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ABSTRACT 
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Degree: Master of Science in Aerospace Engineering 

Year: 2011 

The purpose of this project was to investigate how accurately an artificial neural 

network could predict the ultimate compressive loads of impact damaged 24-ply 

graphite-epoxy coupons from ultrasonic C-scan images. The 24-ply graphite-epoxy 

coupons were manufactured with bidirectional preimpregnated tape and cut into 21 

coupons, 4 inches by 6 inches each. The coupons were impacted at known impact 

energies of 10, 12, 14, 16, 18, and 20 Joules in order to create barely visible impact 

damage (BVID). The coupons were then scanned with an ultrasonic C-scan system to 

create an image of the damaged area. Each coupon was then compressed to failure to 

determine its ultimate compressive load. 

Numeric values for each pixel were determined from the C-scan image. Since the 

image was represented as a red-green-blue (RGB) map, each pixel had three numbers 

associated with it, one for each of the three colors. To make the image readable to the 

artificial neural network the columns of the resulting matrix were then summed, and these 

numbers were used as inputs for a backpropagation neural network (BPNN) to generate 

accurate predictions of the ultimate compressive loads. The BPNN was trained and 

optimized on 15 of the 21 sample data sets and tested on the remaining 6 sample data 

sets. The optimized BPNN was able to produce ultimate compression after impact (CAI) 

load predictions for the BVID composite coupons with a worst case error of -8.98%. 

This was within the ±10% goal for this research and comfortably within the B-basis 

allowables commonly applied to composite structures. 

The ultrasonic C-scan images were then preprocessed using Fast Fourier 

Transforms (FFTs) in an effort to remove any image noise present. The results of the 

BPNN that was trained and tested on the green color data only were then compared to the 
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results yielded by the BPNN trained and tested on the images that were processed 

through the FFT. It was found that the FFT processed images had a worst case BPNN 

prediction error of 8.65%, which was only slightly lower than the -8.98% error that was 

generated by the unprocessed green layer only C-scan image data. This improvement 

suggested that the added work involved in FFT preprocessing of the worst case error was 

not as productive as had been hoped, leading to a few suggestions for future noise 

removal research. This also reinforced the notion that BPNNs, being an iterative 

optimization scheme, can provide accurate predictions in the presence of at least small 

amounts of noise. Thus, image filtering methods coupled with the iterative optimization 

technique that comprises a BPNN have demonstrated the ability to generate accurate CAI 

load predictions in composite coupons that have experienced BVID. 
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CHAPTER 1 

INTRODUCTION 

OVERVIEW 

Over the past decade, composite materials have become increasingly prevalent in 

aerospace structures because they provide excellent stiffness properties and high strength-

to-weight ratios. This major advantage of composites over metals has led to a huge 

increase in their use, especially as major structural elements. Both the military and 

commercial aviation sectors have adopted composites heavily as shown in Table 1. 

In certain circumstances the weight savings of composites dictates their use, such 

as during the development of the B-2 stealth bomber. The addition of the radar absorbing 

paint on the fuselage caused the aircraft to be overweight; in order to reduce this weight 

penalty, composites were used over the majority of the aircraft [1]. Weight savings is 

also a crucial factor in the design of commercial aircraft because it controls the number of 

passengers and fuel economy; as such, weight savings lowers operating costs and 

increases profits. Airbus utilized a metal matrix composite in the design of the A3 80 

called GLARE, which is comprised of fiberglass fibers embedded within an aluminum 

matrix, offering a weight savings of between 15% and 30% over standard aerospace 

aluminums [1]. 

Although they have high strength-to-weight ratios and excellent stiffness 

properties, polymer matrix composites are very susceptible to barely visible impact 

damage (BVID). BVID can be caused by many different things that aircraft encounter on 

a daily basis such as being struck with runway debris, tools being dropped by aircraft 

mechanics, or bird strikes. Although damage may be barely visible to the naked eye on 

the surface, significant damage may exist underneath the surface in the form of matrix 

cracking, delamination between plies, or occasional fiber breaks, weakening the 

composite substantially and causing the part to fail at a load lower than it was designed to 

withstand. Because of the inherent danger of BVID existing in structures such as aircraft 

wings or other load bearing parts, it becomes necessary to develop a method of 

quantitatively evaluating the severity of BVID without reliance on visual inspection. 
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Table 1: Composites by Weight of Various Aircraft [1] 

Aircraft Name 

Boeing 787 

Boeing V-22 Osprey 

Eurofighter 

Airbus A320 

Dassault Rafale 

Lockheed F-22 Raptor 

Airbus A3 80 

Boeing 777 

FA-18 Hornet 

Composites by Weight 

50% 

50% 

40% 

28% 

26% 

24% 

22% 

20% 

19% 

PREVIOUS RESEARCH 

Artificial neural networks have been used to predict ultimate compressive loads of 

impact damaged composite laminates from ultrasonic C-scan image data. Hess [2] 

originated the project in 2003 when he obtained a worst case error of 16.62% in graphite-

epoxy coupons. He used three sets of 16-ply graphite-epoxy coupons and damaged them 

with known impact energies ranging from 0-20 ft-lbf. Each coupon was then 

ultrasonically C-scanned, and a 16 color image was generated of the impact damage. In 

the image file, each pixel was assigned a numerical value between 0 and 15, with 0 

corresponding to black and 15 to white. The coupons were then compressed to failure in 

a compression after impact (CAI) test fixture to determine their ultimate compressive 

load. The numerical value of each pixel was input into the artificial neural network in 

order to predict the ultimate CAI load of the coupons. In 2005, Nguyen [3] improved 

upon the Hess's results slightly with a worst case error of 14.61% using fiberglass-epoxy 

coupons. Subsequently, Gunasekera [4] in 2009 obtained a worst case error of-11.53%o 

using the acoustic emission data taken during compression of the same graphite-epoxy 

coupons that were used in the current project. 
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CURRENT RESEARCH 

The current approach was to explore the ability for an artificial neural network to 

predict the ultimate compressive load of graphite-epoxy coupons that have BVID using 

improved ultrasonic C-scan images as inputs. Twenty-one test specimen coupons were 

impacted at known energies, scanned using an ultrasonic C-scan machine, and then 

compressed to failure with their ultimate CAI loads being recorded for use in the artificial 

neural network. After the C-scan images were recorded for each damaged coupon, the 

images were cropped into 100 by 100 pixel squares centered on the damaged area and 

input into a MATLAB code for image preprocessing. The MATLAB code quantified the 

damaged area of the image and created a 1 row by 300 column matrix of the image which 

contained three colors: red, green, and blue. By inspection, the red and blue color layers 

contained only noise; thus, only the green color layer was used as the input to the neural 

network. Fifteen coupons were employed for training the neural network with the 

remaining six being used to test the network. The target goal of the artificial neural 

network was twofold: (1) the ability to predict the ultimate compressive load of each 

composite coupon within ±10% of the actual failure load, and hopefully, (2) also 

predicting within the statistical B-basis allowables of the graphite-epoxy composite 

coupons as well. 
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CHAPTER 2 

BACKGROUND 

ULTRASONIC C-SCAN 

Ultrasound is a volumetric method of nondestructive testing that uses high 

frequency sound waves to analyze a part, point by point, without destroying it. 

