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ABSTRACT 

Author Nathan Haluska 

Title Optical Properties of Type III-V Semiconductor 

Spherical Quantum Dot Heterostructures 

Institution Embry-Riddle Aeronautical University 

Degree Master of Science m Engineering Physics 

Year 2010 

In recent years quantum dots (QD) have attracted increasing interest because of 

their wide variety of revolutionary applications Such applications include high speed 

optical communication lasers, infrared photodetectors, and single photon emitters 

One promising immediate application is QD solar cells Proper analysis of the opti­

cal absorption characteristics in these solar cells requires a rigorous modeling of the 

electronic structure and optical properties of semiconductor heterostructures Our 

emphasis will be on type III-V semiconductors Such structures, have a great poten­

tial for increasing efficiencies, but they also possess highly degenerate and complex 

valence band structures Therefore, we seek to develop a model of spherical QD band 

structure for type III-V Semiconductor materials, and with such results we obtain 

the absorption properties of the simulated QDs We assume stress and strain effects 

are negligible We also assume the conduction and spm-orbit bands are treated as 

distant We utilize the spherically symmetric, single and multiple band effective mass 

equations along with previously developed analytical methods to simplify the prob­

lem, then we obtain the eigenfunctions and eigenenergies of the QD, and use them to 

model optical transitions We assume a quasi-equilibrium Fermi-Dirac distribution 

for electrons and holes and obtain the microscopic transition rates and absorption 

coefficients Furthermore, we implement this in Matlab with a robust graphical user 

interface which allows for arbitrary configurations of materials and QD sizes With 

this tool, the eigenenergies, eigenfunctions, and absorption coefficients may be calcu­

lated 
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Nomenclature 

a Optical Absorption Coefficient 

8^ Kronecker Delta Function 

(FZJZLZ)C Clebsch Gordan Coeffficient 

( w ™ - ) Wigner 3-j Symbol 

A Vector Potential 

E(r, t) Electric Field 

H(f, t) Magnetic Field 

P(f, i) Poynting Vector 

Eg Band Gap Enegry (eV) 

Ep Optical Matrix Parameter 

/ Intensity(iy/m2) 

ji Spherical Bessel Functions 

kop optical wave vector 

m* Effective mass 

ml Conduction band Effective mass 

m*hh Heavy Hole Effective mass 

VI 



Nomenclature vn 

m*k Light Hole Effective mass 

m*so Spin-Orbit Split-off Hole Effective mass 

m0 Electron Mass 

P Kane's Parameter 

Pcv Bloch component of Momentum Matrix Element 

unk^f) Bloch function 

Yjf Spherical Harmonic (Normalised) 

H Hamiltonian 
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Chapter 1 

Introduction 

In the last two decades, quantum dots have attracted increasing interest because 

of their wide variety of revolutionary applications. Such applications include high 

speed optical communication lasers [1; 2], infrared detectors [3], and single photon 

emitters [4]. They have been suggested to serve as platforms for qubits in quantum 

computation. Recently, they have also been used as imaging dyes in biomedical 

applications. Quantum dots are very versatile because they are essentially synthetic 

atoms. 

Perhaps, the most promising immediate application of quantum dots is in solar 

cells. It has been shown [5] that quantum dot solar cells can produce efficiencies 

more than double the Shockley-Queisser [6] limit. Such efficiencies are possible with 

quantum dots because of their highly discrete density of states, temperature stability, 

long exciton lifetimes, and multiple exciton generations [7; 8; 9]. 

Semiconductors offer a very effective platform for optoelectronic applications. 

Here, we concentrate on type III-V semiconductors. In the past few decades, the 

technology required for the growth and fabrication of type III-V semiconductors has 

matured, and their band structure lends itself easily to the optical spectrum needed 

for photovoltaic and other optical (visible and near infrared) applications. Such semi­

conductors are known to have many advantages over conventional silicon; but these 

1 
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advantages come at the price of a complex and degenerate band structure. To ex­

ploit the full potential application of III-V semiconductor heterostructures, a detailed 

knowledge of their quantum-optical properties is very important. 

Although, there are relatively simple models for quantum dots [10; 11], these 

methods do not provide realistic enough models. An effective model for a type III-V 

semiconductor quantum dot must include band mixing and the influence of the multi­

ple materials. In order to obtain a realistic optical absorption spectrum, the effective 

mass equation-a set of coupled partial differential equations-must be solved to find 

eigenfunctions and eigenenergies. In most geometries this must be done numerically. 

Here we consider a spherically symmetric system which can be simplified analytically 

by exploiting the spherical symmetry [12; 13; 14], and we obtain semi-analytical re­

sults. With the eigenfunctions and eigenenergies, we consider dipole transitions, and 

compute the dipole matrix elements. We assume a quasi-equilibrium Fermi-Dirac 

distribution for electrons and holes, and then obtain the microscopic transition rates 

and absorption coefficients. 

The thesis is organized as follows: In the first chapter, we introduce the concept 

of a semiconductor quantum dot and some relevant background on perturbation the­

ory. In chapter 2, we develop and discuss k • p theory for a bulk semiconductors, 

then expand the theory to heterostructures and obtain the effective mass equation. 

In Chapter 3, we use the effective mass equation to develop a model for obtaining 

eigenfunctions and eigenenergies; we implement this model in Matlab. We also give 

the results for many common types of quantum dots. In chapter 4, we cover the 

methodology required to calculate the optical transition rates and absorption coef­

ficients, and present relevant results. In the final chapter, we give an overview of 

quantum dot solar cells and the relevance of our results to such applications. 

1.1 Semiconductors 

A Semiconductor is a material that has an electrical conductivity between that of a 

conductor and an insulator. Semiconductor materials absorb and emit photons by 

undergoing transitions among allowed energy levels. Because of the proximity of the 
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atoms in the crystal lattice, the energies belong to the system as a whole and not just 

the single atoms. Depending on the arrangement, density, and type of atoms in the 

crystal, various symmetry conditions exist which lead to closely spaced energy levels 

or bands. Silicon for example has a comparatively simple structure to that of type 

III-V semiconductors. Discussions on semiconductors can be found in many texts 

such as [15; 11]. 

It is important to introduce the concept of a hole-the absence of an electron. A 

hole is actually a rather intricate concept from quantum field theory. If we were 

to consider the electrons in the valence band as a large system of identical particles 

then we would have to insure that the total wave function of all the particles was 

antisymmetric (which is a huge problem). The second quantized method [16; 17] of 

quantum field theory alleviates this problem and essentially allows us to model holes 

instead, which are much fewer in number. Thus we can say that the absorption of 

a photon can create an electron-hole pair- which is also referred to as an exciton. 

Recombination of an electron-hole pair can result in the emission of a photon. 

The band structure of type III-V semiconductors lends itself nicely to optoelec­

tronic applications. If we consider a single bulk semiconductor, we can model it 

macroscopically as a crystal with infinite periodic potentials, and from this we model 

electrons in the conduction band, and holes in the valence band. The band structures 

for our case are complicated and highly degenerate. We show a unit cell of type 

III-V semiconductors in Figure 1.1. This unit cell represents the most basic form of 

the crystal lattice, and we can construct a bulk lattice by stacking them in all direc­

tions. We shall return to bulk semiconductors in chapter 2, but first we introduce the 

concept of a heterostructures of two semiconductor materials. 

1.1.1 Semiconductor Heterostructures 

Semiconductor heterostructures are formed by a juxtaposition of two semiconductor 

materials (e.g. GaAs in AlAs). This leads to a potential difference in the band 

edges which serve as confining potentials, creating quantum wells, quantum wires, or 

quantum dots (Figure 1.2). 
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Figure 1.1: a) Zinc blende unit cell, b) Bulk lattice. 
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Figure 1.2: Confining a Semiconductor Heterostructure. 
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As a side note, we point out that experimental and theoretical physicists describe 

quantum confined structures differently. Experimentalists refer to the geometrical 

dimensionality of a quantum-confined structure-a quantum well has two dimensions, a 

quantum wire has one dimension, and a quantum dot has zero dimensions. Theoretical 

physicists depict these structures by number of confinement dimensions. A quantum 

well possesses one dimension of confinement, a quantum wire contains two dimensions 

of confinement, and a quantum dot has three dimensions of confinement. For our 

purposes, we focus on the electronic structure of quantum dots; therefore, we refer to 

a quantum dot as a 3D structure. 

Semiconductor Quantum Wells and Wires 

In a quantum well, electrons are confined in one direction (dimension) by a potential 

and unconfined in the other two. This is illustrated in Figure 1.3. 
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Figure 1.3: A ID Semiconductor Quantum Well of about lnm; the intent of this 
figure is to illustrate the concept of a ID hetcrojunction. In most cases a width of 
« 2 nm is needed for confined levels to exist. 

A quantum wire is confined by a potential in two directions, and unconfined in a 

third direction. Nanotubes are a common example. 

Semiconductor Quantum Dot 

A quantum dot is characterized by a three dimensional confining potential. We illus­

trate a spherical case in Figure 1.4 
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Figure 1.4: The quantum dot and quantum dot confining potential 

Since, spherical quantum dots are the focus of our discussion, we have created some 

structural examples in Matlab whose sizes are comparable to those in our discussion. 

In the next three figures, we give plots of what a III-V quantum dot would look like 

on the atomic scale, ignoring the outside material. We build these dots by stacking 

unit cells together into spheres with radii of a specified number of unit cells. 
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Figure 1.5: Quantum dots with radii of 1,2,3,4, and 5 unit cells. Essentially we build 
spheres out of unit cells, and only plot those that are within a specified radius. Two 
unit cells equates to about 1 nm for an average type III-V semiconductor. 
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Figure 1.6: Quantum dots of 6 to 8 unit cells of radius 
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Figure 1.8: The effect of quantum confinement on the density of states. The y-axis 
specifies the energy levels, and the x-direction (not-shown) specifies the number of 
states that exist at that energy level. 

1.2 Density of States in Quantum-Confined Struc­

tures 

One of the most important characteristics of a band structure is the density of states. 

The density of states refers to the population of electrons in the conduction band 

and valence band at a given temperature. It is highly influenced by confinement 

[10, 11], as illustrated in Figure 1.8. Note that for bulk semiconductors, the density 

of states is nearly continuous-it's actually discrete but the fluctuations are small at 

the macroscopic level. As we increase the confinement, we eventually end up with 

the Dirac-delta distribution for the quantum dots. The high degree of confinement 

leads to very discrete states, making quantum dots very useful in producing a laser 

with a very low number of modes. 
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Figure 1.9: The Fermi-Dirac distribution function f(E) is the probability that a 
particular energy level E is occupied by an electron at a given temperature. 

We make the approximation that the crystal is in quasi-equilibrium. Under these 

conditions the probability of occupancy is given by the Fermi-Dirac distribution. The 

Fermi-Dirac distribution-or Fermi-Dirac statistics-gives the probability that a state 

is occupied for a given energy level and temperature: 

f(E) = 
1 

+ 1 

where Ef is the Fermi energy and kb is Boltzmann's constant.; for a semiconductor 

in thermal-equilibrium this is usually half the separation between the conduction and 

valence band. We illustrate this distribution in Figure 1.9. Note that at 0 K there 

are no electrons in the conduction band. 

1.3 Time-Independent Perturbation theory 

In most practical physical systems, the Schrodinger equation does not have a exact 

or analytical solution. Therefore, we find solutions through perturbation methods. 

We shall first look at cases where the eigenvalues of the unperturbed Hamiltonian are 

non-degenerate. 
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1.3.1 Non-Degenerate Case 

Suppose we know the eigenfunctions of some unperturbed Hamiltonian, 

and consider a perturbation Hamiltonian H, where 

H = # (0 ) + H' 

In order to find solutions to 

Hip = Eip 

it is convenient to introduce the parameter A, which we set equal to 1 later 

H = H{0) + XH' 

We look for solutions of the form 

E = E^ + XE^ + X2E^ + ---

i, = v(0) + \i>w + AV 2 ) + • • • 

and substitute them for H,E, and ip into Hip = Eip: 

Zeroth order//(°)V(0) = ^ (0V (0 ) 

First order tf<°V(1) + #V ( 0 ) = £ ( °¥ 1 } + £(1V(0) 

Second order//(°V(2) + #V ( 1 ) = £ ( ° ¥ 2 ) + £ ( V 1 } + E^^ 

Zeroth-Order Solutions 

It is straight forward to see that 

E(0) = j$) 
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First-Order Solutions 

We simply include the final result but more information can be found in quantum 

mechanics textbooks such as [10; 18; 19] 

*" - «» + E ^ > j « (i.i) 

Eil) = E<® + H'm (1.2) 

where 

H'mn = J€hH>^d*r 

Second-Order Solutions 

Again, we just note the final results 

H^uH'i mk kn 

£ (M0) - EW) (J#> - *?) 

^mn^nn _ | ;(0) \^mn) /(0) 

(Ek0)-E$») ) 2(Ek0)-E^y 

W = g f + ̂ + E JofmLo) (1-3) 
m^n £/n — ^ 771 

Note that in all cases beyond the zeroth order, if En ~ £m , then singularities will 

result. 

1.3.2 Degenerate Case: Lowdin's Renormalization Method 

In the prior sub-section we saw that if the energy level En approached the energy 

level Em\ then the perturbation theory breaks down. We can mitigate this with 

Lowdin's Method [20]. Lowdin's method is readily applicable to semiconductors 

with a single conduction band and highly degenerate valence bands. 



1.3. TIME-INDEPENDENT PERTURBATION THEORY 15 

Consider the time-independent Schrodinger equation 

H = (H{0) + H')if; = E'ip 

we start with known solutions to an unperturbed Hamiltonian 

tf (0)̂ (0) = £(0V(0) 

where < (jyn' > form a complete set of orthonormal functions. We can let ip be a linear 

combination of the unperturbed eigenfunctions 

Next we substitute this into Hip = Eip and take the inner product with respect to 

<p[ ) where k = 1, • • • , TV and from the condition of orthonormality we have 

Y,(Hkn-E6kn)an = 0 (1.4) 
n 

where Snk is the Kronecker delta function, 5at, = 0 if a ^ b and 5ab = 1 if a = b. Next 

we rewrite equation 1.4 as 

A B 

Now we can utilize Lowdin's renormalization method [20] to solve 

A 

/ „ (Hkn - ESkn) an = 0 
n 

by transforming it into 

J2 Kn - ESkn) an = 0 
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where 
& TTt TTt 

TTA TT I \ ^ flkar2an 

a 

The details of the above results can be found in [10]. 

1.4 Time-Dependent Perturbation theory 

Since our main focus is optical properties of quantum dots, we wish to address single 

photon transitions [21; 10; 16]. The emission and absorption of photons requires tran­

sitions between the valence and conduction band. Therefore, we consider transitions 

in time between the states (eigenvectors) in our system by adding a perturbation 

Hamiltonian H'{f,t) due to some external electromagnetic field. We start with the 

time-dependent Schrodinger equation 

ih—i>(r,t) = HiP(r,t) 

where the Hamiltonian consists of 

H = H0 + H'(r,t) 

We assume we know the solutions to 

ih—(pn(r,t) = H0(pn(r,t) 

Ur,t) = <Pn(?)e-lE~tlh 

For convenience we assume that we have a time-harmonic perturbation which "turns 

on" at t = 0. In other words, we have considered the states of the system quantum 

mechanically, and the applied electric field classically. With these assumptions we 

have 

' Hf(r)e-luJt + H'Ur)e-luJt t > 0 
H'(r,t) = { 

0 £ < 0 
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where the supper script f indicates the hermitian conjugate. To find ip(r, i) we expand 

the wave function as a linear superposition of the eigenfunctions of the unperturbed 

Hamiltonian 

n 

We define the initial electron state with the subscript % and the final state as / . At 

£ = 0 

a2(i = 0) = l; am(0) = 0, m^i 

If we let 

an(t) = anV(L)+a£\t) + aW(t) + ... 

then it can be shown [10; 16; 18; 21], that the transition rate from state i to f 

Wlf = -'»/ dt 
2TT 

,(!) a? {t) 
2TT 

H'fX S(Ef - E, - huj) + — Hf\ 6(Ef-Ex + Hu>) (1.5) 

This is Fermi's Golden rule in a form convenient for our purposes. 



Chapter 2 

—» 

k - p Theory and the Effective Mass 

Equation 

In order to investigate the optical properties of semiconductors in the presence of an 

external field, we must first obtain their electronic band structures. (The discusion 

below is based on work done by Luttenger and Kohn [22, 23], and further discusion 

can be found in The Physics of Photonic Devices [10].) 

The objective of this chapter is to utilize the well developed theory of bulk semicon­

ductor properties and structures. From these well known and experimentally verified 

parameters, we approximate the band structure in a bulk semiconductor. In the last 

section, we expand the theory to hetro junctions by considering a perturbation to the 

bulk structure. 

—> 

2.1 The k • p method for Bulk Semiconductors 

An important result from solid states physics is that a periodic potential, V{f) = 

V(f+ R), will give a Hamiltonian with eigenfunctions of the form [15]: 

^ = «**\u?(*0 (2-1) 

18 
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The subscript n, in unj-(r), refers to the band, and k is the wave vector of the elec­

tron. We refer to un%(r) as the Bloch function, which is illustrated in Figure 2.1. In 

Figure 2.1a, we see an unperturbed periodic potential of atomic nuclei. Figure 2.1b 

illustrates the pseudo potential caused by the combination of the Bloch potential and 

the periodic potential. In reality this function occurs in three dimensions so we also 

included an Equipotential surface in the Si lattice in figure 2.1c. 

(a) 

(b) 

Figure 2.1: (a) A ID periodic potential, (b) A partial representation of a periodic 
potential with modified Bloch un^(f) component, this is not realistic just conceptual. 
(c) A 3D equipotential in the Si bulk lattice 
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(a) 

conduction band 

valence band 

WavGvector k (b) 

/I E(k) 

heavy hole 

/ I s^\ light hole 

/ / / \ \ \ 
spin-orbit 

split 

Figure 2.2: (a) GaAs Band Structure, (b) Zoomed in region of T symmetry point. 
k - p theory attempts to approximate the band structure of a semiconductor in this 
region by using the parabolic nature of the known structure. 

