
Theses - Daytona Beach Dissertations and Theses

Spring 2011

Neural Network Prediction of Ultimate Compression After Impact Neural Network Prediction of Ultimate Compression After Impact

Loads in Graphite-Epoxy Coupons from Ultrasonic C-Scan Images Loads in Graphite-Epoxy Coupons from Ultrasonic C-Scan Images

Nikolas L. Geiselman
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/db-theses

 Part of the Aerospace Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Geiselman, Nikolas L., "Neural Network Prediction of Ultimate Compression After Impact Loads in
Graphite-Epoxy Coupons from Ultrasonic C-Scan Images" (2011). Theses - Daytona Beach. 282.
https://commons.erau.edu/db-theses/282

This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at
ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an
authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/db-theses
https://commons.erau.edu/dissertation-theses
https://commons.erau.edu/db-theses?utm_source=commons.erau.edu%2Fdb-theses%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fdb-theses%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/db-theses/282?utm_source=commons.erau.edu%2Fdb-theses%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

NEURAL NETWORK PREDICTION OF ULTIMATE COMPRESSION AFTER
IMPACT LOADS IN GRAPHITE-EPOXY COUPONS FROM ULTRASONIC

C-SCAN IMAGES

by

Nikolas L. Geiselman

A Thesis Submitted to the Graduate Studies Office in
Partial Fulfillment of the Requirements for the Degree of

Master of Science in Aerospace Engineering

Embry-Riddle Aeronautical University
Daytona Beach, Florida

Spring 2011

UMI Number: EP33515

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

JJML
Dissertation Publishing

UMI EP33515

Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

NEURAL NETWORK PREDICTION OF ULTIMATE COMPRESSION AFTER
IMPACT LOADS IN GRAPHITE-EPOXY COUPONS FROM ULTRASONIC

C-SCAN IMAGES

by

Nikolas L. Geiselman

This thesis was prepared under the direction of the candidate's thesis committee chairmen, Dr
Eric Hill, Department of Aerospace Engineering, and has been approved by the members of his
thesis committee. It was submitted to the School of Graduate Studies and Research and was
accepted in partial fulfillment of the requirements for the degree of Master of Science in
Aerospace Engineering.

THESIS COMMITTEE:

fr* T. V, HSU
Dr. Eric v. K. Hill
Chairman

Dr.
Member

^ p W ^ ? ^ I ^ - ^
Christopher D. Hess
Member

ACKNOWLEDGMENTS

Throughout my studies I have encountered many difficulties and headaches, but

the completion of this research has instilled in me a sense of perseverance. Numerous

people have helped me during the years I have spent in college and have to be thanked.

To my loving parents, Paul and Laurie Geiselman, to whom I owe everything; if not for

their undying love and support, I would not have accomplished as much as I have. They

enforced the importance of higher education on me from a very young age and sacrificed

much to make college a possibility; for that I will be eternally thankful. A special thanks

must go to my sister, Gina Geiselman, who has provided both financial support and

encouragement throughout my graduate studies.

I would like to thank my thesis advisor Dr. Eric Hill for leading by example and

offering his guidance from the beginning of my graduate degree, helping me develop into

a true master of engineering. I would also like to thank Dr. Hill for his strict presentation

methods which have molded me into a confident presenter. I am very thankful to Dr.

William Barott for his persistence in instructing me about radio frequency and antenna

theory as an undergraduate student and signal processing and filtering as a graduate

student. I would like to thank both Andrew Pacific and Christopher Hess for laying the

groundwork for this research through many tireless hours of research of their own.

Finally, I would also like to thank several of my very close friends who helped me

throughout both my undergraduate and graduate degrees. Thanks to Daniel Lane and his

family opened their home to me on many occasions and has been such a loyal and

supportive friend throughout the years I have lived in Florida. Finally, a special thanks

must also go to my good friends and roommates, Evan Colquhoun and Carl Flanagan, for

all the good times we have had during my time spent in Florida.

in

ABSTRACT

Author: Nikolas L. Geiselman

Title: Neural Network Prediction of Ultimate Compression After Impact Loads

in Graphite-Epoxy Coupons from Ultrasonic C-Scan Images

Institution: Embry-Riddle Aeronautical University

Degree: Master of Science in Aerospace Engineering

Year: 2011

The purpose of this project was to investigate how accurately an artificial neural

network could predict the ultimate compressive loads of impact damaged 24-ply

graphite-epoxy coupons from ultrasonic C-scan images. The 24-ply graphite-epoxy

coupons were manufactured with bidirectional preimpregnated tape and cut into 21

coupons, 4 inches by 6 inches each. The coupons were impacted at known impact

energies of 10, 12, 14, 16, 18, and 20 Joules in order to create barely visible impact

damage (BVID). The coupons were then scanned with an ultrasonic C-scan system to

create an image of the damaged area. Each coupon was then compressed to failure to

determine its ultimate compressive load.

Numeric values for each pixel were determined from the C-scan image. Since the

image was represented as a red-green-blue (RGB) map, each pixel had three numbers

associated with it, one for each of the three colors. To make the image readable to the

artificial neural network the columns of the resulting matrix were then summed, and these

numbers were used as inputs for a backpropagation neural network (BPNN) to generate

accurate predictions of the ultimate compressive loads. The BPNN was trained and

optimized on 15 of the 21 sample data sets and tested on the remaining 6 sample data

sets. The optimized BPNN was able to produce ultimate compression after impact (CAI)

load predictions for the BVID composite coupons with a worst case error of -8.98%.

This was within the ±10% goal for this research and comfortably within the B-basis

allowables commonly applied to composite structures.

The ultrasonic C-scan images were then preprocessed using Fast Fourier

Transforms (FFTs) in an effort to remove any image noise present. The results of the

BPNN that was trained and tested on the green color data only were then compared to the

IV

results yielded by the BPNN trained and tested on the images that were processed

through the FFT. It was found that the FFT processed images had a worst case BPNN

prediction error of 8.65%, which was only slightly lower than the -8.98% error that was

generated by the unprocessed green layer only C-scan image data. This improvement

suggested that the added work involved in FFT preprocessing of the worst case error was

not as productive as had been hoped, leading to a few suggestions for future noise

removal research. This also reinforced the notion that BPNNs, being an iterative

optimization scheme, can provide accurate predictions in the presence of at least small

amounts of noise. Thus, image filtering methods coupled with the iterative optimization

technique that comprises a BPNN have demonstrated the ability to generate accurate CAI

load predictions in composite coupons that have experienced BVID.

v

TABLE OF CONTENTS

Signature Page ii
Acknowledgments iii
Abstract iv
Table of Contents vi
List of Figures vii
List of Tables viii
CHAPTER 1 INTRODUCTION 1

Overview 1
Previous Research 2
Current Research 3

CHAPTER 2 BACKGROUND THEORY 4

Ultrasonic C-scan 4
Artificial Neural Networks 5
Fast Fourier Transform 9

CHAPTER 3 EXPERIMENTAL PROCEDURE 11

Coupon Manufacture 11
Experimental Procedure 12
Image Manipulation 14
Image Filtering 17

CHAPTER 4 RESULTS 21

Training and Testing Selection 21
Neural Network Optimization 21
Filtered and Unfiltered Image Comparison 31
Material Allowables 33

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 36
REFERENCES 38
APPENDIX A: TRAINING AND TESTING FILE INDEX 40
APPENDIX B: C-SCAN IMAGES WITH MATLAB OUTPUT 41
APPENDIX C: MATLAB CODE 62

MATLAB IMAGE PREPROCESSING PROGRAM 62
MATLAB PROGRAM TO FILTER FAST FOURIER TRANSFORM 64
TEST AND TRAINING FILE CREATION MATLAB CODE 67

APPENDIX D: SAMPLE BACKPROPAGATION NEURAL NETWORK 69
APPENDIX E: COMPOSITE INFORMATION SHEET 72

vi

LIST OF FIGURES

Figure 1: Ultrasonic Waveform 4

Figure 2: Ultrasonic C-scan and Transducer 5

Figure 3: Artificial Neural Network 6

Figure 4: Sigmoid Transfer Function 8

Figure 5: Sinusoidal Pattern with corresponding Frequency Transform 10

Figure 6: Misaligned Fibers in Test Coupon 11

Figure 7: Experiment Equipment 13

Figure 8: C-Scan Hardware Setup Screen 14

Figure 9: MATLAB Program Output Including all 3 color layers 15

Figure 10: Noisy C-Scan Image 16

Figure 11: MATLAB Program Output Containing Green Layer Only 16

Figure 12: Filtered and Unfiltered Image Comparison 17

Figure 13: Fast Fourier Transform 19

Figure 14: Fast Fourier Transform of Specimen 3B after Filter Applied 19

Figure 15: Hidden Layer 1 Worst case error vs. Hidden Layer 1 Neurons 23

Figure 16: Zoomed in Hidden Layer 1 Worst case error vs. Hidden Layer 1 Neurons 23

Figure 17: Worst Case Error vs. Hidden Layer 2 Neurons 24

Figure 18: Worst Case Error vs. Hidden Layer 1 Learning Coefficient 24

Figure 19: Worst Case Error vs. Output Layer Coefficient 25

Figure 20: Worst Case Error vs. Momentum 25

Figure 21: Worst Case Error vs. F' Offset 26

Figure 22: Worst Case Error vs. Learning Ratio 26

Figure 23: Worst Case Error vs. Transition Point 27

Figure 24: Optimal BPNN Settings 28

Figure 25: Comparison Between Prediction and Training Errors 30

Figure 26: B-Basis Allowables 34

vn

LIST OF TABLES

Table 1: Composites by Weight of Various Aircraft 2

Table 2: Worst Case Error using Red, Green, and Blue color layers 17

Table 3: Optimized Neural Network Configuration 27

Table 4: Unfiltered Image BPNN Results 29

Table 5: BPNN Results using 0.063 Output Layer Coefficient 31

Table 6: Filtered Image BPNN Results 32

Table 7: Filtered and Unfiltered Image Comparison 33

Table 8: B-basis Allowables Tolerance Interval 33

viii

CHAPTER 1

INTRODUCTION

OVERVIEW

Over the past decade, composite materials have become increasingly prevalent in

aerospace structures because they provide excellent stiffness properties and high strength-

to-weight ratios. This major advantage of composites over metals has led to a huge

increase in their use, especially as major structural elements. Both the military and

commercial aviation sectors have adopted composites heavily as shown in Table 1.

