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ABSTRACT 

Author: Kristian M. Kostreva 

Title: Torque Limit of a Mechanical Fastener in a Graphite/Epoxy Joint 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2002 

Presently there is a lack of confidence amongst engineers when specifying the 

preload of a mechanical fastener in a composite joint due to a lack of a fundamental 

knowledge base regarding the behavior of composites under fastener compressive load. 

As such, a novel experimental procedure was developed herein to determine the through-

the-thickness compressive (TTTC) material properties. A total of 206 property tests were 

performed on four different graphite/epoxy material systems. The results confirmed that 

TTTC material properties vary with fiber orientation, laminate thickness, fiber volume 

fraction, and even laminate surface finish. Hence, the 'rule of mixtures' provides a poor 

estimate of the TTTC modulus in that it fails to account for any of these variables. 

Finally, acoustic emission nondestructive testing, along with a modified approach 

to MSFC-STD-486B, Torque Limits for Standard Threaded Fastener, were used to 

determine the torque limit of a fastener in a single lap joint. The laminate configuration 

examined in these tests was manufactured in accordance with the MIL-HDBK-17 design 

code. The results demonstrated the inability of the fasteners employed to damage the one 

composite system investigated: fastener thread failure occurred first. Further study is 

necessary to confirm or refute these results for other composite systems and joint 

configurations. 
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CHAPTER 1 

INTRODUCTION 

1.1 SCOPE 

In modem aerospace/aeronautical engineering, fiber reinforced plastics (FRP) are 

increasingly being used in structural applications due to their high strength to weight 

ratios. For fiber/polymer matrix type composites, the strength of the composites comes 

from the fiber, while the matrix is primarily a bonding agent. It is for this reason that in-

plane material properties have drawn much more attention than out-of-plane, or through-

the-thickness (TTT) properties. In fact, there is neither a standard test for determining 

TTT properties, nor TTT data available in composite material data books. However, 

there are certain circumstances where TTT properties play a dominant role. One such 

example is the TTT bearing stress of composites caused by lateral compression of a 

mechanical fastener. It is therefore suggested that these material properties henceforth be 

known as through-the-thickness compression (TTTC) properties. 

Since TTTC mechanical properties are critical in understanding the behavior of a 

mechanically fastened composite joint, a major portion of this work was expended in 

identifying the TTTC elastic modulus and the TTTC ultimate strength. A prototypical 

process to determine these properties is presented herein. There were 206 separate TTTC 

tests, which were performed on four different composite material systems. In order to 
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validate this new test procedure, standardized ASTM D3410-00 tests [1] were performed 

as a benchmark comparison for the TTTC tests. 

There is great difficulty in determining the torque limit of a mechanical fastener 

in a composite joint because all modern approaches assume isotropic material behavior. 

One such method in practice by engineers at the Marshall Space Flight Center 

(NASA/MSFC) is to follow the specification MSFC-STD-486B [2] but use only half the 

experimentally determined torque value. The major concern, which initiated this 

conservative practice, is whether or not the composite members will be crushed as a 

result of the bolt preload. Presented herein is an approach which utilizes acoustic 

emission (AE) nondestructive evaluation during MSFC-STD-486B torque-tension testing 

of a graphite/epoxy lap joint to determine the onset of composite damage. 

1.2 PREVIOUS RESEARCH 

A major portion of the research to date concerning bolted composite joints has 

dealt with in-plane static load capacity [3]. These works helped spawn standards dealing 

with filled-hole static joint strength. Other investigations [4-6] have clearly shown that 

the torque load in the mechanical fastener significantly affects the joint strength in a 

beneficial manner by reducing the in-plane bearing strength dependence of the composite 

laminate. One study reported a maximum increase in joint strength of 28% [4]. This 

finding has helped to improve the reliability and efficiency of the joint in a composite 

structure. Therefore, the next step is to determine just how much preload can be applied. 

Since the ability of the composite to withstand the bolt preload is directly related 

to the TTTC material properties, an in depth literature survey was performed. 
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Unfortunately, there are very few published works on this topic. One experimental study 

on TTT composite properties by Benzeggagh, et al. [7] attempted to determine indirectly 

the TTT tension strength and modulus of graphite/epoxy coupons made from a very thick 

50 layer unidirectional plate. The limitation of this work was that the authors neither 

validated their work against known material properties, nor did they develop a test 

procedure that lends itself to testing realistic composite laminates. 

Another work related to through-the-thickness composite properties by Awa, et 

al. [8] remarks that 3D braided composites may have TTT material property advantages 

over traditional laminated composites due their relatively low interlamina properties. 

Their work focused on experimentally comparing traditional composites, 2D braided 

composites, and 3D braided resin transfer molded (RTM) composites; however, the 

process in which the authors determined the material properties is highly complex. They 

used an indirect method of determining TTT properties; that is, they transformed data 

gathered from L-shaped curved-beam specimens under tension and four-point bending 

into through-the-thickness tensional and compressive material properties. Regardless of 

the approach, their results did show that the 2D textile composite TTT strength was lower 

than the unidirectional tape's (TTT strengths of the 3D braids could not be determined), 

and the through-the-thickness strength was found to decrease significantly with 

decreasing fiber volume fractions. 

Finally, acoustic emission nondestructive testing has never been utilized in 

determining the torque limit of a mechanical fastener; yet, it was successfully applied by 

Hamada, et al. [9] to determine the in-plane bearing-failure modes of a mechanical 
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carbon/epoxy joint. Utilizing the measured acoustic energy, the investigators were able 

to accurately determine the start of in-plane failure of the composite. 
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CHAPTER 2 

THEORY AND BACKGROUND 

2.1 THROUGH-THE-THICKNESS MATERIAL PROPERTIES 

Theoretically, the TTT compressive modulus of a composite, ET, can be 

calculated from the following equations derived by Vinson [10]: 

4 KT G23 

KT + mG23 

where KT is the plane strain bulk modulus, 

1 Kf-
lVf+r,KKm-lVm 

KT Vf+rjKVm 

G23 is the out-of-plane transverse shear modulus of a composite lamina, 

1 Gf-
xVf+r,fim-lVm 

and m is a determined by 

G23 vf+r,<vu 

m = l + - T u 

En 

Vf and Vm are the fiber and matrix volume fractions of the composite laminate, 

where Vf + Vm = 1- Gf and Gm are the shear modulus of the fiber and matrix, 

respectively. The Poisson's ratio of the laminate is D12, while En is the modulus of 

elasticity for the laminate in the fiber direction. 



