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ABSTRACT 

Author: Santiago Pinzon 

Title: Wing Optimization Technique Based on Vortex Lattice Theory 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2008 

An integrated aerodynamic optimization technique based on vortex lattice theory 

is being proposed. The technique in this work will aim at optimizing the geometric 

parameters of a general wing with NACA 65-210 airfoil sections under a low speed 

aerodynamic regime. This will be completed by performing an aerodynamic analysis 

based on vortex lattice theory with the objective of satisfying a performance index 

function. This function will seek to optimize the high lift-to-drag ratio of the wing at 

cruise velocity, while maximizing theoretical cruise range and minimizing wing weight. 

The optimization method has been developed using MATLAB and the focus of the study 

will be used by Cirrus Design Corporation and implemented under the panel method 

software SURFACES as an optimization tool. 

IV 



TABLE OF CONTENTS 

ABSTRACT iv 

LIST OF TABLES viii 

TABLE OF FIGURES ix 

SYMBOLS xi 

1. INTRODUCTION 1 

1.1 Statement of the Problem 1 

1.2 Review of the Literature 3 

1.3 Statement of the Hypothesis 4 

2. METHODOLOY 5 

2.1 Finite Wing Aerodynamics 5 

2.1.1 Introduction to Vortex Induced Drag 6 

2.1.2 Vortex Flow, and Helmholtz's Theorems 9 

2.1.3 The Vortex Filament, and the Biot-Savart law 10 

2.1.3.1 The Infinite Vortex Filament 11 

2.1.3.2 The Semi-Infinite Vortex Filament 14 

2.1.3.3 The Finite Vortex Filament 15 

2.2 Vortex Lattice Theory 16 

2.2.1 Analysis and Implementation of the Horseshoe Vortex 17 

2.2.2 Location of the Control Point and Bound Vortex 25 

2.2.3 Analysis and Application of the Boundary Conditions 27 

2.3 Aerodynamic Performance and Analysis 28 

v 



2.3.1 Introduction to the Drag Components of a Wing 29 

2.3.2 The Drag Polar 30 

2.3.3 Equations of Motion for Steady, Level Flight 31 

2.3.4 Range 32 

3. ANALYSIS 36 

3.1 Introduction to the Computational Method 36 

3.2 Input Geometry and Operating Conditions 38 

3.2.1 Wing Geometry 38 

3.2.2 Wing Section Geometry 41 

3.2.3 Operating Conditions 43 

3.3 Vortex Lattice Solver 43 

3.3.1 Derivation of the Panel Geometry 44 

3.3.2 Solution of the Vortex Strengths 46 

3.3.3 Calculation of the Aerodynamic Coefficients 47 

3.3.3.1 Computation of the Vortex Induced Drag and the Profile Drag 49 

3.4 Fuel Volume and Fuel Weight Estimation 53 

3.5 Wing Weight Estimation 55 

3.6 Performance Computation 57 

3.6.1 Performance Index Function 60 

3.7 Initial Wing Properties and Program Initialization 62 

4. RESULTS 64 

4.1 Optimal Wing Geometric Configuration 64 

4.1.1 Optimal Wing Versus Initial Wing Layout 65 

vi 



4.2 Performance Index Function Analysis 68 

4.3 Aerodynamic Analysis 71 

4.4 Wing Weight Comparison 78 

4.5 Spanwise Distribution of the Pressure Coefficient 79 

4.6 Further Considerations: CL vs. Alpha Curve 81 

4.7 Validation 82 

4.7.1 Civs. Alpha Curve Comparison 82 

4.7.2 Drag Polar Comparison 84 

4.8 Error Analysis 89 

4.8.1 Factors affecting the accuracy of the Vortex Lattice Method 90 

4.8.2 Computational Error in the Numerical Analysis 90 

5 CONCLUSIONS 91 

6 RECOMMENDATIONS AND FUTURE WORK 93 

REFERENCES 94 

APPENDIX A 95 

vii 



LIST OF TABLES 

Table 3.1: Geometric Variation: Optimization Analysis 62 

Table 4.1: Geometric Analysis 64 

Table 4.2: Aerodynamic Ratio Analysis: Optimal Wing vs. Initial 71 

Table 4.3: Lift to drag ratio Analysis at Original Cruise Velocity 74 

Table 4.4: Fuel Weight Comparison 76 

Table 4.5: Estimated Wing Weight Comparison 77 

Table 4.6: Experimental vs. Calculated Results: CL vs. Alpha Curve 84 

Table 4.7: Comparison between Experimental and Calculated Coo 89 

viii 



TABLE OF FIGURES 

Figure 2.1: Physical interpretation of the spanwise flow for a finite wing 6 

Figure 2.2: Effect of the downwash on a typical airfoil section of a finite wing 7 

Figure 2.3: Curved three dimensional vortex filament of strength T 11 

Figure 2.4: The infinite vortex filament 12 

Figure 2.5: Semi-infinite vortex filament 14 

Figure 2.6: The finite vortex filament 15 

Figure 2.7: Typical lattice arrangement for a wing planform 17 

Figure 2.8: The horseshoe vortex 18 

Figure 2.9: New nomenclature for the bound vortex filament 19 

Figure 2.10: The horseshoe vortex implementation 21 

Figure 2.11: Trailing vortex nomenclature 23 

Figure 2.12: Control Point and Bound Vortex placement 26 

Figure 2.13: The Drag Polar Diagram 31 

Figure 3.1: Computational Analysis Flow Chart 37 

Figure 3.2: Wing Geometry 39 

Figure 3.3: NACA 65-210 Airfoil 42 

Figure 3.4: Panel representation of a wing with unswept quarter-chord 45 

Figure 3.5: Induced Drag Factor 5 as a function of taper ratio 50 

Figure 3.6: Profile Drag Calculation 51 

Figure 3.7: Fuel Tank Description 54 

Figure 3.8: Computational Routine for the Performance Analysis of Wing PI 58 

ix 



Figure 3.9: Computational Routine for the Performance Analysis of Wing P2 59 

Figure 3.10: Program Initialization Windows 63 

Figure 4.1: Geometric Layout of the Optimal Wing: Loft Analysis 66 

Figure 4.2: Geometric Layout of the Initial Wing: Loft Analysis 67 

Figure 4.3: Performance Index Surface Plot: X = 0.4, oLE = 4.64 deg, G.T = 2 deg 68 

Figure 4.4: L/D Cruise Surface Plot: X = 0.4, oLE = 4.64 deg, G.T = 2 deg 69 

Figure 4.5: Wing Weight Surface Plot: X = 0.4, oLE = 4.64 deg, G.T = 2 deg 69 

Figure 4.6: Theoretical Range Surface Plot: X = 0.4, oLE = 4.64 deg, G.T = 2 deg 70 

Figure 4.7: Variation of CL
05/CD with Velocity 72 

Figure 4.8: (a) L/D Ratio Variation with Airspeed 

(b) L/D Ratio Variation with angle of Attack 73 

Figure 4.9: Drag Variation with Velocity: Initial vs. Optimal Wing 75 

Figure 4.10: Wing Fuel Volume 76 

Figure 4.11: Theoretical Maximum Range Comparison 77 

Figure 4.12: Estimated Wing Weight Comparison 78 

Figure 4.13: Cp Spanwise Distribution: Optimal Wing 79 

Figure 4.14: Cp Spanwise Distribution: Initial Wing 80 

Figure 4.15: CL VS. Alpha Curve: Initial vs. Optimal 81 

Figure 4.16: CL VS. Alpha Curve: Validation 83 

Figure 4.17: Drag Polar Diagram (0 deg washout): Exp vs. Calculated 85 

Figure 4.18: Drag Polar Diagram (2 deg washout): Exp vs. Calculated 86 

Figure 4.19: Profile Drag Variation (2 deg washout): Exp vs. Calculated 87 

Figure 4.20: Profile Drag Variation (2 deg washout): Exp vs. Calculated 88 

x 



S Y M B O L S 

AR - Aspect Ratio 

b - Wing span 

CD Total drag coefficient 

Cd - Profile drag of the wing 

Cdi - Vortex induced drag 

CD,O - Zero-lift drag coefficient 

CL - Total lift coefficient 

Cimax - Max imum lift coefficient 

dw - Lift coefficient at gross weight 

Cr - Root chord 

Ct - Tip chord 

ci - Section lift coefficient 

c - Airfoil chord 

Cavg - Average panel chord 

Cd - Profile drag coefficient 

Cdp - Form drag coefficient 

Cf - Skin fiiction drag coefficient 

D - Total drag of the wing 

Dj - Total induced drag 

e - Oswald efficiency factor 

G.T - Geometric twist angle 

xi 



K - Drag-due-to-lift factor 

L - Lift 

/ - Lift per unit span 

N - Number of horseshoe vortex panels (halfspan) 

P - Number of chordwise horseshoe vortex panels 

r - Distance between bound vortex and control point 

T - Thrust 

±req 

u 

V 

Vao -

Vstall -

w 

Ww -

w 

Thrust required 

Tangential velocity at the surface 

Induced velocity by a finite length vortex 

Free stream velocity 

Stall velocity 

Gross weight 

Wing weight 

Downwash velocity component 

Greek Symbols 

a - Geometric angle of attack 

aeff - Effective angle of attack 

a* Induced angle of attack 

S - Induced drag factor 

dm Slope of the mean camber line 

T - Vortex strength 

xii 



G> - Dihedral angle 

Poo Density 

aLe Leading edge sweep angle 

xiii 



1. INTRODUCTION 

1.1 Statement of the Problem 

Optimization is a fundamental aspect in the process of engineering design. It is 

critical in minimizing the time required to generate a successful product for a given 

objective. In fact, optimization has become a common groundwork in the different 

engineering areas that focus on breakthrough technology and performance. Such is the 

case behind the science of flight, especially in the field of aerodynamics which constantly 

seeks advancement in design, innovation in performance, and reliability. This particular 

field focuses optimization methods that employ various numerical techniques that seek 

optimal solutions and model correctly the engineering problem. It is imperative for 

aerodynamic optimization techniques to depend on well established methods for the 

computation of pertinent aerodynamic coefficients. Consequently, the correct modeling 

of aerodynamic phenomena is intimately related to the success of the optimization 

method. 

Panel methods have been widely used in industry and are well established since the 

1970s. The Vortex Lattice Panel Method is the method of choice for this study due to its 

sophistication, quick solution time, and its ability to allow rapid changes in geometry. 

The subsequent chapters of this work will further explain in depth the theory behind the 

vortex lattice method, and the reason behind its selection as the method for aerodynamic 

analysis. Aerodynamic optimization benefits from various numerical methods that serve 
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as mathematical tools for the computation of optimal solutions. Extensive literature and 

research exists for mathematical procedures that seek the successful optimization of 

engineering problems. For example, gradient base methods involve the computation of 

sensitivity gradients. The reliability and success of these methods generally require a 

smooth design space and the existence of only a single global extremum or an initial 

guess close enough to the global extremum that will ensure proper convergence [1]. The 

optimization analysis in this study is not a gradient based method. Instead, the process 

provides an alternate approach that focuses on numerical iterations mandated by the 

number of design variables. This approach involves an exhaustive numerical search of 

the wing's geometric parameters with the purpose of satisfying a performance index 

within the objective function. The process ultimately determines the best possible wing 

geometric configuration that outperforms the initial wing design in all of the parameters 

specified by the objective function. Consequently, this approach is bounded by initial 

constraints that filter out the geometric variables that are not pertinent to the optimization 

process in order to reduce the computational time. For this study, the optimization 

method formulated for the respective analysis is capable of converging to an optimal 

solution in a timely manner. 

The aerospace industry is highly competitive in design efficiency, and perhaps one 

of the most important factors on airplane design and engineering today is 

multidisciplinary optimization. Any cost reduction method in the design cycle of a 

product becomes vital in the success of its outcome. 
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1.2 Review of the Literature 

Multiple optimization methods in the area of aerodynamics are utilized in today's 

aerodynamic design process. Various techniques include the use of genetic algorithms 

which serve as an alternative approach to the widely used gradient methods. In [1], the 

author suggests a multi-objective genetic algorithm procedure to optimize the lift to drag 

ratio of a transonic wing coupled with the minimization of structural mass. During the 

study, the author explains in detail the theory behind the implementation of the genetic 

algorithm, and leaves the aerodynamic analysis explanation to a minimum. Due to the 

complexity of the multi-objective genetic algorithm optimization technique, the study in 

this work disregards its application. Other studies, such as the one proposed in [7], 

explain the importance of linking an aerodynamic analysis routine to an optimization 

technique. In [7], computational fluid dynamics serves as the method of choice for the 

integrated wing aerodynamic analysis. One of the attractive features in that study, 

include the integration of finite element analysis in addition to the CFD routine to 

minimize the weight of the wing under maximum stress and deflection constraints. In 

contrast, the study in this work suggests the implementation of a Vortex Lattice Method 

in conjunction with a numerical optimization technique to perform a wing optimization 

analysis. The author in [5] suggests that modern panel methods such a vortex lattice, can 

quickly and accurately calculate the inviscid flow properties of finite wings. Since the 

aerodynamic analysis in this work deals with incompressible inviscid flow, vortex lattice 

theory serves as the desirable aerodynamic analysis tool for this study. 
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1.3 Statement of the Hypothesis 

The ability to efficiently link an aerodynamic method of analysis with an 

optimization technique can drastically reduce the duration of a design cycle and improve 

product efficiency. An aerodynamic optimization analysis based on Vortex Lattice 

Theory is being proposed. This optimization analysis utilizes a numerical panel method 

to efficiently model aerodynamic phenomena and maximize a performance index 

function. 

The focus of this study will concentrate on a subsonic aerodynamic regime meant to 

analyze the performance of a wing under low speed aerodynamic conditions. The 

aerodynamic optimization technique will aim at optimizing a generic wing configuration 

through the numerical variation of the wing's geometric variables such as wingspan, 

wing area, taper ratio, washout and leading edge sweep. The geometric parameter that 

remains constant during the analysis is the airfoil section which defines the wing section 

geometry. This particular wing optimization technique disregards wing properties such as 

aerodynamic twist and dihedral angle. Overall, the performance index function or target 

function is designed to maximize the high lift to drag ratio at cruise velocity, as well as 

maximizing cruise range and minimizing wing weight. In order to determine the validity 

of the results from the aerodynamic optimization analysis, a NACA technical document 

that contains experimental wind tunnel test data will be used. 
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2. METHODOLOY 

2.1 Finite Wing Aerodynamics 

An introduction to finite wing aerodynamics presents the basis of the material 

required in the rationale for this study. This chapter presents background theory for finite 

wing analysis, modern panel numerical methods such as vortex lattice, and aircraft 

performance. 

A wing is a three dimensional body of finite span that differs aerodynamically from 

the airfoil, mainly due to the three-dimensional component of the flow in the spanwise 

direction. This spanwise flow is the product of the net imbalance pressure distribution on 

the wing causing the flow beneath the wing to curl around the wing tips to the low 

pressure region on top. As a result, the streamlines on the top surface of the wing shift 

towards the root chord, and the streamlines on the bottom surface shift away from the 

root chord of the wing. Figure 2.1 illustrates the mechanics of the net pressure imbalance 

and the approximate shift of a streamline over the top surface of the wing. According to 

[2], this flow establishes a circulatory motion that trails downstream of the wing creating 

a trailing vortex that is generated by the presence of wingtips. Consequently, the 

difference in spanwise velocity components will cause the formation of streamwise 

vortices distributed along the span. 
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Bent 
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Figure 2.1: Physical interpretation of the spanwise flow for a finite wing 

The wingtip vortices induce a downward velocity component on the wing that 

combines with the freestream velocity Voo to produce a local relative wind. This effect 

has a direct impact on the airfoil section because the local relative wind is inclined below 

the direction of the undisturbed free-stream flow, affecting the lift force produced by the 

finite wing. 

2.1.1 Introduction to Vortex Induced Drag 

It is important to examine the airfoil section of the wing and the physical impact that 

the local relative wind has on it. The inclination of the local relative wind in the 

downward direction changes the angle of attack experienced by the airfoil. The effective 

angle of attack is a consequence of this inclination, and becomes the new angle seen by 

the local airfoil section. The distinction between the angle of attack seen by the wing and 

the effective angle of attack experienced by the local wing section arises from the 

interaction of the downward velocity component created by the wingtips and the wing 

itself. This interaction is responsible for the induced angle of attack accounted for in the 



difference between the geometric angle of attack and the effective angle of attack. This 

difference is given by the following equation: 

at=a-aeff [2.1] 

A typical local airfoil section of a finite wing is presented on figure 2.2. This figure 

shows the effect of downwash and its impact on the geometric angle of attack. 

Figure 2.2: Effect of the downwash on a typical airfoil section of a finite wing 

The local lift vector which is aligned perpendicular with the local relative wind is 

inclined from the vertical by the induced angle of attack cii. As a result, a drag component 

in the direction of Voo is created. This inclination is a product of the downwash effect 

which is the main characteristic of the three dimensional flow encountered on a finite 

wing. This new drag component is defined as vortex induced drag denoted by Dt in figure 

7 



2.2. Clearly, induced drag is the final result of the net pressure imbalance on the finite 

wing that exists in the direction of Voo. 

The aerodynamic phenomenon described in this section is critical to this particular 

research. The development of aerodynamic theories that evolved in the 20th century 

focused on mathematical explanations and methods of analysis dealing with 

incompressible flow over finite wings. Prandtl's classical lifting-line theory, modern 

numerical lifting-line method, lifting surface theory and vortex lattice theory are all 

different methods of aerodynamic analysis pertinent to finite wing aerodynamics. The 

selection of vortex lattice theory as the method of choice for the aerodynamic analysis in 

this work, comes as no surprise. The sophistication and simplicity of this method and its 

level of numerical implementation far exceeds the capacity of others. Even though 

Prandtl's classical lifting-line theory provides a reasonable estimate of the flow field over 

a wing, it is only suitable for straight thin wings at moderate high aspect ratio. 

However, modem panel methods can quickly and accurately calculate the inviscid 

flow properties of straight and highly swept wings of low aspect ratio [5]. Furthermore, 

numerical panel methods convey on additional tools for the analysis of finite wing 

aerodynamics. These tools are the mathematical interpretation of the physical 

aerodynamic phenomena that govern finite wing theory. The vortex lattice numerical 

panel method relies on the Biot-Savart law, the curved vortex filament and the 

Helmholtz's theorems to explain the nature behind incompressible, inviscid, irrotational 

flow about a finite wing. 
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2.1.2 Vortex Flow, and Helmholtz's Theorems 

Several tools have been developed to mathematically model incompressible inviscid 

flow. The beauty of relating nature through mathematics is an extraordinary 

achievement, and it is a set milestone in the science behind aerodynamics. 

Laplace's equation is one of the most widely used and extensively studied equations 

in mathematical physics[2]. It is through this equation that vortex theory explains the 

generation of finite lift abiding the laws of irrotational and incompressible flow. The 

elementary vortex flow and its two dimensional vortex singularity satisfy Laplace's 

equation. A vortex flow is a physically possible incompressible flow, and irrotational at 

every point except the origin. Vortex flow can be used to model lifting surfaces through 

its unique flow properties. These key properties are defined by Helmholtz's vortex 

theorems and Kelvin's circulation theorem. The basic principles of vortex behavior are 

known as Helmholtz's vortex theorems and are as follows. 

1. The strength of a vortex filament is constant along its length. 

2. A vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid. 

The vortex line must be closed, extend to infinity, or end at a solid boundary. 

Kelvin's circulation theorem on the other hand, states that the time rate of change of 

circulation around a closed curve consisting of the same fluid elements is zero. 

According to [3], Kelvin's theorem is proof that an initially irrotational, inviscid flow 

will remain irrotational. 
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Vortex theory is essential to the correct modeling of lifting surfaces. A sheet of 

vortices can support a jump in tangential velocity while the normal velocity is 

continuous, allowing a vortex sheet to accurately represent a lifting surface. The 

introduction of the two-dimensional vortex flow and its properties, paves the way to the 

analysis of the three dimensional vortex flow. In this case, the interaction between a three 

dimensional vortex filament and an arbitrary point in space is described mathematically 

by the Biot-Savart law. 

The purpose of the next section is to explain how the theory behind vortex flow can 

be implemented on three dimensional lifting surfaces through the interaction of a vortex 

filament and the surrounding space. 

2.1.3 The Vortex Filament, and the Biot-Savart law 

The importance of the Biot-Savart law is apparent with the introduction of the vortex 

filament. The Biot-Savart law is one of the most fundamental relations in the theory of 

inviscid, incompressible flow [2]. It is through this law, where a mathematical 

expression can describe how a vortex filament induces a flow field in the surrounding 

space. 

Consider a curved three dimensional vortex filament of strength T as shown in figure 

2.3. The filament induces a flow in the surrounding space affecting an arbitrary point P. 

The Biot-Savart law states that the vortex filament segment dl induces a velocity or an 

increment in velocity at point P equal to: 

dV = f 4 f [2.2] 
An \r\ 
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Figure 2.3: Curved three dimensional vortex filament of strength T 

The vortex filament of strength T is analogous to a wire carrying and electric current 

inducing a magnetic field of specific strength to an arbitrary point in space. The Biot-

Savart law is a general result of potential theory capable of describing inviscid, 

incompressible flows. The law by itself is a mathematical tool that can be used to model 

the interaction of various vortex filaments in conjunction with a uniform freestream. As a 

result, the velocity induced by the vortex filament at point P can be obtained by 

integrating equation 2.2 over the length of the vortex filament. The application of the 

integral's boundary conditions is crucial in determining its application; like modeling the 

flow over a finite wing. 

