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Abstract 

Since magnetic control systems are relatively lightweight, require low power and are 

inexpensive, they are attractive for small, inexpensive satellites in low Earth orbits. 

In this thesis we present averaging-based feedback control laws that achieve three-axis 

stabilized nadir-pointing attitude. Two types of nonlinear feedback control laws are 

proposed: full-state feedback and passivity-based feedback. Full-state feedback uses 

the attitude and angular velocity measurements to regulate the spacecrafts dynamics. 

Passivity-based feedback uses the attitude measurement and doesn't require the rate 

sensors. The control laws are tested using two magnetic field models: the tilted dipole 

model and the International Geomagnetic Reference Field (IGRF) model. Computer 

simulations are included to illustrate the effectiveness of the proposed control laws. 
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Chapter 1 

Introduction 

It is well known that three independent control torques, generated either via gas jets or 

momentum wheels, can be used to control the attitude of a rigid spacecraft and that 

arbitrary reorientation maneuvers of such fully-actuated spacecraft can be accom

plished using smooth (or even linear) feedback [30]. If only two independent control 

torques are available, i.e. if the spacecraft is underactuated [25], the attitude regu

lation problem cannot be solved using continuous (static or dynamic) time-invariant 

feedback control laws [5]. In this case, time-varying [19] or discontinuous feedback 

control laws [13, 12] have been proposed to achieve three-axis attitude control. The 

discontinuous feedback control laws proposed in [13, 12] for an underactuated space

craft are based on the general theory developed for nonholonomic control systems [4]. 

In this paper, the three-axis attitude stabilization problem for a nadir-pointing 

spacecraft using only magnetic torquers as actuators is studied. Magnetic attitude 

control is of great use to small satellites due to its lightweight and low power re

quirements. However, attitude control with sole use of magnetic torquers has the 

significant challenge that the magnetic torques that can be applied to the spacecraft 

for attitude control purposes are constrained to lie in the plane orthogonal to the 
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geomagnetic field vector. This is due to the fact that magnetic torque is given by the 

cross product of the magnetic dipole moment vector (generated by running currents 

through the magnetic coils) and the geomagnetic field vector. Although the system 

is only controllable in two axes that are perpendicular to the local geomagnetic field 

vector at any point in time, three-axis magnetic stabilization is still possible as the 

time-variability of the magnetic field along the considered orbit is sufficient to guaran

tee the stabilizability of the spacecraft. It must be noted that since magnetic torques 

can be generated only about two axes, the control action required to stabilize the 

attitude of such spacecraft is inherently nonlinear. 

In the literature, several magnetic attitude control schemes have been proposed for 

satellites in combination with other active or passive attitude stabilization techniques. 

In particular, magnetic control laws have been developed for spin-stabilized satellites 

[24, 26, 27, 32], dual-spin satellites [1], gravity-gradient stabilized satellites [2, 35], 

and momentum-biased satellites [9]. 

In [17], the problem of inertial attitude regulation for a small spacecraft using 

only magnetic coils as actuators has been analyzed using averaging technique and it 

has been shown that a nonlinear low-gain PD-like control law yields (almost) global 

asymptotic attitude regulation even in the absence of additional active or passive 

attitude control actuators such as momentum wheels or gravity gradient booms. 

Other attitude control techniques using solely magnetic actuation can be found in 

[18, 20, 22, 23, 29, 34]. These techniques include time-varying linear quadratic regu

lator (LQR) technique [18, 20, 22, 23, 34] and sliding mode control technique [29]. In 

this thesis, we present averaging-based feedback control laws that achieve three-axis 

stabilized nadir-pointing attitude for a small satellite. 

3 



Chapter 2 

Ma th Background 

2.1 Coordinate Systems 

This section introduces the different coordinate systems that will be used throughout 

the thesis. 

2.1.1 North East Down Frame 

In the North-East-Down (NED) frame, xn points north, yn points east, and zn points 

towards the center of the earth. The NED frame has its origin fixed on the plane 

tangent to the Earth's surface. This frame is often used to describe the Earth's 

magnetic field. 

2.1.2 Earth Centered Inertial Frame 

The Earth-Centered Inertial (ECI) frame, denoted as / , has its origin at the center 

of the earth. The Z-axis points toward the north pole, the X-axis points towards the 

vernal equinox. The Y-axis completes the right hand orthogonal system. 
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2.1.3 Earth Centered Earth Fixed Frame 

The Earth Centered Earth Fixed (ECEF) frame, denoted as E, has the same origin 

as ECI frame, but it rotates along with the earth with a constant angular velocity of 

we = 7.292M0-5rad/sec. 