Ultrasonic waves are high frequency sound waves that are outside the range of human 

hearing, normally well above 20 kHz [5]. A typical ultrasonic system consists of a 

pulser/receiver transducer that contains a piezoelectric ceramic crystal which converts an 

electric signal into a sound wave; conversely, the piezoelectric element will produce an 

electrical signal in response to an incident sound wave. To scan a part, the ultrasonic 

transducer emits a sound wave, then switches to listen mode to receive the echoes from 

the part. Whenever the wave encounters a change in density, it is both reflected and 

refracted; these changes in density can be caused by a defect under the surface. As the 

ultrasonic sound wave enters the part, it reflects and refracts. The reflected wave returns 

to the transducer first as the "initial pulse" (Figure 1). Then the wave propagates through 

the material until it reaches the crack or discontinuity and is again reflected and refracted, 

whereupon the reflected wave returns to the transducer as the "crack echo". The wave 

continues to propagate through the part and eventually reaches the back surface and is 

again reflected and refracted. Here the reflected wave returns to the transducer as the 

"back surface echo". Thus, the three echoes in Figure 1 are formed. 

10 

3 

6 

> 4 

n 
< -2 

-4 

-6 

•8 

Tme ( sec ) x 1Qs 

Figure 1: Ultrasonic Waveform [6] 
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The specific application of ultrasonic nondestructive testing used in this research 

was the ultrasonic C-scan, which is shown in Figure 2. A C-scan is a planar image 

generated by compiling all of the ultrasonic echoes for each point along the surface of the 

part. This allows the user to see the size and location of flaws both underneath and atop 

the surface. This image is generated by moving the ultrasonic transducer in a sweeping 

pattern over the part while recording the amplitude and time-of-flight of the received 

pulses as it proceeds. These signals are displayed on a screen at each position of the 

transducer using either a color or grayscale. The C-scan system used in this research was 

a water coupled immersion scanning machine, which means that both the transducer and 

the part being inspected were underwater, allowing the water to transmit the sound waves 

across the distance from the transducer to the part and back again. 

Selected Layer 
within Object 

Connector 

Electrical 
Leads—:: 

Inner-
Sleeve 

Wear Plate 
Wear Shoe — 

External 
Housing 

Sound 
Absorbing 
Backing 

Active Element 

Electrodes 

Figure 2: C-Scan Pattern (Left), Ultrasonic Transducer Cutaway (Right) 

NEURAL NETWORKS 

Artificial neural networks were derived from the processing of the human brain, 

utilizing many different neurons to make complex calculations very quickly. A neural 

network consists of a group of interconnected neurons, or processing elements, which 

change weighted connections in response to an output error, and through multiple 

iterations converge to the desired output or answer. Many different kinds of artificial 

neural networks exist for special tasks, but the network that was used for this research 

was a backpropagation neural network (BPNN). 

A typical BPNN has an input layer, one or more hidden layers, and an output 
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layer. Networks with more than one hidden layer are generally used to solve more 

complex problems such as those that require both classification and prediction. Each 

layer is fully connected to the neighboring layers with information passing from the input 

layer through the hidden layers and on to the output layer. During the learning phase, the 

output error is propagated back through the network, and the connection weights are 

updated accordingly — this is where the BPNN gets its name. 

The backpropagation neural network is a feed-forward, multilayered, supervised 

learning system. Feed-forward refers to the direction of movement of information in the 

network. In the BPNN of Figure 3, information enters the network through the input 

layer, is then passed forward (from left to right) through one or more hidden layers, and 

finally exits the network through the output layer. Information is not passed backwards 

through the network, and it is therefore designated as a feed-forward network. 

Multilayered alludes to the number of layers of a neural network. The number of hidden 

layers can be varied as needed. A supervised network requires the operator to give it a 

desired result or output, which the network trains toward during the training phase. 

BIAS 
(1 Neuron) 

H , . , - />. ( h i a s i 

Fixed inpui 

Inputs « 

2 o — * ( w ^ ) - N 

Synaptic 
WClphlN 

(including bias) 

Output 

OUTPUT LAYER 
(1 Neuron) 

HIDDEN LAYER 
(10 Neurons) 

INPUT LAYER 
(100 Neurons) 

Figure 3: Backpropagation Neural Network Architecture (Left), Neuron Architecture (Right) 

6 



The BPNN initializes by assigning random weights between 0 and 1 to all the 

neuron connections. The inputs are then multiplied by these weights and passed through 

a transfer or squashing function, which normalizes the data before it is passed on to the 

next layer. After each training iteration, the resulting answer from the single output layer 

neuron is compared to the desired answer, and the error is determined. This error is used 

to calculate weight adjustments which are then propagated back through all the network 

connections, after which the next training iteration begins. This process continues 

iteratively until the answer in the output layer approaches the desired answer, at which 

point training is considered to be complete. Once the network has been trained, the 

network weights are held fixed and are no longer changed. The testing phase begins 

when the network is presented another input file that it has not seen before; the data from 

this file are then run through the network. The resulting answer given by the output layer 

is compared to the desired answer, and the prediction error is calculated. This final 

prediction error is what is being minimized for this research. The desired result is to 

optimize the BPNN such that it will predict the ultimate CAI loads of barely visible 

impact damaged graphite-epoxy coupons to within a ±10% worst case error from the 

ultrasonic C-scan images of the coupons. 

The learning algorithm used for the BPNN was the Normalized-Cumulative-Delta 

rule. This rule adds up all the squared errors over the training set or epoch, then takes the 

square root of the sum and divides this value by the epoch size to normalize it. As 

mentioned previously, this normalized RMS error is then used to update the weighted 

connections between the output and the hidden layer(s), and the hidden layer(s) and the 

input. Thus, all network weights are updated at the end of each training epoch. When 

this RMS output error reaches a user defined value, typically 5% or less, or the network 

completes a specified number of training cycles, the training is considered complete, the 

network weights are fixed, and testing or prediction phase can begin on data inputs that 

have not yet been considered. 
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Figure 4: Sigmoid Functions at Different "a" Values 

The transfer function that was used for the BPNN in this research was the sigmoid 

function as seen in Figure 4. The sigmoid transfer function is described by the following 

equation: 

cp(v) = 

where q>(v) = value of sigmoid function with input v 
a = slope parameter. 

Varying the slope parameter "a" yields sigmoid functions with different slopes. At the 

origin, the slope of the sigmoid transfer function is "a/4". At the extremities of the 

function, as v approaches infinity, the slope of the sigmoid function becomes infinitely 

small and training is very slow. For higher positive values of input v the transfer function 

scales the output value to 1, whereas for higher negative values of input v the transfer 

function scales the output value to 0. This scaling of values effectively squashes the 

input data within each neuron such that its output ranges from 0 to 1. This makes the 

larger numbers less significant and smaller numbers more significant such that the data 

fed into subsequent neurons can be more easily processed by the neural network. The 

bias neuron has a constant output of 1 which when multiplied by the connection weight 

acts as a translation term to shift the sigmoid activation function (p(v) such that it operates 

near its highest slope and therefore trains as quickly as possible. 