In order to obtain an accurate description of the band structure, numerical meth­

ods from solid state physics [15] are required. The GaAs band structure calculated by 

the pseudopotential method is shown in figure 2.2a, from [24], which represents the 

energy bands along different k. In k-space, the Fourier transform of the zinc-blende 

unit cell, the face centered cubic (FCC) structure of the bulk becomes a body centered 

cubic structure which has may forms of mirror and rotational symmetries, this plays 

an important factor in the band structure. For our purposes, the region of interest 

is the T symmetry point which is highlighted in Figure 2.2b [9]. The T symmetry 

point is a highly symmetric point of the reciprocal crystal lattice. The names "light 

hole" and "heavy hole" refer to the parabolic dispersion relations which describe the 

states. Essentially the "effective masses" of holes in the heavy hole band are larger 

then the effective mass of the light holes. 

The Bloch function oscillates on the order of the unit cell. The zinc blende unit 

cell and bulk lattice are shown in figure 1.1. If we use equation 2.1 in the time 

independent Schrodinger equation 

i /* ( r ) = 
2ran 

V2 + V(r) iP(r) = E(k)iP(r) (2.2) 
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we obtain (note p = -iKV) 

(-&0
+m)el~kr~u^rl = En$ykr\k^ (2-3) 

When a unit-cell/lattice possesses a high degree of symmetry, the spin-orbit coupling 

plays a larger role [15]. Such is the case with type III-V semiconductors; therefore, 

we must include spin-orbit coupling in the Hamiltonian. 

The %j) Basis 

In addition to the Hamiltonian, a complete description of the system requires a max­

imum set of commuting observables. As in the basic example of the hydrogen atom 

we start with the observables 

L2 , Lz , S2 , Sz (without L-S coupling) (2.4) 

However, if we include spin-orbit interaction, not all of these observables commute 

with the Hamiltonian. To correct this, we introduce the total angular momentum J 

J = L + S 

which yields the new set of commuting observables: 

H, J2 , Jz , L2 , Lz (with L-S coupling) (2.5) 

Therefore, we use the new basis states{|^)} , where 

W = ^\d^) (2-6) 

In equation 2.6, e%k f represents an envelope function, and un0(r) = \ J, Jz). 

iUi 

En(k) 
2mn 

Unk(^ 
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The conduction band Bloch functions are given by 

\lJz) = o 

\J,Jz) = 

- - ) = 
2 ' 2 / 

and 

2' 2 / 

1*5, T) 

= I*SU> 

(2 7) 

Here, we use1 S because the conduction band Bloch functions have spherical symmetry 

(an S-state as m and £=0 orbital) 

For the valence band, with no spin orbit interaction, the Bloch functions for a 

type III-V semiconductor are given by 

| x ,T) , |y,t>, |z , t>, \x,[), \Y,i), \z,i) 

for further explanation see [25] These functions (X, Y, Z) are related to spherical 

harmonics For more information see appendix A 2 From solid state physics, we 

know that along the F symmetry point (k = 0), the Bloch functions take the form 

heavy hole 1 uio(r) = 

light hole 1 U2o(r) = 

light hole 2 u3o(r) = 

heavy hole 2 ^4o(r) = 

Spin-orbit 1 uso(r) = 

Spm-orbit 2 UQo(r) 

y)=^+.r,T> 

§'5) = 7J l* + ,,''1> + l/!l*T> 

3rT) = 7E]X-'y']H&z'l) 

l4) = -^\x-'y,n-\/l\z.i) 2 2 

(2 8) 

v ^ ' 

This is a new S, not the S for the spin observable mentioned above in equations 2 4 and 2 5 
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The above developments are closely related to the work done by Luttenger and 

Kohn [22]; however, it is worth noting that the same results were obtained by Dres-

selhaus [26].2 

2.1.1 The k-p Model with Spin-Orbit Interact ion 

The Hamiltonian with the additional spin-orbit term3 is given by 

H = - ^ - V 2 + V(r) + — % - a VV x p 
2 m 0 ATHQC2 

where a is the Pauli spin matrix vector with components 

(2.9) 

&x = 
' 0 1 ' 

1 0 
<7y = 

' 0 -i 

i 0 
az = 

' 1 

0 

0 

- 1 
(2.10) 

Using the same process as equation 2.3, we solve Hip = Eip using ip = elk'fun^(r) and 

we obtain a new eigenvalue-eigenvector relationship 

P2 ft r - T^/-w ft 
J— + —k-p + V(r) + — 2 - t W x P\ a + 7 T 2 7 2 V V x ^ "rfCO 4mQC2 

£„(*) -
h2k2 

2mo *„s(*0 (2-11) 

Single band with k = kz 

We first consider a single, non-degenerate band. This single band approximation 

means we consider "distant" bands such as the conduction band, where we can ignore 

coupling between bands. In equation 2.11, the last term on the left hand side contains 

a ^-dependent spin-orbit interaction. Because the (pseudo) crystal lattice momentum, 

2They both derived these functions within a few months of each other in 1954. However Dressel-
haus focused on the all the states along the T symmetry point. For our purposes we only need to 
reuse 2.8 from. [22]. 

3Note that for a spherically symmetric V, V 7 = f f = f f , \%L = VVxp^ - ^ a W x 



21 THEK P METHOD FOR BULK SEMICONDUCTORS 24 

hk « p (where p is the electron's momentum) we neglect the last term4 and equation 

2 11 becomes 

-2 h 
*" + JL-k p + V(r) + ^ [ W x p] a ) 1^(0 

v 2mo mo 

Therefore, our k p Hamiltonian is 

En(k) ~ 
h2k2 

2mo 
Unk(f) 

TT ft T - ft2^ ft ^ T T -
H = H0 + —k p+-—i-^a VVxp 

m 0 2 m 0 4mQC^ 

(2 12) 

(2 13) 

where HQ = 2~+V(f) We solve equation 2 13 using perturbation theory (introduced 

in section 13 1) 

The conduction band has a minimum at k = 0 (called the F symmetry point) 

We investigate states with k values near the F symmetry point (see figure 2 2b) We 

define the perturbation Hamiltonian, and effective energy to be 

H'= —k £+——a VVxp 

The correction to the energies near the conduction band edge due to H\ can be found 

using perturbation theory 

£jn - &n f nnn -t- 2_^ ( 0 ) { 0 ) t-
/r(°) _ ir(°) 

(See section 13 1 and equation 1 3) For conduction band states, the first order 

correction H'nn = 0 because the \iS, T) state is a constant, so differential operators 

make 

iS —%h 
d_ 

dx 
S)=0 

4hk is very small compared to the electron's momentum p in the far interior of the atom where 
the spm-orbit interaction occurs 
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Therefore, to the second order 

En = 40) + E (Hnm) 
(0) _ p,(0) 

= E' = En{k) -
h2k2 

ES"-E%> " ' 2™o 

u mjtn Ejn Ejm 

We know from solid state physics and extensive experimental results the band 

edge energies: 

Conduction band: Ef] = Ec(k = 0) = Ec 

Light/Heavy Holes: E^ = Ev{k = 0) = Ev 

Spin-Orbit Holes: E$ = Eso{k = 0) = Ev - A 

Band gap Enegry: Eg = Ec~ Ev 

( A is the spin-orbit split off energy. Values for Ev, Ec, A, and Eg can be found in 

table B.2.) Therefore 

W ^ {H'cmf E^ = ^ + ^ r + £ 2rao 
m^c 

p(0) p(0) 
t/c — Him 

(2.14) 

To evaluate the above, it is convenient to define Kane's Parameter P and the spin-

orbit split off energy A as 

P = 

A = 

m0 \ 

Amlc2 \ 

—% 

X 

dx 

dv 
dx 

1 rriQ \ 

dV 
)y - *** ' ) 

oy - > 
= AA5 

m0 \ -lhi 
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The values of these parameters can be found experimentally. It is also helpful to note 

that5 

0 = (iS 

0 = 1 iS 

dV dv 
dxPy dyPx 

dv dv 
â  - V 

iS 

X or Y or Z 

With the above definitions, equation 2.14 takes the form 

2rao 3 Eg(Eg + A) 
(2.15) 

We can take this an important step further by introducing the concept of effective 

mass ra* For the conduction band we can write the electron dispersion relation, 

equation 3.4, in the form 

Ec(k) = EC + 
h2k2 

2m: 

where m* is the effective mass of electrons in the conduction band. Because the 

effective mass is a combination of experimentally known parameters, the effective 

mass is also a known material parameter. Suppose we had replaced the electron mass 

mo in our original Hamiltonian, with ra* and we obtain the eigenvector-eigenvalue 

solutions for (H0 + H')ip = Eip. Then it is as if the perturbation Hamiltonian is 

identical to unperturbed electron motion with a different mass. Therefore, we can 

say the electron flow in the semiconductor has an effective mass m* . 

Values for the effective masses can be found in table B.2. Unfortunately, this 

formulation does not include band coupling between the conduction and valence band. 

If we applied this single band formulation to the degenerate valence band, we would 

obtain incorrect dispersion relations [10]. 

5The term \§^-Px2 ~ ^VxA is known to be hermitian and therefore we can interchange the 

conduction and valence band states. Because the term now operates on a constant the result is zero. 
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2.1.2 Luttinger-Khon k • p Model for Degenerate Bands 

Single band perturbation theory has two major shortcomings. It contains no cou­

pling between bands, and produces an incorrect dispersion relation for the heavy-hole 

energies.6 When formulating the Hamiltonian in equation 2.12, we set the last term 

equal to zero and obtained the Hamiltonian in equation 2.13. This time, we consider 

this term. For Hun£ = Eun^ we have 

where 

#'= Aj^ (V+-* * x vv) 
ra0 V 4 m o c / 

Again, this Hamiltonian is not solvable analytically. Therefore, we utilize perturba­

tion theory for degenerate bands. If we treat the conduction band as distant (does 

not couple with valence band), we can separate the problem into two regions. Typi­

cally these regions are referred to as Class A (degenerate region) and Class B (non-

degenerate region). In our case, class A refers to the valence band with the basis from 

equation 2.8; and class B refers to the conduction band. With this concept we can 

express un^ as 
A B 

unk = Yl aJ' (^Wo(r) + Y ai(k)u^Q(r) 
3' 7 

Where f goes from 1 to 6 for the corresponding H(k = 0)ujo(f) = E3(0)u3o(f) and 

E3(0) = Ev for.; = 1,2,3,4 

E3(0) = Ev-A for j = 5,6 

We apply Lowdin's method (section 1.3.2) and solve 

A 

^2(Ufy-E6jf)aAk) = 0 
f 

6We will point out how the Luttinger-Khon model gives the correct method. 
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instead of 
A 

Y,(Hn>-E6jf)aJ,(k) = 0 
3' 

A more detailed discusion of this can be found in [10], but the important result is 

U& = D,f = E3(0)6,, + E E D»'k«kP V-16) 
a (3 

33 
Where a and /? represent the directions £, y, and z. The expression Z)"7, is defined as 

h2 

Da{5,= 33 2ra0 y-e + 1, mo(E0-El) ) 

From this we can obtain the Luttenger-Khon Hamiltonian (in all we have gone from 

UA = D = HLK) 

HLK = -

P + Q -S R 0 ^S y/2R 

-S* P-Q 0 R -V2Q yflS 

R* 0 P-Q S y§5t V2Q 

0 Ht 5* P + Q -V2i?f ^ S t 

^ 5 t - v
/ 2 Q t y § 5 ->/2fl P + A 0 

>/2tf y§5t v^Q1 ^S 0 P + A 

(2.17) 
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(Note that the valence band edge is set to 0 instead of the general Ev, i.e. Ev = 0 ) 

and 

P = # 7 1 
2mo 
h2

l2 

(k2
x + k2

y + k2
z) 

R = 

Note that this P is different from Kane's parameter. The Luttinger-Khon parameters 

or band-structure parameters 71, 72, and 73 are found experimentally (see table B.2) 

They play a larger role in going from equation 2.16 to equation 2.17. However, for our 

purposes they are experimentally known parameters. Also, if we now set k = kz we 

obtain the aforementioned dispersion relations from equation2.19, but now with the 

correct heavy hole dispersion relation. With k = kz, R = S = 0 and HLK becomes 

HLK = -

P + Q 
0 

0 

0 

0 

0 

0 

P-Q 
0 

0 

0 

0 

0 
0 

P-Q 
0 

0 

0 

0 
0 

0 

P + Q 
0 

0 

0 
0 

0 

0 
P + A 

0 

0 
0 

0 

0 

0 

p + 

(2.18) 

From this we can write additional effective mass dispersion relations for the valence 

band. We summarize the results in equation 2.19. 
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h2k2 

Conduction Band E{c)(k) =EC + - — 
2m* 

Valence Band: (2.19) 

h2k2 

Heavy Hole (corrected using HLK)E{hh\k) =EV -
Zrn*hh 

Light Hole E«h\k)=Ev-p^ 

h2k2 

Spin-Orbit Split-off Hole E^so\k) =EV - A -
2m*so 

These four parabolic dispersions relations (when the heavy-hole band is corrected) 

approximately reproduce Figure 2.2b. The light-hole and heavy-hole effective masses 

are given by 

m hh 

m0 7x - 272 

m0 71 + 272 

The spin orbit hole is a more complicated case, from equation 2.18 we obtain 

m*so = 1 
m0 71 

However, if we applied single band effective mass theory ( as in the last sub- section) 

we would obtain 
m* 1 

Where Ep = ^-P2 This P is again Kane's parameter. These expressions are 

not identical, and the exact expression for the spin-orbit effective mass is not well 

understood. Further discussion on this is given in [24], where the spin-orbit effective 

mass is defined as 

ra0 
7i 

EPA 1 - 1 

3Eg(Eg + A)\ 
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We shall use this definition for the spin orbit effective mass. 

It is also possible to include the conduction band to obtain an 8x8 HLK. However 

we must make changes in the Luttinger parameters to do so. Also, a more general 

degenerate perturbation theory must be used as Lowdin's method does not apply to 

this case. The 8x8 HLK can be found in many appendixes in papers published in 

the field such as [12]. Note that the 8x8 HLK is usually given in atomic units where 

h = ra0 = 1. Next, we shall consider the effect of a perturbation on the periodic 

lattice, which will generalize our discussion to hetro junctions. 

2.2 The Effective Mass equation 

In this section, we introduce hetro junctions into our formulation. We shall summarize 

the effective mass theory [22] for single and degenerate bands. 

Single band Effective Mass Equat ion 

In equation 2 19, we introduced the concept of effective mass. However, we confined 

our discussion only to the z direction. The effective mass is actually dependent on 

the direction. The true form of the effective mass, m*, is actually a tensor. We can 

generalize the equations in 2.19 to 

En(k) = En(Q) + ^ ^ ^ ( ± ) kjzp 
a p Z \ m /afi 

where a and (3 indicate that the summations run over x, y, and z. We model a 

hetro junctions by treating an impurity (an additional material in the lattice) as an 

additional perturbation potential U(r). Therefore, in heterostructures the bulk prop­

erties get modified. We no longer have an infinite periodic crystal, because we have 

added a small portion of an additional material. In addition, U(r) can act as a con­

fining potential. This is how we solve for the energy eigenvalues and eigenfunctions in 

quantum wells, wires and dots. Because we no loner have an infinite periodic crystal, 

the envelope function is no longer elkr but some unknown function F(f). The wave 
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function is now given by 

ipn(f) = Fn(f)un0(r) 

To formulate the effective mass equation, we make the following replacement to k. ( 

Further details of this are given in [15, 25].) 

k _ -i± and k» - -i-?-
fca da 0 8/3 

For a single band, F(f) is found by solving the single band effective mass equation: 

h2 ( l 

.??T(±LK)(-£)+™ F(f) = (E - En(0))F(f) (2.20) 

To summarize: the periodic potential V{f) determines the energy bands and the 

effective masses, which are known. Therefore, we only need to solve equation 2.20 to 

account for the confinement potential U(f). This method works well for analyzing 

the conduction band in quantum confined structures. 

Degenerate band Effective Mass Equation 

Next, we shall apply the same process as above for degenerate bands. When dealing 

with the 6 coupled valence bands, we return to the Lowdin's method and HLK. In 

this case, we can solve the coupled band effective mass equation with 

6 

and 

E E>w„>+E E "3 (-*£) ( - 4 ) + m5"' F3,(f) = EF{r) (2.21) 
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(Derivation of this equation can be found in [15, 25].) For example, if we have a well 

in the z direction of width L ( a potential that gives confinement in the z direction 

and is unbounded in the x and y directions.) 

Un(z) = 
0 z < 0 

E ~ invent ~ &<mt&n,n'=h$) Z > L 

the Aout is added for the spin orbit energy outside the well, this forms a well with Ar 

which is already in HLK The eigenfunctions and eigenvalues are found by solving 

H LK 
l^x 5 ™y 5 ^z — -i^)+V(z)I 

' Fl ' 

F2 
F3 

F4 

F5 

F6 

= E 

~ Ft' 

F2 

Fz 

FA 

F5 

F6 

where I is the identity matrix and Fn(f) = F^(z)elkxX+lkyV. Because there is no 

confinement in the x and y directions, the original envelope components in those 

directions subsist. An example of performing these calculations can be found in [27]. 



Chapter 3 

Model 

We shall now construct a model that will allows us to obtain the energy eigenvalue-

eigenvector relationships of a quantum dot. In section 2.2, we demonstrated how 

the single-band effective mass equation allows us to solve the eigenvalue-eigenvector 

problem, 

Hil) = Eij) 

for heterostructures when the band under consideration is isolated from the other 

bands. In a semiconductor, the conduction band is separated from the valence band 

by a band gap, Eg\ if this gap is sufficiently large, the coupling of the conduction and 

valence bands can be ignored. Such rational is employed in section 3.2. 

We also showed that multiple-band effective mass theories allow us to solve for 

eigenvalues and eigenvectors in a coupled system, such as the tripplely degenerate T 

point in the type III-V valence band. This will be discussed in section 3.3. 

The zinc blende structures formed by type III-V semiconductors have unit cells 

whose sizes are material dependent. The unit cell sizes are given in table B.2, in 

appendix B, where a^ is the cell width. When two different materials are used to 

form a heterojunction, a lattice mismatch will occur if the two materials do not have 

the same unit cell dimensions. Thus, if we consider spherical hetro junctions, the 

differences in unit cell size will lead to a stress or strain on the semiconductor lattice, 

which in turn will affect the electronic properties. The hetro junctions we consider 

34 
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are made from materials with unit cells of similar size (GaAs in AlAs). Therefore, we 

ignore the effects of stress and strain. 

3.1 Possible Models 

In order to account for the 3D confinement, we make the substitution 

kx^ tQx. ky 
oy 

—I 
d_ 

dz 

in the Luttinger-Khon Hamiltonian, HLK\ and solve equation 2.21. 