2.1.4 Perifocal Frame 

The Perifocal frame is also known as Earth-Centered Orbital frame. This frame is the 

natural frame for orbiting satellites. Its xp-axis points from the focus to the periapse, 

the cp-axis is normal to the orbiting plane, and the yp-axis completes the right kand 

orthogonal system. This frame will be denoted as P. 

2.1.5 Orbit Frame 

The Orbit frame, denoted as O, has its origin at the center of mass of the spacecraft. 

The x0-axis is in direction of the velocity, the z0-axis points toward the center of the 

earth, and the y0 completes the right hand orthogonal system. 

2.1.6 Body Frame 

The Body Frame, denoted as B, has its origin at the center of mass of the spacecraft. 

Unlike the Orbit frame, it has its origin fixed at the center of mass of the spacecraft. 

5 



Figure 2.1: Geocentric Inertial Frame (XYZ) and Orbital Frame (x0y0z0) 

2.2 Coordinate Transformation 

In order to effectively model spacecraft attitude, it's necessary to convert the results 

into workable coordinates. This section will describe the transformation matrix that's 

being used to switch between coordinate frames. 

2.2.1 Introduction to Quaternions 

The most commonly used sets of attitude parameters are the Euler angles. They 

describe the attitude of one frame relative to another. The Euler angles provide a 

compact, three-parameter attitude description whose coordinates are easy to visual

ize. One major drawback of these angles is that they result in a geometric singu

larity. Therefore, their use in describing large rotations is limited. Also, both the 

rotation matrix and the kinematic equations are highly nonlinear and involve numer

ous computations of trigonometric functions. Quaternions provide a four-parameter 



singularity free representation that does not require the calculation of any trigono

metric functions. Quaternions, unlike Euler angles, use one axis called an eigenaxis 

to rotate between coordinate systems. In this chapter, we first briefly review the atti

tude kinematics and dynamics formulation used in this thesis to obtain the rotational 

equations of motion for a group of spacecraft. For full details, the reader is referred 

to [33]. 

Reference Frames and Rotations 

r 

Figure 2.2: Direction Cosines 

Consider a right-handed orthonormal reference frame A, whose three unit vectors 

are di, d2, and d3. Let cos#i, cos#2> and cos03 be the direction cosines of a vector r 

as shown in Figure 2.2. Then, we write 

r = r (di cos 6\ + d2 cos 02 + d3 cos 03) , 
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where r is the length of r. Now consider another right-handed orthonormal reference 

frame B with three unit vectors 61, b2, and 63. A relation between the two reference 

frames A and B can be written as: 

61 

where r^ is the direction cosine between hi and dj. The matrix 

T\\ r12 r i3 

r2i r22 r23 

^31 ^32 7*33 

di 

d2 

d3 

R = 

»"ii n2 rn 

»"2i r22 r23 

^31 r32 r33 

is an orthonormal rotation matrix with the following properties: 

R R r = R r R = I, det(R) = +1 , 

where I is the 3x3 identity matrix. Let r^ represent a vector in terms of its components 

in the frame A. Then, the vector can be represented in the frame B as 

rB = RrA , (2.1) 

where R is the rotation matrix from frame A to B. 

Eulers theorem states that the general rotation of a rigid body with one fixed point 

is a rotation about an axis through that point. Figure 2.3 illustrates the geometry 

pertaining to Eulers theorem. Now consider an arbitrary vector r as shown in Figure 

2.4. As frame A rotates about an axis e (called an eigenaxis), by an angle 0 (called 
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Figure 2.3: Euler Eigen Axis and Eigen Angle 

an eigenangle), it will appear to an observer fixed in A that r is rotating about e 

through an angle — 0; to this observer, the rotation corresponds to r —• r', where 

r' = (e • r) e — e x (e x r) cos 6 — e x r sin 6 . 

Note that eTe = 1. The components of r ; in B can then be written as 

YB = [eeT + (I — eeT) cos 6 — e sin 9] rA , 

where e denotes the skew symmetric matrix satisfying e x r = er, and is given by 

e = 

0 -e3 e2 

e3 0 -e1 

-e2 ei 0 

(2.2) 

9 



ex r 

Figure 2.4: Geometric Interpretation of Euler's Theorem 

In full matrix form, the rotation matrix becomes 

R = 

c0 + ej (1 - cd) exe2 (1 - cff) + e3s6 exe3 (1 - cff) - e2sd 

e2ei (1 - cff) - e3s6 cd + c | (1 - c9) e2e3 (1 - c9) + exsB 

e3e2 (1 - cff) + e2s9 e3e2 (1 - cff) - exsQ cff + e\ (1 - cd) 

where cd = cos d and sd = sin d. 