2.1.3.1 The Infinite Vortex Filament 

The first case of the application of the Biot-Savart law is the infinite vortex. Figure 

2.4 shows a vortex filament of infinite length having strength T. The velocity induced at 

point P by the entire vortex filament is: 

11 



-I r dlxr 
4x \rf 

[2.3] 

Equation 2.3 calls for the definition of the vector cross product. The numerator on the 

equation can be expressed as: 

dlxr = \dl\\r\sme^-x 

\v\ 
[2.4] 

The direction of V in figure 2.4 is in the downward direction. Hence, the magnitude of 

the velocity at point P is given by the following equation: 

An J r2 [2.5] 

The geometric relations depicted in figure 2.4 are of importance for the solution of 

equation 2.5. 

Figure 2.4: The infinite vortex filament 
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These geometric relations can be expressed through the following equations as: 

r = 

1 = 

dl 

h 
sin# 

h 
tan6> 

-h -de 

[2.6] 

[2.7] 

[2.8] 
s in '0 

Equations 2.6 through 2.8 are substituted in Equation 2.5 as follows: 

T "fsintf „ T °rsin2<9 . -h 
V = — " dl = — —:—sm^—z—dO 

An J r2 An J h2 sin26> 
—00 —00 

•i-i oo -p 0 

V = f s in#J0= fsin^6> 
Anh J Anh J 

v-h, [291 

Thus, the velocity induced at a given point P by an infinite, straight vortex filament at a 

perpendicular distance h from P is simply T/2nh [2]. This result represents the 

foimdation of vortex lattice theory. To complete the analysis, two other areas of 

consideration need to be included to complete the geometric and aerodynamic analysis 

behind the horseshoe vortex 
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2.1.3.2 The Semi-Infinite Vortex Filament 

The next case focuses on the semi-infinite vortex. The basis of the theory mirrors the 

infinite vortex case, acknowledging that the limits of integration change respectively. 

Figure 2.5 represents the typical semi-infinite vortex filament. 

dl 

^ % ~ ~ 

r > 

^ e ^ - < -^j? 

00 

p 

* V 

Figure 2.5: Semi-infinite vortex filament 

The semi-infinite vortex filament is used in vortex lattice theory to model the vortex 

extending from the wing to downstream infinity. The only mathematical and conceptual 

variations of this vortex filament when compared to the infinite case are the limits of 

integration of the bounded integral. 

-p. 2K 

V = {sin0d0 
Anh J 

V = -fT(\ + cos0o) [2.10] 
Anh 
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2.1.3.3 The Finite Vortex Filament 

The last case to be studied is the finite vortex. The only substantial change from 

the previous stated cases, relates to the bounded integral of equation 2.5. According to 

figure 2.6, the vortex filament of strength T is bounded by two angles. This bound vortex 

is essential to the geometry of the horseshoe vortex and its application in the traditional 

vortex lattice theory. 

Figure 2.6: The finite vortex filament 

The two angles bounding the finite vortex alter the limits of integration of equation 

2.5. Therefore, the velocity induced by a vortex filament of strength T and a length dl at 

point P is: 

V = [sin0d0 
Anh * 

V = — (cos0,-cos<92) [2.11] 
Anh 
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The ability to model a complete lifting surface such as a wing through the ijse of 

vortex theory is only possible by the application of the three vortex filament cases. 

Vortex lattice theory uses the previous systems of vortices and the vortex theorems to 

model aerodynamic phenomena. 

2.2 Vortex Lattice Theory 

The vortex lattice method uses the combined analysis of the vortex filament along 

with the vortex theorems and the Biot-Savart law to model a complete lifting surface. 

The lifting surface or wing is represented by a grid of superimposed horseshoe vortices. 

These horseshoe vortices are each a vortex system that combines the three main vortex 

expressions described on the previous section. The velocity induced by each horseshoe 

vortex at a specific control point is calculated using the Biot-Savart law. According to 

[4], a summation is performed for all control points on the wing to produce a set of linear 

algebraic equations for the horseshoe vortex strengths that satisfy the boundary condition 

of no flow through the wing. In addition, the vortex strengths are related to the wing 

circulation and the pressure differential between the upper and lower surfaces of the 

wing. The vortex lattice method gets its name from the geometric distribution of the 

horseshoe vortices over the wing surface, which simulates trapezoidal panels or finite 

elements commonly known as lattices. Figure 2.7 depicts a typical configuration of 

horseshoe vortices for a standard wing planform. This figure shows an unswept quarter-

chord wing where the bound vortex coincides with the quarter-chord line of the panel. In 

a rigorous theoretical analysis, the vortex lattice panels are located on the mean camber 

surface of the wing [4]. The trailing vortices are aligned parallel to the vehicle axis and 
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extend downstream to infinity. The position of both the control point and the bound 

vortex will be determined in the forthcoming sections. 

Free-stream flow Bound vortex 

y 

^ical lattice 

Trailing 
vortices 

Figure 2.7: Typical lattice arrangement for a wing planform 

2.2.1 Analysis and Implementation of the Horseshoe Vortex 

The flow field induced by a horseshoe vortex is of great importance to the vortex 

lattice method. In order to describe mathematically this flow field, the use of the three 

vortex filament expressions are necessary to develop the main governing equations of the 

vortex lattice method. A horseshoe vortex consists of one finite length vortex and two 

semi-infinite vortices. This vortex system is illustrated in figure 2.8. 

Control point 1 
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Figure 2.8: The horseshoe vortex 

The horseshoe vortex and its flow field can be analyzed by looking into the effect of 

each individual vortex segment. The bound vortex described by segment AB represents 

the third vortex filament case analyzed earlier in section 2.1.3. Figure 2.9 will be used to 

describe the effect of the bound vortex AB on a point C in space whose normal distance 

from the bound vortex AB is rp. According to section 2.1.3 and the finite vortex filament 

case, the magnitude of the velocity induced by the bound vortex AB of strength rn on 

point C is: 

V = -^-[sin0d0=—s-(cos0l-cos02) [2.12] 
Anrp I Anrp 

The solution of equation 2.12 calls for the relation between the angles of the bound 

vortex filament and the vector definitions. The vectors in figure 2.8 are defined as: 
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r0=AB 

rx=AC 

72=BC 

The definitions of the dot product as well as the expression for the area of a 

parallelogram serve as tools to derive an expression relating the three main vectors and 

the angles that bound the vortex filament. 

A - ^ ̂ ^ f 6 i 

dl 

f\ 

ro 

rP 

B r 
— T J e2 

^* c 

13 

Figure 2.9: New nomenclature for the bound vortex filament 

Hence, the designated vectors and angles of the bound vortex filament are expressed in 

the following way: 

rp = 
r}xr2 [2.13] 

c o s f l = - ^ -
W 

[2.14] 
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c o s 0 2 = - ^ [2.15] 

Expressions 2.13 through 2.15 are substituted in equation 2.12 with the appropriate 

vector identities to determine the magnitude of the induced velocity by the bound vortex 

at point C. The substitution yields 

v~T" 
An 

rxxr2 

rtxr2 

2 
Vri '2 J 

[2.16] 

Equation 2.16 is the general expression for the calculation of the induced velocity for 

a finite length vortex segment. In addition, the horseshoe vortex is made up by the 

summation of the finite length vortex segment and two trailing vortices that extend to 

infinity. A general expression is required for the velocity induced at a point in space 

(x,y,z) by a horseshoe vortex. The derivation of this general expression is divided in three 

main parts that go in accordance with each vortex segment. Figure 2.10 illustrates the 

case for the horseshoe vortex with a general point in space with three spatial coordinates. 
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Figure 2.10: The horseshoe vortex implementation 

The vector definitions needed for the calculation of the velocity induced by the 

bound vortex segment AB at point C are given by the following expressions: 

r0 = AB = (x2n -xx J + (y2n -yln)j + {z2n -zxn)k 

T\=(x-xl„)i+(y-yln)j + (z-zUl)k 

^2=(x-x2n)i+(y-y2„)j + (z-z2n)k 

[2.17] 

The vector definitions above are substituted in equation 2.16 to find the general 

expression for the induced velocity calculation at point C by the bounded vortex 

filament AB. The final expression yields 

[2.18] 
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Where, 

And, 

<»AB = 
rxxr2 

r.xK 

[(3 ;-^)(^-^)-(> ;->'2n)(^-^)]^-[(^-^)(2-Z2„)-(x-X2„)(z-21/,)]j 

+[{X-Xln)(y-y2n)-(X-X2n)(y-yinj]k 

+[{x-xu,)(y-y2n)-(x-x2n)(y-yin)} 

- 1 r r2 
^ = V ^ ~ V -

1 

[(*2„ - ^») (* -*»)+(?*. - y\n )(y-ym)+(z2»-zu)(z- zm)] 

>/(*-*.„ )2 +(y-yinf +{z-zmf 

[(x2n -xm){x-x2n)+{y2„ - y,n ){y-y2n)+{z
2n ~zin)(z- z2»)] 

v ( * - *2„ )2 + (y - y2n f + iz - z2n )2 

The velocity induced by the trailing vortices can be calculated using the semi infinite 

vortex case analysis. This vortex case calls for a new vector definition that recognizes a 

third point on the vortex filament that extends to infinity represented by point D. The 
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new vector definitions will keep the same numbering notation used earlier for the 

explanation of the bound vortex. Figure 2.11 illustrates the new vector expression. 

(*i»>JWi„),4 ^ 
r2 

^ ^ \ 

-*C (x,y,z) 

V1 

^ s ^ \X3n' y\n >Z\n) 

\ 00 

Figure 2.11: Trailing vortex nomenclature 

rQ=DA = (xln-x3n)i 

r^ix-x^i+iy-yjj + iz-zjk 

y2=(x-xl„)i+(y-yln)j + (z-zXn)k 

[2.19] 

The derivation for the velocity induced at point C by the trailing vortex is the same 

as for the bound vortex. The only difference in this case is perceived when x3 goes to 

infinity. Taking this into consideration, the contribution of the trailing vortex is expressed 

as: 

A" An 
(z-zin)j+(ym-y)k 

[(*-*i„)2+U,-y)2] 
1.0+ * - * , „ 

>/(*-*.» f+{y- ym )2+iz- z\n )2 
[2.20] 
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And, 

* An 

(Z-Z2n)j + {y2n-y)k 

[{z-z2»)2+(yin-y)2]\ 
1.0+ 2n 

^{x~xlnf +(y-y2nf +(z-z2n)
2 

[2.21] 

In general, the total velocity induced by a horseshoe vortex at a point in space C is 

given by the summation of the contribution of the bound vortex and the two trailing 

vortices. In fact, the general expression for this velocity is given by: 

V = V +V +V 
Y V AB ^ V Aoo ^ v Boo 

[2.22] 

Since Tn is contained linearly in each expression, the equations representing each vortex 

filament (2.18, 2.20, and 2.21) can be expressed in a much simpler form. Allowing point 

C to be the control point of the mth panel designated by the coordinates (xm ym> zm\ the 

new expression becomes: 

V =C r [2.23] 

Equation 2.23 is the velocity induced at the mth control point by the horseshoe vortex 

representing the «th panel. The influence coefficient Cmn depends on the geometry of 

the nth horseshoe vortex and its distance from the control point of the mth panel [4]. In 
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order to find the total induced velocity at the mth control point induced by the IN 

vortices, equation 2.23 is expressed as 

„ 2N ^ 

^=2X,„r„ [2.24] 

Each control point lies within a horseshoe vortex representing a surface element. Hence, 

a lifting surface such as a wing is represented by a combination of these surface elements. 

The location of the horseshoe vortex and its control point is determined by a 

mathematical analysis described in the following section. According to [3], and [4], 

tradition has been to determine their locations by comparisons with known results. Their 

placement has become a rule of thumb in numerical panel methods. 

2.2.2 Location of the Control Point and Bound Vortex 

The location of both the control point and the bound vortex is determined not by a 

theoretical law, but instead by a placement that works well in accordance to theory. 

According to [4], the control point of each panel is centered spanwise on the three-quarter 

chord line midway between the trailing vortex legs. Figure 2.12 illustrates the placement 

of the control point and the bound vortex. 
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Figure 2.12: Control Point and Bound Vortex placement 

The vortex filament of strength T positioned at the quarter chord location, induces a 

velocity at the control point cp given by 

r = r 

2nr 

This result agrees with the infinite vortex filament case described earlier in sub-section 

2.1.3.1. According to [4], if the flow is to be parallel to the surface at the control point, 

the incidence of the surface relative to the free stream can be expressed as: 

a « s i n a = — = U^5J 
H 2nrV„ 

In order to solve for the unknown distance r, equation 2.25 calls for combined use of the 

Kutta-Joukowsky theorem and the results from thin airfoil theory. The combination of 

both relations gives the following result 

l = \pJlc2na = PJJ [2.26] 
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Equation 2.25 is then substituted in equation 2.26; as a result, the unknown distance r can 

be solved as a function of the chord length. 

\pJlcln ( r 'l 
I 2nrVx J H" °° 

r = | [2.27] 

Thus, the control point is located at the three quarter-chord location, and the bound vortex 

is located at the quarter-chord location. Both, the position of the bound vortex and the 

control point are functions of the chord length and the panel geometry. Chapter 3 will 

explain in detail the derivation of the geometric functions that will determine the position 

of the bound vortex and the location of the control point. These functions will depend on 

the geometric parameterization of the wing under the optimization process. 

2.2.3 Analysis and Application of the Boundary Conditions 

The solution of the induced velocity at a control point in space by a horseshoe vortex 

is possible through the application of the boundary conditions. The vortex strength Fn in 

equation 2.24 represents the lifting flow field of the wing. In order to solve for this flow 

field, the surface is considered a streamline. The resultant flow is tangent to the wing at 

each and every control point. As a result, the component of the induced velocity normal 

to the wing at the control point balances the normal component of the free-stream 

velocity. The tangency condition yields the following relation 
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-"» s i n ^ cos^-vOT cos£w sin<0 +wm cos^cos^ + V„ sin(or-£Jcos^ = 0 [2.28] 

where Sm is the slope of the mean camber line at the control point and <f> is the dihedral 

angle of the wing. Equation 2.28 can be simplified according to the shape of the airfoil 

section and the slope of the mean camber line. The tangency condition will give the 

solution for the system of simultaneous equations represented by equation 2.24. The 

unknown vortex strengths of each surface elements or panels are found through this 

solution. The calculation of all the pertinent aerodynamic coefficients and the solution to 

equation 2.24 will be exposed later in chapter 3. 

2.3 Aerodynamic Performance and Analysis 

So far, the previous sections explained in detail the theory behind the aerodynamic 

analysis used in this work. In summary, the optimization analysis, uses modern panel 

methods such as vortex lattice to provide the means of calculating numerically the 

inviscid aerodynamic properties of a wing. The subsequent sections will introduce the 

theory behind airplane performance, followed by a complete analysis of the main 

aerodynamic coefficients with emphasis on their impact on the performance index 

function. In fact, one of the main goals of the target function is the optimization of the 

high lift-to-drag ratio (L/D) at cruise velocity. This parameter which depends on the drag 

polar is a fundamental measure for airplane performance and aerodynamic efficiency. 
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2.3.1 Introduction to the Drag Components of a Wing 

It is important to start this discussion with the analysis of drag since it mandates how 

efficient a wing can generate lift. There are only two sources of aerodynamic force on a 

body moving through a fluid. The first one is the pressure distribution, and the second the 

shear stress distribution, both acting over the body surface. As a result, all the different 

types of drag can be catalogued as either pressure drag or friction drag. The analytical 

prediction of drag is very complex, and its prediction is beyond the capability of current 

numerical aerodynamic models. Furthermore drag is affected by Mach number, and it is 

different around Mach number regimes. This study will focus only in the subsonic 

prediction of drag for a finite wing, and to further illustrate its calculation, the two-

dimensional airfoil case serves as an introduction. 

The total drag found on an airfoil is called the profile drag. Profile drag is a 

combination of skin friction drag and pressure drag. The first type of drag is due to 

frictional shear stresses and the latter due to an imbalance on the pressure distribution 

over the airfoil surface. In coefficient form, profile drag can be expressed as 

cd=cf+ cdtp [2.29] 

Where cd is the profile drag coefficient, c/is the skin friction drag coefficient, and cd>p is 

the form drag coefficient. There are no exact analytical solutions that calculate or predict 

the form drag coefficient. Similarly, the calculation of the skin friction drag coefficient 

lacks the ability to present an exact solution. In this analysis, an empirical method is used 

to calculate the profile drag coefficient. The vortex lattice analysis is used to calculate 
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the section lift coefficient of the wing assuming a constant airfoil section. This allows an 

approximation of the profile drag coefficient for each panel using a two-dimensional 

lookup table of the drag polar diagram of the selected airfoil. The drag polar diagram is 

taken from reference [6] (appendix A3). This procedure will be explained in depth on 

chapter 3, and it will show how the optimization technique uses the result from the vortex 

lattice analysis to calculate the profile drag coefficient of the entire wing. 

The discussion of drag in this work is limited to a finite wing. As a result, the zero-

lift drag component consists only of the profile drag for the complete wing. In contrast, 

the drag due to lift consists of the change in profile drag when the wing is at an angle of 

attack different form the zero-lift angle, plus the vortex induced drag due to wingtip 

vortices. 

2.3.2 The Drag Polar 

According to the author in [5], for every aerodynamic body, there is a relation 

between the drag coefficient CD and the lift coefficient CL that can be expressed as an 

equation or plotted on a graph. Both the equation and the graph are called the drag polar. 

All the pertinent aerodynamic information concerning the wing and its performance can 

be collected through the use of the drag polar. The variation of the lift coefficient CL 

with angle of attack vs. the variation of the total drag coefficient CD with angle of attack 

constitutes the drag polar diagram. This diagram is illustrated in figure 2.13., and the 

equation particular to this parabolic curve is given as follows: 

CD=CD^KC2
L [2.30] 

30 



Where CD is the total drag coefficient, CD,o is the zero-lift drag coefficient and KC2
L is 

the drag due to lift. 

CL A 

Figure 2.13: The Drag Polar Diagram 

The optimization technique in this work uses the drag polar diagram to determine the 

wing's aerodynamic performance through an iterative procedure. It is important to note 

that the drag polar curve is sensitive to velocity variations, mainly due to the fact that Q 

and CD are functions of the Mach number. The exact details of this process will be given 

in Chapter 3. Nonetheless, the introduction of the drag polar is necessary for the 

development of the methodology within the program. 

2.3.3 Equations of Motion for Steady, Level Flight 

The performance analysis in this work assumes a straight and level flight condition. 

Since acceleration is of no concern, the four forces of flight balance in the following way. 

T = D [2.31] 
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L = W [2.32] 

Equations 2.31 and 2.32 show how the thrust is equal to drag, and the lift is equal to 

weight. It is important to note that in level flight, the climb angle 6 and the roll angle <p 

are zero. These equations are the special cases of the general equations of motion, and in 

fact, represent the dynamic behavior of an airplane in steady, level flight. 

2.3.4 Range 

The derivation of the Breguet range equation serves as an introduction to the 

aerodynamic parameters that are optimized during the numerical optimization process. 

By definition, range is the total distance traversed by an airplane on one load of fuel. At 

any instant during the flight the weight of the airplane is equal to the empty weight plus 

the instantaneous weight of the fuel. The time rate of change of weight is given by the 

following equation: 

dW __ dWf 

dt dt 
= Wf [2.33] 

According to [5], range is intimately connected with engine performance through the 

specific fuel consumption. For example, the specific fuel consumption for a jet-propelled 

airplane defined in terms of available thrust T is given by: 

Wf ct—f [2.34] 
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For an airplane in steady, level flight, s denotes the horizontal distanced covered over the 

ground. Assuming a stationary atmosphere, the airplanes velocity is given by [5] 

V = * 
°° dt 

or 

ds = VJt = -^dWf [2.35] 
c,T 

Using the relationships given in equation 2.33, equation 2.35 can be written as 

V W dW ds = -^—— [2.36] 
c, T W 

For a steady level flight condition, where L=W and T=D, equation 2.36 becomes: 

1 = PJJ„ [2-37] 

Integrating the instantaneous range with respect to the change in aircraft weight yields the 

Breguet range equation. This integration assumes that the velocity, specific fuel 

consumption, and L/D are approximately constant. [8] 

*V LdW V„ L, Wn 
R= f ^ ^ L ^ i L ^ [2.38] 

lc, DW c, D m W, v< ^ " ^1 ^ "\ 
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The Breguet equation can be applied to jet aircraft as well as propeller driven airplanes. 

Since the focus of this study will aim at optimizing the range of a jet aircraft, equation 

2.38 can be expressed in a different maimer. The maximum range of a jet aircraft is not 

dictated by the maximum lift to drag ratio, instead it is driven by the maximum product 

of Voo(L/D). For steady level flight, velocity is expressed as: 

v = ' 2W 

PJCL 

Hence, 

• D if>J5CLC„ ^p„SCL C„ 

Substituting equation 2.39 into 2.38 gives the final expression for the range of a jet 

propelled airplane as follows: 

°r 1 1W C dW 
Jc.ipJ CD W 

Assuming that specific fuel consumption, density, wing area and CL
1/2/CD are constant, 

equation 2.40 can be simplified and expressed as: 

R = l \J_^(wu2_wv2\ p . 4 1 ] 
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Theoretical range is one of the driving variables within the performance index function of 

the aerodynamic optimization tool. In order to maximize range, the analysis will focus 

on optimizing the product of (Fco)(Z / D) noting that this term does not vary with weight, 

and that the specific fuel consumption is held constant at the given altitude. 
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3. ANALYSIS 

3.1 Introduction to the Computational Method 

The optimization technique and the vortex lattice analysis in this work have been 

setup in a MATLAB code developed for the implementation of the numerical analysis. 