Perhaps, the most common way to consider a semiconductor quantum dot is 

the infinite potential box. In this basic model, the potential outside the well is 

treated as infinite and the band mixing is ignored. Under this assumption, the wave 

function for the electron, vanishes outside quantum dot. For some semiconductors, 

this approximation is reasonable; however, for type III-V crystals, the valence band 

contains a tripplely degenerate valence band. The rectangular structure is easily 

analyzed in Cartesian coordinates, for a box of dimensions a x b x c, the eigenenergies 

and eigenfunctions for the conduction band are [10, 11] 

Eic\ nxnvnz
 Ec0 + ^ 

and 

h2 
Trn, .y+{^y+By 

lie) ( \ / 8 • f1"1' \ • fVnV \ • (™* \ t-\ 

and for the valence band 

E{v) 
nxnynz = E„n — 

and 

1>nUn>Sx>y>z) = 

h2 

2m h.in 

TTU' 

8 . Sim' 
—— sm x | sm 
abc \ a 

+ 

im: 

nn' 

y„ 

+ 
7T71, 

y sm 
nn' uvo(r) 
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If the quantum dot is spherically symmetric, the analysis is best done in spherical 

coordinates. For a dot of radius rweu we have for the conduction band 

Enl = E* + —^7r-(3
2
nl and v £ > . M ) = AnlJl (^-r) > T ( M K o ( 0 

zmeiin
rwell \~well J 

(3.1) 

and for the valence band 

E(:i = Ev0-0 f 2 /ft,, and V # L M > < « = An,V3v (—r) ^ ' ( M K o ^ 
Zmh,inTwell \^well / 

(3.2) 

where /3n/ is the nth zero of the 1th spherical Bessel function ji{fini). Ani is a nor­

malization constant, Ec0 and EVQ are the band edge energies, and u%(r) are the Bloch 

functions. More information on spherical Bessel functions is given in appendix C.l. 

The general solution for the infinite spherical potential well can be found in [18]. 

These two infinite potential formulations give us very quick and easy means to 

approximate band structures. However, the results do not depend on any parameters 

of the host material; that is the results are independent of the effective mass and 

band edges of the material the dot is embedded in. In addition, these models do 

not include any band coupling, which is an important consequence when considering 

degenerate bands. 

In order to account for band mixing and finiteness of the confining potential, 

we apply the effective mass theory in three dimensions where the finite wells are 

formed by the conduction band edges and valence band edges. Furthermore, we limit 

our consideration to spherically symmetric cases as in references [12, 13, 14] for 

mathematical simplicity. The advantage of the spherical symmetry is that we can 

analytically reduce the problem to a set of coupled of differential equations in the 

radial direction and factor out the angular components as spherical harmonics. In 

our work we follow the developments of Sercel and Vahala [12] very closely. 

file:///~well
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3.2 Conduction Band Model 

To model the conduction band, we utilize the single band effective mass equation in 

spherical coordinates. Our spherically symmetric confinement potential is given by 

the conduction band edges of our inside material, E™ and our outside material ££"* 

U(r) = 
0 r < rweu 

E*ut _E%n r > TweU 

From section 2 2, we know our states are given by 

ipnsir, 0, (p) = Fn{r, 0, <p)uso(r, 0, <p) 

the S subscript is added to denote the two conduction band Bloch functions 
uso(r, 9, (p) = \iS, 11). The envelope function Fn(r, 9, (p) is found by solving 

£ £ I te) .(-£)(-£)+"<'> L a 0 2 \m /ap 
Fn(r,9,(f>) = (E-Eln)Fn(r,e,cf>) 

da) \ 30, 

We assume that the effective mass tensor is independent of direction, therefore: 

(m*e)a0 = K 

1 

0 

0 

0 

1 

0 

0 

0 

1 

= m\l 

With this assumption, our effective mass equation becomes 

—EE'f-8 
a (3 

d 
3 * M - ^ ) + f / ( r ) 

2m: 
•V2 + U(r) 

Fn(r,9,4>) = (En-E?)Fn(r,6.<f>) 

Fn(r,e,<t>) = (En-E^)Fn(rt9.<f>) 
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We can absorb E™ into the potential and obtain 

and 

2m; 

V'ir) = 

•V2 + U'(r) 

ipout 

r < rweu 

r > rweu 

Fn(r,9,<P) = (En)Fn(r,9)cP) 

Next, we transform the potential again by setting 

U"(r) = 
-V0 

0 

r < rweu 

r > rweU 

where V0 = E™* - E™, En = E'n + E°ut and 

h2 

2m! v ' 
Fn(r,e,4>) = (E'n)Fn(r,e,<P) (3.3) 

We review and further explain this problem in appendix C.2. Equation 3.3 is identical 

to Schrodinger's time independent equation with one important caveat: the effective 

mass is a function of r 

Kir) = < 
m*m r < rweu 

m\out r > rweii 

That is, the effective mass changes from the inside material to the outside material. 

We must insure that the probability current density across the hetro junctions is con­

served. We also show this in appendix C.2. The eigenenergies from equation 3.3 can 

be found using the numerically efficient form 

Twell 
K 

jl+hn(Krwell) = Kn 

jin(Krweu) m*out 

(l+m+1)! 
1 Z ^ m\(2\rwell)

m ( / -m+1)! 
_2 \ m=0 

Vwell I 

2 ^ m\(2\r, 
(/+m) 

m=0 
{2\rwell)™ (l-m)\ 

(3.4) 
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(m is a dummy index not the mass or the spherical eigenvalue) where 

K = ^J2-^(E'n + Vo) , tA = \j2^{E>n) and ElU = E'nl + E-a 

Equation 3.4 must be solved numerically for all I and n. (Note that there are multiple 

n values for each L value.) Hence, each energy level is degenerate with respect to spin 

and m, where m E [—/, —I + 1,..., I] . 

The wave functions are given by 

IpSnlm = Rnl(r)YL
m(0, <P)us^ 0, </>) 

where, Rni(r) is given by1 

Rni{r) = < 
[Bnih^^Xr) r > rwea 

and Bni must be found by solving ji(Krweu) = Bnih\ (i\rweu) using the values found 

for Ef
nl It is also useful to define the basis in Dirac notation (L = £, and Lz = m)2 

{|L,LZ,J,JZ}} 

which has the position representation 

(r, 9, <f> \L, Lz, J, Jz) = Rni{r)Y£'(0, <P)us0(r, 9, <f>) 

1we set̂ 4 = 1 and normalize later 
2|J,J2) = |J5,TI) 
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3.3 Valence Band Model 

In order to construct a model for the valence band under a spherically symmetric 

confining potential, it is convenient to obtain the matrix elements of the Luttinger-

Khon k • p Hamiltonian in a spherically symmetric basis. From section 2.2, we saw 

that the wave functions take the form 

|^(r)) = ^ F J j 2 ( r > n 0 ( r ) 

JJz 

which we can rewrite as 

mr-)) = ^2FJJz(r)\J,Jz) 
JJz 

To exploit the spherical symmetry of the problem, we introduce a new angular mo­

mentum L, which is associated with the envelope component of the wavefunction, 

and varies on the order of the quantum dot. In terms of the eigenfunctions of L2 and 

Lz 

JJz 

or using Dirac notation 

\^{r)) = YJCjjz\L,Lz)\J,Jz) 
JJz 

This formulation allows us to factor out the spherical harmonic components; however, 

the components of J and L do not commute with the Hamiltonian. If we introduce a 

new angular momentum F 

F = J + L 

It follows that F2 and Fz commute with the Hamiltonian [12]. We define a new basis 

set in terms of the old basis using Clebsch Gordan coefficients with 

\F, Fz, L, J) = ^ ( I J
T

 L
T J \L,LZ)®\J,JZ) 

j j \ rz Jz Lz I 
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For simplicity, m some-cases we use the notation \L,LZ) <g> \J,JZ) = 

\L,LZ,J,JZ) or \L,LZ)\J,JZ) If \F,FZ) is a simultaneous eigenstate of F2 and 

F2, the matrix element3 

{FiFz,L,J\HFFz\F
f>F'„L\J') 

is equal to zero unless F = F' and Fz = Ff
z If the set {|F, Fz, L, J )} is used as a basis, 

the matrix representation of HLK is block-diagonal, that is, we have separate blocks 

for F = F1/2, F3/2, F5/2, Each block is increasingly larger, and for a particular 

F, there are multiple degenerate Fz Hamiltomans (For Hi ± i there exists a two-fold 

degeneracy, 1 e Hi 1 = Hi _i ) For example, 

if. 

^ F F 2 = 

i ± i 
0 

0 

0 

Hz , 311 

0 i / 5 

0 

0 

_I_5_I_3_I_ 

0 

0 

1 0 

The matrix elements can be evaluated using a plain wave expansion of the original 

bulk wave functions, \ip) = elkrun^(r), to spherical components We can express the 

matrix element for HLK as4 (K = k) 

{K,JJ\HL"\K,J\J'Z) 

We want to express this in a spherically symmetric basis, so we rewrite the envelope 

component elk f with the plain wave expansion 

c , f e >=E E ^iLyr(0k,4>k)Y?(e,<p)JL(kr) (3 5) 
L=0m=-L 

3As we will explain, this is not the 6x6 (or 8x8) HLK from chapter 2 
4This HLK is the Hamiltonian introduced m chapter 2 
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I e 

oo L 

elk?\J,Jz) = E E ^Yt^MYt'M^kr^J,) 
L=0Lz=-L 
oo L 

= /-J 2-^ Ck,LLz\L,Lz)\J,Jz) 
L=0 m=-L 

where \L Lz) = Y^(e,<p)jL(kr) and CkL<Lz = \viLYt\hAk) 

Using the closure relation (I is an identity matrix) 

/ = Efc>&i 

we can express the matrix elements of HLK as HLK (K = k) 

(L, Lz, J, L \H L , Lz, J ,JZ) = 

£ ^ (L, L„ J, J |AT, J, J,) (K, J, J, |tfL*| X, J", J?) (If, J", j ; | 2/, Z/2, J', Ji> 

where the (L, LZ,J,J \K, J, J2) integrals are evaluated with the plain-wave expansion 

formula, equation 3 5 The matrix elements can be rewritten a final time as HFyFz 

(F, Fz, L , J \HFtF,\ F, Fz, L \ / > = E E UF> F*> L> J ^ L*> J ' J>) 
LiyLiz J\<Jz 

(L, Lz, J, Jz \HLK'\ L", L"z,, J", J"z) (L", L"z, J", J':\ F, Fz, L\ J') 

where the integral (F,FZ,L,J\L,LZ,J,JZ) is evaluated using the Clebsch Gordan 

coefficients Sercel and Vahala [12], show that this produces a block diagonal Hamil­

tonian which is separated into blocks for different F The Fi/2 space has a two fold 

degeneracy and is given by 
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1 ± 1 = 
2 IC2 

" Ec + \K2 

0 

0 

*yJ\PK 
ly/$PK 

0 

0 

Ec + \K2 

^PK 

0 

0 

*\[\™ 

0 

-*\I\PK 
LH 

0 

0 

- 2 ^ 7 2 ^ 

-*yj\PK 
0 

0 

LH 

- 2 v / 2 7 2 f 

0 

-*y/\PK 

0 

0 

-2V27 2f 
5 0 

0 

0 

-iJfPK 
-2v /272f 

0 

0 

5 0 

where P is Kane's parameter, LH = Ev - (71 + 272)-^, SO = Ev - A - 7 ^ The 

corresponding basis for each row of Hi +1 is 

|F,F„J,L) = 

conduction band 

light holes 

spin orbit holes 

I1 ±l 1 1̂  
I 2 ' 2' 2' V 

I 2' 2' 2' / 

I1 ±± 2 i\ 

12' ^ 2 ' 2' V 

| 2 ' •J-2» 2' * / 

|2» - L 2 ' 2 ' U / 

I 2 ' X 2 ' 2' V 
It can be shown that Hi ±i may be block diagonalized into 

Hi . i = 
2' IC2 

rr ( l ) 

0 # (2) 
1/2 J 
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where (dropping the F, Fz ) 

\J,L) 

W l / 2 -
lio) 
If.i) 
lio> 

\ l l) 
12' V 

and 

|J,L) i.l> 

-i^/2/WK 

- 2 ^ 2 7 2 f 
2 -2V27 2 f 

F,. A-7if 

}.2> 

H. (2) 
1/2 

IP) 
11.2) 

IP) 

^ C + ^ 2 i^2/3PK 
K2 

2/3PK Ev-{lx + 2l2)^ 

IP) 
-iy/TJZPK 
2^ 7 2 f 

iy/l/SPK - 2 ^ 2 ^ 

If the conduction and spin-orbit bands are treated as distant 

£„-A-7i¥ 

# 
2 ' - " -2 

12' V 
|2 2\ 

F7J — (7i + 2 7 2 ) f 
0 

0 

^ - ( 7 i + 2 7 2 ) f 
(3.6) 

We solve for the eigenvalues and eigenvectors of equation 3.6 using the method de­

scribed in section 3.2 with 1=1 and 2. In fact, Ev — (71 + 272)^- is the light hole 

dispersion relation (see section 2.1.2). However, the total wave functions and their 

degeneracy will follow that of the coupled model. The spin-orbit band will also be 

treated in the same way, but we can use the uncoupled wave functions in an identical 

manner to the conduction band. 

The F3/2 band is more complicated, and each contains a four-fold degeneracy with 

respect to Fz. As before, the Hamiltonian can be put into a block diagonal form [12], 

H-i 1 1 
H 

or ±4 

(i) 
3/2 0 

0 H. (2) 
3/2 
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where 

H. (i) _ 
3/2 ~ 

IP) 
IP) 
11.2) 

IP) 

EC + \K2 

-iy/kPK 

iJlPK 
1\[\PK 

yf\PK -iy/lPK -iyj\. 
&v - 7i — 

O/v K2 

272 — 

272 — 

272 — 

Ey -nf 
- 2 7 2 — 

P # 

9-v ^ 2 

2 7 2 — 

- 2 7 2 — £ * - A 7,f 

H{2) -
n 3 / 2 — 

| i 2\ 
| 2 ' Z / 

12' V 

11-3) 

IP) 

G -tJ±PK 
\PK 5 ' 2 2 

—I \PK 

5 "2 2 

^ 
2 ^ ^ 2 

P*T -% 72^ - 4 7 2 ^ AT2 

\PK 
2 ^ ^ 2 

W2~ 
VE12 2 

£„-A- 7 l f 

where G = Ev — (71 + f 72) ^~ Again we treat the conduction band and spin-orbit 

band as distant and #3 ±1 o r ±3 becomes 

Hi,±1 or ± | = 

IP) 
IP) 
I2' / 
|2 3\ 

r ^ - 7 i f 
272f 

0 

0 

272f 
^-7if 

0 

0 

0 

0 

G 

5 '2 2 

0 

0 

§ 7 2 * 
G 

From which we can define even and odd states as 

fl^)e„e„ = V /i[ll>0)-|l )2>] 

l l ^ ) e , e n = V^O|.0) + |l,2>] 

\\LH)odd= \ [|1,1> - 3 | | , 3)] 

\\HH)odd= \ [3 H,l) + ||,3)] 

even parity states 

odd parity states 
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and obtain the heavy-hole (HH subscript) and light-hole (LH subscript) dispersion 

relations 

EHH(K) = Ev-(ll-2j2)^- and ELH(K) = Ev - (7 l + 2 7 2 ) ^ -

To obtain the eigenstates, we use the position representation: 

L J 

(r,9,d>\F,Fz,L,J) = Rln(r) ^ E 
F J L 

LZ=-LJZ=-J \ Fz Jz Lz 

Y^(6,4>)uj,Jz0(r,6,4>) 

eg 

For our purposes, we only need to solve the radial component Rin(r). For 71 and 72 

corresponding to the inside of the dot, we have 

even states < 

odd states < 

Kevenir < ^well) = y[\ 

**"n,even\T ^ rweU) = V 2 

P"oM(r < rweU) = y/l 

PnHoddir < ^ell) = \f\ 

jo(KHH(En)r) 

J2(KHH(En)r) 

jo(KLH(En)r) 

-J2(KLH(En)r) 

3ji{KHH{En)r) 

h(KHH(En)r) _ 

Ji(KLH(En)r) 

-3j3(KLH(En)r) 
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where j L denote spherical Bessel functions Outside the dot we have 

even states < 

odd states < 

R""en(r > TweU) = yfi 

**"n,even\r ^ rwell) = y 2 

Pn"dd(r > rweu) = y/l 

PnHodd(r > rweU) = yfl 

hg\t\HH(En)r) 1 

h£\i\HH(En)r) \ 

h$\i\LH(En)r) 

-h£\i\LH(En)r) 

3h?\i\HH(En)r) 

h$\i\HH(En)r) _ 

h?(tXLH(En)r) 

-Zh$\i\LH(En)r) 

We can define 

Rrn(r) = AR™en + BRL
n»ven and R°n

M(r) = AR™M + BRL
n\ 

For even parity states, we find En by solving 

Jo(KHH(En)r) j0(KLH(En)r) h£\i\HH(En)r) h^(A) 

32{KHH{En)r) -j2(KLH(En)r) h£\i\HH(En)r) - / # } (A) 

j'0(KHH(En)r) f0(KLH(En)r) h^(i\HH(En)r) ^ ( 1 ) ( A ) 

j2(KHH(En)r) -j'2{KLH(En)r) h2
{l\i\HH(En)r) - / i2

( 1 )(A) 

LH 
,odd 

det 

r=rweii 

where A = ^A////(.En)r, and the prime superscript denotes a derivative. For the odd 

parity states we find En by solving 

3jo(K„H{En)r) j0(KLH(En)r) 3h£\i\HH(En)r) h£\A) 

]2(KHH(En)r -3j2(KLH(En)r) h£\i\HH(En)r) -3h2
1](A) 

3f0(KHH(En)r) f0(KLH(En)r) 3hQ
W(i\HH(En)r) ^ (1 )(A) 

f2(KHH(En)r) -3j'2(KLH(En)r) h2
W(i\HH(En)r) -3h2

W(A) 
r=rwen 
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Note that we use the typical boundary conditions Rm(rwen) = R0uf(rWeLi) and 

^Rin{rWeii) = VR0Ut(rweu). 

3.4 Matlab Implementation 

Now that we have formulated the analytical techniques needed to find the energy 

eigenvalues and radial eigenvectors, we must implement the calculations numerically. 