In certain circumstances the weight savings of composites dictates their use, such

as during the development of the B-2 stealth bomber. The addition of the radar absorbing

paint on the fuselage caused the aircraft to be overweight; in order to reduce this weight

penalty, composites were used over the majority of the aircraft [1]. Weight savings is

also a crucial factor in the design of commercial aircraft because it controls the number of

passengers and fuel economy; as such, weight savings lowers operating costs and

increases profits. Airbus utilized a metal matrix composite in the design of the A3 80

called GLARE, which is comprised of fiberglass fibers embedded within an aluminum

matrix, offering a weight savings of between 15% and 30% over standard aerospace

aluminums [1].

Although they have high strength-to-weight ratios and excellent stiffness

properties, polymer matrix composites are very susceptible to barely visible impact

damage (BVID). BVID can be caused by many different things that aircraft encounter on

a daily basis such as being struck with runway debris, tools being dropped by aircraft

mechanics, or bird strikes. Although damage may be barely visible to the naked eye on

the surface, significant damage may exist underneath the surface in the form of matrix

cracking, delamination between plies, or occasional fiber breaks, weakening the

composite substantially and causing the part to fail at a load lower than it was designed to

withstand. Because of the inherent danger of BVID existing in structures such as aircraft

wings or other load bearing parts, it becomes necessary to develop a method of

quantitatively evaluating the severity of BVID without reliance on visual inspection.

1

Table 1: Composites by Weight of Various Aircraft [1]

Aircraft Name

Boeing 787

Boeing V-22 Osprey

Eurofighter

Airbus A320

Dassault Rafale

Lockheed F-22 Raptor

Airbus A3 80

Boeing 777

FA-18 Hornet

Composites by Weight

50%

50%

40%

28%

26%

24%

22%

20%

19%

PREVIOUS RESEARCH

Artificial neural networks have been used to predict ultimate compressive loads of

impact damaged composite laminates from ultrasonic C-scan image data. Hess [2]

originated the project in 2003 when he obtained a worst case error of 16.62% in graphite-

epoxy coupons. He used three sets of 16-ply graphite-epoxy coupons and damaged them

with known impact energies ranging from 0-20 ft-lbf. Each coupon was then

ultrasonically C-scanned, and a 16 color image was generated of the impact damage. In

the image file, each pixel was assigned a numerical value between 0 and 15, with 0

corresponding to black and 15 to white. The coupons were then compressed to failure in

a compression after impact (CAI) test fixture to determine their ultimate compressive

load. The numerical value of each pixel was input into the artificial neural network in

order to predict the ultimate CAI load of the coupons. In 2005, Nguyen [3] improved

upon the Hess's results slightly with a worst case error of 14.61% using fiberglass-epoxy

coupons. Subsequently, Gunasekera [4] in 2009 obtained a worst case error of-11.53%o

using the acoustic emission data taken during compression of the same graphite-epoxy

coupons that were used in the current project.

2

CURRENT RESEARCH

The current approach was to explore the ability for an artificial neural network to

predict the ultimate compressive load of graphite-epoxy coupons that have BVID using

improved ultrasonic C-scan images as inputs. Twenty-one test specimen coupons were

impacted at known energies, scanned using an ultrasonic C-scan machine, and then

compressed to failure with their ultimate CAI loads being recorded for use in the artificial

neural network. After the C-scan images were recorded for each damaged coupon, the

images were cropped into 100 by 100 pixel squares centered on the damaged area and

input into a MATLAB code for image preprocessing. The MATLAB code quantified the

damaged area of the image and created a 1 row by 300 column matrix of the image which

contained three colors: red, green, and blue. By inspection, the red and blue color layers

contained only noise; thus, only the green color layer was used as the input to the neural

network. Fifteen coupons were employed for training the neural network with the

remaining six being used to test the network. The target goal of the artificial neural

network was twofold: (1) the ability to predict the ultimate compressive load of each

composite coupon within ±10% of the actual failure load, and hopefully, (2) also

predicting within the statistical B-basis allowables of the graphite-epoxy composite

coupons as well.

3

CHAPTER 2

BACKGROUND

ULTRASONIC C-SCAN

Ultrasound is a volumetric method of nondestructive testing that uses high

frequency sound waves to analyze a part, point by point, without destroying it.

Ultrasonic waves are high frequency sound waves that are outside the range of human

hearing, normally well above 20 kHz [5]. A typical ultrasonic system consists of a

pulser/receiver transducer that contains a piezoelectric ceramic crystal which converts an

electric signal into a sound wave; conversely, the piezoelectric element will produce an

electrical signal in response to an incident sound wave. To scan a part, the ultrasonic

transducer emits a sound wave, then switches to listen mode to receive the echoes from

the part. Whenever the wave encounters a change in density, it is both reflected and

refracted; these changes in density can be caused by a defect under the surface. As the

ultrasonic sound wave enters the part, it reflects and refracts. The reflected wave returns

to the transducer first as the "initial pulse" (Figure 1). Then the wave propagates through

the material until it reaches the crack or discontinuity and is again reflected and refracted,

whereupon the reflected wave returns to the transducer as the "crack echo". The wave

continues to propagate through the part and eventually reaches the back surface and is

again reflected and refracted. Here the reflected wave returns to the transducer as the

"back surface echo". Thus, the three echoes in Figure 1 are formed.

10

3

6

> 4

n
< -2

-4

-6

•8

Tme (sec) x 1Qs

Figure 1: Ultrasonic Waveform [6]

4

The specific application of ultrasonic nondestructive testing used in this research

was the ultrasonic C-scan, which is shown in Figure 2. A C-scan is a planar image

generated by compiling all of the ultrasonic echoes for each point along the surface of the

part. This allows the user to see the size and location of flaws both underneath and atop

the surface. This image is generated by moving the ultrasonic transducer in a sweeping

pattern over the part while recording the amplitude and time-of-flight of the received

pulses as it proceeds. These signals are displayed on a screen at each position of the

transducer using either a color or grayscale. The C-scan system used in this research was

a water coupled immersion scanning machine, which means that both the transducer and

the part being inspected were underwater, allowing the water to transmit the sound waves

across the distance from the transducer to the part and back again.

Selected Layer
within Object

Connector

Electrical
Leads—::

Inner-
Sleeve

Wear Plate
Wear Shoe —

External
Housing

Sound
Absorbing
Backing

Active Element

Electrodes

Figure 2: C-Scan Pattern (Left), Ultrasonic Transducer Cutaway (Right)

NEURAL NETWORKS

Artificial neural networks were derived from the processing of the human brain,

utilizing many different neurons to make complex calculations very quickly. A neural

network consists of a group of interconnected neurons, or processing elements, which

change weighted connections in response to an output error, and through multiple

iterations converge to the desired output or answer. Many different kinds of artificial

neural networks exist for special tasks, but the network that was used for this research

was a backpropagation neural network (BPNN).

A typical BPNN has an input layer, one or more hidden layers, and an output

5

layer. Networks with more than one hidden layer are generally used to solve more

complex problems such as those that require both classification and prediction. Each

layer is fully connected to the neighboring layers with information passing from the input

layer through the hidden layers and on to the output layer. During the learning phase, the

output error is propagated back through the network, and the connection weights are

updated accordingly — this is where the BPNN gets its name.

The backpropagation neural network is a feed-forward, multilayered, supervised

learning system. Feed-forward refers to the direction of movement of information in the

network. In the BPNN of Figure 3, information enters the network through the input

layer, is then passed forward (from left to right) through one or more hidden layers, and

finally exits the network through the output layer. Information is not passed backwards

through the network, and it is therefore designated as a feed-forward network.

Multilayered alludes to the number of layers of a neural network. The number of hidden

layers can be varied as needed. A supervised network requires the operator to give it a

desired result or output, which the network trains toward during the training phase.

