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ABSTRACT 

Author: Weldon Paul Thornton 

Title: Classification of Acoustic Emission Signals from an Aluminum Pressure 

Vessel Using a Self-Organizing Map 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 1995 

Acoustic emission nondestructive testing has been used for real-time monitoring 

of complex structures. All of the structures were made of materials at least 0.070 inch 

thick. The purpose of this research was to demonstrate the feasibility of using neural 

networks to classify acoustic emission signals gathered from a pressure vessel made of 

2024-T3 aluminum 0.040 inches thick, i.e. thin aluminum sheet. AE waveforms were 

recorded during fatigue cycling of one pressure vessel using a wide band transducer and a 

digital oscilloscope connected to a computer. The source for each signal was determined 

using two narrow band transducers and a LOCAN-AT data acquisition system. The 

power spectrum was calculated for each waveform. A Kohonen self-organizing map 

(SOM) was used to cluster the spectra. The network clustered the data on a two-

dimensional feature space according to the source of the signal. A total of 3,600 power 

spectra were used to train the neural network, and 1,800 were used to test the network. 

Initially there was overlap between the clusters on the two-dimensional feature space; 

however, this was found to be due to human error. The SOM itself correctly classified all 

of the signals. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL OVERVIEW 

As the number of aging aircraft increases, the need for systems capable of real­

time in-flight structural monitoring grows. A natural problem for aircraft approaching 

their design lives is the development of fatigue cracks. Fatigue cracks occur in 

structurally critical areas that can sometimes result in catastrophic losses. One example 

of this was the Aloha Airlines Boeing 737-200 that lost part of its top front fuselage 

during flight [O'Lone]. Recognizing that the problem with aging aircraft is growing, a 

practical solution becomes imperative. 

The cost of new aircraft coupled with a depressed aviation industry eliminates the 

easy solution of replacing all aging aircraft in a timely manner. Thus, the goal of 

commercial airlines and the military is to replace parts as needed rather than at specified 

intervals in the design life of the aircraft. As such, there is a large demand for a cost 

effective, accurate in-flight structural monitoring system. An in-flight monitoring system 

could be used to implement replacement of parts as needed on new aircraft as well as on 

aging aircraft. In addition to the reduction of accidents caused by structural failure, the 

aviation industry could benefit from reduced downtime for aircraft and reduced labor 

costs for testing aircraft parts. 

1 
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Acoustic emission (AE) nondestructive testing is a passive testing method that 

monitors the reaction of a structure to an applied load. This method is often capable of 

monitoring large areas rather than specific locations; hence, it provides a global 

monitoring capability. Acoustic emission also monitors structural noise and flaw growth 

in real-time. Because of these attributes, AE has proven to be the most viable of all 

nondestructive testing methods for in-flight monitoring. 

1.2 PREVIOUS RESEARCH 

Several attempts have been made to monitor aircraft structures using acoustic 

emission nondestructive testing. The results have been varied but are indicative of the 

potential for AE testing. Acoustic emission testing was used to measure fatigue crack 

growth on the Canadian C-130 Hercules aircraft with good results [McBride and 

Maclachlan]. Here the monitoring was of 7075-T6 aluminum sections. The level of in­

flight noise was considerable, but identification of crack signals was accomplished 

nonetheless. A similar application was performed on the 625 aircraft KC-135 fleet. The 

lower wingskins, constructed of 7178-T6 aluminum, were instrumented with a specially 

designed AE system that detected unstable crack growth of at least 0.5 inches in length 

[Parrish]. Another example was the monitoring of fatigue crack growth in a 4330V steel 

frame from an F-105 [Rodgers]. All of the above in-flight AE tests were involved with 

monitoring of large amplitude AE signals on thick (greater than 0.070 inches) sections. 

The major drawback with most of these tests was that the data analysis and 

reduction were time consuming,labor intensive, and costly. The goal for a real-time, in-
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flight monitoring system is realizable only if a method can be developed to analyze the 

data and identify the sources of the AE signals in real-time. The above research 

demonstrated the feasibility of AE nondestructive testing as an in-flight monitoring 

technique, but recent computer advances may hold the key to real-time data analysis of 

structural integrity. 

1.3 CURRENT APPROACH 

In spite of its many benefits, AE testing has not been totally accepted as an in­

flight monitoring technique for one main reason: the identification of the AE signals 

measured on aircraft is very difficult and, up to now, could not be accomplished quickly 

with a high degree of accuracy. Here it is necessary to sort out crack growth signals from 

rubbing and rivet fretting signals. Complex structures such as aircraft have a tendency to 

be very noisy thus complicating the problem of signal identification. Also environmental 

noise and structural noise can often distort an AE signal beyond easy recognition. The 

problem becomes even more difficult when AE sources generate signals simultaneously. 

Hence, the identification of AE signals can be considered a pattern recognition problem. 

Research on pattern recognition of AE signals has been conducted at the NASA 

Langley Research Center for a number of years. Their engineers have been able to 

identify raw AE signals as either crack growth, rubbing, or rivet fretting with a good deal 

of accuracy but not without a certain amount of difficulty [Prosser]. Again, the difficulty 

comes in the area of pattern recognition. In the past few years, neural networks have 

been developed to perform pattern recognition very rapidly and accurately. 
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The purpose of this research is to prove the feasibility of using AE nondestructive 

testing to measure fatigue crack growth on a complex structure made of thin aluminum 

(0.040 inches thick). Classification of the AE signals was accomplished using a neural 

network. The neural network classified the AE signals as either crack growth, rivet 

fretting, or metal on metal rubbing. 



CHAPTER 2 

BACKGROUND THEORY 

2.1 ACOUSTIC EMISSION 

Acoustic emission nondestructive testing can be used to model different failure 

modes in complex structures. It has several advantages over other methods such as 

ultrasonic testing or eddy current testing, one of which is that the structure does not have 

to be removed from service to be tested. AE is a noninvasive testing technique that 

measures energy waves generated by flaw growth activity within the test specimen as a 

load is applied. In some cases a single sensor can be used to measure a large portion or 

even the entire structure, depending on the geometry and type of material of which the 

structure is constructed. This is called global monitoring. Other methods are more 

localized in their coverage and need to either generate an energy field or use special 

chemicals to probe for flaws. For example, radiography employs X-rays and gamma rays 

to image subsurface flaws, while liquid penetrant testing uses dyes to visually check for 

surface breaking flaws in a structure. Acoustic emission cannot image flaws; it only 

senses their growth when a load is applied. Analysis of this flaw growth data can provide 

both a qualitative and a quantitative measure of structural integrity. 

5 



2.1.1 PHENOMENOLOGY 

An AE event occurs as a result of a rapid release of strain energy within a stressed 

material. The source of this energy release in metal structures can be crack growth, metal 

on metal rubbing, fastener fretting, or some external source. The energy released is in the 

form of stress wave packets that radiate spherically outward from the source through the 

material to the surfaces. On the surface of structures the stress wave packets appear in the 

form of vibrations. The monitoring of these stress waves requires special sensors. 

Acoustic emission sensors typically use a piezoelectric element to convert the 

stress waves into electrical signals. They can detect very small surface vibrations over a 

wide range of frequencies. Piezoelectric transducers are available in two basic types, 

resonant and non-resonant. These sensors are also available in different bandwidths. For 

example, the Physical Acoustics Corporation (PAC) R30 sensors used herein have a 

response bandwidth from 200 KHz to 400 KHz. Non-resonant sensors have a wider 

response bandwidth, generally from 100 KHz to 1.2 MHz. A generic diagram for a 

nonresonant or wide band AE sensor is presented in Figure 2.1. 