T r i T i 
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FAST FOURIER TRANSFORM 

A Fast Fourier Transform (FFT) transforms a real image into the frequency 

domain, which enables the image to be filtered. This is accomplished by taking the FFT 

of each pixel in the image and transforming its value into a complex number in the 

frequency domain. The real image consists of the summation of several different 

sinusoids with different frequencies and amplitudes. When an image is transformed using 

a FFT, it represents each sinusoid as a pair of conjugate symmetric points, each with a 

frequency and a phase. Figure 5 shows the correlation between a sinusoidal image and its 

frequency transform. Measured with relation to the center of the FFT image, the distance 

to each point denotes the frequency of the sinusoidal wave. The angle that the position 

vector from the center of the FFT image to the point, measured from the horizontal, 

denotes the phase angle of the sinusoidal wave. In order to transform a real two 

dimensional image into the frequency domain, the equation below must be calculated for 

each pixel in the real image: 

M-1N-1 

F(x,y) = Y ^ / ( m , n ) e - y 2 7 r ( ^ + ^ ) 
771 = 0 71 = 0 

where F(x,y) = value of each pixel at position (x,y) in the frequency domain 
f(m,n) = value of each pixel at location (m,n) in the space domain 
M = width of the image 
N = height of the image. 

After the image has been filtered and the noise eliminated, the FFT must be 

inverted to return the transformed image to a real image in the spatial domain. By 

employing the equation below at each point and its corresponding conjugate in the 

frequency image, it is reverted back to a real image in the spatial domain: 

M-1N-1 

f(m,n) = ̂ X Z F^y>i2n^+y^ 
m=0 n=0 
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Figure 5: Sinusoidal Pattern with corresponding Frequency Transform [7] 

It is important to notice in Figure 5 that as the distance of the conjugate 

symmetric points grows from the center point of the frequency image (bottom row), the 

frequency of the corresponding real image increases (top row). The importance of this is 

discussed later in the image filtering section, but an important generalization can be 

reached from this: the higher frequencies of the real image are focused on the edges of its 

corresponding frequency transform. Also, as a general rule, the lower frequencies 

determine the overall shape of the image, while the higher frequencies sharpen the edges 

and control the fine details. The images on the far right column of Figure 5 are the result 

of the summation of the three signals in the preceding three columns. The image (top 

row) of column four is analogous to the images analyzed in this research; the C-scan 

image can be considered the summation of many different sinusoids of differing phases. 

The theory of noise cancellation of the C-scan images is predicated on the correct 

selection of the high frequency noise and its cancellation. 

10 



CHAPTER 3 

EXPERIMENTAL PROCEDURE 

COUPON MANUFACTURE 

The test coupons were manufactured using six 24-ply panels made from Cycom 

985 GF3070PW graphite 3070 plain weave preimpregnated tape (with a fiber volume 

fraction of 0.63) by Gunasekera [4] and Pacific, et al. [14]. All of the coupons had 

misaligned fibers, but it was decided to move forward with testing because this defect 

existed in every coupon which at least provided consistency for the testing. The number 

of plies per coupon was determined by the ASTM standard D7137/D 7137M-07 which 

covers CAI testing and mandates that test coupons be 0.20 inches thick [8-9]. 

Considering the thickness of each individual ply and the thickness of the plain weave 

tape, it was determined that a 24-ply layup would yield a coupon thickness of the 

required 0.20 inches. The composite panels were laid up in a wooden jig, and the 

resulting laminate panels were cured at 355°F for two hours while being clamped with 

four C-clamps between two aluminum caul plates to prevent warping. After curing, the 

oven was shut down, and the laminate panels were left to cool down to room temperature 

in the oven. Once cooled, each panel was cut into four (4 in x 6 in) coupons using a 

diamond tip wet-saw, yielding a total of 21 useable coupons. Each coupon was labeled 

with a number and a letter designating from which plate the coupon originated, with 

different coupons coming from the same plate given the same number but different letters 

[4]. 

Figure 6: Misaligned Fibers in Test Coupon 
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EXPERIMENTAL PROCEDURE 

The 21 coupons were impacted at known energies of 10, 12, 14, 16, 18, 20 Joules 

using an Instron Dynatup 9200 impacter with a blunt 0.5 inch hemispherical tup (Figure 

7) to create barely visible impact damage (BVID). The impacter simulated a low velocity 

impact similar to a tool dropping on the coupon. Pneumatic brakes on the impacter were 

utilized to avoid multiple impacts from the tup, since the impacter bounced after the 

initial impact. The coupon was marked with a silver metallic marker to more accurately 

determine the center of the coupon as the impact site for the tup. Pneumatic clamps held 

the sample in place to avoid movement during the test and ensure a precise impact 

location in the center of the coupon. 

After impacting the samples, the BVID coupons were C-scanned using a Physical 

Acoustics Corporation (PAC) ULTRAPAC II water immersion C-Scanner (Figure 7). 

The ULTRAPAC II system employed a 0.25 inch diameter piezoelectric crystal 

ultrasonic transducer with a characteristic frequency of 5 MHz for scanning. Figure 8 

shows the hardware setup menu of the C-Scan system, detailing all the settings used for 

this research. The ULTRAPAC II system outputs several images including amplitude 

and time-of-flight; however, only the amplitude image was used for this research. The 

horizontal lines on the A-scan output represent the gates of the scan. These gates control 

what information is recorded, which allows the computer to ignore the initial pulse as the 

wave enters the water couplant. The gate time selection also allows the user to select 

data specifically from the damaged layers of the composite, essentially looking inside the 

composite only at the depth of the damaged area. 
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Figure 7: UltraPAC II C-Scan imaging system (Top left), Boeing Compression After 
Impact (CAI) test fixture (Bottom left), Instron Dynatup 9200 Impacter (Right) 

The samples were then compressed to failure to determine their ultimate CAI 

loads using a Tinius-Olsen model 290 Lo Cap testing machine (Figure 7). A Boeing 

compression after impact test fixture was used to keep the coupons from buckling in 

accordance with ASTM standards D 7137/D 7137M-07 [8]. The coupons were secured 

in the Boeing CAI fixture and compressed to failure, with failure always occurring at the 

BVID impact location, indicating that the levels of BVID selected had adequately 

compromised the strength of the composite. 
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Figure 8: C-Scan Hardware Setup Screen 

Once the coupons were compressed to failure and testing had concluded, the C-

scan images were cropped to a 100 by 100 pixel square around the damaged area. This 

damaged square image was a 256 color RGB image consisting of 3 layers ~ a red layer, a 

green layer, and a blue layer - with the pixel of each layer assigned a number from 0 to 

255. Finally, the image was put into a MATLAB processing program developed by Hess 

[2] and converted into a 1 row by 300 column matrix which was used as the artificial 

neural network input for ultimate CAI load prediction. 

IMAGE MANIPULATION 

The C-scan image files output from the UltraPAC II are in ".PCX" format and 

needed to be converted to ".BMP" format so they could be analyzed as 256 color RGB 

images. Once all the images were converted to 256 color BMP files, they were loaded 

into the MATLAB program. Figure 9 shows the MATLAB output for an impacted 
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sample displaying all 3 color layers. The graph below the image displays the color value 

of each pixel (AMP) and the x position of the pixel. Positions 0 to 100 correspond to the 

red color layer, positions 100 to 200 correspond to the green color layer, and positions 

200 to 300 correspond to the blue color layer. 
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Figure 9: MATLAB Program Output Including all 3 color layers 

By observation, the red and the blue layers include mostly noise, whereas the 

green layer clearly displays a dip corresponding to the impact location. Not all images 

are as free of noise as shown in Figure 9. Several of the images that were C-scanned 

contained significant noise, such as sample 3B in Figure 10. When these noisy images 

were input to the BPNN, the network had difficulty determining the location of the 

damaged section, thereby increasing the error significantly, as seen in Table 2. In an 

effort to minimize noise, the red and blue layers were removed from each image (Figure 

