

Theses - Daytona Beach

Dissertations and Theses

4-1989

Data Reduction Procedure for an Experimental Method of Measuring the Velocity-Coupled Response Function of Solid Propellants

William H. Jarvis Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/db-theses
Part of the Aerospace Engineering Commons, and the Computer Sciences Commons

Scholarly Commons Citation

Jarvis, William H., "Data Reduction Procedure for an Experimental Method of Measuring the Velocity-Coupled Response Function of Solid Propellants" (1989). *Theses - Daytona Beach*. 101. https://commons.erau.edu/db-theses/101

This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu.

NOTE TO USERS

Page(s) not included in the original manuscript are unavailable from the author or university. The manuscript was microfilmed as received

62

This reproduction is the best copy available.

UMI®

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

DATA REDUCTION PROCEDURE FOR AN EXPERIMENTAL METHOD OF MEASURING THE VELOCITY-COUFLED RESPONSE FUNCTION OF SOLID PROPELLANTS

William H. Jarvis

Department of Aerospace Engineering Embry Riddle Aeronautical University

April 1989

Advisor: Prof. L.L. Narayanaswami

UMI Number: EP31843

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI®

UMI Microform EP31843 Copyright 2011 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

DATA REDUCTION PROCEDURE FOR AN EXPERIMENTAL METHOD OF MEASURING THE VELOCITY-COUPLED RESPONSE FUNCTION OF SOLID PROPELLANTS

bу

William H. Jarvis

This thesis was prepared under the direction of the candidate's thesis committee chairman, Dr. L.L. Narayanaswami, Department of Aeronautical Engineering, and has been approved by the members of his thesis committee It was submitted to the School of Graduate Studies and Research and was accepted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautical Engineering.

Thesis Committee:

	L L	Nan	An and	or im	à	May	2,1	289
Dr.	L.L.	Naraya	naswami		1	<u>j</u>		
			Man					
Dr.	W.P.	Sching	le1					
		TR	lupta		5/	818	9	
Dr.	T. R.	Gupta						

desic Program Coordinator, Department Chair

Dean, School of Graduate Studies and Research

Date

Acknowledgment

The author wishes to thank Professor L.L. Narayanaswami for his assistance in formulating the objective of this work and for his expert guidance throughout the investigation.

The author also wishes to thank Professor W.P. Schimmel and Professor T.R. Gupta for their critical review of the thesis and useful suggestions.

Special thanks must go to Professor S.S. Dalal for supporting and encouraging my presentation of a portion of this material at the twenty-second annual meeting of the Mathematical Association of America in Gainsville, Florida.

iii

Abstract

Author: William H. Jarvis

Title: Data Reduction Procedure for an Experimental Method of Measuring the Velocity-Coupled Response Function of Solid Propellants

Institution: Embry-Riddle Aeronautical University Degree: Master of Science in Aeronautical Engineering Year: 1989

A computer program has been developed for calculation of the velocity-coupled response function of solidpropellants from experimentally measured pressure data. The proposed velocity-coupled response function measurement apparatus consists of an end-burner combustor where the propellant sample is oscillated in a direction normal to the flow in the presence of a standing acoustic wave within the combustion chamber. The pressure measurements are made at select points along the length of the chamber.

The data reduction program consists of a Runge-Kutta routine driven by a BFGS multivariable search routine. The Runge-Kutta routine determines the pressure distribution within the chamber of the proposed apparatus for a specific velocity-coupled response function (Rv). The BFGS optimization routine searches for the Rv which minimizes the difference between the calculated and measured pressure distributions.

The data reduction program has demonstrated convergence to the proper Rv value for pressure data that was generated by sampling from gaussian distributions.

1V

Table of Contents

Page

	Acknowledgment	iii
	Abstract	iv
	List of Symbols	vi
1.0	Introduction	1
2.0	Historical Background	3
3.0	New Method	8
4.0	Data Reduction Procedure	10
5.0	Numerical Solution of Governing Equations	13
	5.1 Governing Equations 5.2 Boundary Conditions 5.3 Temperature Distribution	13 17 18
6.0	Error Function	19
7.0	Location of Pressure Ports	21
8.0	Optimization Procedure	22
	8.1 BFGS Algorithm 8.2 Fibonacci Line Search	22 24
9.0	Description of Computer Program	29
	 9.1 Admittance to Velocity-Coupled Response Function Conversion 9.2 Runge-Kutta Algorithm 9.3 BFGS Search Algorithm 	29 30 31
10.0	Simulation of Experiment	33
11.0	Simulation Results	34
12.0	Conclusion	48
13.0	Recommendations for Future Work	49
	References	50
	Appendices.	52

v

<u>Symbols</u>

4	-	velocity of flow normal to the propellant
Þ	-	pressure
Ø	-	density
r	-	temperature
a	-	acoustic velocity
u'_t	-	average relative velocity of propellant sample
\overline{c}	-	mean flow quantity
Ó	_ _	perturbation flow quantity
R,	-	velocity-coupled response function
Rp	-	pressure-coupled response function
ź	-	square root of negative one
ω	-	angular frequency
æ	-	growth constant, parameter in linear equation
p'_m	-	measured perturbation pressure
P'_{n}	-	numerically calculated perturbation pressure
E	-	least squares error function
k,	-	conductivity of combustion product
≉z	-	conductivity of chamber wall
r	-	radius of combustion chamber
L	-	length of combustion chamber
T _{ao}	-	ambient temperature
۵ť	-	thickness of chamber wall
M	-	mean flow Mach number
λ	-	equal to $2 \frac{k_2}{k} \frac{1}{k}$
×	-	κ , r coordinate direction along axis of combustion chamber

vi

1.0 Introduction

From the beginning of solid propellant rocket development, the rocket engine designer has been troubled by the phenomenon broadly described as "unstable combustion". Normal combustion of a solid propellant is defined as the regular predictable process associated with steady conditions. Under steady conditions the burning rate of the propellant depends on the local mean pressure and the local mean mass flow moving parallel to the burning surface, and the initial propellant temperature. With the exceptions of detonations and explosions, unstable combustion in any combustion process is undesirable.

It is important to distinguish between two aspects of unstable combustion: irregular combustion refers to combustion associated with large deviations in the mean burning rate from that predicted under steady conditions while oscillatory combustion refers to combustion with periodic variations in flow properties about their mean values.

Oscillatory combustion instabilities arise from the coupling of pressure and velocity perturbations that are associated with the presence of acoustic modes within the combustion chamber, with the combustion processes in the burning zone at the solid propellant surface.

It is customary to assume that the fluctuation in the mass flow can be separated into a pressure-coupled part and a velocity-coupled part which are independent of each other.

Accordingly, the effects of pressure and velocity perturbations on the burn rate can be represented by the following equation (Ref. 1).

Since the solid propellant combustion responses, Rp and Rv, are the sources of acoustic amplification, their accurate determination is required for a complete stability analysis. Due to the complicated nature of the combustion process, it is difficult to predict the burn rate of a solid propellant on the basis of its chemical properties alone. For this reason, researchers have relied heavily on experimental approaches to combustion response function prediction. At the present time, methods to measure the combustion responses are being developed.

This investigation will focus on the data reduction procedure for a new method of experimentally measuring the velocity-coupled response function.

2.0 Historical Background

At the present time, a theoretical analysis of combustion instability containing all relevant parameters does not exist. This is largely because of an incomplete understanding of the response of the propellant burning rate to oscillations in the pressure and velocity of the flow adjacent to the propellant surface. Satisfactory models and reliable experimental techniques to predict the velocity-coupled response functions of solid propellants have remained particularly elusive. Until further progress is made in our understanding of the mechanistic basis for velocity coupling, research must be directed towards the development of experimental techniques for the measurement of the velocity-coupled response function. Solution to the problem of velocity-coupled response function measurement will be adequate only when there is quantitative agreement between the various experimental methods and realistic analytical models.

The measurement of combustion response functions has been attempted by a variety of methods, each having its advantages and shortcomings. The methods are best categorized by the type of burner used in the measurement and by the nature of the exciting disturbance. Burner configurations which have been used in the past include the center-vented burner, the modulated exhaust flow burner, the impedance tube burner and the bulk-mode self-excited burner. Acoustic oscillations in the burners are either self-excited

or generated by external means. The center-vented burner, commonly referred to as the T-burner, is an example of a self-excited burner. The rotating-valve method is an example of a burner where the oscillations are generated by external means. The T-burner and the rotating-valve methods deserve particular attention not only because of their extensive use and evaluation, but also because they are helpful in understanding the basic approach to experimental combustion response measurement.

The simplest form of the T-burner (Ref. 2) for pressure-coupled response measurements consists of a circular tube with propellant disks mounted at both ends. The products of combustion are exhausted through a vent at the center of the tube. This configuration allows maximum excitation of the fundamental longitudinal acoustic mode in the tube, thereby generating maximum acoustic pressures at the burning propellant surfaces. By placing the exhaust vent at the center of the tube where the pressure oscillations have the lowest amplitude, energy losses from the acoustic field are minimized. The exhaust vent is usually connected to a surge tank which is pressurized with nitrogen to the desired mean pressure. When the propellant disks are ignited, the propellant reaction flushes out the inert nitrogen, and oscillations develop and grow exponentially until losses limit the amplitude. When the propellant burns out, the oscillations decay in a roughly exponential manner. In its simplest use, it is assumed that the damping is the

same during the period of growing oscillations as during the period of decaying oscillations. The initial growth constant of the acoustic field (\propto) can then be regarded as the difference between the energy gains and the measured damping contribution, hence

a = again - adamp (2.1)

Using linear acoustic theory, the rate at which energy is transferred to the acoustic field can be related to the response function. For end-burners the relation between and the pressure-coupled response is given by

$$\alpha_{gain} = 4f(\overline{M}_{k}R_{p}) \quad (2,2)$$

where f is the frequency of the oscillating field and $\overline{\mathcal{M}_{b}}$ is the mean flow Mach number. Using equations (2-1) and (2-2), the response function can be inferred from measurements of the growth constant and the damping constant.

Measurement of the velocity-coupled response function is much more difficult than measurement of the pressurecoupled response function. However, methods for adapting the T-burner for velocity-coupled measurements have been considered. In order to induce velocity-coupled response, the propellant test sample is exposed to a parallel velocity flow in locations which maximize velocity-coupled acoustic excitations. One means of accomplishing this is to mount the test charges on the side walls and the driver propellant at the ends. The difficulty with this arrangement is that test samples respond to both pressure and velocity oscillations. Hence, independent information about the

pressure-coupled response is required before the velocitycoupled contribution can be extracted from the measured pressure data. Variable-area methods with the propellant samples located at the L/4 and 3L/4 positions along the tube have also been considered. The basis for the variable-area method becomes clear if we extend equation (2.1) to the case where the propellant surface area is not equal to the crosssectional area of the burner tube. Equation (2.1) becomes

$$\alpha = \alpha_{gain} \left(\frac{S_b}{S_c}\right) - \alpha_{loss} \quad (23)$$

which is the equation of a straight line for \ll with the area ratio as the dependent variable. The energy constant (\ll_{gain}) is the slope of this line. From the energy constant the real part of the response function can be determined. The primary disadvantage of variable-area methods is that several tests must be conducted to obtain the response function at a specific frequency and pressure. Other disadvantages include the theoretical uncertainties that are not reflected in the simplified expression for \ll in equation (2.1).

The basic approach to rotating-valve methods (Ref. 3) is to use exhaust modulation to control the acoustic oscillations in the combustion chamber. The usual burner configuration is a rocket motor with a cylindrical mounted charge and a conventional nozzle to control the mean combustion pressure. A secondary orifice is operated periodically to produce oscillations at a desired frequency. For velocity-coupled response measurements, two rotating

valves are required. With one valve positioned at either end of the combustion chamber and oscillated directly out of phase, controlled velocity oscillations can be generated. Analytical solutions of the mass, momentum and energy equations for the rotating-valve burner configuration along with measured acoustic response data are then used to predict the velocity-coupled response function. Unlike the T-burner method, the rotating valve approach determines both the real and imaginary components of the response function.

Direct measurement of the oscillatory burning surface regression using microwaves has also been considered. This approach provides both magnitude and phase information about the combustion response functions without having to indirectly calculate them from measured acoustic data. However, the difficulty of isolating pressure-coupled contributions from the velocity-coupled contributions has not been resolved.

At present there is a lack of qualitative agreement among the different approaches, and it is difficult to ascertain which method is the best. Accuracy, cost and repeatability are criteria for the evaluation of their relative merits.

3.0 New Method

In a new attempt to determine the velocity-coupled response function from pressure oscillation data, L.L. Narayanaswami has suggested an end-burner test configuration where the propellant sample is oscillated normal to the flow in the presence of a standing acoustic wave in the combustion chamber (see Fig. 3.1).

Pressure coupling between the propellant burn rate and the acoustic field is generated by the oscillating pressure at the propellant surface. Velocity coupling is generated by relative flow oscillating tangential to the oscillating propellant surface.

The configuration of the standing wave within the combustion chamber is that of a forced standing wave in a closed-end tube modified slightly by the existence of pressure and velocity coupling between the propellant burn rate and the acoustic field. For given propellant sample, environmental conditions, and acoustic frequency, the configuration of the standing wave is uniquely determined by the combustion response functions Rp and Rv. The pressurecoupled response function (Rp) will be known from prior experiment and the velocity-coupled response function will be determined from pressure measurements along the length of the experimental device. This investigation will focus on the calculation of Rv from the pressure measurement data.

propellant sample

acoustic driver

4.0 Data Reduction Procedure

The data reduction procedure that was developed for the calculation of the velocity-coupled response function from experimentally measured pressure data is presented here. The prime motivation for the data reduction procedure is the lack of an accurate means for direct measurement of the perturbation velocity at the propellant surface.

An expression for the velocity-coupled response function is obtained from equation (1.1) with modifications. Using the continuity relation

$$\frac{m_0^{\prime}}{m_0} = \frac{p_0^{\prime}}{m_0} + \frac{\mu_{en}}{m_0} \quad (q, 1)$$

and the isentropic relation

$$\begin{array}{c} p' = \mathcal{D}' \quad (4,2) \\ \overline{p} \quad \overline{p} \end{array}$$

equation (1.1) may be rewritten as

$$R_{i} = \left(\frac{u_{i}}{u_{i}} - \frac{n}{2}(R_{p}-1)\right) \frac{u_{i}}{u_{i}} (4,3)$$

The conditions at the propellant surface are not isentropic: however, for lack of an alternative, the above substitution has been used to eliminate the density ratio from the expression for Rv.

All quantities on the right-hand side of equation (4.3), except for the perturbation velocity (u_{τ}^{\prime}) are known at the propellant surface from either measurements downstream of the propellant or by simple computation (see Appendix 1).

Because of the hostile environment near the burning propellant, the perturbation velocity at the propellant surface cannot easily be measured directly. The perturbation velocity at the propellant surface is, however, a boundary condition to the system of differential equations which governs the flow within the combustion chamber.

In principle, the general solution of the governing equations along with the experimental pressure measurements should allow easy computation of the boundary condition u'_{n} . The correct boundary condition u'_{n} would force the general solution for the pressure distribution to match the measured pressure distribution at the points along the length of the Rv-measurement apparatus where the pressure measurements were taken. The velocity-coupled response function (Rv) would then be known from equation (4.3).

Unfortunately, the governing equations do not lend themselves to a closed form solution. In light of this, the following numerical data reduction procedure has been developed.

- Step (1) Assume a value for Rv.
- Step (2) Calculate the boundary condition u_{fr}' using equation (4.3).
- Step (3) Use $u_{n'}$ along with the remaining boundary conditions to numerically solve for the pressure distribution within the experimental device.

Step (4) Compare the calculated pressure distribution to

the experimentally measured pressure distribution.

- Step (5) Choose a new Rv on the basis of the results of the comparison.
- Step (6) Repeat steps (2) through (5) until the measured and computed values agree to within prescribed limits.