The code layout can be synthesized in the input geometry, the vortex lattice solver, and 

the performance index computation. The optimization technique is based on the initial 

wing geometry and operating flight conditions specified by the user at the beginning of 

the simulation or pre-processing condition. The pre-processing condition refers to the 

period before the numerical analysis and the vortex lattice analysis have taken place. The 

vortex lattice solver is the processor, and the performance index computation is post

processor. Each division of the optimization analysis follows a hierarchy mandated by the 

complexity of the simulation process. The processor occupies the highest level of 

importance within all three simulation levels. The outline of the computational process is 

given in figure 3.1. The following sections will explain in detail the three steps of the 

simulation which include the pre-processor, the processor and the post-processor 

analysis. 
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Figure 3. 1: Computational Analysis Flow Chart 
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3.2 Input Geometry and Operating Conditions 

The initial geometric parameters of the wing as well as the operating conditions are 

user specific. The initial wing geometry is defined by the wing area, wingspan, taper 

ratio, leading edge sweep and geometric twist. These geometric parameters are specified 

by the user at the beginning of the simulation. The wing's section geometry remains 

constant throughout the numerical analysis, and it is selected at the beginning of the 

simulation with the initial geometric inputs. Consequently, the operating flight 

conditions such as altitude, gross weight, and specific fuel consumption are selected by 

the user during the pre-processor state. The subsequent sections will deal with the most 

important arguments of the numerical analysis at the pre-processing condition. 

3,2.1 Wing Geometry 

The optimization technique will focus on optimizing the wing area (S), taper ratio 

(X), wingspan (b), leading edge sweep and geometric twist of a general wing with a 

constant airfoil section geometry. The optimal configuration of these parameters will 

satisfy a performance index function designed to maximize the high lift to drag ratio 

(L/D) at cruise velocity, while maximizing cruise range at this condition. In order to 

determine the wing's aerodynamic performance using the vortex lattice method, the 

configuration of each wing must be derived in terms of the geometric parameters 

mentioned above. The following geometric relations are used in the analysis of the 

output of the geometric configuration for each wing. These relations also serve as the 

foundation for the derivation of the horseshoe panel geometry as a function of the wing's 

geometric parameters. 
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Figure 3.2: Wing Geometry 

The general wing layout analyzed on this report pertains to the trapezoidal wing 

geometry. This wing configuration has several geometric relations that are expressed as 

functions of the reference parameters. One of the most important geometric relations is 

the aspect ratio, and it is given by the following expression: 

s 
[3.1] 

Where b is the span and S is the reference wing area. The next equation deals with the 

ratio between the root chord Cr and the tip chord C, known as the taper ratio X. This 

geometric relation is expressed as 

[3.2] 
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Furthermore, the reference wing area S, the wingspan b and the taper ratio X are all 

related to the root chord Cr through the following expression. 

r 2S 

r~[b(\ + X)} [ 3 3 ] 

Additionally, there are two key angles that describe the wing geometry. The first angle is 

the leading edge sweep angle which is a function of the quarter chord sweep, taper ratio 

and aspect ratio given by the following equation: 

tan crLE = tan ac/4 + [(l - X) I AR (l + X)\ [3.4] 

The last geometric parameter is the geometric twist angle of the wing. Geometric twist is 

the actual change in the airfoil's angle of incidence, usually measured with respect to the 

root airfoil. During the analysis, the incidence angle of the tip airfoil will rotate in a 

nose-down direction about the quarter chord of the wing. 

These geometric relations will allow the program to loft the wings properly and 

derive the geometric layout of the horseshoe vortex with the initial input of wing area, 

taper ratio, wingspan, leading edge sweep, and geometric twist. The next section will 

introduce the wing section geometry and the selection process regarding the airfoil. 
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3.2.2 Wing Section Geometry 

The airfoil is one of the most fundamental aspects of a wing. It defines the overall 

aerodynamic efficiency during all phases of flight, and has an effect in several 

performance parameters including takeoff, cruise and stalling speed. 

It is of interest to note, that prior to 1930, the design of an airfoil had a customized 

and personalized approach with no consistency in its method. According to [2], after 

1930, the National Advisory Committee for Aeronautics (NACA) embarked on a series 

of definitive airfoil experiments using airfoil shapes that were constructed rationally and 

systematically. As a result, the NACA nomenclature method uses the following 

definitions to describe the general airfoil geometric properties. The major design feature 

of an airfoil is the mean camber line, which is the locus of points halfway between the 

upper and lower surfaces, as measured perpendicular to the mean camber line itself. The 

chord of the airfoil is the distance of the straight line connecting the leading edge to the 

trailing edge. The camber is the maximum distance between the mean camber line and 

the chord line. The camber, the shape of the mean camber line, and the thickness 

distribution of the airfoil essentially control the lift and the moment characteristics of the 

airfoil [5]. Figure 3.3 illustrates the airfoil shape used in this study. 
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Figure 3.3: NACA 65-210 Airfoil 

The NACA investigations were further systematized by separation of the effects of 

camber and thickness distribution, and the experimental work was performed at higher 

Reynolds numbers [6]. As a result, the NACA 6 series airfoil and its nomenclature are a 

product of the systematic approach to define the geometry of the wing section. The airfoil 

used in this study belongs to the NACA 6 series airfoil family. The 6 series airfoils were 

designed to encourage laminar flow and profile drag reduction. The exact airfoil used in 

this study is the NACA 65-210. According to the NACA nomenclature, the first digit 

represents the series designation. The second digit is the location of minimum pressure 

in tenths of the chord behind the leading edge for the basic symmetrical section at zero 

lift. The third digit following the dash, gives the design lift coefficient in tenths. The last 

two digits indicate the thickness of the wing section in percent of the chord. 

The plot of the geometric layout of the NACA 65-210 airfoil used in this study was 

lofted using the stations and ordinates given in per cent of airfoil chord by reference [6]. 
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The non-dimensional mean camber line equation is approximated by a sixth degree 

polynomial as follows: 

z(x) = -0.7825x6 + 2.2021*5 -2.3763x4 +1.2458*3 -0.3676*2 + 0.0782* + 0.0001 [3.5] 

Equation 3.5 will be used by the simulation to determine the camber distribution along 

the chordwise direction 

3.2.3 Operating Conditions 

The operating conditions communicate to the processor or the vortex lattice solver 

the gross weight of the aircraft, the operating altitude and the thrust specific fuel 

consumption. Each wing configuration is trimmed at the required gross weight during 

the aerodynamic analysis to determine the lift variation and drag variation with angle of 

attack and airspeed. The thrust specific fuel consumption is held constant during the 

simulation at the altitude specified by the user. 

This section completes the first part of the optimization technique. In summary, this 

part is the pre-processing condition characterized by the input of the user-specific 

geometric parameters of the wing, and the operating conditions. The subsequent sections 

will elaborate on the vortex lattice solver and the performance index computation. 

3.3 Vortex Lattice Solver 

The vortex lattice solver is the processor and the heart of the main optimization 

technique. In fact, it is where the main aerodynamic analysis takes place. The vortex 
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lattice solver will build a 5-dimensional array composed of the variation of the initial 

wing's planform geometry characterized by the wing area, wingspan, taper ratio, leading 

edge sweep and geometric twist. For each wing configuration, the simulation will loft the 

wing planform, derive the panel geometry, determine the location of the bound vortex 

and the control point, and calculate its aerodynamic performance. The vortex lattice 

analysis is divided into a logical operational sequence. The first part is characterized by 

the choice of a singularity element. The horseshoe vortex, in this case, the singularity 

element, will consist of a straight bound vortex segment that models the lifting properties 

and of two semi-infinite trailing vortex lines that model the wake. The second part is in 

charge of the derivation of the panel geometry and the grid generation. In this phase, the 

wing is divided into a certain number of spanwise and chordwise elements or panels. The 

third part relates to the calculation of the influence coefficients and the application of the 

boundary conditions. Finally the last part deals with the calculation of the pertinent 

aerodynamic coefficients necessary for the optimization analysis. The subsequent 

sections will explain in detail how the vortex lattice analysis is performed. 

3.3.1 Derivation of the Panel Geometry 

The multidimensional array contains the geometric properties of the wing such as the 

wing area, wingspan, taper ratio, leading edge sweep and geometric twist. These values 

are transferred to the vortex lattice solver for the derivation of the horseshoe panel 

geometry, and the control point coordinates. 

Each panel in the vortex lattice analysis is basically a horseshoe vortex. Its geometry 

is directly altered by the geometric layout of the wing and the airfoil section geometry. 
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The geometric derivation of each panel will use the relations given earlier in section 3.2.1 

and the aerodynamic coordinate system illustrated in figure 2.10. 

The horseshoe vortex has three main points that characterize its geometric layout. 

The first point corresponds to the beginning of the bound vortex vector. Its location with 

respect to the aerodynamic coordinate system is indicated by (xlrb ylrb zln). The second 

point corresponds to the end of the bound vortex vector, indicated by the coordinates (x2rb 

y2n, z2n). The coordinates of the last point represent the position of the control point with 

respect to the aerodynamic coordinate system indicated by (JC™ ymy zm). Again, the bound 

portion of the horseshoe vortex coincides with the quarter chord line of its panel, and the 

trailing vortices are in the plane of the wing, parallel to the x axis. Figure 3.3 illustrates 

the concept. 
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Figure 3.4: Panel representation of a wing with unswept quarter chord. 

The derivation of the panel geometry is rather complex. The coordinates of the bound 

vortex depend on the distribution of camber in the chordwise direction as well as the 

linear variation of the angle of incidence along the span due to the geometric twist of the 
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tip airfoil. Consequently, the control point coordinates are also a function of the 

geometric properties of the wing, and are subject to camber variation and washout. 

The application of the boundary conditions and the analysis that allows for the 

solution of the vortex strengths at each control point, are explained in the next section. 

3.3.2 Solution of the Vortex Strengths 

The definition of the bound vortex coordinates and the control point coordinates 

allow the planform of the wing to be divided into an N *P lattice (N spanwise divisions 

and P chordwise divisions). The lattice layout depends on the input of the initial 

geometric parameters such as the wing area S, the taper ratio X, the wingspan b, the 

leading edge sweep, and the geometric twist angle. Once the vortex lattice geometry is 

setup, the analysis will solve for the total induced velocity at each control point. Thus for 

a symmetric flow, equation 2.24 becomes 

_ f N . \ ( N ^ ^ 

vm= 2X,„r„| + 2X„r„ 
\n=\ JS V«=l Jp 

[3.6] 

Where the symbols s and p represent the starboard and port wings, respectively. The 

solution of equation 3.17 is only possible through the application of the boundary 

conditions approximating the surface as a streamline. The tangency requirement states 

that if the flow is tangent to the wing, the component of the induced velocity normal to 

the wing at the control point balances the normal component of the free-stream velocity. 

In fact, this condition is necessary for the solution of the vortex strengths. As a result, the 
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simulation determines the unit normal vector and the velocity vector for each individual 

panel. 

According to [4], the unknown circulation strengths (rn) required to satisfy these 

tangent flow boundary conditions are determined by solving the system of simultaneous 

equations represented by equation 3.17. The solution involves the inversion of a matrix. 

Since the flow field under consideration is symmetric with respect to the xz plane, the 

lift force acting at a point on the starboard wing (+y) is equal to that at the corresponding 

point on the port wing (-y). Because of the symmetry condition, the solution only 

requires to solve for the vortex strengths of the starboard wing. However, the 

contributions of the horseshoe vortices of the port wing at the control points of the 

starboard wing have to be included when solving the equations. 

3.3.3 Calculation of the Aerodynamic Coefficients 

Once the vortex strengths have been determined by satisfying the boundary 

conditions assuming that the flow is tangent to the surface at each of the control points, 

the first aerodynamic coefficient may be calculated. 

According to the author in [4], for wings that have no dihedral over any portion of 

the wing, all the lift is generated by the free-stream velocity crossing the spanwise vortex 

filament. The lift per unit span is calculated based on the Kutta-Joukowski theorem as: 

l = pVF [3.7] 
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Since the flow is symmetric, the total lift for the wing in terms of the finite element 

panels is 

L = 2pxV„YjrnAyn [3.8] 

where 

The lift coefficient, which is one of the most important aerodynamic coefficients needed 

for the optimization analysis, is calculated as follows 

Equation 3.24 will allow the calculation of the total lift coefficient needed for the drag 

polar analysis of the wing. The second coefficient pertinent to this analysis is the total 

drag coefficient. However, before the total drag calculation is introduced and explained, 

the calculation of the section lift coefficient is required to proceed further in the analysis. 

Since the lift per unit span is given by equation 3.7, the section lift coefficient is 

calculated as follows 

/ 2r 
— P V C oc avg 
S-y A^OO oo avg 
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Where c^g is the average chord of each panel, and can be expressed in terms of the 

geometric parameters of the wing and the panel number as follows: 

_2 
C<KS~b ; u\2) b{\+x) j 

\2n-l)b+' 

AN 
2S 

b(l+X) 
b) 

(taurj 
'(2n-l)fr 

AN 
[3.12] 

The section lift coefficient of an individual panel is given by equation 3.11. Since this 

analysis is interested on a more general expression for the section lift distribution of the 

entire wing, equation 3.11 can be rewritten as. 

c,=s2r 
i V c 

[3.13] 

In addition, the section lift coefficient is used in the calculation of the profile drag 

coefficient of the wing through the use the airfoil's drag polar diagram. 

3.3.3.1 Computation of the Vortex Induced Drag and the Profile Drag 

As mentioned earlier in section 2.3.1, the total drag of the wing is dictated by 

equation 2.30, where the total drag coefficient is a function of the profile drag and the 

drag due to lift. In this analysis, the lift-dependent drag is essentially vortex induced 

drag. The simulation will calculate the vortex induced drag coefficient using the 

following equation: 
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cD = 
c2 

neAR 
[3.14] 

Where e is the span efficiency factor, usually defined in terms of the induced drag factor 

8 as follows: 

e = (\ + S) 
[3.15] 

The simulation will use a two dimensional lookup table provide by reference [12] to 

calculate the induced drag factor 8, which is a function of aspect ratio and taper ratio. As 

soon as the induced drag factor is determined, the aero analysis will determine span 

efficiency using equation 3.15, and the vortex induced drag coefficient using equation 

3.14. 

0 2 CH 0 6 0 8 

Taper ratio. cf/cr 

Figure 3.5: Induced drag factor 8 as a function of taper ratio 
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The profile drag coefficient calculation involves a different process. Its calculation 

requires the use of empirical data which is accessed through the optimization technique 

using a two-dimensional lookup table. This lookup table is composed of the drag polar 

diagram of the selected airfoil. For this analysis, the drag polar diagram of the NACA 

65-210 airfoil is used to build up the two dimensional lookup table. The vortex lattice 

analysis will output the search index, which is made up by the section lift coefficient, and 

the Reynolds number calculated at the average chord of each chordwise wing station. 

The process is simple. The section lift coefficient is calculated for each individual 

panel through the vortex lattice routine. Furthermore, the average chord is calculated at 

each chordwise strip with the purpose of estimating the Reynolds number at that location. 

Since the taper of the wing varies, the average chord varies as a function of the span. As 

soon as the search index is built for a panel, the lookup table will output the section drag 

coefficient at each strip location according to the values calculated by the VLM routine of 

the section lift coefficient and Reynolds number. The process is illustrated in figure 3.6. 
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p Reynolds Number I ^ ^ ^ ^ ^ ^ H H 
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• ^ • • • • l 
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Diagram 
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• ••^^•H 
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| | 

• j 
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Coefficient ^ ^ H 1 ^H 

Figure 3.6: Profile Drag Calculation 
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The Reynolds number for each individual panel is calculated at the altitude specified by 

the user and by the average chord length at each spanwise location. The drag polar 

diagram of the NACA 65-210 airfoil is taken from reference [6] given in Appendix A.3. 

Its data is tabulated in the code as a two-dimensional array. The section drag coefficient 

is the output of the two-dimensional lookup table. This output is needed for the 

calculation of the total profile drag and its coefficient. The following equation is used to 

determine the value of the profile drag for the entire wing: 

D
Profiu^f)zPVlCdAPn [3.17] 

Where Cdn is the profile drag coefficient and Ap is the trapezoidal chordwise strip area. 

The computational routine calculates the individual areas according to the wing's 

geometric parameters. The process is similar to the one outlined in section 3.3.1 which 

deals with the derivation of the panel geometry. The total profile drag coefficient of the 

wing is calculated through the following equation: 

Cd = ®profile [3.18] 

The computational routine will then calculate the minimum profile drag coefficient Cdo 

for each airspeed variation based on the output by equation 3.18. As a result, the total 

drag coefficient needed for the wing's drag polar analysis can be calculated as follows: 
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CD=Cdo+Cdl [3.19] 

Equation 3.19 completes the aerodynamic analysis and the vortex lattice solver routine. 

With the calculation of the total lift coefficient CL and the total drag coefficient CD, the 

multidimensional array which represents the drag polar for all the different wing 

configurations can be filled accordingly. 

3.4 Fuel Volume and Fuel Weight Estimation 

Fuel weight and the fuel volume are calculated by the simulation assuming a tapered 

fuel tank that spans along the wing and has a rectangular base defined by the airfoil 

section. The base of tapered fuel tank will start at the quarter chord and will end at the 

70% chord station as illustrated in figure 3.7. 

The fuel volume is calculated by integrating the cross sectional area of the tank 

defined by the following equation: 

A(x)= - \x + d 
} \\bl2) 

Where A(x) is expressed in terms of the geometric properties of the tank as follows: a is 

the product of the wing's tip chord and the airfoil thickness at the 70% chord station and 

b is the wingspan. Consequently, d is the product of the wing's root chord and the 

thickness of the airfoil at the 70% root chord station. C is a constant defined by the ratio 

(C)a-(C)d 

b/2 
x + (C)d [3.20] 
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Figure 3.7: Fuel Tank Description 

of the length of the base of the fuel tank and the thickness of the airfoil at the 70% root 

chord station. 

As a result, the volume of the fuel tank can be integrated along the span of the wing 

to generate the following expression: 

b/2 f h l l \ 

Vtank = JA(x)dx = C\^yj(a2
+ad + d2) [3.21] 
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Assuming that the wing has two identical fuel tanks, the total fuel volume carried by the 

wing in gallons can be determined through the following equation: 

Miiel - 2 ( / t a n k ) 
7.48gallons 

\fi 
3 

J 
[3.22] 

As a result, the total fuel weight in lbs can be determined as follows: 

^fuel=^fuel(AuelS) [3.23] 

Overall, fuel volume is calculated assuming a tapered fuel tank that has a chordwise base 

dictated by a percentage of the airfoil section chord. The routine will automatically 

calculate the amount of fuel a wing can carry, and will estimate the fuel weight for each 

wing configuration. This allows a more logical approach for fuel weight estimation. 

3.5 Wing Weight Estimation 

The wing weight of each individual wing configuration is estimated by the 

simulation through the statistical group weights method described by Raymer in 

reference [8]. This method applies statistical equations based upon sophisticated 

regression analysis. Usually, these equations typify those used in conceptual design by 

the major airframe companies, and cover fighter/attack, transport, and general aviation 

aircraft. This analysis will only focus on the weight equation of the wing for a general 

aviation aircraft, given by the following expression: 
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wwmg=o.o36s:™w™* (*Yq<""x<"» {miff* (NWr [3.24] 
Vcos AJ V cosA ) v 8/ 

Where 

ow 

w^ 

A 

A 

q 

X 

Nz 

wdg 

= trapezoidal wing area, ft2 

= weight of fuel in wing, lb 

= aspect ratio 

= wing sweep at 25% MAC 

= dynamic pressure at cruise, lb/ft2 

= taper ratio 

= ultimate load factor; = 1.5 xlimit load factor 

= flight design gross weight, lb 

The application of this equation is subject to the following consideration. The limit load 

factor estimation comes from the recommendation given by reference [8]. For a general 

aviation aircraft of normal category, the typical limit load factor varies between 2.5 and 

3.8. In chapter 4, all the details and values concerning the terminology of equation 3.7 

will be explained. 
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3.6 Performance Computation 

The performance analysis represents the post-processor routine of the optimization 

technique. The simulation will determine the aerodynamic performance of each wing 

configuration by calculating the CL vs. alpha curve, the lift to drag ratio curve, and the 

drag polar curve with airspeed variation. The vortex lattice analysis acts as a virtual wind 

tunnel testing all possible wing configurations and calculating all the pertinent 

aerodynamic data needed for the optimization analysis. 

The performance analysis adds two new dimensions to the previous 5-dimensional 

geometric array due to virtual wind tunnel analysis. These two new dimensions 

correspond to the angle of attack and airspeed variation. The simulation will trim each 

wing for a steady level flight condition during the analysis using a multivariable search 

index. The search index is composed of the following key variables: wing area S, 

wingspan b, taper ratio A,, leading edge sweep, geometric twist angle, airspeed Voo, and 

the lift coefficient required to trim the aircraft at the gross weight specified by the user 

given by: 

2W 
C l w = ^ [3.25] 

'LW PV:S 

Since the CL vs. alpha curve is calculated for every single wing configuration, the angle 

of attack corresponding to the value of the lift coefficient calculated by equation 3.24 can 

be retrieved using the information given by the search index. This process is explained in 

figure 3.8: 

57 



Figure 3. 8: Computational Routine for the Performance Analysis of the Wing. Part 1 

The computational routine will take the output value of the angle of attack and use it to 

obtain the corresponding drag coefficient for that flight condition. In fact, the 

computational process responsible for obtaining the corresponding drag coefficient 

employs a similar method as the one illustrated in figure 3.8. 