11), and only the green layer was used as input to the backpropagation neural network. 
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Table 2: Worst Case Error using Red, Green, and Blue color layers 

Coupon 
ID 

27B 
25D 
26C 

3A 

24B 
26A 

Impact 
Energy (J) 

16 
20 
18 

14 

12 
10 

Ultimate Compressive 
Load (lbf) 

18,825 
17,249 
20,729 

19,156 

19,782 
22,190 

Predicted Ultimate 
Compressive Load (lbf) 

20,338.64 
16,638.96 
20,079.15 

21,583.95 

17,856.1 
23,274.83 

Percent 
Error 
8.04% 
-3.54% 
-3.14% 

12.67% 

-9.74% 
4.89% 

IMAGE FILTERING 

While the majority of the green layer images were mostly free of noise, there 

existed a few images which were particularly noisy, such as Figure 10. It is difficult to 

identify the impact location and damage of the coupon in Figure 10; therefore, a filter had 

to be implemented to remove the higher frequency noise. Figure 12 shows a side-by-side 

view of test specimen 3B, a particularly noisy image, before it was filtered and after it 

was filtered to remove the high frequency noise. 

(a) (b) 

Figure 12: Green Layer of Noisy C-Scan image Filtered (Left), Unfiltered (Right) 

17 



This image filtering process took place in several steps. Initially the MATLAB 

output indicated that the green layer of the RGB image contained the least amount of 

noise (Figure 9) and therefore the cleanest signal; the green layer for each impact 

specimen was then extracted from each image (Figure 11). Thus, the BPNN was trained 

and tested solely on the green layer of the C-scan images which is discussed in the Neural 

Network Optimization section. 

While the noise of most images was completely eliminated by removing the red 

and blue layers, significant noise still remained in some of the images, as can be seen in 

Figure 12(b). In an effort to improve the BPNN's prediction of the test specimens' 

ultimate compressive strength, a Fast Fourier Transform (FFT) was implemented. The 

FFT decomposes an image into real and complex parts that represent the image in the 

frequency domain. The FFT allows the higher frequency noise to be eliminated, 

removing the pixilation in the more noisy images and leaving the noiseless images 

relatively unchanged. 

After the FFT of the image has been taken, the pixels that constitute the high 

frequency noise in the image are located near the center of the FFT image, while the low 

frequency pixels are around the edges as seen in Figure 13(a). The FFT was shifted to 

move the high frequency noise to the edges of the FFT where they could then be filtered 

out (Figure 13(b)). While operating in the frequency domain, a simple MATLAB code 

was written to remove the high frequency noise by setting their values equal to 0. The 

MATLAB code set the values of pixels to 0 that were outside of a square around the 

center of the image as seen in Figure 14. 

18 



ourier Transform of coupon 3B image S h i f t e d F o u r i e r Transform of coupon 3B 

(a) (b) 
Figure 13: Test Specimen 3B After Fast Fourier Transform (Left), and After Shifting the 

Fast Fourier Transform (Right) 

Figure 14: Fast Fourier Transform of Specimen 3B after Filter Applied 

The size of the square around the center of the FFT controls how much of the 

image is filtered. A larger area square filters less of the image, while a smaller area 

square will filter more of the image. The square filter needs to be positioned at the center 

of the FFT image; its location is important because the FFT of a real image is "a 

conjugate symmetric". Conjugate symmetric refers to when a real signal is transformed 

to the frequency domain; each pixel is represented as a complex number with conjugate 
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values located symmetrically at each corner of the image. To avoid getting a bad inverse, 

and therefore getting complex numbers as pixel values when the image is returned to the 

space domain, both of the pixels' conjugate values must be set equal to 0. This is 

accomplished by creating a square filter which is symmetric about the center of the image 

as seen in Figure 14. 
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CHAPTER 4 

RESULTS 

TRAINING AND TESTING SELECTION 

The initial selection of coupons to be included in the training set and the testing 

set was random. This, however, led to testing a data set containing the highest ultimate 

compressive load, which confused the neural network because it encountered a higher 

load during testing than it had seen during training. This induced some error into the 

calculation and was avoided in future training and testing sets. 

Therefore, the selection of coupons for the training set began by including both 

the coupons with the highest and lowest ultimate compressive loads. The loads were then 

organized from highest to lowest, and two coupons at each impact energy level were 

selected for training, ensuring that the coupons selected were evenly spaced to give the 

BPNN an optimal selection of data points. Because the sample size was quite small, as 

only 21 coupons were C-scanned and compressed to failure, a method referred to as 

"Bootstrapping Data" was utilized to increase the apparent sample size for the BPNN. 

The method of bootstrapping data is a technique that uses the same composite coupon 

multiple times in random positions in the training file to fool the neural network into 

believing there are more coupons in the data set than are actually present. Bootstrapping 

does not skew the data; it only increases the size of a small data set. Bootstrapping data 

was employed in this experiment by using each coupon in the training set three times in a 

random order. Once the training and testing data sets and files were written, the neural 

network needed to be optimized to yield the lowest possible worst case error. Appendix 

A contains the index of each coupon in the training and testing files which yielded the 

most promising worst case error. 

NEURAL NETWORK OPTIMIZATION 

The only way to find the optimal network parameters is through trial and error 

using the computer program NeuralWorks Professional II Plus. The architecture chosen 
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for the BPNN began with one hidden layers. Varying the number of hidden layer 

neurons, the hidden layer learning coefficient, the output layer learning coefficient, the 

momentum, the learning ratio, the F' Offset, and the transition point through trial and 

error is required to arrive at the optimal neural network. This trial and error procedure 

can be very time consuming; thus, two methods were used to expedite the optimization 

process. 

The two optimization techniques employed to find the optimal network were 

series optimization and parallel optimization. Parallel optimization entailed varying all 

neural network parameters independently in different networks, then once the network 

was optimized, all optimum parameters were placed into the same neural network. 

Parallel optimization is the most time efficient method of BPNN optimization; however, 

it can only be used when a team of people is available to optimize the neural network. It 

was found in this project that both parallel and series optimization yielded identical 

BPNN parameters. 

The first optimization technique employed herein was series optimization, which 

entailed varying all parameters individually, selecting the value that yielded the lowest 

worst case error, and using that parameter value in the BPNN. The first parameter value 

that was varied was the number of hidden layer neurons. Figure 15 shows the variation 

of the worst case error as the number of hidden layer 1 neurons was increased. A closer 

view of the area of interest can be seen in Figure 16 which focused around 10 hidden 

layer 1 neurons; this was the optimal number of neurons which yielded an absolute value 

worst case error of 11.61%. 
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Figure 15: Hidden Layer 1 Worst case error vs. Hidden Layer 1 Neurons 
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Figure 16: Zoomed in Hidden Layer 1 Worst case error vs. Hidden Layer 1 Neurons 

With an absolute value worst case error of 11.61%, the number of hidden layer 2 

neurons was varied to explore the need for a two hidden layer network. After varying the 

number of hidden layer 2 neurons between 10 and 100, Figure 17 shows that a second 

hidden layer was not necessary, as all the worst case errors were greater than the 11.61% 

value obtained for one hidden layer. 
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Figure 17: Worst Case Error vs. Hidden Layer 2 Neurons 

As the network only had one hidden layer, only the hidden layer 1 learning 

coefficient needed to be varied. Hence, the hidden layer 1 learning coefficient was varied 

between 0.001 and 0.5, and the optimal value was found to be 0.001, as seen on Figure 

18. This value yielded a slight reduction in the absolute value worst case error of from 

11.61% down to 11.5%. 
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Figure 18: Worst Case Error vs. Hidden Layer 1 Learning Coefficient 
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The next logical step was to vary the output layer learning coefficient. This 

proved to be the most successful in decreasing the worst case error. By decreasing the 

output layer coefficient to 0.017, the error reduced from 11.5% to 5.19%, a decrease of 

over 50% (Figure 19). 