Also, 

K/=w^)' K-=W^:Y 
Eu=EfV,+E.Vm, ou=u,Vf+umVm, 

1 + m/ *>>-A» + ", 
/Kf

 5 4 ° ' » + /G, 
T1K=TZ T> V4 = 2(1-0 ' / 4 _ <l-».) ' 

with Ef and Em being the elastic moduli of the fiber and matrix; likewise, Uf and um are 

the Poisson's ratio of the fiber and matrix. It is noteworthy that determination of ET via 

Vinson's method is not possible for the materials presented in this work, since values for 

the shear modulus of the fiber, Gf, and the Poisson's ratio of the fiber and matrix, Uf and 

om, are not available. In fact, this theory does not lend itself to practical application 

because many of the required material constants are difficult to determine experimentally. 

To determine the TTTC material properties of a composite laminate, an 

experimental approach was the only option. The major difficulty that arises when testing 

for TTTC properties is how to accurately measure the specimen's strain. The thickness 

of a composite laminate is often only a few thousands of an inch. This makes bonding a 

strain gage in the thickness dimension infeasible. In order to obtain strain measurements, 

an instrument capable of measuring extremely small displacements with great accuracy 

was required. Compiled in Table 2.1 are the most widely used displacement 

measurement devices with the critical features present for comparison. 
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Table 2.1 Displacement Measurement Tool Comparison 

Measurement Tool 

LDS 

LVDT 

Extensometer 

Features 
< 0.1% full scale error 

No external conditioners 
3.5 mV/V output 

Medium cost 
0.25% full scale error 

External conditioners required 
4 mV/V output 

Low cost + conditioners 
0.1-0.25% full scale error 
No external conditioners 

3.5 mV/V output 
High cost 

After careful consideration, the Linear Displacement Sensor (LDS) from Vishay 

with a full scale deflection of 0.25 inch was chosen because of its excellent full-scale 

error, acceptable cost, and ease of employment due to a four-arm active strain gage 

bridge. The next step was to design a compression fixture which would have the test 

coupon in proximity to the sensor, house the sensor to avoid any damaging coupon 

shrapnel, and allow for lead wire attachment to the data acquisition system. The initial 

design can be seen in Figure 2.1. 

Figure 2.1 Prototypical TTTC Test Fixture with LDS and TTTC Coupon 
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Material selection for the TTTC test fixture was critical. The strength and 

stiffness requirements had to be as high as possible to prevent any significant error due to 

large deflections of the fixture during loading or damage due to a lack of strength. A 

medium carbon steel, AISI 4140, was selected. After machining, the fixture was 

normalized, quenched, and then tempered to a hardness of 50 RHC with a strength of 

approximately 220 ksi. The stiffness of steel is typically 29.7 Msi, approximately 

twenty-eight times greater than the highest TTTC stiffness of the coupons tested. During 

TTTC testing at Embry-Riddle Aeronautical University (ERAU), an upper compression 

head had to be machined from AISI 4140 and treated because of an inadequately strong 

compression head on the Tinius-Olsen (see Figure 4.4). 

Validation of this new test procedure relied on the fact that the material properties 

for a unidirectional plate are theoretically equal in the y and z directions (Figure 2.2), i.e., 

Ey = Ez and ay = az. Therefore, the standardized ASTM D3410-00 90° compression test 

is performed to determine material properties in the y direction along with TTTC tests to 

determine z direction properties for comparison. 

ASTMD3410 

o o o o o o o o 

TTTC 

\ I ( 
o o o o 

t t t 

Figure 2.2 TTTC Validity Concept 
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Finally, there is the technical challenge of generating good data. Even the best 

laminate does not have a perfectly uniform thickness, and this presents difficulty when 

applying the load to the TTTC coupon during the beginning of the test. Lack of thickness 

uniformity means the upper compression head is not in complete contact with the TTTC 

coupon until the moving ram has achieved a certain displacement. This results in an 

effective stiffness much less than when the ram makes full contact. Resulting stress-

strain data plots might have a slight nonlinearity at the beginning of the test until 

complete contact is achieved, at which point the actual coupon stiffness is seen in the 

stress-strain curves. 

2,2 ACOUSTIC EMISSION 

The textbook definition of acoustic emission is a transient elastic wave generated 

by the rapid release of energy from localized source within a material. AE is a passive, 

nondestructive technique requiring the structure or specimen to be under load in order to 

generate the failure mechanisms that produce the elastic waves. Piezoelectric sensors 

attached to the surface detect the stress waves that propagate throughout the material and 

output a voltage signal. A preamplifier is used to boost the voltage signal to a usable 

level, and a band-pass filter is used to remove unwanted noise. The voltage signal is then 

fed to a data acquisition system that extracts information about the signal and generates 

AE quantification parameters. 

In the time domain, there are six AE parameters from which acoustic emission 

results are evaluated (Figure 2.2): amplitude, rise time, duration, energy, counts, and 

counts-to-peak. Amplitude (dB) is the peak amplitude of the voltage versus time signal. 
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Rise time (ms) is the time that it takes the signal to reach its maximum amplitude after 

the waveform first crosses a preset voltage threshold. Duration is the total length of the 

signal (ms) measured from the first to the last threshold crossing. Energy (V-s) is a 

measure of the area under the rectified waveform. Counts and counts-to-peak are 

measured by a digital counting circuit that is activated as the signal surpasses the 

threshold and deactivated once the signal falls below the threshold. 