The total drag coefficient will have a search index of 7 dimensions. Six out of the 

seven dimensions will remain the same when compared to the previous search index. The 

new dimension in this case corresponds to the angle of attack, which is the output of the 

CL vs. alpha curve from the previous computational routine. The search index retrieves 

the drag coefficient from the drag polar diagram of that particular flight condition. Figure 

3.9 illustrates the lookup table concept. 
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Figure 3. 9: Computational Routine for the Performance Analysis of the Wing. Part 2 

The code will run and do the necessary loops until it retrieves the corresponding lift and 

drag coefficients. As soon as the aerodynamic coefficient analysis is done, the simulation 

will calculate the lift to drag ratio curve and the drag variation with velocity with the 

gathered aerodynamic data for each wing configuration. As mentioned in section 2.3.4, 

the variation of drag with velocity for a given airplane at a given altitude is nothing more 

than the thrust required. As a result the drag variation of the wing with velocity is 

calculated using the following expression: 

TR=D = \pjlSCD [3.26] 
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Each wing configuration will have its own thrust required curve mandated by the 

performance routine mentioned earlier. The actual plot of the thrust required curve for 

the optimal wing can be seen in Chapter 4 along with several other aerodynamic 

performance plots. 

3.6.1 Performance Index Function 

The performance index function is the main component of the optimization analysis. 

It acts as the search engine of the simulation, looking for the best possible wing 

configuration that ultimately results in the highest lift-to-drag ratio L/D at cruise velocity, 

maximum range and minimum wing weight. In order for the simulation to find the 

optimal wing, the performance index function is calculated for each wing configuration 

through the following expression: 

*I(SJb,A,<rLe,G T) = \Wl) 

The performance index function has three main variables with a corresponding function 

weight (w). The first variable is the lift to drag ratio at cruise velocity and represents the 

aerodynamic efficiency of the wing. The second variable is wing weight which is 

calculated based on the statistical regression equation described earlier in section 3.5. The 

third variable is the theoretical maximum range which is calculated using the Breguet 

formulation as described in section 2.3.4. The performance index function given by 

60 

M cruise {S j, AerLe,GT) 

(i) 
02) 

w„ «""g«.»a/ 

, W -0*3) 
(SJ>Ji,aLe G T) 

K, 
[3.27] 

\itial J 

cruise.• _^ . 

file:///itial


equation 3.27 allows the simulation to determine the best possible combination of lift to 

drag ratio at cruise velocity, minimal wing weight, and maximum range. Each wing 

configuration will have a calculated value of the performance index function. These 

values are stored in an array of five dimensions. These 5 dimensions correspond to the 

geometric parameters of the wing described by wing area, wingspan, taper ratio, leading 

edge sweep and geometric twist angle. 

The computational routine will target the wing that has the highest value of the 

performance index function. In order to identify the geometric parameters of the wing 

pertaining to the highest value of the performance index function, the routine develops a 

search index that looks where this value is located within the five-dimensional 

performance array. Once this index has been determined, the simulation can extract other 

performance parameters such as cruise velocity, angle of attack at cruise, fuel volume and 

fuel weight among others. 

In summary, the computational process of the optimization technique begins with the 

input geometry and passing conditions, followed by the vortex lattice solver, and finalizes 

with the performance index computation. The input geometry and passing conditions 

symbolize the pre-processing state of the computational routine. The vortex lattice solver 

denotes the main processing stage, and the performance index computation denotes the 

post-processing routine. 
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3.7 Initial Wing Properties and Program Initialization 

The vortex lattice optimization program was written to be user specific. The initial 

wing geometry serves as the starting point of the numerical analysis. To initialize the 

simulation, a standard trapezoidal wing geometry is selected with a constant NACA 65-

210 airfoil section. A total of 24 spanwise and 8 chordwise panels are selected providing 

an adequate division to correlate aerodynamic theory and model correctly the camber 

distribution of the wing in the chordwise direction. This provides an even division of 

panels, allowing the starboard wing and the port wing to have a total number of 96 panels 

each. 

The optimization analysis will test 324 wing combinations. Each combination 

represents a variation of the 5 parameters that dictate the geometry of the trapezoidal 

wing. Table 3.1 illustrates the geometric test matrix, the range and the variation of each 

geometric parameter. 

Table 3.1: Geometric Variation: Optimization Analysis 

Geometric Parameter 

Wing Area: S 

Wing Span: b 

Taper Ratio: X 

Leading Edge Sweep: 

Geometric Twist Angle: 
G.T 

Total Wing 
Combinations: 

Range 

{S| S-2 < S < S+2} 

{b |b- l< b < b + l } 

{\\X-0A< X<X+0A} 

{ G L E | 2.64° < G L E < 8.64°} 

{G.T |0°<G.T<2°} 

Variation 
A 

AS = 2ft2 

Ab=lft 

Ak=0.1 

AoLE = 2.0° 

A G.T =1.0° 

Combination 

3 

3 

3 

4 

3 

3x3x3x4x3 = 324 combinations 

62 



The initial test wing will have a span of 37 ft, a wing area of 153 ft2, a taper ratio of 

0.5 a leading edge sweep of 8.64 degrees, and a geometric twist angle of 2 degrees. The 

simulation will run at standard sea level, at a maximum assumed gross weight of 52001bs 

and a thrust specific fuel consumption of 0.6. The performance index function will be 

weighed the following way: 60% for aerodynamic efficiency, 20% for wing weight 

efficiency and 20% for range efficiency. Figure 3.10 presents the typical initialization 

windows required by the program to start the simulation using the wing geometry input 

and the initial flight conditions. 

H < Student Version > INITIAL VWNG GEOMETRY 1 = i S |—£3— 
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Figure 3.10: Program Initialization Windows 
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4. RESULTS 

4.1 Optimal Wing Geometric Configuration 

The results of the optimization process call for a breakdown of the geometric 

parameters and the actual geometric layout of the optimal wing. The results for both 

wings are compared and presented for clear visualization in changes regarding the wing 

geometry and aerodynamic properties. 

The geometrical layout of the optimal wing configuration is the corresponding output 

of the optimal index defined by the 5 geometrical parameters described earlier in section 

3.4.1. Table 4.1 presents the results for the geometric analysis of the optimal wing 

configuration and compares them to the initial wing parameters. 

Table 4.1: Geometric analysis 

Wing Reference Geometry 

Parameters 

Initial Wing 

Optimal 
Wing 

Percent 
Difference % 

Wing Area 
(S)ft2 

153 

151 

1.30% 

Wing Span 
(b)ft 

37 

36 

2.7% 

Taper Ratio 

0.5 

0.4 

20% 

L.E Sweep 
(deg) 

8.64° 

4.64° 

46.3% 

Geometric 
Twist (deg) 

2° 

2° 

0% 
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According to table 4.15 the optimal wing experienced an overall change in planform 

geometry when compared to the initial wing design. There was a 1.30% decrement in 

wing area, a 2.7% decrement in wingspan, and a 20 % decrement in taper ratio. 

Consequently, there was a reduction in leading edge sweep of approximately 46%, and 

no change in the geometric twist angle resulting in the same configuration of washout as 

the optimal wing geometry. Overall, the optimal geometric configuration represents a 

wing that is optimized for maximum range, minimum wing weight and a higher lift to 

drag ratio at cruise condition. The preceding sections will explain in detail why this 

geometrical configuration serves as the optimal design. 

4.1.1 Optimal Wing Versus Initial Wing Layout 

The simulation creates the geometric layout of the optimal and the initial wing using 

the five geometric parameters given in table 4.1. The lofting procedure uses the relations 

provided in section 3.2.1 to generate the distribution of the panels along the chordwise 

and spanwise directions. Each vortex lattice panel has four defining points with three 

spatial coordinates that are function of wing area, taper ratio, wingspan, leading edge 

sweep, and geometric twist angle. The output of the panel geometry is given with respect 

to the aerodynamic coordinate system. The simulation creates an array for each wing 

configuration with the spatial coordinates of each defining point. The program creates 

the loft of the initial and the optimal wing using the information provided by this array. 

Figures 4.1 and 4.2 illustrate the geometric configuration of each wing and the vortex 

lattice arrangement. The scale in the z axis is set to amplify geometric twist and camber. 
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Figure 4.1: Geometric layout of the optimal wing: Loft Analysis and Panel Configuration 
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Figure 4. 2: Geometric layout of the Initial wing: Loft Analysis and Panel Configuration 
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4.2 Performance Index Function Analysis 

The performance index function analysis shows how the different wing 

configurations perform in terms of the lift to drag ratio at cruise velocity, maximum 

theoretical range and minimum wing weight. The following figures illustrate the different 

surface plots that correspond to the three performance metrics (L/D, range, wing weight) 

of the optimization analysis as well as the performance index surface plot. The 

performance index function is scaled in terms of the initial wing. A value of 1 represents 

initial wing performance, anything higher than 1 outperforms the initial wing, anything 

lower than 1 is considered below the normal performance of the initial wing 

configuration. Three geometric variables corresponding to the optimal wing planform 

have been frozen for the purpose of illustrating these 3-dimensional surface plots. These 

geometric variables are taper ratio, leading edge sweep and geometric twist. 

Figure 4.3: Performance Index Surface Plot: X = 0.4, <rLE = 4.64 deg, G.T = 2 deg 
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Surface Plot: L/D cruise 
A= 0.4, oLE = 4.64 deg. G.T = 2 deg 

Wing Area (ftA2) 

Wingspan (ft) 

Figure 4.4: L/D Cruise Surface Plot: X = 0.4, oLE = 4.64 deg, G.T = 2 deg 

Surface Plot: Wing Weight 
A= 0.4, oLE = 4.64 deg. G.T = 2 deg 

Wing Area (ftA2) 

Wingspan (ft) 

410-420 • 420-430 

Figure 4.5: Wing Weight Surface Plot: X = 0.4, oLE = 4.64 deg, G.T = 2 deg 
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Figure 4.6: Theoretical Range Surface Plot: X = 0.4, aLE = 4.64 deg, G.T = 2 deg 

These surface plots show how the 5 geometric design variables (wingspan, wing area. 

taper ratio, leading edge sweep, and washout) affect the performance index function and 

each of the performance metrics. Each surface plot has three axes. The depth axis 

represents wing area, the horizontal axis represents wingspan, and the vertical axis 

represents either a performance metric or the performance index function value (PI). 

Overall, the optimal wing configuration described in section 4.1 has the highest 

performance index function value. The subsequent sections will explain in detail why 

this wing configuration is deemed optimal when compared to the initial wing planform. 
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4.3 Aerodynamic Analysis 

The optimal aerodynamic configuration of a wing that allows for maximum lift to 

drag ratio at cruise velocity is targeted by the simulation through the aerodynamic ratio of 

the performance index function. It is important to note that cruise velocity is determined 

when the value of CL /CD reaches a maximum. As a result, the simulation performs an 

analysis on the variation of CL°
 5/CD with velocity for each wing configuration. This 

aerodynamic ratio dictates the flight condition for maximum range and cruise velocity. 

Table 4.2 illustrates the results of the optimization analysis concerning the aerodynamic 

performance of each wing in terms of this ratio. 

Table 4.2: Aerodynamic Ratio Analysis: Optimal Wing vs. Initial Wing 

Aerodynamic Ratio Analysis 

Aerodynamic 
Parameters 

Wing 

Initial Wing 

Optimal Wing 

Percent 
Increase % 

max 

90.40 

90.63 

0.25% 

cruise (cf/Q>)max 

400.64 ft/s 

400.64 ft/s 

0.0% 
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The optimal wing configuration has the same cruise velocity of the initial wing and a 

slight increase of less than 1% in the maximum value of CL° 5/CD. 

Figure 4.7 illustrates the variation of CL° 5/CD with velocity for both wings. The 

optimal wing maintains similar if not equal aerodynamic ratio efficiency at higher 

velocities when compared to the initial wing design. 

Aerodynamic Ratios 
CLA0.5/CD 

iiiiiP^I 
S ' A S S S SS! IIMJilililJIlii 

lliliillillllilllilllllllllill; 

Optimal Wing 

-Initial Wing 

100 200 300 400 500 600 700 

Airspeed (ft/s) 

Figure 4. 7: Variation of CL
05/CDwith velocity 

The lift-to-drag ratio variation with airspeed and angle of attack for both wings is 

presented in figures 4.8 (a) through (b). Again, the efficiency of the optimal wing shows 

similar behavior to that of the optimal wing during the entire velocity envelope. 
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(b) 
Figure 4. 8: (a) L/D ratio variation with airspeed, (b) L/D ratio variation with angle of 

attack. 
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Figure 4.8 calls for the analysis of the lift to drag ratio at cruise velocity. The simulation 

managed to determine a wing configuration that maintained the cruise velocity of the 

initial wing, and allowed an increment of 0.89% in the lift to drag ratio at this condition. 

Table 4.3 shows the results of the lift to drag ratio at cruise velocity for both wings. 

Table 4.3: Lift to Drag Ratio Analysis at Original Cruise Velocity 

Wing 

Initial 

Optimal 

Initial Vcruise 

460.64 ft/s 

460.64 ft/s 

Lift to Drag Ratio L/D at 
Original Cruise Velocity 

38.16 

38.50 

Percent 
Increase % 

0.89% 

A closer look at the drag behavior of both wings during cruise explains how the optimal 

wing shows a considerable drag reduction. The drag curve in this analysis is produced by 

the simulation through the variation of the total drag with flight velocity. Figure 4.9 

shows how the optimal wing configuration shows a slight reduction in drag with 

increasing airspeed relative to the drag curve of the initial wing. Overall, the geometric 

configuration of the optimal wing presents a drag reduction that generates a positive 

effect on the lift to drag ratio at cruise velocity accounting for almost a 1% increment in 

this parameter that dictates aerodynamic efficiency. 

74 



Figure 4. 9: Drag Variation with Velocity: Initial vs. Optimal Wing 

Range Analysis 

It is important to note that the simulation computes the range of each wing based on 

the simplified range equation for a jet propelled airplane (Breguet formulation) assuming 

a constant thrust specific fuel consumption, altitude, and fuel weight. The amount of fuel 

carried by each wing was calculated analytically by the program by determining the tank 

volume of each wing, and then determining its corresponding fuel weight per section 3.4. 

For this particular analysis, a fuel density of 6.4 lb/gal (JP-4) is assumed. Figure 4.10 

compares the calculated fuel volume of both wings. 
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Figure 4.10: Wing Fuel Volume 

The increase in fuel tank volume is given to the increment in root chord. The optimal 

wing can carry approximately more than 4 gallons of fuel corresponding to an overall 

fuel volume gain of 2.44% with respect to the initial wing. Table 4.4 presents the 

corresponding fuel weights for both wing configurations. 

Table 4.4: Fuel Weight Comparison 

Wing Type 

Initial Wing 

Optimal Wing 

Fuel Weight (Wf) 

W,= 1154.31 lbs 

W f = 1182.51 lbs 
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Aerodynamic efficiency has a first order effect on range, since the theoretical 

maximum range for a jet airplane is obtained by flying at the corresponding velocity 

where (CL 5/CD) is a maximum. The simulation calculates the maximum range for each 

wing through equation 4.1. 

Figure 4.11 shows the calculated theoretical maximum range for each wing configuration 

at standard sea level assuming a thrust specific fuel consumption of 0.6 lb/lbhr. The 

optimal wing has a maximum range of 4243.15 miles and the initial wing has a maximum 

range of 4097.74 miles. Overall, there is a 3.5% increase in range mainly due to the 

increment in fuel volume, and lift to drag ratio at that condition. 

Figure 4.11: Theoretical Maximum Range Comparison 
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4.4 Wing Weight Comparison 

The simulation calculated the wing weight of the optimal and the initial wing 

configurations based on the statistical regression equation described earlier in section 3.5. 

The following table illustrates a comparison between the initial wing weight and the 

optimal wing weight. 

Table 4.5: Estimated Wing Weight Comparison. 

Wing Type 

Initial Wing 

Optimal Wing 

Wing Weight (Ww) 

Ww = 419.72 lbs 

Ww = 401.01 lbs 

% Percent 
Difference 

4.45% 

Figure 4.12: Estimated Wing Weight 

Table 4.5 shows that the optimal wing has an estimated wing weight of 401.01 lbs which 

represents a wing weight reduction of 4.45%. This weight reduction can be accounted 

for by the wing area decrement seen on the optimal wing configuration. 
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4.5 Spanwise Distribution of the Pressure Coefficient 

The simulation also computes the spanwise distribution of the pressure coefficient for 

each wing at the wing's cruise velocity and angle of attack. Since the vortex lattice 

analysis determines the lift per unit span, the pressure at each individual panel is 

calculated by dividing the lift force at each panel by the panel area, and then dividing the 

result by the dynamic pressure. Figures 4.13 and 4.14 illustrate the results. 
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Figure 4.13: Cp Spanwise distribution: Optimal Wing 
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Figure 4.14: Cp Spanwise distribution: Initial Wing 

There is a notable difference in the spanwise pressure distribution between both wings. 

The leading edge sweep of the initial wing shows a positive average pressure gradient 

towards the wingtips which is higher in value than the maximum positive pressure 

gradient on the leading edge of the optimal wing. Overall, the optimal wing shows a 

better pressure distribution at its cruise angle of attack. 
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4.6 Further Considerations: CL vs. Alpha Curve 

Figure 4.14 shows the lift coefficient variation with angle of attack for the optimal 

and the initial wing. Both wings have the same washout about the quarter chord resulting 

in approximately the same zero lift angle of attack. The lift curve slope for both wings is 

similar, since the optimal and the initial wing share the same wing section geometry and 

have similar aspect ratios differing only by approximately 2%. 

Figure 4.15: CL VS. Alpha Curve: Initial vs. Optimal 
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4.7 Validation 

The aerodynamic optimization process and the implementation of the vortex lattice 

method will be validated through the use of the NACA technical report 1422: 

Experimental and Calculated Characteristics of Three Wings of NACA 64-210 and 65-

210 Airfoil Sections With and Without 2° Washout. 

This NACA report conducted an investigation to determine the effects of airfoil 

section and washout on the experimental and calculated characteristics of 10-percent 

thick wings. Three wings of aspect ratio 9 and a taper ratio of 0.4 were tested in the 

Langley 19-foot pressure tunnel. The tests were made at a dynamic pressure of 

approximately 85 pounds per square foot, corresponding to a Reynolds number of 

approximately 4,400,000 and a Mach number of 0.17. The wing to be studied and 

compared on this report contains a NACA 65-210 section, and includes two 

configurations that have a geometric twist of 0° and 2° respectively. The output of the 

vortex lattice optimization routine (VORT) will be compared to the published 

experimental data of the CL VS. Alpha curve and the drag polar for the wing with the 

NACA 65-210 airfoil section of the NACA technical report. 

4.7.1 Cl vs. Alpha Curve Comparison 

The geometry of the tested wing was modeled with respect to the specifications 

given by the NACA technical report 1422. The dynamic conditions of the test were 

matched to the ones of the wind tunnel through the values of Reynolds number and Mach 

number. The vortex lattice routine used a total of 12 spanwise panels and 8 chordwise 

panels to model the geometry of the wing and the variation of camber correctly. Figure 
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4.16 illustrates the variation of CL vs. alpha for the two experimental wing configurations 

and compares them with the output of the vortex lattice optimization routine (VORT). 

Figure 4.16: CI vs Alpha Curve: Validation 
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There is excellent agreement between the experimental data and the VORT output data 

for both wing configurations. Table 4.6 presents a summary of the results for calculated 

and experimental data of the CL vs. alpha curve. Experimental results are taken from 

Table I NACA TN No. 1422. 

Table 4.6: Experimental vs. Calculated Results: CL vs. alpha curve 

Wing 

65-210 Wing 0° washout 

65-210 Wing 2° washout 

dd/da 

Experimental 

0.085 

0.085 

VORT 

0.085 

0.085 

<*(L=0) 

Experimental 

-1.3° 

-1.0° 

VORT 

-1.4° 

-0.90° 

The lift curve slope calculated by the vortex lattice routine (VORT) for both tested wings 

with NACA 65-210 airfoil sections, presents excellent numerical correlation when 

compared to the experimental results of the NACA technical document. 

4.7.2 Drag Polar Comparison 

The calculated drag coefficients by the vortex lattice routine are compared with the 

experimental drag coefficients for both wing configurations with NACA 65-210 airfoil 
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sections. The following figures illustrate the comparison between the experimental drag 

polar and the calculated drag polar for each wing configuration. 

Drag Polar: Wing with NACA 65-210 
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Experimental: 2 deg 
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VORT: 2 deg 

washout 
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Figure 4.17: Drag Polar Diagram (0 deg washout): Experimental vs. Calculated 
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Drag Polar: Wing with NACA 65-210 
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Figure 4.18: Drag Polar Diagram (2 deg washout): Experimental vs. Calculated 

The calculated drag polar shown in figures 4.17 and 4.18 presents good correlation with 

the experimental data for both wing configurations. 

The wing's profile drag is calculated using the method described in section 3.3.3.1. 

A two dimensional lookup table was built for this analysis using the data provided in 
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reference [6]. Figures 4.19 and 4.20 illustrate the variation of CD0 with CL for both wing 

configurations. VORT results are compared with the available experimental data of 

NACATN 1422. 

Figure 4.19: Profile Drag Variation (2 deg washout): Experimental vs. Calculated 
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Figure 4.20: Profile Drag Variation (0 deg washout): Experimental vs. Calculated 
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Overall the calculated drag polar for both wings of NACA 65-210 airfoils sections 

behaves in a similar fashion as the experimental drag polar does. Table 4.8 shows a 

comparison between the experimental minimum profile drag coefficient and the 

calculated minimum profile drag coefficient. 