Worst Case Error vs Output Layer 
Coefficient 

0.1 0.15 

Output Layer Coefficient 

0.25 

Figure 19: Worst Case Error vs. Output Layer Coefficient 

Figure 20 through Figure 23 show the variation of the remaining four parameters 

as they were modified and optimized using the same techniques. 

Worst Case Error vs Momentum 

0.1 0.2 0.3 0.4 

Momentum 

0.5 0.6 0.7 

Figure 20: Worst Case Error vs. Momentum 
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Worst Case Error vs F' Offset 
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Figure 21: Worst Case Error vs. Ff Offset 
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Figure 22: Worst Case Error vs. Learning Ratio 
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Worst Case Error vs Transition Point 
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Figure 23: Worst Case Error vs. Transition Point 

Table 3 summarizes the optimal parameter settings found for the neural network. 

Using these values, the BPNN was able to predict the ultimate compressive load with a 

worst case testing error of-5.16%, well within the ±10% target range. 

Table 3: Optimized Neural Network Configuration 

Number of Input Neurons 
Hidden Layer 1 Neurons 
Hidden Layer Coefficient 

Number of Output Neurons 
Output Layer Coefficient 

Learning Coefficient 
Momentum Value 
Transition Point 

Transfer Function 
Learning Rule 

F' Offset 

100 
10 

0.001 
1 

0.017 
0.5 
0.4 

10,000 
Sigmoid 

Normalized-Cumulative-Delta 
0.1 

The NeuralWorks Professional II Plus software BPNN setup screen with optimal settings 

can be seen below in Figure 24. 
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Figure 24: Optimal BPNN Settings 

The compiled results, including both training and prediction errors can be seen in 

Table 4. The rows highlighted in yellow are coupons which were included in the testing 

file; the other rows were coupons used in the training file. It should be noted that a worst 

case testing error of within ±10% was the target of this research; unfortunately, by using 

optimal settings, the worst case training error was found to be -12.52%, slightly outside 

of this range. Therefore, further optimization was sought. 
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Table 4: Unfiltered Image BPNN Results 

Coupon 
ID 

26D 

24D 

25D 

26C 

25C 

27C 

27B 

27D 

24C 

3A 

3D 

2C 

2A 

25B 

2B 

3B 

24B 

27A 

24A 

26A 

25A 

Impact 
Energy (J) 

20 

20 

20 

18 

18 

18 

16 

16 

16 

14 

14 

14 

12 

12 

12 

12 

12 

12 

10 

10 

10 

Ultimate Compressive 
Load (lbf) 

20,024 

17,250 

17,249 

20,729 

20,010 

18,986 

18,825 

18,742 

17,944 

19,156 

19,152 

16,200 

21,750 

21,749 

18,900 

20,250 

19,782 

17,249 

24,195 

22,190 

21,815 

Predicted Ultimate 
Compressive Load (lbf) 

19,054.8145 

17,640.0879 

17,470.6836 

19,663.1777 

19,657.5039 

19,049.0488 

19,643.6719 

19,276.1270 

18,925.3066 

19,802.0117 

21,107.6641 

16,996.6348 

21,078.8828 

20,173.1055 

20,036.0273 

20,682.1895 

19,763.3281 

19,385.4375 

21,166.8926 

21,044.6621 

20,603.8965 

Percent 
Error 

-4.84% 

2.26% 

1.29% 

-5.14% 

-1.76% 

0.33% 

4.35% 

2.85% 

5.47% 

3.37% 

10.21% 

4.92% 

-3.09% 

-7.25% 

6.01% 

2.13% 

-0.09% 

12.39% 

-12.52% 

-5.16% 

-5.55% 

The significant difference in testing and training errors can be attributed to the 

relatively small output layer learning coefficient; this could possibly have caused some 

overtraining to occur on the data. Figure 25 shows the comparison between the worst 

case training error and the worst case testing error as the output layer learning coefficient 

was varied. It can be clearly observed from the plot that as the output layer learning 

coefficient approaches zero, the training error steadily increases. Thus, the optimal value 

of the output layer learning coefficient is not 0.017, as had been earlier supposed, where 

the BPNN produces the minimal testing error, but rather is where the training and testing 

error curves intersect at an output layer learning coefficient of 0.063. Here the worst case 

training and testing errors should be approximately equal. 
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Figure 25: Comparison Between Prediction and Training Errors 

After comparing the training and testing errors and finding the optimal output 

learning coefficient, the final BPNN prediction errors could be calculated. The predicted 

ultimate CAI loads of the unfiltered image data can be seen in Table 5. These values 

were calculated using the optimal output learning coefficient of 0.063, which yielded a 

worst case error for training and testing of -8.96%) and -8.98%, respectively. As noted, 

these two values are approximately equal and both are within the ±10% worst case 

prediction error goal. 
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Table 5: BPNN Results using 0.063 Output Layer Coefficient 

Coupon 
ID 

26D 

24D 

25D 

26C 

25C 

27C 

27B 

27D 

24C 

3A 

3D 

2C 

2A 

25B 

2B 

3B 

24B 

27A 

24A 

26A 

25A 

Impact 
Energy (J) 

20 

20 

20 

18 

18 

18 

16 

16 

16 

14 

14 

14 

12 

12 

12 

12 

12 

12 

10 

10 

10 

Ultimate Compressive 
Load (lbf) 

20,024 

17,250 

17,249 

20,729 

20,010 

18,986 

18,825 

18,742 

17,944 

19,156 

19,152 

16,200 

21,750 

21,749 

18,900 

20,250 

19,782 

17,249 

24,195 

22,190 

21,815 

Predicted Ultimate 
Compressive Load (lb) 

19,764.19 

16,981.84 

17,328.87 

18,866.51 

19,773.29 

19,326.75 

19,422.61 

18,726.62 

18,332.10 

20,328.60 

20,404.80 

16,447.73 

21,502.41 

21,371.35 

19,805.28 

20,323.34 

19,218.11 

18,452.20 

22,026.11 

21,571.86 

21,028.18 

Percent 
Error 

-1.30% 

-1.55% 

0.46% 

-8.98% 

-1.18% 

1.79% 

3.17% 

-0.08% 

2.16% 

6.12% 

6.54% 

1.53% 

-1.14% 

-1.74% 

4.79% 

0.36% 

-2.85% 

6.98% 

-8.96% 

-2.79% 

-3.61% 

FILTERED AND UNFILTERED IMAGE COMPARISON 

The C-scan images were placed into the BPNN for ultimate CAI load prediction 

after they were FFT filtered, and a significant amount of high frequency noise was 

removed. Following the same optimization procedure as with the unfiltered images, the 

BPNN was optimized, yielding the results tabulated in Table 6. Here it can be seen that 

FFT image filtering did improve the worst case prediction error down from -8.98% to 

8.65%). This reduction in error was not nearly as much as was expected. 
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Table 6: Filtered Image BPNN Results 