CASE 
\ IJ J J J J J J J J J J J J J J J J J / W c u 

LEAD 
[JJJJJJJJJJJJJJJJJJJ^^ ELECTRICAL 

DAMPING 
MATERIAL 

WEAR PLATE COUPLANT LAYER 

Figure 2.1 Acoustic Emission Sensor 



The classification of a sensor as narrow band or wide band depends on the 

response of the sensor to various frequencies. A response graph is typically provided with 

each sensor that is purchased. Figure 2.2 shows the response for the PAC WDI wide band 

sensor employed in this research. 

FREQUENCY, kHz. 

Figure 2.2 Frequency Response For Wide Band Sensor 

2.1.2 APPLICATION TO METAL FATIGUE DETECTION 

Acoustic emission testing has been used to detect the initiation and propagation of 

cracks in fatigued materials. It has also been used to monitor low cycle fatigue of metals. 

Low cycle fatigue is when the structure fails in less than 10,000 cycles due to extremely 

high stress levels. AE testing has also been used in high cycle fatigue tests which is when 

failure of the structure occurs after more than 10,000 cycles. During high cycle fatigue 

tests AE has been used to detect crack initiation and formation but not to monitor the 

actual fatigue process. 
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2.1.3 EFFECTS OF DISPERSIVE MEDIUMS 

The propagation of an AE wave varies according to the geometry of the structure 

and the material from which it is constructed. In metals there are a number of factors 

involved in the attenuation of the AE wave. A few of the more influential factors are the 

thickness of material, material properties, frequency of the AE wave, distance of the 

sensor from the wave, and interfaces with the boundaries of the structure. 

Dispersion is a form of wave attenuation that is affected by the material 

properties, the distance the wave travels, and the frequency of the wave. It decreases the 

amplitude and increases the duration of the signal. As the wave travels through a 

material, the velocity for each frequency component is different, which results in a wave­

like signal as opposed to the burst-like emission that is generated by crack initiation or 

crack propagation. In addition to dispersion, other factors to be included in wave 

attenuation are geometric spreading, scattering and diffraction, and other energy loss 

mechanisms. 

Geometric attenuation is the decrease in amplitude of an AE wave as it travels 

through a material. In an ideal case, there would be no loss of energy as the wave 

traveled, but the amplitude would decrease because a constant amount of energy is being 

spread over a spherical surface that increases in size as shown in Figure 2.3. 

Energy lost to the material in which the AE wave is traveling is a problem that is 

common to real systems as compared to ideal systems. The wave can be considered as 

mechanical energy that will experience losses unless the medium through which it is 

traveling is perfectly elastic. There are no perfectly elastic structures in the real world, 



and therefore, the mechanical energy of the wave experiences losses due to the 

deformation of the material as the wave propagates from the source. Mechanical energy 

can also be converted to thermal energy which is another form of energy loss. The result 

is that the AE wave will lose energy regardless of which mechanism is acting. 

Figure 2.3 Spherical AE Wave Propagation 

Aluminum exhibits strong attenuative and dispersive properties. Wave 

propagation in thin aluminum (0.040 inches thick) would be even more difficult to 

analyze due to wave reflection and dispersion at interfaces with either air or other metals. 

Figure 2.4 shows paths of travel by reflections within a plate. 

SENSOR 

PLATE t 
Figure 2.4 Acoustic Emission Wave Reflections 
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Attenuation from scattering and diffraction is common in structures with complex 

boundaries and discontinuities such as holes, cracks, or inclusions. The wave traveling 

through the material interacts with the discontinuity, and the result is a scattering of the 

wave. The wave reflects in many different directions which decreases its overall 

amplitude. In some cases, such as with a crack or a groove, it is possible for the wave to 

reflect and some of the energy to be diffracted around the crack region. In summary, 

because of all of the above effects, it is believed that AE monitoring of complex 

aerospace structures would be problematical, and classification of the signals could be 

extremely difficult. 

2.2 NEURAL NETWORKS 

Neural networks came from computer research oriented towards modeling the 

human brain. The level of information processing and problem solving abilities that the 

human brain processes is a desirable attribute for computers. Neural networks have been 

applied to a variety of tasks such as speech and text recognition, multivariate statistical 

analysis, prediction of the stock market, and diagnosis of illness. A drawback to neural 

networks is that they are often limited to solving one specific type of problem such as 

prediction or classification. However, some networks are capable of solving multiple 

problems (such as prediction and classification) simultaneously. 

2.2.1 NEURAL NETWORK APPLICATIONS AND LEARNING METHODS 

In general, there are six different applications for neural networks [Neuralware]. 
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Each application is briefly described below. Note that there is some overlap in the 

applications and that each particular application is dependent on the input data and the 

desired output. The overlap between applications can be attributed to the flexibility of 

neural networks. Neural networks are oftentimes sufficiently flexible that small changes in 

the internal processes of a particular network allow the application of that same network 

to a different problem. 

Classification: Input values are used to assign a category or class. 

Prediction: Input values are used to predict the output value(s). 

Data Association: Network learns from ideal input data to assign a category or 
class to noisy input data. This is very similar to 
classification networks except that ideal data is needed to 
train the network. 

Data 
Conceptualization: Data are analyzed and conceptional relationships are 

determined. 

Data Filtering: Smooth a noisy input signal. 

Optimization: Determine optimal values. 

Neural networks require iterative feedback training, much as a child when its 

learning to talk. Some networks use supervised training, and other networks use 

unsupervised training. Supervised training requires the network to be told what answer it 

should generate for each given input, while unsupervised training does not require any 

additional information other than the input data. In general, classification, prediction, and 

data association require supervised training, whereas data conceptualization, data filtering, 

and optimization use unsupervised training. There are some cases where a network type 
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that normally requires supervised training can actually use unsupervised training. An 

example of this is a self-organizing map, which is a classification network that uses 

unsupervised training to categorize input data. 

2.2.2 NEURAL NETWORK ARCHITECTURE 

A neural network can be broken down into three general layers known as the input 

layer, the processing or mapping layer, and the output layer. The input layer accepts the 

input data and distributes it to the processing layer. The processing layer can consist of 

several layers as required by the complexity of the problem. Normally processing is 

conducted with either one or two layers, but as many as four have been used. These 

layers, which are used for the majority of processing, are also referred to as hidden layers. 

Finally, the output layer yields the desired information. Figure 2.5 shows a simple, three 

layer neural network with each circle representing a processing element (PE) or artificial 

neuron. To better understand how a neural network functions, it is necessary to review 

how a PE performs. 

Figure 2.5 Simple Neural Network 
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A PE has a central element and connections. Each connection represents a path 

over which the data will travel. It also has a multiplication factor to adjust the values of 

the data. The multiplication factor is known as a weight and typically has a value between 

0 and 1. The more important the data on a given connection, the higher the weight value. 

The central element performs either one or two functions. First, it will sum the data 

values after the weights have been applied; then if there is a second function, it will 

perform that as well. The second function is called a transfer or activation function. It is a 

nonlinear mathematical expression that is applied to the resultant of the summation 

function. Figure 2.6 shows a PE with its weights and connections. 

A neural network can consist of literally hundreds of PE with thousands of 

connections. With each connection being a weighted multiplication of its input and each 

PE including either one or two mathematical operations, it is not practical to perform 

these operations manually; rather, they are performed on a computer. The resultant 

combination of all the PE is a neural network capable of learning very complex and labor 

intensive tasks in a relatively short period of time. If the input changes, the network needs 

only to be retrained with data that includes the changes. 