BIAS
(1 Neuron)

H , . , - />. (h i a s i

Fixed inpui

Inputs «

2 o — * (w ^) - N

Synaptic
WClphlN

(including bias)

Output

OUTPUT LAYER
(1 Neuron)

HIDDEN LAYER
(10 Neurons)

INPUT LAYER
(100 Neurons)

Figure 3: Backpropagation Neural Network Architecture (Left), Neuron Architecture (Right)

6

The BPNN initializes by assigning random weights between 0 and 1 to all the

neuron connections. The inputs are then multiplied by these weights and passed through

a transfer or squashing function, which normalizes the data before it is passed on to the

next layer. After each training iteration, the resulting answer from the single output layer

neuron is compared to the desired answer, and the error is determined. This error is used

to calculate weight adjustments which are then propagated back through all the network

connections, after which the next training iteration begins. This process continues

iteratively until the answer in the output layer approaches the desired answer, at which

point training is considered to be complete. Once the network has been trained, the

network weights are held fixed and are no longer changed. The testing phase begins

when the network is presented another input file that it has not seen before; the data from

this file are then run through the network. The resulting answer given by the output layer

is compared to the desired answer, and the prediction error is calculated. This final

prediction error is what is being minimized for this research. The desired result is to

optimize the BPNN such that it will predict the ultimate CAI loads of barely visible

impact damaged graphite-epoxy coupons to within a ±10% worst case error from the

ultrasonic C-scan images of the coupons.

The learning algorithm used for the BPNN was the Normalized-Cumulative-Delta

rule. This rule adds up all the squared errors over the training set or epoch, then takes the

square root of the sum and divides this value by the epoch size to normalize it. As

mentioned previously, this normalized RMS error is then used to update the weighted

connections between the output and the hidden layer(s), and the hidden layer(s) and the

input. Thus, all network weights are updated at the end of each training epoch. When

this RMS output error reaches a user defined value, typically 5% or less, or the network

completes a specified number of training cycles, the training is considered complete, the

network weights are fixed, and testing or prediction phase can begin on data inputs that

have not yet been considered.

7

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

2\Q - 8 - 6 - 4 - 2 0 2 4 6 8 10

v

Figure 4: Sigmoid Functions at Different "a" Values

The transfer function that was used for the BPNN in this research was the sigmoid

function as seen in Figure 4. The sigmoid transfer function is described by the following

equation:

cp(v) =

where q>(v) = value of sigmoid function with input v
a = slope parameter.

Varying the slope parameter "a" yields sigmoid functions with different slopes. At the

origin, the slope of the sigmoid transfer function is "a/4". At the extremities of the

function, as v approaches infinity, the slope of the sigmoid function becomes infinitely

small and training is very slow. For higher positive values of input v the transfer function

scales the output value to 1, whereas for higher negative values of input v the transfer

function scales the output value to 0. This scaling of values effectively squashes the

input data within each neuron such that its output ranges from 0 to 1. This makes the

larger numbers less significant and smaller numbers more significant such that the data

fed into subsequent neurons can be more easily processed by the neural network. The

bias neuron has a constant output of 1 which when multiplied by the connection weight

acts as a translation term to shift the sigmoid activation function (p(v) such that it operates

near its highest slope and therefore trains as quickly as possible.

T r i T i

8

FAST FOURIER TRANSFORM

A Fast Fourier Transform (FFT) transforms a real image into the frequency

domain, which enables the image to be filtered. This is accomplished by taking the FFT

of each pixel in the image and transforming its value into a complex number in the

frequency domain. The real image consists of the summation of several different

sinusoids with different frequencies and amplitudes. When an image is transformed using

a FFT, it represents each sinusoid as a pair of conjugate symmetric points, each with a

frequency and a phase. Figure 5 shows the correlation between a sinusoidal image and its

frequency transform. Measured with relation to the center of the FFT image, the distance

to each point denotes the frequency of the sinusoidal wave. The angle that the position

vector from the center of the FFT image to the point, measured from the horizontal,

denotes the phase angle of the sinusoidal wave. In order to transform a real two

dimensional image into the frequency domain, the equation below must be calculated for

each pixel in the real image:

M-1N-1

F(x,y) = Y ^ / (m , n) e - y 2 7 r (^ + ^)
771 = 0 71 = 0

where F(x,y) = value of each pixel at position (x,y) in the frequency domain
f(m,n) = value of each pixel at location (m,n) in the space domain
M = width of the image
N = height of the image.

After the image has been filtered and the noise eliminated, the FFT must be

inverted to return the transformed image to a real image in the spatial domain. By

employing the equation below at each point and its corresponding conjugate in the

frequency image, it is reverted back to a real image in the spatial domain:

M-1N-1

f(m,n) = ̂ X Z F^y>i2n^+y^
m=0 n=0

9

Figure 5: Sinusoidal Pattern with corresponding Frequency Transform [7]

It is important to notice in Figure 5 that as the distance of the conjugate

symmetric points grows from the center point of the frequency image (bottom row), the

frequency of the corresponding real image increases (top row). The importance of this is

discussed later in the image filtering section, but an important generalization can be

reached from this: the higher frequencies of the real image are focused on the edges of its

corresponding frequency transform. Also, as a general rule, the lower frequencies

determine the overall shape of the image, while the higher frequencies sharpen the edges

and control the fine details. The images on the far right column of Figure 5 are the result

of the summation of the three signals in the preceding three columns. The image (top

row) of column four is analogous to the images analyzed in this research; the C-scan

image can be considered the summation of many different sinusoids of differing phases.

The theory of noise cancellation of the C-scan images is predicated on the correct

selection of the high frequency noise and its cancellation.

10

CHAPTER 3

EXPERIMENTAL PROCEDURE

COUPON MANUFACTURE

The test coupons were manufactured using six 24-ply panels made from Cycom

985 GF3070PW graphite 3070 plain weave preimpregnated tape (with a fiber volume

fraction of 0.63) by Gunasekera [4] and Pacific, et al. [14]. All of the coupons had

misaligned fibers, but it was decided to move forward with testing because this defect

existed in every coupon which at least provided consistency for the testing. The number

of plies per coupon was determined by the ASTM standard D7137/D 7137M-07 which

covers CAI testing and mandates that test coupons be 0.20 inches thick [8-9].

Considering the thickness of each individual ply and the thickness of the plain weave

tape, it was determined that a 24-ply layup would yield a coupon thickness of the

required 0.20 inches. The composite panels were laid up in a wooden jig, and the

resulting laminate panels were cured at 355°F for two hours while being clamped with

four C-clamps between two aluminum caul plates to prevent warping. After curing, the

oven was shut down, and the laminate panels were left to cool down to room temperature

in the oven. Once cooled, each panel was cut into four (4 in x 6 in) coupons using a

diamond tip wet-saw, yielding a total of 21 useable coupons. Each coupon was labeled

with a number and a letter designating from which plate the coupon originated, with

different coupons coming from the same plate given the same number but different letters

[4].

Figure 6: Misaligned Fibers in Test Coupon

11

EXPERIMENTAL PROCEDURE

The 21 coupons were impacted at known energies of 10, 12, 14, 16, 18, 20 Joules

using an Instron Dynatup 9200 impacter with a blunt 0.5 inch hemispherical tup (Figure

7) to create barely visible impact damage (BVID). The impacter simulated a low velocity

impact similar to a tool dropping on the coupon. Pneumatic brakes on the impacter were

utilized to avoid multiple impacts from the tup, since the impacter bounced after the

initial impact. The coupon was marked with a silver metallic marker to more accurately

determine the center of the coupon as the impact site for the tup. Pneumatic clamps held

the sample in place to avoid movement during the test and ensure a precise impact

location in the center of the coupon.

After impacting the samples, the BVID coupons were C-scanned using a Physical

Acoustics Corporation (PAC) ULTRAPAC II water immersion C-Scanner (Figure 7).

The ULTRAPAC II system employed a 0.25 inch diameter piezoelectric crystal

ultrasonic transducer with a characteristic frequency of 5 MHz for scanning. Figure 8

shows the hardware setup menu of the C-Scan system, detailing all the settings used for

this research. The ULTRAPAC II system outputs several images including amplitude

and time-of-flight; however, only the amplitude image was used for this research. The

horizontal lines on the A-scan output represent the gates of the scan. These gates control

what information is recorded, which allows the computer to ignore the initial pulse as the

wave enters the water couplant. The gate time selection also allows the user to select

data specifically from the damaged layers of the composite, essentially looking inside the

composite only at the depth of the damaged area.

12

Figure 7: UltraPAC II C-Scan imaging system (Top left), Boeing Compression After
Impact (CAI) test fixture (Bottom left), Instron Dynatup 9200 Impacter (Right)

The samples were then compressed to failure to determine their ultimate CAI

loads using a Tinius-Olsen model 290 Lo Cap testing machine (Figure 7). A Boeing

compression after impact test fixture was used to keep the coupons from buckling in

accordance with ASTM standards D 7137/D 7137M-07 [8]. The coupons were secured

in the Boeing CAI fixture and compressed to failure, with failure always occurring at the

BVID impact location, indicating that the levels of BVID selected had adequately

compromised the strength of the composite.

13

Figure 8: C-Scan Hardware Setup Screen

Once the coupons were compressed to failure and testing had concluded, the C-

scan images were cropped to a 100 by 100 pixel square around the damaged area. This

damaged square image was a 256 color RGB image consisting of 3 layers ~ a red layer, a

green layer, and a blue layer - with the pixel of each layer assigned a number from 0 to

255. Finally, the image was put into a MATLAB processing program developed by Hess

[2] and converted into a 1 row by 300 column matrix which was used as the artificial

neural network input for ultimate CAI load prediction.