Table 4.7: Comparison between Experimental and Calculated Coo 

Wing 

65-210 Wing 0° washout 

65-210 Wing 2° washout 

CDOmin 

Force Tests 

0.0044 

0.0040 

Wake Surveys 

0.0039 

0.0039 

VORT 

0.0041 

0.0040 

In general, the aerodynamic analysis based on the vortex lattice method used during 

this research study, and during the optimization analysis presents valid results that 

correlate experimental data in published literature. 

4.8 Error Analysis 

Various sources of error can be traced during the numerical simulation and the 

aerodynamic analysis. These two sources should be treated separately, and the evaluation 

of their accuracy calls for an individual analysis on their behalf. 

89 



4.8.1 Factors affecting the accuracy of the Vortex Lattice Method 

The vortex lattice analysis in this study is limited to irrotational, inviscid, 

incompressible flow. During the simulation, the airspeed variation reached Mach 

numbers above 0.4 just in the verge of compressible flow allowing for significant error in 

the approximation of the flow field over the wing. Fvirthermore, the analysis lacks the use 

of compressibility corrections and does not utilize drag divergence approximations. 

4.8.2 Computational Error in the Numerical Analysis 

The computational error in the numerical analysis can be traced to the mathematical 

interpolation and extrapolation performed during the simulation. The calculation of the 

profile drag coefficient uses a two-dimensional lookup table that uses a linear 

interpolation and extrapolation method embedded in the application. Other computational 

calculations such as the one performed for the dynamic viscosity coefficient and the 

density altitude use linear interpolation methods that allow error in the calculation. 

During the performance analysis, the search index proceeds to calculate the 

corresponding drag coefficient through a four-dimensional look-up table that uses a 

binary search method and a spline interpolation method resulting in error accumulation. 

Overall, the error in the numerical analysis is traced to the mathematical interpolation and 

extrapolation performed during the simulation 

90 



5 CONCLUSIONS 

The optimization technique efficiently linked the Vortex Lattice Method to 

successfully optimize the geometry of a generic wing with a NACA 65-210 airfoil 

section. The objective of the optimization analysis centered on maximizing the lift to 

drag ratio at cruise velocity of the initial wing configuration, while maximizing 

theoretical range (Breguet formulation) and minimizing wing weight. The aerodynamic 

optimization technique incorporated five geometric design variables such as wing area, 

wingspan, taper ratio, leading edge sweep and geometric twist. The simulation studied a 

possible total of 324 wing combinations corresponding to the constraint variation of the 

five geometric design variables. The wing section geometry, defined by the NACA 65-

210 airfoil, was the only defining parameter that remained constant throughout the 

analysis. 

The aerodynamic optimization tool gave as an output an optimal wing geometry 

having a 1.30% decrement in wing area, a 2.7% decrement in wingspan, and a 20 % 

decrement in taper ratio when compared to the initial wing configuration. Consequently, 

there was a reduction in leading edge sweep of approximately 46.3%, and no change in 

the geometric twist angle when compared to the initial wing configuration. 

91 



Overall, the optimal wing configuration performed as expected and presented 

superior aerodynamic efficiency. The lift to drag ratio at the original cruise velocity was 

increased by almost 1%. Theoretical maximum range increased by 3.5%, and wing 

weight was reduced by 4.45%. 

In general, the aerodynamic optimization succeeded in optimizing the initial wing 

configuration to allow optimal performance during cruise while minimizing wing weight 

and increasing maximum theoretical range. The NACA technical document 1422 was 

used to validate the aerodynamic analysis used by the simulation. 
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6 RECOMMENDATIONS AND FUTURE WORK 

The aerodynamic optimization technique proposed in this analysis could extend its 

application to different Mach number regimes. Even though this analysis was constraint 

to a subsonic level, it has the potential to adapt compressibility corrections to model flow 

in the transonic and supersonic regimes. 

The vortex lattice analysis in this code was designed to model wings without variable 

wing section geometry. A solution would be to adapt an algorithm that modifies the 

camber distribution of the airfoil through the variation of the terms within the 6th degree 

polynomial approximation of the airfoil's mean camber line. The wing section geometry 

could eventually change in order to further increase the aerodynamic efficiency of the 

wing. The vortex lattice analysis could expand its application to model control surfaces 

such as ailerons or high lift devices like flaps or slats. 

The optimization technique could incorporate a gradient method or an optimal search 

method that could replace the numerical brute force technique used in this analysis 

reducing computational time and allowing faster convergence. 
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Appendix A.1: VORTexecutable.m - Wing Optimization program based on Vortex 

Lattice Theory. 

% Wing Optimization Program based on Vortex Lattice Theory % 
% VORT_l % 
% Done by Santiago Pinzon % 
% A E - 7 00 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
set(0,'DefaultFigureWindowStyle','docked') 
clc; 
cla; 
elf; 
clear; 
close all; 
fprintf('\nSantiago Pinzon, AE-700 Wing Optimization Program based on 
Vortex Lattice Theory\n') 
fprintf('\n Welcome to VORT l\n') 

% USER INPUT COMMAND PROMPT 

prompt = {'Please Enter the Following Data Starting with The Initial 
Design Wingspan ( ft):',' Enter Initial Design Wing Area (ft/s2 ) : ' , ? Enter 
Taper Ratio :','Enter Dihedral Angle (deg):','Enter LE sweep angle 
(deg)', 'Enter Washout Angle about the c/4 (deg)'}; 
name = 'INITIAL WING GEOMETRY '; 
num_lines = 1; 
default = {'37', ' 153', '0.5', '0', '8.649152791', '2'}; 
options.Resize='on'; 
options.WindowStyle='normal'; 
answer = inputdlg(prompt,name,num_lines,default,options); 

prompt_l = {'Enter # panels in the spanwise direction halfspan 
N','Enter # panels in the chordwise direction P '}; 
name = 'VLM CONDITIONS '; 
num_lines = 1; 
default = { '12', '8'}; 
options.Resize='on'; 
options.WindowStyle='normal'; 
answer_l = inputdlg(prompt_l,name,num_lines,default,options); 

prompt_2 = {'Enter Expected Cruising Altitude h (ft)','Enter Aircraft 
Gross Weight (lbs)'}; 
name = 'INITIAL CONDITIONS '; 
num_lines = 1; 
default = { '0', '5200'}; 
options.Resize='on'; 
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options.WindowStyle='normal'; 
answer_2 = inputdlg(prompt_2,name,num_lines,default,options); 

prompt_3 = {'Enter Thrust Specific Fuel Consumption TSFC Cd Alt 
(lb/lb*h)'}; 
name = 'Engine Peformance (Turbofan) '; 
num_lines = 1; 
default = {'0.60'}; 
options.Resize='on'; 
options.WindowStyle='normal' ; 
answer_3 = inputdlg(prompt_3,name,num_lines,default, options) ; 

% Variable Definition 

% WING 
b = str2double(answer{1,1}); % wingspan 
S = str2double(answer{2, 1}); % wing area 
lambda = str2double(answer{3,1}) ; % taper ratio 
phi = str2double(answer{4,1}); % dihedral angle 
sweep_a =str2double(answer{5,1}) ; % Leading edge sweep 
twist_a = str2double(answer{6,1}); % Washout about the c/4 of the wing 

% VLM ANALYSIS 
N = str2double (answer__l{ 1, 1}) ; I # of panels (half span) 
P = str2double(answer_l{2,1}); % # of chordwise panels 

% INITIAL CONDITIONS 
h = str2double(answer_2{1,1}); % Altitude 
W = str2double(answer_2{2,1}); % Gross Weight 

% Engine Characteristics 

TSFC = str2double(answer_3{l,1}); 

% Limit Load Factor: 

l_factor = 2.8; 

N z = 1 factor*!.5; 

% Initial Variables Required for Program Initial 

x_percent = 0.70; 
Jet_fuel_d = 6.4; 

AR__initial = (bA2)/S; 

R_gas = 1716; 
Pjatm = 2116*(1-0.0000068753*h)A5.2561; 
oatr = 518.69*(l-0.0000068753*h); 
rho = P atm/(R gas*oatr); 

tic 
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fprintf('\n\nProgram in progress please wait \n\n') 

% AIRFOIL: DRAG POLAR 
cl_65210 = [0.00 0.10 
1-103; 
Reynolds = [3.1*10A6 6.0*10A6 9.0*10A6]; 
CD_pmatrix = [0.004090 0.005693 0.005271 

0.004175 0.003837 0.003837 
0.004133 
0.004217 
0.004343 
0.007042 
0.007970 
0.008560 
0.009319 
0.010247 
0.011428 0.009952 
0.013578 0.011006 0.010163]; 

DATA FOR NACA 64-415 (THEORY OF WING SECTIONS) 
0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.003880 
0.004006 
0.005229 
0.006663 
0.007000 
0.007633 
0.008392 
0.009024 

0.003627 
0.003795 
0.005735 
0.006283 
0.006620 
0.007042 
0.007548 
0.008181 
0.009024 

%Induced Drag Factor Data: McCormick, B.W Aerodynamics 
taper_ratio = [0.042 0.200 0.400 0.600 0.800 1]; 
Aspect_ratio = [ 4 6 8 10]; 
Delta=var =[0.04022 0.06659 0.07732 0.09430 

0.00134 0.00670 0.01028 0.01564 
0.00134 0.00402 0.00804 0.01162 
0.01028 0.01877 0.02637 0.03352 
0.02547 0.03978 0.05453 0.07061 
0.04156 0.06346 0.08626 0.10726]; 

%Dynamic Viscosity Table 
vise = [ 0.374 0.372 0.370 0.368 0.366 0.364 0.362 0.360 0.358 0.355 
0.353 0.351 0.349 0.347 0.345 0.343 0.341 0.339 0.337 0.335 0.332 0.330 

0.328 0.326 0.324 0.322 0.319 0.317 0.315 0.313 0.311 0.308 
0.306 0.304 0.302 0.300 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 
0.297 0.297 0.297 0.297... 

0.297 0297 0.297]*10A-6; 
alti = [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 
48 49 50]*10A3; 
sim Dynamic_viscosity 

Cl_max = 1.4; % NACA 65-210 airfoil 
CL maxWing = 0.9*Cl_max;/ For aspect ratios higher than (Raymer) 

rho SSL = 2.3769*10A-3;% Density at sea level 
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% 
%Memory Allocation 
o 

yl_m = zeros(P,N); 

le ml = 
le_mlt 
te ml 
te_mlt 
c lm = 
c lmt 
xl m = 
xl mt= 
xl mz= 
zl mt 
zl_m= 

y2_m= 
y2_mt 
le m2 
le_m2t 
te_m2 
te m2t 
c 2m = 
c_2mt 
x2 m = 
x2_mt 
x2 mz 
z2~mt 
z2 m = 

=zeros(P/N); 
= zeros(P,N 
= zeros(P,N) 
= zeros(P,N 
zeros(P,N); 
= zeros(P,N) 
zeros(P/N); 
zeros(P,N); 
zeros(P,N); 
= zeros(P/N) 
zeros(P,N); 

zeros(P,N); 
= zeros(P,N) 
=zeros(P,N); 
= zeros(P,N 
= zeros(P,N) 
= zeros(P,N) 
zeros(P/N); 
= zeros(P,N) 
zeros(P/N); 
= zeros(P/N) 
= zeros(P/N) 
= zeros(P/N) 
zeros(P/N); 

y3_m = zeros(P/N); 
y3_mt = zeros(P/N); 
le_m3 =zeros(P/N); 
le_m3t = zeros(P/N); 
te_m3 = zeros(P,N); 
te_m3t= zeros(P,N); 
c__3m = zeros (P,N); 
c_3mt = zeros(P/N); 
x3_m = zeros(P/N); 
x3=mt = zeros(P,N); 
x3_mz = zeros(P/N); 
z3_mt = zeros(P,N); 
z3_m = zeros(P,N); 

y_M = zeros(P/N); 
y_Mt = zeros(P/N); 
le_M =zeros(P,N); 
le_Mt = zeros(P,N); 
te_M = zeros(P,N); 
te_Mt= zeros(P/N); 
chord__M = zeros (PfN); 
chord Mt = zeros(P/N); 



xl_M = zeros(P,N); 
x2_M = zeros(P/N); 
zl_M = zeros(PfN); 
z2_M = zeros(P/N); 
x_M = zeros(P/N); 
x_Mt= zeros(P,N); 
x_Mz = zeros(P/N); 
z_Mt = zeros(P,N); 
z_M = zeros(P,N); 
yp_M = zeros(P/N); 

yl_N =zeros(P,N); 
yl_Nt = zeros(P,N); 
le_Nl =zeros(P,N); 
le_Nlt = zeros(P,N); 
te_Nl = zeros(P,N) 
te_Nlt= zeros(P,N) 
c_l = zeros(P/N); 
c__lNt = zeros(P,N) 
xl_lN = zeros(P/N) 
x2_lN = zeros(P/N) 
zl_lN = zeros(P,N) 
z2_lN = zeros(P,N) 
xl_N = zeros(P,N); 
xl_Nt = zeros(P,N) 
xl_Nz = zeros(P/N) 
zl_Nt = zeros(P,N) 
zl_N = zeros(P,N); 

y2_N = zeros(P,N); 
y2_Nt =zeros(P,N); 
le_N2 =zeros(P,N); 
le_N2t = zeros(P,N); 
te_N2 = zeros(P,N) 
te_N2t= zeros(P,N) 
c_2 = zeros(P,N); 
c_2Nt = zeros(P/N) 
xl_2N = zeros(P,N) 
x2_2N = zeros(P,N) 
zl_2N = zeros(P,N) 
z2_2N = zeros(P/N) 
x2_N = zeros(P,N); 
x2_Nt = zeros(P,N) 
x2_Nz = zeros(P/N) 
z2_Nt = zeros(P/N) 
z2 N = zeros(P/N); 

ylp_N = zeros(P/N); 
y2p_N = zeros(P,N); 

Al_m = zeros(1,3,N); 
A2_m = zeros(1/3,N); 
A3_m = zeros(1,3,N); 
A4 m = zeros(1/3/N); 



A5_m = zeros(1,3,N) 
A6_m = zeros(1,3,N) 
A7_m = zeros(1,3,N) 
A8_m = zeros(1,3,N) 

Bl m 
B2_m 
B3_m 
B4_m 
B5_m 
B6 m 
B7_m 
B8__m 

= 
= 
= 
= 
= 
= 
= 
= 

zeros 
zeros 
zeros 
zeros 
zeros 
zeros 
zeros 
zeros 

(1,3,N) 
(1,3/N) 
(1,3/N) 
(1,3/N) 
(1,3,N) 
(1/3,N) 
(1/3,N) 
(1/3,N) 

nl 
n2~ 
n3~ 
n4~ 
n5~ 
n6~ 
n7~ 
n8~ 

m 
m 
m 
m 
m 
m 
m 
m 

= 
= 
= 
= 
= 
= 
= 
= 

zeros 
zeros 
zeros 
zeros 
zeros 
zeros 
zeros 
zeros 

(1/3/N) 
(1,3,N) 
(1,3,N) 
(1,3,N) 
(1/3,N) 
(1/3,N) 
(1/3,N) 
(1/3,N) 

nl 
n2~ 
n3= 

n4~ 
n5~ 
n6~ 
n7~ 
n8= 

_unit 
unit 
unit 
_unit 
unit 
unit 
unit 
unit 

= 
= 
= 
= 
= 
= 
= 
= 

zeros(1,3/N) 
zeros (1, 3, N) 
zeros(1,3/N) 
zeros(1/3/N) 
zeros(1/3/N) 
zeros(1,3/N) 
zeros(1,3,N) 
zeros(1,3,N) 

store_angle_attack = zeros (22,1); 
store_U_inf = zeros (50,1); 

vl_m = zeros(I,3/N); 
n_m = zeros (P/N); 
Vortex_c = zeros (1,N); 

store_S2 = zeros (3,1); 
store_b2= zeros (3,1); 
store_lambda = zeros (3,1); 
store_sweep_a = zeros (4,1); 
store_twist_a = zeros (3,1); 

Cl_p = zeros(3,3,3,4,3,22,50) ; 
Cd_s = zeros(3,3/3,4,3,22,50) ; 
Cd_induced = zeros(3,3,3,4,3,22,50) ; 
Cd_profile = zeros(3,3,3/4,3,22,50) ; 
Cd_total = zeros(3,3,3,4,3,22,50) ; 

TR_result = zeros(50,3,3,3,4,3) ; 
PR_result = zeros(50,3,3,3,4,3) ; 
L=D_result = zeros(50,3,3,3,4,3) ; 
CL_result = zeros(50,3,3,3,4/3) ; 
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Cl_w_result = zeros(50/3/3/3,4/3) ; 
Cd_w__result = zeros (50/3/3/3/4f 3) ; 
CL_result2 = zeros(50,3,3/3/4,3) ; 
AOA_R_result = zeros(50/3,3/3,4,3) ; 
Fuel_weight_result = zeros(50,3,3,3,4,3) ; 
Fuel_volume_g_result= zeros(50,3,3,3,4,3) ; 

8 

% 
% OPTIMIZATION ANALYSIS % 
1 
a 

%Calculation of Minimum passing velocity for Altitude% 
S_input = str2double(answer{2,1}); 

U_input = sqrt((2*W)/(rho*(S_input)*CL_maxWing)); 

hi = waitbar(0,'Please wait... Vortex Lattice Analysis in Progress'); 
S = str2double(answer{2,1})-4; 
for z = 1:1:3 

S = S+2; 
store_S2(z,1)= S; 
waitbar(z/3) 

b = str2double(answer{1/1})-2; 
for q = 1:1:3 

b = b+1; 
store b2(q,1) = b; 

lambda = str2double(answer{3,1})-0.2 ; 
for T = 1:1:3 

lambda = lambda+0.1; 
store_lambda(T,1) = lambda; 

sweep_a =str2double(answer{5,1})-8 ; 
for p = 1:1:4 

sweep_a = sweep_a+2; 
store_sweep_a (p, 1) = sweep__a; 

twist_a = str2double(answer{6,1})-3; 
for u = 1:1:3 

twist_a = twist_a+l; 
store twist a(u,l) = twist a; 

for o=l:P 
for m=l:N 
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%Panel Vectors 
yl_m(o,m) = ( ( (m-1) *b) / (2*N) ) ; 
yl_mt(o,m) = b/(2) ; 
le_ml(o,m) =(tan((sweep_a*(pi/180)))*yl_m(o,m)); 
le__mlt(o,m) = (tan((sweep_a*(pi/180)))*yl_mt(o,m)); 
te_ml(o,m) = 

(2/b)*(((tan(sweep_a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1))*yl_m(o,m)+((2*S)/(b*(1+lambda)))*(b/2)); 

te_mlt(o,m)= 
(2/b)*(((tan(sweep_a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1))*yl_mt(0/m)+((2*S)/(b*(1+lambda)))*(b/2)); 

c_lm(o,m) = te_ml(o,m)-le_ml(o,m); 
c_lmt(0/in) = te_mlt (O/m)-le_mlt (O/m) ; 
xl_m(o,m) = ( (o-l) * (c_lm(0/m) /P) ) +le__ml (o,m) ; 
xl_mt (ofm)= ( (o-l)*(c=lmt (O/m) /P) ) ; 
xl_mz (0/m)= ( (o-l) * (c_lm(0/in) /P) ) ; 
zl__mt(o,m) = 

((3/4*(c_lmt(o,m)*tand(twist_a))+(l/4*c_lmt(o,m)*tand(twist_a)))/(c_lmt 
(o,m)))*xl_mt(o,m)-(l/4*c_lmt(O/m)*tand(twist_a)); 

zl_m(0/m) = ((tand(phi))*(((m-
l)*b) /(2*N) ) ) + ( (zl_mt (O/m) /yl_mt (O/m) )*yl_m(o,m) )+ c_lm(o,m)*( (-
0.7 825*((xl_mz(0/m)/e_lm(0/m))A6))+(2.2021*((xl_mz(O/m)/c_lm(0/m))A5)) 

(2. 37 63* ( (xl_mz(0/m)/c_lm(0/iri) ) A4) ) +(1.2458* ( (xl_mz (O/m)/c_lm(0/m) ) A3) ) 
-(0.367 6*((xl=mz(o,m)/c lm(0/m))A2))+(0.0782*((xljnz(O/m)/c=lm(0/m)))+ 
0.0001)); 

y2_m(0/m) = (((m-1)*b)/(2*N)); 
y2_mt(O/m) = b/(2); 
le_m2 (o,m) = (tan ( (sweep_a* (pi/180) ) ) *y2__m(o,m) ) ; 
le__m2t (o,m) = (tan( (sweep_a* (pi/180) ) )*y2_mt (o,m) ) ; 
te_m2(o,m) = 

(2/b)*(((tan(sweep^a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1))*y2_m(o,m)+((2*S)/(b*(1+lambda)))*(b/2)); 

te_m2t(o,m)= 
(2/b)*(((tan(sweep_a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1))*y2_mt(o,m)+((2*S)/(b*(1+lambda)))*(b/2)); 

c_2m(o,m) = te_m2 (O/m) -le_m2 (0/in) ; 
c_2mt(0/m) = te__m2t (O/m) -le_m2t (O/m) ; 
x2_m(0/m) = (o* (c_2m(0/in) /P) ) +le_m2 (ofm) ; 
x2_mt(ofm) = (o* (c_2mt (o,m)/P) ) ; 
x2_mz(0/m) = (o* (c_2m(o,m)/P) ) ; 
z2_mt(o,m) = 

((3/4*(c_2mt(o,m)*tand(twist_a))+(l/4*c_2mt(ofm)*tand(twist_a)))/(c_2mt 
(O/m)))*x2_mt(0/m)-(l/4*c_2mt(0/m)*tand(twist_a)); 

z2_m(0/m) = (((tand(phi))*(((m-
l)*b)/(2*N) ) ) + ( (z2_mt (0/m)/y2_mt (O/m) )*y2_m(0/m) )+ c_2m(0/in)* ( (-
0.7825*( (x2_mz(0/m)/c_2m(0/m) )A6) ) + (2.2021*( (x2_mz (O/m) /c_2m(0/in) ) A5) ) 