Coupon 
ID 

26D 

24D 

25D 

26C 

25C 

27C 

27B 

27D 

24C 

3A 

3D 

2C 

2A 

25B 

2B 

3B 

24B 

27A 

24A 

26A 

25A 

Impact 
Energy (J) 

20 

20 

20 

18 

18 

18 

16 

16 

16 

14 

14 

14 

12 

12 

12 

12 

12 

12 

10 

10 

10 

Ultimate Compressive 
Load (lbf) 

20,024 

17,250 

17,249 

20,729 

20,010 

18,986 

18,825 

18,742 

17,944 

19,156 

19,152 

16,200 

21,750 

21,749 

18,900 

20,250 

19,782 

17,249 

24,195 

22,190 

21,815 

Predicted Ultimate 
Compressive Load (lbf) 

19,795.97 

17,045.25 

18,306.68 

18,942.68 

19,858.97 

19,351.67 

18,478.77 

18,471.83 

18,155.08 

20,735.68 

20,063.35 

16,608.53 

21,512.81 

21,400.50 

19,886.24 

20,379.29 

18,632.73 

18,741.61 

22,124.94 

21,316.96 

20,981.32 

Percent 
Error 

-1.14% 

-1.19% 

6.13% 

-8.62% 

-0.75% 

1.93% 

-1.84% 

-1.44% 

1.18% 

8.25% 

4.76% 

2.52% 

-1.09% 

-1.60% 

5.22% 

0.64% 

-5.81% 

8.65% 

-8.56% 

-3.93% 

-3.82% 

From the summarized results of Table 6 it is clear that the BPNN was able to 

predict accurately with both noisy and FFT filtered images. Utilizing only its iterative 

optimization scheme, the BPNN was able to remove most of the high frequency noise, as 

the weights of the respective neurons which contained most of the image noise 

approached zero. The FFT image filtering process did provide some reduction in worst 

case error; however, in this case, the rectangular filter used to remove the high frequency 

noise may have removed too much frequency information in the image, thereby resulting 

in a higher than expected worst case error. 
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Table 7: Filtered and Unfiltered Image Comparison 

Unfiltered 
Filtered 

Worst Case Testing Error 
-8.98% 
-8.62% 

Worst Case Training Error 
-8.96% 
8.65% 

MATERIAL ALLOWABLES 

The tolerance interval within which the BPNN predictions should fall is referred 

to as the B-basis material allowables for the composite coupons. B-basis allowables are 

defined as the tolerance interval within which there is a 95% confidence that 90% of all 

future ultimate compression after impact (CAI) ultimate loads will fall [10]. The B-basis 

tolerance interval may be calculated from the following equation: 

Interval = ±K(nfP,c)sx 

where Interval = tolerance interval for B-basis allowables 
K = factor dependant on N, P, C parameters 
n = number of samples in a certain group 
P = fraction of population 
c = confidence interval 
sx = standard deviation. 

Table 8: B-basis Allowables Tolerance Interval 

Impact 
Energy 

(J) 
10 
12 
14 
16 
18 
20 

Number 
of 

Coupons 
3 
6 
3 
3 
3 
3 

Mean Ultimate 
Compressive 

Load (lbf) 
22,733.33 
19,946.67 
18,169.33 
18,503.67 
19,908.33 
18,174.33 

Standard 
Deviation 

(lbf) 
1,279.65 
1,731.62 
1,705.49 
486.46 
875.94 

1,601.86 

K 
factor 
6.919 
3.723 
6.919 
6.919 
6.919 
6.919 

B-basis 
Allowables 

Interval (lbf) 
±8,853.91 
±6,446.80 

±11,800.31 
±3,365.81 
±6,060.60 

±11,083.26 

Upper 
Limit (lbf) 
31,587.24 
26,393.47 
29,969.64 
21,869.48 
25,968.94 
29,257.59 

Lower 
Limit (lbf) 
13,879.42 
13,499.86 
6,369.021 
15,137.86 
13,847.73 
7,091.075 

It can be clearly observed in Figure 26 that all the ultimate compressive loads predicted 

by the optimized BPNN fall well within the B-basis allowables of the graphite/epoxy 

coupon sample group. 
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Figure 26: B-Basis Allowables 

Increasing the number of coupons at each impact damage energy level would 

obviously decrease the B-basis allowables. If instead of the 3 or 6 samples at each 

energy level, there were 30 coupons at each energy level, the K values would all decrease 

from 6.919 (3 samples) or 3.723 (6 samples), as seen in Table 8, to 2.140 (30 samples). 

Assuming the same mean and standard deviation values for the increased sample size, the 
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B-basis allowables would decrease significantly to the values shown by the dashed lines 

in Figure 26. Note that all the BPNN predictions are well within these more conservative 

values as well. This is significant because the B-basis allowables are typically calculated 

for composites based on a sample size of 30 or more test specimens. Unfortunately, this 

research did not have the resources available to generate such a large sample size. 

35 



CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS 

• After initial image preprocessing, a backpropagation neural network (BPNN) using 

the green layer only data from the ultrasonic C-scan image of barely visible impact 

damage (BVID) in graphite-epoxy composite laminates was able to accurately predict 

the ultimate compression after impact (CAI) load with a worst case error of -8.98%, 

which was within the ±10% goal for this research and comfortably within the B-basis 

allowable for composites. 

• Because the Fast-Fourier Transform (FFT) noise removal routine resulted in a slight 

improvement in the prediction capability of the BPNN, down from a worst case error 

of -8.98% to 8.65%), it can be concluded that some high frequency image noise was 

removed by the FFT, which aided the BPNN in making more accurate CAI load 

predictions. 

• This research has demonstrated the viability of an ultrasonics based nondestructive 

evaluation (NDE) technique that could save aircraft manufacturers and maintenance 

companies thousands of dollars on unnecessary repairs by giving a trained technician 

the ability to objectively evaluate the effect of BVID on any composite part and 

predict with confidence the effect of the damage on the ultimate CAI load. 

RECOMMENDATIONS 

• Manually eliminating individual points in the FFT frequency image and setting their 

values to zero, as was done here, would be far too time consuming for an operational 

assessment of impact damage. Moreover, the square filter used in this research for 

FFT noise removal may have been too aggressive in eliminating pixels in the 

frequency domain. Future research might investigate the effect of different filters on 

image noise removal. 
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• Future research might also inquire into the possibility of using the raw reflectivity of 

the C-scan image, rather than using solely the green layer data, for image 

manipulation and ultimate CAI load prediction. 
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APPENDIX A: TRAINING AND TESTING FILE INDEX 

Coupon 
ID 

26D 
24D 
25D 
26C 
25C 
27C 
27B 
27D 
24C 
3A 
3D 
2C 
2A 
25B 
3B 

24B 
2B 

27A 
24A 
26A 
25A 

Impact 
Energy (J) 

20 
20 
20 
18 
18 
18 
16 
16 
16 
14 
14 
14 
12 
12 
12 
12 
12 
12 
10 
10 
10 

Ultimate Compressive 
Strength (lbf) 

20,024 
17,250 
17,249 
20,729 
20,010 
18,986 
18,825 
18,742 
17,944 
19,156 
19,152 
16,200 
21,750 
21,749 
20,250 
19,782 
18,900 
17,249 
24,195 
22,190 
21,815 