One challenge in doing this is obtaining the necessary band parameters. For conve­

nience we have collected the band parameters for the 12 common III-V semiconduc­

tors and put them into table B.2. To facilitate numerical analysis, we have created 

a material-database-code, whose inputs are type III-V semiconductors (one for the 

inside material, and another for the outside material). We combined this parameter 

database with other codes in a convenient Graphical User Interface (GUI), shown in 

Figure 3.1. A flow chart for the operation of this GUI is shown in Figure 3.2. 
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Spherial quantum dot Simulator x 

® 

delta.so: 0.341 

Ep: 28.8 

g l : 6.98 

g2: 2-06 

g3: 2.93 

aO(Ang): 
5.6532 

Spherical Quantum Dot Simulator 

Inside Material 

x (if Ternary): 3 GaAs 

Eg: 1.424 

Ec: 1.424 

Ev: 0 

Eso: -0.341 

m.c(mo): 0.067 

m.HH(mo) 0.34965 

m_LH(mo): 0.09009 

m.so(mo): 0.17613 

AlAs 

Outside Material 

• x (if Ternary): j 

Eg: 3.03 

Ec: 2.5 

Ev: -0.53 

Eso: -0.81 

m.c(mo): 0.15 

rn.HH(mo) 0.4717 

m m ^ . v 0.18519 m_LH(mo): 

m.so(mo): 0.28061 

_ delta.so: 0 l 2 8 

Ep: 21.1 

j&i 
g l : 3.76 

g2: 0.82 

g3: ! • « 

aO(Ang): 

5.6611 

Simulation Options 

Cond. Band 

Val. BandtF 1/2) 

Val Band (F 3/2) 

Spin Orbit Band 

Eigenvalues 

Eigenvalues 
as a function of 

dot Radius 
Max Radius (nm): 

6 

Calculate 

Eigen Functions 

Radius(nm): 4.5 

Array length(pts): 

1000 

Array Max (in 
#* radius): S 

Absorption Coef 

Gaunt method 

Dipole method 

Calculate 

Nathan Haluska, Last Updated 4/21/10 nates.e.mail.address@gmail.com 

Figure 3.1: Screen shot of the Matlab GUI. 

mailto:nates.e.mail.address@gmail.com
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Inside material 

Outside material 

Dot Radius 

Material 
Parameter 
Database 

Obtain 
Energy 
Eigenvalues 

Obtain Radial 
Eigenfunctions 

Establish Radial Potentials 

• E • E • E 

Single 
bandeff. 
mass eq. 
/ = <>->/_ 

z<w>: 

| E 

Single 
band eff. 
mass eq. 
/ = l - » 2 

Coupled 
band 

Single 
band eff. 
mass eq. 
/ = 0-»L 

r:ru^ t 
Plug energy values in, solve the boundary conditions 

^ ; ? e 

C-Band 

Matlab GUI 

Figure 3.2: Matlab GUI flow diagram. 

To further explain how to solve the single band and multiple-band equations, we 

elaborate on the methodology below. 
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Lf] func t ion out=bessel_spj (n,x) 
ou t=besse l j ( n+ .5 , x ) . * ' sq r t ( p i , / ( 2 . * x ) ) ; 
end 

Figure 3.3: Implementation of spherical Bessel function in Matlab Here we define a 
spherical Bessel function from Matlab's Bessel function "besselj." 

Numerical Implementation of Single Band Equations 

Recall from section 3.2, that for the single band case we must solve 

rWeii jin(KrweU) m*^ 

where V0 = E™1 - E» 

K=)/^(E'n + Vo) and iX = )J^iK) 

to obtain 

E^ = Kt + E?1 and ^Snlm = Rni{r)Ylm(6,(P)us0(r, 0,0) 

From the definition of E'n, in section 3.2, we know its value must be between 0 

and — VQ. We simplify K and A by rewriting them as 

K-ffipfi-A) and X-ffipW 

where A is a numerical array of 10000 points from 0 to 1, and we note that Ef
nl = 

—VQA. NOW we can express K&nd A as two numerical arrays of all possible energy 

values. We utilize Matlab's built in Bessel function to numerically implement the 

relation 

(See appendix C.l.) Lowercase ji is the /th spherical Bessel function, capital J is the 

usual Bessel function. The code for this implementation is shown in Figure 3.3. 

Y^ 1 (Z+m+1)!' 
/ 2^ m\(2\rwell)™ (Z-m+1)! 
J _ - A ^ 

fwell ^ l (/+m)! 
2^ m!(2Arli;eZ0m (l-m)\ 
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[^ funct ion out=hankel_sp(n,p,x) 
c=0; 
i f n~=0 
f o r m=0:n 

c=c+i Am./(factorial (m).*(2.*x) .Am).*f actorial (n+m). / factorial (n-m) ; 
end 
else 

o i ; | 
end 

out=( - i ) .A(n+1) . *exp( i . *x ) . /x . *c ; 

i f p==2 
out=conj(out); 

end 
end 

Figure 3.4: Implementation of spherical Hankel function in Matlab. 

As shown in appendix C.l, the spherical Hankel function can be expressed by the 

recursion relation 

^(1)(P) = H ) / + 1 V E 
(l + m) 

p ^0m\(2p)™(l-m)\ 

We implement this in the function shown in Figure 3.4. 

These functions allow us to express the spherical Bessel and Hankel functions as 

numerical arrays. Now we solve 

_ J KJi+hn(Krweii) _ jK 

Twell jln{Krweu) m; out 
- A 

M-l 

E 
m=0 

(Z+m+1)! 
m\(2XrweU)m (Z-m+1)! 

Twell I 

E 
m=0 

(Z+m)! 
m!(2Aru,en)

m (l-m)\ 

= 0 (3.7) 

We summarize this process with a portion taken from our code shown in Figure 3.5. 

We also note that equation 3.7 must be solved for unknown values of /. Therefore 

we specify a value starting with zero, and we increment this process till no zero points 

exist. This process is shown in Figure 3.6 

To numerically find each of these zero points, we loop through the "out" array-

mentioned in the last line of code from Figure 3.5-and find the points where the array 
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% ra is specified in the GUI, and the materials used determine Vo 
% ra is the radius of the QD 
% m_in is the effective mass inside the well, specified by the chosen 
% materi al 
% m_out i s the (effect ive mass outside the w e l l , spec i f ied by the choen 
% materi al 
Vo=Ec_out-Ec_in; 
a=0:.00001:1;% define an array of 10000 points from 0 to 1; 
K=sqrt(l-a); 
lambda=sqrt(a); 
cjn=5.1231658827147* ra*sqrt(Vo)*sqrt(m_in); 
c_out=5.1231658827147 *ra*sqrt(Vo)*sqrt(m_out); 
z_l=c_in.*K; 
z_r=lambda.*c_out; 
WOGQQQO&Bi Breal- i n code, t h i s i s not the actual code j u s t a por t ion of i t 
% addi t ional code w i l l ta\ care of looping through " 1 " values 
Xs ta r t i ng wi th 1=0 and incrementing t i l l no zero so lu t ions are found. 
Va'aauulvo/ 'a'a'ao D l C d r 111 COUC 

LHS=AA.*(1 / ra - (z_ l / ra ) . / (besse l_spj (1 ,z_ l ) ) . * (besse l_spj (1+1 ,z_ l ) ) ) ; 
RHS=(m_i n/m_out).*(1/ra-(c_out/ra).*hankel_sp_Dl(1, z_r, 1 ambda)) ; 
out=real(LHS-RHS); 
% now the var iab le out contains the "Solut ion" array, that i s 
% the points where out=0 are so lu t ions- - the enegry eigen values 
% OR i t contais a values which bas ica l l y says no zero was found 

Figure 3.5: Portion of code which numerically evaluates equation 3.7 as a numerical 
array called "out." The code then search "out" for the points where it crosses the x 
axis (ignoring asymptotes). 
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solutions at Zero points (X"s) 

J 7 

L * : 

1 * " 

n .jjgffT.,: 
U •}*** 
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.../. ; 

o -
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Solutions at Zero points (X"s) 

U : 

-1 ; 

-2 : 

0 0.2 
. J .• i • J 
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/ = 0, we have 2 n values , 
Solutions at Zero points (X"s) 

/ = 1 we have 1 n value 

: 
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, ,i J 
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/ = 2, we have 1 n value , / = 3 we have no further values 

Figure 3.6: Finding the zero points of equation 3.7 
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crosses the x-axis (ignoring the asymptotes). We send the array "out" to the function 

"findzeros" which is defined in Figure 3.7. 

Note that this tells us the value of "A" where the function is equal to zero, so we 

must input this into Ef
nl = -Vo.An-we have added the subscript n to denote that there 

are multiple values of A for a particular /. The final energy for a particular n and / 

is given by Enl = -V0An + E™1 or expanded further Enl = - (E™1 - E™) An + E°c
ut. 

Now we numerically represent the radial functions for each value of n and 1 

o / x ]MKr) r <rwell 

[Bnih\ }{i\r) r > rweU 

and find Bni with the boundary condition 

ji{KrweU) = Bruh^ (i\rwell) 

where Kand A are evaluated at Eni. 

Numerical Implementation of Multiple-Band Equations 

To find numerical solutions for the multiple-band equations, we use the same method­

ology as the single band equation, except that the eigenvectors must be found with 

determinants and matrix inverses. For example, we find the En values for the even 

states in the F3/2 space by 

j0(KHH(En)r) j0(KLH(En)r) h£\i\HH(En)r) h£\i\LH(En)r) 

j2(KHH(En)r) -j2(KLH(En)r) h2
l\i\HH(En)r) -h{? (i\LH{En)r) 

f0(KHH(En)r) j'0(KLH(En)r) h^(i\HH(En)r) ^ ( 1 )(iA i i f(£;n)r) 

f2(KHH(En)r) -j'2(KLH(En)r) h2
(l\i\HH(En)r) -h2

{1)(i\LH(En)r) 

We again implement the spherical Bessel and spherical Hankel functions as numerical 

arrays. Again, we solve for "A" on a interval of zero to 1. The determinant is solved 

for every value of "A" as shown in Figure 3.8 

det = 0 

r=rweu 
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Bfuncti on zs=fi ndzeros(x,y,seale_si ze) 
:"".V ' Returns matlab value pi i f NO ZEROS FOUND' 

°o fo r two numerical arrays where y=y(x) 
% f inds points where the funct ion crosses the / - a x i s 
% ignores asymiptoes 
% works best i f arrays are large 
% scale_size i s used to give l imets fo r asymiptoes 
y=real(y); 
l= length(y ) ; | 
index=0; 
for j = l : l - l 

i f(abs(y(j))<scale_si ze) 
i f ( y ( j ) » 0 ) 

index=index+l; 
zs(index)=x(j); 

e lseif (y( j )>0 &5 y( j+l )<0 ) 
%locate a cross of the x axis i n neg d i r ec t i on 
index=index+l; 
zs(i ndex) = (x ( j )+x ( j+1 ) ) /2 ; 

e lse i f (y ( j )<0 <§•& y( j+l )>0 ) 
%locate a cross of the x axis i n pos d i rec t i on 
index=index+l; 
zs (i ndex) = (x ( j )+x( j +1) ) /2 ; 

end 
end 

end 
i f index==0 

zs=pi ; %let host program I-now there are no zero points 
end 
end 

Figure 3.7: Function findzeros.m written to find zero points. This works best for very 
large (10000 pt.) arrays. It searches for the two points where the function goes from 
negative to positive or positive to negative. If the separation between the two points 
is too large (specified by the variable "scale_size") it is ignored, otherwise the two 
points are averaged together and stored. This process is repeated for the whole array, 
and the output "zs" is an array all the "zero" locations along the x axis. 



3.4. MATLAB IMPLEMENTATION 57 

% f i n d the va lue of the de te rminen t f o r e^ery va lue of E 
% s t o r e the va lues t o an a r ray c a l l e d even_det 

C^lfor q=l:E_res 
even_d=[ j Oh(q), j 0 ( q ) , hOh(q), h O ( q ) ; . . . 

j 2 h ( q ) , - j 2 ( q ) , h2h(q) , - h 2 ( q ) ; . . . 
dj Oh(q), dj 0 ( q ) , dhOh(q), dhO(q ) ; . . . 
d j 2 h ( q ) , - d j 2 ( q ) , dh2h(q), - d h 2 ( q ) ] ; 

°odi spe rs i on r e l a t i o n f o r odd s t a t e s 
even_det(q)=det(even_d); 

end 
% we use the f i n d z e r o s f u n c t i o n to f i n d the zero points 

Figure 3.8: Matlab code utilized to loop through equation 3.8 and evaluate the de­
terminant for each "A" value. 

Next, we use the "findzeros.m" function to find the u/4n" values and corresponding 

energy values. Note that the / values are predetermined by the coupled-band Hamil­

tonian, and therefore we do not sweep over possible / values. To find the eigenvectors, 

we plug in the energy values and solve the equation 

M (!)/ jo(KLH(En)r) h^(i\HH(En)r) h£>(i\LH(En)r) 

-32(KLH(En)r) h%\i\HH(En)r) 
. ' ( i ) 

-h%}(:i\LH(En)r) 

f0(KLH(En)r) h^\i\HH(En)r) h0^(i\LH(En)r) 

C2{r 

Cz(r 

C4(r 

Jo(KHH(En)r 

]2(KHH(En)r 

Jo{KHH{En)r 

where we have reduced equation 3.8 by arbitrarily setting the coefficient Ci(r) equal 

to 1 for every value of r; because we can just normalize the functions later. This is 

solved for C with the matrix inverse "\" in Matlab, and it solved for every value of 

r-every value of r in our numerical array. With this we can solve the coupled radial 

equation 

flj"»(r) = ARZ" n + BK 
•>LH 

i,even 

recalling that inside the dot 
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Rnevenir < rwell) = \ h 

Rneven(r < Twell) = \ r 

and outside the dot 

**-neven\r •"> rwell) — 

Jo(KHH(En)r) 

j2{KHH{En)r) 

3o{KLH(En)r) 

-32{KLH{En)r) 

h$\i\HH{En)r) 

h{
2

l\i\HH{En)r) 

Rn"ven(r > rwell) = ^ 

combining these together with the C(r) coefficients we have 

h%\i\LH{En)r) 

-h{
2

l\i\LH{En)r) 

Re:en(r<rwell) = \ -
Ci{r)jQ{KHH(En)r) + C2(r)Jo(KLH(En)r) 

C^rMKHHiEJr) - C2{r)j2{KLH{En)r) 

and 

RTn(r > rwell) = yjl 

This is implemented in Matlab as shown in Figure 3 9 

C3(r)hg\i\HH(En)r) + C4(r)h{J\i\LH(En)r) 

Cz{r)h2
l\i\HH{En)r) - C4(r)h^\t\LH(En)r) 

3.5 Obtaining the Software 

To obtain a copy of the developed Matlab code, please get the disk from the ERAU 

Daytona Beach libary or email to author at nates e mail address@gmail com 
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for q=l:length(zs_even) 
X-[ jOh(q), jO(q), hOh(q), hO(q) ; . . . 

]2h(q), - j 2 ( q ) , h2h(q), - h 2 ( q ) ; . . . 
djOh(q), djO(q), Ml.*dhOh(q), M2.*dh0(q)]; 

X£:V2:4);X the r ight port ion from X ( 3x3) matrix 
Q=X(: ,2:4) \ ( -X(: ,1)) ;% calculate the matrix inverse and solve vector Q 
A=l;% arbi tary set =1,normalise la ter 
B-QC1); 
C-QC2); 
D-QC3); 
clear R %create arrays for port ion inside the well 
R=3.62263.* r_out(1:round(fun_res/qwe)); 
jOz=s in (R. *k l (q ) ) . / (R . *k l (q ) ) ; 
j2z=-3.*cos(R.*kl (q)) . / (R.A2.*k l (q).A2) + (3-R.A2.*kl (q) .A2) . . . 

. *s in (R.*k l (q ) ) . / (R.A3.*k l (q ) .A3) ; 
jOhz=sin(R.*kh(q)). /(R.*kh(q)); 
j2hz=-3. f tcos(R. f tkh(q))./(R.A2. f tkh(q).A2)+(3-R.A2. f tkh(q).A2)... 

. *s in(R.*kh(q)) . / (R.A3.*kh(q) .A3) ; 
clear R %create arrays for port ion out side the well 
R=3.62263.* r_out(round(fun_res/qwe)+1:fun_res); 
hOz=-exp(-R.* l lh(q) ) . / (R.*Hh(q)) ; 
h2z=exp(-R.A l lh(q)) .*(3+3.AR.A l lh(q)+R.A2.* l lh(q) .A2). / (R.A3.* l lh(q) .A3); 
hOhz=-exp(-R.A lhh(q))./(R.A lhh(q)); 
h2hz=exp(-R.*lhh(q)).*(3+3.AR.' , lhh(q)+R.A2.*lhh(q).A2)./(R.A3.*lhh(q).A3); 
%store functions for la ter use and combine with coef f ic ients in to 
even_funl(q,1:round(fun_res/qwe))=A.*jOhz+B.*jOz;%portion < r_well 
even_funl(q,(round(fun_res/qwe)+1):fun_res)=C.*hOhz+D.*hOz;%porti on >r_wel1 
even_fun2(q,1:round(fun_res/qwe))=A.*j2hz-B.*j2z;%portion < r_well 
even_fun2(q,(round(fun_res/qwe)+l):fun_res)=C.*h2hz-D.*h2z;%portion >r_well 

- end 

Figure 3.9: Sample code used to find the radial eigenfunctions for the coupled F3/2 

space. 