One benefit of neural networks over other computer methods is that occasionally 

an erroneous number may be placed in the input data or a PE may become nonfunctional, 

yet the network can still perform its desired function. This is called fault tolerance, which 

is unlike standard computer programs that have very little, if any, tolerance for incorrect 

input data or an error in the program. Also neural networks can suffer from degradation 

or loss of multiple PE with only a small penalty in performance. 
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Xi = DATA 
Wj = WEIGHTS 

Yi 

^ 3 

Ii = EWiXi Yi = fl[Ii) 

Figure 2.6 Processing Element 

2.2.4 PREVIOUS RESEARCH 

The use of neural networks has varied from the identification of objects from sonar 

data to prediction of stock market trends. Application of neural networks to 

nondestructive testing is increasing steadily even though there has been some resistance. 

It is a common belief that neural networks are somewhat of a black art. Only through real 

applications and numerous research projects has the use of neural networks for data 

analysis gained acceptance. Neural networks have been applied to acoustic emission 

nondestructive testing data. The solutions include both classification and prediction 

problems. 
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A supervised prediction network known as backpropagation was used to 

determine ultimate strengths for composite pressure vessels [Hill, Walker, and Rowell]. 

The application of neural networks to composite pressure vessels was useful in proving 

that burst pressures could be calculated by proof testing the bottles at less than 25% of 

their expected ultimate load rather than at current proof testing pressures which are at 

least 70% of the expected ultimate load. It is known that loading some composite 

pressure vessels over 25% of their expected ultimate loads causes structural degradation 

and may result in premature failure of the vessels at loads less than ultimate. Another use 

for a backpropagation network was the prediction of aluminum-lithium weld strengths 

from acoustic emission data collected during testing of the welds [Hill, Israel, and Knotts]. 

The prediction of ultimate strengths in the welds was completed with errors of less than 

3%. While both of these applications were very successful, the problem of interest here 

was not prediction but classification. 

An unsupervised neural network known as a self-organizing map (SOM) has been 

used to classify the failure mechanisms present during testing of graphite-epoxy tensile test 

specimens [Ely]. The SOM clusters similar data to indicate trends. Six failure 

mechanisms were classified and identified. It was decided that this same type of network 

would be used in this research in an effort to sort out crack growth AE signals from 

rubbing and rivet fretting signals. 



CHAPTER 3 

EXPERIMENTAL APPARATUS AND TESTING PROCEDURE 

3.1 EXPERIMENTAL APPARATUS 

3.1.1 PRESSURE VESSEL 

The pressure vessel used for this project was constructed of two steel endplates 

with rubber sealing pads and 0.040 inch thick 2024-T3 aluminum sheet rolled into a 

cylinder (Figure 3.1). A PVC bladder was used to keep the vessel from leaking. The 

system was held together with twelve, 5/8-inch diameter, threaded rods. On the outer 

side of each endplate, there was a reinforcing brace to keep the endplate from deforming. 

One endplate had three threaded holes in it that allowed the attachment of a pressure 

transducer, a pressure gage, and a filling port. The other endplate had a single hole to 

attach the hose from the hydraulic pump which pressurized the vessel. 

The aluminum vessel was 12 inches long and 12 inches in diameter. The rolled 

sheet had a two-inch, overlapped, riveted joint. The joint contained two lines of rivets. 

The distance between the two lines of rivets was 0.625 inches. The spacing between the 

rivets of each line was 0.4 inches. A one-inch diameter hole was cut through the skin of 

the vessel, and a notch was filed at the edge of the hole, parallel to the cylinder axis. The 

notch induced a stress concentration from which a fatigue crack propagated. A PVC 

16 
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lining was placed over the inside surface of the vessel to keep the PVC bladder from 

rubbing against the rivets and to reduce extraneous noise. The bladder contained the 

water used to pressurize the vessel. An aluminum patch was riveted on the inside of the 

cylinder to prevent the bladder and liner from stretching out the one-inch hole (Figure 

3.2). A two-inch flap at each end of the bladder overlapped the edges of the cylinder and 

acted as a seal. 

Figure 3.1 Aluminum Pressure Vessel Test Apparatus 
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Figure 3.2 Aluminum Patch for Hole in Cyclinder 

3.1.2 PRESSURIZATION SYSTEM 

First, the vessel was filled with water, and any air inside was bled out of the 

system. Next the vessel was cycled between 0 and 80 psi at 0.5 Hz and then at 1.0 Hz 

using the water pump that was placed in the grips of the Materials Testing System (MTS) 

machine. Three tests were performed for each of the two cycling frequencies. Each test 

consisted of acquiring approximately 520 AE signals. The signals were either from 

noise, crack growth, rivet fretting, or rubbing. The result was a total of approximately 

3,000 AE waves obtained for each source mechanism. The sine function was selected on 

the MTS 410 Digital Function Generator which resulted in a specified displacement of 

the piston that corresponded to a sine wave. The amplitude of the sine wave could be 
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altered by adjusting the span. The set point was adjusted to a pressure of 50 psi and 

served as the zero point for the sine function. 

The MTS is typically used to determine material properties of test specimens. It 

is capable of applying a force of 10,000 lbs. in tension or compression. The test 

specimen is placed in a pair of rams, each having a hydraulic grip. The force required to 

pull a specimen apart may be displayed on the MTS 464 Data Display. 

The information from the load cell in the upper ram and the Linear Variable 

Differential Transformer (LVDT) in the lower ram are collected and displayed by the 

MTS 464 Data Display. The outputs are displayed on the digital readouts "Input 1" and 

"Input 2". The display may be programmed to output force in lbs, stress in psi, or 

displacement in inches. All the information acquired by the system may be printed on a 

printer linked to the system. 

The rate at which a particular MTS function will be performed is controlled by the 

MTS 410 Digital Function Generator. There are two program rate controls, "Rate 1" and 

"Rate 2." Rate 1 controls the rate at which the test is performed. For example, the 

function generator controls the speed of the lower ram during the first half of the ramp 

function while a tensile test is in progress. For a cyclic test, it controls the frequency of 

the selected function. Rate 2 controls the rate for the second half of the ramp function 

and is independent of Rate 1. The 410 Digital Function Generator offers several 

operating functions including ramp, sine, Haver sine, and Haver square functions. 

The MTS 436 Control Unit acts as a toggle switch for the general operation of the 

MTS and controls other functions as well. The control unit contains the controls for the 



set point and the span. As a safety feature, to minimize possible damage or personal 

injury, there is a hydraulic interlocking system that will engage if the safety door is 

opened. 

3.1.3 SENSORS 

Three resonant piezoelectric sensors and a non-resonant (wide band) piezoelectric 

sensor were used to detect signals from the pressure vessels. The resonant sensors had a 

frequency range of 200 to 400 kHz. The non-resonant sensor had a frequency range of 

100 kHz to 1.2 MHz. Each of the sensors was connected through individual channels to 

the data acquisition system. All of the sensors were able to detect the signals produced 

by noise, rubbing, rivet fretting, or cracking. A typical arrangement for the placement of 

the sensors is shown in Figure 3.3 and 3.4. 

1 - Recording Sensor, non-resonant 
2 - Trigger Sensor, resonant 
3 - Location Sensor 1, resonant 
4 - Location Sensor 2, resonant 
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Figure 3.3 Placement of Acoustic Emission Sensor for Rivet Signals 
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1 - Recording Sensor, non-resonant 
Cylinder Axis 2 - Trigger Sensor, resonant 
I 3 - Location Sensor 1, resonant 

4 - Location Sensor 2, resonant 

Figure 3.4 Placement of Acoustic Emission Sensor for Crack Signals 

The placement of the trigger sensor was intended to minimize the possibility of 

noise signals being recorded. Each sensor was mounted on the pressure vessel using 

RTV, a black silicon sealant. It was thought that the most probable sources of noise 

signals would be located at the interfaces between the aluminum cylinder and the end 

plates. Attempts were therefore made to record noise signals from the endplates and at 

other positions on the vessel, but none of the noise signals had sufficient amplitude to 

cause the oscilloscope to trigger and record. These attempts at recording noise signals 

resulted in the establishing of a minimum threshold amplitude for triggering of the 

oscilloscope. Once the trigger level for the oscilloscope was determined, the sensors 

were then mounted at the positions shown in Figures 3.3 and 3.4 to conduct the desired 

tests. 