(2.37 63* ( (x2_mz(0/m)/c_2m(0/m) ) A4) ) + (1.24 58* ( (x2_mz (ofm) /c_2m(0/m) )
 A3) ) 

-(0.3676*( (x2_mz(0/m)/c_2m(0/m) ) A2) ) + (0.0782*( (x2__mz (O/m)/c_2m(0/m) ) ) ) + 
0.0001)); 

y3__m(0/m) = (m*b)/(2*N); 
y3_mt(O/m) = b/(2); 
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Ie_m3(O/m) =(tan((sweep_a*(pi/180)))*y3_m(0/m)); 
le_m3t(O/m) = (tan((sweep_a*(pi/180)))*y3_mt(O/m)); 
te_m3(0/in) = 

(2/b)*(((tan(sweep_a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1))*y3_m(o,m)+((2*S)/(b*(1+lambda)))*(b/2)); 

te_m3t(o,m)= 
(2/b)*(((tan(sweep_a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1))*y3_mt(o,m)+((2*S)/(b*(1+lambda)))*(b/2)); 

c_3m(o,m) = te_m3(o,m)-le_m3(o,m); 
c_3mt(0/in) = te_m3t (o,m)-le_m3t (o,m); 
x3_m(o,m) = ( (o-l) * (c_3m(o,m) /P) )+le_m3 (o,m) ; 
x3_mt(o,m) = ((o-l)*(c_3mt(o,m)/P)); 
x3_mz(0/m) = ( (o-l)* (c_3m(0/in) /P) ) ; 
z3_mt(o,m) = 

((3/4*(c_3mt(o,m)*tand(twist_a))+(l/4*c_3mt(o,m)*tand(twist=a)))/(cJ3mt 
(o,m)))*x3_mt(o,m)-(l/4*c_3mt(o,m)*tand(twist_a)); 

z3_m(o,m) = (((tand(phi))*((m*b)/(2*N)))+ 
((z3_mt(o,m)/y3_mt(o,m))*y3_m(o,m)) + c_3m(o,m)*((-
0.7825*((x3_mz(o,m)/c_3m(0/m))A6))+(2.2021*((x3_mz(O/m)/c_3m(0/m))A5)) 

(2.37 63*((x3_mz(0/m)/c_3m(0/m))A4))+(1.2458*((x3_mz(O/m)/c_3m(0/m))A3)) 
-(0.367 6*((x3_mz(o,m)/c_3m(0/m))A2))+(0.0782*((x3_mz(o,m)/c_3m(o,m))))+ 
0.0001)); 

end 
end 

for o=l:P 
for m=l:N 
^Control Point Coordinates 
y_M(o,m) = (((2*m)-l)*b)/(4*N); 
y_Mt(o,m) = b/(2); 
le_M(o,m) =(tan((sweep_a*(pi/180)))*y_M(o,m)); 
le_Mt(o,m) = (tan((sweep_a*(pi/180)))*y_Mt(o,m)); 
te_M(o,m) = 

(2/b)*( ( (tan (sweep__a* (pi/180) ) )*(b/2) + ( (2*S) / (b* (1+lambda) ) )*(lambda-
1) )*y_M(o,m) + ((2*S)/(b*(1+lambda)))*(b/2)); 

te_Mt(o,m)= 
(2/b)*(((tan(sweep_a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1))*y_Mt(o,m)+((2*S)/(b*(1+lambda)))*(b/2)); 

chord_M(o,m) = te_M(o,m)-le_M(0/m); 
chord_Mt(O/m) = te_Mt(ofm)-le_Mt(ofm); 
xl_M(0/in) = ( (o-l)*(chord_M(0/m)/P) ) ; 
x2_M(0/m) = ((o)*(chord_M(0/m)/P)); 
zl_M(0/m) = (((tand(phi))*((((2*m)-1)*b)/(4*N)))+ 

chord_M(0/m)*((-
0.7825* ( (xl_M(ofm) /chord_M(0/m) )

 A6) ) + (2.2021* ( (xl_M(0/m) /chord_M(0/in) ) A 

5)) -
(2.3763* ( (xl_M(0/m) /chord_M(0/m) ) A4) ) + (1.2458* ( (xl_M(0/m) /chord_M (O/m) ) 
A3))-
(0.367 6*( (xl_M(0/m)/chord_M(0/m) ) A2) ) + (0.0782*( (xl_M (O/m)/chord_M (O/m) ) 
))+ 0.0001)); 

z2_M(0/m) = (((tand(phi))*((((2*m)-1)*b)/(4*N)))+ 
chord M(0/in) * ( (-
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0.7825* ( (x2_M(0/m)/chord_M(0/m) ) A6) ) +(2.2021* ( (x2_M(0/in) /chord_M(0/in) ) A 

5)) -
(2.3763*( (x2_M(0/m)/chord_M(0/m) ) A4) ) + (1.2458*( (x2_M(0/m) /chord_M (o,m) ) 
A3))-
(0.367 6* ( (x2jyi(o,m)/chord=M(o,m) )

 A2) ) +(0.0782* ( (x2=M (o,m) /chordJA (o,m) ) 
))+ 0.0001)); 

x_M(ofm) = ((3/4+(o-l))*(chord_M(o,m)/P))+le_M(o,m); 
x_Mt(o,m)= ((3/4+(o-l))*(chord_Mt(o,m)/P)); 
x_Mz(o,m) = ((3/4+(o-l))*(chord_M(o,m)/P)); 
z=Mt(o,m) = 

((3/4*(chord_Mt(o,m)*tand(twist_a))+(l/4*chord_Mt(o,m)*tand(twist_a)))/ 
(chord_Mt(o,m)))*x_Mt(o,m)-(l/4*chord_Mt(o,m)*tand(twist_a)); 

z_M(0/m) = (((tand(phi))*((((2*m)-
l)*b) /(4*N))) + ((z_Mt(o,m)/y_Mt(o,m))*y_M(0/m))+ ( ((z2_M(o,m)-
zl_M(o,m))/(x2J4(o,m)-xl_M(o,m)))*x=Mz(o,m)+(zl M(o,m)-(((z2_M(o,m)-
zl_M(0/m))/(x2_M(0/m)-xl_M(0/m)))*xl_M(o,m)))) ) ; 

yp_M(0/m) = -(((2*m)-l)*b)/(4*N); 

end 
end 

x_m = size(N*P,l); 
y_m = size(N*P,l); 
z_m = size(N*P,1); 
yp_m = size(N*P,l); 

f o r m=l:N 

x m(m,1) = x 
x m(m+N, 1) = 
x_m(m+2*N, 1) 
x__m(m+3*N, 1) 
x m(m+4*N,1) 
x~m(m+5*N, 1) 
x m(m+6*N/1) 
x_m(m+7*N/1) 
y m(ni/1) = y_ 
y m(m+N/ 1) = 
y_m(m+2*N, 1) 
y__m(m+3*N/ 1) 
y m(m+4*N/1) 
y m(m+5*N/1) 
y_m(m+6*N/1) 
y_m(m+7*N/1) 
z m(iri/1) = z_ 
z m(m+N/1) = 
z_m(m+2*N/l) 
z_m(m+3*N/l) 
z m(m+4*N/ 1) 
z_m(m+5*N/ 1) 
z_m(m+6*N f1) 
z m(m+7*N/l) 

_M(l /m) ; 
x_M(2,m 
= x_M(3, 
= x_M(4, 
= x_M(5, 
= x M(6, 
= x_M(7, 
= x M(8, 

_M(l ,m) ; 
y M(2/m] 
= y_M(3, 
= y M(4, 
= y_M(5, 
= y_M(6, 
= y M(7, 
= y M(8, 

_M(l /m) ; 
z M(2/m] 
= z_M(3, 
= z M(4, 
= z _ M(5, 
= z_M(6, 
= z M(7, 
= z_M(8, 

yp m(iri/l) = yp_M(l/m) 
yp m(m+Nf1) = 
yp_m(m+2*N/1) 

= yp_M(2, 
= yp M 

; 
m) ; 
m) ; 
m) ; 
m) ; 
m) ; 
m) ; 

; 
m) ; 
m) ; 
m) ; 
m) ; 
m) ; 
m) ; 

/ 
m) ; 
m) ; 
m) ; 
m) ; 
m) ; 
m) ; 
t 

m) ; 
(3,m) ; 
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yp_m(m+3*N/1) 
yp_m(m+4*N,1) 
yp_m(m+5*N/1) 
yp_m(m+6*N/1) 
yp_m(m+7*N, 1) 

end 

for o=l:P 
for n=l:N 
%Panel Coordinates: Bound Vortex 

yl_N(o,n) = (((n-l)*b)/(2*N)); 
yl_Nt(o,n) = b/(2); 
le_Nl(o,n) =(tan((sweep_a*(pi/180)))*yl_N(o,n)); 
le_Nlt(o,n) = (tan((sweep_a*(pi/180)))*yl_Nt(o,n)); 
te=Nl(o,n) = 

(2/b)*(((tan(sweep_a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1))*yl_N(o,n)+((2*S)/(b*(1+lambda)))*(b/2)); 

te_Nlt(o,n)= 
(2/b)*(((tan(sweep_a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1))*yl_Nt(o,n)+((2*S)/(b*(1+lambda)))*(b/2)); 

c_l(o,n) = te_Nl(o,n)-le_Nl(0/n); 
c_lNt(0/n) = te_Nlt(o,n)-le_Nlt(o,n); 
xlJLN(o,n) = ((o-l)*(c_l(o,n)/P)); 
x2_lN(o,n) = ((o)*(c_l(o,n)/P)); 
zl_lN(o,n) = (((tand(phi))*(((n-1)*b)/(2*N)))+ c_l(o,n)*((-

0.7825*((xl_lN(o,n)/c_l(o,n))A6))+(2.2021*((xl_lN(ofn)/c_l(o,n))A5)) -
(2.37 63*((xl_lN(0/n)/c_l(0/n))A4))+(1.2458*((xl_lN(o,n)/c_l(o,n))A3))-
(0.367 6* ( (xl__lN(0/n)/c_l(0/n) ) A2) ) + (0 . 0782* ( (xl_lN (of n)/c_l (o, n) ) ) ) + 
0.0001)); 

z2_lN(0/n) = (((tand(phi))*(((n-1)*b)/(2*N)))+ c_l(o,n)*((-
0.7825* ( (x2__lN(0/n)/c_l(0/n) ) A6) ) +(2.2021* ( (x2_lN (o, n) /c__l (o, n) ) A5) ) -
(2.3763*((x2_lN(0/n)/c_l(0/n))A4))+(1.2458*((x2_lN(o,n)/c_l(o,n))A3))-
(0.367 6*((x2_lN(0/n)/c_l(0/n))A2))+(0.0782*((x2_lN(o,n)/c_l(o,n))))+ 
0.0001)); 

xl=N(0/n) = ((l/4+(o-l))*(cJL(o,n)/P))+le_Nl(0/n); 
xl__Nt(0/n) = ( (l/4+(o-l) )*(c_lNt(0/n)/P) ) ; 
xl_Nz(0/n) = ((l/4+(o-l))*(c_l(o,n)/P)); 
zl_Nt(0/n) = 

((3/4*(c_lNt(0/n)*tand(twist_a))+(l/4*c_lNt(o,n)*tand(twist_a)))/(c_lNt 
(O/n)))*xl_Nt(o,n)-(l/4*c=lNt(0/n)*tand(twist=a)); 

zl_N(0/n) = (((tand(phi))*(((n-
l)*b)/(2*N)))+((zl_Nt(0/n)/yl_Nt(0/n))*yl_N(0/n)) + ( ((z2_lN(o,n)-
zl_lN(ofn))/(x2_lN(0/n)-xl_lN(0/n)))*xl_Nz(o,n)+(zl_lN(o,n)-
(((z2_lN(o,n)-zl_lN(o,n))/(x2_lN(o,n)-xl_lN(o,n)))*xl_lN(0/n))))); 

y2_N(o,n) = (n*b)/(2*N); 
y2__Nt(o,n) = b/(2) ; 
le_N2(o,n) =(tan((sweep_a*(pi/180)))*y2_N(o,n)); 
le_N2t(o,n) = (tan ( (sweep_a* (pi/180) )) *y2__Nt (o, n) ) ; 
te_N2(o,n) = 

(2/b)*(((tan(sweep_a*(pi/180)))*(b/2)+((2*S)/(b*(1+lambda)))*(lambda-
1) ) *y2__N (o, n) + ( (2*S) / (b* (1+lambda) ) ) * (b/2) ) ; 

= yp_M(4,m) ; 
= yp_M(5,m) ; 
= yp_M(6,m) ; 
= yp_M(7/m) ; 
= yp_M(8/m) ; 
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t e _ N 2 t ( o , n ) = 
( 2 / b ) * ( ( ( t a n ( s w e e p _ a * ( p i / 1 8 0 ) ) ) * ( b / 2 ) + ( ( 2 * S ) / ( b * ( 1 + l a m b d a ) ) ) * ( l a m b d a -
1 ) ) * y 2 _ N t ( o f n ) + ( ( 2 * S ) / ( b * ( 1 + l a m b d a ) ) ) * ( b / 2 ) ) ; 

c _ 2 ( o , n ) = t e _ N 2 ( o , n ) - l e _ N 2 ( o , n ) ; 
c = 2 N t ( o , n ) = teJSI2t ( o , n ) - l e = N 2 t ( o , n ) ; 
x l _ 2 N ( o , n ) = ( ( o - l ) * ( c _ 2 ( o , n ) / P ) ) ; 
x 2 _ 2 N ( o , n ) = ( ( o ) * ( c _ 2 ( o , n ) / P ) ) ; 
zl_2N(o,n) = (((tand(phi))*(((n-1)*b)/(2*N)))+ c_2(o,n)*((-

0.7825*((xl_2N(o,n)/c_2(o,n))A6))+(2.2021*((xl_2N(o,n)/c_2(o,n))A5)) -
(2.3763*((xl_2N(o,n)/c=2(o,n))

A4))+(1.2458*((xl=2N(o,n)/c 2(ofn))
A3))-

(0.367 6*((xl~2N(o,n)/c_2(0/n))A2))+(0.0782*((xl_2N (o, n)/c~2 (o, n))))+ 
0.0001)); 

z2_2N(o,n) = (((tand(phi))*(((n-1)*b)/(2*N)))+ c_2(o,n)*((-
0.7825*((x2_2N(o,n)/c_2(o,n))A6))+(2.2021*((x2_2N(o,n)/c_2(O/n))A5)) -
(2. 37 63* ( (x2_2N(o/n)/c==2(0/n) )

 A4 ) ) + (1. 2458* ( (x2_2N (O/ n) /c=2 (o, n) ) A3) )-
(0.367 6*((x2_2N(0/n)/c_2(ofn))"2))+(0.0782*((x2_2N(o,n)/c_2(o,n))))+ 
0.0001)); 

x2_N(o,n) = ((l/4+(o-l))*(c_2(o,n)/P))+le_N2(o,n); 
x2_Nt(o,n) = ((1/4+(o-l))*(c_2Nt(o, n)/P)); 
x2=Nz(0/n) = ((l/4+(o-l))*(c=2(0/n)/P)); 
z2_Nt(0/n) = 

((3/4*(c_2Nt(O/n)*tand(twist_a))+(l/4*c_2Nt(o,n)*tand(twist_a)))/(c_2Nt 
(O/n)))*x2_Nt(o,n)-(l/4*c_2Nt(0/n)*tand(twist_a)); 

z2_N(o,n) = 
(((tand(phi))*((n*b)/(2*N)))+((z2_Nt(o,n)/y2_Nt(o,n))*y2_N(0/n)) + ( 
((z2_2N(0/n)-zl_2N(0/n))/(x2_2N{o,n)-
xl_2N(0/n)))*x2_Nz(0/n)+(zl_2N(o,n)-(((z2_2N(0/n)-
zl 2N(o,n))/(x2_2N(O/n)-xl_2N(o,n)))*xl_2N(o,n))))); 

%Panel Coordinates: Bound Vortex (port side change) 
ylp_N(0/n) = -(((n-l)*b)/(2*N)); 
y2p_N(o,n) = -(n*b)/(2*N); 

end 
end 

x l _ n = 
y l n = 
z l n = 
y l p _ n •• 
x2_n = 
y2_n = 
z2_n = 
y2p_n = 

s i z e ( N * P , l ) ; 
s i z e ( N * P , l ) ; 
s i z e ( N * P , l ) ; 

= s i z e ( N * P / l ) 
s i z e ( N * P / l ) ; 
s i z e ( N * P / l ) ; 
s i z e ( N * P / l ) ; 

= s i z e ( N * P / l ) 

for n=l:N 

xl_n(nfl) = xl_N(l/n); 
xl_n(n+N/l) =xl_N(2/n); 
xl_n(n+2*N/l) =xl_N(3/n); 
xl n(n+3*N,l) = xl=N(4,n); 
xl n(n+4*N,l) = xl_N(5/n); 
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xl_n(n+5*N/l) = xl_N 
xl_n(n+6*N/l) = xl_N 
xl_n(n+7*N/l) = xl_N 

yl_n(n,l) = yl_N(l,n 
yl_n(n+N,l) = yl_N(2 
yl_n(n+2*N,1) = yl_N 
yl_n(n+3*N,l) = yl_N 
yl_n(n+4*N,l) = yl_N 
yl_n(n+5*N,1) = yl_N 
yl__n(n+6*N, 1) = yl_N 
yl_n(n+7*N,l) = yl_N 

zl_n(n,l) = zl_N(l,n 
zl_n(n+N,l) = zl_N(2 
zl_n(n+2*N/l) = zl_N 
zl_n(n+3*N,l) = zl_N 
zl_n(n+4*N,l) = zl_N 
zl_n(n+5*N,1) = zl_N 
zl_n(n+6*N,1) = zl_N 
zl n(n+7*N,1) = zl N 

ylp_n(n,l) = ylp_N(l,n 
ylp_n(n+N,l) = ylp_N(2 
ylp_n(n+2*N,l) = ylp_N 
ylp_n(n+3*N,l) = ylp_N 
ylp_n(n+4*N,1) = ylp_N 
ylp_n(n+5*N,1) = ylp_N 
ylp_n(n+6*N,1) = ylp_N 
ylp_n(n+7*N,1) = ylp_N 

x2_n(n,1) = x2 N(l,n) 
x2 n(n+N,l) = 
x2 n(n+2*N,l) 
x2 n(n+3*N,l) 
x2 n(n+4*N,l) 
x2 n(n+5*N,l) 
x2 n(n+6*N,l) 
x2 n(n+7*N,l) 

x2 N(2, 
= x2 N 
= x2 N 
= x2 N 
= x2 N 
= x2 N 
= x2 N 

y2_n(n,l) = y2_N(l,n) 
y2 n(n+N,l) = 
y2 n(n+2*N,l) 
y2 n(n+3*N,1) 
y2 n(n+4*N,l) 
y2 n(n+5*N,l) 
y2 n(n+6*N,l) 
y2 n(n+7*N,l) 

y2 N(2, 
= y2 N 
= y2 N 
= y2 N 
= y2_N 
= y2 N 
= y2 N 

z2_n(n,1) = z2_N(l,n) 
z2 n(n+N,l) = 
z2 n(n+2*N,l) 
z2_n(n+3*N,l) 
z2 n(n+4*N,l) 
z2_n(n+5*N,l) 
z2_n(n+6*N,l) 

z2 N(2, 
= z2 N 
= z2 N 
= z2 N 
= z2 N 
= z2 N 

; 
n 
(3 
(4 
(5 
(6 
(7 
(8 

/ 
n 
(3 
(4 
(5 
(6 
(7 
8 

r 

n 
(3 
4 
5 
6 
7 
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z2 n(n+7*N,l) = z2 N(8,n); 

y2p_n(n,l) = y2p_N(l,n); 
y2p_n(n+N,l) =y2p_N(2,n); 
y2p_n(n+2*N,l) = y2p_N(3,n) 
y2p_n(n+3*N,l) =y2p_N(4,n) 
y2p_n(n+4*N,l) = y2p_N(5,n) 
y2p_n(n+5*N,l) = y2p_N(6,n) 
y2p_n(n+6*N,l) = y2p_N(7,n) 
y2p_n(n+7*N,l) = y2p N(8,n) 

end 

for m =1:N 

Al_m 
zl m(l,m) 

A2_m 
zl m(2,m) 

A3_m 
zl m(3,m) 

A4_m 
zl m(4,m) 

A5 m 
zl m(5,m) 

A6_m 
zl m(6,m) 
" A7_m 

zl m(7,m) 
A8_m 

zl m(8,m) 

Bl_m 
zl m(l,m) 

B2_m 
zl m(2,m) 

B3_m 
zl m(3,m) 

B4 m 
zl m(4,m) 

B5_m( 
zl m(5,m) 

B6_m( 
zl m(6,m) 

B7_m( 
zl m(7,m) 

B8_m( 
zl m(8,m) 

nl m( 
n2 m( 
n3_m( 
n4 m( 
n5 m( 
n6 m( 
n7 m( 

i • / 

] , 
:, 

] . 
(:, 

]-
!: i 

]. 
: | 

] , 
(: < 
]. 
: , 
]. 
: , 
]. 