OURANON 

RELATIVE ENERGY (MARSE) (E) 

Figure 2.3 Acoustic Emission Signal Parameters 

2.3 TORQUE LIMIT OF A MECHANICAL FASTENER 

Currently the author only found one work attempting to predict the torque limit of 

a mechanical fastener in a composite joint. This work, by Zhao, et al. [11], describes the 

torque limit of a bolt as a function of bolt parameters and TTTC material properties of the 

composite laminate in the joint. Two models were derived in this work, one for 

maximum stress failure and the other for maximum strain failure. Validation of these 

models is beyond the scope of this work due to the inability to obtain a bolt and washer 

strong enough to fail the composite material tested. 
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CHAPTER 3 

TEST MATERIALS AND PROCESSES 

3.1 IM7/8552 

The IM7/8552 prepreg tape is made from an intermediate modulus fiber that is 

encased in a mid-toughened, high strength, damage-resistant, 350°F cure, structural 

epoxy. The nominal cured ply thickness is 5.5 mils with a fiber volume fraction Vf of 

60%. This system was used to manufacture six different laminate configurations: [0]32, 

[0, 90]6s, [0, ±45, 90]3s, [0, ±30, ±60, 90]2s, [0, ±45, 90]3s, [0, ±45, 90]4s, and [0, ±45, 

90]5s. The plates had nominal thicknesses of 0.176, 0.132, 0.132, 0.132, 0.132, 0.176, 

and 0.220 inches, respectively. 

Lay-up of the plates involved a standard debulk procedure on the first and every 

successive fourth layer. The first four plate configurations were given a smooth/peel-ply 

finish, while the last three, manufactured by ATK Thiokol Propulsion, were given a 

smooth/smooth finish. All plates were cured in an autoclave according to the 

recommended Hexcel cure cycle. This specific IM7/8552 was donated by NASA/MSFC 

due to its expired shelf life; however, the material had never been opened from its sealed 

freezer bag and was in excellent working condition. 
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3.2 AS4 / 3501-5A AND AS4 / 3501-6 

These two prepreg systems contain the AS4 fiber, an advanced strength carbon 

fiber. The 3501 systems are high strength, damage resistant, 350°F cure, structural 

epoxies with the -6 formula having a slightly higher glass transition temperature than the 

-5a formula (410°F dry versus 392°F dry, correspondingly). The nominal cured ply 

thickness and fiber volume fraction Vf are 5.2 mils and 62%), respectively. 

Both the 3501-5a and 3501-6 prepreg systems were used to manufacture five plate 

configurations: [0]32, [0, ±45, 90]2s, [0, ±45, 90]3s, [0, ±45, 90]4s, and [0, ±45, 90]5s. 

These plates had nominal thicknesses of 0.166, 0.083, 0.125, 0.166, and 0.208 inches, 

respectively. A standard debulk procedure was performed on the first and every 

consecutive fourth layer; in addition, an overnight debulk was done before curing. The 

cure process was performed to Hexcel specifications in an oven while under a 27 psig 

vacuum. 

The AS4/3501-5a was purchased from Hexcel at less than a penny per linear foot 

and was not in the best working condition when received at ERAU, as it had been 

removed from the original seal bag. On the other hand, the AS4/3501-6 was purchased 

from Hexcel at overrun cost. This system was in excellent condition when received and 

was still sealed in the original freezer bag. 

3.3 AS4 / 8552 8H FABRIC 

The AS4/8552 8H fabric had the same fiber and epoxy properties mentioned in 

the previous two sections. The nominal fiber volume fraction Vf was 58% with a typical 

cure ply thickness of 13 mils. The weave of the fabric was an eight-harness satin; that is, 
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the fiber bundles that make up the fabric go over eight bundles and then under one. This 

weave makes the fabric very applicable to highly contoured lay-ups. 

This prepreg fabric was used to manufacture three different plate thicknesses: 9, 

12, and 15 layer laminates. Each layer of the plates had the same fabric orientation with 

fibers running at 0° and 90° with nominal thicknesses of 0.117, 0.156, and 0.195 inches, 

respectively. These plates were given a smooth/peel-ply finish and were cured in an 

autoclave according to specifications. No debulks were performed on these plates. 

Tom Delay of ED23 at NASA/MSFC donated the AS4/8552 8H fabric. The 

material had exceeded its shelf life but had never been removed from the freezer and was 

in excellent working condition. 

13 



CHAPTER 4 

EXPERIMENTATION 

4.1 ASTM D3410-00 (90° COMPRESSION TESTS) 

4.1.1 COUPON SPECIFICATIONS 

The test specimens were wet cut to a nominal width and length of 0.25 inch by 5.5 

inches from the IM7/8552, AS4/3501-5a, and AS4/3501-6 [0]32 plates with a 320 grit 

diamond circular saw. Here the fibers were aligned 90° to the applied load. The surfaces 

were then wet sanded with 600 and 1000 grit emery paper to remove any saw marks. 

4.1.2 TEST APPARATUS 

A single 120 Ohm strain gage with a gage length of 32 mils was used to measure 

the specimen strain. Figure 4.1 shows the compression fixture used in these tests. An 

unsupported test section length of 1.0 inch was used in all ASTM D3410 tests performed. 

Figure 4.1 ASTM D3410 Test Fixture 
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4.2 THROUGH-THE-THICKNESS COMPRESSION TESTS 

4.2.1 COUPON SPECIFICATIONS 

IM7/8552 test specimens were wet cut using a 320 grit diamond circular saw to a 

nominal 0.5 inch length and 0.5 inch width. The cut edges of the coupons were then wet 

sanded with 600 and 1000 grit emery paper to remove any saw marks. TTTC test 

coupons were cut from the [0]32, [0, 90]6s, [0, ±45, 90]3s, [0, ±30, ±60, 90]2s, [0, ±45, 

90]3s, [0, ±45, 90]4s, and [0, ±45, 90]5s IM7/8552 plates. 

AS4/3501-5a, AS4/3501-6, and AS4/8552 test coupons were cut and sanded by 

the same means as the IM7/8552 coupons; however, the specimen's length and width 

were exactly twice the thickness of the plate they were cut from. Plates from which these 

TTTC coupons were cut are: [0]32, [0, ±45, 90]2s, [0, ±45, 90]3s, [0, ±45, 90]4s, [0, ±45, 

90]5s (3501-5a & 3501-6), and 9,12, and 15 layer (AS4/8552). 