In each instance, the trigger sensor was placed closest to the prospective AE 
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source, whether it was a line of rivets or a crack. This sensor would then be the first to 

detect the AE wave from a source. The trigger sensor monitored for the presence of an 

AE wave; its signal was then used to trigger the digital oscilloscope to record the raw AE 

waveforms from the non-resonant sensor. The other two resonant sensors were used for 

signal location, this being derived from the arrival times of the AE waves. All four of the 

sensors were connected to the LOCAN-AT. The trigger sensor and the recording sensor 

were also connected to the digital oscilloscope. 

For rivet data collection, the location sensors and the recording sensor were 

placed parallel to the rivet line at the overlapping joint. The recording sensor was 

positioned on the surface of the vessel halfway between the two ends. The two location 

sensors were placed at least two inches from either side of the recording sensor. The 

trigger sensor was placed at least an inch closer to the rivet line than the recording sensor 

and an inch to one side of the recording sensor as shown in Figure 3.3. 

For detection of cracks and rubbing, the sensors were placed close to the hole 

with the notch as shown in Figure 3.4. The positioning was varied to simulate signals 

coming from different places on the structure and to obtain a more comprehensive data 

set. Most of the signals recorded were found to originate from the same general area. 

The trigger sensor was placed closest to the point from which the AE waves were 

expected to propagate. 

3.1.4 DATA ACQUISITION 

The raw AE signals from the non-resonant recording sensor were captured and 



displayed by the digital oscilloscope. The trigger level and the range on the oscilloscope 

were adjusted in the data acquisition program, NWl.BAS. The listing for this computer 

program is provided in the Appendix A. During a test, each waveform displayed on the 

oscilloscope was stored in a RAM drive in the 486DX2-50 computer as a data file. A 

RAM drive was used because of the speed at which data can be stored in the RAM drive 

is much greater than the speed at which data can be stored on a hard disk drive. The 

RAM drive was capable of storing 520 raw waveforms. Each test was therefore 

considered to be complete after the acquisition of 520 AE signals. When a test was 

completed, the files were transferred from the RAM drive to 3.5-inch, 1.44 MByte 

diskettes. After the data transfer was completed, the RAM drive was cleared, and the 

system was readied for the next test. 

The signals from all four sensors were recorded by the LOCAN-AT. These 

signals were stored on the hard drive of the LOCAN-AT. The LOCAN-AT was used to 

power the sensors and to determine the location of the source of the AE waves recorded. 

A schematic of the data acquisition system is shown in Figure 3.5. 

Provided that the energy of the signal measured by the trigger sensor was greater 

than the trigger level prescribed in the data acquisition program, the signals from the 

recording sensor were captured by the digital oscilloscope. The captured signals were 

displayed on the oscilloscope and transferred to the RAM drive of the 486DX2-50 

computer. The data transfer was accomplished using an IEEE-488 card. For the 

maximum possible transfer rate, the format of the data was 8-bit (unsigned byte) data 

format, as opposed to the 16-bit format, which has higher resolution but a slower transfer 
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rate. As each wave was stored in the computer, they were tagged with a header at the 

beginning of the file that identified the vessel, the test number for the vessel, the time and 

date, the locations of the recording sensor and the trigger sensor, the trigger level of the 

oscilloscope, the range and time base for the oscilloscope, the pressure level when the 

wave was recorded, the cycle number referenced to the beginning of the test, and the part 

numbers for the sensors. The pressure readings were gathered from the pressure 

transducer connected to the vessel and measured using a digital voltmeter that transferred 

the pressure data to the computer. 

COMPUTER 

OSCILLOSCOPE 

SENSOR 1 
(RECORDING) 

SENSOR 2 
(TRIGGER) 

-t 
i 

CIRCUIT #1 
(AMPLIFIES TRANSDUCER) SENSOR 3 

(LOCATION) 

LOCAN-AT 

PRESSURE 
TRANSDUCER SENSOR 4 

(LOCATION) 

Figure 3.5 Instrumentation Configuration 

3.2 DATA CONDITIONING 

3.2.1 PREPROCESSING 

After the data was collected, the raw signal files were preprocessed for later use in 

the neural network. The preprocessing of the data was accomplished in five steps: (1) AE 
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signals were recorded as binary files, (2) converting binary files into ASCII files, (3) 

eliminating noise signals by requiring the AE signal to have a minimum amplitude, (4) 

determining the power spectrum for each AE signal, and (5) linearly reducing the number 

of points which represent the power spectrum from 800 to 67. The reduction from 800 to 

67 data points was determined through optimization of the neural network. If more than 

67 points were used as input data for the neural network, the resolution of the results was 

not greatly enhanced yet the training time for the network was greatly increased. 

The recording of the signals as binary files was accomplished through the use of 

the digital oscilloscope and the computer. The elimination of the low amplitude signals 

involved the use of a basic program called NOISE.BAS (Appendix B). The threshold 

amplitude chosen for elimination of the noise signals was 18 millivolts, which was 3 

millivolts above the noise level of the system during operation. The determination of the 

power spectra for all of the remaining signals was conducted using a software package 

called DADiSP. DADiSP took the raw signals, found the power spectra, and then 

linearly reduced the number of points representing the spectra. The data acquired by the 

LOCAN-AT were used to verify the location and source of the signals obtained. Figure 

3.6 shows a time based AE signal of 200|is in length as recorded by the digital 

oscilloscope. 

The signal from the AE sensor was digitized by the oscilloscope and then 

transferred to the computer. The power spectrum for the digitized AE signal was 

determined using a Fast Fourier Transform (FFT) function provided by DADiSP. Figure 



3.7 shows on example of a linearly reduced power spectrum as determined by the 

DADiSP software program. 
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Figure 3.6 Digitized AE Signal 
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Figure 3.7 Linearly Reduced Power Spectrum 

3.2.2 BANDWIDTH REQUIREMENTS 

As previously stated, the recording sensor was a non-resonant (wide band) type 

sensor with a response bandwidth from 100 kHz to 1.2 MHz. The signal recorded is 

typically very close to the true signal because the majority of source mechanisms 

generate AE waves that are composed of frequencies within the bandwidth of the sensor 



used. Some harmonics of frequencies could be higher than the sensor can measure, but 

the amplitude of those frequencies would be much less than the amplitude of the 

fundamental frequencies due to attenuation. The high end limit of the wide band sensor 

is one of the controlling factors for the selection of the sampling rate for the digital 

oscilloscope. The sampling rate must be such that aliasing of the AE signal will not 

occur. An example of aliasing is given in Figure 3.8, where the solid line indicates the 

real signal and the dashed line the aliased representation of that signal. 

Figure 3.8 Aliasing of Signal Due to Improper Digital Sampling Rate 

The possibility of aliasing was the critical factor for choosing 8-bit data format 

rather than 16-bit data format. The 16-bit data format would require twice as long for 

transfer from the oscilloscope to the computer. When the sampling rate is too slow, 

signals are incorrectly perceived or aliased as seen above. This can be avoided by 

keeping the sampling rate on the order often times greater than the highest frequency of 

the signal to be measured. Therefore, a sampling rate of 10 MHz was chosen for this 

research. Because of limits imposed by the oscilloscope, a 10 MHz sampling rate meant 
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that the resultant waveform was 200 microseconds in length. It was thought that while 

most AE events could be measured within that time interval, combined signals such as 

rubbing plus cracking might last longer than 200 microseconds; however, no combined 

signals were encountered. 