Steps (3), (4) and (5) will be discussed in greater detail in the following sections.

Since the velocity-coupled response function is a physical property of solid propellants, it is expected that the iterative procedure presented here will converge to a unique value. The validity of the final result can be checked by comparing the experimentally measured pressure distribution to the pressure distribution that would result from the Rv value found.

5.0 Numerical Solution of the Governing Equations

Step (3) of the data reduction procedure requires the computation of the perturbation pressure p' as a function of the axial distance from the propellant sample. A fourth-order Runge-Kutta numerical technique has been used. The discussion here will show how the governing equations have been reduced to the form required by the RK-4 numerical integration algorithm.

5.1 Governing Equations

The equations which govern the fluid flow within the experimental device are

- (1) conservation of mass
- (2) conservation of momentum
- (3) conservation of energy, and
- (4) ideal equation of state.

Written in differential form these equations are

$$\frac{\partial \mathcal{L}}{\partial t} + \frac{\partial \mathcal{L}}{\partial x} + \frac{\partial \mathcal{L}}{\partial x} = 0 \quad (5.1,2)$$

$$\frac{\partial p}{\partial t} + \frac{\partial p}{\partial t} - \frac{\partial p}{\partial t} = 0 \quad (5, 1, 3)$$

$$\mathcal{P} = \rho \mathcal{R} \mathcal{T} \qquad (5,1.4)$$

The energy equation (5.1.3) incorporates the ideal equation of state, and is approximately valid for negligible heat conductivity of the combustion product gases. Furthermore, convective and radiative processes are considered to make negligible contributions to the energy equation.

Since the flow within the combustion chamber involves both mean and perturbation flows, it is convenient to separate the two as follows

$$P = \overline{\rho} + \overline{\rho}'$$

$$\rho = \overline{\rho} + \overline{\rho}' \qquad (5.5.5)$$

$$u = \overline{u} + u'$$

$$T = \overline{r} + \tau'$$

Furthermore, the perturbations are periodic so that

$$p' = P_o e^{i\omega t}$$

$$p' = P_o e^{i\omega t} \quad (5.5.6)$$

$$u' = u_o e^{i\omega t}$$

For periodic functions, the time-derivative operator reduces to $i\omega$, enabling the governing equations to be treated as ordinary differential equations.

Neglecting second-order effects the governing equations reduce to the following when substitutions (5.1.5) and (5.1.6) are made.

Continuity

$$\frac{\partial \bar{u}}{\partial x} + \bar{u} \partial \bar{\rho} = 0 \quad (5.1.7)$$

$$\frac{\partial \omega}{\partial x} = \frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial x} = \frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial x} = \frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial x} +$$

<u>Momentum</u>

$$\frac{\partial \dot{c}}{\partial u} + \frac{\partial \dot{u}}{\partial x} + \frac{\partial \dot{u}}{\partial x} + \frac{\partial \dot{u}}{\partial x} + \frac{\partial \dot{\mu}}{\partial x} = 0 \quad (5.1.10)$$

Energy

$$\overline{D} = \frac{1}{2} \overline{D} = \frac{1}{2} \overline$$

 $\overline{\rho}(\tau i\omega \tau' + \overline{\rho}\overline{u}(\tau)\overline{\tau}' + \overline{\rho}\overline{u}'\tau)\overline{\tau} + \overline{\rho}\overline{u}(\tau)\overline{\tau} + \overline{\rho}\overline{u}(\tau)\overline$

Equation of State

$$p' = \bar{\rho} R T' + \rho' R \bar{T}$$
 (5.1.14)

Assuming that the mean flow Mach number of the flow normal to the propellant is much less than 1, terms containing \overline{u}^2 can be neglected. Rearrangement of the previous equations under the assumption of negligible mean flow Mach number yields the following equations.

$$\frac{\partial \vec{F}}{\partial X} = 0 \quad (5,1,15)$$

$$\frac{\partial \vec{F}}{\partial X} = -\vec{F} \quad \vec{O} \quad (5,1,16)$$

$$\frac{\partial \vec{F}}{\partial X} = -\vec{F} \quad \vec{O} \quad (5,1,17)$$

$$\frac{\partial \vec{F}}{\partial X} = -\vec{F} \quad (5,1,17)$$

These equations are in the form required by the Runge-Kutta numerical algorithm for integration. If the temperature distribution T(x) is known, these equations along with the boundary conditions at the propellant surface, are sufficient to calculate the pressure distribution (p') along the length of the experimental device.

5.2 Boundary Conditions

The boundary conditions required at the propellant surface are listed below

mean pressure mean density mean velocity perturbation pressure perturbation velocity

For the purpose of this investigation, typical values for the above quantities will be used. The values used, along with other environmental parameters are given in Appendix 1.

5.3 Temperature Distribution

Since the heat flux through the measurement apparatus wall is unknown the mean flow temperature distribution T(x) cannot be found directly. However, the following approximate expression for the temperature distribution using the onedimensional steady-state heat diffusion equation has been used.

$$T(z) = (T_0 - T_{co}) \ell^{2z} + T_{co} (5, 3, 1)$$

where

and, and are the thermal conductivities of the combustion gas and the apparatus wall respectively.

In the future, it may be necessary to refine the above temperature distribution to incorporate three-dimensional effects.

6.0 Error Function

In order to compare the numerical solution for the pressure distribution to the measured pressure distribution, the following least-squares error function has been considered

$$E(R_{u}) = \sum_{i=1}^{N} (P_{m_{i}} - P_{m_{i}})^{2} (6.1)$$

where N is the number of pressure measurements taken at selected points along the length of the experimental Rv-measurement device. The quantities $p_{m'}$ and $p_{m'}$ are the measured and calculated pressures at the i'th selected pressure port.

The quantities Rv, p''_n and p''_n in equation (6.1) are complex. The velocity-coupled response function is complex since the velocity-coupled response is not generally in phase with the tangential velocity perturbations. Also, the perturbation pressure is complex having both magnitude and phase. Consequently, the error function E is a complex function. It is meaningless, therefore, to consider minimizing E as defined by equation (6.1). In light of this, the following approaches have been considered.

- Minimize both the real and imaginary components of E simultaneously.
- (2) Minimize the magnitude of E only.
- (3) Minimize the phase angle of E only.

All three approaches are valid since both the magnitude

and phase of the perturbation pressure distribution are unique for a given velocity coupled response function (Rv). As will be shown in Appendix 5, the use of the phase distribution provides the smoothest error function (E), and consequently, equation (6.1) has been modified through the use of the phase angles of the perturbation pressures. Thus the error function, E(Rv), given by

$$E(R_{n}) = \sum_{i=1}^{N} (\langle P_{m_{i}} - \langle P_{m_{i}}' \rangle (6.2)$$

is a real valued function of two independent variables. The symbol \langle denotes the angular component of the perturbation pressure. The independent variables are the real and imaginary components of Rv.

The desired value of Rv is that which minimizes the above error-function. When E is minimized, the pressure distribution which has been calculated by numerically integrating the governing equations will match the measured pressure distribution as closely as possible at the N selected points.

7.0 Location of Pressure Ports

As mentioned in the previous section, the numerical solution for the perturbation pressure distribution can be fitted to the measured distribution at selected points along the length of the experimental device. The experimental apparatus has provisions for measurement of pressure at numerous locations along its length. The positions of the pressure measurement will affect the performance of the curve-fit procedure. The optimum location of these pressure measurements is at the part of the curve where variation is greatest since the shape of the curve will be most sensitive to slight variations in admittance value. Perturbation pressure phase distributions are provided in Appendix 5 for a wide range of admittance values and a driver frequency of 600 hertz. From these figures it can be seen that maximum variation of the curves occurs in the region between 0.100 meters and about 0.150 meters along the length of the Rv-measurement apparatus. The locations of the pressure measurements have been chosen to be at ten equally spaced locations from 0.100 meters to 0.145 meters along the length of the apparatus.

8.1 BFGS Optimization Algorithm

The BFGS (Broyden, Fletcher, Goldfarb, Shanno) numerical optimization algorithm (Ref.4) has been used to minimize the error function (equation 6.2). Since the velocity-coupled response function (Rv) is complex, the domain has been considered to be the R² plane with the X1coordinate representing the real part of Rv and the X2coordinate representing the imaginary part of Rv.

Most search algorithms involve a line search given by the following equation

$$\chi_{2r1} = \chi_{2} - \alpha H_{2} Py(\chi_{2}) (8.1.1)$$

where y is the function of interest. For a gradient search, H_{ξ} is the unit matrix (I) and \propto is the parameter of the gradient line. for Newton's method H_{ξ} is the inverse of the Hessian matrix, $H_{\xi}^{-\prime}$, and \propto is 1. The Hessian (H_{ξ}) is the matrix of second partial derivatives evaluated at the point x_{ξ} . For quasi-Newton methods, H_{ξ} is a series of matrices beginning with the identity matrix, I, and ending with the inverse of the Hessian matrix ($H_{\xi}^{-\prime}$). The quasi-Newton algorithm that employs the EFGS formula for updating the Hessian matrix is considered to be the most effective of the unconstrained multivariable search techniques, according to Fletcher (Ref. 5).

The minus sign in equation (7.1) indicates the

direction of steepest descent and a positive sign in the equation would give the direction of steepest ascent. However, equation (7.1) is really steep descent rather than steepest descent. Only if the function of interest, the error function, is scaled such that a unit change in each of the independent variables reduces the same unit change in the error function will the gradient move in the direction of steepest descent. Scaling is a problem that has been encountered during this investigation. It was resolved by multiplying the real and imaginary components of the admittance by 1000.

The BFGS algorithm is outlined in what follows.

- (1) Choose starting point $Rv = x_{k}$. (h_{l})
- (2) Compute gradient $E(x_{\xi})$ using a forward difference approximation.
- (3) Form the Hessian matrix given below.

$$H_{h,i} = H_{h} - \left[\frac{H_{h} \delta_{h} \delta_{h}^{T} + \delta_{h} \delta_{h}^{T} H_{h}}{\delta_{h} \delta_{h}}\right] + \left[\frac{\delta_{h} H_{h} \delta_{h}}{\delta_{h} \delta_{h}}\right] \left[\frac{\delta_{h} \delta_{h}}{\delta_{h}}\right] (6.1.2)$$

(4) Form the gradient line given below. $\nabla E(\chi_{k+1}) - \nabla E(\chi_k)$

$$\chi_{k+1} \quad \chi_k \quad \varkappa_{k+1} \quad H_k \quad \nabla \in (\chi_k) \quad (8,1,3)$$

- (5) Search for parameter $\alpha_{t_{t}}$, which minimizes the error function (E) along the gradient line. This is described in detail in the next section.
- (6) Compute x_{h+i} .
- (7) Repeat steps (2) through (6) until convergence.
 - 23

As mentioned previously, the initial value for the Hessian matrix is the identity matrix.

The algorithm generates a sequence of values x_{ℓ} that move rapidly from the starting point x_{ℓ} to the neighborhood of the optimum x^* and terminate when the difference between successive iterations is less than some prescribed value.

The value of the parameter a which minimizes the error function along the gradient line is found by a Fibonacci line search. The Fibonacci line search algorithm is discussed in the following in the following section.

8.2 Fibonacci Line Search

To find the optimum of a search problem, a search plan is required. A search plan is a set of instructions for performing N sets of "experiments" $x_1, x_2, ..., x_n$ (values of the independent variables). In this discussion, an "experiment" will consist of specifying the value of the independent variable (\triangleleft) and determining the value of the function E(\triangleleft) for that specified value.

The Fibonacci search (Ref. 4) will be used to search for the parameter \prec which minimizes the error function (E) along the gradient line (equation 8.1.1). Values for range from 0 to 1 generating points along the line from x_{ℓ_1} to x_{ℓ_2} .

The first step of the Fibonacci search requires the calculation of the number of experiments required to reduce the final interval of uncertainty in \prec to within tolerable limits. This desired final interval of uncertainty

 (I_n) is given by the following equation.

where I_o is the initial interval, and $A_{\Lambda r}$, is the (n+1)'th Fibonacci number. The initial interval (I_o) is 1 since the parameter α has possible values ranging from 0 to 1.

The Fibonacci numbers are generated as follows

A, 1

$$A_{z} = 2$$

 $A_{\dot{i}} = A_{\dot{i}-i} + A_{\dot{i}-z}$ for $i > 2$

The number of experiments required to reduce the interval of uncertainty from I_o 1 to I_n is the smallest value n such that

The values of \ll for the first two experiments are the following

$$\alpha_{I} = A_{n-I} I_{n} = A_{n-I} \left\{ \frac{I_{o}}{A_{n-I}} \right\} (8, 2, 4)$$

$$A_2 = A_m I_n = A_m \left\{ \frac{I_0}{A_{m+1}} \right\} (8.2.5)$$

The position of α , is symmetrically to α_2 , a distance I_Z from the upper bound of the interval.

The procedure continues after the first two experiments are evaluated by discarding the interval that does not contain the minimum. It is important to realize that the

function is assumed to be unimodal along the gradient line. The error function (equation 6.2) is not unimodal. However, it has been found that the distances between local minimums is large with respect to typical gradient line lengths.

The third experiment is placed in the remaining interval symmetrically to the one which was not in the discarded interval. The procedure is continued by placing the remaining experiments symmetrically to the previous one with the best value until the final experiment is placed.

The procedure is best illustrated by the following figures.

Figure 8.2.1
Suppose $E(\alpha_{2}) > E(\alpha_{1})$ then by unimodality the interval $[\alpha_{1}, 1]$ would not contain the minimum. Therefore, it is discarded and the second interval of uncertainty is then $[0, \alpha_{1}]$.

The third experiment is placed symmetrically to α , in the remaining interval as illustrated below.

Error Function along Gradient Line

Figure 8.2.2

The remaining experiments are placed in a similar manner until the desired final interval of uncertainty I_{∞} is obtained. The optimal value for α is then taken to be either the upper bound or the lower bound the final interval of uncertainty depending on whether the previously discarded

interval was to the right or left. Since the final interval is chosen to be small, any point in that interval could be used as the optimal value.

9.0 Description of Computer Program

The data reduction program consists of a Runge-Kutta routine driven by a BFGS multivariable search routine. The Runge-Kutta solves the governing equation for the perturbation pressure distribution within the experimental device for a specified admittance value of the solid propellant. The following sections will discuss the admittance to velocity-coupled response function conversion, the Runge-Kutta algorithm and the BFGS multivariable search algorithm in greater detail.

9.1 Admittance to Velocity-Coupled Response Function Conversion

The admittance (Y) of a solid propellant is defined by the following equation.

$$u_{22} = Y = (9.1.1)$$

An expression for the perturbation velocity is obtained by rearranging equation (4.3).

Upon elimination of the normal perturbation velocity from the above equations the following relationship between the admittance and the velocity-coupled response function is obtained.

$$Y = \frac{\pi U_m}{a} (2p-1) + \frac{\pi U_m}{a} = \frac{\pi}{\mu'} (2p-1) + \frac{\pi}{\mu'$$

Program 2 (Appendix 3) has been written to perform the above conversion.

9.2 Runge-Kutta Algorithm

A fourth-order Runge-Kutta algorithm (Ref. 6) is used to determine the perturbation pressure distribution by integration of the governing equations (5.1.15) through (5.1.19). The input to the algorithm consists of the environmental parameters and the boundary conditions at the propellant surface. Typical values for the environmental parameters and all boundary conditions except for the perturbation velocity (u'_{n}) at the propellant surface are given in (Appendix 1). For calculation of the velocitycoupled response function for a particular propellant sample in a specified environment all input quantities except for u'_{n} are fixed. This boundary condition is determined by admittance values which are generated according to the multivariable search procedure. For a particular admittance value, the perturbation velocity (u'_{n}) is given by

$$H_{\eta}' = Y \overline{q} \frac{p p'}{p \overline{p}} \quad (9.2, 1)$$

The step size (H) governs the locations at which the perturbation pressures are calculated. It is important that the perturbation pressure be calculated at points along the length of the experimental device where pressure measurements are made. Improved accuracy can be obtained by decreasing the step size (H). Alternatively, the step size can be adjusted in the middle of the calculation to accommodate a pressure distribution that is rapidly varying.