4.2.2 TEST APPARATUS 

Through-the-thickness compression tests of the EVI7/8552 were performed at 

NASA/MSFC on a 220 Kip MTS machine (Figure 4.2). A 50 mil full-scale calibration of 

the linear displacement sensor with a Mitutoyo calibrator can be seen in Figure 4.3. 

Figure 4.2 220 Kip Test Machine at MSFC 
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Figure 4.3 Linear Displacement Sensor Calibration 

Through-the-thickness compression testing of the AS4/3501-5a, AS4/3501-6, and 

AS4/8552 coupons were performed at ERAU on the 33 Kip Tinius-Olsen (Figure 4.4). 

Linear displacement sensor calibration was performed in a similar manner to the 

calibration at the NASA/MSFC. 

Figure 4.4 33 Kip Test Machine at ERAU 

4.3 TORQUE-TENSION TESTS 

ATK Thiokol Propulsion manufactured several IM7/8552 [0, ±45, 90]3s 5 inch by 

5 inch coupons for testing. This specific laminate was chosen as MIL-HDBK-17 
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specifies this configuration when using a mechanical fastener to join a composite part. A 

440 grit diamond embedded drill was used to drill the through-holes in the coupons. Two 

different 160 ksi bolts were intended for investigation, 0.25 inch and 0.5 inch diameters. 

The designations of the bolts were NAS1958C-32 (0.5 inch) and NAS1954C-32 (0.25 

inch) with corresponding self-locking nuts. The 160 ksi washers used were NASI587-8 

(d0 = 0.872 inches and d| = 0.506 inches) and NAS1587-4 (d0 = 0.440 inches and d; = 

0.256 inches), respectively. Seen in Figure 4.5 is the MSFC Standard 486B test fixture. 

The AE system used was comprised of a R15 transducer (seen in Figure 4.5 

coupled to the composite plate with hot glue) whose signal was amplified with a PAC 

2/4/6 preamplifier set to 40 dB of gain. The test data presented herein were gathered with 

the PAC DSP-32 and MISTRAS software with all measurable time-domain parameters 

recorded. AE system settings included: preamp gain, 40 dB; system gain, 20 dB; 

threshold, 50 dB; peak definition time, 50 ms; hit definition time, 100 ms; and hit lockout 

time, 300 ms. An attenuation check with a mechanical pencil on the composite laminate 

showed no significant loss of signal for the worst case, the bolt hole between the signal 

source and AE transducer. 

Figure 4.5 486B Torque-Tension Test Set-up 
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CHAPTER 5 

RESULTS 

5.1 ASTM D3410-00 (90° COMPRESSION TESTS) 

The results of the D3410 90° compression tests are presented in Tables 5.1-5.3. 

Accompanying the results are the average and the percent variation, which is the standard 

deviation of the results divided by the average. The data plots from which these values 

were determined can be found in Appendix E. 

Table 5.1 EV17 / 8552 D3410 Results 

Specimen 

1 
2 

Ultimate Strength (ksi) 
Measured 

35 8 
38 1 

Average 

37 0 

% Variation 

4 4% 

Modulus (Msi) 
Measured 

0 629 
0 656 

Average 

0 643 

% Variation 

3 0% 

Table 5.2 AS4 / 3501-5a D3410 Results 

Specimen 

1 
2 
3 
4 

Ultimate Strength (ksi) 
Measured 

164 
19 1 
184 
177 

Average 

179 

% Variation 

6 4% 

Modulus (Msi) 
Measured 

0 573 
0 540 
0 577 
0 521 

Average 

0 553 

% Variation 

4 8% 

Table 5.3 AS4/3501-6 D3410 Results 

Specimen 

1 
2 
3 
4 

Ultimate Strength (ksi) 
Measured 

27 6 
26 2 
26 4 
26 0 

Average 

26 5 

% Variation 

2 7% 

Modulus (Msi) 
Measured 

0 704 
0 654 
0 658 
0 671 

Average 

0 672 

% Variation 

3 4% 
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5.2 THROUGH-THE-THICKNESS COMPRESSION TESTS 

5.2.1 IM7 / 8552 

The results of the TTTC tests of the IM7/8552 coupons with the average and 

percent variation can be found in Tables 5.4-5.10. Refer to Appendix A for the data 

plots. 

Table 5.4 IM7 / 8552 [0]32 TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Ultimate Strength (ksi) 
Measured 

40 5 
41 4 
37 8 
30 5 
34 5 
36 1 
36 8 
37 1 
36 0 
42 5 
35 5 
39 3 

Average 

37 3 

% Vanation 

8 8% 

Modulus (Msi) 
Measured 

0 740 
0 725 
0 748 
0 320 
0 691 
0 645 
0 650 
0716 
0 681 
0 768 
0711 
0 549 

Average 

0 662 

% Vanation 

18 5% 

Table 5.5 IM7 / 8552 [0, 90]6s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Ultimate Strength (ksi) 
Measured 

167 0 
158 8 
165 0 
153 1 
159 6 
158 0 
140 6 
167 5 
151 1 
134 7 
156 6 
154 5 

Average 

155 6 

% Vanation 

6 4% 

Modulus (Msi) 
Measured 

1 320 
1280 
1280 
1 280 
1280 
1280 
1 270 
1 320 
1 330 
1 310 
1 300 
1290 

Average 

1 295 

% Vanation 

1 6% 
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Table 5.6 IM7 / 8552 [0, ±45, 90]3s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Ultimate Strength (ksi) 
Measured 

186 1 
144 7 
169 2 
179 8 
1105 
1138 
139 1 
173 6 
169 4 
175 5 
176 6 
1812 

Average 

160 0 

% Vanation 

16 5% 

Modulus (Msi) 
Measured 

1 330 
1390 
1 340 
1 310 
1 330 
1 410 
1 370 
1 350 
1370 
1390 
1 370 
1 370 

Average 

1361 

% Vanation 

2 2% 

Table 5.7 IM7 / 8552 [0, ±30, ±60, 90]2s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Ultimate Strength (ksi) 
Measured 