10 



Unit Quaternions 

The unit quaternions are defined as 

q = 
qv 

Q4 

— 

ei sin | 

e2 sin | 

e3 sin f 

cosf 

— 

-
« i 

92 

93 

(2.3) 

The quaternions are constrained by 

q q = 9i + «2 + 03 + 04 = 1 , 

where qv is the vector part of the quaternions, and #4 is the scalar part. 

The rotation matrix can be parameterized in terms of quaternions as 

(2.4) 

R = 

1 - 2{q\ + qf) 2{qxq2 + q3qA) 2(fcfc - q2q^) 

2(9i?2 - 9304) 1 - 2{qj + qf) 2(q2q3 + qxqA) 

2(?i93 + 9294) 2(^93 - gift) 1 - 2(tfi + q2) 

(2.5) 

The unit quaternion q can be thought as a hypercomplex quantity that has three 

imaginary parts qv and one real part g4. 

Quaternion Multiplication 

Multiplication of two quaternions is denoted by qxq2 = Q(qi)q2, where 

Q(q) = (2.6) 

11 



and I is a 3 x 3 identity matrix. 

Quaternion Error 

The quaternion error can be expressed in terms of the actual attitude q and the 

desired attitude q^ as 

(2.7) 

where q* is the inverse quaternion of q 

q* = 
«4 I 94 

/ 

2.2.2 Inertia Matrix 

The spacecraft's inertia matrix is given by 

J = 

Ji 0 0 

0 J2 0 

0 0 J3 

(2.8) 

(2.9) 

To simplify the presentation of the main ideas, an iso-inertial spacecraft is consid

ered, so J\ = J2 = Js = J. This simplification will allow the elimination of gravity 

gradient terms in the control torque. 

2.2.3 Transformation from Perifocal Frame to ECI Frame 

The transformation matrix to go from Perifocal to ECI frame requires three elements: 

the right ascension fi, argument of perigee a;, and inclination angle i. The matrix is 

12 



given as follow 

Ftp = 

cos Q cos u — sin Q sin UJ cos i 

sin Q cos a; + cos Q cos z sin u) 

sin 2 sin UJ 

— cos fi sin UJ — sin Q cos i cos a; sin fi sin i 

— sinfisina; + cos 0 cos i cos a; — cosfisini 

sin i cos CL; COS I 

(2.10) 

2.2.4 Transformation from ECI Frame to ECEF Frame 

Transforming from ECI to ECEF frame is given as 

Rf = 

cos wet sin wet 0 

— sin wet cos wet 0 

0 0 1 

(2.11) 

where we = 7.2921-10 5rad/sec is the angular velocity of the Earth. 

2.2.5 Transformation from Spherical Coordinates to ECI Frame 

The spherical coordinate is in the same frame as the ECEF frame. Transforming from 

spherical to ECI frame is given as 

R 5 = 

cos S cos a sin S cos a — sin a 

cos S sin a sin S sin a cos a 

sin S — cos S 0 

(2.12) 

where S = 90° — 9, and a = 0 + wet. Note that 0 is the co-latitude and (j) is the 

longitude. 

13 



2.2.6 Transformation from Perifocal Frame to Orbit Frame 

Transforming from Perifocal to Orbit frame is given as 

R,p = 

- sin nt cos nt 0 

0 0 - 1 

cos nt — sin nt 0 

(2.13) 

2.2.7 Transformation from Orbit Frame to Body Frame 

The transformation matrix from Orbit frame to Body frame is given by Wie as 

R-o = («4 " <lv q*)1 + 2q„q£ - 2944; , (2.14) 

where q„ = [qx q2 q3]
T, and q„ is the skew symmetric matrix 

Civ = 

0 -q3 q2 

q3 0 -qi 

-Q2 Qi 0 

2.3 Background on Stability 

This section explains the Theorems Principle of this thesis. Discussions of stability, 

especially Lyapunov stability will be covered. Most of the materials found in this 

section can be found in [33]. 