3.3 TESTING PROCEDURE 

Conducting each test run consisted of clearing the RAM drive, starting the 

pressurization system, initializing the computer and digital oscilloscope, running the data 

acquisition program on the LOCAN-AT, acquiring 520 AE signals, stopping the 

pressurization system, transferring data files, and checking for air in the system, which, if 

present, was then bled off (Figure 3.9). A total of eighteen runs were performed on the 

pressure vessel. The tests produced three general categories of AE activity — cracks, rivet 

fretting, and rubbing — plus some extraneous noise. 

The three general classifications were determined initially by the sensor 

placement and the expected AE sources to be monitored. Each general classification was 

broken down into two subsets. One subset included the data collected while pressurizing 

the vessel from 20 to 80 psi at a rate of 1 Hz. The second subset was the data collected 

while pressurizing the vessel from 20 to 80 psi at a rate of 0.5 Hz. Two different rates for 

pressurization were used in order to obtain a more comprehensive data set, in that a 

practical application would not necessarily be restricted to one frequency during 

operation. Changing the recording sensor position was performed at random in order to 

further the diversity in the data. 
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After three tests were performed for each pressurization frequency, the sensors 

were moved to the next location where the next AE source was expected to occur. The 

rivet line was the location for the first series of tests. After rivet fretting signals were 

recorded from the rivet line, the sensors were moved to the area on the vessel close to the 

circular cutout. Rubbing signals were then obtained. At the same time the notched area 

was monitored to determine the onset of crack growth. This monitoring consisted of 

unaided visual inspection. When a crack was verified through visual inspection, the 

sensors were moved a small distance, and recording of crack signals commenced. 

START 

CLEAR RAM DRIVE 

STOP IF DESIRED NUMBER OF 
TESTS HAS BEEN PERFORMED 

CHECK SYSTEM FOR AIR 
AND BLEED IF NECESSARY 

TRANSFER DATA FILES 

STOP PRESSURIZATION SYSTEM • 

START PRESSURIZATION SYSTEM 

INITIALIZE COMPUTER 

INITIALIZE DIGITAL 
OSCILLOSCOPE 

RUN LOCAN-AT PROGRAM 

RECORD AE SIGNALS 

Figure 3.9 Testing Procedure 



CHAPTER 4 

NEURAL NETWORK ARCHITECTURE, 
OPERATION, AND IMPLEMENTATION 

4.1 SELECTION OF A NEURAL NETWORK 

4.1.1 INPUT DATA FOR THE NEURAL NETWORK 

The input data sets for the neural network were the power spectra of the AE 

signals that were recorded during testing of the pressure vessel. Each power spectrum 

consisted of 67 numbers whose values ranged between -1 and 1. Figures 4.1,4.2, and 4.3 

show the power spectra for a rivet signal, a rubbing signal, and a crack growth signal. 

While the power spectra shown were chosen as examples to show the differences between 

the three source mechanisms, the differences in many of the spectra were much more 

subtle. 

Generally speaking, if patterns in the data are discernible to the naked eye, a 

neural network can be trained to classify them. A first pass through the data yielded 

approximately 15 different patterns; and over 23 different patterns resulted from a second 

evaluation; whereas only 4 patterns were expected, one each for rivet fretting, rubbing 

and crack growth plus a final category for noise. From this it became evident that the 

information contained in the power spectra was too detailed to allow good visual 

discrimination between the various source mechanisms. 

30 
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Figure 4.3 Crack Signal Power Spectrum 
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In Figure 4.4, two rivet signal power spectra are shown. A vast majority of the 

rivet signals were similar but still possessed enough variation to make classification 

difficult. The reason for this was that there were many different possible sources for the 

rivet signals. To reduce the amount of detail contained in the input data, it was necessary 

to review the time-based AE signals. 

(x lO 3 ) 

500 
FREQUENCY, kHz. 

Figure 4.4 Two Rivet Signals With Different Power Spectra 

4.1.2 JUSTIFICATION FOR USING A NEURAL NETWORK 

Visual inspection of recorded AE signals resulted in the recognition of patterns 

that were consistent with the different types of AE signals (Figures 4.5,4.6, and 4.7). 

The dashed lines in Figures 4.5,4.6, and 4.7 represent voltage threshold levels. The 

threshold levels were all set at 18 millivolts, which was 3 millivolts higher than the 

background noise. The threshold level is used to show the difference in duration of the 

signals. The total length of each x-axis for the figures represents 200 microseconds. The 

duration of each signal is determined as the time from when the signal first exceeds the 

threshold until it falls below the threshold for at least 50 microseconds. 
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mV 

Figure 4.5 Recorded Rivet AE signal 

mV 

Figure 4.6 Recorded Rubbing AE Signal 

mV 

Figure 4.7 Recorded Crack AE Signal 



From this it was estimated that the crack signal had a duration of approximately 40 

microseconds and that the durations for the rivet signal and the rubbing signals were 180 

and 100 microseconds, respectively. 

Even though patterns were visually evident, the recorded AE signals were not 

used as input data sets because the digitized waveforms, consisting of 2,000 data points, 

would need to be used as input to the network. If these raw waveforms were used, the 

network would require an excessive amount of training time because of the large number 

of data points. The training time for a network is related to the square of the number of 

data points for each input. The power spectra, on the other hand, provide the salient 

features of the raw waveforms while requiring fewer data points for accurate 

representation. Hence, the power spectra were used as network input rather than the raw 

waveforms. After determining the feasibility of a neural network and the appropriate 

input data, the next step was to select the specific neural network. 

4.2 ARCHITECTURE OF NEURAL NETWORK SELECTED 

There are a number of classification networks available within the Neural 

Networks Professional 11/PLUS software package so the selection criteria were 

narrowed. Without a lengthy and in-depth manual analysis of the more than 5,000 

waveforms involved, a network requiring supervised learning was not thought to be 

practical. Thus, the choice for a network was restricted to all those capable of 

classification using unsupervised learning. The only network available that met the 

selection criteria was a self-organizing map (SOM). 
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A SOM is a neural network that typically consists of three layers. The three 

layers are an input layer, a processing layer, and an output layer. Figure 4.8 illustrates the 

SOM general architecture with the input neurons fully connected to each one of the 

processing elements (PEs) in the middle or hidden layer. Each PE in the hidden layer is 

connected to the output neurons and is fully interconnected to the other neurons in the 

hidden layer. The hidden layer is also know as the Kohonen layer, named after Tuevo 

Kohonen who developed the SOM. The hidden layer is considered to be a two-

dimensional layer as shown in Figure 4.8. 

INPUT LAYER 

PROCESSING LAYER 

OUTPUT LAYER 

X Y 

Figure 4.8 Self-Organizing Map General Architecture 

The capability of the SOM to accurately classify data is dependent on the number 

of processing elements. Although there is not a given method for determining the 
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optimum number of PEs in the hidden layer, the number of inputs is related to number of 

processing elements. The larger the number of inputs, the larger the number of PEs 

required in the hidden layer. Also, the greater the complexity of the data, the larger the 

number of PEs required. 

The SOM classifies data with similar characteristics into groups. The actual 

numerical output for the SOM is in the form of x and y coordinates which are then put 

into a supplemental program to plot the results. The final output is a two-dimensional 

topological map that depicts different classifications of data sets as different clusters of 

points. An example of a SOM with three categories or classes is shown in Figure 4.9. 
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Figure 4.9 Example of a SOM With Three Classes 

As mentioned earlier, the SOM is capable of providing topological representations 

of complex data, but the parameters for the network must be chosen properly, and the 

data must be separable in some manner. If the signals are indistinguishable by visual 

inspection, application of any type of neural network would be unpredictable. For the 

purpose of this research, it was shown that there is a discernible difference between the 

power spectra for the AE signals generated by the different AE sources. 