Testing 
File Index 

2 
3 

1 

4 

5 

6 

Training File 
Index 

6 
9 

2 
13 

1 
5 

19 
4 
43 
17 
8 

*5 

16 
10 

12 

29 
27 

22 
26 

7 
14 

30 
11 
44 
21 
24 

23 
20 
*3 *3 

15 

39 
34 

25 
37 

18 
42 

41 
31 
45 
40 
36 

32 
38 
35 

28 

40 



APPENDIX B: C-SCAN IMAGES WITH MATLAB OUTPUT 
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APPENDIX C: MATLAB CODE 

MATLAB IMAGE PREPROCESSING PROGRAM 

% To run this program, copy and the file name into the 'readimage' 
command. To test an image, make it's in bitmap format 

% Revision Date: April 15,2003 
% Revised by: Christopher Hess 

% Revision Date: November 19, 2010 
% Revised by: Andrew Pacific 

% Revision Date: December 1, 2010 
% Revised by: Nikolas Geiselman 

clear all 
clc 

image(imread('3D_FS_I', 'bmp')) 

% This finds the image file and stores it into matrix 'map_b' as a 
% colormap 
[B, mapjo] = imread('3D_FS_I', 'bmp'); 

%Only Read Green layer 
B=B(:,:,2); 

% This sums up the row or columns of the array and transpose them 
cr = sum(B); 

%To add or substract (%) to sums the rows or columns accordingly 
ccrr= cr (1, : ) ; 

% Get the numbers of rows 'm' and columns 'n' 
[m,n] = size(ccrr) 

% Find the maximum value value in the matrix 
g= max(ccrr) 

% Normalizes the matrix 
gg=ccrr/g; 

% Plotting data 
% Format 
% - first image is the image file 
% - second image is a scatter graph of the sum of the columns 

subplot(2,1,1); image (B) 
title ('Image of the Test Specimen') 

subplot(2,1,2); plot(gg) 
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title ('Image') 
xlabel('Position') 
ylabel('AMP') 

% Write to a text file 
dlmwrite ('3D_FS_I.txt', gg, '\t') ; 
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MATLAB PROGRAM TO FILTER FAST FOURIER TRANSFORM 

%This is a MATLAB Filter C-Scan images using Square filter of user 
%defined size 
clc 
clear all 

%Open the image file 
img=imread('27D_FS_I', 'bmp'); 

%Only Read Green layer 
img=img(:,:,2); 

%Display Original Image 
figure, imshow(img, []) 
title('Original image of damaged coupon'); 

%Taking the fft2 (2-D fft) 
freq_img=fft2(img); 

%Shifting the fft image 
Shifted=fftshift(freq_img); 

o o 

%************** Rectangular Filter ************% 
o o 

%Apply Rectangular filter to shifted FFT 
[row,col] = size(Shifted);%Find size of image 
centrow=row/2; %Find center row number 
centcol=col/2; %Find center col number 
fsize=20; %Filter size, counting pixels out from center 

%Filtering image 
for i=l:centrow-fsize-1, %Filter rows (top) 

Shifted(i,:)=0; 
end 

for i=centrow+fsize+1:row %Filter rows (Bottom) 
Shifted(i,:)=0; 

end 

for j=l:centcol-fsize-1, %Filter Cols (left) 
Shifted(:,j)=0; 

end 

for j=centcol+fsize+1:col, %filter cols (right) 
Shifted(:,j)=0; 

end 

Logshift=log(Shifted); %take log of filtered image to increase 
brightness 
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unshifted=ifftshift(Shifted); %Unshift the FFT before inversing the FFT 
inverse_FFT=ifft2(unshifted); %Inverse the FFT to bring image back to 
spacial 

O r * * * * * * * * * * * * * * Chris Hess Code FFT * * * * * * * * * * * * % 
o o 

% This sums up the row or columns of the array and transpose them 
cr = sum(inverse_FFT); 

%To add or substract (%) to sums the rows or columns accordingly 
ccrr= cr(1, : ) ; 

% Get the numbers of rows 'm' and columns 'n' 
[m,n] = size(ccrr); 

% Find the maximum value value in the matrix 
g= max(ccrr); 

% Normalizes the matrix 
gg=ccrr/g; 

%gg=abs(gg); 
inverse_FFT=abs(inverse_FFT) ; 

subplot(4,1,1); image (inverse_FFT) 
title ('Image of Test Specimen 27D') 

subplot(4,1,2); plot(gg) 
title ('Image') 
xlabel('Position') 
ylabel('AMP') 

% Write to a text file 
dlmwrite ('27D_FS_I.txt', gg, '\t') ; 

o o 

%************** E n d o f c h r i s Hess Code FFT ************% 
o o 

o . * * * * * * * * * * * * * * Chris Hess Code IMAGE ************% 

% This sums up the row or columns of the array and transpose them 
coro = sum(img); 

%To add or substract (%) to sums the rows or columns accordingly 
ccorro= coro(1,:); 

% Get the numbers of rows 'm' and columns 'n' 
[mo,no] = size(ccorro); 
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% Find the maximum value value in the matrix 
go= max(ccorro); 

% Normalizes the matrix 
ggo=ccorro/go; 

subplot(4,1,3); image (img) 
title ('Image of Test Specimen 27D') 

subplot(4,1,4); plot(ggo) 
title ('Image') 
xlabel('Position' ) 
ylabel('AMP') 

o o 

%************** E n d o f C h r i s R e s s C o d e ^^^^^^^^^^^^% 
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TEST AND TRAINING FILE CREATION MATLAB CODE 

%To assemble test and training files 
clc 
clear all 

Read in the Text files 

s2A=dlmread( 
s2B=dlmread( 
s2C=dlmread( 
s3A=dlmread( 
s3B=dlmread( 
s3D=dlmread( 
s24A=dlmread 
s24B=dlmread 
s24C=dlmread 
s24D=dlmread 
s25A=dlmread 
s25B=dlmread 
s25C=dlmread 
s25D=dlmread 
s2 6A=dlmread 
s26C=dlmread 
s26D=dlmread 
s27A=dlmread 
s27B=dlmread 
s27C=dlmread 
s27D=dlmread 

2A_FS_I, 
2B_FS_I. 
2C_FS_I, 
3A_FS_I, 
3B_FS_I, 
3D_FS_I, 
1 2 4A_FS_ 
1 2 4B_FS~ 
'2 4C_FS~ 
'24D_FS[ 
'25A_FS~ 
1 2 5B_FS_ 

*2 5C_FS~ 
T2 5D_FS_ 

' 2 6A_FS_ 

f2 6C_FS~ 
f 2 6D_FS~ 
'27A_FS~ 
f2 7B_FS" 
'27C_FS~ 
' 27D FS" 

. t x t ' , ' 

. t x t 1 , ' 

. t x t ' , ' 

. t x t 1 , • 

. t x t ' , * 

. t x t ' , ' 
_ I . t x t ' 
_ I . t x t 1 

_ I . t x t ' 
. t x t ' 
, t x t ' 
. t x t ' 
. t x t ' 
. t x t ' 
. t x t ' 
. t x t " 
, t x t • 

" i . t x t ' 
" i . t x t 1 

[ i . txt 1 

" i . t x t ' 

\ f 
\ t ' 
\ t ' 
\ t ' 
\ t ' 
\ t ' 

\ t 
\ t 
\ t 
\ t 
\ t 
\ t 
\ t 
\ t 
\ t 
\ t 
\ t 
\ t 
\ t 
\ t 
\ t 

Assign coupons index numbers for Training File 

indexl= 
index2= 
index3= 
index4= 
index5= 
index6= 
index7= 
index8= 
index9= 
indexlO 

indexll 
indexl2 
indexl3 
indexl4 
indexl5 
indexl6 
indexl7 
indexl8 
indexl9 

s27D; 
s25C; 
s2B; 
s2C; 
s24C; 
s26D; 
s27D; 
s3B; 
s24D; 
= s24A; 