2.3.1 Stability 

Let's define 

x = f(x,t) , (2.15) 
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where f(x,t) is a nonlinear function for all x and t, and x = (x\y.. ,xn) . Let x* be 

the equilibrium state satisfying 

f(x*,*) = 0 . (2.16) 

Positive Definite Functions 

A function V(x) is defined as definite positive if V(0) = 0 and V(x) > 0 for x ^ x*. 

It is semi-definite positive if V(0) = 0 and V(x) > 0 for x ^*. 

A function V(x) is definite negative if V(0) = 0 and V(x) < 0 for x ^ x*. It is 

semi-definite negative if V(0) = 0 and V(x) < 0 for x ^ x*. 

Lyapunov Stability 

The equilibrium state x* is said to be Lyapunov stable if for any e > 0 there exists a 

real and positive number 5(e, to) such that 

||x(*0) - x*|| < <S(e, t0) => ||x(t) - x*|| < e /or a// t>t0, (2.17) 

where ||x|| = VxTx. 

Local Asymptotic Stability 

A system is said to be locally asymptotically stable if an isolated equilibrium point 

x* is Lyapunov stable and if there exists a positive 5 such that 

||x(t0) - x*|| < 5 =» x(i) -> x* as i ^ oo . (2.18) 

15 



Global Asymptotic Stability 

A system is said to be globally asymptotically stable if an isolated equilibrium point 

x* is Lyapunov stable and 

x( t ) ->x* as t-+oc, (2.19) 

for any initial condition x(t0). 

Lyapunov's Direct Stability Theorem 

If there exists in some finite neighborhood D of the equilibrium point x* a positive-

definite scalar function E(x) with continuous first partial derivatives with respect to 

x that satisfies the following conditions: 

1. If E(x) > 0 and E(x) < 0 for x ^ x*, and £(x*) = 0 for all t, then the 

equilibrium point at x* is Lyapunov stable. 

2. In addition to the condition above, if E(x) is not identically zero along any 

solution x other than x*, then the system is locally asymptotically stable. 

3. If, in addition, there exists in the entire state space a positive-definite function 

JE'(X) which is radially unbounded, then the equilibrium point x* is globally 

asymptotically stable. 

Averaging Method 

Averaging is a method of approximating the dynamics of a (slowly) time-varying 

system by the dynamics of a time-invariant averaged system (see e.g. [11]). More 

precisely, let 

x = ef(x,£, e) . 

16 



Here e > 0 is a small parameter which models the fact that the dynamics of x 

are slowly varying with respect to the variation of the right hand side of the above 

equation. The averaged system is described by 

X-av = €*\\X)av) i 

where 
I rto+T 

f((x)av) = J im - / f (x, r, 0) dr , 
T^ool JtQ 

assuming that limit exist is. 

According to the generalized averaging theory [11], if the averaged system is expo

nentially stable, there exists an e* > 0 such that for 0 < e < e* the original nonlinear 

system is exponentially stable. 

17 



Chapter 3 

Mathematical Representation of 

the Earth's Magnetic Field 

3.1 IGRF Mathematical Representation 

As presented in [11] the magnetic field is expressed as the negative gradient of the 

scalar potential 

B = - W . (3.1) 

The IGRF uses spherical harmonic to model the scalar potential as 

k . n 

V(r,d^)=a^Qn £ ( ^ c o s m 0 + /Csinm<£)P,r(0). (3.2) 
n = l m=0 

The coordinate system that the IGRF uses is geocentric coordinate, r is the radius 

from the center of the earth to orbit, 9 is the co-latitude with respect to the geographic 

equator, and (j) is the longitude. The symbol a stands for the Earth's radius, which is 

6371.2 km. The coefficient g™ and fo™ are Gaussian coefficients, and P™(cos9) is the 

Schmidt quasi-normalized associated Legendre functions of order m and degree n. 

18 



Breaking the magnetic field components from equation (3.2) as in [11] , we obtain 

k ' 0 \n+2 
Br = ^2(-Y (n + 1) ] T {gn'm cos mcj) + hn'm sin m(f>)Pn>m(d) , (3.3) 

71=1 771=0 

B<> = - £ ( ; ) E^"'m c o s m^ + /in'msinm^ ag ' (3'4) 

71=1 771=0 
i k . 0 71 

B<t> = s h T f l ^ l ) E ^ ( - 5 n ' m s i n m 0 + /in 'mcosm0)Fn 'm(^), (3.5) 
71=1 771=0 

where £?r, Be, and fi^ are the magnetic field components in its spherical coordinate. 

Also Pn'm(9) is the Gaussian normalized associated Legendre polynomials. 