3.5. OBTAINING THE SOFTWARE 60 

3.5.1 Results 

Below we give results for common types of hetrojunctions. The results were obtained 

from our GUI. These results are very important in determining the optical properties, 

which we shall discuss in the next chapter. 
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GaAs Embedded in AlAs 

Below we have the results from a GaAs quantum dot Embedded in AlAs, plots are 

shown for eigenvalues then eigenvectors for dots of 4.5 and 7.5 nm in radius. 
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Well Width (nm) 

VF1/2band 

4 6 8 
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Spin Orbit Band 

6 8 
Well Width (nm) 

4 6 8 
Well Width (nm) 

Figure 3.10: Eigenvalues as a function of dot radius for GaAs Embeded in AlAs 
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Band Structure of a Spherical GaAs Dot Embeaded in AlAs 
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F 1/2 

F 3/2 even 

F 3/2 odd 

5 6 7 
Well Width (nm) 

Figure 3.11: Conbined plot of eigenvalues as a function of dot radius for GaAs Em­
beded in AlAs 
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C band Electron Enegry Values 
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Figure 3.12: Radial eigenvectors (unnormalized) for a 4.5 nm dot of GaAs Embeded 
in AlAs (c band and F 1/2 band) 
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Valence F3/2 Band Hole Enegry Even: The Eigen Functions are a Superposition of these two plots 
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Figure 3.13: Radial eigenvectors (unnormalized) for a 4.5 nm dot of GaAs Embeded 
in AlAs ( F 3/2 band and SO band) 
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Figure 3.14: Radial eigenvectors for a 7.5 nm dot of GaAs Embeded in AlAs (c band 
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Figure 3.15: Radial eigenvectors (unnormalized) for a 7.5 nm dot of GaAs Embeded 
in AlAs ( F 3/2 band and SO band) 
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GaAs Embedded in AlxGai_xAs 

Below we have the results from a GaAs quantum dot Embedded in Al.3Ga.7As (x 

= .3), plots are shown for eigenvalues then eigenvectors for dots of 4.5 and 7.5 nm in 

radius. 
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Figure 3.16: Eigenvalues as a function of dot radius for GaAs Embeded in Al.3Ga.7As 
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Band Structure of a Spherical GaAs Dot Embeaded in AIGaAs 
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Figure 3.17: Conbined plot of eigenvalues as a function of dot radius for GaAs Em­
beded in Al.3Ga.7As 
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C band Electron Enegry Values Un-normailsed Radial Eigenfunctions 
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Figure 3.18: Radial eigenvectors for a 7.5 nm dot of GaAs Embeded in AlAs (c band, 
F 3/2 band, so band, the F 1/2 band does not exist at this dot size) 
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C band Electron Enegry Values Un-normailsed Radial Eigenfunctions 
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Figure 3.19: Radial eigenvectors for a 7.5 nm dot of GaAs Embeded in AlAs (c band, 
F 3/2 band, so band, the F 1/2 band does not exist at this dot size) 



3.5. OBTAINING THE SOFTWARE 71 

Valence F3/2 Band Hole Enegry Even: The Eigen Functions are a Superposition of these two plots 
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Figure 3.20: Radial eigenvectors for a 7.5 nm dot of GaAs Embeded in AlAs (c band, 
F 3/2 band, so band, the F 1/2 band does not exist at this dot size) 
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InAs Embedded in GaAs 

Below we have the results from a InAs quantum dot Embedded in GaAs, plots are 

shown for eigenvalues then eigenvectors for dots of 7.5 and 12 nm in radius. 
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Figure 3.21: Eigenvalues as a function of dot radius for InAs Embeded in GaAs 
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Band Structure of a Spherical InAs Dot Embeaded in GaAs 
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Figure 3.22: Combined plot of eigenvalues as a function of dot radius for InAs Em­
beded in GaAs 



3.5. OBTAINING THE SOFTWARE 74 
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Figure 3.23: Radial eigenvectors (unnormalized)for a 7.5 nm dot of GaAs Embeded 
in AlAs (c band and F 1/2 band) 
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Valence F3/2 Band Hole Enegry Even: The Eigen Functions are a Superposition of these two plots 
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Figure 3.24: Radial eigenvectors (unnormalized) for a 7.5 nm dot of GaAs Embeded 
in AlAs ( F 3/2 band and SO band) 
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Figure 3.25: Radial eigenvectors (unnormalized) for a 12 nm dot of GaAs Embeded 
in AlAs (c band and F 1/2 band) 
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Figure 3.26: Radial eigenvectors (unnormalized) for a 12 nm dot of GaAs Embeded 
in AlAs ( F 3/2 band and SO band) 
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GaSb Embedded in AlSb 

Below we have the results from a GaSb quantum dot Embedded in AlSb, plots are 

shown for eigenvalues then eigenvectors for dots of 4.5 and 8 nm in radius. 
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Figure 3.27: Eigenvalues as a function of dot radius for GaSb Embeded in AlSb 
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Band Structure of a Spherical GaSb Dot Embeaded in AlSb 
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Figure 3.28: Combined plot of eigenvalues as a function of dot radius for GaSb 
Embeded in AlSb 
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Figure 3.29: Radial eigenvectors (unnormalized) for a 4.5 nm dot of GaAs Embeded 
in AlAs (c band and F 1/2 band) 
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Valence F3/2 Band Hole Enegry Even: The Eigen Functions are a Superposition of these two plots 
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Figure 3.30: Radial eigenvectors (unnormalized) for a 4.5 nm dot of GaAs Embeded 
in AlAs ( F 3/2 band and SO band) 
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C band Electron Enegry Values 
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Figure 3.31: Radial eigenvectors (unnormalized) for a 4.5 nm dot of GaAs Embeded 
in AlAs (c band and F 1/2 band) 
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Valence F3/2 Band Hole Enegry Even: The Eigen Functions are a Superposition of these two plots 
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Figure 3.32: Radial eigenvectors (unnormalized) for a 4.5 nm dot of GaAs Embeded 
in AlAs ( F 3/2 band and SO band) 
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InSb Embedded in AlSb 

Below we have the results from a InSb quantum dot Embedded in AlSb, plots are 

shown for eigenvalues then eigenvectors for dots of 7.5 and 12 nm in radius. 
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Figure 3.33: Eigenvalues as a function of dot radius for InSb Embeded in AlSb 
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Band Structure of a Spherical InSb Dot Embeaded in AlSb 
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Figure 3.34: Combined plot of eigenvalues as a function of dot radius for InSb Em­
beded in AlSb 



Chapter 4 

Optical Properties 

In the previous chapter, we developed a model for the electronic structure of a spher­

ical quantum dot. Now we seek to further develop the Hamiltonian introduced in our 

model, and consider the perturbation to it caused by an external field. In particular, 

we will consider fields at or close to optical wavelengths, and investigate the optical 

transitions and absorption in quantum dots. 

4.1 The Electron-Photon Interaction Hamiltonian 

Consider a quantum dot illuminated by light. The incident photons, or oscillating 

electric field, will perturb the electronic states, and in some cases lead to transitions 

between the states [16; 10]. We include this perturbation into the model of our 

Hamiltonian, i.e. 

2 A 2 

H = Huodei + --^-(p-A + A.p)+ -— = HModel + H' (4.1) 
2m0 V / 2ra0 

where A is the vector potential of the incident field. We also assume that the field is 

described by the Coulomb gauge condition, which means the field A has the properties 

dA 
V • A = 0 and £ = - — 

86 
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Therefore, A-p = p-A since p= - ? W . If eA <C |p|, which is the case for most prac­

tical optical field intensities, then e2A2/2mo is negligible. With these assumptions, 

H' becomes 

# ' « - — A - p (4.2) 

m0 

Hence, the interaction Hamiltonian is referred to as the A • P Hamiltonian. Assuming 

a plain-wave magnetic field, the vector potential for the optical electric field takes the 

form 

A = eAo cos (kop • r — cut) 

_ __ - A n
c z f e o p re-icjt _j_ ^^_e-ikop re+iujt 

Z Z 

where fc^p is the optical wave vector, which points in the propagation direction of the 

electromagnetic field, u is the optical angular frequency and e is the polarization 

direction of the electric field. Now, the interaction Hamiltonian can be written as 

H' - -—A(f,t)-p 
m0 

+lU>t 

where 

= H\r)e-"* + H*{f)e 

H,(rl = _eA^:^p ( 4 3 ) 

4.1.1 Optical Transitions due to Electron-Photon Interaction 

Using the perturbation Hamiltonian from equation 4.3, we now consider the transition 

rate of an electron in the valence band which absorbs a photon and is promoted to 

the conduction band. The transition rate can be found by using first order time-

dependent perturbation theory [10, 25, 16, 18], described in section 1.4. Using the 

first half of equation 1.5-which corresponds to the absorption of a photon-the total 

upward transition rate is (per unit volume per second) 

^ - ^ E E T K ^ 2 ^ - ^ - 7 ^ ^ 1 - ^ v ^ ^ h 
c 

(4.4) 



4.1. THE ELECTRON-PHOTON INTERACTION HAMILTONIAN 88 

where 

1 + e(Ec-Ef)/kBT a n i v
 1 + e(Ev-Ef)/kBT 

Here, we use c and v to indicate a summation over all conduction band states and 

all valence band states1, V is the volume2; fv is the Fermi Dirac distribution for 

electrons in the valence band (section 1.2). This distribution gives the probability 

that an electron of a particular energy, Ev, exists. Similarly, (1 — fc) is the probability 

that a hole in the conduction band exists (see section 1.2). The matrix element H'^ 

is defined by 

H'n, = y,c\H'{r)\1>v) = [rcH'(f)iPvd
3r 

In equation 4.4, we have used the Dirac delta function, which ignores the finite life­

time of the electronic states. A more realistic approach is to consider a Lorentizan-

line-shape function which takes into account some scattering process that lead to 

homogeneous broadening. The line-shape function is defined as 

6(Ec-Ev-huj)^C (Ec -Ev-hw)= 1^ 
72 + (Ec -Ev- hw)2 

where 27 represents the Full Width Half Maximum (FWHM or line width) of the 

function, in eV. Note that the line shape function has units of 1/eV, and we have 

normalized it by insuring that/_^£d(fiu;)=l. Ultimately, 7 must be found experi­

mentally but for our purposes we take 7 = 15 meV which is of the order of those 

used by [10, 28]. The line-shape function has an even symmetry about its maximum, 

therefore C(x) = C(—x). 

Rv^c gives the total upward transition rate; however, in the presence of the same 

field, there will also be a downward transition rate of 

R^ = ^ E E Y Kc(rlf C(EV - Ec + fku)fc • (1 - /„) 

1Not to be confused with the notation for band edges in the previous chapter. 
2For our purposes the volume can be considered as the volume of the dot with some buffer factored 

in for the substrate material, or when considering an array of dots (in layers) one can consider the 
number of dots per unit area divided by the thickness of the layer. 
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The net upward transition rate per unit volume, R, is given by 

li thy >Q £XC >y 

= ^EEYI^>I | 2 £ (^-^-M(/ , - /C) 
V c 

(4.5) 

where we have used the even property of the line-shape function C(x) = C(—x), and 

the hermitian property of the Hamiltonian |//OT| = \H'JC\. If we plug in equation 4.3, 

we obtain: 

R = 
e2A2

0 1 v ^ ^ r - 2TT 

4m2
0 V E E T I ^ e k ° v * l • P^JI C(Ec ~Ev~ M(/« - fc) (4-6) 

Equation 4.6 gives the net upward transition rate. In our model, we consider three 

valence band manifolds. Each of the Fi/2 band, confined states, is two fold degenerate 

(Fz = ±1/2); the F3/2 band states possess quadrupole degeneracy (Fz = ±1/2, ±3/2); 

and the spin-orbit band states are degenerate with respect to their two Bloch states 

| | , ± | ) and further degenerate with respect U£ = {—Z/so\--- ,Z / S 0 )} . Each of 

these bands must be treated separately, and summed over the degenerate conduction 

band states which have an identical degeneracy to the spin orbit band. For clarity, 

we first separate equation 4.6 into separate bands 

R 
7re2Al 1 ^ 
H2m2 V 

Cba 

£ | (Vc| e^ *e • p | ^ 1 / 2 ) | C(EC - EFl/2 - /*;)(/„ - fe) 
r l / 2 

+ J2\&c\elk°*r~e-p\ipF3/2)\ £(Ec-EVF3/2-?u)(fVF3/2-fc) 

^3/2 

+ J2 \(Tpc\elk°*r~e-pWso)\2C(Ec-Eso-hu)(fso-fc) 
SOsand 

Taking into account degeneracy of the bands mentioned above 
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R^) = «/A2°1 

h2ml V EE E E 
L(c) n ( c ) L z =-L( c ) |tS,T)f|iS,j> 

(4.7) 

(^ c | e^ o p f e-p 

(^c|e^opr~e-p 

^Fx /2 

r3/2 

C(Ec-EFl/2-fuv)(fFl/2-fc) 

C{Ec-EFi/2-hw){fF3/2-fc) 

1/2 2 

E E E 
/ « = - | i l F l / ! ) = l t t f . / ! 
3/2 

+ E E E 
- F 2 = 3 Even,Odd ^F3/2 

+ E E E E [l(^c|e^fe.^5o)|2/:(£;c-^o-M(/5o-/c) 
£,(">) ^ o L(*o) = _L(So) | I , ± I ) 

where 

|&> = |L(C),L*> 14 J«) = l«c) |£ (c), £ , ) |tS, T or | ) 

2 , ± 2 / 

^{Bven) \ = 

^ o r ± § / 

= |F,FZ,J,L) = 

= \F,FZ,J,L) = 

-- \F,FZ,J,L) = 

UFi) 

UFi) 

nFi) 

- , ± - , - , 1 or 2 
2 2 2 

3 1 , 3 3 . . 
- ± - o r ± - , - , 0 > + 

2 ' ± 2 ° r ± 2 ' 2 ' 1 > + 

3 , 1 , 3 3 rt 

2 ' ± 2 ° r ± 2 ' 2 ' 2 

3 , 1 , 3 3 0 - , ± - o r ± - , - , 3 
2 2 2 2 

\ij>so) = \L{S°\ 4S 0 )> 14 Jz) = \riso) \H'°\ L<">) 
l-±l-
2' 2 

(4.8) 

Recall from chapter 3, each quantum-number L maybe associated with multiple en­

ergy values designated by n% below (i refers to the band). That is, for each band, we 

get these discrete levels which arise due to quantum confinement. The importance of 

the \nx) quantum-number becomes clearer when we convert to position representation, 

where they appear in the J?Ln(r) states 

(r,e,<t>\L,Lz) = RLn(r)Yt(e,<t>) (4.9) 

The radial functions, RLn(
r)i a r e addressed in chapter 3, and Y^z{6^(j>) denotes the 

normalized spherical harmonics. 

file:///riso
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Also note that we have two distinct basis, therefore we must convert one basis to 

the other. That is, we have a coupled basis: \F,FZ1 J, L), for the ipF1/2)
 a n d ^F3/2 

states; and an uncoupled basis |L, Lz) | J, Jz) (defined in section 2.1) for the |-0C) and 

\I/JSO) states. In the next section, we address the necessary conversions. 

4.2 Basis Transformation 

Recall from section 3.3 the definition of the coupled F, Fz basis as \F,FZ)L,J) where 

F = J + L. In the last section, we pointed out that we must express this coupled 

basis in terms of uncoupled basis. Using the standard angular-momentum-addition 

rules, [29], we get equation 4.10 

F,FZ,J,L)= y V I T , \L,Lz)®\J,Jt) (4.10) 

where the eg subscript refers to the Clebsch Gordan coefficient. For completeness, 

we also point out that |L, Lz) is short hand for \K,L,LZ) where K is usually left 

out because the Hamiltonian is diagonal with respect to K, and the calculations are 

done at a given K. Rather than computing the Clebsch Gordan coefficients within our 

Matlab program, we calculate them ahead of time in Mathematica with the command 

ClebschGordan[{ J, J2},{L, L2},{F, Fz}]. For more details on how the Clebsch Gordan 

coefficients are formulated and evaluated, one should consult an advanced quantum 

mechanics book, such as Edmond's book [29]. 

4 . 2 . 1 F1/2 S p a c e 

In the F = 1/2 space, we have two separate valence band manifolds, with L = 1 and 

L = 2 values. The states in each of these manifolds has a double degeneracy from 

Fz = ±1/2. In terms of the uncoupled basis, using equation 4.10, we have 
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1 1 3 
2 ' + 2 ' 2 ' 1 

2' 2'2" 

2 , + 2 ' 2 ' 

I _ I 3 2 
2' 2 ' 2 ' 

3 3 
2 ' 2 
3 1 
2 ' 2 

V3 |1.0) 

v ^ |2,-1> 

+\lsM 
3 _3 
2'~2 

- \ / 5 | 2 , - 2 > 

12,1) 
VT6 

3 _3 
2'~2 

7 1 M ) l4)+7f lu> 

3 3\ 1 l r t f t. 3 1 

2 ' 2 

3 3 \ 3 ln ,. 
2 ' 2 ) + VlO | 2 ' -1 ) 

- A / ^ I ^ D 

3 1 
2 ' 2 

3 _ 1 
2' 2 

3 _ 3 
2' 2 

3 _ 1 
2 ' ~ 2 

V5 
|2,0> 

(4.11) 

3 _ 1 
2 ' ~ 2 

4.2.2 F3/2 Space 

The F = 3/2 space also has two valence band manifolds, < \ipF ™
n' \ > and < V F ) [• 

The even manifold consists of a superposition of the L = 0 and L = 2 states.3 

Similarly, the odd manifold consists of a superposition of the L — 1 and L = 3 states 

(as defined in section 3.3 and equation 4.8). This gives 4 different sub-spaces, from 

the 4 possible values for L in the F = 3/2 space; and these four spaces have a four-fold 

degeneracy from F2: 

o
 

C
O
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co lea 

13 1 3 \ 
2 ' + 2 ' 2 ' / ; 

13 1 3 A 
|2 ' 2 ' 2 ' / ' 
13 - 3 3 \ 
|2 ' 2 ' 2 ' / ' 

3 3 3 \ 
2 ' + 2 ' 2 ' / ; 

3 1 3 \ 
2 ' + 2 ' 2 ' / ' 
3 1 3 A 
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C
O

 

to
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o

 

to
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C
O

 

3 1 3 \ 
2 ' + 2 ' 2 ' r 

3 1 3 A 
2' 2 ' 2 ' 7 ' 
3 - 3 3 A 
2' 2 : 2 ' / ' 

C
O

 

C
O

 
IC

M
 

C
O

 
|C

M
 

C
O

 
IC

M
 

to
l 

C
O

 

tO
| 

h-
» 

to
l 

C
O

 

CO
 

3 1 3 
2' 2 '2 ' 
3 - 3 3 
2' 2 ' 2 ' 

3Note that, due to confinement, there are potentially multiple n values for the superposition 
states. 
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Using equation 4.10, for L = 0 we simply have 

i-+ii°> - M 3 3 
2'2 

3 13A ln n. 3 1 \ 
2 ' + 2 ' 2 ' ° ) = l° ' 0 ) 2 ' 2 / 

| 4 | o ) = |0,0) 
3 - 3 3 

2 ' T ' 2 ' 
|0,0) 

3 _1 
2' 2 
3 _3 
2' 2 

Next, for L = 1 we have 

3 3 3 
2 ' + 2 ' 2 ' 

3 1 3 
2 ' + 2 ' 2 ' 

3 _ 1 3 
2' 2 ' 2 ' 

3 - 3 3 
2' 2 ' 2 ' 

= - ^ g l L O ) IDWI'^) 3 1 
2'2 

- - i /5 i i . - i> 
3 3 
2'2 

= -2JSI1,-1> 

§"• • i ) 

\/5H^)+2^M> 

MWs™ 1-2-W!^ 

3 _ 1 
2 '~2 

3 _3 
2 '~2 

§ - I W ! M 
3 _3 
2' 2 

For L = 2 we have 

2' 2*2' 

3 + I 3 2 
2' 2 '2 ' 

3 _ 1 3 
2' 2 ' 2 ' 

?_ Z3. 3 9 
2' 2 ' 2 ' 

^12,0) 
3 3 \ 2.n ,. 
J - J Z - V J 1 2 ' 1 ' MWi™ 

||2,-2) 

f|2,-2) 

3 3 
2'2 

|2,0) Uhf^ 
HH\™ 

3 1 , 
2 ' " 2 ) + |2,1> 

3 1 
2 '2 

|2,-1) HW> 

3 _ 1 
2' 2 

3 _3 
2' 2 

3 _3 
2' 2 

3 3 
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Finally, for L — 3 we have 

3 + 3 3 3 
2 , + 2 ' 2 ' 

3 1 3 „ 
2' 2 ' 2 ' 

! _I 3 
2' 2 ' 2 ' 

! z! ! Q 
2' 2 ' 2 ' 

\/35 
2 

|3,0) 

+ 7 =|3 ,3> 

V35 
|3 , -1) 

3 3 \ 2 lo ,. 