• i 

] , 
: , 

] , 
;:, 

], 
:, 
]; 
:, 

]; 
:, 

]; 
:, 
]; 
:, 

]; 

:, 

: r 
: , 
: , 
: r 

i r 

: , 

: , m) 

: ,m) 

: ,m) 

:,m) 

:,m) 

: ,m) 

:,m) 

:, m) 

: ,m) 

:,m) 

:,m) 

:/m) 

:,m) 

:/m) 

: ,m) 

:/m) 

: ,m) 
:,m) 
:/m) 
: ,m) 
:,m) 
:,m) 
:,m) 

[x2_m 

[x2_m 

[x2_m 

[x2_m 

[x2_m 

[x2_m 

[x2_m 

[x2_m 

[x3_m 

[x3_m 

[x3_m 

[x3_m 

[x3_m 

[x3_m 

[x3_m 

[x3 m 

l,m 

2,m 

3/in 

4,m 

5,m 

6,m 

7,m 

8,m 

l,m 

2,m 

3,m 

4,m 

5,m 

6,m 

7,m 

8/m; 

cross(Al_m 
cross(A2_m 
cross(A3_m 
cross(A4_m 
cross(A5_m 
cross(A6_m 
cross(A7 m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl_m 

-xl m 

,m 
,m 
,m 
,m 
,m 
,m 
/m 

l,m) y2_m(l,m)-yl_m(l,m 

2,m) y2_m (2,m)-yl_m(2,m 

3,m) y2_m(3,m)-yl_m(3,m 

4 , m) y2_m (4, m) -yl_m (4, m 

5,m) y2_m(5,m)-yl_m(5,m 

6,m) y2_m(6,m)-yl_m(6,m 

7,m) y2_m(7,m) -yl_m(7,m 

8,m) y2_m(8,m) -yl_m(8,m 

l,m) y3_m(l,m) -yl_m(l,m 

2,m) y3__m(2,m) -yl_m(2,m 

3,m) y3_m(3,m) -yl_m(3,m 

4, m) y3_m (4, m) -yl_m (4, m 

5,m) y3_m(5,m) -yl_m(5,m 

6,m) y3_m(6,m) -yl_m(6,m 

7, m) y3_m (7, m) -yl_m (7, m 

8,m) y3__m(8,m)-yl m(8,m 

z2_m(l,m) 

z2_m(2,m) 

z2_m (3,m) 

z2_m (4 ,m) 

z2_m(5,m) 

z2_m(6,m) 

z2_m(7,m) 

z2_m (8,m) 

z3_m(l,m) 

z 3__m (2, m) 

z3_m(3,m) 

z3_m(4,m) 

z3_m(5,m) 

z3_m(6,m) 

z3_m(7,m) 

z3 m(8,m) 

rBljxii:, 
z B2_m(:, 

z B3_m(: , 
,B4_m(:f 

,B5_m(:, 
,B6 m ( : , 
,B7 m(:, 

:/m) ) 
: ,m) ) 
:,m) ) 
:,m) ) 
:,m) ) 
:,m) ) 
:/m) ) 
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n8_m(:, : ,m)= cross (A8_m(:, : ,m) /B8_m(:, : ,m) ) ; 

nl_unit (:, : ,m) = (nl_m(:, :,m) ./ (sqrt ( (nl_m(l, l,m) A2) + (nl_m(l, 2,m) A2) + (nl 
m(l,3,m)A2)))); 

n2_unit(:,:,m)=(n2_m(:,:,m)./(sqrt((n2_m(l,l,m)A2)+(n2_m(l,2,m)A2)+(n2 
m(l,3,m)A2)))); 

n3_unit(:,:,m)=(n3_m(:,:,m)./(sqrt((n3_m(l,l,m)A2)+(n3_m(l,2,m)A2)+(n3 
m(l,3,m)A2)))); 

n4_unit(:, :,m) = (n4_m(:, :,m) ./(sqrt((n4_m(l,l,m)A2) + (n4_m(l, 2,m)A2) + (n4 
m(l,3,m)A2)))); 

n5_unit(:, :,m) = (n5_m(:,: ,m)./(sqrt((n5_m(l/l,m)A2) + (n5_m(l, 2,m)A2) + (n5 
m(l,3,m)A2)))); 

n6_unit(:, : ,m) = (n6_m(:,:,m)./(sqrt((n6_m(l,l,m)A2) + (n6_m(l,2,m)A2) + (n6 
m(l,3,m)A2)))); 

n7_unit(:,:,m)=(n7_m(:,:,m)./(sqrt((n7_m(l,l,m)A2)+(n7_m(1,2,m)A2)+(n7 
m(l,3,m)A2)))); 

n8_unit(:,:,m)=(n8_m(:,:,m)./(sqrt((n8_m(l,l,m)A2)+(n8_m(l/2fm)
A2)+(n8 

m(l/3/m)A2)))); 

end 

%Vortex Velocity Definition in a typical horseshoe vortex 

% Starboard Wing 
Fac_12_i = size(l/N*P); 
Fac__12_j = size(l/N*P); 
Fac_12_k = size(l,N*P); 
Fac2_12 = size(l/N*P); 

V_12 = size (1/N*P); 

Vl_inf_i = size(l/N*P); 
Vl_inf_j = size(l,N*P); 
Vl_inf_k = size(l,N*P); 
Vl=inf = size(l,N*P); 

V2=inf=i = size(l/N*P); 
V2_inf_j = size(l/N*P); 
V2_inf_k = size(l,N*P); 
V2_inf = size (1,N*P); 

V s = sized,N*P) ; 
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%Port Wing 
Facp_12_i = size(l,N*P) 
Facp_12_j = size(l,N*P) 
Facp_12_k = size(l,N*P) 
Fac2p_12 = size(l,N*P); 

V_12p = size (1,N*P); 

Vlp_inf_i = size(l/N*P) 
Vlp_inf_j = size(l/N*P) 
Vlp_inf_k = size(l/N*P) 
Vlp_inf = size (1,N*P); 

V2p_inf_i = size(l/N*P) 
V2p_inf_j = size(l/N*P) 
V2p_inf_k = size(l/N*P) 
V2p_inf = size (1,N*P); 

V_p = sized,N*P) ; 

% Downwash Velocity function definition 

w_n = size (1,N*P); 

% Boundary Condition function definition 

BC = size (1/N*P); 
chord = size (1,N*P); 

% Trailing Vortices for Induced Drag Calculation 

Vt_s = size(l,N*P) 
Vt_p = size(l/N*P) 
w i = size(l/N*P) 

% Main Program Loop for VLM analysis 

for m=l:N*P 
for n=l:N*P 

%STARBOARD WING 
% Primary Vector Bound Vortex (induced velocity calculation) 
Fac_12_i (nun) = ( (y_m(m) -yl_n(n) ) * (z_m(m)-z2_n (n) )- (y_m(m) -

y2_n(n) )* (z_m(m)-zl_n (n) ))/((( (y_m (m)-yl_n (n) ) * (z_m(m)-z2_n (n) )-
(y_m(m)-y2_n(n) )* (z_m(m)-zl_n (n) ) ) A2) + ( ( (x_m(m)-xl_n (n) )*(z_m(m)-
z2_n(n))-(x_m(m)-x2_n(n))... 

*(z_m(m)-zl_n(n)))A2)+(((x_m(m)-xl_n(n))*(y_m(m)-y2_n(n)) 
(x_m(m)-x2_n(n))*(y_m(m)-yl_n(n)))A2)); 

Fac_12_j(m,n) = -((x_m(m)-xl_n(n))*(z_m(m)-z2_n(n))-(x_m(m)-
x2_n(n))*(z_m(m)-zl_n(n)))/((((y_m(m)-yl_n(n))*(z_m(m)-z2_n(n))-
(y_m(m)-y2_n(n))*(z_m(m)-zl_n(n)))A2)+(((x_m(m)-xl_n(n))*(z_m(m)-
z2 n(n))-(x m(m)-x2 n(n))... 
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*(z_m(m)-zl_n(n) ) ) A2) + ( ( (x_m(m)-xl_n (n) ) * (y_m(m)-y2_n (n) )-
(x_m(m)-x2_n(n) ) * (y_m(m)-yl_n (n) ) ) A2) ) ; 

Fac_12_k(m,n) = ( (x_m(m)-xl_n (n) ) * (y_m(m)-y2_n (n) )- (x_m(m) -
x2_n(n) )*(y_m(m)-yl_n(n) ))/((( (y_m(m)-yl_n (n) ) * (z_m(m)-z2_n (n) )-
(y_m(m)-y2_n(n) )* (z_m(m) -zl_n (n) ) ) A2) + ( ( (x_m(m)-xl_n (n) )* (z_m(m)-
z2_n (n) ) - (x_m(m) -x2_n (n) ) . . . 

* (z_m(m)-zl_n(n) ) ) A2) + ( ( (x_m (m)-xl_n (n) ) * (y_m(m) -y2_n (n) )-
(x_m(m)-x2_n(n) )* (y_m(m)-yl_n (n) ) ) A2) ) ; 

Fac2_12(m,n) = ( ( ( (x2_n (n)-xl_n (n) ) * (x_m (m)-xl_n (n) ) + (y2__n (n)-
yl_n(n) ) * (y_m(m)-yl_n (n) ) + (z2_n(n) -zl_n(n) ) * (z_m(m)-
zl_n(n)))/((((x_m(m)-xl_n(n))A2)+((y_m(m)-yl_n(n))A2)+((z_m(m)-
zl_n(n))A2))A0.5))... 

-(((x2_n(n)-xl_n(n))*(x_m(m)-x2_n(n))+(y2_n(n)-
yl_n(n))*(y_m(m)-y2_n(n))+(z2_n(n)-zl_n(n))*(z_m(m)-
z2_n(n)))/((((x_m(m)-x2_n(n))A2)+((y_m(m)-y2_n(n))A2)+((z_m(m)-
z2_n(n))A2))A0.5))); 

V_12(m/n) = ((Fac_12_i(m/n) + Fac_12_j(m,n) + Fac_12_k(mfn)) * 
Fac2_12 (iri/n) ) ; 

% Secondary Vectors (induced velocity calculation) Trailing 
Vortices 

Vl_inf_i(m,n) = 0; 
Vl_inf_j(m,n) = ((z_m(m)-zl_n(n))/(((z_m(m)-

zl_n(n))A2)+(yl_n(n)-y_m(m))A2))*(l+((x_m(m)-xl_n(n))/(((x_m(m)-
xl_n(n))A2)+((y_m(m)-yl_n(n))A2)+((z_m(m)-zl_n(n))A2))A0.5)); 

Vl_inf_k(m,n) = ((yl_n(n)-y_m(m))/(((z_m(m)-
zl_n(n))A2)+(yl_n(n)-y_m(m))A2))*(l+((x_m(m)-xl_n(n))/(((x_m(m)-
xl_n(n))A2)+((y_m(m)-yl_n(n))A2)+((z_m(m)-zl_n (n))A2))A0.5)); 

Vl_inf(m,n) = (Vl_inf_i(m,n) + Vl_inf_j(m,n) + Vl_inf_k(m,n)); 

V2_inf_i(m,n) = 0; 
V2_inf_j(mfn) = -((z_m(m)-z2_n(n))/(((z_m(m)-

z2_n(n))A2)+(y2_n(n)-y_m(m))A2))*(l+((x_m(m)-x2_n(n))/(((x_m(m)-
x2_n(n))A2)+((y_m(m)-y2_n(n))A2)+((z_m(m)-z2_n(n))A2))A0.5)); 

V2_inf_k(m/n) = -((y2_n(n)-y_m(m))/(((z_m(m)-
z2_n(n) ) A2) + (y2__n(n)-y_m(m) ) A2) ) * (1+( (x_m(m) -x2_n (n) )/( ( (x_m(m)-
x2_n(n))A2)+((y_m(m)-y2_n(n))A2)+((z_m(m)-z2_n(n))A2))A0.5)); 

V2_inf(m,n) = (V2_inf_i(m,n) + V2_inf_j(m,n) + V2_inf_k(m,n)); 

% Induced Downwash by trailing vortices 

Vt=s(m,n) = Vl_inf(m,n)+ V2=inf(m,n); 

% Total Induced Velocity at control point (x, y, z) Starboard 
Wing 

V_s(m/n) = V_12(rri/n) + Vl_inf(ni/n) + V2_inf(m/n); 
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%PORT WING 

% Primary Vector Bound Vortex (induced velocity calculation) 
Facp_12_i(m,n) = ((y_m(m)-ylp_n(n))*(z_m(m)-z2_n(n))-(y_m(m)-

y2p_n(n))*(z_m(m)-zl_n(n)))/((((y_m(m)-ylp_n(n))*(z_m(m)-z2_n(n))-
(y_m(m)-y2p_n(n) ) * (z_m(m)-zl_n (n) ) ) A2) + ( ( (x_m(m)-xl_n (n) ) * (z_m(m)-
z2_n(n))-(x_m(m)-x2_n(n))... 

*(z_m(m)-zl_n(n)))A2)+(((x_m(m)-xl_n(n))*(y_m(m)-y2p_n(n))-
(x_m(m)-x2_n(n))*(y_m(m)-ylp_n(n)))A2)); 

Facp_12_j(mfn) = -((x_m(m)-xl_n(n))*(z_m(m)-z2_n(n))-(x_m(m)-
x2_n(n))*(z_m(m)-zl_n(n)))/((((y_m(m)-ylp_n(n))*(z_m(m)-z2_n(n))-
(y_m(m) -y2p_n(n) ) * (z_m(m) -zl_n(n) ) ) A2) + ( ( (x_m(m)-xl_n (n) ) * (z_m(m)-
z2_n(n))-(x_m(m)-x2_n(n))... 

~*(z_m(mY-zl_n(n)))A2)+(((x_m(m)-xl_n(n))*(y_m(m)-y2p_n(n))-
(x_m(m)-x2_n(n))*(y_m(m)-ylp_n(n)))A2)) ; 

Facp_12_k(m,n) = ((x_m(m)-xl_n(n))*(y_m(m)-y2p_n(n))-(x_m(m)-
x2_n(n))*(y_m(m)-ylp_n(n)))/((((y_m(m)-ylp_n(n))*(z_m(m)-z2_n(n))-
(y_m(m)-y2p_n(n))*(z_m(m)-zl_n(n)))A2)+(((x_m(m)-xl_n(n))*(z_m(m)-
z2=n(n))-(x_m(m)-x2_n(n))... 

""* (z_m(mT-zl_n(n) ) ) A2) + ( ( (x_m (m) -xl_n (n) ) * (y_m(m)-y2p_n (n) )-
(x_m(m)-x2_n(n))*(y_m(m)-ylp_n(n)))A2)); 

Fac2p_12(m,n) = ((((x2_n(n)-xl_n(n))*(x_m(m)-
xl_n(n))+(y2p_n(n)-ylp_n(n))*(y_m(m)-ylp_n (n))+(z2_n(n)-
zl_n(n))*(z_m(m)-zl_n(n)))/(((x_m(m)-xl_n(n))A2)+((y_m(m)-
ylp_n(n))A2)+((z_m(m)-zl_n(n))A2))"0.5)... 

-(((x2_n(n)-xl_n(n))*(x_m(m)-x2_n(n))+(y2p_n(n)-
ylp_n(n))*(y_m(m)-y2p_n(n))+(z2_n(n)-zl_n(n))*(z_m(m)-
z2_n(n)))/(((x_m(m)-x2_n(n))A2)+((y_m(m)-y2p_n(n))A2)+((z_m(m)-
z2_n(n))A2))A0.5)); 

V_12p(m/n) = ((Facp_12_i(m,n) + Facp_12_j(m,n) + 
Facp_12_k(m,n)) * Fac2p_12(m,n)); 

% Secondary Vectors (induced velocity calculation) Trailing 
vortices 

Vlp_inf_i(mfn) = 0; 
Vlp_inf_j(mfn) = ((z_m(m)-zl_n(n))/(((z_m(m)-

zl_n(n))A2)+(ylp_n(n)-y_m(m))A2))*(1+((x_m(m)-xl_n(n))/(((x_m(m)-
xl_n(n))A2)+((y_m(m)-ylp_n(n))A2)+((z_m(m)-zl_n(n))A2))A0.5)); 

Vlp_inf_k(ni/n) = ( (ylp_n (n)-y_m(m) ) / ( ( (z_m(m) -
zl_n(n) ) A2) + (ylp_n(n)-y_m(m) ) A2) ) * (1+( (x_m(m)-xl_n (n) )/( ( (x_m(m)-
xl_n(n))A2)+((y_m(m)-ylp_n(n))A2)+((z_m(m)-zl_n(n))A2))A0.5)); 

Vlp_inf(m/n) = (Vlp_inf_i(m,n) + Vlp_inf_j(m,n) + 
Vlp__inf_k {m, n) ) ; 

V2p__inf_i(m/n) = 0; 
V2p_inf_j (ni/n) = - ( (z_m(m)-z2_n (n) ) / ( ( (z__m(m)-

z2__n(n))A2) + (y2p_n(n)-y_m(m))A2))*(l+((x_m(m)-x2_n(n) )/( ( (x_m(m)-
x2_n(n))A2)+((y_m(m)-y2p_n(n))A2)+((z_m(m)-z2_n(n))A2))A0.5)); 
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V2p_inf_k(iri/n) = - ( (y2p_n (n)-y_m(m) ) / ( ( (z_m(m)-
z2_n(n) ) A2) + (y2p_n(n)-y_m(m) ) A2) ) * (1+( (x_m(m)-x2_n (n) )/( ( (x_m( 
x2_n(n) ) A2) + ( (y_m(m)-y2p_n (n) ) A2) + ( (z_m(m)-z2_n (n) ) A2) ) A0.5) ) ; 

V2p_inf(m,n) = (V2p_inf_i (m, n) + V2p_inf_j (m, n) + 
V2p_inf_k(m,n) ) ; 

% Induced Downwash by trailing vortices 

Vt_p(m 

m)-

_p(m,n) = -1*(Vlp_inf(m,n)+ V2p_inf(m,n)); 

trailing 
% Total induced downwash velocity by port and starboard wing 

Wing 

vortices 

w_i (m,n) = Vt_s(m,n) + Vt_p(m,n); 

% Total Induced Velocity at control point (x, y, z) by the Port 

V_p(m,n) = -1* (V_12p(m,n) + Vlp_inf(m,n) + V2p inf(m,n)); 

%Total Induced Velocity at control point by starboard wing and 
port wing 

w_n(m,n) = V_s(irt/n) + V_p (m, n) ; 

end 

end 

angle_attack =-3 ; 
for i = 1:1:22 
angle_attack =angle_attack+l; 
store_angle_attack(i,1)= angle_attack; 

U_inf = U_input - 10; 
for f =1:1:50 
U__inf = U_inf+10; 
store_U_inf(f,l)= U_inf; 

for m =1:N 

vl_m(:,:,m) = [U_inf*(cosd(angle_attack)) 0 
U_inf*(sind(angle_attack))] 

n_m(l,m)= dot(nl_unit(: 
n_m(2,m)= dot(n2_unit(: 
n_m(3/m)= dot(n3_unit(: 
n_m(4/m)= dot(n4_unit(: 
n_m(5/m)= dot(n5_unit(: 
n m(6,m)= dot(n6 unit(: 

z : , m ) / v l m ( : , 
z : , m ) / v l _ m ( : , 
z : , m ) / v l m ( : , 
, : , m ) / v l m ( : , 
z : /in) / v l _ m ( : , 
z : /in) / v l m ( : , 

: ,m) ) 
: , m ) ) 
: , m ) ) 
: , m ) ) 
: , m ) ) 
: , m ) ) 
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n_m(7,m)= dot (n7_unit (:, : ,m) , vl_m(:, : ,m)); 
n m(8/m)= dot (n8_unit (•./•. ,m) , vl m(:,:,m)); 

end 

n_M = size(N*P,1); 

for m = 1:N 

n_M(m/l) = n_m(l/m); 
n_M(m+Nfl)=n_m(2,m); 
n=M(m+2*N/l)=n_m(3/m); 
n_M(m+3*N/l)=n_m(4/m); 
n_M(m+4*Nfl)=n_m(5/m); 
n_M(m+5*N,l)=n_m(6,m); 
n_M(m+6*N,l)=n_m(7,m); 
n_M(m+7*N,l)=n_m(8,m); 

end 

% Solution of the vortex strength for each panel 

Vortex_s = ((w_n))\(n_M*-4*pi); 

% Lift per unit span 

1 = rho*U inf*(Vortex s); 

% Lift Calculation 

Lift = (2*rho*U_inf)*(sum(((Vortex_s)*(b/(2*N) ) ) ) ) ; ^Symmetric Wing 

% Lift coefficient calculation 

Cl = (Lift/(0.5*rho*((U_inf)A2)*S)) ; 

Cl_p(Z/q/T/p,U/i/f) = Cl; 

end 
end 

end 
end 

end 
end 

end 
close(hi) 
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AOA_To=store_angle_attack; 
S_polar_o = store_S2; 
b_table_o = store_b2•; 
U_table = store_U_inf; 
lambda_table_o = store_lambda; 
store_sweep_o = store_sweep_a; 
store_twist_o = store_twist_a; 

h2 = waitbar(0,'Please wait... Optimization now in Progress'); 
U_inf_o = U_input - 10; 
for f =1:1:50 

U_inf_o = U_inf_o+10; 
store_U_inf(f,1)= U_inf_o; 
waitbar(f/50) 

S = str2double(answer{2,1})-4; 
for z = 1:1:3 

S = S+2; 
store_S2(z,1)= S; 

b = str2double(answer{1/1})-2; 
for q = 1:1:3 

b = b+1; 
store_b2(q,1) = b; 

lambda = str2double(answer{3/1})-0.2 ; 
for T = 1:1:3 

lambda = lambda+0.1; 
store_lambda(T,1) = lambda; 

sweep_a =str2double(answer{5,1})-8 ; 
for p = 1:1:4 

sweep_a = sweep_a+2; 
store_sweep_a(p,1)= sweep_a; 

twist_a = str2double(answer{6,1})-3; 
for u = 1:1:3 

twist_a = twist_a+l; 
store twist a(u,l) = twist a; 