176 6 
177 1 
182 4 
180 3 
182 2 
175 8 
178 7 
178 6 
177 4 
178 8 
176 2 
175 8 

Average 

178 3 

% Vanation 

1 3% 

Modulus (Msi) 
Measured 

1310 
1360 
1 340 
1 350 
1 320 
1 340 
1 330 
1 300 
1 350 
1 350 
1360 
1360 

Average 

1339 

% Vanation 

1 5% 

Table 5.8 Thiokol Manufactured IM7 / 8552 [0, ±45, 90]3s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

169 1 
200 1 
1613 
161 7 
165 4 
157 2 
1719 
156 0 
179 0 
172 0 

Average 

169 4 

% Vanation 

7 7% 

Modulus (Msi) 
Measured 

1350 
1 410 
1340 
1340 
1 350 
1 390 
1380 
1 370 
1390 
1 380 

Average 

1 370 

% Vanation 

1 8% 
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Table 5.9 Thiokol Manufactured IM7 / 8552 [0, ±45, 90]4s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

177.7 
172.1 
165.8 
164.2 
164.8 
177.6 
179.1 
171.6 
163.0 
177.9 

Average 

171.4 

% Vanation 

3.8% 

Modulus (Msi) 
Measured 

1.480 
1.440 
1.430 
1.380 
1.420 
1.470 
1.460 
1.470 
1.470 
1.440 

Average 

1.446 

% Vanation 

2.1% 

Table 5.10 Thiokol Manufactured IM7 / 8552 [0, ±45, 90]5s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

178.5 
180.0 
173.8 
161.7 
165.9 
1694 
177.5 
181.7 
164.4 
155.3 

Average 

170.8 

% Vanation 

5.2% 

Modulus (Msi) 
Measured 

1.540 
1.540 
1.520 
1.530 
1.500 
1.540 
1.540 
1.540 
1.530 
1.520 

Average 

1.530 

% Vanation 

0.9% 

Figure 5.1 shows the comparison of the TTTC modulus and the ASTM D3410 

90° compressive modulus. As expected, the results from the TTTC tests on the 

unidirectional plate, [0], match very closely to the D3410 results; however, the remaining 

three configurations have been found to be twice as stiff as the theory predicts. 

2.5 

15 

0.5 

UASTMD3410 
• TTTC 

[F 
[0] [0, 90]6s [0, ±45,90]3s [0, ±30, ±60, 90]2s 

Figure 5.1 Ratio of TTTC and D3410 Tests for IM7/8552 Modulus 
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The TTTC ultimate strengths in Figure 5.2 compare very well with the D3410 

ultimate strengths for the unidirectional plate, [0]. On the other hand, the cross-ply 

configuration is shown to be 4.2 times as strong, while the [0, ±45, 90]3s is 4.3 times the 

strength of the D3410 tests. The [0, ±30, ±60, 90]2s strength result is 4.525 times as 

strong as the D3410 result and 5.2% stronger than the [0, ±45, 90]3s laminate. It is 

apparent from these results that the orientation of the fibers in the laminate plays an 

important role in the TTTC strengths. Also, the [0, ±45, 90]3s plate with the 

smooth/smooth finish showed about a 10 ksi increase in the TTTC strength over the same 

plate with a smooth/peel-ply finish; whereas, no change in the modulus occurred. 

E.ASTMD3410 
• TTTC 

D3410-™ mm • • — 

[0] [0,90]6s [0,±45,90]3s [0, ±30, ±60, 
90]2s 

Figure 5.2 Ratio of TTTC and D3410 Tests for IM7/8552 Ultimate Strengths 

1 6 
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El • 1 7174t • 1 1449 
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' 
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Thickness (Inch) 
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• Ult Strength 

— Linear (Elastic Modulus) 

Linear ( l i t Strength) 

" 

Figure 5.3 Thickness Effect on the IM7/8552 TTTC Properties 
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The results shown in Figure 5.3 are the averages taken from the ATK Thiokol 

Propulsion manufactured [0, ±45, 90]3s, [0, ±45, 90]4s, and [0, ±45, 90]5s plates, Tables 

5.8 - 5.10. As can be seen from the linear regression equation having a nearly zero slope, 

there is no effect on the ultimate strengths as the thickness of the coupons increases; 

however, the elastic modulus seems to increase slightly as the coupons become thicker. 

5.2.2 AS4/3501-5A 

The results of the TTTC tests of the AS4/3501-5a coupons with the average and 

percent variation can be found in Tables 5.11 - 5.15. Refer to Appendix B for the data 

plots. 

Table 5.11 AS4 / 3501-5a [0]32 TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

155 
13 3 
146 
130 
137 
14 3 
149 
14 6 
14 0 
14 6 

Average 

142 

% Vanation 

5 4% 

Modulus (Msi) 
Measured 

0 537 
0 480 
0518 
0 546 
0 498 
0 536 
0 451 
0 605 
0 531 
0 548 

Average 

0 525 

% Vanation 

8 0% 

Table 5.12 AS4 / 3501-5a [0, ±45, 90]2s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

125 9 
1194 
133 3 
125 4 
120 4 
127 3 
132 4 
126 9 
121 8 
124 6 

Average 

125 7 

% Vanation 

3 7% 

Modulus (Msi) 
Measured 

1 067 
1 051 
1088 
1000 
0 946 
0 985 
1033 
1002 
1 030 
1023 

Average 

1022 

% Vanation 

4 1% 
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Table 5.13 AS4 / 3501-5a [0, ±45, 90]3s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

1192 
1164 
120 5 
120 5 
143 6 
1154 
1164 
121 1 
120 6 
1198 

Average 

121 3 

% Vanation 

6 7% 

Modulus (Msi) 
Measured 

0 976 
0 996 
1062 
1081 
1 155 
1088 
1 054 
1 031 
0 992 
1 040 

Average 

1047 

% Vanation 

5 1% 

Table 5.14 AS4 / 3501-5a [0, ±45, 90]4s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