^ Z + T!1 3 '1 ' 
3 _ 3 
2' 2 

3 3 

3 1 
2 ' 2 

|3,2> 
3 _ 1 
2' 2 

2 ' 2 / +
 v

/35 
|3,0) yWs*13'1* 3 _ 1 

2' 2 

+ \/7|3,2) 

- \ / 7 I3--2) 

3 _ 3 

2' 2 

3 3 

V35 
_2_ 

1 

|3,1) 

2 ' 2 / + 2 V 3 5 | 3 - 1 ) 

3 _ 3 

2' 2 

3 1 
2 ' 2 \/35 

|3,0) 

V35 

|3,-3) 

3,0) 

3 3 \ / 2 l o „. 
2 '2 ) + V7 l 3 ' -2> 

3 _ 3 

2' 2 

3 1 
2 ' 2 v/35 

13,-1) 

3 _ 1 
2' 2 

3 1 
2 ' ~ 2 

.(Even) 

4 3 
Example: Basis expansion of 

In general, the valence band state should be expressed as 

. 3 3 3 I (Even) 
VFS 3 

Z'2 2 ' 2 ' 2 ' 
0) + B 

3 3 3 , 
2 ' ^ 2 ' 2 ' 

where A and B must be determined numerically. For convenience, we absorb A and 

B into the radial component, i.e. 

ARln(r) - i? lnand BR2n(r) -+ R2n 

Therefore, the expansion of the states takes the form 
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ipF. 
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CO
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|CM
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3 3\ / r ^ c 3 3 
2 '2 |2,1> ikhfa* 3 _ 1 

2' 2 

It is more convenient to convert to position representation, with {r,d,(p \L,LZ) = 

3 3 
2 '2 

- \J\R*n{r)Y}{eA) 

With the above expansions, we can now consider how to calculate the integral 

| ^) + y ^>)y
2

2(M) I4>^ 

<^c 
zfcop*r ' 

P\lpv) 

These integrals are usually referred to as the momentum matrix elements or optical-

momentum matrix elements. 
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4.3 Momentum Matrix Elements 

We now address how to compute a single matrix element4 (ipc\e
lhop re p\xj)v) Our goal 

here is to separate out all the components of the integral into one of the following 

(iMê 'e p>w.) = EEf j I) %) (4 13) 
4">j(«) \FZ Jz Lz Jcg 

(L<c>, L^\elk°' r\L^\Lx^) { J{c\ 4c)\e p\J^v\ J™) 
3 3 L(v) \ 

iMe^e JtoF^jr.) = E E E r(») j » 
LM

 M 4"> ^ ^ Z Z Z ' eg 
even^odd z z * 

(L^c\L^\elk^f\L^\L^) (JW, jW|c ^ J W , J ^ > 

The summations result from the expansion of a coupled basis into a superpo­

sition of the uncoupled basis states To evaluate equation 4 13, we utilize the 

^c\e
lkopre p\ipso) integral, we first expand the expression 

( ^ c | e ^ f e p\^S0) = (L^\L^\(j^c\j^\elk^fe p\tfv\ L™) \J<V\ J™) (4 14) 

and we represent it in integral notation using 

(L^,L^\(L^,L{^\ -+ 4>l(L^\L^)u'e(J^,J^) = 4>*e(f
f)K 

\LM,LM)\JIV\JW) - ML{v),L^)uv(J^,J^) = 4>v(f)uv 

Next we expand the integral with the chain rule, since p= —iKV Therefore equation 

4 14 becomes 
4A single but complete conduction band state in terms of n, L, L z , J, Jz to a single valence band 

state in terms of n and summed over L,Lz,JiJz because the F = l / 2 and F=3 /2 states may have 
multiple of these due to the expansion of basis, but this is still a single valence band state Also the 
F = l / 2 or 3/2 states have a c g coefficient in the expression, inside both summations 
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{A \elkopfi • p\i/>v) = / <t>*cu*c
elh°P ?z • P4>vuvd

3f 

= / etkop f4>cuc<t>ve • puvd
3f+ 

/ • 

XA ^ 3 -elkop r(j)*u*cuve • p(f>vdrf 

Next we must make an important approximation: the variation of the Bloch func­

tion, un%(f), is on the order of the unit cell, and the variation of the envelope function 

is on the order of the quantum dot. As we note in section 2.1, the Bloch function 

is highly oscillatory on the order of the unit cell. A typical unit cell is about .5 

nm, which means the Bloch function will vary on a size of about 1/2 or 1/4 of .5 

nm (or smaller) The dots we consider are about 3 nm to 10 nm in radius which 

means a variation over the diameter of 6 nm to 20 nm. To help us understand this 

method of approximation, in chapter 1 we illustrated the structure of a zine blende 

type quantum dot. For example, in Figure 1 7 we see a quantum dot of 13 unit cells 

in radius. Here, we can visualize how the variation of the Bloch function, on the size 

of the atoms and unit cells, is much smaller than the envelope functions, which vary 

at about the size of the quantum dot. We illustrate this in Figure 4.1. Therefore, we 

consider this approximation to be acceptable. This allows us to break the integral 

into a summation over the unit cells, much like a Riemann sum; and we can therefore 

integrate the Bloch component separately along a slice of constant envelope function. 

(ijjc\e
lkopfe-p\i/jv) = Yl Qesfc°"r>*(7\)e -P4>v(~ri) ^ / u*cuj 

tofka, r>*(7\)<^(7\) | _ / u*e • puj ;r„. J 3 - | 
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&:&.W&'&.'&M 
Figure 4.1: Approximating the optical momentum matrix element into a summation 
over all unit cells. The thick blue line represents the envelope function F(r, 0, (p) = 
|L, L2), and the thin black line represents the Bloch function 

where Q is the unit cell volume. In section 2.1, we noted that the Bloch states are 

orthonormal. Therefore5 

Next, as we sum over all unit cells, the summation can be converted back to an 

integral and we have 

(ipc\e
ikop'fe-p\i(;v) = Pcv Ieik°r'f<f>*c<f>vd3r = Pcu(L^c\L^\eik^f\L(v\L^)) (4. 15) 

where 

Fri, = f u*ce • pul,d?r = <J(e), J<c)|e • p\J{v\ j[v)) (4.16) 

For further discussion of Pcu, see appendix section A.3. The possible values of Pcv are 

summarized in table A.l. 
5This is because there is no conduction valence band mixing in our model, (distant conduction 

band). Otherwise the integral would equal the Kronecker delta function 6CV 
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Example: Calculation of Pcv with \iS, | ) , |§,§), and e = ex for an 

InAs dot Embeded in GaAs 

In this case, the incident electric field is polarized in the ex direction We will take 

the electric field propagation direction to be in the ez direction We have 

Pcv = o 5 , T \ex p i - , - \ 

using table A 1 

The parameter Ep is an experimentally determined parameter, and varies for each 

material It is often referred to as the optical-matrix-element-parameter6 Values for 

Ep are given in table B 2 In the case of a quantum confined structure, we use Ep 

values of the inside material of the quantum dot, because the contribution to the 

integral comes predominantly from the inside of the dot For InAs we have7 

^/2l5iK _ 
Pcv = 2 v777*) 

Some approximations ignore the (Z/ c \ Lz\e
lkop f\L^v\ Lz \ component of the integral 

(I e (ipc\e
lkop re p\ipv) = Pcv ), because the Dirac-delta approximations would make 

that portion of the integral unimportant, however, we include it 

4.3.1 The Dipole Approximat ion 

In order to numerically evaluate (L^c\Ly\etkopf\L^v\Lz\ we can use the Gaunt 

method-discussed in the next section-or make the dipole approximation Due to the 

6Note that if we look over our derivation, we may conclude that the optical matrix element should 
be independent of material This is true, but experimentally, it still varies slightly from material to 
material, which is why the factor (or correction) Ep is utilized 

7Note that we have left the y/mo intact because, m our calculations this term becomes squared, 
factored out, and re included at the end, which makes it easier for numerical calculations 
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spherical symmetry of the quantum dot, we can arbitrarily assume that the incident 

light propagates in the z direction. Therefore, 

In integral form, we have 

(L^,L^\elk^F\L^v\L^) = f ^lY^yR(l)n^'zel2^cos(e)r2sm(e)drded(l> 

(4.17) 

The integral in equation 4.17 is difficult to evaluate because of the e
t27Vjcos(e) term. 

However, we can make the dipole approximation-that is we set e*
27rxcosW = 1 by 

assuming that A » r. 

(L^,L^\e^f\L^,L^) = j [R^nY^y R^n,Y^r2sm(e)drded(t> 

oo 7T 2n 

0 0 0 

where {RlnY = Rin because it is known to be real, and the prime notation is used 

to denote the L of the valence band. Using the definitions of the normalized spherical 

harmonic functions, Y$?, the integration over the angular components is easily done 

as follows: 

V°LZL'Z 

•K 2-K 

J J'{Y^)*Y^d£l = 5LL,SL 

0 0 

where 5ab is the Kronecker delta function, Sab = 0 if a ̂  b and 8at, = 1 if a = b. Now, 

we express equation 4.17 as 

oo 

<L(0) L ( C ) | e ^ | L H Liv)) = SLLISLZL, J R^R^dr (4.18) 
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Thus, we write the optical momentum matrix element as 

00 

(^c\e
lk°*fe • p\i;v) = PcvhuhzL'z J RL,nriL>n>r2dr (4.19) 

0 

Recall that we have only considered a transition from the spin orbit band to the 

conduction band. However, this must be done for each term in the coupled Fi/2 and 

F3/2 manifolds as in the following example. 

E x a m p l e : Let us expand the integral lij)c\e
lk^'re - $ ^ 7 ° ) for \%j)c) = 

|2,1) \iS, | ) , with the dipole approximation, equation 4.19, and an electric field de­

scribed by kop = kez and e = ex 

As in the previous example, we can represent the valence band state using equation 

4.12. Expanding the integral, we obtain 

l^c\e^"e-m{F^]) = (^(^I^l l^-Pl 

WvO «E%1 3 3 v 

2 ' 2 ) + 

- p M v 1 3 1 v 
2 ' 2 ) + 

- pWvO 
- H2n

 Y2 

S*2^ 

3 3 \ 
2 ' 2 / 

/ 2' " 2 / 

Applying the dipole selection rules L = L' and Lz = L'z (see equation 4.18) 
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i>e\e^re plV£ (Even) 
_ 3 
2 2 

4C ; (^) <*S,i|ex V 

= (-R y!*£,W«a|§.5 
VI 
pi 

4iv2A 

2 ' 2 / 

3 1 
2 ' 2 

?W p W J , = - i / f / ^ ^ V d r 4 

30 

OO 

V2dr 

12 V^x i- ''^"y) 

We have used equation 4 15 to separate the integral components, and table A 1 to 

evaluate P^ Note that the combination of dipole selection rules and expansion of the 

F3/2 state with the C G coefficients ensures that only one term of the coupled expan­

sion remains Thus, the dipole selection rules eliminate the need to evaluate many 

integrals, which is very important when we numerically implement the transitions 

over all states as m equation 4 7 

4.3.2 Plain-Wave Expansion and Gaunt Coefficients 

In the previous section, we made the approximation that e
l27Tjcos(e) = 1 by assuming 

that A ^> r However, for some of the dots we want to address-like a GaAs dot 

embedded m AlAs-may have excitations that correspond to visible photons8 Using 

the extreme case of Amm = 300nra and a 15 nm dot, we get 

27IT ^ 
—"— ~ o 

A 

8We know this from looking at the possible energies m the conduction and valence band wells 
AEmin — 1 424eV=> Xmax = S70nm , we can also see that AEmax => Xmin = 300nm 
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Thus, if e
z27rrcos0/A ^ 1, we must perform the angular integral numerically, and the 

dipole selection rules will not necessarily hold. To simplify the process, we start with 

the plain-wave expansion [30] 

oo L 

elkF=J2 E ^LYUOk,<t>k)YLm{e,<t>)JL(kr) 
L=0 m=-L 

where ji are spherical Bessel functions, and k is in the 9^(j>k direction. Therefore, 

< L < « U U | C ^ L M LM) = JdrdBd* (R%)>nY$)* R^)n,YL^ r2 sm(9) 

• E E ^iLYU0kAk)YLm(0A)JL(kr)) 
\L=0m=-L 

Combining this with the Gaunt Coefficients, we obtain 

(L^c\Lic)\elkop-f\L{v\L^) = 
£,(c)+£,(f) 

SLio LM Yl K2L + !) \/(2LW + 1) (2L(«) + l)iL 

• ( - ! ) • 

-(«) / L L (c) L(t,) 

l o o 0 
L L(c) L™ 
0 -Lic) Lic) 

oo 

(4.20) 

Where I I is the Wigner 3-j symbol. For further discusion, see appendix 
m m! m" 

section A.4. For this expression to be non zero, Lz = Lz , and L + L^ + L^ must 

be an even number.9 

9These come from properties of the Wigner 3-j symbol 



4 4 OPTICAL ABSORPTION COEFFICIENT 104 

The most important impact of this expansion is that we now have coupling between 

L ^ and L^ states, even when L& ^ L^ Also note that (lP\ Lz
c)\etk°? f |LW, L ^ 

IS now A dependent, which is also another numerical complication Under the dipole 

approximation, we essentially only have one integral when calculating the transition 

rate as a function A for a single state to another single state However, in the more 

accurate solution, we see coupling which introduces more integrals, and we also see a 

A dependence, therefore we must integrate for each value of A 

4.4 Optical Absorption Coefficient 

Now that we have discussed the calculations for the transition rate R(X) or R{fouj), 

we can consider a more relevant parameter-the optical absorption coefficient The 

optical absorption coefficient is the fraction of photons absorbed per unit distance 

into a crystal structure, 

Number of photons absorbed per second per unit volume 
Number of photons injected per second per unit area 

In other words, if we have light incident on an area of a material with intensity / , 

then for a photon energy HUJ, we have 

where the transition rate, in a compact form is given by10 

R{hw) = T^V E E f \&c\elk°*fe p\^v)\
2C{Ec -Ev- tku)(fv - fc) 

Recall that the interaction Hamiltonian, from equation 4 3, uses the vector potential 

A = eAo cos (kop r — uoi) 

10 As opposed to the expanded expression from equation 4 7 
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The vector potential is in Coulomb gauge; therefore, the electric and magnetic fields 

can be written as 

dA 
E(r, t) = - — = -eA^m{kop -f-cut) 

H(r,t) = - V x A = —kop x eA0sm(kop • f - ut) 

From these, we can compute the Poynting vector in W/m2 

P(r, t) = E{r, t) x H{r, t) = kopk -sin2(£;op - f - ut) 

ft 

Because light oscillates on the order of 1014 Hz, we can take the time average of 

the Poynting vector to obtain the optical intensity / 

/ = P{f,t) 
OMQ nrceoio2Al 

2fi 2 

Here, nr is the refractive index of the material. Therefore, 

*{ftj) = ?re2
2 ^ V Y, l^cl e^e • p\^v) |

2 L(EC - Ev - hu)(fv - fc) (4.23) 
nrce0m0uj V ^ ^ 

We can see that the factors of Ao, from R and / , cancel; therefore, under our current 

assumptions, the optical absorption coefficient is independent of the optical intensity 

(that is, we don't consider non-linear optics). 

For our quantum dot model, we convert the volume V to the number of quantum 

dots per unit area Njjj?, for a layer with thickness 7X (in meters) (V = - ^ a t ) . This 

allows us to expand our model to an array of quantum dots (provided that we assume 
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no interaction between them). 

a{hJ) = 

ne 2N2£ 
Z/c) 

dot 

nrce0mlu Th 
EE E E 
L(<0 nc LZ = -LW |t5,t>,|t5,i> 

1/2 2 

E E E 
Fz = -l/2L(F1/2)=1nFl/2 

3/2 

(Vd Q VF1/2 ) £(£c - EFl/a - M ( / F 1 / 2 - fc) 

Mc\Q ^ 3 / 2 C{Ee-EFan-fuj)(fFa/2-fe) 3/2 + E E E 
Fz=-3/2 Even.Odd ^ F 3 / 2 

+ E E E E [mQ\TPso)\2£(Ec-ESo-tuo)(fSo-fc)} 
L( s°) ™so r M _ r( s o) I 1 _ 1 \ 11 1 \ 

Lz —^ > | 2 , 2 / ' | 2 ' 2 / 

where Q = e2/c°p re -p. To review how we would evaluate this, we first obtain the radial 

functions, RLN, from our model and then evaluate the momentum matrix elements 

by expanding the F\/2 and F3/2 coupled basis in terms of the uncoupled basis. Next, 

we approximate ( L<c\ Lz
c) ( J<c\ J{

z
c) eikop

 r£ . p L(wUiw)W(vUv))as 

( l / c \ L^\exkop r > ( v ) > LzV)) (J(C)> J i c ) l ^ ' P i j M > Jiv)) = pcv (L{c\ Lf\exk°* f | I > \ L<v>) 

and evaluate each ( L^c\ Lz \elkopr\L^v\ Lz M using either the dipole approximation 

method, or the plain-wave expansion with Gaunt coefficients method. 