3.1.1 Legendre Polynomials 

In order to get to Schmidt quasi-normalized Legendre functions, we must start with 

the Legendre polynomials Pn(t), which is 

(1 - 2tx + x2)-1'2 = J2 pn(t)xn • (3.6) 
71=0 

When solving for Pn(t), one ends up with Rodrigues's formula 

p'®-Mffl*-ir- (3-7) 
Associated Legendre Polynomials 

The associated Legendre Polynomials has the following relationship with Rodrigues's 

formula 
dm 

Pn,m(t) = U " * 2 ) V 2 " V (Pn(t)) • (3-8) 

The associated Legendre polynomials equals to zero when m is greater than n. 
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Gaussian Normalized Associated Legendre Polynomials 

The Gaussian normalized Associated Legendre polynomials relate to Pn,m as 

2"l(n-ro)l 
(2n)! 

(3.9) 

Equation (3.9) is one of the normalizations of Legendre polynomials. The normaliza

tion that we are interested in is the Schmidt quasi-normalization. 

Schmidt Quasi-normalized Associated Legendre Functions 

Schmidt quasi-normalized associated Legendre functions in relation to the associated 

Legendre polynomials is 

pm __ 
2(n-m)\ 
(n + m)\ 

1/2 

•* 7i,r (3.10) 

The relationship between the Schmidt quasi-normalization and Gaussian normal

ization is 

P™ = Sn,mPn 'm , (3.11) 

where Sn,m is 

^71,771 — 

(2-S°J(n-m)\ * (2n-l)!! 
(n — m)\ 

(3.12) 
(n + m)\ 

where (2ra —1)!! = 1 • 3 • 5 • • (2n — 1). The Kronecker delta function is S{f = 1 if i = j 

and 5{f = 0 if i ^ j . 

The relationship of the coefficient g™ and h™ from the Gaussian normalization 

20 



and #n 'm and /in>mcan be described by 

71,771 _ O 771 

y — °n,myn J 

L7i,m _ q um 
11 — *^n,m,Ln ' 

(3.13) 

(3.14) 

The coefficients g™ and h™ are provided by the IGRF every five years. 

3,1.2 Recursive Schmidt Quasi-normalization 

In order to optimize the code to run faster, it's easy to see that the recursive form of 

the Schmidt normalization factor can be used as 

£o,o — 1 

^n,0 — ^ra-1,0 

^71,771 = ^71,771—1 

2 n - l 

n 
(n-m + l)(8l + l) 

n + m 

n = m , 

n > 1 , 

m> 1 . 

(3.15) 

(3.16) 

(3.17) 

The Gaussian normalized Legendre polynomial can be described in a recursive 

relationship as follows 

P°'° = 1, 

pn,n 

pn,m 

= sindPn-1'n-1 , 

= cos0Pn - 1 'm - Kn'mPn-2'm , 

(3.18) 

(3.19) 

(3.20) 

where 

Kn,m = Q 

Kn,m (n - l ) 2 - ra2 

(2n - l)(2n - 3) 
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n = 1 , 

n > 1 . 

(3.21) 

(3.22) 



The partial derivative of the Legendre polynomials has the following recursive 

formula 

dpo,o 

Qpn,n 

Qpn,m 

~dd~ 

= o , 

sind^-^ +cos0P n - 1 ' n - 1 , 

= COS0 

dd 
Qpn—l,m 

dd 
-K n,m 

flpn—2,m 

89 

(3.23) 

(3.24) 

(3.25) 

3.2 Mathematical Modeling of the IGRF in Orbit 

Frame 

3.2.1 Geomagnetic Equator and Geographic Equator 

Geomagnetic equator is the equator based on the magnetic field of the earth. The best 

fit line of the magnetic equator of the dipole with respect to the geographic equator 

is offset approximately by 11.5° in the 2005 [18]. If we model the polar orbit, where 

im = 90°, then the inclination with respect geographic equator is i = im + 11.5°. In 

this case, the orbit would be retrograde. 

3.2.2 Transformation from Perifocal Frame to Spherical Co

ordinates 

The satellite's position in the Perifocal frame is described as 

YP = r 

cos nt 

sin nt 

0 

(3.26) 

22 



where r is the orbit radius. 