4.3 NEURAL NETWORK OPERATION 

The hidden layer is the layer that allows the SOM to complete its task. All of the 

processing elements in the hidden layer are fully interconnected with each other, and the 

interaction between the PEs is considered to be a competition. The Euclidean distance of 

each PE is calculated, and the one with the smallest Euclidean distance is the winner. 

The Euclidean distance measures how much of a difference there is between the signal 

desired by the PE and the actual incoming signal. The Euclidean distance is defined as 

D= llX-WlhV^CXi-Wi)2 

where n is the number of input values, X is the set containing the input values, and W is 

the set containing the corresponding weight values: 

X = (Xj, x2, x3, x4,..., x^7) 

W = (w b w2, w3, w4,..., w67). 

The value for n was 67. The number of inputs was chosen after a series of tests 

were performed on the network, and it was determined that 67 inputs was optimum. Here 

the number of inputs was the number of data points representing the power spectrum for 

each waveform. Increasing the number of inputs did not significantly influence the SOM 

results but greatly increased the training and processing time for the network. The 

number of inputs investigated were 50, 67, 75, and 100. With each input data set there is 

a winning PE, which is, in a measurable way, the closest to the input value and thus 

represents the input value. The winning processing element has an output, while the 
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losing PEs do not. The output of the winning PE is translated into a coordinate by the 

output neurons. These resulting coordinates represent the input signal to the topological 

map. 

After a winner has emerged, the processing elements in the immediate vicinity 

(neighborhood) of the winner adjust their weights to more closely resemble the winning 

PE. This process allows for finer discrimination of the input data. Once the network has 

been trained, the weights for all of the neurons are held constant. As the network is being 

trained, there is a change in the actual size of the neighborhood around the winning PEs. 

If the losing PEs were allowed to change for the entire training period, the result could be 

a network that does not learn to classify the input data. The size of the neighborhood is 

decreased incrementally while the net is being trained. The final neighborhood size is 

chosen to be either 1 or 2 as shown in Figure 4.12. 

Figure 4.12 Neighborhood of a Self-Organizing Map 

The training parameters control the changes that occur in the hidden layer during 

the training of the network. The six parameters that control the changes to the network 



are (1) the learning coefficient (a), (2) the learning coefficient ratio, (3) beta (P), (4) 

gamma (y), (5) the transition point, and (6) the number of SOM steps. The learning 

coefficient is a number that aids the iterative process of changing the weights for the 

network connections. The learning coefficient effects are described by the equation 

(wij)new = (Wij)old + Ct[Xj - (Wy) o l d ] 

where the terms Wy are the values for the weights of the neurons, and a is the learning 

coefficient. 

The learning coefficient ratio is the multiplier used to reduce the learning 

coefficient after the transition point is reached. The learning coefficient is reduced so that 

the change in weights becomes less and less as the network trains. Without this feature, 

the values for the output of the network can sometimes oscillate between two numbers 

and never home in on the desired answer. The learning coefficient ratio is applied to the 

learning coefficient at the operator specified transition point. 

The transition point is the number of SOM steps that must occur before the 

changes to the weights will be made. The transition point should be at least equal to the 

number of training data sets, if the data represents a complex system, and if the system is 

extremely complex, the transition point is typically set to be twice the number training 

data sets. The number of SOM steps is the total number of iterations that the network 

will train. One iteration is the processing of one input data set. 

The remaining two parameters, beta(p) and gamma(y), control the frequency at 

which a processing element is allowed to win. The controlling or conscience mechanism 
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keeps track of how often a PE wins and adjusts the network to encourage the losing 

processing elements to win more often. This allows better separation of the categories on 

the output map. The gamma(y) is used to adjust a bias which increases the Euclidean 

distance for the winning PE, thus making the losing neurons more competitive. The bias 

term (Bt) is computed as 

Bi = y ( N . F i - l ) i = (1,2, 3, 4, ....,67) 

where N is the total number of processing elements in the hidden layer, i is the number of 

input neurons, and F, is the frequency of how often a specific neuron has won. As the 

network trains, the bias term affecting the Euclidean distances needs to become less or 

the network may never become fully trained. The value for the frequency term is updated 

at each transition point and is modified by the beta (P) parameter. The frequency for the 

winning PE is modified by the equation 

Fi = (FOcd + P[l-(Fi)oldJ. 

The frequency term for all losing neurons is changed by the equation 

Fi = (Fi)old - p(Fi)old. 

The complexity of neural networks does not encourage any detailed rules for the 

determination of these six control parameters. There are general guidelines for selecting 

the parameters, but these guidelines vary with the complexity of the input data. For this 

research, the parameters were determined through trial and error. 



41 

4.4 NEURAL NETWORK IMPLEMENTATION 

The SOM used for this research was contained in the Neural Networks 

Professional 11/ PLUS software package. To construct a SOM, a utility called Instanet 

was used. The operator specified inputs for the Instanet utility were the controlling 

parameters, the number of inputs, the number of processing elements in the hidden layer, 

and the number of output neurons. These were all entered into the program. The number 

of output neurons was automatically set at two if the mapping network option was 

selected. In the software package, a SOM is considered to be a front end processor for 

another neural network if the coordinate layer option is not selected. The number of 

input neurons was set to 67, and the first choice for the number of PEs in the hidden layer 

was 900. Once the controlling parameters were determined, three other networks were 

trained using the same control parameters. The other three networks used 225, 400, and 

1225 PEs in the hidden layer. 

4.4.1 SELECTION OF CONTROLLING PARAMETERS 

The six control parameters for the trained SOM are listed in Table 4.1. These 

parameters were determined through trial and error. The process involved iteratively 

training and testing a network. The training of each of the networks used the same exact 

training file. The testing file was also the same for each network, but the contents of the 

test file were generally known. The LOCAN-AT was used to determine the location of 

most of the sources for the recorded AE signals and thus allowed a preliminary 
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classification of the signals for the test file. The output of the network was then imported 

into Microsoft Excel 5.0, and a two-dimensional plot was generated. A printout of the 

plot was obtained, and then a new network was made. Each new network was created by 

varying one control parameter at a time. This process was used to develop the network 

most capable of classifying the input data. The printouts of the results from testing the 

networks were compared to determine which had the best clustering and the least amount 

of overlap between the clusters. 

# SOM Steps 
Beta (p) 

Gamma (y) 
Learning Coefficient 

Learning Coefficient Ratio 
Transition Point 

101,340 
0.3 
0.01 
0.5 
0.4 

10,032 

Table 4.1 SOM Control Parameters 

Other parameters that were selected for the SOM are presented in Table 4.2. The 

selection to interpolate the output allowed the network to interpolate a coordinate from 

the three top winning processing elements. This function increased the resolution for the 

SOM. The selection of coordinate for the output layer enabled the SOM to have a two-

dimensional map as an output. For the neighborhood starting width, a value of 8 was 

chosen according to the recommendation in the software users manual, and for the ending 

width, a value of 1 was chosen for the same reason. The shape of the neighborhood was 
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chosen to be square. No information was given as to the benefits of selecting a diamond 

shape for the neighborhood. 

Number of Inputs 
Number of Processing Elements 

in Hidden Layer 
Output Layer 

Output Processing Function 
Neighborhood Starting Width 
Neighborhood Ending Width 

Neighborhood Shape 

67 
30x30 

(total of 900) 
Coordinate 
Interpolate 

8 
1 

Square 

Table 4.2 SOM Architecture and Processing Parameters 

4.4.2 TRAINING THE NEURAL NETWORK 

During testing of the pressure vessel, a total of eighteen sets of data were 

gathered, six sets for each prospective source mechanism. Each set consisted of 

approximately 520 acoustic emission raw waveforms. After the processing of the data 

was completed, there were 5,500 power spectra remaining. For each anticipated source 

mechanism, four data sets were selected at random (from the six sets) to be used to train 

the network. 