9.3 BFGS Optimization Algorithm

The purpose of this algorithm is to search for the particular admittance value which provides the boundary condition $(u_{1/2})$ which, when used as input to the Runge-Kutta routine, yields the pressure distribution matching the measured pressure distribution.

The BFGS algorithm has been encoded into a main program, two subroutines and three function subroutines.

The three function subroutines are as follows. The function FUNCT contains the function to be minimized (equation 6.2). The function F uses FUNCT for the value of the error function in the line search. The function FIBON uses the values of F in the Fibonacci line search. The two subroutines are slope, which evaluates the partial derivatives using a forward difference approximation, and PRINT, which prints the results of the computations.

The input variables for the BFGS routine are the starting point (Y_o) and the stopping criterion. The program will terminate when the difference between the error function values of two successive iterations is less than or equal to the stopping criterion. The output results are the iteration number, the value of the error function, and the admittance value.

The main portion of the BFGS algorithm proceeds from iteration zero, the starting point, and generates successive points until the stopping criterion is met. Initially, the Hessian matrix (H) is the identity matrix. The gradient is

computed using a forward difference approximation of the partial derivatives (using subroutine SLOPE). The Fibonacci search function, FIBON, is used to locate the minimum along the gradient line from x_{ℓ} to $x_{\ell,\ell}$. Then the stopping criterion is checked, and the Hessian matrix is stored in ERROLD for future comparisons. The search direction to the next point is calculated and stored in the vector S. The value of the parameter of the line in the search direction, K, is calculated using FIBON to locate the next point. The value of the error function at the new point is calculated and stored in ERR. The values of the iteration counter, the function at the new point, and the new point are printed using PRINT. The values of the gradient at the current point are computed and stored in the vector GRAD. The Hessian matrix is updated, and the program returns to repeat the calculation until the error criterion is satisfied.

10.0 <u>Simulation of Experiment</u>

For the purpose of testing the data reduction program, experimental pressure phase angle data have been simulated by introducing random fluctuations in calculated pressure phase angles for specific values of admittance. Experimental data was simulated for two admittance values: (0.04,-0.02) and (0.00,0.02). Program 3 (Appendix 4) was used to obtain random fluctuations from gaussian distributions having standard deviations ranging from zero through five degrees.

Using the simulated data, the program was tested to see whether or not convergence to the above admittance values from an arbitrary starting point was attained. The results are presented in the following section.

11.0 Simulation Results

Results are presented here for two sample runs of the data reduction program. Using admittance values of (0.04,-0.02) and (0.00,0.,02) the perturbation pressure distribution was calculated. The following computer printouts show the results for random fluctuations in input pressure data ranging from zero to five degrees. The performance of the data reduction program has proven to be satisfactory for perturbation pressure phase measurement data having random fluctuations of less than five degrees.

The velocity-coupled response function values corresponding to the admittance values were found using Program 2 (Appendix 3) to be (0.15,0.48) and (-0.19,0.13) for the respective admittance values (0.04,-0.02) and (0.00,0.02). It was necessary to assume a value for the pressure-coupled response function to perform the above conversion. The value used for Rp was (0.1,-0.1). Since the pressure-coupled response of solid propellants was not investigated, the admittance to Rv conversion was not included in the main data reduction program.

The test results are summarized at the end of this section. The summary table shows the admittance values which were recovered when pressure phase data corresponding to the above two admittance values were input. It is clear from these results that performance of the data reduction program is generally good when random fluctuations in the input pressure phase data does not exceed four degrees.

 Standard Deviation in Random Error of Input Data = 0 degrees

 EF01-FIEDNACCI REARCH FOR ADMITTANCE

 INFUT CATA:

 Stopping Criterion
 .5000

 Starting Foint (Yo)
 5.00 (0.00)

 Experimental Fressure Phase Values (degrees)

 = (1)
 10.660

 F(2)
 95.161

 F(1)
 57.064

 F(2)
 = -97.064

 F(30)
 = -97.064

 F(2)
 = -97.064

 F(30)
 = -97.064

NERMAL TERMINATION OF FROGRAM

 Standard Deviation in Random Error of Input Data = 1 degree

 EFGS-FIEDNACCI SEARCH FUR ADMITTANCE

 INFUT DATA:

 Stopping (riterion 5000

 Starting Foint (Yor 5.00 10.00

 Experimental Freesure Phase Values (degrees)

 F(-1) = -54.364

 P(-2) = -50.406

 F(-3) = -54.264

 P(-2) = -50.406

 F(-3) = -54.264

 F(-5) = -121.165

 F(-6) = -121.165

 F(-6) = -54.231

 F(-6) = -54.231

 F(-6) = -54.225

 F(-10) = -55.295

 FESULTS:

 Iteration
 Error Function

 14.556 201.15.176

 2.5.295

NERMAL TERMINATION OF PROGRAM

```
EFREHFIECNACC1 EEFRCH FCF HCMITTANCE
 INFUT EATA:
 Stopping Insterior 5000
 Eterting Foint (Yok, 10,00, 15,00
 Experimental Pressure Phase Values (degrees)
       FERLE:
                                          N 8 1000
                  Ernin Function
lterstion
                        191 - 104
192 - 117
49 - 201
                                           0.000 15.000
1.150 11.715
1.956 22 716
      3
      ٠,
      Ξ
                         44 88<u>2</u>
```

Standard Deviation in Random Error of Input Data = 2 degrees

CERTEL TERMINETIIN IF FFIGHER

EF05-FIEDMACCI SEARCH FOF ADMITTANCE INFUT DATA: Stopping Criterion 5000 Starting Foint (Yp) 10.10 15.00 Experimental Pressure Phase Values (degrees) F(1) = 00.168 F(2) = 02.078 F(1) = 100.965 F(4) = 100.965 F(5) = 120.445 F(6) = -120.009 F(7) = -00.168 F(6) = -00.009 F(7) = -00.100 F(7) = -00.009 F(9) = -00.009 F(9)

Standard Deviation in Random Error of Input Data = 3 degrees

teration	Error Sunction	7 X 1000
0-20	520.142 66.429 26.600 38.591	10.000 15.000 .645 12 441 170 16.029 - 182 16.131

WERMAL TERMINATION OF FREGRAM

 Standard Deviation in Random Error of Input Data = 4 degrees

 EFGS-FIEDNACCI SEARCH FOR MOMITTANCE

 INFUT DATA:

 Stopping Criterion
 0100

 Itarting Foint (Yo)
 5.00
 10.00

 Erperimental Fressure Phase Values (degrees)
 F(1) = \$8.064

 F(2) = \$28.412
 F(2) = \$28.412

 F(3) = \$4.266
 F(4) = 101.512

 F(5) = \$121.667
 F(6) = \$116.262

 F(6) = \$16.262
 F(7) = \$4.266

 F(6) = \$-92.626
 F(6) = \$-92.626

 F(6) = \$-92.626
 F(10) \$-97.452

 FESULTS:
 Iteration
 Error Function
 Y X 1000

 0
 \$16.665
 \$.000 \$10.000
 \$1.50 \$7.123

 2
 \$4.350
 \$2.211 \$17 \$424
 \$4.350

PERMAL TERMINATION OF FROGRAM

 Standard Deviation in Random Error of Input Data = 5 degrees

 EFGS-FIEDHACCI SEARCH FER ADMITTANCE

 INFUT DATA:

 Stopping (riterion .0100

 Starting Foint (Yo) 5.00 15.00

 Experimental Pressure Fhase Values (degrees)

 F(1) = 30.007

 P(2) = 94.544

 F(1) = 40.007

 P(2) = 94.544

 F(2) = 114.159

 P(4) = 101.513

 F(5) = 114.159

 P(6) = -126.118

 P(7) = -102.580

 F(8) = -95.704

 F(9) = -101.160

 F(10) - -85.622

-CEMAL TERMINATION OF PROGRAM

 Standard Deviation in Random Error of Input Data = 0 degrees

 EFGS-FIECNACCI SEAFCH FOR ADMITTANCE

 INFUT EATA:

 Stopping Oriterion
 .5000

 Stanting Foint (Yo)
 10.00 -25.00

 Experimental Fressure Fhase Values (degrees)

 F(1) = 86.505

 F(2) = 85.244

 F(3) = 12.700

 F(4)
 74.616

 F(5) = -21.187

 F(6) = -77.341

 F(7) -82.329

 F(8) = -85.506

 F(2) = -86.637

 F(10) = -87.325

0 1 2	1506.887 237 179	10.000 -25.000 40.350 -20.175 40.306 -20.079

VERMAL TERMINATION OF PROGRAM

Standard Deviation in Random Error of Input Data = 1 degree SEGS-FIECNACCI SEARCH FOR ADMITTANCE ----------------INFUT CATA: Stopping Criterion .5000 Etarting Foint (Yo) 10.00 -25.00 Experimental Fressure Phase Values (degrees) F(1) = \$6.907F(2) & 85.123F(3) = \$4.109F(4) = 73.887P(5) = -20.487F(6) = -77.692F(7) = -82.309P(6) = -87.110F(10) = -86.777FESULTS: Iteration Error Function Y X 1000 1592.050 10.000 +25.000 40.660 -20.062 40.629 -19.691 Ç, 12.12E 12.097 1 3 PORMAL TERMINATION OF FROGRAM

Standard Deviation in Random Error of Input Data = 2 degrees EFGEHFIECNACCI SEAFCH FOR ADMITTANCE _____ INFLT EATA: Etapoing Criterion 5000 Etanting Foint (Yo) 10.00 -25.00 Elperimental Freesure Phase Values (degrees) F(1) = 16.561 F(2) = 57.680 F(1) = 51.161 F(4) = 77.414 F(5) = -25.665 F(6) = -77.757 F(7) = -93.524 F(6) = -85.513 F(10) = -85.513FEELLTS: Y K 1000 Iteration Error Function 1181.286 29.490 29.502 10.000 -25.000 38.870 -21.032 38.578 -20.847 9

HERMAL TERMINATION OF FEOGRAM

EFGS-FIELMACCI SEARCH FER ADMITTANCE INFUT CATA: Itopping Criterion .5000 Starting Foint (Yo) 20.00 -25.00 Experimental Pressure Phase Values (degrees) F(1) = 83.00 F(2) = 82.959 F(3) = 36.371 F(4) = 74.678 F(5) = -16.900 F(6) = -77.346 F(7) = -77.797 F(8) = -82.011 F(8) = -82.011 F(6) = -85.674 F(10) = -80.509 FEBULIS: Iteration Error Function Y × 1000 0 1972 404 10.000 -25.000 FEBULIS: Iteration Error Function Y × 1000

Standard Deviation in Random Error of Input Data = 3 degrees

WERMAL TERMINATION OF PROGRAM

EFGS-FIECNACCI SEARCH FER ADMITTANCE INFUT DATA: Storping Criterion .5000 Starting Foint (Yo) 30.00 -25.00 Experimental Pressure Phase Values (degrees) F(1) & 82.550 F(2) = 84.827 F(3) F(2) = 84.827 F(4) F2.262 F(4) F2.262 F(4) F2.262 F(5) = -84.557 F(7) = -94.146 F(5) = -94.146 F(5) = -94.146 F(5) = -75.104 FEBLUTE:

Standard Deviation in Random Error of Input Data = 4 degrees

9 991.810 10.000 -25. 1 171.712 17.075 -21. 2 170.172 17.551 -22. 1 170.172 17.551 -22.	Iteration	Error Function	ΥX	1000
) 1 2	991.810 171 712 170.172 170.172	10.000 7.075 17.551 27.551	-25.000 -21.803 -22.737 -22.737

HERMAL TERMINATION OF FROGRAM

EFOS-FIBONACCI SEAFCH FOR ADMITTANCE INFLT EATA: Etipping Criterion .5000 Starting Foint (Yo) 30.00 -25.00 Experimental Fressure Phase Values (degrees) $\begin{array}{rcl} F(1) &=& 90.607\\ F(2) &=& 88.496\\ F(3) &=& 80.372\\ F(4) &=& 74.126 \end{array}$ F(-4) = -74.126 F(-5) = -21.658 F(-6) = -72.702 F(-7) = -81.528 F(-8) = -81.428 F(-8) = -85.580 F(-10) = -60.934FESULTE: Y K 1000 Iferation Erron Function 20.000 -25.000 41.029 -20.053 41.201 -20.680 41.301 -20.680 1655.979 Û E1.326 1

Standard Deviation in Random Error of Input Data = 5 degrees

CEMAL TERMINATION OF PROGRAM

SUMMARY OF TEST RESULTS

Standard Deviation	Value of Error	Starting	Value
of Random Error	Function	Point	Recovered
0	0.253	(5,10)	(.143,19.6)
1	13.1	(5,10)	(.201,19.2)
2	44.0	(10,15)	(2.05,22.7)
3	88.6	(10,15)	(182,16.1)
4	64.4	(5,10)	(2.21, 17.4)
5	138	(5,15)	(143,29.8)

Simulated Input Data for an Admittance Value of (0.00,20).

Simulated Input Data for an Admittance Value of (40,-20).

Standard Deviation of Random Error	Value of Error Function	Starting Point	Value Attained
0	0.179	(30, -25)	(40.3, -20.1)
1	12.1	(30, -25)	(40.6, -20.0)
2	29.3	(30, -25)	(38.6, -20.8)
3	79.7	(30, -25)	(42.2, -19.4)
4	81.3	(30,-25)	(41.3, -20.7)
5	170	(30, -25)	(37.6, -22.7)

(note: all admittance values are multiplied by 1000)

12.0 Conclusion

A data reduction program has been written for the calculation of the velocity-coupled response function of solid propellants from experimentally measured pressure data. The program has been written for use with a new velocity-coupled response function measurement apparatus that is currently being developed at Embry-Riddle Aeronautical University. The data reduction procedure has proven satisfactory for simulated experimental data which have random fluctuations with standard deviations up to four degrees.

13.0 Recommendations for Future Work

The following recommendations for future investigation which are outlined here are based on the possible need for improvements in the performance and accuracy of the data reduction program.

(1) Study the heat transfer between the combustion gases and the surroundings. Revise the approximation for the temperature distribution given by equation (5.3.1).

(2) Investigate the shape of the error function (equation 6.2). Proper scaling of this function will improve the performance of the BFGS optimization routine. The method of steepest descent works best when shape of the error function is parabolic. Procedures for scaling are described in detail by Wilde (Ref. 6) and Wilde and Beighter (Ref. 7).

(3) Investigate other types of error functions for the possibility of obtaining one which is unimodal for the domain of realistic Rv values. For unimodal error functions, the global convergence property assures convergence to the correct solution from any starting point.

References

- Culick F.E.C., "Stability of Longitudinal Oscillations with Pressure and Velocity Coupling in a Solid Propellant Rocket," <u>Combustion Science and Technology</u>, Vol.2, 1970.
- 2. Brown R.S., Culick F.E.C. and Zinn B.T., "Experimental Methods for Combustion Admittance Measurements," <u>AIAA</u> <u>Progress in Astronautics and Aeronautics: Solid Propellant</u> <u>Rocket Research</u>, Vol. 1, edited by M. Summerfield, <u>Academic Press</u>, New York, 1960, p.p. 295-358.
- 3. Brown R.S. and Waugh R.C., "Pressure and Velocity Response Function Measurements by the Rotating Valve Method," Technical Report, United Technologies Corporation, Sunnyvale, Calif., 1978.
- Pike R.W., <u>Optimization for Engineering Systems</u>,
 Van Nostrand Reinhold Company, New York , 1986.
- 5. Fletcher, R., <u>Practical Methods of Optimization</u>, John Wiley and Sons, Inc., New York, 1981.
- Johnston R.L., <u>Numerical Methods: A Software Approach</u>, John Wiley and Sons, Inc., Toronto, 1982.
- 7. Wilde, D.J., <u>Optimum Seeking Methods</u>, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

8. Wilde, D.J., and Beighter C.S., <u>Foundations of</u> <u>Optimization</u>, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.