4.5 Other Considerations 

We have ignored inhomogeneous broadening. When fabricating an array of quan­

tum dots, one of the problems that arises is the dots will vary in size. Since the 

energy eigenvalues depend on the radius, if some of the dots in an array are smaller 

than the average, then a particular transition will occur at a higher energy (shorter 
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1+1 

Figure 4.2: Inhomogeneous broadening example. In the first row, we have an array of 
three quantum dots with the exactly the same size. Thus, there is only homogeneous 
broadening and no inhomogeneous broadening. The second row shows the case where 
the three dots vary in size and therefore the absorption peaks for a given transition 
will vary slightly, which results in a total absorption with a shorter and wider peak. 

wavelength). On the other hand, the larger than average dots would have the cor­

responding transition at a lower energy. Therefore, the average stays the same but 

the transition amplitude becomes shorter and wider. An example of this is shown in 

Figure 4.2. 

We have also neglected some lesser effects in our discussion, such as spontaneous 

emission, bi-cxciton effects, and intersubband transitions/absorption. Spontaneous 

emission would cause a slight decrease in the net upward transition rate. Intersubband 

means transitions that occur within the same band-a conduction band to conduction 

band transition or a valence band to valence band transition. 

o 
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Eigen Functions 

Radius(nm): 9 

Array length(pts): 

1000 

Array Max (inT 
#*radius): 8 

h^Absorption Coef 

IGaunt method 

• Dipole method 

: 

Calculate ] 
Figure 4.3: Absorption section of Matlab GUI. 

4.6 Absorption Coefficient Results 

In section 3.4, we introduced a tool to calculate energy eigenvalues and eigenvectors. 

We now add an additional component to the GUI to calculate the absorption coef­

ficient using either the dipole or Gaunt methods (or both). This is shown in Figure 

4.3. We normalize each of the radial eigenfunctions using Riemann sums: 

/

'•max 

(Co'ipy Co'(pr2dr numerical sum) CQCQ V^ ('0(0)* ip(i)r(i)2Ar = 1 

0n 

i = 0 

V\Co 

where C0 is a normalization constant, imax is the array length used (1000 to 10000 

points), and Ar = rmax/(imax) (usually 9 to 12 times the well radius). The factor of 

r2 is required with spherical coordinates. We mention the detail of the arrays because 

the same summation technique is used to evaluate all integrals. 
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Table from 
= 0 to r = 8rweu on a 2.01 GHz processor 

Run Time Max 
Dot Radius(ru.f.//) Dipole Gaunt Residual 

3nm t<lsec t « 8 min ~8 • 10"3 

lOnm t<lmin t « 20 hr ~.25 

Corresponding 
Peak Level 

9 
10 

Relative 
Residual 

8.89 • 10"4 

.025 

4.6.1 Comparison of Absorption Coefficient using the Dipole 

Approximation and Gaunt Coefficients 

In this section, we shall compare the two methods proposed for calculating the op­

tical absorption coefficient. Using the GUI-tool developed, we simulate GaAs dots 

embedded in AlAs with two different radii-10 nm and 3nm. Figure 4.5 shows the 

comparison for the 10 nm case. Figure 4.4. The results are summarized in table 4.1 

, io 3 Absorption Compairson of a 3nm GaAs dot in AlAs 

1000 

Figure 4.4: Absorption comparison of Gaunt and dipole methods for a 3nm radius 
GaAs dot in AlAs. 
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Figure 4.5: Absorption comparison of Gaunt and dipole methods for a lOnm radius 
GaAs dot in AlAs. The third plot shows the Gaunt method minus the dipole method 
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4.6.2 Absorpt ion Coefficients 

GaAs Embeded in AlAs 

Figure 4.6 shows the results for a GaAs quantum dot Embeded in AlAs, for radii of 

4.5, 6, 7.5, 9 nm. 

GaAs-AIAs Quantum dot with radius of 4.5 nm 
15r 

GaAs-AIAs Quantum dot with radius of 6 nm 

400 500 600 700 800 900 
A.(nm) 

GaAs-AIAs Quantum dot with radius of 7.5 nm 
40 r 

400 500 600 700 800 900 
A.(nm) 

GaAs-AIAs Quantum dot with radius of 9 nm 

400 500 600 700 800 900 
A.(nm) 

400 500 600 700 800 900 
A.(nm) 

Figure 4.G: Absorption Coefficient plots 
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GaAs Embeded in Al r Gai_ x As 

Figure 4.7 shows the results for a GaAs quantum dot Embeded in Al.3Ga.7As (x =.3), 

for radii of 4.5, 6, 7.5, 9 nm. 

GaAs-AIGaAs Quantum dot with radius of 4.5 nm 
10 

GaAs-AIGaAs Quantum dot with radius of 6 nm 
15r 

600 800 900 700 
X(nm) 

GaAs-AIGaAs Quantum dot with radius of 7.5 nm 

600 800 900 700 
Mnm) 
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Figure 4.7: Absorption Coefficient plots 

http://Al.3Ga.7As
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InAs Embeded in GaAs 

Figure 4.8 shows the results for an InAs quantum dot Embeded in GaAs, for radii of 

4.5, 6, 7.5, 9 nm. 

InAs-GaAs Quantum dot with radius of 4.5 nm 
10 

InAs-GaAs Quantum dot with radius of 6 nm 

1000 2500 3000 1500 2000 
X(nm) 

InAs-GaAs Quantum dot with radius of 7.5 nm 
20 

1000 1500 2000 
X (nm) 

2500 3000 

1000 1500 2000 2500 3000 
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InAs-GaAs Quantum dot with radius of 9 nm 

1000 1500 2000 
X (nm) 

2500 3000 

Figure 4.8: Absorption Coefficient plots 
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GaSb Embeded in AlSb 

Figure 4.9 shows the results for a GaSb quantum dot Embeded in AlSb, for radii of 

4.5, 6, 7.5, 9 nm. 
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Figure 4.9: Absorption Coefficient plots 
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InSb Embeded in AlSb 

Figure 4.10 shows the results for an InSb quantum dot Embeded in AlSb, for radii of 

4.5, 6, 7.5, 9 nm. 

InSb-AISb Quantum dot with radius of 4.5 nm InSb-AISb Quantum dot with radius of 6 nm 
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Figure 4.10: Absorption Coefficient plots 



Chapter 5 

Applications to Solar Cells 

5.1 Quantum Dot Solar Cells 

There is ever increasing demand for clean alternative energy sources, and naturally, 

solar cells come to mind. However, it was pointed out by Shockley and Queisser in 

1961 [6] that the maximum theoretical efficiency of a solar cell, using a single p-n 

junction to collect power from the cell, is about 31%. In their analysis, a major factor 

limiting the efficiency to 31% is that the absorbed photon energy above the band gap 

is lost as heat. One method to increase efficiency above this limit is the use of a stack 

of p-n junctions; each with band-gaps better matched to the Air Mass (AM) 1.5 solar 

spectrum. The AM 1.5 spectrum1 is the generally accepted input spectrum used to 

obtain solar cell efficiency[7]; this is shown in Figure 5.1-note that this spectrum is 

normalized with respect to photon enegry [7]. For an infinite stack of PN junctions 

the theoretical efficiency has been shown to be about 66% for the AM 1.5 spectrum. 

Due to practical reasons, these stacks have been limited to about three PN junctions, 

and efficiencies of about 32% [8]. 

However, in recent years it has been proposed [31, 32, 7, 33, 9], and in some 

cases experimentally verified [34, 35], that quantization effects (e.g. a quantum dot) 
1The air mass 1.5 spectrum is used for terrestrial efficiencies, the AM 0 spectrum is used for 

space applications. 

116 
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Figure 5.1: (a)The Air Mass (AM) 1.5 spectrum, shown with a normalized power 
density. Some bulk semiconductor band-gaps are also given, (b) The AMO and 
AMI.5, and black body spectrum, shown with a linear wavelength scale. 
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QD's 

vz< v**z-(b) 

Figure 5.3: (a) The PIN junction with quantum dots in the intrinsic region (the p+ 
should be p-). (b) A suggested implementation of a PIN junction. 

from the excited quantum dots in the intrinsic region. It has been suggested that 

a single PIN junction with quantum dots in the intrinsic region, could increase the 

efficiency to >63%[5]. Practical implementations to date have shown increases of 

^6% for the type of solar cell shown in Figure 5.3b [36]. Also note from Figure 

5.3b, from [36], that the p and n material alter the carrier densities because they 

induce carrier injection. Such effects alter the Fermi-Dirac statistics, and influence the 

confining potential, which could be difficult to account for under spherical symmetry. 

Thus, many transport effects would need to be considered to go from our absorption 

results to an actual solar cell; but we have shown the importance of such results and 

where our work fits into some intriguing modern research. Finally, we consider some 

examples of quantum dots produced today. 
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5.2 Modern Fabrication of Quantum Dot Arrays 

There are currently many groups working on the fabrication of quantum dots[28; 37; 

38]. The most popular types produced are pyramid shaped dots (for example [37]) 

and cylindrical shaped dots (28). 

The pyramidal quantum dots Figure 5.4a, from [37], and cylindrical quantum 

dots in Figure 5.4b, from [28], are produced by molecular beam epitaxy [37, 28]. 

Other methods include low-pressure metal organic chemical vapor deposition. 

5.3 Concluding Remarks 

In conclusion, we have utilized a Hamiltonian with spin-orbit coupling; and, using 

perturbation theory and k • p theory, we obtained the necessary single and coupled 

band effective mass equations. Through spherical symmetry and sophisticated ana­

lytical methods, we simplified the problem and used additional analytical methods to 

make the problem numerically efficient to solve. We assumed quasi-equilibrium con­

ditions, well matched unit cell sizes, and distant conduction and spin-orbit bands. A 

tool was developed, with a convenient user interface, to obtain the eigenenergies and 

eigenfunctions for arbitrary type III-V semiconductor materials and dot sizes. We 

further expanded this tool to implement the absorption coefficient for both the dipole 

and Gaunt calculation methods. Our results verified that the dipole approximation 

holds for the quantum dot sizes we considered. 

In addition, we have also pointed out the relevance of these methods to quantum 

dot solar cells. However, if we which to consider a PIN junction, spherical coordi­

nates present a complication. It is also possible to model the transport effects needed 

to analyze a theoretical photocurrent. This would change the Fermi-Dirac statistics 

from the equilibrium case, to one with charge carriers, which will influence the Fermi 

energy level. Also, we implicitly included scattering processes through the line-shape 

function (homogeneous broadening), however these scattering processes could be an­

alyzed theoretically in more detail. We could also expand the proposed model further 
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Figure 5.4: (a) Pyramid shaped Quantum dots, (b) InGaAs quantum dots in GaAs 
grown at 480°C and 510°C, line-widths of 36 meV were observed for the 480°C case. 
The scale is 1/im. the densities observed were « 6 • 108cra~2 for the 480°C case and 
w 1 • 108cm"2 for 510°C. These quantum dots are cylindrical with a height (into page) 
of 1.4nm. 
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by including inhomogeneous broadening, and higher order blocks of the block diag-

onalized Hamiltonian (i.e. the F=5/2 space). It is also possible to reconsider the 

distant band approximations, and analyze their impact on the band structure. 

Finally, we believe the methods discussed and GUI developed will be of practical 

use to those designing quantum dot photovoltaic cells, quantum dot lasers, and any 

quantum dot based optoelectronic devices. 



Appendix A 

First Appendix 

A.l Spherical Harmonics 

The normalised Spherical Harmonics are defined as 

Ylm = YT = Yim(e,4>) = f 2 l t l ) l + m)\pncoseym* 

Where P^f are the associated Legendre functions. Because the functions are 

normalized they have the property 

7r 2n 

0 0 

where 6ab is the Kronecker delta function, 5^ = 0 if a ^ b and 5ab = 1 if a = b. 

For more details on spherical harmonics consult an undergraduate physics text 

such as Griffiths book[18]. A few normalized spherical harmonics are given below. 

123 
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Y° -
ro — 

r-\Jl sin#e 

2n 

1 lib 

Y21 = l:\hr-sinecos6e-14 
2 2 V 2TT 

Y2° = ^ ( 3 c o s 2 0 - 1) 

K1 - -J-smOcosBe* 
1 4 V 7T 

2 4 V 2TT 

^2 = T \ / — s in^e 2 4 V 2TT 

20o-t2<l> 

A.2 Bloch Function's Relation to Y^ 

The names and formulation of the block-function-definitions can be traced back to 

the naming scheme used for the hydrogen atom; that is the s-p-d-f states. The nature 

of the Bloch functions for the conduction band have s-state like properties (^=0) and 

^00 — 
47T 

The 6 valence band states have "p" (£=1) like properties. The Z states: 

V10 = \l—cos9 
47T 

z = r • cosO 

file://l:/hr-sinecos6e-14
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and the X and Y states: 

x = r - coscj)sinO 

y = r - sincpsinO 

Y1±1 = T \ - y- = T~7=X±iY) 
V 8n r v2 

Bloch functions for valence band states can be represented by a superposition of these 

£=1 states. The Bloch functions are given again in equation A.lbelow. It is in fact 

the spin-orbit interaction which couples these \X), | y ) , \Z) states into those in A.l, 

otherwise the 6 valence band states would be 

l*,T> \YA) \ZA) 

\Xd) \Yd) \z,i) 

A.3 Momentum Matrix Elements 

As noted in chapter 2, the Bloch functions un^{f) for the light-hole, heavy-hole, and 

spin-orbit holes can be represented by: 
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3 1 
2 ' 2 

3 - 1 

heavy hole 1: tiio(f) = 

light hole 1: U2o(r) = 

light hole 2: uso(r) = 

heavy hole 2: U4o(r) = 

Spin-orbit 1: u5o(f) = 

Spin-orbit 2: U6o(r) = 

The conduction band states can be expressed as 

§. i>->+«-.« 
=±\x+,Y,i)+]/l\z,n 

i i 
2 '2 

^ + zr,|) + yi|z,T) 

i T ) "^"^^ -^^ 

(A.l) 

|i5,T>and \iS,i) 

When calculating the Momentum matrix element (ipc \p\ ipv) a useful portion of the 

integral is 

Pcv = (Ucbfi \P\ Uvbfl) 

The spin basis is factored out and simply integrated by orthogonality (it is unaffected 

by the momentum operator) 

(t 11) = a 11) = i 

a IT) = (T11) = 0 

It can be shown [25] that 

S + d 
—in— 

ox 

\ 
X ) --

1 
= < - s 

\ 

d 
—ih— 

oy 

\ 
y = 

I 
i 

= (s \ 

d 
—ih— 

oz 
Z)=Pn 
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other integrals such as 

-ih d_ 
dx 

Z > = 0 

Note that a lot of confusion can result from the multiple ways people define these 

integrals. Chuang [10], for example, uses Kane's parameter P 

P = ^ ( t S 
m0 

-ih— 
ox 

X 

and 

iS 
ox 

X) = (iS -ih— 
dy 

Y) = (iS -%h d_ 

dz 
Z) = PX 

The advantage of this variant is that it matches basis we use for the conduction 

band, and it is related to the experimentally known parameter Ep, which is defined 

by 

Values for Ep are found experimentally and are given in table B.2. This parameter is 

often refered to as the optical matrix parameter We want to summarize these integrals 

so that they will benumerically useful. From the above expressions we can see that 

P* = 
Epm0 

Next we put the results for light incident from one direction into the following table 

(hi is heavy-hole 1 from equaiton A.l): 
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Table A.l: Optical Momentum Matrix Elements for Bloch Functions in Terms of 
Known Parameters 

hhl 

hh2 

Oil 

L\i2 

so l 

so2 

L (is, T 

2 \ex + %e-y) 

0 

A/¥^ 
\[^{ex-iey) 

^ e z 

\[^{ex - ley) 

(iS,l 

0 

2 vGx vz,y J 

- ^ ( e x + iiy) 

\l^*. 
j / ^ P ( e * + ie„) 

- V ^ , 

A.4 Plane-Wave Expansion and Gaunt Coefficients 

We wish to evaluate the integral 

( L ^ U I V ^ ^ U ^ ) = J ( 4 t , n ^ ) ) * R{S,)n,Y^elt?r2sHe)drd9d4> 

Which is required in section 4.3.2. We start with the plain-wave expansion into 

spherical components [30] 

oo L 

e . * > = £ Y, ^iLYZm{6kAk)YLm{6^)jL(kr) 
L=0m=-L 

Where ji are spherical Bessel functions, and k is in the 0*, 4>k direction. Therefore 

<!<«>, L?\e^\L*\ LW) = / ( ^ , ^ 5 ) * < ) n , r L f (A.2) 

( oo L \ 

Y J2 ^LYL(8k,<t>k)YLrn(eA)JL(kr)\r2sm{9)drded<t> 
L=0m=-L / 
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We can put the summation outside the integral because it is mathematically the same 

OO Li P / ( \ \ * (v) 

{L^\L?\e^\L^\L?) = E E (R%JLJA *$*«*& 
L=0m=-LJ ^ ' 

(47rzLrL*m(^, ̂ YUO, <f>)jL(kr)) r2 sm(6)drd0d<j> 

A major simplification can be achieved from the term Y£m(6k, <j>k) where we use kop = 

kez, therefore 0* = (j>k = 0 and 

V* (ft *\ V* (n m °"m/2 2L + l(L-m)l 
YLm(ok,4>k) = YLm(o,o) = r o T ^ y y An (L + m)! 

where T is the gamma function. Because we are working with integers, 0~°/2/T(l — 

0) = 1 and from the limit of 0_m/2, we can see that 

( . / IS ! m = 0 
YU0t0) = \V 4* (A.3) 

0 m ^ O 

For completeness, we can verify this by looking 

™°) - V^^ P r ( c o s 0 ) e i m o 

l2L + l(L-m)\ 
W 47r (L + m)! 