To transform the satellite's position from Perifocal to ECEF frame, which can 

be transformed into spherical coordinates, the following transformation matrixes are 

applied as 

Ev>I P = i t j r t p (3.27) 

Now the satellite's position in the Perifocal frame with respect the ECEF frame 

is described as 

XE 

YE 

[ ZE 

r>E 
— rtp 

xP 

YP 

zP 

(3.28) 

From this, it can be simply transformed into spherical coordinate as follows 

r = 

0 

d 

= tan 

= cos 

_i YE 

XE' 

_I ZE_ 

r 

(3.29) 

(3.30) 

(3.31) 

Prom r, 0, and d obtained above, the magnetic field of the earth can be obtained 

using (3.3)-(3.5). 

3.2.3 Transformation from ECEF Frame to Orbit Frame 

Once the magnetic field of the earth is calculated, the transformation from spherical 

coordinate frame to Orbit frame can be done as follows 

23 



Bo = RpRj R g B , . ^ . (3.32) 

Note that RP = (Rf )T. 

3.3 Tilted Dipole Model 

This section covers the tilted dipole model that has its origin at the center of the 

earth [18]. The tilted dipole model comes from the first three terms of the spherical 

harmonic model: 

a3 

y ( r , M ) = ^[g°lP?(9) + (glcosct> + hl
1smcl>)Pl(9)] , (3.33) 

a3 

= - j \g\ cos 9 + g\ cos </> sin 9 + h\ sin 0 sin 9] . (3.34) 

The co-elevation 9m and the East longitude 4>m of the tilted dipole are given by 

9m = cos"1 (j±\ , (3.35) 

4>m = tan"1 (^ j . (3.36) 

The constant H0 is the magnitude based on the first three term, i.e. 

Ho = y/(s/l)* + (9\)2 + (h\y . (3.37) 
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Solving for the first three terms of the IGRF model, one ends up with 

Br 

Be 

B^ 

= 2 
Rp \g\ cos 9 + (g\ cos </> + h\ sin <f>) sin 9] , 

R [gi sin 9 - (g\ cos (j) + h\ sin (f>) cos 9] , 

—- j [g® sin <f> — h\ cos (/)] . 

(3.38) 

(3.39) 

(3.40) 

Assuming that the Earth's magnetic field is aligned with the dipole strength and 

the magnetic north is from the above calculation of 9m and <f>m, the tilted dipole can 

be represented as 

a B = - j y o [ ( f - m ) f - m ] , (3.41) 

where r is the position vector, f is the unit vector in the direction of r, and r is the 

orbital radius 

sin 9m cos am 

™. = sin 9 m sin a r 

COS0m 

(3.42) 

where 

&m = 9go + wet + <£„ (3.43) 

Here am is defined as the Greenwich sidereal at a reference time. Note that the dipole 

model result is obtained in the geocentric inertial frame. For the 2005 IGRF model, 

gl = -29556.8nT, g\ = -1671.8nT, and h\ = 5080.0nT, so the co-elevation and East 

longitude are 9m = 169.744° and <f>m = 288.216°. The results show that the north 

magnetic pole is pointing toward the Southern Hemisphere. The north magnetic pole 

intersect at 79.556°N and 288.216°E. 

If we make the approximation that 9m = 180°, UJ = 0°, and ft = 0°, we can model 

the dipole magnetic field in the orbit frame as 
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B H>m 
o = —T (3.44) 

cos nt sin im 

— COS im 

2 sin nt sin im 

where im is the inclination of the spacecraft's orbit with respect to the magnetic 

equatorial equator, and fim is the total Earth's dipole strength, which is around 

1016 Wb • m. When t = 0, the spacecraft starts at the intersection of the ascending 

node and the magnetic equator. This model assumes that the dipole is none-rotating 

and it ignores the Earth's oblateness. At low Earth orbits, the magnetic field is 

significant, therefore magnetic torquers can be used. 

3-3.1 IGRF and Dipole Magnetic Field Comparison 

Below are plots comparing the IGRF and tilted dipole model in the orbit frame 

for im = 60° and im = 90°. It can be seen from the graphs that the two models 

are relatively close to each other; thus, the tilted dipole model can be used in the 

simulations and still yield good results. 
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Figure 3.1: Tilted Dipole and IGRF Model Comparison for im = 60°. 
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Figure 3.2: Tilted Dipole and IGRF Model Comparison for im = 90° 
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3.4 Further Note 

The IGRF model only take into account the averages of the Earth's magnetic field 

over the course of five years. There are interferences that the IGRF are not accounted 

for, i.e solar radiation from the sun, substorm, very local magnetization, etc. 
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Chapter 4 

Mathematical Model 

4.1 Satellite Model 

Let cv be the angular velocity of the satellite with respect to the geocentric inertial 

frame I expressed in the body frame B. Then the angular velocity of the body frame 

relative to the orbit frame can be expressed as [21] 

ujr = u) — Ru>o , (4.1) 

where UJQ is the angular velocity, in O, of O relative to the inertial frame. 