Appendix 1: Input Data

Typical values for environmental parameters are given below. The variable names used are the same as those used in the computer program.

ratio of specific heats: GAM - 1.4 universal gas constant: R .. 287 J/kgK specific heat at constant volume: CV = 717 J/kgK conductivity of combustion gases: K1 30 W/mK conductivity of apparatus wall: K2 - 40 000 W/mK radius of apparatus: RADIUS 0.05 m length of apparatus: LENGTH 0.01 m ambient temperature: TINF 273 K

The following are boundary conditions for the variables at the propellant surface.

mean pressure: P0 = 101320 Pa perturbation pressure: PP0 = (0,1200) Pa density: RH00 _ 1.226 kg/m³ temperature: TNOT = 3500 K

The mean flow velocity $(\overline{u_{\lambda}})$ at the propellant surface can be calculated from continuity and the propellant mass burn rate. The mass flow (m) is related to the mass burn rate by

m - 1 pb Ab (A.1)

The continuity relation is

m - Un p Ab (A.2)

Equating (A.1) and (A.2), the following expression for the mean flow velocity is obtained

$$\overline{u_n} = \frac{r_b \rho_b}{\bar{\rho}} \quad (A,3)$$

Typical values for the quantities in equation (A.3) are given below

mass burn rate: $r_b = 0.0063 \text{ kg/s}$ propellant density: $\rho_b = 1200 \text{ kg/m}^3$ exhaust gas density: $\overline{\rho} = 1.226 \text{ kg/m}^3$

The mean flow normal velocity at the propellant surface is then

mean flow velocity: $u_0 = 6 \text{ m/s}$

The frequency of the standing acoustic wave was given a value of 600 hertz. This value is within the frequency range at which the Rv-measurement apparatus is expected to be operated. The angular frequency is then 2 x 3.14 x 600 hz. angular frequency of acoustic wave: ω 3770 rad/s

It is necessary that the mass flow perturbation frequency be identical to the acoustic frequency. This requirement is met if the propellant sample is oscillated at one-half the acoustic frequency since the mass flow response is not sensitive to the direction of the tangential perturbation velocity.

The average tangential velocity obtained by integrating over one period is

$$\frac{u_{e'}}{\pi} = \frac{2}{2} \frac{u_{e'}}{u_{e'}} \qquad (A.4)$$

where $\overline{u_{z'o}}$ is the maximum value obtained by the tangential perturbation velocity. A typical value for $\overline{u_{z'o}}$ is 30 m/s. The mean tangential perturbation velocity from the previous equation is 19 m/s.

Appendix 2: Data Reduction Program

This appendix contains a listing of the data reduction program. This program determines the admittance value of the propellant. The admittance to velocity-coupled response function conversion is performed by Program 2 (Appendix 3).

```
Program 1
```

```
F1N7X
$FILES 2,20
С
      PROGRAM BEGS MULTIVARIABLE OPTIMIZATION
С
С
С
      VILLIAN H JARVIS
ſ
      EMERY RIDDLE MERONAUTICAL UNIVERSITY
С
      DAYTONA PEACH FLORIDA
С
      APPIL, 1989
L
      TRAFECEN TIEN
      DOUBLE PERCISION TOLER, FURCT FIFON,
     A FEES(20,20), 5"AD(20), SPAD1(20), DAnmA(20), DELTA(20),
     を「HG(CO)」と、ERF、EFFCLD、EFS、GFHC、DFG「シ(CO)」と(CO)」の
      COMMON X, G. DIERM
      INTEGER STEP COUNT
      PEAL GAM R.CV W H.KI, HE, PADJUS, LENGTH, THOT, TINE
      REAL PA RHOA, UA
      COMPLEX FRO, PV FF, UT
      REAL PA(10)
      COMMON/FLOCH, STEF, COUNT, GAM, P. CV. W.H. H. H. J. P. ADJUS LENGTH THOT
     STINE, FA, RHUD UD FED, PA, RV RP, UT
      CALL NAPUR
      17 ER=11
      \chi = 0
С
С
      READ AND ECHD INFUT DATA
С
      WEITERS, *) 'BEGS-FIBONACCI SEARCH FOR ADMITTANCE'
      WPITE(1,*) '----'
                  ,
      WRITE(1,*)
      NTERH = E
      WRITE (1, +) 'INPUT STOPFING CRITEFION '
      PEAD(1,*) DES
      URITE (1,*) 'INFUT EXPERIMENTAL FREESURE FHASE MEASUREMENTS '
      READ(1 4) (FA(I), I-1,10)
      WITTE (1 *) 'TUPUT STARTING VALUE FOR ADMITTANCE (10)'
      FEAD(1, X) (*) TO LEA, WERK)
     URITE(1, A)
     RFITE 1 #
     UNITERALAND FROSHETENWARDED SUBFER FOR ADDITIONALE
     WEIDERS, HE INPUT DOTA
     UFFTE Physic
UFFTEC: POLY TPR
elf - Fifshik - Strpping Listerain, Fac -S
     URITE () NO
URTIENT T(1 \neq \gamma(4),>(7)
201 FORMARY Starting Fount (\gammao) , (in Ferry
     WRITE (1,3)
UFITE (1,3) - Experimental Freeewark Fhere Malves (degrees)
     PRITE (1,*)
     J-(1 1 1 1 = 1, 14
     URITE (1 110 - T FALE)
```

```
11
        CONTINUE
 110 FORMAT (
                             P(',12,') =',F8 3)
        WRITE(1,601)
       FORMAT(/,/,'RESULTS ',
 601
           /, /, 'İteration', 10X, 'Error Function', 10X, 'Y X 1000 ',/)
       2
С
        REGS SEARCH
С
С
        ERR= FUNCT( )
        CALL FRINT( ITER, NTEFM, EFP, X, F)
        CALL SLOPEC GRAD, ERR )
٤
ĩ.
        FORD THE IDENTITY MATEJ>
ſ
        10 40 1=1,NTEPM
           UD 40 J=1,NTERM
                \begin{array}{l} \text{JF} & (I \ \text{NE} \ \text{J}) \ \text{HESS}(J,J) = 0 \ (I \ \text{F} \ (I \ \text{EO} \ \text{J}) \ \text{HESS}(I \ \text{J}) = 1 \ 0 \\ \end{array} 
  ۰ ي
        CONTINUE
 21
        CONTINUE
        ERROLD= ERR
        ITEP= ITEP + 1
С
í
L
        E-1) - HESBIAN & GEADIENT
        DD 50 I=1, NTEPM
           5(7)-00
           DO SO J=1,NTERM
               S(I) = \hat{\varepsilon}(J) + HESS(J,J) * GPAP(J)
 \mp 0
              CONTINUE
L
С
        k = ALFHA IN SECTION ♥ 3
С
       F= FIPON( DUMMY )
n
       DETERNINE REXT X
£
C
       DELTA = ALTINA & HESSIAN * OF JULENT
ι
1
       Del el lei, FTEEm
           IELIC THE CONF.
           >(1)=>(T) - (TL)A(I)
           CHATIOUE
       ETE - EURETINO
       COLL CLOPEC GRADO THREE
12
r
       DETERMINE HEU IFRS HATE1>
ſ
       DPC = 0.0
       DO TO TES,NTERM
           GAMMA(I)- GRAD1(1) - GRAD())
DPC- DPG + GAMMA(I) * DELTA(I)
```

```
CONTINUE
 70
       DO 80 I=1,NTERM
          GRAD(I)= GRAD1(I)
 80
       CONTINUE
       GPHG=00
       DO 90 1=1,NTERM
          HG(I)= 0 0
          DO 90 J=1,NTERM
             HG(I) = HG(I) + HESS(I,J) * GAmmA(J)
             GPHG= GPHG+ HESS(I,J) * GAMMA(I) * CAMMA(J)
 90
       CONTINUE
       100 100 I=1, NTEPM
          DO 100 J=1,NTERM
             HESS(1,j)= HESS(1,J) - (HG(1) * DELTA(J) / DEG/
                         - (DELTA(I) * HG(J) / DEG)
      ţ.,
                         + (1 + (GPHG / DPG)) # > DELTA(1)
      λ_
                         * DELTA(J) / DPG)
 100 CONTINUE
       TOLEP = DABS(ERR+ERROLD)
      JF (TOLER GE. EPS) CALL PRINT( ITEP, NTEPH, EFF, 1, k)
JF (TOLER GE EPS) GO TO 30
       CALL FRINT(ITEP, NTERH, EER, X, K)
       UPITE (1,*)'
      WRITE(1,*) NORMAL TERMINATION OF FRUGRAMY
       STOP
      END
С
£
      COMPUTATION OF FAPTIAL DERIVATIVES
C
      SUBROUFIRE SLOPE( DERIV, E)
      DOUBLE FRECISION DEPIMIER), E, DELTA, TEMIN, Y DICCO BIOD , FUNCT
       CUMMON X, S NTERM
      DO 30 I=1,NTERM
          DELTA= 1 0E-04
          TEMPX= X(I)
          X(I)= X(I) + DELTA
          Y = FUNCT(X)
          DERIV(I) = (Y
                          E ) / DEL LA
          X())= TEMPX
 39
          CONTINUE
      PETURN
      END
С
С
      PRINT FESULTS
C
      SUBFOUTINE FRINKCI, A, VAL, S. F.A.
      DOUBLE PRECISION X(20),Vol.,K
      UPITE (1, 26() I, VAL, (Y(J), J=1, 1)
 SUD - FORMATINK IS. 178. F10 3,88, 100 8 17 711
      PETUPN
      1110
r
      FIROMACCI SEARCH FUNCTION
٢,
C
      DUMBLE FEECISION FUNCTION FILON ( DUMP) )
      DOUGLE FRECISION RATIO, FILO(5))
     & LINOUND, HEOUND, INTER, FINTER, DELTA, TESTUR
     " TESTHE, TLEV, THEV, TEST, FACT, TLE ,F
INTEGER EXECUT. EXPNO, FLAG
```

```
LECUND = 0.0
      TEST = 1.0
      HBOUND = 1.0
      FINTER = 0.0001
      FACT -= 1 618031
С
      DETERMINE THE INTERVALS OF THE FIRONACCI SEARCH
С
С
 10
      CONTINUE
      TLEV = F ( TEST )
      THEV = F ( HEOUND )
      IF (ILBV GT.THRV) GO 10 20
          TLR = TEST
         TEST= HEOUND
         HEOUND= HEOUND * FACT
         60 TO 16
      CONTINUE
 \mathbb{C}[0]
С
С
      DEPMINE POUNDS AND DELTA FOR FIROMARCI SEARCH
C
      IF (TEST NE 1 ) LPOUND = TLB
      INTER= HEOUND- LPOUND
      DELTA = TEST
                     LEOUND
      TESTLP- TEST
      TESTHE HROUND - DELTA
JF (TESILB LT TESTHE) GOTO 28
      TLF = TESTLE
      TESTLP = TESTHE
      TESTHE = TLE
      DELTA = TESTLE - LEOUND
      TESTHE = HROUND -DELTA
 38
      JUMITHOD
      INTER = HBOUND - LEOUND
      RATIO = INTER/FINTER
С
      DETERMINE THE NUMBER OF EXPERIMENTS REDUIPED
C
С
      FIRO(1) = 1
      FIEQ(2) = 2
      DO 39 I #3.50
         FJPO(1) = FTPO(1-1) + FJPO(1-2)
         TE (FIBO(T) LT EALIO) EYRNO - 1 / 1
      CONTINUE
 59
٤,
      STAFT CLOSED ROUND FIFORACCI SFAPON
ı.
      IG AD FORCHTES, EXEND
      THEY I (TESTIE)
      IF (TERV OF THEV) CO 10 30
         LHOUND= TESTLE
         INTERS PROCIND - LEOUID
         UCITA- INTER- DELTA
         TEGILIS= TESTHE
         )ESTHE HEOUND
                          - DE L TA
         FLAG = 1
         GO TO 46
      CONTINUE
30
```

```
HHOUND= TESTHR
           INTER = HBOUND - LBOUND
           DELTA= INTER - DELTA
           IESTHB= TESTLP
           TESTLR= LBOUND + DELTA
           FLAG = 0
 40
       CONTINUE
       IF (FLAG EO 1) FIRON = TESTLE
IF (FLAG EQ 0) FIRON = TESTHE
       RETURN
       EHD
ſ
С
       FUNCTION EVALUATION FOR FIFONACCI SEAPCH
С
       DOUBLE PRECISION FUNCTION F(1.)
       DOUBLE PRECISION K, TEST(20), X(20), 9(20), FURCT
       COMMON X, S, NTERM
       DO 10 J=1, NTERM
          TEST(J)=X(I) - K # S(1)
       CONTINUE
 10
       F= - FUNCT( TEST )
       RETURN
       Erin
С
С
       CALCULATE VALUE OF ERPOR FUNCTION
C
       DOUBLE PRECISION FUNCTION FUNCT (X)
       DOUBLE PRECISION X(20)
       INTEGER STEP, COUNT
       REAL GAM, P, CV, W, H, K1, K2, RADJUS, LENGTH, THOT, TINF
       REAL PO,RHOU,UO
       COMPLEX PPG, RV, PP, UT
       REAL PA(10), MAG
       COMMON/RLOCK/STEP, COUNT, GAM, R, CV, W, H, K1, F2, FADIUS, LENGTH, THOT,
     ATINE, PJ, RHOJ, UO, PPO, PA, RV, RP, UT
      REAL P(100 ), RHO(100 ), U(100 ), A0
       COMPLEX UP(100 ), PP(100 ), UP0
      REAL RZ, JP , PHASE
       RV
            ·= (1,0)* X(1) + (0,1) × X(2)
           SURT(GAM*P0/PHO0)
      G (.
       UP0 - RV#A0#PP0/GAM/P0/1000
      CALL REFOURIGAM, P.CV, COUNT, H.W.KI, K2, PADIUS, LENGTH, F0, FH00 U0.
     AUPO, FPO, F, RHO U, UP, PP, TNOT, TINF)
       0 = 0.1730
       DO 747 N=1,10
            PZ = PEAL (FP(N-19))
            IF = ATMAG(IP(N+13))
            THASE = ATAR (1P/PE)*180/7 1415F26E4
            THE CPZ ED () AND (1) EQ () THE SE - II

IF ((PZ ED ()) AND (1) EQ () THE SE - II

IF ((PZ ET C)) AND (1P EQ ()) THESE = 1^{-1}

IF ((RZ EQ II)) AND (1P ET ()) PHOSE = -1^{-1}

IF ((RZ ET C)) AND (1P GT ()) PHOSE = 1^{-1}
            MAS - PHASE
              01111 = 0PTIN + (LA(N)-MAG)**1
 747 LON LRUL
      FUNCT = OPTIM
      RETURN
      END
```

```
60
```

```
READ RV-MEASUREMENT APPARATUS AND ENVIROMENTAL DATA
  SUBROUTINE INPUT
  INTEGER STEP.COUNT
  REAL GAM, R, CV, W, H, KJ, K2, RADIUS, LENGTH, TNOT, TINF
  REAL PO, RHOD, UU
  COMPLEX PP0, RV, FP, UT
  REAL PA(10)
 COMMON/BLOCK/STEP, COUNT, GAM, R, CV, U, H, K1, K2, RADIUS, LENGTH, TNOT,
ATINE PA, RHOD. UD, PPD, LA, RV, RP, U)
 OPER (UNIT = 3, FILE='INDAT ST', STATUS = 'OPD')
READ(3,*) GAM,R,CV,STEP,COUNT,H,W,K1,K2,RADIUS,LENGTH,P0,RH00,PH0
& PV.PP,UT ...,U0,TNOT,TINF,FA(1),FA(2),PA(3),PA(4),FA(5)
  RETHEN
 END
 SUBPOUTINE REFOUR (GAN, R, EV, COUNT, H, W, K1, K2, RADIUS, LENGTH, P0,
#FHOJ.U0,UP0.PF0,P,RHO,U.UP,PP,TROT,TIRF)
 INTEGER COUNT
 REAL GAM, R. CV, W. H, K1, K2, PADIUS, LENGTH, T1, T2
 PEAL P(100 ), RHO(100 ), U(100 ), PU.RHOO, UD
 COMPLEX UP(106 ), PP(100 ), UP0, PP0
 COMPLEX A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, C1, C2, C3, C4, C5, D1, D2, D3,
4 D.4 , L.5
 COMPLEX FUNC1, FUNC2, FUNC3, FUNC4, FUNC5
 REAL TDIST, IDERIV
 BOURDARY CONDITIONS AT PROPELLANT SURFACE
 F(1)
           = P0
 FH0(1)
          = RHO0
 U(1)
           ± U0
           = UP0
 UF(1)
 FF(1)
           = PP0
 PUNCE-FUTTA FOURTH-URDEF INTEGRATION ALGURITUM
 THE 1 R 1 (0000)
                      1
 TA - ILUST (N.LENGIN, TROT, TIVE, F1, F2, RADIUE LENGTH)
TE - TTERIU (N.LENGIN, TROT TIVE, K1, FE, FADIUE LENGIH)
      FURCE (F(M), RHO(N), U(N), UF(N), PP(N), I1, T2, GAM, F CV U) AH
 r~ 1
 \mu_2 = FUNC2 (P(A)) + HO(N) + HO(N) + UP(A) + PP(A) + T1 + T2 + GAA, R + CV W + HH
 AT = FUNCE (F(N), RHO(N), U(N), UP(N), PP(N), TE, CAM, F, CV, W) AH
 A: = FUNCA (P(N) RED(N), U(N), UP(N), FE(N), T1, T2, GAM, R, LV.W) *H
     FURCE (P(N), FHO(P), U(N), UP(N), FP(N), P(, TC, CAM, R, CV, U) AH
 115
 M1 = FUNC1 (P(N) + A1/2, PHO(N) + A2/2, U(N) + A3/2, UP(N) + A4
$/2, FP(N) + A5/2, T1, T2, GAH, R, CV, W) #H
 B2 = FUNC2 (P(N) + A1/2, RHO(N) + A2/2, U(N) + A3/2, UP(N) + A4
$/2, PF(N) + A5/2, T1, T2, GAN, R. CV, W) *H
```