The Associated Legendre functions with integer indexes can be written as (equation 

8.810 from [39]) 

with x = 1 
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dm 

PT(D = (-ir(i-i)^PKD 
= ( _ i r ( o r / 2 _ _ p / ( 1 ) 

= (-l)m(0)m/2 

1 m = 0 

0 m ^ O 

Because1 P/(l) = 1 is a constant we have again verified equation A 3 Therefore the 

Ylm=-L disappears in equation A 2 because all none zero values for m result in a 

zero Now we only need to sum over L, all m's are replaced with m = 0, and plug in 

equation A 3 

{L^L?\e^\L*\Ly) = tfUtlY^)^^^ 
L=0J ^ ' 

UmL\/^^YLo(e,<P)jL(kr))r2sm(0)drd9d(f> 

Now we separate the integral into angular and radial integrals 

oo °? 
< L M L M | e ^ L M L M ) = £ / *$> nR%n>JL{kr)r2dr 

1 Found using Mathematica, but the value does not matter m this case because it is obviously a 
constant 
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Next, we evaluate the integration of three spherical harmonics with the definition of 

the Gaunt coefficients which are defined in [29; 30] 

7T 2?T 

0 0 

f L L' L"\f L L' L" 

0 0 0 j [ m ml ra" 

ILL1 L" \ 
Where is the Wigner 3-j symbol. They are related to the Clebsch 

y ra ra' ra" J 
Gordan coefficients by 

\m ml m" J \m m! m" J 

For this element to be physical 

rae{-L,-..,L}, m ' G { _ Z / , . . . , Z / } , m , /G{-L / / , - . - ,L , ,> 

and the triangular inequality must also hold 

\L'-L"\ <L<L' + L" 

In our case, we must account for the conjugation of the spherical harmonic from the 

conduction band. Using the conjugation rules for spherical harmonics 

Y[m = (-l)m{Y£y 
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we obtain 

7r 2n 

II 
0 0 

Y?(Y$) Y$sm(e)d<pde = (-1) 
L(o A /(2L + 1)(2LW + 1)(2LW + 1) 

47T 

L L(c) L(w) 

0 0 0 

L L(c) L M 

o - L (
Z

C ) L{V) 

This result was checked in Mathematica and the left hand side and right hand side 

give the same answers. The Wigner 3-j symbol also has the important properties that 
( L U L" \ 
I is non-zero if L + L' + L" is an even number and m+m' + m" = 0. In 
y m m' m" J 

our case m = 0 therefore the Gaunt coefficient is non zero if Lz = Lz . Therefore, 

we use 
7T 2ir 

/ / n ° ( n f ) * ^ ' s i n W ^ = (_1)dy(2L+l)(2^1)glMTT) 
0 0 

L L^ Z>) 

0 0 0 
L L<c> L ^ \ 
0 -L? Lf ) 6*W 

We introduce the Kronecker delta function, because the Kronecker delta function 

will make the entire expression for / L ^ L ^ V ^ I ^ , £ ^ ) = 0 if L\c) ^ Lz
v). 

Therefore we can use an "if-statement" for numerical evaluation to avoid unnecessary 

computation. Next, we combine these terms together 

2L + 1 (L^,L^\e^f\L^\L^) = S^^Y, 
L=0 L 

\ 0 0 0 
oo 

47T 
yJ(2LM + 1) (2L<«) + 1) ( - I ) 4 ' ' Am1 

L Z/c> £,(«) 

0 -Lz
c) L{c) 

• I R{c) R(v) nr f—Ar2dr 
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Finally we apply the inequality rule for the Wigner 3-j symbol 

|L<c)-L (v ) | <L< L(c) + L{v) 

This changes the summation bounds over L and we obtain a final expression canceling 

out the 47r and obtain equation 4.20. 

£(c)+£,M 

(L^c\LP\elk^p\Liv),L^) = 6Lic)LM £ (2L + 1) y/(2U°) + 1) (2Z» + 1) 
L = | L ( C ) - Z » | 

( 1} * * ' l 0 0 0 j I 0 -Li c ) Lic) j 

/^g),„4tn^(f0^ 

Also note that the (L^,Lz
c)\elk^F\L^,Lz

v)\ is A dependent, which is also another 

numerical complication. 



Appendix B 

Useful Properties of Group III and V 

Elements 

B.l Electron Structure of Group III and V Elements 

Table B.l: Electron Structure of Group III and V Elements 
Group III 

A 

5(#5) 
ls22s22pl 

Al(#l3) 
[Ne]3s23p3 

B 

5c(#21) 

Group V 

A 

JV(#7) 
ls22s22p3 

P(#15) 
[Ne]3s23p3 

B 

n#23) 
[Ar]3dHs2 [Ar]3dHs2 

Ga(#31) As{#33) 
[Ar]3d104s2V [Ar]3d10AsHp3 

Y(#39) Nb(#41) 
[Kr\Ad}hs2 [Kr\4dA5sl 

7n(#49) 56(#51) 
[^r]4d45525p1 [Kr]4d45s25p3 
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Table B.2: Important Band Structure Parameters for various 

Parameters 

a0(k) 
£7„**(eV) 

Eg(eV) 

A(eV) 

Ep(eV) 

Effective 
m*e/m0 

m*lh/m0 

mlh/mo 

m*so/m0 

7 i 

72 

73 

GaAs 

5.6532 

0 

1.424 

.341 

28.8 

Masses 
.067 

.090 

.350 

.176 

6.98 

2.06 

2.93 

AlAs 

5.6611 

-0.53 

3.03 

.28 

21.1 

.15 

.185 

.471 

.281 

3.76 

.82 

1.42 

InAs 

6.0583 

.21 

.354 

.39 

21.5 

.026 

.027 

.333 

.107 

20 

8.5 

9.2 

*Data taken from[40; 24] 
** Ev GaAs set to 0 and other Ev's are 

GaP 

5.4505 

-0.47 

2.777 

.08 

31.4 

.13 

.199 

.326 

.254 

4.05 

.49 

2.93 

InP 

5.8697 

-0.14 

1.4236 

.108 

20.7 

.0795 

.121 

.531 

.211 

5.08 

1.6 

2.1 

relative to it 

Group III and V Semiconductors* 
Materials 

A1P 

5.4672 

-0.94 

3.63 

.07 

17.7 

.22 

.210 

.518 

.301 

3.35 

.71 

1.23 

GaSb 

6.0959 

.77 

.75 

.76 

27 

.039 

.044 

.25 

.136 

13.4 

4.7 

6 

AlSb 

6.1355 

.39 

2.386 

.676 

18.7 

.14 

.134 

.357 

.217 

5.18 

1.19 

1.97 

InSb 

6.4794 

.8 

.235 

.81 

23.3 

.0135 

.015 

.263 

.110 

34.8 

15.5 

16.5 

GaN 

4.5 

-1.84 

3.299 

.017 

25 

.15 

.240 

.855 

.376 

2.67 

.75 

1.1 

A1N 

4.38 

-2.64 

4.9 

.019 

27.1 

.25 

.350 

1.02 

.523 

1.92 

.47 

.85 

InN 

4.98 

-1.58 

1.94 

.006 

25 

.12 

.160 

.833 

.270 

3.72 

1.26 

1.63 

to 

§ 
CO 

o 

§ 
O 

O 
So 
O 
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I 
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CO 
O l 
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Notes on using TableB.2: 

• EC = Ey + Eg 

• E80 = EV-A 

• Ep: Kanes Parameter used for optical matrix elements 

• The effective masses given in their most common form (the effects of the con­

duction band are included) 

• The spin-orbit effective mass is defined in[24] as 

EPA 1 - 1 

SEg(Eg + A)m 

m so 

m0 



Appendix C 

The Spherical Potential 

Throughout this document, we frequently reference spherical Bessel functions of the 

first kind, ji\ and spherical Hankel functions of the first kind, h\ \ These functions are 

closely related to Bessel functions. Problems with cylindrical symmetry frequently 

lead to Bessel functions and problems with spherical symmetry frequently lead to 

spherical or half-integer Bessel functions. Mathematicians, and mathematical pub­

lications such as [39] will usually refer to spherical Bessel functions as half-integer 

Bessel functions, perhaps because they came about first. In physics however, we re­

fer to these functions as spherical Bessel functions because they relate to spherical 

problems. William Bell gives a very good description of these functions in chapter 4 

of [41] (which is a very concise and inexpensive source). 

C.l Spherical Bessel and Hankel Functions 

Consider the equation 

r d 9 d /(/ + n A 
Ri(r) = 0 (C.l) 

d 2d 1(1 + 1) 2 

dr2 r dr r2 
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which has the general solution 

Rt(kr) = A-Jl+i(kr) + B-Yl+i(kr) 

or 

Rt(kr) = A'• jt{kr) + B'• yi(kr) 

where J and Y are Bessel functions, and j and y are spherical Bessel functions of 

the first and second kinds. The spherical Bessel functions of the second kind call are 

often refereed to as spherical Neumann functions. The general solution can also have 

two additional particular solutions 

h^ikr) = j<(Ar)+iW(Ax) 

and 

hf\kr) = ji(kr) - iyi(kr) 

These functions are called the spherical Hankel functions of the first and second kinds. 

Hankel functions of the first kind decay exponentially as r —» oo. The relationship 

between any Bessel function and spherical Bessel function is 

These Spherical Bessel functions have the recursion relations 

vM = -(- i)V(if) '^ 
\pdpj p 

A few examples of these are 

file:///pdpj
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sinp - c o s p (1) eip 

p p ip 
, . sinp cosp . . — cos/3 sino , . . t%p /„ i 

p p p2 p P \ p 

To solve these functions numerically, it is also important to note that any Bessel 

function Z, must have the two functional relations (Equation 8 471 of [39]) 

zZi-^z) + zZi+1(z) = 2lZi(z) 

Z^z) + Zl+l{z) = 2^-Ztiz) 
az 

Prom which we can see that 

—Zl(z) = -Zi(z)-Zl+1(z) 
az z 

If, as in our case, we have ji(kr), than (prime superscript denotes a derivative) 

J 7 

j'i(kr) = k (—ji(kr) - jM(kr) 

j't(kr) = -ji(kr) - kjl+1(kr) (C 2) 
r 

Numerical solutions involving a ratio of Hankel functions can lead to problems 

because they are decaying exponential functions We can alleviate this by canceling 

out the exponential terms with the following recursion relation (Equation 8 466 of 

[39]) 

*,<»(,) = {-,y^±_^_(l±^ (C3) 
P ^0

mK2P)m V - my v ; 
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C.2 Electron Motion under a Spherical Potential 

We wish to solve Hip — Etp for a bounded electron under the influence of a spherical 

potential (quantum dot) with a radius of rweu 

V(r) = < 
0 

•Va 

r > rweu 

r < rwM 

(C4) 

A good explanation of this problem is given in section 7 4 of [19] In spherical coor­

dinates our Hamiltonian H = — | ^ V 2 + V(r) takes the form 

2m 
XS- (si, + 

1 d & |2 1 

r28r\ dr) ' r2sin686 \Stn689) + r2sin26def 
+ V{r) 

We can substitute in the angular momentum operator L2 

L2 = -h2 J_8_( e8_\ 1 82 

sin0 89 [Sm 86) + sm268(j>2 

and our Hamiltonian becomes 

2m 
1 d 

-T:-^ r 2 dr V dr 

L2 

H2r2 + V(r) 

In order to simplify this equation further, we first recall that the operators Lx, Ly, 

Lz, and L2 do not operate on the the radial variable r Hence, for our spherical 

potential which is only a function of r, we have V(r),L = |V(r),L2] = 0 The 

angular momentum operators also commute with the Hamiltonian 

H,L = [AT, L2] = 0 

The operators Lx, Ly, and do not commute among them selves, so we choose the 

usual option of Lz, this gives us a complete set of / / , LZ) and L2 We know from 

H,L = [H, L2] = 0, that our set H, Lz, and L2 must share the same eigenvalues 

and eigenvectors The spherical harmonics are the the simultaneous eigenfunctions 
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of L2 and Lz and L2Ylm{6, 0) = 1(1 + l)fi2YJm(0, </>). Therefore we look for solutions 

of the Schrodinger equation having the separable form (using n for the index of a 

particular En 

ipnim(r) = Rin(r)Yim(9,<fi) 

We know in advance that the radial component is independent of ra. When our 

Hamiltonian operates on this state, Hipnim = En%/jnim becomes 

2m 
1 d ( 2 8 \ L2 

+ V(r))Rln(r)Ylm(9,<j>) = EnRln(r)Ylm(6,<t>) 

h2 1 8 ( 2 8 \ l(l + l)h2
 T/ / A _ . , _ D , , 

^728-r{r¥r)+12^ + V{r))RM = E M r ) 

This verifies that Rin is independent of m. The consequence of this is that each 

particular En depends on n which is particular to a value for l\ and because each 

m € [—1,..., /] , each state will have a (21 + 1) degeneracy. If we apply our potential 

from C.4 than inside our spherical potential we have 

/ h2 i 8 ( 28\ i(i + i)h2
 T \ „ , . „ „ , , 

{-2^728-r{r¥r)+12^-Vo)R^ = **»<"> 

Equation C.5 is in fact the spherical Bessel equation C.l. Where 

/2ra/1_, 

therefore we have the solution 

Rin(kr) = Ajin(kr) + Byin(kr) 
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However, the spherical Bessel functions of the second kind converge to -oo at the 

origin, and il)nim must be finite. Therefore, inside the dot our solution has the form 

Rin(kr) = Ajin(kr) r < rweU (C.6) 

Outside the well our solution becomes 

1 d ( 2 d \ 1(1 + 1) 2m 
H r ' — 

r2 dr V dr 
+ ^ (£„)) Rln(r) = 0 

Note that under the formulation of our potential, our bounded energy values fall 

below 0. Therefore 

i\ = 
2m 

h2 (En) 

so outside the well our "k" from C.l, must take the form iX. Now considering a 

particular solution 

Rin(kr) = Cjin(i\r) + Dyin(iXr) 

we know this solution must go to 0 at r = oo, because the probability must be 

bounded Because we are outside the well we can consider a linear combination of 

these two functions. For large r the functions jin('iXr), yin(iXr), and h\n\iXr) all 

increase exponentially, therefore the only type of solution outside the well is h\^(iXr) 

Rin(kr) = Bh\^(iXr) r > rweU (C.7) 

At this point we could solve the problem by noting that the function must be equal 

and continuous at r = rweu, and we obtain C and A from solving 

jUm(kr)) 
jinikr) 

r=rweu 

± f h{1) 

dr \nln 
(iXr)) 

,(D C(*Ar) 
(C.8) 

-» r=rwen 

with normalization. However, in our case we are interested in a potential created 

by two materials with different effective masses and the condition in equation C.8 is 

not actually true. Physically we must check the probability current density j . (Im() 
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means the imaginary component) 

-iqh 
J = 2m* 

((V</>)* V - ^*Vip) = —7m(V>*W0 
m* 

which satisfies the continuity equation 

Therefore, if we have a heteroj unction and assume that ipmi^weii) — ^out^weii), and 

W ^ r ^ ) = XVil)out(rweu). we can find X through j . 

— r / m ( C i W i n ) = ——Im(^*out^^out) 
min mout 

—rIm(Xijj*(mtVi>0Ut) = —z-ImtyUVipout) 
Lout 

X = ml 

m out 

Next, we use equations C.6 and C.7; we can set A — 1, because we normalize later, 

and we must solve 

jUin(kr)) 

jin(kr) 
ml 

m\ J r=rweU 

out 

dr (h^(i\r)) ' 

,(D h\n\i\r) 
(C.9) 

r=rWell 

to find B. We first seek to find a more reasonable form of C.9. Starting with the LHS 

and using equation C.2 

£(jin(kr)) =
 l-jin(kr) - kjM,n(kr) 

jin(kr) jin(kr) 

= I _ k3i+itn(kr) 
r jin(kr) 

(CIO) 
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The RHS can be simplfied in the same way to 

Now, we have two equations to help us numerically solve this problem. Equation C.IO 

behaves well numerically, but we recall from our formulation and section C.l that 

equation C.ll contains a ratio or two rapidly decaying exponentials, and numerically 

this could give us problems. Therefore we use equation C.3 and further evaluate 

z+i 
m / _ 7 A / + l + l e ^ V^ im (Z+m+1)! 

/£> (p) { *) 0 L^MDI 
1 ' 7T^ = 1 • ; h$(p) (—j\l+iz!± V %ra (*+m)? 

\ b) p Z_> m\(2p)m (1-mY 
m=0 

Z+l 
/ - V + l + 1 V 2m (Z+m+1)! 
V AJ Z-, m!(2p)™ (Z-m+1)! 

771=0 
= Z } 

(_*y+i V %Tn ( z + m ) ! 

V ^ Z ^ mU2o)™ (1-mY m=0 
m'(2p)m (Z-m)! 

where we have canceled out the exponential components that give us numerical prob­

lems and we can further simplify this to 

z+i 
m / _ 7 A Z + l + l - Z - 1 y > im (l+m+l)\ 

hf) (p) K I) ^ m ! ^ ) ™ (Z-m+1)! 
l ' TTt = I 

^ m\(2p)m (1-mY 
m=0 

l+l 

E z™ (Z+m+1)' 
m'(2p)m (Z-m+1)! 

m=0 
I 

E l™ (l+m)\ 
m\{2p)rn (1-mY. 

m=0 
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plugging back in p = i\r 

,(D *£» 
1+1 

£-1 m'(2Xr)m (Z-m+1)1 

ro=0 

1 (f+m+1)1 

,(D C(P) 
(C.12) 

E 
m=0 

1 (l+my 
m'(2Ar)m (Z-m)' 

This may look complicated, but numerically this is fairly simple. We could note that 

this may be simplfied further 

/+ i 

E 
1 (l+m+iy 

hl+l,n(tXr) ^ " W ™ (1-m+l)' Kl+^(\r) 

h^{i\r) 
E 

m=0 

1 {i+my 
m'(2Ar)m (l-my 

Kl+k(\r) 

Where A" is a modified Bessel (not-spherical) function of the second kind, but that 

seems more complicated to implement numerically. Now we put these past few equa­

tions together and we rewrite equation C.9 into 

I _ kJi+i,n(kr) _ m*n 

Jin(kr) m\ out 

1 (Z+m+1)' 
Z+l 

/ 1^ m'(2Ar)™ (Z-m+1)' 1 \ m=0 

E 
m=0 

(i+my 
m'(2Ar)™ (l-my 

(C.13) 

(recall that this must be solve at r = rweu). For the case of a spherical single band 

effective mas equation we only need to solve C.13. Note that 

k = J^$L(En + V0) and t\ = J*!g*(En) h2 h2 
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