A total of twelve separate data sets were combined into one file to simplify the 

training process. The training file consisted of 3,600 power spectra. To begin training of 

the network, the control parameters were set, and then inputs were selected at random (by 

the program) from the training file. The entire training file was processed through the 

network a total of thirty times. After training, the network was tested to determine if the 

data were being classified properly. 



44 

4.4.3 TESTING THE NEURAL NETWORK 

With two thirds of the processed data being used for training, the remaining third 

was used for testing the network. The test data were sorted into three separate files 

according to what the most likely source mechanism had been recorded. The prospective 

source mechanism was determined by the location of the recording sensor and the trigger 

sensor. One training file consisted of primarily crack growth signals, another consisted of 

primarily metal on metal rubbing signals, and the third set consisted mainly of rivet 

fretting signals. 

Each test file was processed once through the trained network. The three output 

files from the network were transferred to Microsoft Excel 5.0 which generated the two-

dimensional topographical map. For each output file, a different symbol was used to 

allow easier visual inspection of the results. If the test sets had not been segregated and 

different symbols were not used to represent the different testing sets, the resulting 

topological map would have been very difficult to interpret. 



CHAPTER 5 

ANALYSIS AND VERIFICATION OF RESULTS 

The results from this research are summarized in two-dimensional topological 

maps. These plots depict similar input data as clusters of points on an x-y plot. The 

SOM plots presented show a progressive improvement in the classification ability of the 

neural networks trained from the initial network, which was able to partially classify the 

input data, to the final network that was able to fully classify the data. 

5,1 PRELIMINARY NETWORKS AND THEIR RESULTS 

The SOM results shown below were generated from networks trained with 

varying control parameters. Early experimentation found that varying the learning 

coefficient, the learning coefficient ratio, and the number of SOM steps did not have a 

large effect on the network output. The parameters controlling the frequency at which a 

PE can win, beta (p), and the bias term associated with that PE, gamma (y), were found to 

have a large effect on the classification performance of the networks. With each result 

plot shown, the values beta (P) and gamma (y) are given. 

The SOM shown in Figure 5.1 was generated by one of the first networks trained. 

It is apparent, from visual inspection that the network was unable to completely sort the 

input data as desired. The amount of overlap between the clusters shows that the 
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neural network was only partially classifying the input data. A properly trained network 

may have overlap, but it would not be nearly as pronounced as that in Figure 5.1. 

The change in the gamma (y) between SOM #1 and SOM #2 reduced the overlap 

between the data clusters (Figure 5.2). Here the beta (p) value was held constant to 

determine the effect of reducing gamma (y). All other control parameters were held 

constant. 

Numerous iterations consisting of varying the beta (P) and the gamma (y) 

parameters resulted in a SOM with a minimum of overlap. The other parameters were 

then varied but had very little effect on the resulting SOM. This optimized classification 

output is shown in Figure 5.3. The control parameters for this final SOM are listed in 

Tables 4.1 and 4.2. Notice that there is some overlap between the clusters of the data; 

therefore, further analysis was pursued to determine the cause. 
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5.2 ANALYSIS AND VERIFICATION OF RESULTS 

The preliminary classification of the AE signals consisted of identifying the 

expected source and grouping the signals accordingly. If the sensors were placed close to 

the two rivet lines, then the signals collected were classified as rivet fretting. The same 

applied to the crack signals and the rubbing signals. The rubbing signals were not 

expected to contain crack signals because visual inspection did not detect any cracks. 

This point by point analysis of the signals resulted in a new SOM corrected for improper 

initial classification. 

The point by point analysis consisted of six steps. 

1. Location of the points in the distinct groups were determined using the 
LOCAN-AT. 

2. Location of the points in the overlap areas were determined using the 
LOCAN-AT. 

3. The mechanism for each point was extrapolated from the location of the signal. 

4. The power spectra for the points with known mechanisms and those 
without were compared. 

5. Those points with erroneous initial classifications were reclassified. 

6. Results were plotted after the overlap areas were analyzed. 

The location was used for the extrapolation of the mechanisms. For example, if 

the location of the AE signal was found to be at the position of a rivet then the signal was 

reclassified as a rivet signal. The points with known mechanisms were clustered into 

regions. These regions are shown in Figure 5.4. The region of primary concern was that 

which contained the crack signals. 
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Finally, the SOM plotted with the signals corrected for initial misclassification is 

shown in Figure 5.5. Here the overlap between the regions was eliminated such that 

classification of the signals according to mechanism (rivet, rubbing, or crack) was 

complete. At this point the SOM was trained and ready for real-time implementation. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

• Acoustic emission nondestructive testing can be used to monitor fatigue crack 

initiation and growth in complex structures made of thin aluminum. 

• A self-organizing map neural network was proven to be capable of classifying 

source mechanisms from 67 point power spectra taken from acoustic emission 

waveforms sampled at 10 MHz. 

• All overlap in classification clusters was found to be the result of operator 

misclassification, e.g., crack signals that originated from areas where rivet fretting 

was the predominant mechanism, etc.. 

6.2 RECOMMENDATIONS 

Subsequent to acoustic emission testing of the 2024-T3 aluminum pressure vessel 

used in this research another 2024-T3 aluminum pressure vessel plus three 7075-T6 

aluminum pressure vessels were tested. It is recommended that data gathered be used to 

train another network to classify source mechanisms on all five vessels at once. Another 
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extension of this research would be to train a network to classify source mechanisms 

using the acoustic emission (AE) parameter data provided by the LOCAN-AT and 

compare the results to this research. This would allow a comparison between the 

classifications provided by the waveform analysis and the AE parameters . Further 

iterations could also be performed on the final SOM network to determine if a better 

(smaller and more distinct clustering) network could be generated. Finally, other 

classification networks such as Adaptive Resonance Theory 2 (ART2), Linear Vector 

Quantization (LVQ), and Probabilistic Neural Network (PNN) could be investigated. 
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APPENDIX A 
NWl.BAS, BASIC COMPUTER PROGRAM 

'This program uses a IEEE-488 to interface a Kiethley 197 DMM and a 
fHP 54601a digital oscilloscope to a IBM 486 computer. The program 
'will acquire acoustic emission waveform data near the point of 
'maximum load during fatigue cycling and store them on a RAM disk. 

'Program written by Glenn Greiner Summer 1993 and 
'modified by Paul Thornton Summer A 1994 

OPTION BASE 1 
DIM wave$(l 0000) 
INPUT "Enter the Vessel Identification Number."; vid 
INPUT "Enter the Test Identification Number."; tid 
INPUT "Enter the Trigger Level for The Oscilloscope."; triglev 
INPUT "Enter the Range for Channel 1 of the Oscilloscope."; rngchl 
INPUT "Enter the X coordinate for the Recording Sensor."; senslx 
INPUT "Enter the Y coordinate for the Recording Sensor."; sensly 
INPUT "Enter the X coordinate for the Trigger Sensor."; sens2x 
INPUT "Enter the Y coordinate for the Trigger Sensor."; sens2y 

i 

'Configure Personnal488 card 

OPEN "\DEV\IEEEOUT" FOR OUTPUT AS #1 
IOCTL # 1, "BREAK" 'reset gpib card 
PRINT #1, "RESET" 
OPEN "\DEV\IEEEIN" FOR INPUT AS #2 
PRINT #1, "FILL ERROR" 
ON ERROR GOTO ieeer 
PRINT #1, "ERROR OFF" 

'Configure Keithley 197 Digital Multi Meter (Address 20) 
'sets default configuration function, range front panel 
'relative off, db off trigger continuous on talk data format 
'with prefix EOI enabled, srq terminator carriage return 
'data logger disabled 

PRINT #1, "OUTPUT 20; CLEAR" 
PRINT #1, "REMOTE 20" 
PRINT #1, "OUTPUT 20; T1X" 

file:///DEV/IEEEOUT
file:///DEV/IEEEIN


* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

'Configure HP 54601A Oscilloscope (Address 07) 
'Reset scope to default, see page 7-14 of HP manual for 
'details on default values. 

