
sLength2 = 1;
solution with constant
%N = 1;
dimensionless variable
depth, increase N incr
n = 1:1:10;
nonlinear solution
n2 = 0;
space = 300;
%w = 0.01*pi;
time = 400000;
dtbar = le-6;

source

null

%Temp at beginning of space
%Temp at end for steady-

%Temp at beginning of

%Length of steady-state

%Length of steady-state

%Constant factor for
s (decrease N decrease penetration
ease penetration depth)

%Different values for

%Spatial resolution
%Frequency of source
%Number of time steps
%Resolution of time

%Parameters the algorithm needs to know
sx = 0:sLength/(space):sLength;
resolution for steady-state
sxbar = sx/sLength;
space for steady-state
x = 0:Length/space:Length;
spatial points
xbar = x/Length;
space
%dx = Length/space;
resolution
dxbar = Length/space;
space
%T - (Length.A2*N*(n+1))/(Diffusion*TempO.An);
constant
%dtbar = dt/T;
time resolution
tbar = time*dtbar;
time
tbarv = 0:dtbar:tbar;
time vector

%Spatial

%Unitless

%Number of

%Unitless

%Spatial

%Unitless

%Time

%Unitless

%Unitless

%Unitless

^Parameters for analysis
Temp = zeros((time/10),length(x)) ;
temperature matrix
TempF = zeros(10,length(x));
algorithm matrix

%Size of

%Size of

117

lambda = dtbar/(dxbar.A2);
numerical algorithm
%Q = zeros(time,space+1) ;
%Q(1,space/2) = 100;
%periodtimesteps = round(2*pi/(w));
steps in one period of oscillation
t = 1:1:(time/10);
vector
t = t*10*dtbar;
%SteadyO = (SteadyL.A(n+1) + (Length-
0.5).*((Q(l,space/2)*dxbar*(n+1))/(2*Diffusion)
); %Temp at source for steady-state solution

%Coefficient in

%Source Term
%Source Term
%Number of time

%Time step

%tbar vector

• Ml/(n+l)

for z = 1:length(n)

%Initial Conditions-

%Solving for the initial Temperature distribution
%Calculates the initial temperature distribution
for j = 1:length(sx)

Steadyl(j) = ((1/sLength)*(SteadyL."(n(z)+l)-
SteadyO./N (n(z) +1)) *sxbar (j) . . .

+SteadyO.A(n(z)+1)).A(1/(n(z)+1));
% Steadyl(j) = 0;
end

%Calculates the steady-state for distribution with constant
null
for j = 1:length(sx)

SteadySS(j) = ((l/sLength2)*(SteadyL."(n(z)+l)-
SteadyO."(n(z)+1))*sxbar(j)...

+SteadyO.Mn(z)+l)) . A (1/(n (z)+1)) ;
end

%For distribution with extended null area
for i = 1: ((space/2)+l)

Steady3(i) = Steadyl(i);
Steady3(i+(space/2)) = SteadyL;

end

Temp(l,:) = Steady3;
%Temp(l,l) = 1;

%Putting in the boundary conditions for all time
for i = 0:((time/10)-1)

Temp(i+1,1) = Temp(l,l);
Temp(i+1,length(x)) = Temp(1,length(x));

118

% Q(i,space/2) = 100; %Steady source
% Q(i, (space/2)) = Q(i,space/2) + 100*sin(w*(i-1));
%Oscillating source with steady source
end

for i = 1:10
TempF(i,l) = Temp(1,1);
TempF(i,length(x)) = Temp(1,length(x));

end

%Nonlinear LU Decomposition

%Note: boundary nodes are ignored for this computation.
Decompositions
%starts at j = 2 and ends at j = length(x)-1

%Filling Three Vectors of the Tridiagonal Matrix
d = zeros(size(x));
u = zeros(size(x));
1 = zeros (size (x));
%Note: u(space-l)=0 and 1(1) = 0

D = zeros(size(d)); %Intermediate vector for LU
decomposition
deltaTemp = zeros(size(TempF));
deltaTemp(:,1) = 0;
deltaTemp(:,length(x)) = 0;

h = waitbar(0,'There is no spoon...');
for q = 1:((time/10)-1)
waitbar(q/(time/10),h)
TempF(1,:) = Temp(q,:);
for m = 2:10

for i = 1:space-1

%Setting up B
B(m-1,i) = lambda*parameter*(TempF (m-

1, i)) ./N (n (z) +1) -2*lambda*parameter* (TempF (m-
1,i+1))."(n(z)+1)+lambda*parameter*(TempF(m-
1,i+2))."(n(z)+1)+(1-parameter)*lambda*(TempF(m-
l,i).A(n(z)+l)-2*TempF(m-l,i+l).A(n(z)+1)+TempF(m-
l,i+2).A(n(z)+1));% + dtbar*Q(m-1,i);

%Setting up the three diagonal vectors
d(i) = (1+2*(n(z)+1)*lambda*parameter*(TempF(m-

l,i)).An(z));
if (i == 1)

119

Mi) = 0;
else

l(i) = -l*lambda*parameter*(n(z)+1)*(TempF(m-
l,i-l)).~n(z);

end
if(i == space-1)

u(i) = 0;
else

u(i) = -l*lambda*parameter*(n(z)+1)*(TempF(m-
l,i+l)).~n(z);

end

%Decomposition of coefficient matrix
factor = l(i+l)/d(i);
1 (i + 1) = factor;
d(i+l) = d(i+l) - factor*u(i);

%Forward Substitution
if(i == 1)

D(i) = B(m-l,i) ;
else

D(i) = B(m-l,i) - l(i)*D(i-l) ;
end

end
for i = space:-1:2

%Backward substitution
if (i == space)

deltaTemp(m-1,i) = D(i-1)/d(i-1);
else

deltaTemp(m-1,i) = (D(i-l) - u(i-
1)*deltaTemp(m-l,i+l))/d(i-l);

end
end

%Solving for the new temperatures
for i = 2:space

TempF(m,i) = TempF(m-1,i) + deltaTemp(m-1,i);
end

end
Temp(q+1,:) = TempF(10,:);
end
close(h);

[a,b] = find(Temp > 0.099 & Temp < 0.100);

figure (1)
hold on

120

plot(a*dtbar*10,b*dxbar);
xlabel('Time tbar');
ylabel('Position xbar');
title('Position vs Time for Specific Point on Wavefront');
end

121

	Dynamics of Nonlinear Diffusion Processes
	Scholarly Commons Citation

	ProQuest Dissertations