IMAGE MANIPULATION

The C-scan image files output from the UltraPAC II are in ".PCX" format and

needed to be converted to ".BMP" format so they could be analyzed as 256 color RGB

images. Once all the images were converted to 256 color BMP files, they were loaded

into the MATLAB program. Figure 9 shows the MATLAB output for an impacted

14

sample displaying all 3 color layers. The graph below the image displays the color value

of each pixel (AMP) and the x position of the pixel. Positions 0 to 100 correspond to the

red color layer, positions 100 to 200 correspond to the green color layer, and positions

200 to 300 correspond to the blue color layer.

20

40

60

80

inn

1
1

| 0 5

C

Image of the Test Specimen

j M

10 20 30 40 50 60 70

Image

%/*****,

V

* >

) 50 100 150 200
D _ j Position
Kea Grten

< ; , ;

30 90

H***Av<
250

Blue

J 100

,

H
300

Figure 9: MATLAB Program Output Including all 3 color layers

By observation, the red and the blue layers include mostly noise, whereas the

green layer clearly displays a dip corresponding to the impact location. Not all images

are as free of noise as shown in Figure 9. Several of the images that were C-scanned

contained significant noise, such as sample 3B in Figure 10. When these noisy images

were input to the BPNN, the network had difficulty determining the location of the

damaged section, thereby increasing the error significantly, as seen in Table 2. In an

effort to minimize noise, the red and blue layers were removed from each image (Figure

11), and only the green layer was used as input to the backpropagation neural network.

15

• H H B K H H |

20

40

60

R0

nn

V

=g

£ "

- , „nSl

^ i

_*c

n
&
i .r:,..

Image of Test

z: =a""~

"—
i i

" w l

__
--

L

Sp

""

ecimen 3B

=• - =a

• f e ^ - g r ; 5P _ ~

-a

-.. . .. _,

1 1

-z

i

=

~ =

•La" ^
JM

* _
l

-

-

_

. 1

10 20 30 40 50 60 70 80 90 100

Image

0.8

, W W ^ ^

150
Position

200 250

Figure 10: Noisy C-Scan Image

300

0.8

i r i — V J r c - \ "T" ' T — ~ R ' ' "f" 1

i i i i i i i i i 1

0 10 20 30 40 50
Position

60 70 80 90 100

gure 11: MATLAB Program Output Containing Green Layer Only

Table 2: Worst Case Error using Red, Green, and Blue color layers

Coupon
ID

27B
25D
26C

3A

24B
26A

Impact
Energy (J)

16
20
18

14

12
10

Ultimate Compressive
Load (lbf)

18,825
17,249
20,729

19,156

19,782
22,190

Predicted Ultimate
Compressive Load (lbf)

20,338.64
16,638.96
20,079.15

21,583.95

17,856.1
23,274.83

Percent
Error
8.04%
-3.54%
-3.14%

12.67%

-9.74%
4.89%

IMAGE FILTERING

While the majority of the green layer images were mostly free of noise, there

existed a few images which were particularly noisy, such as Figure 10. It is difficult to

identify the impact location and damage of the coupon in Figure 10; therefore, a filter had

to be implemented to remove the higher frequency noise. Figure 12 shows a side-by-side

view of test specimen 3B, a particularly noisy image, before it was filtered and after it

was filtered to remove the high frequency noise.

(a) (b)

Figure 12: Green Layer of Noisy C-Scan image Filtered (Left), Unfiltered (Right)

17

This image filtering process took place in several steps. Initially the MATLAB

output indicated that the green layer of the RGB image contained the least amount of

noise (Figure 9) and therefore the cleanest signal; the green layer for each impact

specimen was then extracted from each image (Figure 11). Thus, the BPNN was trained

and tested solely on the green layer of the C-scan images which is discussed in the Neural

Network Optimization section.

While the noise of most images was completely eliminated by removing the red

and blue layers, significant noise still remained in some of the images, as can be seen in

Figure 12(b). In an effort to improve the BPNN's prediction of the test specimens'

ultimate compressive strength, a Fast Fourier Transform (FFT) was implemented. The

FFT decomposes an image into real and complex parts that represent the image in the

frequency domain. The FFT allows the higher frequency noise to be eliminated,

removing the pixilation in the more noisy images and leaving the noiseless images

relatively unchanged.

After the FFT of the image has been taken, the pixels that constitute the high

frequency noise in the image are located near the center of the FFT image, while the low

frequency pixels are around the edges as seen in Figure 13(a). The FFT was shifted to

move the high frequency noise to the edges of the FFT where they could then be filtered

out (Figure 13(b)). While operating in the frequency domain, a simple MATLAB code

was written to remove the high frequency noise by setting their values equal to 0. The

MATLAB code set the values of pixels to 0 that were outside of a square around the

center of the image as seen in Figure 14.

18

ourier Transform of coupon 3B image S h i f t e d F o u r i e r Transform of coupon 3B

(a) (b)
Figure 13: Test Specimen 3B After Fast Fourier Transform (Left), and After Shifting the

Fast Fourier Transform (Right)

Figure 14: Fast Fourier Transform of Specimen 3B after Filter Applied

The size of the square around the center of the FFT controls how much of the

image is filtered. A larger area square filters less of the image, while a smaller area

square will filter more of the image. The square filter needs to be positioned at the center

of the FFT image; its location is important because the FFT of a real image is "a

conjugate symmetric". Conjugate symmetric refers to when a real signal is transformed

to the frequency domain; each pixel is represented as a complex number with conjugate

19

values located symmetrically at each corner of the image. To avoid getting a bad inverse,

and therefore getting complex numbers as pixel values when the image is returned to the

space domain, both of the pixels' conjugate values must be set equal to 0. This is

accomplished by creating a square filter which is symmetric about the center of the image

as seen in Figure 14.

20

CHAPTER 4

RESULTS

TRAINING AND TESTING SELECTION

The initial selection of coupons to be included in the training set and the testing

set was random. This, however, led to testing a data set containing the highest ultimate

compressive load, which confused the neural network because it encountered a higher

load during testing than it had seen during training. This induced some error into the

calculation and was avoided in future training and testing sets.

Therefore, the selection of coupons for the training set began by including both

the coupons with the highest and lowest ultimate compressive loads. The loads were then

organized from highest to lowest, and two coupons at each impact energy level were

selected for training, ensuring that the coupons selected were evenly spaced to give the

BPNN an optimal selection of data points. Because the sample size was quite small, as

only 21 coupons were C-scanned and compressed to failure, a method referred to as

"Bootstrapping Data" was utilized to increase the apparent sample size for the BPNN.

The method of bootstrapping data is a technique that uses the same composite coupon

multiple times in random positions in the training file to fool the neural network into

believing there are more coupons in the data set than are actually present. Bootstrapping

does not skew the data; it only increases the size of a small data set. Bootstrapping data

was employed in this experiment by using each coupon in the training set three times in a

random order. Once the training and testing data sets and files were written, the neural

network needed to be optimized to yield the lowest possible worst case error. Appendix

A contains the index of each coupon in the training and testing files which yielded the

most promising worst case error.

NEURAL NETWORK OPTIMIZATION

The only way to find the optimal network parameters is through trial and error

using the computer program NeuralWorks Professional II Plus. The architecture chosen

21

for the BPNN began with one hidden layers. Varying the number of hidden layer

neurons, the hidden layer learning coefficient, the output layer learning coefficient, the

momentum, the learning ratio, the F' Offset, and the transition point through trial and

error is required to arrive at the optimal neural network. This trial and error procedure

can be very time consuming; thus, two methods were used to expedite the optimization

process.

The two optimization techniques employed to find the optimal network were

series optimization and parallel optimization. Parallel optimization entailed varying all

neural network parameters independently in different networks, then once the network

was optimized, all optimum parameters were placed into the same neural network.

Parallel optimization is the most time efficient method of BPNN optimization; however,

it can only be used when a team of people is available to optimize the neural network. It

was found in this project that both parallel and series optimization yielded identical

BPNN parameters.

The first optimization technique employed herein was series optimization, which

entailed varying all parameters individually, selecting the value that yielded the lowest

worst case error, and using that parameter value in the BPNN. The first parameter value

that was varied was the number of hidden layer neurons. Figure 15 shows the variation

of the worst case error as the number of hidden layer 1 neurons was increased. A closer

view of the area of interest can be seen in Figure 16 which focused around 10 hidden

layer 1 neurons; this was the optimal number of neurons which yielded an absolute value

worst case error of 11.61%.

22

Worst Case Error vs Hidden Layer
1 Neurons

» » $ • •

60 80 100

Hidden Layer 1 Neurons

120 140

Figure 15: Hidden Layer 1 Worst case error vs. Hidden Layer 1 Neurons

Worst Case Error vs Hidden Layer 1
Neurons

^ 35

¥ 30

UJ 25
m

5 20
M

o 15
5

10

Hidden Layer 1 Neurons

Figure 16: Zoomed in Hidden Layer 1 Worst case error vs. Hidden Layer 1 Neurons

With an absolute value worst case error of 11.61%, the number of hidden layer 2

neurons was varied to explore the need for a two hidden layer network. After varying the

number of hidden layer 2 neurons between 10 and 100, Figure 17 shows that a second

hidden layer was not necessary, as all the worst case errors were greater than the 11.61%

value obtained for one hidden layer.