Let rx, ry, rz denote the columns of the rotation matrix R. Then, since 

u;o = [0, - n , 0]T , (4.2) 

where n is the orbital rate, equation (4.1) can be written as 

u>r = u> + nry . (4.3) 
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The attitude kinematics can now be written in terms of quaternions as 

q = ^Qt,(q)(« + wr»), (4.4) 

where 

Q«(q) = 

V 
T 

Denote by r the control torque vector in the Body frame B. Then, the attitude 

dynamics can be expressed as 

Ju? + (jj x Ju> = r + 3n2r2 x J rz , (4.5) 

where J = diag{ J^, Jy, Jz} is the inertia matrix of the spacecraft and 3n2rz x J r 2 is 

the gravity-gradient torque. 

In this thesis, for simplicity in presenting the ideas, we will consider an isoinertial 

spacecraft (i.e. Jx = Jy = Jz — J) so that equation (4.5) reduces to 

Ju = r. (4.6) 

Magnetic torquers operate in accordance with the magnetic torque equation given 

by 

r = M x B - M B , (4.7) 

where B is the geomagnetic field vector and M is the magnetic dipole moment vector 

(which represents the actual control vector) generated by running currents through 

the magnetic coils. The control action is inherently nonlinear and difficult to use 

since the control torque can only be generated perpendicular to the geomagnetic field 

vector. As mentioned previously, the system is underactuated since a rigid spacecraft 
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has three rotational degrees of freedom while magnetic torques can only be generated 

about two axes. It has been shown in [3] that if the magnetic field is periodic in 

time, then the attitude dynamics of the spacecraft are controllable. Moreover, the 

attitude dynamics of a spacecraft actuated by three magnetic actuators in a closed 

Keplerian orbit in a nonrotating dipole approximation of the geomagnetic field are 

strongly accessible and controllable if the orbital plane does not coincide with the 

geomagnetic equatorial plane. 

The three axis magnetorquer control system considered in this paper consists 

of three orthogonal copper coils. Current supplied to the copper wire produces a 

magnetic dipole which interacts with the magnetic field of the Earth to produce 

control torques. The magnetic dipole moment vector generated by the coils can be 

expressed in the body frame B as 

Mx 

My 

Mz 

= 

•L*x-ix-™-x 

IMylyAy 

NZIZAZ 

where, for k = x, y, z, Nk is the number of windings of the magnetic coil on the axis 

in the /c-direction, 1^ is the current in the coil and A^ is the coil area. 

As explained earlier, a commonly used model of the Earth's magnetic field is 

known as the IGRF model (International Geomagnetic Reference Model). In this 

thesis, for analytic purposes, we will also model the Earth's magnetic field as a dipole 

(bar magnet). Assuming a nonrotating dipole and neglecting the regression of the line 

of nodes due to the Earth's oblateness, the geomagnetic field vector can be expressed 
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in the orbital frame 0 as [31] 

BQ = 
Mn 

cos nt sinim 

- COS im 

2 sin nt sin im 

(4.9) 

where im is the inclination of the spacecraft's orbit with respect to the magnetic 

equator, R is the orbital radius, and /xm is the total dipole strength of the Earth, 

which is approximately 1016 Wb • m. Time is measured from t = 0 at the ascending-

node crossing of the magnetic equator. Clearly, the Earth's magnetic .field in the 

Body frame B can be obtained using the attitude matrix R as 

B = R B o (4.10) 

In this thesis, we consider a small satellite that has a circular at a low altitude. 

We assume that the control objective is to achieve three-axis stabilized nadir-pointing 

attitude for the satellite. Since the orientation of the satellite is described relative 

to the orbital reference frame O. when the attitude of the satellite is the identity 

(R = I), the body-fixed xyz axes coincide with the orbital x0y0z0 axes. Since the 

strength of the Earth's magnetic field at this low Earth orbit (LEO) is relatively 

significant, magnetic torquers can be used to achieve global attitude control. 