Cl_w = (2*W)/(rho*(U_inf_o)A2*S); 
Cl_s lope = ( (Cl_p(z ,q , T / P / U / l O / D -

Cl^p ( z , q , T , p , u , 8 , l ) ) / ( s t o r e _ a n g l e _ a t t a c k ( 1 0 / 1 ) -
s t o r e _ a n g l e _ a t t a c k ( 8 , 1 ) ) ) ; 

AOA_R = ( ( C l _ w - ( C l _ p ( z , q , T , p , u , 1 0 , l ) -
( ( C l _ s l o p e ) * ( s t o r e _ a n g l e _ a t t a c k ( 1 0 , l ) ) ) ) ) / ( C l _ s l o p e ) ) ; 

%Vortex Induced Drag Method 2 
delta_factor = 

interp2(Aspect_ratiO/taper_ratiO/Delta^var, (bA2/S)/lambda); 
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e__span = 1/(l+delta_factor) ; 
CDi = Cl_wA2/(pi*(bA2/S)*e_span); 
D i = (0.5*rho*((U inf o)A2)*CDi*S); 

% Profile Drag Calculation 

[Re,cl,area_p]= 
total_drag(S,b,lambda,AOA_R/U_inf_o,N,P,phi,sweep_a,twist_a,nu,rho); 

sim Lookup_2D_validation; 

%Average Chord Calculation and Panel Area 

d_n = (0.5*rho*(U_inf_oA2)*((cd_p) .* (areajp))); 

D_p = 2*(sum(d_n)); 

Cd_p = (Djp/(0.5*rho*((U_inf_o)A2)*S)); 

% Total Drag Calculation 

Cd_w = CDi + Cd_p; 

% Thrust Required and Power Required 

TR = (0.5*rho*(U_inf_o)A2*S*Cd_w); 
PR = (TR*U_inf_o)/550; 

%Aerodynamic Coefficients for performance evaluation 

L_D = Cl_w/Cd_w; 
C1_R = (Cl_wA0.5)/Cd_w; 
C1_R2 = (Cl_wA(3/2))/Cd_w; 

'\ Calculation of Wing Fuel Volume: Gas tank assumed as a tapered 
rectagular box 

c_root_chord = (2*S)/(b*(1+lambda)); 
c_tip_chord = lambda*c_root_chord ; 
upper_airfoil = (-4.1755*(x_percent)A6) + (13.552*(x_percent)A5) -

(16.892*(x_percent)A4) + (10.37*(xjpercent)A3) - (3.6613*(x_percent)A2) 
+ (0.7962*(x_percent)) + 0.0094; 

lower_airfoil = (2.8139*(x_percent)A6) - (9.4191*(x_percent)A5) + 
(11.884* (x_percent)A4) - (7 . 3145* (x__percent) A3) + 
(2.5587*(x_percent)A2) - (0.516*(x_percent)) - 0.0064; 

side_b = c_root_chord*(upper_airfoil-lower_airfoil); 
side_a = c_tip_chord*(upper_airfoil-lower_airfoil); 
K_cons = (x_percent-0.25)/(upper_airfoil-lower airfoil); 
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Fuel_volume = K_cons*((b/2)/3)*((side_aA2) + (side_a*side_b) + 
((side_bA2))); 

Fuel_volume_g = 2*(Fuel_volume*7.4805); 
Fuel_weight = (Fuel_volume_g*Jet_fuel d); 

^Performance Results 

T R _ r e s u l t ( f , Z / q / T / P / U ) = TR; 
P R _ r e s u l t ( f / Z / q / T / P / U ) = PR; 
L _ D _ r e s u l t ( f , z , q , T , p , u ) = L_D; 
CL_result(f/Z/q/T/P/U) = C1_R; 
Cl_w_result(f/Z/qfT/P/U) = Cl_w; 
Cd_w_result(f/Z/qfT/P/u) = Cd_w; 
CL_result2(f/z,q/T/P/U) = C1_R2; 
AOA_R_result(f/Z/q/T/P/U) = AOA_R; 
Fuel_weight_result(f,z,q,T,p,u) = Fuel_weight; 
Fuel_volume_g_result(f/Z/q/T/P/U)= Fuel_volume_g; 

end 
end 

end 
end 

end 
end 

% INITIAL WING ANALYSIS AND PERFORMANCE 

S_initial = store_S2(2); 
b_initial = store_b2(2); 
lambda_initial = store_lambda(2) 
Sweep_initial = store_sweep_a(4) 
Twist initial = store twist a(3) 

% Best_L_D_cruise = A; 
graph_L_D_i = L_D_result(:,2,2,2,4,3); 
graph_AOA_R_i = AOA_R_result(:, 2, 2, 2, 4, 3) ; 

%Aerodynamic Coefficients 
graph_CL_result_i = CL_result(:,2,2,2,4,3); 
graph_CL_result2_i = CL_result2(:,2,2,2, A,3); 

%Thrust Required Curve 
graph_TR_result_i = TR_result(:,2,2,2,4,3); 

%Power Required Curve 
graph_PR_result_i = PR_result(:,2,2,2,4,3); 
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% Max Lift to drag Ratio @ cruise 

[Best_L_D_cruise_i_product,index_i] = max(CL_result(:,2,2,2,4,3)); 

% Max Lift to Drag Ratio at Cruise velocity 

Best_L_D_cruise_i = L_D_result(index_i/2,2,2,4,3); 

% Calculation of Cruise Velocity 
V_opt_cruise_i = store_U_inf(index_i); 

% Calculation of angle of attack at cruise 

AOA_m_i = AOA_R_result(index_i,2,2,2,4,3); 

I Best Fuel volume: 

Best_Fuel_volume_g_i = Fuel_volume_g_result(1,2/2/2/4,3); 

% Best Fuel weight 
Best_Fuel_weight_i = Fuel_weight_result(1,2,2,2,4,3); 

v Calculation of Maximum Range for Best Wing Assuming constant altitude 
RANGE_new_i = 
(((2*3600)/TSFC)*(sqrt(2/(rho*S_initial)))*(Best_L_D_cruise_i_product)* 
((WA0.5-(W-Best_Fuel_weight_i)A0.5))/5280); 

% Geometric Plot Function 
[xl_m_geo_if yl_m_geo_i/ zl_m_geo_i, yl_m_s_geo_i]= 
Geometry_VORT_initial(S_initial/b_initial/lambda_initial/N,P/phi/Sweep_ 
initial/Twist_initial); 

% Cl vs Alpha Curve Function 
[Cl_result_initial/ 
store_angle_attack_initial]=i_wing_performance(S_initial/b_initial/lamb 
da_initial/V_opt_cruise__i/N/P/phi,Sweep_initial/Twist_initial/nu,rho); 

% Section Lift Coefficient Distribution at Cruise Velocity 

[cl_f_i,y_b_initial] = 
section_lift_initial(S_initial,b__initial,lambda_initial,AOA_m_i,V_opt_c 
ruise__i, P,phi, Sweep_initial, Twist_initial/ nu, rho) ; 

%Calculation of max sqrtCl/Cd for all wing configurations 

for Z_l =l:z 
for Q_l =l:q 

for w_l =1:T 
for X_l=l:p 

for U=l=l:u 

Aero=ratio_final(Z_l/Q=l,w 1,XI,U 1) = 
(L D_result(index_i,Z_l,Q_l,w_l,X_l,U 1)); 
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end 
end 

end 
end 

end 
o 
o 

% Calculation of Wing Weight based on Statistical Group Weights Method 
S = str2double(answer{2,1})-4; 
for z_l = 1:1:3 

S = S+2; 
store_S2(z,1)= S; 

b = str2double(answer{1,1})-2; 
for q_l = 1:1:3 

b = b+1; 
store_b2(q,1) = b; 

lambda = str2double(answer{3,1})-0.2 ; 
for T_l = 1:1:3 

lambda = lambda+0.1; 
store_lambda(T,1) = lambda; 

sweep_a =str2double(answer{5,1})-8 ; 
for p_l = 1:1:4 

sweep_a = sweep_a+2; 
store_sweep_a(p,1)= sweep_a; 

twist_a = str2double(answer{6,1})-3; 
for u_l = 1:1:3 

twist_a = twist_a+l; 
store twist a(u,l) = twist a; 

sweep_mac = atand(tan((sweep_a*(pi/180)))-
((1+lambda)/((bA2/S)*(1+lambda)))); 

Wing_weight = 
(0.036*(SA0.758))*(Fuel_weight_result(1,z_l,q_l,T_l,p_l,u__l)A0.0035)*(( 
((bA2)/S)/(cosd(sweep_mac))A2)A0.6)*((0.5*rho*V_opt_cruise_iA2)A0.006)* 
(lambdaA0.04)*((10/cosd(sweep_mac))A-0.3)*(N_z*W)A0.49; 

Wing_weight_result(z_l,q_l,T_l,p_l,u_l) = 
Wing_weight; 

RANGE_result(z_l,q_l,T_l,p_l,u_l) = 
( ( (2*3600)/TSFC)* (sqrt (2/(rho*S) ) ) * (max (CL_result (:, z_l, q_l, T_l, p_l, u__l 
) ) ) * ( (WA0.5- (W-Fuel_weight_result (1, z__l, q_l, T_l, p_l, u_l) ) A0.5) ) /5280) ; 

end 
end 

end 
end 

end 

Q. 
O 

%Calculation of Performance Index Function 
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for Z_2 =l:z 
for Q_2 =l:q 

for w_2 =1:T 
for X_2=l:p 

for U 2=l:u 

performance_index(Z_2/Q_2/w_2,X_2/U_2} = 
0.2*(Wing_weight_result(2/2/2/4,3)/Wing_weight_result(Z_2,Q_2,w_2,X_2,U 
_2)) + 
0.6* (Aero_rat io_f inal (Z_2, Q_2, w_2, X_2 / U_2) /Aero_rat io_f inal (2,2/2,4/3)) 
+ 0.2* (RANGE_result(Z_2,Q_2,w_2,X_2,U_2)/RANGE new i) ; 

end 
end 

end 
end 

end 

O 

close(h2) 
% OPTIMIZATION ANALYSIS 

^OPTIMIZATION FOR BEST L/D,Range & Stall Speed 

[A_l/V] = max(max(max(max(max(performance_index))))); 
[A_2/B]=max(max(max(max(performance_index(:,:,:,:,V))))); 
[A_3, C] =max (max ( (max (performance__index (:,:,:, B, V) ) ) ) ) ; 
[A_4, D] =max (max (perf ormance_index (:, :, C, B, V) ) ) ; 
[A_5/ E] =max (performance_index (:, D, C, B, V) ) ; 

SJoest = store_S2(E); 
b_best = store_b2(D); 
lambda_best = store^lambda(C); 
Sweep_best = store_sweep_a(B); 
Twist_best = store_twist_a(V); 
% Optimal Aspect Ratio 
ARJoest = (b_bestA2)/(SJoest); 
% Best_L_D_cruise = A; 
graph_L_D = L_D_result(:,E,D,C,B, V); 
graph_AOA_R = AOA_R_result(:,E,D,C,B,V); 

%Aerodynamic Coefficients 
graph_CL_result = CL_result(:,E,D,C,B,V); 
graph_CL_result2 = CL_result2(:,E,D,C,B,V); 

%Thrust Required Curve 
graph_TR_result = TR_result(:,E,D,C,B,V); 

%Power Required Curve 
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graph_PR_result = PR_result (:, E, DfC/ B, V) ; 

% Max Lift to drag Ratio and velocity Product @ cruise 
[Best_L_D_cruise_product,index_opt] = max(CL_result(:,E,D,C,B,V)); 

% Max Lift to Drag Ratio at Cruise velocity 

Best_L_D_cruise = L_D_result(index_opt/E,D,C,B,V); 

% Calculation of Cruise Velocity 
V_opt_cruise = store_U_inf(index_opt); 

% Calculation of angle of attack at cruise 

AOA_m = AOA_R_result(index_opt/E/D,C/B/V); 

% Best Fuel volume: 

Best_Fuel_volume_g = Fuel_volume_g_result(1,E,D,C,B,V); 

% Best Fuel weight 
Best_Fuel_weight = Fuel_weight_result(1,E,D,C,B,V); 

% Calculation of Maximum Range for Best Wing Assuming constant altitude 
RANGE_new = 
(((2*3600)/TSFC)*(sqrt(2/(rho*S_best)))*(Best_L_D_cruise_product)*((WA0 
.5- (W-Best_Fuel_weight)A0.5))/5280) ; 

% Geometric Plot Function 
[xl_m_geo, yl_m_geo, zl_m_geo, yl_m_s_geo]= 
Geometry_VORT_optimal(S_best,b_best,lambda_best/N/P,phi/Sweep_best/Twis 
tjoest); 

% Cl vs Alpha Curve Function 
[Cl_result_optimal, 
store_angle_attack_opt]=optimal_wing_performance(S_best,b_best/lambda_b 
est,V_opt_cruise/N/P#phi/Sweep_best/Twist_best/nu,rho); 

% Section Lift Coefficient Distribution at Cruise Velocity 
[cl_f_opt,y_b_opt]= 
section_lift_optimal(S_best,b_best/lambda_best/AOA_m/V_opt_cruise/P/phi 
z Sweep_best/Twist_best/nu,rho); 

% Max Lift to Drag Ratio of Optimal Wing at Initial Wing's Cruise 
Velocity 

Best__L_D_cruise_previous = L_D_result (index_i, E, D, C, B, V) ; 

% Wing Weights Result 
Wing_weight_opt = Wing_weight_result(E,D,C,B,V); 
Wing_weight_init = Wing_weight_result(2,2,2,4,3); 
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\n\nGEOMETRIC PARAMETERS OF THE INITIAL WING\n\ri') 
\nAirfoil Used : NACA 65 - 210 \n') 
\nWing Area S = %6.3f ftA2\n',S_initial) 
\nWingspan b = %6.3f ft\n',b_initial) 
\nTaper Ratio = -6.3f \n',lambda_initial) 
\nLeading Edge Sweep = %6.3f deg\n',Sweep_initial) 
\nGeometric Twist = %6.3f deg\n',Twist_initial) 
\nAspect Ratio AR = %6.3f \n',AR_initial) 
\n# of Panels Half Span used N =%6.f \n',N) 
\n# of Panels in the chordwise direction used P =::6.f \nf, 

\n\nGEOMETRIC PARAMETERS OF THE OPTIMAL WING\n\n') 
\nAirfoil Used : NACA 65 - 210 \n') 
\nWing Area S = fc6.3f ft A2\n', S_best) 
\nWingspan b = 6.3f ft\n',b_best) 
\nTaper Ratio = 16.3f \n*/lambda_best) 
\nLeading Edge Sweep = %6.3f deg\n',Sweep_best) 
XnGeometric Twist = %6.3f deg\n',Twist_best) 
\nAspect Ratio AR = %6.3f \n',AR_best) 
\n# of Panels Half Span used N =%6.f \n',N) 
\n# of Panels in the chordwise direction used P =%6.f \n', 

\n\nPERFORMANCE PARAMETERS OF WINGS\n\n') 

\n\nPERFORMANCE OF INITIAL WING\n\n') 
\n Lift to Drag Ratio at Cruise Velocity = %6.2f 
L_D_cruise_i) 
\n Lift to Drag Ratio and Cruise Velocity product = %6.2f 
L_D_cruise_i_product) 
\n Cruise Velocity = 16.2f ft/s \n', V_opt_cruise__i) 
\n Angle of Attack at Cruise Velocity = %6.2f deg \n',AOA 
\n Fuel Volume Carried by Wing = 16.2f gallons 
Fuel_volume_g_i) 
\n Fuel Weight = %6.2f lbs \n',Best_Fuel_weight_i) 
\n Wing Weight = %6.2f lbs \n' , Wing__weight_init) 
\n Range = 16.2f miles \n',RANGE_new_i) 

\n\nPERFORMANCE OF OPTIMAL WING\n\n') 
\n Lift to Drag Ratio at Optimal Cruise Velocity = 16.2f 
L_D_cruise) 
\n Lift to Drag Ratio at Original Cruise Velocity = 6.2f 
L_D_cruise_previous) 
\n Lift to Drag Ratio and Cruise Velocity product = 6.2f 
L_D_cruise_product) 
\n Cruise Velocity = %6.2f ft/s \n',V_opt_cruise) 
\n Angle of Attack at Cruise Velocity - -6.2f deg \n',AOA 
\n Fuel Volume Carried by Wing = :;6.2f gallons 
Fuel_volume_g) 
\n Fuel Weight '• 16. 2f lbs \n ' , Best_Fuel_weight) 
\n Wing Weight = %6.2f lbs \n',Wing_weight_opt) 
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fprintf('\n Range = %6.2f miles \n',RANGE_new) 

% Figures 
figure (1) 

surf(xl_m_geo,yl_m_geo,zl_m_geo) 
axis([-b_best/4 b_best/2 -b_best/2 b_best/2 -1 1]) 
grid on 
xlabel({ ':•: (ft) ' }, 'FontSize', 9, 'color'/ ' r' ) 
ylabel({'y (ft)'},'FontSize',9, 'color'/ 'r') 
zlabel({•z (ft)'},'FontSize'/9,'color', 'r') 
title('Vortex Lattice Optimal Wing Configuration','color', 

'b','FontSize',10 ) 
hold on 
surf(xl_m_geo, yl_m_s_geo,zl_m_geo) 
colormap Bone 

figure (2) 
surf(xl_m_geo_i,yl_m_geo_i,zl_m_geo_i) 
axis([-b_initial/4 b_initial/2 -b_initial/2 b_initial/2 -1 1]) 
grid on 
xlabel({'x (ft) '}, 'FontSize',9, 'color', 'r' ) 
ylabel({'y (ft)'},'FontSize'/9, 'color', 'r') 
zlabel({'z (ft)'},'FontSize',9,'color', 'r') 
title('Vortex Lattice Initial Wing Configuration','color', 

'b','FontSize',10 ) 
hold on 
surf(xl_m_geo_i, yl_m_s_geo_i,zl_m_geo_i) 
colormap Copper 

figure (3) 
plot 

(store_U_inf, graph_CL_result/ store_U_inf / graph_L_D/ store_U_inf / graph_CL 
_result2) 

axis([store_U_inf(1) store_U_inf(50) 0 Best_L_D_cruise_product+5 ]) 
xlabel({'V (ft/s) '},'FontSize',9,'color', 'r') 
ylabel({ 'CL/Cd CLA(1/2)/Cd CL"(3/2)/Cd'}, 'FontSize', 9, 'color', 

'r' ) 
title('Aerodynamic Ratios vs Airspeed Optimal Wing','color', 

'b','FontSize',10 ) 
grid on 

figure (4) 
plot 

(store_U_inf, graph_CL_result_i, store_U_inf, graph_L_D_i, store_U_inf, grap 
h_CL_result2_i) 

axis([store_U_inf(1) store_U_inf(50) 0 Best_L_D_cruise_product+5 ]) 
xlabel({'V (ft/s) '},'FontSize',9,'color', 'r') 
ylabel({'CL/Cd CL"(1/2)/Cd CLA(3/2)/Cd'},'FontSize',9,'color', 

'r' ) 
title('Aerodynamic Ratios vs Airspeed Initial Wing','color', 

'b','FontSize',10 ) 
grid on 
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figure (5) 
plot (graph_AOA_R,graph_L_D) 
xlabel({'AOA (deg) '},'FontSize', 9, •color', 'r') 
ylabel({'L/D'},'FontSize',9,'color', 'r') 
title('Lift to Drag Variation with Angle of Attack Optimal 

Wing','color', 'b','FontSize',10 ) 
grid on 

figure (6) 
plot (graph_AOA_R_i,graph_L_D_i) 
xlabel({'AOA (deg) '},'FontSize',9,'color', 'r') 
ylabel({ 'L/D'}, 'FontSize',9, 'color', 'r' ) 
title('Lift to Drag Variation with Angle of Attack Initial 

Wing','color', 'b','FontSize',10 ) 
grid on 

figure (7) 
plot (store_angle_attack_opt,Cl_result_optimal, *b') 
axis ( [store__angle_attack_opt (1) store_angle_attack__opt (12) 

Cl_result_optimal(1) Cl_result_optimal(12)]) 
xlabel({'Alpha (deg) '},'FontSize',9,'color', 'r') 
ylabel({'CL'},'FontSize',9,'color', 'r') 
title('CL vs Alpha Curve','color', 'b','FontSize',10 ) 
grid on 
hold on 
plot (store__angle_attack_initial, Cl_result_initial, 'r') 
grid on 
legend('Optimal Wing','Initial Wing') 

figure (8) 
plot (store_U_inf, graph_TR_result) 
xlabel({'V (ft/s) '},'FontSize',9,'color', 'r') 
ylabel({'Drag (lbs)'},'FontSize',9,'color', 'r') 
title('Drag Variation with Airspeed Optimal Wing','color', 

'b','FontSize',10 ) 
grid on 

figure (9) 
plot (store_U_inf,graph_TR_result_i) 
xlabel({'V (ft/s) '},'FontSize',9,'color', 'r') 
ylabel({'Drag (lbs)'},'FontSize',9,'color', 'r') 
title('Drag Variation with Airspeed Initial Wing','color', 

'b','FontSize',10 ) 
grid on 

125 



Appendix A.2: Drag polar diagram of the NACA 65-210 airfoil. Taken from Theory of 

Wing Sections: Abbott and Doenhoff. (pg 613). Matlab uses this diagram for the 

calculation of the profile drag coefficient. 
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