C C

С

С

С С

ſ

B3 = FUNC3 (P(N) + A1/2,RHO(N) + A2/2,U(N) + A3/2,UP(N) + A4 \$/2,PP(N) + A5/2,T1,T2,GAM,R,CV,W) AH B4 = FUNC4 (P(N) + A1/2, RHO(N) + A2/2, U(N) + A3/2, UP(N) + A4\$/2,FP(N) + A5/2,T1,T2,GÅM,R,CV,W) *H B5 = FUNCS (P(N) + A1/2, RHO(N) + A2/2, U(N) + A3/2, UP(N) + A4\$/E, PP(N) + A5/2, T1, T2, GAM, R, CV, W) *H Ci = FUNCi (P(N) + Pi/2,RHO(N) + P2/2,U(N) + B3/2,UP(N) + B4 \$/2, PP(N) + P5/2, T1, T2, GAM, R, CV, W) *HC2 = FUNC2 (P(N) + B1/2, RHO(N) + B2/2, U(N) + B2/2, UF(N) + H4 #/2,PP(N) + 85/2,T1,T2,GAM.R,CV,U) AH C3 - FUNC3 (P(N) + B1/2, RHO(N) + P2 2, U(N) + F3 (2, UP(N) + R4 \$/2.PP(N) + E5/2,T1,T2,GAM,R,CV,U) XH C4 = FUNC4 (P(N) + B1/2, RHO(N) + B2/2, U(N) + E3/2, UP(N) + E4 \$/2, PP(N) + 15/2, T1, T2, GAH, R, CV, W) *H CS = FUNCS (P(N) + B1/2,RHD(N) + B2/2,U(N) + B3/2,UP(N) + D4 \$/2, [P(N) + K5/2, T1, T2, GÁN, P, CU, W) XH D1 = FUNC1 (P(N) + C1,FHO(N) + C2,U(N) + C3 UP(N) + C4,PP(N)4 + C5,T1,T2,GAM,R,CV.W) xH $D \gtrsim$ FUNCE (F(N) \neq C1, RHD(N) + C2, U(N) + C2, UF(N) + C4 FF(N) * + CS,Ti,T2,GAM.R,CV,W) *H DZ = FUNC3 (P(N) + C1,RHO(N) + C2 U(N) - C2 UP(N) + C4 FP(N) ⊈ + C5,T1,T2,CAN,R,CV,W) #H D4 = FURC4 (P(N) + C3,RHO(N) + C2,U(N) + C3,UP(R) + C4,FP(P)\$ + C5, T1, T2, GAH, P, CV, W) *H DF = FUNCS (P(N) + C1, RHD(N) + C2, U(N) = C3, UF(N) + C4, FP(N)\$ + C5,T1,T2,GA(1,R,CV,W) *H F (N+i) = F $(N) + i /6 \pi(A_1 + 2\pi Pi + C+Ci + Di)$ RHO (N+1) = RHO $(N) + i /6 \pi(A_2 + 2\pi P2 + 2\pi P2 + D2)$ (N+j) = F(N) + 1 /6 X(A3 + 2×B3 + 2×C3 - D3) 11 (14-1) = U (N) + 1 /6 *(A4 + 2*P4 + 2*C4 + D4) (N+1) - UP TIP PP (N+1) = PP (N) + 1 /6 *(A5 + 2125 + 2105 + D5) CONTINUE RETUPN END FUNCTION FUNC 1 THRU 5 ARE GOVERNING EQUATIONS IN FK FORM COMPLEX FUNCTION FUNC1 (A, B, C, F, E, F, G, H, J, J, L) REAL A, B, C, F, G, H, I, J, K COMPLEX D,E FUNC1 -= 0 FETURN FIJD COMPLES FUNCTION FUNCE SALE, D.D.E. F.G. M.T. J.S.S. REAL ALE, F, GH, I, JK COMPLEY DUE FUNCO = - P (FAG FETUER END COMPLEX FUNCTION FUNCE OF F,C,F,F,F,G,G,J,J,F > REAL A, B, C, F, G, H, I, J, K COMPLEY D, F FUNCS = +C/F*C PETURN END COMPLEX FUNCTION FUNCA (A, H, C, D, E, F, G, H, J, J, F) REAL A, B, C, F, G, H, I, J, K COMPLEX D,E

1

С

C C
```
COMPLEX FUNC3,L
       L = FUNC3 (A,B,C,D,E,F,G,H,I,J,k)
       FUNC4 = (1 /(B*C*C - H*A))*(0 ,1 )*K*E + (C/(B*C*C - H*A))*E*
      $(0 ,1 )*K*D + (1 /(B*C*C - H*A))*(H*E - P*D*C)*L
       RETURN
       END
       COMPLEX FUNCTION FUNCE (A, H, C, D, E, F, G, H, J, J, F)
       REAL A, B, C, F, G, H, I, J, K
       COMPLEX D,É
       COMPLEX FUNC3, L, FUNC4, M
      L = FUNC3 (A,B,C,D,E,F,G,H,J,J,K)
M = FUNC4 (A,F,C,D,E,F,G,H,I,J,K)
       FUNCS = -B*(1 ,1 )*K*D P*C+M HADI
      REIURN
       END
С
С
      FUNCTION TDIST CALCULATES TENFERATURE ALONG ARIS
С
      PEAL FUNCTION THIST (N, LENGTH, TNOT, FALLS FALLING)
       TH TEGER N
      REAL LENGTH, THOT, MI, KE, RADIUS, LAMPIA, DIS) HALUS
       LAMPDA = 2*K2/K1/PADTUS/LENGTH
      DIST = H/106*LENGTH
      VALUE = (THOT - TINE)%EXP(-LAMEDA*D)ST(+TIPE
       TDIST VALUE
      PETURN
      END
C
ĉ
      FUNCTION THEFTY CALCULATES TEMP GEADJERT ALONG ANIS
      REAL FUNCTION TDERIV (N,LENGTH, TNOT, NJ, K2, RADIUS)
       INTEGER H
      PEAL LENGTH, TNOT, F1, K2, RADIUS, LAMEDA, DIST, VALUE
       LAMBDA = 2*K2/K1/RADJUS/LENGTH
      DIST = N/106*LENGTH
      VALUE = -LAMEDA*(TNOT - TINE)*EXP(-LANEDA*DIST)
      DERIV = VALUE
      RETURN
      END
```

Appendix 3: Admittance to Rv Conversion

This appendix contains a listing of the program which is used to convert admittance values to velocity-coupled response function values.

```
FIN7X
С
С
      ADMITTANCE TO VELOCITY-COUPLED RESPONSE FUNCTION CONVERSION
С
      PROGRAM ADRV
      REAL A, U, GAM, PO, UT
      COMPLEX AB, PP, RP, RU
      GAN = 1.4
      P0 = 101300
      U = 6.Ū
      A = SQRT(GAM*P0/1 224)
      UT=19
      WRITE (1,*)' '
      URITE (1,*) 'ADMITTANCE-RU CONVERSION'
      WRITE (1,*) '------
      WRITE (1,*) ' '
WRITE (1,*) ' '
WRITE (1,*) 'INPUT PRESSURE-COUPLED RESPONSE FUNCTION VALUE'
READ (1.*) RP
      WRITE (1,*)' '
      URITE (1,*)'INPUT ADMITTANCE VALUE
      READ (1,*) AB
      PP = (0, 1200.)
      RV A/U/UT * (AI#A*FP/GAn/F0 - U*FP/GAn/F0 *(RF-1))
WRITE (1,*) ' '
      WPITE (1,*) 'RV VALUE IS ',RV
      END
```

CI.42> ADRV

ADMITTANCE-RV CONVERSION

INPUT FRESSURE-COUPLED RESPONSE FUNCTION VALUE (0.1,-0.1)

INPUT ADMITTANCE VALUE (0.00,0.02)

RV VALUE IS (- 18716,.13643)

CI.42> ADRV ADMITTANCE-RV CONVERSION ______ INPUT PRESSURE-COUPLED RESPONSE FUNCTION VALUE (0.1,-0.1) INPUT ADMITTANCE VALUE (0.04,-0.02) RV VALUE IS (.15684,.48043)

Appendix 4: Gaussian Random Number Generator

This program was used to generate the random numbers that were used to simulate experimental data. A listing of the random numbers that were used in the testing of the program is included.

```
Program 3
```

```
FTN7X
С
ĉ
        RANDOM NUMBER GENERATOR - SAMPLING FROM GAUSSIAN DIST
С
        PRUGRAM GAUSS
        RENL R
        WRITE (6,*) (GAUSSIAN RANDOM NUMBER GENERATOR: WRITE (6,*)
        DO 100 I=1,5
            WRITE (6,*) 'STANDAPD DEVIATION = ,1
             \begin{array}{l} \text{DO } 200 \text{ N} = 1,10 \\ \text{R} = 1 \text{ kGRAN } (1) \end{array} 
 WRITE (6,300) R
300 FORMAT (' P = ', F6 3)
 200
       CONTINUE
        WP1TE (6,*)
 100 CONTINUE
        END
```

GAUSSIAN RANDOM NUMBER GENERATOR STANDARD DEVIATION = 1 R R = 402 121 R - 1 409 R 929 R = 700 -- q 271 R = 1.026R = 2.933R = 473 R = 558 STANDARD DEVIATION = 2 R = 3 156R = 2 636R = 2 636R = -1 319R = 2 598R = 4476R = 495R = 495R = 973R = 1 230R = 2 022STANDARD DEVIATION 3 $\begin{array}{rcrr} F = -3 & 196 \\ F = -3 & 196 \\ P & -2 & 285 \\ R = & 3 & 671 \\ R = & 138 \\ R = & 4 & 287 \\ R = & 0.071 \end{array}$ R = 007R = 5532R = 3495R = 963P -3174STANDARD DEVIATION = 4 $\begin{array}{rcrr} F = 4 & 102 \\ F = 7 & 252 \\ F = 7 & 252 \\ F = 7 & 328 \\ R = - & 690 \\ R & 971 \\ R = 4 & 639 \end{array}$ R = 1 C01R = 4 078R = 1 057M = -3 559 $P = -3 \ 955$ $P = -3.1^{2}$ P = -4.13P = -1 - -4R = -9 - 959R = -7 210 R = -1.709R = -1.760R = -6.144R = 8.231

Appendix 5: Parametric Studies

The following figures show how the pressure phase angle distribution within the Rv-measurement apparatus varies with the real and imaginary components of the admittance value for a solid propellant for conditions specified in appendix 1. Figures A.1 through A.5 show the phase angle distribution dependence on the real component of the admittance when the imaginary component is held fixed. Figures A.6 through A.10 show a similar dependence when the real component is held fixed. From the figures presented here it can be seen that the phase angle distribution is slightly more sensitive to variations in the real component of the admittance. Consequently, better performance of the curve-fit procedure can be expected for the real component.

The apparent discontinuity in the curves of figures A.2 through A.10 results from the choice of scale. The curves cross the 180 degree line which is equivalent to the -180 line. These curves have the same form as the curve in figure A.1.

Whereas, the figures show the phase angle distributions at the location nearest the propellant sample where variation is greatest, the tabulated results are provided to show how both magnitude and phase angle components of the pressure vary throughout the length of the Rv-measurement apparatus. The magnitude of the pressure is provided in decibel units as well as Pascals units for convenience.

A typical plot of the magnitude component of the

perturbation pressure distribution is provided in figure A.11. This plot reveals the severe non-linearity at very low pressures which prevents effective use of magnitude information in numerical curve-fit procedures.