23

Worst Case Error vs Hidden Layer 2
Neurons

^
i -

o
v_ LU

<D

U
+•»

i -

o 5

16

15

14

13

12

20 40 60 80

Hidden Layer 2 Neurons

100

Figure 17: Worst Case Error vs. Hidden Layer 2 Neurons

As the network only had one hidden layer, only the hidden layer 1 learning

coefficient needed to be varied. Hence, the hidden layer 1 learning coefficient was varied

between 0.001 and 0.5, and the optimal value was found to be 0.001, as seen on Figure

18. This value yielded a slight reduction in the absolute value worst case error of from

11.61% down to 11.5%.

o

5

Worst Case Error vs Hidden Layer 1 Learning
Coefficient

11.7

T 11-65 o
c
^ 11.6
H
u 11.55

11.5 t
0.05 0.1 0.15 0.2 0.25 0.3 0.35

Hidden Layer 1 Learning Coefficient

0.4 0.45 0.5

Figure 18: Worst Case Error vs. Hidden Layer 1 Learning Coefficient

24

The next logical step was to vary the output layer learning coefficient. This

proved to be the most successful in decreasing the worst case error. By decreasing the

output layer coefficient to 0.017, the error reduced from 11.5% to 5.19%, a decrease of

over 50% (Figure 19).

Worst Case Error vs Output Layer
Coefficient

0.1 0.15

Output Layer Coefficient

0.25

Figure 19: Worst Case Error vs. Output Layer Coefficient

Figure 20 through Figure 23 show the variation of the remaining four parameters

as they were modified and optimized using the same techniques.

Worst Case Error vs Momentum

0.1 0.2 0.3 0.4

Momentum

0.5 0.6 0.7

Figure 20: Worst Case Error vs. Momentum

25

Worst Case Error vs F' Offset

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F' Offset

Figure 21: Worst Case Error vs. Ff Offset

Worst Case Error vs Learning Ratio
7.5

to
o
£ 6.5

U

5.5

Learning Ratio

Figure 22: Worst Case Error vs. Learning Ratio

26

Worst Case Error vs Transition Point

5000 10000 15000 20000

Transition Point

25000 30000

Figure 23: Worst Case Error vs. Transition Point

Table 3 summarizes the optimal parameter settings found for the neural network.

Using these values, the BPNN was able to predict the ultimate compressive load with a

worst case testing error of-5.16%, well within the ±10% target range.

Table 3: Optimized Neural Network Configuration

Number of Input Neurons
Hidden Layer 1 Neurons
Hidden Layer Coefficient

Number of Output Neurons
Output Layer Coefficient

Learning Coefficient
Momentum Value
Transition Point

Transfer Function
Learning Rule

F' Offset

100
10

0.001
1

0.017
0.5
0.4

10,000
Sigmoid

Normalized-Cumulative-Delta
0.1

The NeuralWorks Professional II Plus software BPNN setup screen with optimal settings

can be seen below in Figure 24.

27

InstaNet / Back Propagation

Input

Hidl

Hid 2

Hid 3

Output

ttPEs

100

10

0

0

1

LCoef

0.001

0.250

|0.200

jam 7

Momentum

Trans. Pt.

LCoef Ratio

F Offset

'0.400(

10000

0.500(

o.i on

R? Connect Prior

P Auto-Assoc.

P Linear Output

P SoftMax Output

V Fast Learning

P Gaussian Init.

P Minimal Config.

f? MinMax Table

P Bipolar Inputs

P Cascade Learn
1

r Logicon PROJECTION NETWORK (TM)

J45~ Epoch Set Epoch From File

Learn Rule

teSmaam
ExtDBD
QuickProp
MaxProp
Delta-Bar-Delta

Transfer

Linear
TanH

CffiBSlfM
DNNA
Sine

I/O Files

Learn Browse... J
[Trainer. txl|

Recall /Test Browse... 1
JTest.txt

OK Cancel Help

Figure 24: Optimal BPNN Settings

The compiled results, including both training and prediction errors can be seen in

Table 4. The rows highlighted in yellow are coupons which were included in the testing

file; the other rows were coupons used in the training file. It should be noted that a worst

case testing error of within ±10% was the target of this research; unfortunately, by using

optimal settings, the worst case training error was found to be -12.52%, slightly outside

of this range. Therefore, further optimization was sought.

28

Table 4: Unfiltered Image BPNN Results

Coupon
ID

26D

24D

25D

26C

25C

27C

27B

27D

24C

3A

3D

2C

2A

25B

2B

3B

24B

27A

24A

26A

25A

Impact
Energy (J)

20

20

20

18

18

18

16

16

16

14

14

14

12

12

12

12

12

12

10

10

10

Ultimate Compressive
Load (lbf)

20,024

17,250

17,249

20,729

20,010

18,986

18,825

18,742

17,944

19,156

19,152

16,200

21,750

21,749

18,900

20,250

19,782

17,249

24,195

22,190

21,815

Predicted Ultimate
Compressive Load (lbf)

19,054.8145

17,640.0879

17,470.6836

19,663.1777

19,657.5039

19,049.0488

19,643.6719

19,276.1270

18,925.3066

19,802.0117

21,107.6641

16,996.6348

21,078.8828

20,173.1055

20,036.0273

20,682.1895

19,763.3281

19,385.4375

21,166.8926

21,044.6621

20,603.8965

Percent
Error

-4.84%

2.26%

1.29%

-5.14%

-1.76%

0.33%

4.35%

2.85%

5.47%

3.37%

10.21%

4.92%

-3.09%

-7.25%

6.01%

2.13%

-0.09%

12.39%

-12.52%

-5.16%

-5.55%

The significant difference in testing and training errors can be attributed to the

relatively small output layer learning coefficient; this could possibly have caused some

overtraining to occur on the data. Figure 25 shows the comparison between the worst

case training error and the worst case testing error as the output layer learning coefficient

was varied. It can be clearly observed from the plot that as the output layer learning

coefficient approaches zero, the training error steadily increases. Thus, the optimal value

of the output layer learning coefficient is not 0.017, as had been earlier supposed, where

the BPNN produces the minimal testing error, but rather is where the training and testing

error curves intersect at an output layer learning coefficient of 0.063. Here the worst case

training and testing errors should be approximately equal.

29

1 A

E 12 4

£ 10 -

<3 8 -

1 ^
4

c

Training Error and Testing Error
Comparison

r V —-— ' V ^^—
\ ^ ^ \S ^^-^

v " ^ ^ ^ ^
! I 1 H "

) 0.05 0.1 0.15 0.2

Output Layer Learning Coefficient

• Testing File Error M Training File Error

i

0.25

Figure 25: Comparison Between Prediction and Training Errors

After comparing the training and testing errors and finding the optimal output

learning coefficient, the final BPNN prediction errors could be calculated. The predicted

ultimate CAI loads of the unfiltered image data can be seen in Table 5. These values

were calculated using the optimal output learning coefficient of 0.063, which yielded a

worst case error for training and testing of -8.96%) and -8.98%, respectively. As noted,

these two values are approximately equal and both are within the ±10% worst case

prediction error goal.

30

Table 5: BPNN Results using 0.063 Output Layer Coefficient

Coupon
ID

26D

24D

25D

26C

25C

27C

27B

27D

24C

3A

3D

2C

2A

25B

2B

3B

24B

27A

24A

26A

25A

Impact
Energy (J)

20

20

20

18

18

18

16

16

16

14

14

14

12

12

12

12

12

12

10

10

10

Ultimate Compressive
Load (lbf)

20,024

17,250

17,249

20,729

20,010

18,986

18,825

18,742

17,944

19,156

19,152

16,200

21,750

21,749

18,900

20,250

19,782

17,249

24,195

22,190

21,815

Predicted Ultimate
Compressive Load (lb)

19,764.19

16,981.84

17,328.87

18,866.51

19,773.29

19,326.75

19,422.61

18,726.62

18,332.10

20,328.60

20,404.80

16,447.73

21,502.41

21,371.35

19,805.28

20,323.34

19,218.11

18,452.20

22,026.11

21,571.86

21,028.18

Percent
Error

-1.30%

-1.55%

0.46%

-8.98%

-1.18%

1.79%

3.17%

-0.08%

2.16%

6.12%

6.54%

1.53%

-1.14%

-1.74%

4.79%

0.36%

-2.85%

6.98%

-8.96%

-2.79%

-3.61%

FILTERED AND UNFILTERED IMAGE COMPARISON

The C-scan images were placed into the BPNN for ultimate CAI load prediction

after they were FFT filtered, and a significant amount of high frequency noise was

removed. Following the same optimization procedure as with the unfiltered images, the

BPNN was optimized, yielding the results tabulated in Table 6. Here it can be seen that

FFT image filtering did improve the worst case prediction error down from -8.98% to

8.65%). This reduction in error was not nearly as much as was expected.