113 1 
1213 
1180 
115 1 
124 2 
123 1 
1168 
1156 
126 1 
121 9 

Average 

1195 

% Vanation 

3 7% 

Modulus (Msi) 
Measured 

1046 
1028 
1 207 
1 039 
1 180 
1 050 
1 020 
1 007 
1 112 
1 103 

Average 

1 079 

% Vanation 

6 4% 

Table 5.15 AS4 / 3501-5a [0, ±45, 90]5s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

135 5 
132 2 
129 8 
129 3 
126 7 
128 3 
131 1 
129 0 
133 8 
124 8 

Average 

130 1 

% Vanation 

2 5% 

Modulus (Msi) 
Measured 

1 176 
1 133 
1238 
1 192 
1088 
1 128 
1 163 
1 119 
1 153 
1 165 

Average 

1 156 

% Vanation 

3 6% 
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Figure 5.4 Ratio of TTTC and D3410 Tests for AS4/3501-5a Modulus 

Shown in Figure 5.4 are comparisons of the TTTC modulus to the ASTM D3410 

modulus for the AS4/3501-5a laminates. Like the IM7/8552 results, there is nearly twice 

the stiffness increase when compared to current theory. Also, there is a dramatic 

increase in the TTTC ultimate strengths (Figure 5.5) of nearly seven times. 

Figure 5.5 Ratio of TTTC and D3410 Tests for AS4/3501-5a Ultimate Strengths 
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Figure 5.6 Thickness Effect on the AS4/3501-5a TTTC Properties 

Unlike plotting just the average values in Figure 5.3, each coupon was plotted in 

Figure 5.6. Like the IM7/8552 results, there is no noticeable change in the ultimate 

strengths as the thickness of the laminate increases; conversely, there is again a slight 

increase in the elastic modulus of the laminate as the laminate thickness increases. 

5.2.3 AS4/3501-6 

Tables 5.16 - 5.20 contain the results of the TTTC tests on the AS4/3501-6. 

Refer to Appendix C for the test data plots. Specimens 4 and 10 were removed from 

Table 5.16 since they were found to be outliers. 

Table 5.16 AS4 / 3501-6 [0]32 TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

25.8 
28.2 
27.9 

31.1 
30.0 
27.9 
27.3 
28.7 

Average 

28.4 

% Vanation 

5.7% 

Modulus (Msi) 
Measured 

0.838 
0.803 
0.769 

0.586 
0.763 
0.720 
0.825 
0.869 

Average 

0.772 

% Vanation 

11.5% 
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Table 5.17 AS4 / 3501-6 [0, ±45, 90]2s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

165 0 
160 8 
147 2 
163 2 
156 1 
155 6 
154 5 
162 9 
137 5 
156 9 

Average 

156 0 

% Vanation 

5 4% 

Modulus (Msi) 
Measured 

1 066 
1046 
1 024 
1 127 
1056 
1030 
1 010 
1 143 
1 042 
1036 

Average 

1 058 

% Vanation 

4 1% 

Table 5.18 AS4 / 3501-6 [0, ±45, 90]3s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

147 2 
150 1 
151 9 
154 3 
150 5 
157 8 
157 2 
156 6 
158 3 
152 2 

Average 

153 6 

% Vanation 

2 5% 

Modulus (Msi) 
Measured 

1 122 
1 105 
1095 
1 117 
1 070 
1 132 
1 077 
1098 
1 090 
1 079 

Average 

1099 

% Vanation 

19% 

Table 5.19 AS4 / 3501-6 [0, ±45, 90]4s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

132 5 
144 2 
143 8 

130 6 
134 5 
135 6 
137 2 
143 2 
145 2 

Average 

138 5 

% Vanation 

4 1% 

Modulus (Msi) 
Measured 

1 170 
1255 
1 212 

1 272 
1 271 
1205 
1 301 
1 225 
1 327 

Average 

1 249 

% Vanation 

4 0% 
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Table 5.20 AS4 / 3501-6 [0, ±45, 90]5s TTTC Results 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

143.4 
156.3 
174.4 
154.6 
149.2 
147.0 
144.1 
155.7 
154.0 
149.7 

Average 

152.8 

% Vanation 

5.8% 

Modulus (Msi) 
Measured 

1.269 
1.411 
1.406 
1.301 
1.375 
1.376 
1.353 
1.352 
1.347 
1.409 

Average 

1.360 

% Vanation 

3.4% 

Figure 5.7 Ratio of TTTC and D3410 Tests for AS4/3501-6 Modulus 

Examining Figure 5.7, again it can be seen that the TTTC modulus of the 

AS4/3501-6 is higher than what was predicted by D3410. Also, there is poor correlation 

between the [0] TTTC tests and the ASTM tests. There is evidence, given to the 11.5% 

variation in the modulus results of the [0] TTTC tests, that perhaps outliers exist in the 

results, causing the average to be higher than was expected. 

Unlike the modulus results, the [0] TTTC strengths of the AS4/3501-6 match 

closely with the ASTM tests, Figure 5.8. Like the IM7/8552 and AS4/3501-5a results, 

the TTTC strengths of the quasi-isotropic laminates are significantly higher than theory 
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would suggest. However, the average TTTC strength of the [0, ±45, 90]4s laminate is less 

than the others. Previous results have shown a closer equivalence in TTTC strengths 

regardless of thickness. 

• ASTM 

• TTTC 

(0]3: [0. ±45. 90)2s |0. ±45.90|3s |0. ±45.90)48 [0. ±45.<X)|5s 

Figure 5.8 Ratio of TTTC and D3410 Tests for AS4/3501-6 Ultimate Strengths 

T h l c k n t i s (In 

Figure 5.9 Thickness Effect on the AS4/3501-6 TTTC Properties 

Like the IM7/8552 and AS4/3501-5a, there is no noticeable change in the ultimate 

strengths as the thickness of the laminate increases (Figure 5.9); however, disparate to 
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the IM7/8552 and AS4/3501-5a, there is a more dramatic increase in the elastic modulus 

of the laminate as the thickness increases. 

Due to the poor condition of the AS4/3501-5a prepreg, the flow of the resin 

during the cure process was reduced. According to Hexcel specifications, 3501-5a TTTC 

coupons should have had the same nominal thickness as the 3501-6; however, all 3501-5a 

coupons were slightly thicker when compared to the same 3501-6 coupon. This suggests 

that, the 3501-5a coupons had a slightly higher resin content due to the poor flow 

qualities. The results are a reduction in TTTC strength, while the TTTC modulus 

remained approximately the same. 