74

Figure A.3

Figure A.4

Figure A.5

Figure A.6

78

Figure A.8

(SEE253D) ETCHT ESTHE BEGSSEE

PRESSORE MADAGUES (FASDACS)

ADMITTANCE = (4 E-2, -2 E-2)

PRESSURE DISTRIBUTION

			-	
ITERATION	DISTANCE	MAG(db)	PHASE	PRESSURE
Û	0 000	152 467	90 600	1200 6(0
1	205	152 433	89 929	1195 298
2	010	152 355	89 857	1194 669
3	015	152 232	69 784	1167 987
4	020	152 663	89 708	1145 515
5	025	151 847	89 628	1117 306
6	030	151 580	89 544	1083 500
7	035	151 259	89 454	1044 269
8	640	150 881	89 357	59 808
9	045	150 441	89 250	750 340
10	050	149 930	89 130	876 115
11	055	149 342	38 774	S37 405
12	060	148 664	89 838	774 504
13	065	147 883	98 652	707 730
14	070	145 972	88 436	637 418
15	075	145 908	88 143	563 925
16	080	144 645	87 773	487 625
17	085	143 115	87 263	408 910
18	190	141 268	86 505	328 194
17	075	130 077	03 244	245 28
20	100	135 107	82 700	162 6/1
22	105	120 701	-21 187	77 573
27	115	130 466	-77 345	05 707
24	120	135 922	-83 329	178 616
25	125	139 240	-85 506	261 739
26	130	141 608	-86 637	343 746
27	135	143 433	-87 335	424 113
28	140	144 504	-87 813	502 299
29	145	146 125	-89 163	578 193
30	150	147 156	-88 433	651 106
31	155	148 039	-88 650	720 769
32	160	148 801	-88 630	786 829
33	165	149 461	-88 982	848 953
34	170	150 634	-89 114	906 819
35	175	150 530	-89 231	291 095
36	180	150 758	-87 226	1608 695
37	185	151 325	-84 432	1052 173
38	190	151 675	·87 531	1(40 383
29	155	151 892	-29 604	1123 132
4 (†	200	152 099	-87 682	1150 255
41	205	152 259	-89 258	11/1 518
4 E	210	152 3/3	-29 831	118/ 11-
43	215	152 443	-07 903	1170 001
44	220	152 468	-87 9/4	1200 215
45	225	152 450		1177 20
45	200	152 307	-70 310	1167 502
4	225	152 202	-50 5-4	1154 556
48	. 4 U 3 2 5	125 1.5	- 40 747	1128 519
4.7	245	121 -33		169.5
	2:0	151 605	0 511	1050 550
-1 t -	225	151 260	· < 0 - 51	101 119
53	265	158 613	- 0 - 09	569 354
50	570	150 130	-50 824	\$16 915
55	275	149 572	0 953	357 848
	280	148 528	-51 101	798 477
	200			

5/	. 205	145.155	-71.275	/33 222
58	. 290	147 328	- 71.484	664 CB1
59	295	146.326	-91 743	591 734
60	. 300	145.143	-92 076	516 438
61	305	143.724	-92 525	438 577
62	310	141 574	-93 172	358 559
63	315	139.727	-94 197	276 815
64	320	136 632	-56 654	193 849
65	325	131 746	-100 852	110 443
66	330	120.8ć5	-131 487	31 557
67	335	127 111	108 334	64 776
68	. 340	134 254	98 115	147 424
69	345	128 147	95 124	270 779
70	350	140 803	S3 716	313 272
71	355	142 800	52 E92	394 307
72	365	144 289	92 247	473 415
73	365	145 693	91 957	550 190
74	370	146 790	71 660	624 224
75	. 375	\$47.725	91 426	695 144
76	. 380	148 529	91 234	763 590
77	385	149 225	Si 072	5 26 223
78	290	149 829	F0 7 73	823 721
79	395	150 253	70 B11	540 786
50	400	150 E06	90 702	SP1 142
81	405	131 195	c0 603	1036 534
E2	436	151 525	°C 513	1076 737
53	415	131 802	50 427	1:11 540
84	420	152 027	50 247	1540 789
25	425	122 205	90 270	1124 318
£.6	4 2 0	152 336	90.196	1182 016
87	425	152.422	90 124	1192 793
85	440	152 464	90 (53	1109 591
80	445	152 462	89 983	1199 320
90	450	152.417	80 011	1192 162
91 	425	152 328	89.839	1180 987
92	460	152 114	89 765	1162 858
93 • •	465	152 013	87 588	1128 723
74	.4/0	121 /84	87 EV/ 88 E77	1117 205
75 01	4/5	151 504	87 522 88 ATA	10/4 091
10	450	121.107	67 42V D0 774	3133 718 967 770
7/	~ 6 5	100 770	07 331	577 676
7 C 6 O	. 470	120 317	27 CC1 28 NSE	227 079 284 490
110		147 /67	PB 057	201 E00
2.00	293.1	• •		

ADMITTANCE (2.8-2,-2 8-2)

OPECCUPE	DICTRICUTION
PRESSURE	DISIKIPUIIUN

ITERATION	DISTANCE	MAG(db)	PHASE	PRESSURE
C	0 000	152 467	010 02	1206 666
	0.05	152 433	90 010	1195 397
2	616	152 355	90 621	1194 5(6
7	015	100 000	0 021	1104 818
6	020	152 662	50 032	1107 777
-	020	152 082	70 043	1145 500
2	025	151 040	90 054	1117 282
0 7	030	151 5/7	YU (6/	1083 467
á	033	111 237	-0 000	1044 222
	0.45	150 681	50 654	599 746
4.0	043	150 440	70 110	950.201
10	050	147 727	50 127	676 014
11	025	147 341	70 147	83/ 2/9
12	0.50	148 882	90 170	//4 348
13	005	14/ 5/8	90 197 90 977	/0/.538
14	170	146 968	90 230	63/ 163
15	075	345 003	90 272	563 636
16	1.2.0	144 638	50 326	487 265
17	085	143 106	50 401	408 453
18	650	141 190	96 512	327 596
19	095	138 670	90 697	245 100
20	100	135 (40	51 074	161 380
21	105	128 599	72 274	76 875
22	116	109 640	-110 678	8 667
27	115	130 257	-91 882	93 Ū41
24	.120	135 864	-90 980	177 433
25	125	139 214	-90 659	260 952
26	130	141.593	-90 493	343 167
27	135	143 424	-90 390	423 665
28	140	144 878	-90 330	502 041
29	145	146 120	-70 269	577 902
30	150	147 153	-90 229	620 868
31	155	148 037	-90 198	720 573
32	160	148 799	-90 171	796 668
33	165	149 459	-90 149	248 822
24	\$70	150.033	-90 130	906 723
25	175	150 529	-90 113	960 Ú81
36	190	156 950	-50 657	10(8 629
2-	185	191 224	-20 063	1052 123
28	ici	121 634	-°C C70	1050 245
39	193	151 893	-90 05E	1123 105
<u>ه (</u>	200	152 699	-50 (40	1150 278
-4.5	205	152 259	-90 035	1171 é07
42	216	152 273	- 50 (25	1187 107
43	215	152 443	-90 014	1196 658
44	220	152 468	-90 064	1200 215
45	225	152 450	-87 794	1197 757
46	236	152 385	-89 983	1187 277
4-	220	152 223	-95 072	1174 882
45	540	152 132	-85 501	1154 578
40	345	151 923	-8° 550	1126 460
Ч. Ч	250	151 585	-8- 438	16-0 740
- , - ,	211	151 385	- 95 - 25	1059 507
	2.0	151 029	-87 511	3(16 62
27	283	150 (12	-89 895	969 301
54		150 129	- 65 880	515 823
5 C C	275	149 570	-87 261	859 731
= = =	560	148 527	-87 877	798 332
20	200			

5/	242	148 184	- UY U13	132 733
58	290	147 325	-87 783	663 862
59	295	146 322	-69 745	571 466
60	300	145 138	-87 696	516 106
61	305	143 716	-89 630	438 160
62	216	141 961	-87 535	CSS 020
63	215	139 704	-89 385	276 038
64	320	136 584	-89 105	192 777
65	325	131 592	-88 373	108 510
66	320	118 428	-83 928	23 E35
67	335	125 644	87 143	61 384
°8	240	134 169	88 805	145 °80
69	345	138 113	E° 248	229 277
70	250	146 754	5° 450	212 929
-1	335	142 780	89 576	242 812
72	36(144 3E1	80 625	473 031
73	265	145 688	27 714	549 877
74	3-6	:45 786	89 757	623 968
75	375	147 722	89 7°1	694 933
76	360	148 527	6° 819	762 41-
77	282	147 224	9° 543	826 081
-8	300	149 828	8- 863	852 e(9
70	395	150 352	60 881	640 664
50	400	150 805	E2 662	001 [60
£1	405	121 194	80 612	1036 478
53	416	151 525	Ee e23	1("0 54
83	415	151 801	87 038	1111 516
54	4_1	152 (2/	50 C 49	1140 / 68
25	425	152 204	29 - 61	1164 205
25	420	152 325	20 071	1182 019
87	435	152 432	50 083	1193 / 0
86	440	152 464	60 003	1190 500
80	442	352 462		1190 2 0
56	451	152 41/	90 112	11-160
-1		125 250	00 024	1160 782
~ <u>-</u>	461	122 394	50 024	1162 64/
<u> </u>	405	152 013	56 157	1120 -00
55	475	151 514	50 070	1074 054
7 3 6 L	475	121 204	S0 (83	1073 469
	495	153 774	60 068	007 7h7
e =	405	156 748	56 554	534 550
73	495	120 782	50 177	381 587
	516	1-7 00	50 152	1-1 -19
111	- (0	1		

ADMITTANCE = (0 = 10, -2 = -2)

PRESSURE DISTRIBUTION

			-	
TERATION	DISTANCE	MAG(db)	PHASE	PRESSURE
Û	0 0 0 0	152 467	\$0 0G6	1206 060
1	005	152 433	90 092	1195 297
2	010	152 355	70 185	1184 612
3	015	152 232	91 280	1167 297
4	620	152 (63	90 378	1145 525
5	025	151 847	70 481	1117 321
5	050	151 580	50 589	1083 523
7	035	151 260	90 706	1044 200
9	640	150 882	50 832	222 220
9	045	150 441	90 970	550 325
1 Ú	050	149 931	51 124	856 185
11	(155	149 343	91 300	877 491
12	060	148 665	91 502	774 611
13	065	147 882	91 742	707 861
14	070	146 974	72 034	637 579
15	075	145 911	92.397	564 124
16	080	144 647	S2 877	487 872
17	085	143 122	93 536	409 222
18	690	141 217	74 514	388 603
19	055	128 719	96 139	246 495
35	106	135 156	CQ 403	163 549
21	105	127 096	107 331	61 404
22	110	119 977	-163 308	28,230
23	115	130 603	-105 189	96 830
24	120	135 961	-93 597	179 423
25	125	137 258	-95 801	262 277
26	130	141 618	-94 343	344 142
27	135	143 439	-93 443	424 421
28	140	144 908	-93 826	502 644
29	145	146 128	-92.374	578 392
30	150	147 159	-92 025	651 269
31	155	148 041	-91 745	720 903
32	160	148 802	-91 513	786 939
33	165	145 462	-71.316	849 043
54	1/0	150 634	-91 145	906 903
25	175	150 531	-90 994	960 323
35	190	150 050	-90 853	1018 /40
37	125	151 225		1052 200
28	350	151 825	-70 520	1010 408
29	175	121 672	-70 512	4400 767
4(200	1:4 027	-00 717	1120 -07
*1	2.4.2	122 237	- 20 210	1197 114
42	210	122 3/3	-50 136	1156 662
43	213	152.445	-50 674	1210 215
 A =	220	122 450	-89 947	1197 758
41	576	122 389	-89 850	1187 203
3	57C	152 283	- 29 - 54	1174 852
45	240	151 132	- 89 625	1154 598
49	245	151 533	-39 SSE	1128 322
, ,	246	151 636	- 89 452	3155 56
31	255	151 286	-59 33:	1059 579
52	2 3 6	151 020	-87 217	3(37 (Se
53	545	150 214	-89 023	665 AAA
5.4	276	150 130	-86 935	S16 979
55	275	149 572	-68 767	859 928
56	280	148 525	-88 577	798 576
~~				

57	. 285	148 188	-68 353	733 233
58	290	147 329	-88 (82	664.230
59	. 295	146 328	-87.748	591.917
60	366	145 147	-87 318	516 665
61	305	143 733	-86 738	438 863
62	210	141 983	-85 903	358 926
63	315	139 742	-84 581	277 312
6.4	220	:26 665	-82 143	194 580
65	325	121 848	-76 083	111 749
66	330	121 986	-41 181	35 562
e ?	335	127 405	66 20B	67 001
5.5	340	134 212	622 9 7	149 4(6
e 9	745	125 170	83 389	231 395
76	350	:40 814	25 2C1	313 713
71	355	142 807	86 3E4	394 643
73	3é (144 393	85 567	473 685
- 3	365	145 697	S7 472	ES0 405
74	370	146 792	87 EE4	634 400
75	375	147 736	88 157	695 388
76	390	148 EZO	88 405	762 768
77	385	149 226	88 614	826 319
78	390	149 E30	82 794	E85 799
79	295	120 323	E2 952	670 E7c
80	400	120 B(6	E9 (93	ee1 101
E 1	4 U E	151 175	89 221	1036 572
55	450	191 936	85 238	1076 764
63	415	151 E03	29 448	1111 Se6
£ 4	420	152 (27	89 553	1140 812
53	425	152 205	89 651	1164 J2c
8ć	430	52 336	85 747	1183 (BC
27	435	153 422	8° 840	1173 794
63	440	152 464	E9 933	1760 260
56	445	152 463	PU 023	1199 379
5 Q	456	152 417	°0 115	1193 162
۲ 1	455	:52 328	S0 2 0 3	1:80 969
2،	ちょし	152 194	50 364	1162 863
e 3	465	152 013	50 403	1138 924
ç. 4	470	151 784	00 20B	11(5 202
¢5	475	151 504	20 618	1074 115
د 6	460	151 170	50 736	1033 552
57	335	150 777	F0 865	587 514
è9	400	150 217	51 (67	\$37 133
c c	455	140 750	ei 166	261 763
:66	Ξ00	ふべち ふをた	S1 348	821 582

ADMITTANCE (-2.8-2,-2 8-2)

PRESSURE DISTRIBUTION

ITERATION	DISTANCE	MAG(db)	PHASE	PRESSURE
6	6 666	152 467	90.000	1200 000
1	005	152 433	20 123	1200 000
2	010	152 355	SC 348	1184 628
3	015	152 232	20 528	1169 020
4	020	152 664	50 717	1145 580
S	025	151 847	20 907	1117 422
6	030	151 581	P1 112	1083 670
7	035	151 261	°1 331	1044 503
9	040	150 884	51 569	1666 120
\$	045	150 444	71 830	\$50 744
5 0	650	149 935	52 121	876 626
11	055	149 348	92 451	838 043
12	660	148 672	72 833	775 292
13	065	147 892	73 285	708 692
14	070	146 988	S3 833	638 606
15	075	145 930	74 520	565 388
16	080	144 677	°5 417	489 443
17	085	143 164	°6 650	411 210
18	070	141 285	98 473	331 198
19	095	128 845	101 4/0	250 076
20	100	125 443	107 351	169 (45
21	105	130 170	123 501	92 117
22	110	125 146	-1/0 9/0	51 660
23	115	131 372	-118 /14	106 029
24 25	120	136 202	-105 921	184 483
22	125	137 370	-100 651	744 446
20	130	141 001	-96 1:5	240 00U 274 375
28	140	140 477	-95 322	504 206
29	145	146 147	-94 472	579 661
70	150	147 172	-93 B16	652 309
31	155	148 051	-93 289	721 758
32	160	148 810	-92 853	787 641
33	155	147 468	-93 482	849 615
34	170	156 029	-92 160	907 365
35	175	150 534	-91 875	°60 5°3
3.6	180	156 961	-51 019	1005 030
37	185	151 327	-91 385	1052 420
3.8	170	151 636	-91 169	1(90 572
- 0	195	151 893	-10 567	1123 265
40	200	125 100	-50 774	1156 343
41	205	152 255	-90 590	1171 670
42	210	152 3/3	-90 412	118/ 138
43	215	152 443		1176 287
4 AE	23L 27E	152 466		1487 760
45	225	122 421	-89 718	1185 714
 	230	150 057	-25 540	1174 920
25	 	150 170	_04 757	1154 : 51
 19	245	151 934	-69 107	128 505
• (;	25(151 687	-85 560	1058 925
ΞÌ	255	151 787	-98 753	1059 759
52	206	151 072	-86 523	1(17 300
52	265	150 616	-88 271	°6° 761
54	270	150 134	-87 992	917 385
E S	275	149 577	-87 678	860 436
56	280	148 936	-87 317	799 206
		·		