31

Table 6: Filtered Image BPNN Results

Coupon
ID

26D

24D

25D

26C

25C

27C

27B

27D

24C

3A

3D

2C

2A

25B

2B

3B

24B

27A

24A

26A

25A

Impact
Energy (J)

20

20

20

18

18

18

16

16

16

14

14

14

12

12

12

12

12

12

10

10

10

Ultimate Compressive
Load (lbf)

20,024

17,250

17,249

20,729

20,010

18,986

18,825

18,742

17,944

19,156

19,152

16,200

21,750

21,749

18,900

20,250

19,782

17,249

24,195

22,190

21,815

Predicted Ultimate
Compressive Load (lbf)

19,795.97

17,045.25

18,306.68

18,942.68

19,858.97

19,351.67

18,478.77

18,471.83

18,155.08

20,735.68

20,063.35

16,608.53

21,512.81

21,400.50

19,886.24

20,379.29

18,632.73

18,741.61

22,124.94

21,316.96

20,981.32

Percent
Error

-1.14%

-1.19%

6.13%

-8.62%

-0.75%

1.93%

-1.84%

-1.44%

1.18%

8.25%

4.76%

2.52%

-1.09%

-1.60%

5.22%

0.64%

-5.81%

8.65%

-8.56%

-3.93%

-3.82%

From the summarized results of Table 6 it is clear that the BPNN was able to

predict accurately with both noisy and FFT filtered images. Utilizing only its iterative

optimization scheme, the BPNN was able to remove most of the high frequency noise, as

the weights of the respective neurons which contained most of the image noise

approached zero. The FFT image filtering process did provide some reduction in worst

case error; however, in this case, the rectangular filter used to remove the high frequency

noise may have removed too much frequency information in the image, thereby resulting

in a higher than expected worst case error.

32

Table 7: Filtered and Unfiltered Image Comparison

Unfiltered
Filtered

Worst Case Testing Error
-8.98%
-8.62%

Worst Case Training Error
-8.96%
8.65%

MATERIAL ALLOWABLES

The tolerance interval within which the BPNN predictions should fall is referred

to as the B-basis material allowables for the composite coupons. B-basis allowables are

defined as the tolerance interval within which there is a 95% confidence that 90% of all

future ultimate compression after impact (CAI) ultimate loads will fall [10]. The B-basis

tolerance interval may be calculated from the following equation:

Interval = ±K(nfP,c)sx

where Interval = tolerance interval for B-basis allowables
K = factor dependant on N, P, C parameters
n = number of samples in a certain group
P = fraction of population
c = confidence interval
sx = standard deviation.

Table 8: B-basis Allowables Tolerance Interval

Impact
Energy

(J)
10
12
14
16
18
20

Number
of

Coupons
3
6
3
3
3
3

Mean Ultimate
Compressive

Load (lbf)
22,733.33
19,946.67
18,169.33
18,503.67
19,908.33
18,174.33

Standard
Deviation

(lbf)
1,279.65
1,731.62
1,705.49
486.46
875.94

1,601.86

K
factor
6.919
3.723
6.919
6.919
6.919
6.919

B-basis
Allowables

Interval (lbf)
±8,853.91
±6,446.80

±11,800.31
±3,365.81
±6,060.60

±11,083.26

Upper
Limit (lbf)
31,587.24
26,393.47
29,969.64
21,869.48
25,968.94
29,257.59

Lower
Limit (lbf)
13,879.42
13,499.86
6,369.021
15,137.86
13,847.73
7,091.075

It can be clearly observed in Figure 26 that all the ultimate compressive loads predicted

by the optimized BPNN fall well within the B-basis allowables of the graphite/epoxy

coupon sample group.

33

B Basis Allowables

30000

§. 25000
T3

o
—i

>

a 20000

s.
E
o
u
S 15000
•

E

10000

y = 198.68x2 - 6260.8x + 74398

5000

y = -38.047X2 + 796.72x + 8691.3

10 12 14 16

Impact Energy (Joules)

18 20

• 20 J

• 16 J

X 12 J

BPNN Prediction

Lower Tolerance

30 Coupon Lower Tolerance

Poly. (Lower Tolerance)

Poly. (30 Coupon Lower Tolerance)

• 18 J

X 14 J

• 10 J

Upper Tolerance

30 Coupon Upper Tolerance

Poly. (Upper Tolerance)

Poly. (30 Coupon Upper Tolerance)

Figure 26: B-Basis Allowables

Increasing the number of coupons at each impact damage energy level would

obviously decrease the B-basis allowables. If instead of the 3 or 6 samples at each

energy level, there were 30 coupons at each energy level, the K values would all decrease

from 6.919 (3 samples) or 3.723 (6 samples), as seen in Table 8, to 2.140 (30 samples).

Assuming the same mean and standard deviation values for the increased sample size, the

34

B-basis allowables would decrease significantly to the values shown by the dashed lines

in Figure 26. Note that all the BPNN predictions are well within these more conservative

values as well. This is significant because the B-basis allowables are typically calculated

for composites based on a sample size of 30 or more test specimens. Unfortunately, this

research did not have the resources available to generate such a large sample size.

35

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

• After initial image preprocessing, a backpropagation neural network (BPNN) using

the green layer only data from the ultrasonic C-scan image of barely visible impact

damage (BVID) in graphite-epoxy composite laminates was able to accurately predict

the ultimate compression after impact (CAI) load with a worst case error of -8.98%,

which was within the ±10% goal for this research and comfortably within the B-basis

allowable for composites.

• Because the Fast-Fourier Transform (FFT) noise removal routine resulted in a slight

improvement in the prediction capability of the BPNN, down from a worst case error

of -8.98% to 8.65%), it can be concluded that some high frequency image noise was

removed by the FFT, which aided the BPNN in making more accurate CAI load

predictions.

• This research has demonstrated the viability of an ultrasonics based nondestructive

evaluation (NDE) technique that could save aircraft manufacturers and maintenance

companies thousands of dollars on unnecessary repairs by giving a trained technician

the ability to objectively evaluate the effect of BVID on any composite part and

predict with confidence the effect of the damage on the ultimate CAI load.

RECOMMENDATIONS

• Manually eliminating individual points in the FFT frequency image and setting their

values to zero, as was done here, would be far too time consuming for an operational

assessment of impact damage. Moreover, the square filter used in this research for

FFT noise removal may have been too aggressive in eliminating pixels in the

frequency domain. Future research might investigate the effect of different filters on

image noise removal.

36

• Future research might also inquire into the possibility of using the raw reflectivity of

the C-scan image, rather than using solely the green layer data, for image

manipulation and ultimate CAI load prediction.

37

REFERENCES

Quilter, Adam. Composites in Aerospace Applications. [Online] [Cited: April
12, 2011.] http://cis.ihs.com/NR/rdonlyres/AEF9A38E-56C3-4264-980C-
D8D6980A4C84/0/444.pdf

Hess, Christopher D. Residual Compressive Strength Prediction of
Carbon/Epoxy laminates Subjected to Low Velocity Impact Damage. Daytona
Beach: Embry-Riddle Aeronautical University, 2003. M.S. Aerospace
Engineering Thesis.

Nguyen, T-K.D. Damage Assessment and Strength Prediction in S2-Glass/Epoxy
Laminates Subjected to Low Energy Impact. Daytona Beach : Embry-Riddle
Aeronautical University, 2005. M.S. Aerospace Engineering Thesis.

Gunasekera, Anthony M. Compression After Impact Strength Prediction in
Graphite/Epoxy Laminates Using Acoustic Emission and Artificial Neural
Networks. Daytona Beach : Embry-Riddle Aeronautical University, 2009. M.S.
Aerospace Engineering Thesis.

American Society for Nondestructive Testing. Nondestructive Testing
Handbook, Ultrasonic Testing, [ed.] Gary L Workman, Doron Kishoni and
Patrick O Moore. 3rd Edition. Columbus : s.n., 2007. Vol. 7.

Experimental Wavelet Analysis and Applications to Ultrasonic Non-destructive
Evaluation. Park, Ik Keun, Park, Un Su and Ahn, Hyung Keun. [ed.] Sook In
Kwun and Jai Won Byeon. Seoul, Korea: Seoul National University of
Technology. 15th World Conference on Nondestructive Testing.
http://www.ndt.net/article/wcndt00/papers/idn347/idn347.htm.

Russ, John C. The Image Processing Handbook. 4th Edition. Raleigh : CRC
Press, 2002. Materials Science and Engineering Department, North Carolina
State University.

Standard Test Method for Compressive Residual Strength Properties of
Damaged Polymer Matrix Composite Plates. D7I37/D 7137 M. ASTM
Standards. Conshohocken, PA : ASTM International, 2007.

Standard Test Method for Measuring the Damage Resistance of a Fiber-
Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. D7136/D
7136 M. ASTM Standards. Conshohocken, PA : ASTM International, 2007.

38

http://cis.ihs.com/NR/rdonlyres/AEF9A38E-56C3-4264-980CD8D6980A4C84/0/444.pdf
http://cis.ihs.com/NR/rdonlyres/AEF9A38E-56C3-4264-980CD8D6980A4C84/0/444.pdf
http://www.ndt.net/article/wcndt00/papers/idn347/idn347.htm

10. Gregoire, Alexandre David. Ultimate Compression After Impact Load Prediction
in Graphite/Epoxy Coupons Using Neural Network and Multivariate Statistical
Analyses. Daytona Beach: Embry-Riddle Aeronautical University, 2011. M.S.
Aerospace Engineering Thesis.

11. Cartz, Louis. Nondestructive Testing, Radiography, Ultrasonics, Liquid
Penetrant, Magnetic Particle, Eddy Current. Materials Park : ASM International,
1995.

12. Haykin, Simon. Neural Networks A Comprehensive Foundation, [ed.] John
Griffin. Hamilton : Macmillan College Publishing Company, 1994.

13. Dorfman, Michele D. Ultimate Strength Prediction in Fiberglass/Epoxy Beams
Subjected to Three Point Bending Using Acoustic Emission and Neural
Networks. Daytona Beach : Embry-Riddle Aeronautical University, 2004. M.S.
Aerospace Engineering Thesis.