PRINT #1, "OUTPUT 07; *RST" 
PRINT #1, "OUTPUT 07; :TIM:RANG .2 MS;REF LEFT" 
PRINT #1, "OUTPUT 07; :TRIG:MODE SINGLE;SOUR CHAN2;LEV 8.75 mV 
PRINT #1, "OUTPUT 07; :CHANl:COUP AC;RANG .16 V" 
PRINT #1, "OUTPUT 07; :CHAN2:COUP AC;RANG .16 V" 
PRINT #1, "OUTPUT 07; :ACQ:TYPE NORMAL;COMPLETE 80" 
PRINT #1, "OUTPUT 07; :DITHER OFF" 

cycle = 0 
nw = 0 
t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

'The RUN statement configures the scope to wait for a trigger level 
'exceedance so that it can store the signal in case it occurs 
'The loop keeps checking if the scope has triggered while it also 
'checks the voltmeter reading. Once trigger occurs, the waveform 
'is stored by (waveget:). If the scope is not triggered before the 
'voltage drops below 90%, the scope is stopped and the program is 
'returned to dmm: 

trigger: 
PRINT #1, "OUTPUT 07;:run" 
WHILE vtlvl >= 0 

IF vt lvKl THEN flag = 0 
PRINT #1, "OUTPUT 07;*CLS" 
PRINT #1, "OUTPUT 07;*ESE 2" 'enables trigger register* 
PRINT #1, "OUTPUT 07;:TER?" 'queries trigger event 
PRINT #1, "ENTER 07" 
vtwave = 0 
WHILE IOCTL$(2) = "l" 
vttrg = VAL(INPUT$(1,2)) 
IF vttrg = 1 THEN vtwave = 1 

WEND 
IF vtwave = 1 THEN GOTO waveget 

f 

PRINT # 1, "ENTER 20" 'read voltage from dmm 
INPUT #2, v$ 
vtlvl = VAL(MID$(v$, 5, LEN(v$))) 
IF vtlvl > 1 THEN GOSUB count: 
WEND 

f * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 



'These commands digitize and store the waveform in channel 1 on 
'the virtual disk D: 

waveget: 
nw = nw + 1 
tload = (vtlvl* 332) -302 
vread = vtlvl 
OPEN "A", 3, "D:\CNT" + LTRIM$(STR$(vid)) + LTRIM$(STR$(tid)) + ".DAT 
PRINT #3, "wave"; nw;" at cycle"; cycle;" load="; tload; " psi" 
CLOSE #3 
file$ = "D:\" + LTRIM$(STR$(vid)) + LTRIM$(STR$(tid)) + "w" + 

LTRIM$(STR$(nw)) + ".dat" 
OPEN "O", 4, file$ 
PRINT #4, TIMES +"" + DATES 
PRINT #4, nw 
PRINT #4, tload 
PRINT #4, vid 
PRINT #4, tid 
PRINT #4, samplerate 
PRINT#4,lengthfile 
PRINT #4, triglevel 
PRINT #4, senslx 
PRINT #4, sensly 
PRINT #4, sens2x 
PRINT #4, sens2y 
PRINT #4, 8 
PRINT #4,128 
PRINT #4, rngchl 
PRINT#4,"WDI-21" 
PRINT#4,"sens2id" 
PRINT #4,0 
PRINT #4,0 
PRINT #4,0 
iw = 0 
PRINT #1, "OUTPUT 07; :WAV:POIN 2000;FORM BYTE;SOUR CHANl" 
PRINT #1, "OUTPUT 07; :WAV:DATA?" 
PRINT #1, "ENTER 07" 
WHILE IOCTL$(2) = "l" 

iw = iw + 1 
wave$(iw) = INPUT$(l,2) 
PRINT #4, wave$(iw); 

WEND 
CLOSE#4 
PRINT "wave"; nw; " at cycle"; cycle;" load = "; tload;" psi" 
IF nw> 500 THEN BEEP 

file://D:/CNT
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IF nw = 520 THEN STOP 
GOTO trigger: 

ieeer: 
IOCTL #1, "BREAK" 
PRINT #1, "STATUS" 
INPUT#2,ST$ 
PRINT CHR$(7); "Error #"; MID$(ST$, 15,2);":"; MID$(ST$, 27) 
STOP'RESUMENEXT 
END 

count: 
IF flag = 0 THEN cycle = cycle + 1 
flag=l 
RETURN 



APPENDIX B 
NOISE.BAS, BASIC COMPUTER PROGRAM 

CLS 
DIM BUMB!(2000) 
INPUT "ENTER THE VESSEL ID NUMBER.", VID% 
INPUT "ENTER THE TEST ID NUMBER", TID% 
INPUT "ENTER THE STARTING WAVE NUMBER.", STWV% 
INPUT "ENTER THE FINAL WAVE NUMBER.", FINAVW% 
INPUT "ENTER THE STARTING WAVE NUMBER FOR THE OUTPUT", LK% 
FOR 1% = STWV% TO FINAVW% 

FILES = "C:\TESTMAT\1 IN" + LTRIM$(STR$(I%)) + ".DAT" 
OPEN FILES FOR INPUT AS #1 
F0RJ%=1T0 1999 

INPUT #1,BUMB!(J%) 
IF BUMB!(J%) >= .016 THEN 
MIND% = 1 
END IF 
IF BUMB!(J%) <= 0! THEN 

LOWIN% = 1 
END IF 
IF J%>= 1750 THEN 

IF BUMB!(J%) = BUMB!(1) THEN 
K% = J% 
KONE% = 1 

END IF 
END IF 
IF MIND% = 1 AND LOWIN% = 1 THEN 

IF KONE% = 1 THEN J% = 1999 
LONE% = 1 

END IF 
IF EOF(l) THEN J% = 1999 

10 NEXT J% 
IF LONE% = 1 THEN 
FILE1S = "C:\TESTF AT\" + LTRIM$(STR$(VID%)) + LTRIM$(STR$(TID%)) + "F 

+ LTRIM$(STR$(LK%)) + ".DAT" 
OPEN FILE1S FOR OUTPUT AS #2 
FOR L% = 1 TO K% 

WRITE#2,BUMB!(L%) 
NEXT L% 
CLOSE #2 
FIL2S = "C:\TESTFAT\V" + LTRIM$(STR$(VID%)) + "T" + 

LTRIM$(STR$(TID%)) + ".COR" 

file://C:/TESTMAT/1
file://C:/TESTF
file://C:/TESTFAT/V


OPEN FIL2S FOR APPEND AS #3 
FIL3S = "C:\TESTMAT\" + LTRIM$(STR$(VID%)) + LTRIM$(STR$(TID%)) + 

"W" + LTRIM$(STR$(I%)) + ".DAT" 
PRINT #3, "ORIGINAL FILE NAME"; FILES 
PRINT #3, "NEW FILE NAME"; FILEIS 
PRINT #3," " 
CLOSE #3 

LK% = LK% + 1 
END IF 
CLOSE #1 
LOWIN% = 0 
K% = 0 
LONE% = 0 
MIND% = 0 
KONE% = 0 

NEXT 1% 
PRINT "THE NUMBER OF WAVES SAVED IS ", LK% 
END 
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