5.2.4 AS4 / 8552 8H FABRIC 

Compiled in Tables 5.21 - 5.23 are the AS4/8552 TTTC test results, whose data 

plots are found in Appendix D. 

Table 5.21 AS4 / 8552 8H Fabric - 9 Layers 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

150 4 
164 4 
159 5 
160 5 
1616 
1562 
173 0 
149 9 
165 6 
147 8 

Average 

158 9 

% Vanation 

5 0% 

Modulus (Msi) 
Measured 

1320 
1 346 
1398 
1 390 
1 436 
1413 
1 360 
1 332 
1368 
1 302 

Average 

1 367 

% Vanation 

3 1% 
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Table 5.22 AS4 / 8552 8H Fabric - 12 Layers 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

162 2 
155 1 
148 5 
155 8 
168 3 
156 9 
166 4 
161 1 
171 9 
155 6 

Average 

160 2 

% Vanation 

4 5% 

Modulus (Msi) 
Measured 

1 317 
1 349 
1 385 
1 320 
1 419 
1 446 
1 364 
1426 
1 440 
1428 

Average 

1 389 

% Vanation 

3 5% 

Table 5.23 AS4 / 8552 8H Fabric - 15 Layers 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ultimate Strength (ksi) 
Measured 

1510 
157 0 
164 4 
173 1 
154 5 
159 2 
158 4 
160 2 
159 6 
161 9 

Average 

159 9 

% Vanation 

3 7% 

Modulus (Msi) 
Measured 

1 344 
1302 
1 372 
1 394 
1368 
1337 
1358 
1 324 
1 414 
1 405 

Average 

1 362 

% Vanation 

2 7% 

Unlike the laminates constructed from unidirectional tape, the TTTC modulus 

results of the AS4/8552 fabric do not show the same trend (Figure 5.10). There appears 

to be no increase in the TTTC modulus as the thickness of the laminate increases, and 

similar to the other TTTC strength results, there is no increase in the ultimate strength as 

the thickness increases. 
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Figure 5.10 Thickness Effect on the AS4/8552 TTTC Properties 

5.3 TORQUE-TENSION TESTS 

Figures 5.11 - 5.12 show the torque-tension data for the 0.5 inch diameter bolt 

superimposed over the acoustic emission hits and acoustic emission energy, respectively. 

From Figure 5.11, it is difficult to distinguish the AE activity associated with either bolt 

or plate failure. Many of the hits in this figure are in fact from the frictional noise 

generated from the bolt-nut interface during the loading of the bolt. However, when 

examining the acoustic emission energy, (Figure 5.12), it is clear by the sudden increase 

in the acoustic emission energy right before thread rupture that the AE data shows bolt 

failure. Examination of the composite plates with a micrometer showed no measurable 

change in plate thickness in the washer region. A visual inspection of the bolt-hole 

revealed no interlamina failure. In fact, performing a simple calculation by dividing the 

maximum bolt load, 20 kips, by the area of the washer, 0.3956 in2, a reasonable estimate 

of the stress level in the plates was found to be 50.5 ksi, not even one-third the average 

TTTC ultimate strength of the Thiokol M7/8552 [0, ±45, 90]3s laminate. If matrix 
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cracking or interlaminar shear failures occurred, they were drowned out by the friction 

noise AE detected. 

25 50 50 175 

Figure 5.11 Acoustic Emission Hits for 0.5-in Bolt - Test 1 

Figure 5.12 Acoustic Energy for 0.5-in Bolt - Test 1 

For the second test involving a 0.5 inch bolt, calcium grease was applied in 

between the bolt-thread and nut-thread interface to hopefully eliminate friction. This did 

not work as well as expected. Instead, it was observed that the washer would periodically 
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slip and then spin against the composite plate. This is evident in the large amount of 

acoustic energy detected at approximately 100 and 185 ft-lbs of torque in Figure 5.14. 

Also, due to the differential movement between the washer and the spinning nut, 

unwanted signals were detected by the AE system throughout the test (Figure 5.13). 

Again the AE data collected during this test is ambiguous due to frictional sources. 

However, the AE data did become critically active during the sudden increase in the 

curve at the end of the test, indicating bolt thread failure. Visual and micrometer 

examinations of the laminate in the washer region showed no signs of any failure. A 

quick calculation of the stress levels in the plate at the time of failure equate to 82.1 ksi, 

half of the expected failure stress seen during the TTTC tests. All of this indicated that 

the laminate did not experience matrix cracking or interlaminar shear failure during the 

torque test. 

Figure 5.13 Acoustic Emission Hits for 0.5-in Bolt - Test 2 
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Figure 5.14 Acoustic Energy for 0.5-in Bolt - Test 2 

For the third test of the 0.5 inch bolt, calcium grease was employed in the bolt-nut 

interface and the nut-washer interface to prevent the nut from spinning the washer against 

the composite plate. Again there were small amounts of AE activity throughout the test 

(Figure 5.15), which says that there is still a source of AE signals as the torque is 

increased. However, when examining Figure 5.16, the acoustic energy, it is seen that the 

noise from the frictional source was practically eliminated. There was a noticeable 

amount of energy at 200 ft-lbs of torque that could be either matrix cracking, interlamina 

shear failure, or thread failure, but the source of this AE is unidentified. Despite this, 

thread failure in the bolt is clearly identified by the AE data at 262 ft-lbs of toruqe. The 

composite plate was examined by the same means as before and showed no signs of any 

failure. The stress levels in the composite plates at bolt failure were approximately the 

same as test 2. 
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Figure 5.15 Acoustic Emission Hits for 0.5-in Bolt - Test 3 
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Figure 5.16 Acoustic Energy for 0.5-in Bolt - Test 3 

The fourth and final test of the 0.5 inch bolt was lubricated in the same way as test 

3. There is a large amount of AE activity at the beginning of the test (Figure 5.17), most 

likely due to friction sources. The AE energy detected, Figure 5.18, increased noticeably 

around 200 ft-lbs but was nearly equivalent to the energy detected at the beginning of the 

test. It is apparent that these sources are not from the composite plates experiencing 

36 



failure but rather from friction between the plates and washer. Bolt failure was again 

evidenced by the critical AE activity near thread rupture. 