14. A.B. Pacific, E.v.K. Hill, Nikolas L. Geiselman, Christopher J. Foti, Matthew D.
Gonitzke and Hannah L. Surber, "Neural Network Prediction of Ultimate
Compression After Impact Loads in Graphite-Epoxy Coupons from Ultrasonic C-Scan
Images," ASNT Fall Conference & Quality Testing Show 2010, American Society for
Nondestructive Testing, Columbus, OH, 2010, 8 pages.

39

APPENDIX A: TRAINING AND TESTING FILE INDEX

Coupon
ID

26D
24D
25D
26C
25C
27C
27B
27D
24C
3A
3D
2C
2A
25B
3B

24B
2B

27A
24A
26A
25A

Impact
Energy (J)

20
20
20
18
18
18
16
16
16
14
14
14
12
12
12
12
12
12
10
10
10

Ultimate Compressive
Strength (lbf)

20,024
17,250
17,249
20,729
20,010
18,986
18,825
18,742
17,944
19,156
19,152
16,200
21,750
21,749
20,250
19,782
18,900
17,249
24,195
22,190
21,815

Testing
File Index

2
3

1

4

5

6

Training File
Index

6
9

2
13

1
5

19
4
43
17
8

*5

16
10

12

29
27

22
26

7
14

30
11
44
21
24

23
20
*3 *3

15

39
34

25
37

18
42

41
31
45
40
36

32
38
35

28

40

APPENDIX B: C-SCAN IMAGES WITH MATLAB OUTPUT

Image of Test Specimen 2A

~r

40 50

Image

mf^Sf\

; v v A ' A w v ^

150
Position

Test Specimen 2A

41

10 i

20 •=•

30 '

40 \

50 •

60 i

70 a

80

90

100

, , image of Test Spacman 2B , ,
1 j . j . j f . . j .

50 100 150
Position

Test Specimen 2B

42

Image of Test Specimen 2C

40 50 60

1 r—

0 . 9 -

Image

150
Position

Test Specimen 2C

200 250 300

43

10

20

30

40

50

60

70

80

90

on

©^

g a,

i

«2sJ5-

I
10

1

1
20

1

1

30

1

Sg|

1

40

Image of Test Specimen 3A

1 I

4JL
.^MlSk;
•p-W- .JSS
^ E

i i
50 60

1

9BQ

i
70

1

5£*iS^

i
80

ESP*

I

i
90

I

- r^^

-

-

-

_L
100

Image

50 100 150
Position

Test Specimen 3A

44

Image of Test Specimen 3B

T - ^ r-4 - - -

" * = = -

= « - v j - d =

20

Imag.

0.6

50 100 150
Position

200 250 300

Test Specimen 3B

45

Image of Test Specimen 3D

10 -

20 -

100

I

I
3 50 1C

Image

I
0 150

I

I
200 250 30

Position

Test Specimen 3D
l l i i l l l M

46

Image of Test Specimen 24A

10

20

30

40

50

60

70

80

90

100

-3=

40

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

n 1

I

I

Image
l

-

-

-

i Jllii iJlrrvl

i i i
50 100 150

Position
200 250 300

Test Specimen 24A

47

1 -] — — —

Image of Test Specimen 24B

Test Specimen 24B

48

10 -

Image of Test Specimen 24C

T

10 •

20 •

30 I

40 M

50 •

60 •

70 •

80 •

90 •

100

1

Position

Test Specimen 24C

49

Image of Test Specimen 24D

Test Specimen 24D

50

10 -

Image of Test Specimen 25A

30 i

50 -

70 •

: • • ' - • " " '

20 30 40 50 60 70 80 90 100

Image

PoliL
300

Test Specimen 25A

51

Image of Test Specimen 25B

80 -

90 -

60 90 100

Image

]
0 . 6 -

150
Position

200 250 300

Test Specimen 25B

52

Image of Test Specimen 25C

v^yyl/'KMj
0.1

50 100 150
Position

Test Specimen 25C

200 250 300

53

r
10 -

Image of Test Specimen 25D

Image

#r

150
Position

300

Test Specimen 25D

54

10 -

Image of Test Specimen 26A

20

30

40

50

60

70

80

90

100
20 30 40 50

Image

60 80 90 100

H

50 150
Position

200

^
300

Test Specimen 26A

55

Image of Test Specimen 26C

1~

10 -

20 -

30 -

40 -

50 -

60 -

70 -

80 -

90 -

40 60

Image

80 90 100

i

msBsm
150

Position

Test Specimen 26C

56

Image of Test Specimen 26D

Test Specimen 26D

57

Image of Test Specimen 27A

20 50

Image

50 100 150
Position

Test Specimen 27A

200 250 300

58

Image of Test Specimen 27B

10

20

30

40

50

60

70

80

90

100
40 50

Image

60 70

150
Position

Test Specimen 27B

59

Image of Test Specimen 27C

70 ^sp~ife
SSfcO

20 60 70 90 100

Image

JT^W7^"

0.5

50 100 150
Position

Test Specimen 27C

200 250 300

60

X
Image of Test Specimen 27D

" i 1 1 r

20 •

30

40

50

60 •

70 •

9 0 -

40

Image

pr+A+r^

100 150
Position

Test Specimen 27D

61

APPENDIX C: MATLAB CODE

MATLAB IMAGE PREPROCESSING PROGRAM

% To run this program, copy and the file name into the 'readimage'
command. To test an image, make it's in bitmap format

% Revision Date: April 15,2003
% Revised by: Christopher Hess

% Revision Date: November 19, 2010
% Revised by: Andrew Pacific

% Revision Date: December 1, 2010
% Revised by: Nikolas Geiselman

clear all
clc

image(imread('3D_FS_I', 'bmp'))

% This finds the image file and stores it into matrix 'map_b' as a
% colormap
[B, mapjo] = imread('3D_FS_I', 'bmp');

%Only Read Green layer
B=B(:,:,2);

% This sums up the row or columns of the array and transpose them
cr = sum(B);

%To add or substract (%) to sums the rows or columns accordingly
ccrr= cr (1, :) ;

% Get the numbers of rows 'm' and columns 'n'
[m,n] = size(ccrr)

% Find the maximum value value in the matrix
g= max(ccrr)

% Normalizes the matrix
gg=ccrr/g;

% Plotting data
% Format
% - first image is the image file
% - second image is a scatter graph of the sum of the columns

subplot(2,1,1); image (B)
title ('Image of the Test Specimen')

subplot(2,1,2); plot(gg)

62

title ('Image')
xlabel('Position')
ylabel('AMP')

% Write to a text file
dlmwrite ('3D_FS_I.txt', gg, '\t') ;

63

MATLAB PROGRAM TO FILTER FAST FOURIER TRANSFORM

%This is a MATLAB Filter C-Scan images using Square filter of user
%defined size
clc
clear all

%Open the image file
img=imread('27D_FS_I', 'bmp');

%Only Read Green layer
img=img(:,:,2);

%Display Original Image
figure, imshow(img, [])
title('Original image of damaged coupon');

%Taking the fft2 (2-D fft)
freq_img=fft2(img);

%Shifting the fft image
Shifted=fftshift(freq_img);

o o

%************** Rectangular Filter ************%
o o

%Apply Rectangular filter to shifted FFT
[row,col] = size(Shifted);%Find size of image
centrow=row/2; %Find center row number
centcol=col/2; %Find center col number
fsize=20; %Filter size, counting pixels out from center

%Filtering image
for i=l:centrow-fsize-1, %Filter rows (top)

Shifted(i,:)=0;
end

for i=centrow+fsize+1:row %Filter rows (Bottom)
Shifted(i,:)=0;

end

for j=l:centcol-fsize-1, %Filter Cols (left)
Shifted(:,j)=0;

end

for j=centcol+fsize+1:col, %filter cols (right)
Shifted(:,j)=0;

end

Logshift=log(Shifted); %take log of filtered image to increase
brightness

64

unshifted=ifftshift(Shifted); %Unshift the FFT before inversing the FFT
inverse_FFT=ifft2(unshifted); %Inverse the FFT to bring image back to
spacial

O r * * * * * * * * * * * * * * Chris Hess Code FFT * * * * * * * * * * * * %
o o

% This sums up the row or columns of the array and transpose them
cr = sum(inverse_FFT);

%To add or substract (%) to sums the rows or columns accordingly
ccrr= cr(1, :) ;

% Get the numbers of rows 'm' and columns 'n'
[m,n] = size(ccrr);

% Find the maximum value value in the matrix
g= max(ccrr);

% Normalizes the matrix
gg=ccrr/g;

%gg=abs(gg);
inverse_FFT=abs(inverse_FFT) ;

subplot(4,1,1); image (inverse_FFT)
title ('Image of Test Specimen 27D')

subplot(4,1,2); plot(gg)
title ('Image')
xlabel('Position')
ylabel('AMP')

% Write to a text file
dlmwrite ('27D_FS_I.txt', gg, '\t') ;

o o

%************** E n d o f c h r i s Hess Code FFT ************%
o o

o . * * * * * * * * * * * * * * Chris Hess Code IMAGE ************%

% This sums up the row or columns of the array and transpose them
coro = sum(img);

%To add or substract (%) to sums the rows or columns accordingly
ccorro= coro(1,:);

% Get the numbers of rows 'm' and columns 'n'
[mo,no] = size(ccorro);