=s2C; 
=s25A; 
=s27C; 
=s24C; 
=s25A; 
=s27A; 
=s25B; 
=s27D; 
=s3D; 
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index20=s27A; 

index21=s25B; 
index22=s25C; 
index23=s2B; 
index24=s3B; 
index25=s25C; 
index26=s27C; 
index27=s24D; 
index28=s25A; 
index29=s26D; 
index30=s3D; 

index31=s2C; 
index32=s2B; 
index33=s24A; 
index34=s24D; 
index35=s24A; 
index36=s3B; 
index37=s27C; 
index38=s27A; 
index39=s26D; 
index40=s25B; 

index41=s3D; 
index42=s24C; 
index43=s2A; 
index44=s2A; 
index45=s2A; 

^Generate Training File 
trainings[indexl;index2;index3;index4;index5;index6;index7;index8; 

index9;indexl0;indexl1;indexl2;indexl3;indexl4;indexl5; 
indexl6;indexl7;indexl8;indexl9;index2 0;index21;index22; 
index23;index2 4;index2 5;index2 6;index27;index2 8;index2 9; 
index30;index31;index32;index33;index34;index35;index36; 
index37;index38;index3 9;index4 0;index41;index4 2;index4 3; 
index4 4;index4 5]; 

dlmwrite ('Trainer.txt', training,'\t'); 
Q. 
O ~" — 

% Assign coupons index numbers for Test File 
% 

testindl=s27B; 
testind2=s25D; 
testind3=s26C; 
testind4=s3A; 
testind5=s24B; 
testind6=s26A; 

^Generate Test file 
test=[testindl;testind2;testind3;testind4;testind5;testind6]; 
dlmwrite ('Test.txt', test,'\t'); 
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APPENDIX D: SAMPLE BACKPROPAGATION NEURAL NETWORK 

[DORFMAN(ll)] 

STAGE 1: Forward propagation of input vector 

Step 1: Initialize weights to small random values 

Step 2: Do while stopping condition is false 

Step 3: Compute input sum and apply activation function for each middle PE: 

Xj = f(Wy * Xj) 

Step 4: Compute input sum and apply activation function for each output PE: 

zk = f(vij * yi) 

STAGE 2: Back propagation of error 

Step 5: Compute error: 5k = (tk - Zk) * f (wjk * yj) 

Step 6: Compute delta weights: Avjk = (a)(8k)(yj) + {Momentum * Avy(old)} 

Step 7: Compute error contribution for each middle layer PE: 

8j = 5k * Wjk * f (Wy * Xi) 

Step 8: Compute delta weights: Awy = (a)(5j)(xi) + {Momentum * Awy(old)} 

Step 9: Update weights: Qrs(new) = Qrs(old) + AQrs 

Step 10: Test stopping condition 
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EXAMPLE 

Consider a backpropagation network with 2 inputs and 2 hidden or middle layer PEs and 

a single output [9]. Find the new weights when the network is presented with an input 

vector Xi = [0.0, 1.0] and target vector Zi = 1.0 using a learning coefficient of 0.25 and a 

sigmoid activation function. 

Bias 

The initial weights are given as: 

vk = 

0.7 
-0.2 

0.5 

-0.4 
0.3 

0.1 

0.4 
0.6 

-0.3 

First compute the middle layer output using the relationship: y = wy Xj 

yi = wn xi + w2i x2 + WIB = (0.7)(0) + (-0.2)(1.0) + 0.4 = 0.2 

y2 = W12 xi + w22 x2 + w2B = (-0.4)(0) + (0.3)(1.0) + 0.6 = 0.9 

yi(ouT) = f(yi) = l / ( l + e - y I ) = 0.55 

y2(ouT) = f(y2) = l / ( l+e - y 2 ) = 0.71 

Next, compute the network output and associated error using the relationship: Zk = Vy y 

zi = vn yi + V12 y2 + VIB = (0.5)(0.55) + (0.1)(0.71) - 0.3 = 0.046 

zi(ouT) = f(z,) = l / ( l + e - z l ) = 0.51 

5k = (Tk - Zk(OUT)) f '(zk(OUT)) 

5zi = (Ti -Z1(OUT)) f(zi)(l - f(zi)) = (1.0 - 0.51)(0.51)(1 - 0.51) = 0.12 

The middle to output layer weights can now be updates using: Avjk = a 8k yj(ouT) 

Avn = a 8zi yi(ouT) = (0.25)(0.12)(0.55) = 0.017 

Av12 = a 5zi y2(0UT) = (0.25)(0.12)(0.71) - 0.021 

Av1B = a 5zl Bias = (0.25)(0.12)(1) = 0.030 

vk = |0.517 0.121 I -0.270| 
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The second stage begins by computing the middle layer error as: 8j = 8k Vjg f (yj(0UT)) 

5yi - 5zl v n f(y,)(l - f(yO) = (0.12)(0.5)(0.55)(1 - 0.55) = 0.015 

5y2 = 8zl v12 f(y2)(l - f(y2)) = (0.12)(0.1)(0.71)(1 - 0.71) = 0.0025 

The input to middle layer weights are then updated using: AWy = a8j Xj 

Awn = a Syi xi = (0.25)(0.015)(0) = 0 

Awn = a Syi x2 = (0.25)(0.015)(1.0) = 0.0038 

Aw2i = a 8y2 x, = (0.25)(0.0025)(0) = 0 

Aw22 = a 8y2 x2 = (0.25)(0.0025)(1.0) = 0.0006 

AWIB = a 8yl Bias = (0.25)(0.015)(1.0) = 0.0038 

Aw2B = a 8y2 Bias = (0.25)(0.0025)(1.0) = 0.0006 

Finally, the new updated weights are given as: 

Wjj(NEW) = 0.7 -0.3962 | 0.4038 

-0.2 0.3006 j 0.6006 . 
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APPENDIX E: COMPOSITE INFORMATION SHEET 

PRODUCT NAME 

BATCH NUMBER 

ROLL NUMBER 

Foot i f f From 

ROLL D&tCl LOG 

DAT! 

INSPECTOR 

Kaiof Dtftct 

/7Y • B 

Cytec 
CYCOH* 985 GF3070PW-6CT, Resin Content 35-39% 

WARNING. 

WIDTH OF PRODUC 

1 Impurities 
2 Dry Areas 
3. Area of Non-uniformity 
4 Incomplete Impregnation 
5 Cured Resin 
6 Hard Spot 
7 Color Difference 
8 HiM Selvage 
9 Yarn Splices 

10 Twisted Yarns 
11. Wrinkles or Fuckers 

TOTAL LENGTH 

ALLOWANCE FOR DEFECTS 

ACCEPTABLE MATERIAL 

LFT 

HG-8000 
White Copy Customer 

«es»n-Ricrt Area 
13 Misalignment - Warp Yarns 
14 Misalignment • Fill Yarns 
15 Unwetted Fibers 
16 fiber Balling 
17 Width 
IS. Straightness of Edge (Tip*) 
19 Cut 
20. Gap 
21 Stop Mark 
22 Other fdescnbe m comment section) 
23 Splice 

Yellow Copy-inspection 
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