57	282	148 17/	-86,874	/34 888
58	290	147 342	~86.385	665 182
57	. 295	146 345	-65 756	573 086
60	200	145 172	-84 949	518 111
61	305	143 766	-93 862	440.573
62	310	142 040	-83 363	361 364
63	315	139 841	-79 853	380.460
64	320	136 868	-75 406	199 180
65	325	132 448	-64 942	119 738
56	. 330	125.878	-24 876	56 198
57	335	128 517	50 244	79 747
63	246	134 663	20.823	154 522
69	345	138 315	77 663	275 288
7.0	380	140 851	50 050	716 511
71	.355	142 854	85 612	256 283
72	360	144 424	84 251	475 379
73	365	145 718	25 237	551 775
74	270	146 E08	ES.956	625 519
75	. 375	147 738	86.526	656 308
7E	380	148 539	B6 553	763 464
77	385	149.233	87 385	835° 833
76	390	149 835	87 725	505 438
79	295	150 357	EB 032	541 BFB
5 D	4 t t.	150 209	89 356	551 ELS
Ei	405	191 197	28 <u>5</u> 30	1(36,918
83	410	151 537	88 752	1176 548
83	415	191 P03	88 939	5°= 1:11
64	430	123 (38	80.155	1146 853
23	425	152 205	89 343	1164 382
86	430	151 336	6° 255	1182 050
ε7	435	152 423	E9 598	:193 806
98	440	252 464	8° 671	1100 503
56	445	152 462	20 044	1199 379
5 C	450	152 417	90 217	1193 168
91	455	153 328	-1 373	1360 440
63	460	152 194	SU 574	1162 906
73	465	152 014	90 761	3329 006
÷4	470	151 785	50 58	1109 413
52	475	151 505	71 166	1074.275
56	480	151 172	51 389	1032 /70
۲7	453	130 779	-1 632	- 28 303
65	450	150 323	51 SUU	637 564
5 -	495	149 795	43 340	282 231
100 C	500	144 186	52 542	812 iei

ADMITTANCE	(-4 E-2,-2
	PRESSIEC

NCE	(-4 E-2,-2 E-2)
	PRESSURE DISTRIBUTION

			-	
ITERATION	DISTANCE	mAG(db)	PHASE	PRESSURE
ſı	0 000	152 467	90 160	1200 000
1	0.05	152 473	00 7CA	1100 100
2	111	100 700	00 540	1175 204
<u> </u>		152 335	20 212	1184 653
د	015	152 233	90 776	1168 086
4	(36	152 664	7i (40	1145 692
5	025	151 849	P1 333	1117 584
J	630	151 583	S1 634	1683 517
7	335	151 264	C1 956	1044 370
Q.	6.4.6	121 000	00 715	4666 555
6	040	150 440	-2 2 C 5	1000 255
	045	150 449	2 684	951 306
10	050	149 542	⁹ 3 116	897 339
11	055	149 358	93 601	838 932
12	060	148 685	°4 161	776 391
i 3	065	147 909	94 822	710 047
14	670	147 616	95 625	640 261
15	075	145 961	°6 629	567 423
16	080	144 722	97 935	451 505
17	0.25	143 574	00 774	414 300
19	623	144 767	167 753	775 744
10	070	141 373	102 352	323 340
17	075	137 039	108 809	255 53
20	100	135 870	114 069	177 557
21	105	131 485	134 216	107 176
22	110	128 435	-173 830	75 436
23	115	132 423	-128 943	119 392
24	120	136 566	-112 749	152 372
25	125	139 546	-105 736	271 094
2,	470	107 390	-464 054	750 494
	130	141 /01	-101 676	350 600
27	135	143 543	-77 4/3	427 512
28	140	144 978	-97 797	506 /1/
29	145	146 177	-96 559	581 703
30	150	147 194	-95 600	653 °84
31	155	148 068	-94 829	723 135
32	160	148 822	-94 189	788 772
33	165	190 477	-73 645	250 540
74	1 - 1.	150 046	-93 173	508 113
75	175	150 670	02 755	CA1 100
	1/2	150 5.5	- 67 776	1000 457
2 E	1210	150 965		1007 4-7
27	167	151 .30		1052 /88
C 9	1 ~ 0	151 638	-51 718	1050 835
24	195	121 661	-91-924	1122 450
41	2(0	152 101	-91 139	1150 464
41	205	152 260	-70 868	1371 741
0	516	152 373	- 70 605	1167 173
47	215	150 443	-90 340	1196 581
~~	220	157 4-8	-90 (55	1766 217
-, -(112 400	-02 0.14	1107 7.7
45	222	152 451	-67 541	1100 700
F 8	1.1	151 157	-31 -53	
4	2 E	188 C84		13/4 5/
1	2 ^1	_1 C b C 1	- Jo (LEE	11 9 75
1 "	245	1-1 °CE	26 TTT	1125 T47
11	1 2 1	101 68P	- 95 - 56	10-1 1.2
÷ 1		1 1 29 1	35 15.	1060 050
- *	 	151 175	- 37 . 50	1(17 6 2
:	250	121 (27	.67 .59	~ 70
3.5	. 65	120 821	-07 427	C 40 670
54	270	150 140	-8/ 150	710 UUC 014 0E1
55	275	149 586	-86 268	261 256
56	280	148 947	-85 059	800 222
		-		

57	285	148 212	-65,439	715.258
58	290	147 362	-84 655	666 714
59	. 275	1-16 373	-83 775	594 96B
60	366	145 210	-82 557	520.437
61	305	143 823	-81 016	447 593
6.2	210	142 129	-78 743	245 107
63	315	129 994	-75 259	525 AAR
66	320	177 177	- 65 656	504 750
65	225	133 249	-55 500	171 616
66	77(108 750	-17 564	-6 50-
47	775	173 605	30 208	54 GA4
	740	175 174	17 071	417 646
10	7.45	170 570		102 -10
71	750	120 207	72 3	241 441
	355	143 530	2 2 7 2	
<u></u>	315	142 727	77 733	410 212
12	200	344 472	23 246	4.8 312
		145 / 25	63 (13	233 1,2
	3 6	146 833	24 127	62/ 222
47	3,3	14/ /20	24 401 DE EDE	297 589
× 5	36U 300	140 550	85 585	.64 682
	285	149 243	26 181	827 925
18		349 843	66 658	PE7 112
ל <i>י</i>	345	150 363	2 (C 4	941 902
ει	400	150 814	E7 4E5	5°2 (23
εi	405	121 200	87 534	1037 314
65	4 5 6	151 530	98 jeć	1077 245
63	415	151 804	C8 470	3313 531
64	420	152 (29	EB 758	1:41 (35
25	435	123 206	66 023	1164 470
6ć	430	152 376	89 297	1:63 [57
27	435	152 422	8° 556	1193 825
85	4 4 Û	152 4£4	87 811	1199 550
٤9	445	152 462	¢0 Û64	1166 280
₽{	~ S D	152 417	9(Z19	1193 177
۲i	455	:52 328	F0 578	1181 021
<u>د</u> ع	4 c (192 194	~() 844	1162 573
53	465	132 014	51 119	1139 123
C 4	470	151 786	°; 4(9	11(9 EP3
9 E	475	151 507	91 713	1074 533
55	486	151 174	53 642	1(34 133
•7	425	150 783	c2 300	988 SeB
6	491	150 338	63 263	SC8 1(1
e 0	465	149 E02	S3 232	363 -82
300	0.02	140 JC6	FT T34	833 503

PRESSURE DISTRIBUTION -------

TIERATION	DISTANCE	HAG(db)	PHASE	I KESSURE
(i	0 060	152 467	50 000	1206 000
1	005	152 470	50 010	1200 387
2	016	152 429	90 (21	1194 759
3	015	152 344	50 031	1183 146
4	67.6	152 214	50 (47	1165 664
Ś	0.25	152 078	96 053	1147 200
- -	070	151 514	90 (LE	1117 110
7	075	151 510	50 077	1070 474
ŝ	640	151 346	50 054	1078.908
2	045	150 823	50 105	1030 351
10	650	150 372	56 151	942 964
11	055	149 850	70 121	387 914
12	666	149 248	CO 150	858 375
13	0.65	148 554	90 (82	764 794
14	070	147 752	90 210	697 377
15	075	146 621	S0 244	626 467
1.5	6.5(0	145 738	00 237	552 417
17	025	144 428	90 744	475 601
18	(50	142 546	50 493	202 422
19	0.95	40 955	SU 243	315 218
20	100	178 210	50 745	-72 AS7
21	105	174 370	91 177	148 537
22	446	176 926	02 745	67 904
27	115	117 485	-98 215	21 384
24	120	131 397	-51 640	106 097
25	125	176 478		190 435
26	130	139 633	-90 517	273 831
27	125	141 909	-70 464	355 858
28	140	143 675	-90 369	476 104
29	145	145 105	-90 302	514 166
36	150	146 295	-90 253	569 652
31	155	147 303	-90 215	562 185
37	160	148 106	-90 184	731 209
	165	148 912	-70 157	776 950
- 4	170	110 559	-50 137	858 567
75	175	120 119		15 763
,	1 6 6	150 604	-50 1(i	S-8 471
	185	151 023	- 0 085	1016 247
7,5	150	151 381	-90 072	1058 971
20	100	151 683	-70 059	:006 300
41	100	.51 922	-50 (47	1128 315
-a j	205	192 131	-90 036	1154 536
42	210	153 284	-90 025	1175 074
43	315	182 092	-90 014	1189 673
4 4	12.0	152 424	- 0 (14	1198 212
4 5	225	122 474	- 60 004	1200 947
45	276	183 4/9	-56 (93	1197 565
-1 -	: 25	1'2 T81	-66 613	110E 187
, c	210	372 (55	-6- 6-5	1170 BAT
1 =	242	172 ieł .	-3c 5E1	ານ51 ຮູໃນ
50	: = (151 (3	25 546	1124 054
51	í =ē	1⊊1 _48	-50 03-	2125 431
50	(e C	12: 240	- 82 614	1152 545
53	265	130 975	-87 500	1010 580
50	276	126 549	-85 55	963 548
55	275	150 053	-87 868	S08 875
56	260	149 483	-87 845	851 089

3/	205	148	025	-87	627	/87	010
58	250	148	(66	-89	801	722	994
59	205	147	186	- 99	769	653	348
60	300	146	128	-87	730	580	429
61	205	144	542	- 97	679	504	605
62	210	140	476	- 87	610	426	247
63	315	141	620	-80	200	345	758
64	210	129	300	- 6 6	345	263	537
65	325	135	656	- 96	032	180	001
00	220	336	4 c D	- 93	120	95	577
۶7	335	111	739	-73	500	11	036
r 5	240	128	319	٤7	656	74	438
٤c	345	334	912	53	513	159	010
71	256	138	285	é -	500	242	609
71	355	:41	131	5.	487	325	3°6
72	306	143	(ei	69	z () ()	405	356
70	365	:44	603	٤ ٦	676	485	380
74	37(145	874	60	726	5 5 1	774
75	275	146	°45	5,	773	635	453
7é	280	147	629	87	805	705	°49
77	285	148	640	6.	833	772	-08
78	250	149	327	وه	955	835	994
7°	293	149	°13	60	513	854	6°3
ຣເ	4((13(431	ت ع	613	549	202
51	r 0 5	150	874	5 د	< 0 B	6.08	965
82	45.6	151	CE4	5:	۰23	1(43	618
83	413	151	576	ه ع	°26	1063	042
٤4	420	121	844	δc	84 >	1117	640
83	425	123	053	89	960	3345	441
86	426	123	203	55	971	1168	1(3
ε7	405	152	357	5<	< 83 P	1184	912
85	440	152	436	63	065	1195	785
29	445	152	472	S ()	693	1200	666
00	450	:52	462	ن >	(13	1107	502
5 ک	4 3 3	152	411	e 0	623	1192	388
63	400	152	219	< C	634	1179	269
63	465	152	174	⊂ 0	045	1160	242
٢4	470	151	58£	50	[56	1135	402
•5	475	151	749	~Q	068	1184	873
50	480	151	461	~ C	081	1(68	808
<u>ج</u>	425	151	118	~ D	0¢⊅	1 027	388
~ B	404	150	715	, c	:(•	S0	821
c =	495	1 2 0	247	د ن	125	020	340
261	202	340	217	÷ 0	; 44	873	202

	D M	۰.	T	т		210	-	
*1	DLI				1-1	NL	Γ.	

(2 E-2,2 E-2) PRESSURE DISTRIBUTION

ITERATION	DISTANCE	MAG(db)	PHASE	PRESSURE
0	0 000	152 467	90 010	1500 000
1	005	152 457	90 010	1198 690
2	[10	152 404	90 021	1191 375
3	015	152 307	90 031	1178 0S0
4	0.2.0	152 164	50 642	11/0 0/0
Ġ	0.25	151 975	S0 054	1133 -02
	(30	151 736	50 065	1103 707
7	0.75	151 447	90 178	1057 331
Å	040	151 112	591 92	1075 497
7	045	150 697	50 107	978 796
10	050	150 227	°0 123	°27 205
11	055	147 683	90 141	870 969
12	060	149 057	F0 163	816 369
13	065	148 335	50 187	745 708
14	070	147 499	°0 217	e77 312
15	022	146 520	SO 253	505 522
16	680	145 360	70 299	230 800
17	085	144 007	S0 361	453 218
រខ	050	142 328	90 44°	373 466
19	0°5	140 186	90 586	271 344
20	100	127 276	9C 830	208 754
21	105	132 797	91 402	124 646
22	110	122 917	94 292	37 968
23	115	123 988	-93 875	45 210
24	120	133 154	-51 339	129 874
25	125	137 489	-90 Sú4	213 940
26	120	140 337	-00 569	296 43
27	135	142 442	-90 437	2/8 460
28	140	144 1(2	-90 351	450 083
29	145	142 45/		535 411
30	350	146 270	-70 245	654 647
31	1 3 3	147 334	-20 190	749 677
32	101	140 202		214 344
23	105	14- 078	-96 134	PT4 579
24	,	154 250	-90 115	70 . 75
	45.0	120 200	-50 100	5 1 5 7.0
	100	(5) (75	90 055	1028 205
76	100	151 866	- 50 675	1160 400
00 70	, c E	151 757	-90 099	1105 244
. 1	500	151 599		1125 622
01	-05	152 174	- 90 036	1360 260
4	516	152 314	- 40 (25	1179 684
43	215	152 409	- 0 014	1192 001
44	.20	152 459	- 50 (04	1198 946
41	225	152 460	56 229	1100 483
4. C	20.0	152 424	-85 (SC	1164 915
4-	125	110 748	-87 773	1153 748
λξ.	C 6	152 JCU	-81 102); · ~
·1 :	~ 4 -	1 2 PE1	-CD 651	1143 1-
5.7	C 5 C	1 1 921	-62 .32	115 350
' 1	.35	141 Sei	-au str	1981 1-5
51	SEL	191 127	-95 513	1041 616
53	265	120 825	-27 899	- YE 326
54	270	150 410	-65 883	24, 139
55	275	149 875	-87 966	825 206

56	280	149	301	-97	846	833	502
57	265	148	617	- 67	823	770	322
58	250	\$ 17	826	-89	755	703	283
59	295	146	907	- 87	762	632	720
60	300	145	831	- 80	710	552	\$87
61	305	144	550	- 00		197	AC A
	710	6.47	111	0.0	504	-102	
62	715	1-1-5	055	-89	588	413	204
63	515	141	023	- 57	4/3	222	234
64	5.0	3.8	486	-60	281	200	049
65	325	121	122	-86	864	150	167
60	230	127	682	-67	553	73	63C
v7	225	113	626	77	110	13	713
e 8	200	120	732	98	213	63	200
ء ج	343	135	115	25	054	163	632
70	250	\$29	383	85	266	26:	683
71	255	141	720	54	525	343	2(3
-:	3.(143	524	87	621	422	221
73	365	144	۶g ک	67	- 89	500	S13
74	270	146	189	8.5	740	192	565
75	375	147	212	<u> </u>	-70		386
	286	48	687	9 C	5 16		
	195	140	847		674		2-2
~ć	750	1.0	657	65	0.0	657	552
- 0	205	1.50	675		c:0	C 2 2	
	2.52	150	025		2./	- 10	127
50	511	150	558	5-	E 4	623	/
81	405	150	655	5	° 1 U	1111	45-
80	416	121	243	÷ 3	۰ <u>۲</u> ۰	1(54	643
50	415	151	152	89	~3E	1053	522
E 4	151	151	с (I Р	E 9	540	1124	eve
53	425	152	110	50	° e 0	1151	728
Ee	400	150	267	E 7	۶71	1173	226
S7	405	152	27B	59	e85	1187	571
8 B	440	152	445	٤٩	e 5 3	1197	650
50	445	152	468	= 0	003	1310	227
ςρ	450	152	448	5 ((13	1157	4[7
e (455	152	284	- 0	023	1198	579
	An l	5.2	075	50	674	1172	702
57	445		4.74	¢θ	045	1153	130
			640		7 = -	44.76	457
- 4	275	121	-49	- 0	12/	1160	200
	-/		200		101		7
. 6	486	1 - 1	385	- ()	067	3051	
77	485	151	005	50	0.4.5	1014	127
5	461	150	283	د ر <i>و</i> ح	331		-10
c c	462	15 1	(e.	:27	512	400
3 I C	2(1	220	577	÷ (14:	535	μΞ_