65

% Find the maximum value value in the matrix
go= max(ccorro);

% Normalizes the matrix
ggo=ccorro/go;

subplot(4,1,3); image (img)
title ('Image of Test Specimen 27D')

subplot(4,1,4); plot(ggo)
title ('Image')
xlabel('Position')
ylabel('AMP')

o o

%************** E n d o f C h r i s R e s s C o d e ^^^^^^^^^^^^%

66

TEST AND TRAINING FILE CREATION MATLAB CODE

%To assemble test and training files
clc
clear all

Read in the Text files

s2A=dlmread(
s2B=dlmread(
s2C=dlmread(
s3A=dlmread(
s3B=dlmread(
s3D=dlmread(
s24A=dlmread
s24B=dlmread
s24C=dlmread
s24D=dlmread
s25A=dlmread
s25B=dlmread
s25C=dlmread
s25D=dlmread
s2 6A=dlmread
s26C=dlmread
s26D=dlmread
s27A=dlmread
s27B=dlmread
s27C=dlmread
s27D=dlmread

2A_FS_I,
2B_FS_I.
2C_FS_I,
3A_FS_I,
3B_FS_I,
3D_FS_I,
1 2 4A_FS_
1 2 4B_FS~
'2 4C_FS~
'24D_FS[
'25A_FS~
1 2 5B_FS_

*2 5C_FS~
T2 5D_FS_

' 2 6A_FS_

f2 6C_FS~
f 2 6D_FS~
'27A_FS~
f2 7B_FS"
'27C_FS~
' 27D FS"

. t x t ' , '

. t x t 1 , '

. t x t ' , '

. t x t 1 , •

. t x t ' , *

. t x t ' , '
_ I . t x t '
_ I . t x t 1

_ I . t x t '
. t x t '
, t x t '
. t x t '
. t x t '
. t x t '
. t x t '
. t x t "
, t x t •

" i . t x t '
" i . t x t 1

[i . txt 1

" i . t x t '

\ f
\ t '
\ t '
\ t '
\ t '
\ t '

\ t
\ t
\ t
\ t
\ t
\ t
\ t
\ t
\ t
\ t
\ t
\ t
\ t
\ t
\ t

Assign coupons index numbers for Training File

indexl=
index2=
index3=
index4=
index5=
index6=
index7=
index8=
index9=
indexlO

indexll
indexl2
indexl3
indexl4
indexl5
indexl6
indexl7
indexl8
indexl9

s27D;
s25C;
s2B;
s2C;
s24C;
s26D;
s27D;
s3B;
s24D;
= s24A;

=s2C;
=s25A;
=s27C;
=s24C;
=s25A;
=s27A;
=s25B;
=s27D;
=s3D;

67

index20=s27A;

index21=s25B;
index22=s25C;
index23=s2B;
index24=s3B;
index25=s25C;
index26=s27C;
index27=s24D;
index28=s25A;
index29=s26D;
index30=s3D;

index31=s2C;
index32=s2B;
index33=s24A;
index34=s24D;
index35=s24A;
index36=s3B;
index37=s27C;
index38=s27A;
index39=s26D;
index40=s25B;

index41=s3D;
index42=s24C;
index43=s2A;
index44=s2A;
index45=s2A;

^Generate Training File
trainings[indexl;index2;index3;index4;index5;index6;index7;index8;

index9;indexl0;indexl1;indexl2;indexl3;indexl4;indexl5;
indexl6;indexl7;indexl8;indexl9;index2 0;index21;index22;
index23;index2 4;index2 5;index2 6;index27;index2 8;index2 9;
index30;index31;index32;index33;index34;index35;index36;
index37;index38;index3 9;index4 0;index41;index4 2;index4 3;
index4 4;index4 5];

dlmwrite ('Trainer.txt', training,'\t');
Q.
O ~" —

% Assign coupons index numbers for Test File
%

testindl=s27B;
testind2=s25D;
testind3=s26C;
testind4=s3A;
testind5=s24B;
testind6=s26A;

^Generate Test file
test=[testindl;testind2;testind3;testind4;testind5;testind6];
dlmwrite ('Test.txt', test,'\t');

68

APPENDIX D: SAMPLE BACKPROPAGATION NEURAL NETWORK

[DORFMAN(ll)]

STAGE 1: Forward propagation of input vector

Step 1: Initialize weights to small random values

Step 2: Do while stopping condition is false

Step 3: Compute input sum and apply activation function for each middle PE:

Xj = f(Wy * Xj)

Step 4: Compute input sum and apply activation function for each output PE:

zk = f(vij * yi)

STAGE 2: Back propagation of error

Step 5: Compute error: 5k = (tk - Zk) * f (wjk * yj)

Step 6: Compute delta weights: Avjk = (a)(8k)(yj) + {Momentum * Avy(old)}

Step 7: Compute error contribution for each middle layer PE:

8j = 5k * Wjk * f (Wy * Xi)

Step 8: Compute delta weights: Awy = (a)(5j)(xi) + {Momentum * Awy(old)}

Step 9: Update weights: Qrs(new) = Qrs(old) + AQrs

Step 10: Test stopping condition

69

EXAMPLE

Consider a backpropagation network with 2 inputs and 2 hidden or middle layer PEs and

a single output [9]. Find the new weights when the network is presented with an input

vector Xi = [0.0, 1.0] and target vector Zi = 1.0 using a learning coefficient of 0.25 and a

sigmoid activation function.

Bias

The initial weights are given as:

vk =

0.7
-0.2

0.5

-0.4
0.3

0.1

0.4
0.6

-0.3

First compute the middle layer output using the relationship: y = wy Xj

yi = wn xi + w2i x2 + WIB = (0.7)(0) + (-0.2)(1.0) + 0.4 = 0.2

y2 = W12 xi + w22 x2 + w2B = (-0.4)(0) + (0.3)(1.0) + 0.6 = 0.9

yi(ouT) = f(yi) = l / (l + e - y I) = 0.55

y2(ouT) = f(y2) = l / (l+e - y 2) = 0.71

Next, compute the network output and associated error using the relationship: Zk = Vy y

zi = vn yi + V12 y2 + VIB = (0.5)(0.55) + (0.1)(0.71) - 0.3 = 0.046

zi(ouT) = f(z,) = l / (l + e - z l) = 0.51

5k = (Tk - Zk(OUT)) f '(zk(OUT))

5zi = (Ti -Z1(OUT)) f(zi)(l - f(zi)) = (1.0 - 0.51)(0.51)(1 - 0.51) = 0.12

The middle to output layer weights can now be updates using: Avjk = a 8k yj(ouT)

Avn = a 8zi yi(ouT) = (0.25)(0.12)(0.55) = 0.017

Av12 = a 5zi y2(0UT) = (0.25)(0.12)(0.71) - 0.021

Av1B = a 5zl Bias = (0.25)(0.12)(1) = 0.030

vk = |0.517 0.121 I -0.270|

70

The second stage begins by computing the middle layer error as: 8j = 8k Vjg f (yj(0UT))

5yi - 5zl v n f(y,)(l - f(yO) = (0.12)(0.5)(0.55)(1 - 0.55) = 0.015

5y2 = 8zl v12 f(y2)(l - f(y2)) = (0.12)(0.1)(0.71)(1 - 0.71) = 0.0025

The input to middle layer weights are then updated using: AWy = a8j Xj

Awn = a Syi xi = (0.25)(0.015)(0) = 0

Awn = a Syi x2 = (0.25)(0.015)(1.0) = 0.0038

Aw2i = a 8y2 x, = (0.25)(0.0025)(0) = 0

Aw22 = a 8y2 x2 = (0.25)(0.0025)(1.0) = 0.0006

AWIB = a 8yl Bias = (0.25)(0.015)(1.0) = 0.0038

Aw2B = a 8y2 Bias = (0.25)(0.0025)(1.0) = 0.0006

Finally, the new updated weights are given as:

Wjj(NEW) = 0.7 -0.3962 | 0.4038

-0.2 0.3006 j 0.6006 .

71

APPENDIX E: COMPOSITE INFORMATION SHEET

PRODUCT NAME

BATCH NUMBER

ROLL NUMBER

Foot i f f From

ROLL D&tCl LOG

DAT!

INSPECTOR

Kaiof Dtftct

/7Y • B

Cytec
CYCOH* 985 GF3070PW-6CT, Resin Content 35-39%

WARNING.

WIDTH OF PRODUC

1 Impurities
2 Dry Areas
3. Area of Non-uniformity
4 Incomplete Impregnation
5 Cured Resin
6 Hard Spot
7 Color Difference
8 HiM Selvage
9 Yarn Splices

10 Twisted Yarns
11. Wrinkles or Fuckers

TOTAL LENGTH

ALLOWANCE FOR DEFECTS

ACCEPTABLE MATERIAL

LFT

HG-8000
White Copy Customer

«es»n-Ricrt Area
13 Misalignment - Warp Yarns
14 Misalignment • Fill Yarns
15 Unwetted Fibers
16 fiber Balling
17 Width
IS. Straightness of Edge (Tip*)
19 Cut
20. Gap
21 Stop Mark
22 Other fdescnbe m comment section)
23 Splice

Yellow Copy-inspection

	Neural Network Prediction of Ultimate Compression After Impact Loads in Graphite-Epoxy Coupons from Ultrasonic C-Scan Images
	Scholarly Commons Citation

	ProQuest Dissertations