Figure 5.17 Acoustic Emission Hits for 0.5-in Bolt - Test 4 

Figure 5.18 Acoustic Emission Energy for 0.5-in Bolt - Test 4 

Since plate failure did not occur using the 0.5 inch diameter bolts, there was no 

chance that the 0.25 inch diameter bolt would fail the plates. One test was performed to 

both verify this and hopefully eliminate the ambiguous AE signals. As such, calcium 
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grease was applied to all interfaces, including the plate-washer interface, which had not 

been done for the 0.5 inch diameter bolt tests. Unfortunately, this did not eradicate the 

AE detected at the very beginning of the test, as can be seen in Figure 5.19. However, 

the measured energy levels of these sources were very nearly zero, (Figure 5.20). In fact, 

the only significant AE energy that was detected occurred at the failure of the bolt 

threads. The waviness seen in the tension versus torque curve was produced by slippage 

in the test stand. 
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Figure 5.19 Acoustic Emission Hits for 0.25-in Bolt - Test 1 

30000 

25000 

;.««.) 

15000 

10000 

5000 

/ 

- 7000 

- MNXI 

• 5(01 

4000 

- 3000 

2000 

H o , 

(1 

Figure 5.20 Acoustic Energy for 0.25-in Bolt - Test 1 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

• The process for determining TTTC material properties using a linear displacement 

sensor has proven successful for both traditional laminates and 2D fabric laminates. 

TTTC testing compares favorably to the standard ASTM D3410-00 90° compression 

test for a unidirectional plate. A TTTC coupon ratio of width or length to thickness 

equal to or greater than two produced consistent results without buckling. Coupons 

from 0.090 inch to 0.250 inch thick were successfully tested. 

• Since all the composite systems examined were beyond their shelf life, the actual 

TTTC values were not as significant as the trends in the data. 

• The matrix is the dominant factor in the TTTC modulus; however, fiber 

configurations from cross-ply to quasi-isotropic on average tended to double the 

stiffness for the three commonly used composite systems tested. 

• The fiber configuration of the laminate plays a dominant role in the TTTC strength. 

This was seen through an increase in TTTC strengths for each successive 

configuration: [0], [0, 90], [0, ±45, 90], and [0, ±30, ±60, 90]. Therefore, it is 

believed that the role of the fibers in TTTC strengths is the constraint against the 

transverse Poisson effect, applying a lateral compressive load, resulting in in-plane 

deflection. 
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• The thickness of the composite seems to slightly influence the TTTC modulus of the 

laminate when the configurations are the same; yet, the TTTC strengths are 

unaffected by this. This phenomenon was shown to exist for three composite systems 

from three to four thicknesses. This was shown to be invalid for the fabric. 

• The 'rule of mixtures' does not give a good estimation of the TTTC modulus because 

fiber orientation is not taken into account. 

• The surface finish of the laminate plays a role in the TTTC strength by increasing it, 

but does not affect the TTTC modulus: the smoother the finish, the greater the TTTC 

strength. 

• A major loss in TTTC strength can be expected when the fiber volume fraction is 

slightly reduced (this concurs with the result of Awa, et al. [8]); on the other hand, 

the TTTC modulus does not seem to be reduced in the same degree. 

• The TTTC work took place on two different set-ups, and the plates were 

manufactured by two different people. The 3501 plates used in the TTTC tests were 

cured two plates at a time under conditions that were out of specifications. It is 

highly possible that this variability in the manufacturing processes affected the 

results. It is definitive to note that with such bad input to the tests, the trends in the 

results were not significantly disrupted. 

• The results of the 486B tests showed that the composite plates under investigation did 

not experience major failure before the bolt failed. Both acoustic emission and visual 

examination confirmed this; however, the friction noise presented a difficult problem 

in performing acoustic emission inspection. The current practice of reducing by half 

the fastener preload specified by 486B is a very conservative approach when using a 
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0.5 inch diameter bolt (or less) on the IM7/8552 composite configured according to 

MIL-17 design criteria. A direct implication of using fewer bolts with higher 

preloads to achieve the same static strength is a major improvement on the efficiency 

of joints configured in this manner. 

6-2 RECOMMENDATIONS 

• Design and manufacture an upper compression ram that can adjust to a TTTC coupon 

that does not have a completely uniform thickness. Such a design schematic exists 

within ASTM C695, Standard Test Method for Compressive Strength of Carbon and 

Graphite. This improvement in the test apparatus would reduce, or possibly even 

eliminate, the nonlinearity at the beginning of the load ramp. 

• Perform TTTC testing on at least four nondiscrepant autoclave cured composite 

systems, holding either the matrix the same or the reinforcement the same to better 

examine the role that each of these plays in the TTTC properties. Since the matrix is 

a key player in TTTC properties, nondiscrepant materials would remove many 

uncertainties. 

• Find a bolt and washer assembly stronger than 160 ksi. This would allow for a better 

test set-up to determine exactly at what bolt torque the composites are failing. This 

would also allow for verification of the models proposed by Zhao et al. [11] without 

having the bolt fail. 

• Due to the difficultly in sorting the frictional acoustic emission from the composite 

AE, a neural network might be an excellent tool to utilize. Also, using a wideband 
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AE transducer rather than a resonant one, would allow for frequency analysis in 

determining which detected AE sources are extraneous. 
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APPENDIX A 

IM7 / 8552 TTTC STRESS-STRAIN DATA PLOTS 
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APPENDIX B 

AS4 / 3501-5A TTTC STRESS-STRAIN DATA PLOTS 
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APPENDIX C 
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APPENDIX D 

AS4 / 8552 8H FABRIC TTTC STRESS-STRAIN DATA PLOTS 
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APPENDIX E 

D3410-00 (90°) STRESS-STRAIN DATA PLOTS 
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