ADMITTANCE (2 E-2,0 E+0)

PRESSURE DISTRIBUTION

ITERATION	DISTANCE	MAG(db)	PHASE	PRESSURE
Ũ	0 000	152 407	90 000	1260 000
1	005	152 445	CO 040	4404 004
2	010	152 779	50 024	1107 506
	015	157 749	90 073	1107 170
4	0.20	152 114	70 032	11/3 035
Ē	0.05	154 544	70 043	1152 201
5	170	151 711	70 054	1125 595
<u> </u>	075	151 858	CU 166	1693 356
ź	035	121 .53	50 079	1055 025
8	040	150 992	00 093	1012 614
۲	045	150 567	°0 108	°64 528
10	650	150 079	S0 152	S11 609
11	055	149 514	°0 144	854 124
12	660	148 862	90 166	205 328
13	065	148 109	°0 1°2	726 623
14	070	147 238	°0 223	657 248
15	075	146 220	00 342 OP	584 575
16	080	145 017	SC 02	239 802
17	085	143 569	0 32 0°	430 336
18	0°0	141 778	°C 478	350 531
19	0°5	139 461	90 637	268 472
: 0	100	136 230	°0 936	185 072
21	105	130 949	51 735	100 758
22	110	115 054	110 514	16 164
27	115	127 475	-02 534	60 116
23	115	12/ 0/2	-04 477	157 153
- 4	120	124 814	-71 132	133 032
25	125	138 374		23/ 445
26	336	140 588	-10 528	320 055
27	135	142 947	-70 412	401 062
28	140	144 509	-00 335	480 062
20	145	145 795	-90 279	556 656
30	150	146 876	-90 237	630 463
31	155	147 709	-00 303	701 110
32	160	148 593	-50 175	768 245
33	165	149 281	-°0 152	831 531
34	170	149 877	-90 132	850 621
35	175	150 375	-90 114	945 208
31	180	150 842	-90 (9	005 550
2~	185	151 225	- "V (154	1040 164
73	10(151 551	-50 (71	1070 887
37	1 75	151 822	-90 008	1114 200
10	212	155 043	- 50 (47	1142 930
C 1	205	152 017	-20 030	1165 934
<u>^</u>	246	157 343	-50 (25	1183 096
	215	152 425	- 00 014	1154 320
43	~~~	152 420		1155 501
44		152 754	-59 954	1108 931
42	220	152 410	-70 00-	1150 054
4.5		150 71-	-0C 97T	11-9 715
		172 110		4455 557
		152 3 7	00	1100 00
10	245	1,,,	00 570	1110 000
- ti	5 U		-87 118	1000 047
- 1		151 4 4		10/0 271
5.	_ = 6	151 124	87 -1-	1127 253
53	265	150 735	- 44 849	- 93 (1 4
5.4	0	150 171	-86 981	<21 631
55	275	149 734	- 89 863	876 11°
56	286	149 116	-87 942	815 917
~-				

	444			
57	205	148 403	-83 RJR	121.058
28	250	147 579	-89 785	683 573
57	295	146 619	-89 754	612 093
60	300	145 491	-87 768	537 547
61	305	144 144	-89 648	460 307
52	310	142 496	-89 563	280 762
63	315	543 406	-69 433	299 311
64	326	137 587	-89 2(3	216.363
65	325	133 317	-68 603	132 338
66	320	124.453	-86 334	47 700
67	335	122 355	BS 316	37 463
69	340	132 619	88 571	122.139
6 6	345	137 171	E9 163	206 354
÷(35(146 112	EF 412	289 355
71	255	142 271	89 55 <i>0</i>	271 009
72	360	143 963	27 639	420 E06
72	265	145 241	E9 702	528 345
74	376	146 493	89 749	£03 337
75	275	147 471	69 725	675 107
75	360	148 310	87 815	743 554
77	382	:47 035	69 840	908 357
78	250	149 654	E9 861	869 069
70	342	150 310	85 875	525 427
50	4((150 682	5.5 5.9	977 148
21	. 465	191 0EP	E9 °11	1023 474
83	410	151 476	66 c54	16c5 5c°
63	415	151 727	29 937	1102 024
64	420	151 567	EC 549	1)32 ES9
85	425	152 157	E9 960	1156 017
పం	430	152 Z(1	2° 971	1177 273
57	435	132 400	89 982	11°0 830
88	44 (.	153 455	86 665	1198 321
50	445	152 465	90.003	1760 208
۰(450	152.433	50 (13	1195 283
¢ 1	455	152 356	°0.023	1164 770
65	460	152 234	90 (34	1163 331
د ع	465	152 067	50 045	1146 Û1E
52	47(.	151 852	50 057	1117 973
e g	475	191 585	90 0£9	1084 326
۰.	480	151 267	SO C83	1045 248
۳7	462	150 891	S0 057	1000 °31
e E	4 ¢ (i	150 452	°()12	5 E1 600
c c	4 9 3	140 044	°0 130	297 501
1[[566	149 257	~[i]4°	838 506
AUNITTANCE = (2.8-2,-2 8-2)

	PRESSURE	DISTRIBUTION	i	
ITERATION	DISTANCE	nag(db)	PHASE	PRESSURE
0	0 0 0 0	152 467	50 000	1200 000
1	005	152 433	0 010	1195 297
2	(; 1 ()	152 355	90 021	1184 606
3	015	152 232	90 032	1167 979
4	020	152 063	SO 043	1145 500
5	022	151 846	7 0 054	1117 282
Ó	030	151 579	90 067	1683 467
7	035	191 259	20 (80	1044 222
о 0	0.45	150 881	50 654	209 746
4.6	045	150 440	70 319	950 281
10	050	1.7 727	50 127	875 014
10	668	147 541	50 147	C3/ 2/7
13	065	147 878	96 197	707 538
14	076	146 969	00 111	677 187
15	075	145.903	50 272	563 636
16	680	144 638	90 326	487 265
17	085	143 106	0 401	408,453
1 S	050	141 190	F(512	237 596
19	095	138 570	90 597	245 100
20	500	135 640	71 074	161 380
33	105	123 599	92 274	76 875
22	110	105 640	-110 678	9 667
23	115	130 257	-91 882	93 041
24	120	135 264	-90 -86	1// 433
25	170	141 593	-90 493	343 167
27	.135	143 424	-90 390	423 665
29	140	144 898	-90.320	502 041
20	145	146 120	-90 369	577 902
30	156	147 153	-90 229	630 868
31	155	148 037	-90 198	720 573
32	166	148 799	-90 171	786 668
33	165	147 457	-90.149	948 922
34	570	150 033	-90 130	906 /23
25	1/5	120 327		196 007
22	100	150 -55	-90 083	1008 028
1.8	150	151 634	-90 070	1690 245
35	195	151 892	-70 058	1123 105
4.0	200	152 (499	-90 645	1110 239
41	205	152 259	-50 035	1171 607
43	210	152 373	-90 t25	1187 167
43	215	152 443	90 014	1196 658
4.0	220	153 468	-96 664	1200 215
45	225	152 450	-80 001	1197 757
-: 6.	230	152 289	-99 582	1169 299
47	235	152 287	-80 0.5	1174 882
35	240	112 J22 171 077	נאי לסי בסי 190	1124 248
4 5.7	1990 1990	121 -00	-114 (JA	1005 744
21	1 = 5	101 205	-29 025	1059 105
51 5.5	546	151 675	-82 21	1(10 423
5-	250	120 :12	29 276	Sep 301
5.4	270	150 127	- 27 880	516 8LE
52	275	147 570	-27 861	859 221
54	280	148 927	-69 839	228 333

57	282	148 184	-61 RJP	136 733
58	300	147 325	-85 783	663 862
59	2°5	146 322	-09 745	591 466
60	200	145 138	-89 695	516 166
61	305	143 716	-69 030	438 150
62	310	141 501	-89 535	350 (20
63	215	139 704	-89 325	276 088
64	320	126 284	-89 105	192 777
65	335	131 593	-88 I°3	108 510
65	33(118 438	-82 :28	23 836
٤7	335	126 044	87 143	61 384
68	340	134 169	85 562	145 580
6 ⁰	345	138 113	85 348	229 277
- e	250	170 TE4	87 4I6	312 623
71	355	142 789	E9 576	3°3 815
72	Je (544 CF1	87 650	473 (31
73	305	145 289	29 714	500 277
74	376	140 785	8° 757	633 469
75	375	147 122	88 -61	254 573
76	380	148 527	56 51è	762 417
77	385	145 334	E9 843	826 081
78	300	149 828	E- 863	£65 p(o
<u>,</u>	245	:50 352	99 BE1	C40 5C4
50	400	150 805	60 60 <u>,</u>	561 (66
٤1	405	121 :50	56 633	1075 478
53	41(151 505	66 652	16-6 6-4
20	415	151 ELI	20 022	1111 Fie
84	420	152 (17	8 = 1 4 4	146 7:8
85	425	153 204	£5 5£1	1164 205
86	420	152 335	E= 571	1183 0(S
E -	425	132 422	69 982	1193 790
88	44(152 464	Ec 063	1100 590
PS	445	153 462	¢0 003	1100 270
e í	450	152 417	50 [13]	1.52 100
c 1	455	152 32B	90 D24	1:50 -62
	441	152 154	PD (74	11-2 847
<u>د</u> ت	465	52 013	CD 046	1138 005
<u>د م</u>	470	151 784	S0 057	1165 255
eg	475	151 504	-0 070	1074 054
r.5	4E(151 169	C0 083	: (32 458
07	485	150 776	00 003	SOT 232
< <u>9</u>	4 = 0	170 J19	SU 229	530 500
οč	491	147 788	201 122	SE1 283
6.0	- 10	149 1TB	SC 153	5L) 759
			-	-

ADMITTANCE = (2 E-2, -4 E-2)

PRESSURE DISTRIBUTION				
ITERATION	DISTANCE	mAG(db)	PHASE	FRESSUPE
ITERATION 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 17 18 19 20 21 22 23 24 25 26 27 28 27 28 29	PRESSURE DISTANCE 0 000 005 010 025 020 025 020 025 020 025 020 025 020 025 020 025 020 025 020 025 020 025 020 025 025	DISTRIBUTI MAG (db) 152 467 152 420 152 330 152 330 152 154 152 (12 151 781 151 500 151 781 150 768 150 768 157 164 155 369 123 661 125 369 121 649 132 245 136 556 139 963 142 157 145 270 146 434	$\begin{array}{c} \text{PHASE} \\ \begin{array}{c} \text{PHASE} \\ \text{PO} & (00 \\ \text{CO} & 010 \\ \text{CO} & 010 \\ \text{CO} & 0212 \\ \text{CO} & 0322 \\ \text{FO} & 055 \\ \text{FO} & 055 \\ \text{FO} & 055 \\ \text{FO} & 111 \\ \text{FO} & 130 \\ \text{FO} & 150 \\ \text{FO} & 150 \\ \text{FO} & 2382 \\ \text{FO} & 22841 \\ \text{FO} & 22841 \\ \text{FO} & 22841 \\ \text{FO} & 22841 \\ \text{FO} & 4241 \\ \text{FO} & 5551 \\ \text{FO} & 4241 \\ \text{FO} & 5551 \\ \text{FO} & 4621 \\ \text{FO} & 4641 \\ \text{FO} & 3077 \\ \text{FO} & 259 \\ \text{FO} $	PRESSUPE 1266 (00 1173 401 1161 222 162 724 1135 787 108 647 1073 583 966 878 925 793 600 419 628 453 617 118 542 548 304 661 221 728 137 651 53 005 32 234 116 972 201 214 204 458 366 279 445 874 54 459 57 445 57 445
901234567680123456788(112345)	11111111111112222222 22222222222222222	$\begin{array}{c} 146 \\ 434 \\ 147 \\ 248 \\ 434 \\ 147 \\ 248 \\ 248 \\ 147 \\ 258 \\ 159 \\ 150 \\ 151 \\ 151 \\ 151 \\ 151 \\ 151 \\ 151 \\ 152 \\ 248 \\ 152 \\$	$\begin{array}{c} -90 & 259 \\ -90 & 259 \\ -90 & 192 \\ -90 & 146 \\ -90 & 1427 \\ -90 & 1427 \\ -90 & 1427 \\ -90 & 1427 \\ -90 & 1427 \\ -90 & 100 \\ -90 & 000 \\ -90 & $	$\begin{array}{c} 579 & 147 \\ 740 & 036 \\ 805 & 091 \\ 856 & 091 \\ 856 & 091 \\ 856 & 091 \\ 856 & 091 \\ 856 & 096 \\ 912 & 096 \\ 100 & 004 \\ 1132 & 044 \\ 1132 & 044 \\ 1132 & 046 \\ 1157 & 1199 \\ 1151 & 1199 \\ 1150 & 895 \\ 1151 & 1086 \\ 1168 & 495 \\ 1168 $

20	r AA	148 /33	- 87 835	80 /48
57	282	147 960	-89 809	714 240
58	250	147 663	-89 776	c44 153
59	295	146 013	-89 736	570 339
6(366	144 765	-89 663	454 666
61	305	143 265	-87 611	416 014
62	310	141 351	-9° 504	335 279
83	315	138 -41	-3° 320	132 867
. .4	320	135 AE1	-89 9EC	369 393
65	325	129 -39	-07 941	E4 687
c 6	300	100 641	6 673	3 (75
67	335	127 505	87 945	ES 333
19	346	135 483	58 673	168 803
e ^c	345	178 -63	C9 318	293 499
76	250	141 4(7	£9 493	035 S01
~ 3	335	142 278	50 600	410 001
72	C e (i	244 750	2° :72	-15 255
73	365	146 023	89 724	571 406
74	370	147 070	87 765	E44 659
75	375	147 565	8° 7°7	714 760
7 e	35(142 JES	ES 824	781 239
77	365	149 408	2° 64¢	54C 80S
78	250	149 589	6° 855	5(2-142
75	Scē	190 493	29 SE3	PEE F61
ΕG	466)E(°Ca	5- 5-2	:0(4 989
E 1	405	121 298	29 913	1(48 533
E 2	4:0	.51 e13	50 629	:(5;6
83	415	151 875	6° -38	5525 JJ7
24	430	152 (87	6: eE(1148 e77
25	425	152 251	25 521	1170 EPB
E e	430	:E2 370	ES 571	1:80 c44
Ê7	425	132 442	60 c 53	11°5 74°
99	440	152 A72	Ec 663	12(0 855
80	445	152 459	P0 063	11°E °EU
9 O	450	152 4(2	5(0:2	1191 035
71	455	152 300	50 624	1177 153
5 S	450	152 153	S () () S	1157 273
~ <u>7</u>	463	:51 558	90 ()45	1131 -94
°4	470	151 715	50 (SB	1300 E44
¢٤	475	181 480	50 (71	1(83 781
్ట	-4 EI U	191 (65	¢0 (E4	1(11 687
۶7	485	150 e59	دو ودد	5°4 475
۶,	4 ^c [i	13C UZ1	5 (L. 1.3 e	-11 VEP
	4 - 5	149 630	10 114	F=5 604
• 6 (212	125 555	ST (FE	€(A ±\$0

Computer Hardware and Software

The data reduction program was coded in FORTRAN 77 using a HP-3000 system. The perturbation pressure graphs were done with the Lotus 123 software on an IBM clone with a Gemini 10x printer.

* Page 62 does not exist