We will consider to different orbits: a near-magnetic-polar orbit (im = 90°) and 

a 60° inclination orbit. Let M = B u, where B is the skew symmetric matrix corre

sponding to the magnetic field vector B. Then, the magnetic torque vector can be 

expressed in terms of the new control vector u as 

r = G( t )u , (4.11) 
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where 

Tr>T G ^ ^ B B ' = R B 0 B ^ R 

Using the fact that 

Bo B 0 = B 0 Bol — Bo B 0 , 

we can compute G(t) for polar orbit as 

G(t) = ^ R 

4 sin2 nt 0 — sin 2nt 

0 1+3 sin2 nt 0 

— sin 2nt 0 cos2 nt 

R r , (4-

and for 60° orbit as 

G(t) = ^ R 

3sin2n£ + 0.25 0.25^3 cos rrt -0.75 sin 2nt 

0.25\/3cosnt 0.75(1 + 3 sin2 nt) 0.5\/3sinnt 

-0.75 sin 2nt 0.bV3sinnt 0.75 cos2 nt + 0.25 

R7 

(4-
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Chapter 5 

Feedback Control Laws 

In this chapter, we present feedback control laws that achieve three-axis stabilized 

nadir-pointing attitude. In other words, the control objective is to align the body-

fixed reference axes with the orbital reference axes. 

5.0.1 Full-State Feedback 

The control objective in this paper is to drive the system to the desired state described 

by the identity quaternion and zero relative angular velocity, i.e. to achieve q —> ± 1 , 

where 1 denotes the identity quaternion whose vector part is zero and scalar part 

is unity, and u? —•> UJ0. Note that for any quaternion q, +q and —q correspond to 

physically the same orientation. To achieve this control objective, we modify the 

control law in [17] as 

r = -G(t) [e2kxciv + ek2(u + nry)] , (5.1) 

where k\ and k2 are positive gains and 6 is a sufficiently small positive parameter. 

Following the development in [17], we employ averaging based arguments to prove 
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that the control law (5.1) achieves the control objective for sufficiently large values 

of gains. Define the new coordinates 

Vi = <lv, r}2 = 
UJ + nry 

so that the orbit averaged closed-loop system can be expressed as 

vi = 2 (^1 + 171)̂ 72, 

94 = ~2»h m 

m = —jG(fei»7i + foffe) - enrj2ry , 

(5.2) 

(5.3) 

(5.4) 

where en = n and G is the orbital average of G(t) given by equation (4.12) for the 

near-polar orbit and by (4.13) for the 60° inclination orbit. Here, we have used the 

fact that 

ry = -UJ x vy = -(UJ + nYy) X Yy . 

Remark: The orbit average of a slowly varying function f(nt) is defined as 

rp p2n/n 

f(nt) = ̂ J f(nt)dt. 

Therefore, using the fact that 

sin nt = cos2 nt = 0.5, sin 2nt = 0, 

G can be computed as 

G = ^ L R 

Pi 0 0 

0 J2 0 

0 0 £3 

R7 
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where (gu g2, g3) = (2, 2.5, 0.5) for a near-polar orbit and (gu g2, g3) = (7/4, 15/8, 5/8) 

for a 60°-inclination orbit. 

Proposit ion 1: Consider the isomertial spacecraft described by (4-4) and (4-6) with 

the magnetic torque law (5.1). Assume that 

^>(p 3" 1-^r 1)^4- (5-5) 

Then, there exists an e* > 0 such that for 0 < e < e* the control law (5.1) achieves 

asymptotic attitude regulation of the spacecraft. 

Proof: Consider the orbit averaged closed-loop system (5.2)-(5.4) and assume that 

the condition (5.5) is satisfied. Let 

V = hrfiri! + h(q4 - l)2 + - J i ^ G T 1 ^ 

be a candidate Lyapunov function. Then, taking the time derivative along the closed-

loop trajectories yields 

V = 2fcit7f fh + 2^(94 - 1)94 + JrilG-lr)2 

= -ek2r)\r)2 - eJnr)lG~xf)2Yy 

R6 

= -cnl(k2 + (g^1 - gil)Jn—rzrl)<q2 < 0. 

Here, we have used the fact that 

RT(?72 X Yy) = RTr)2 X RTYy 

and that the 2-norm of rzr% is unity. 

Now, it suffices to show that V is not identically zero along any solutions of (5.2)-
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(5.4) other than the desired equilibrium. By LaSalle's invariance principle r/i and 

rj2 will converge to the largest invariant subset of {(771, r]2) \ V = 0}. On the set, 

r)2 = 0 =» 7)2 = 0, which implies r/i = 0 and <?4 -* ±1 . Therefore, the averaged 

system is exponentially stable at the identity quaternion and zero relative angular 

velocity (i.e. q —> ± 1 and UJ —> UJ0). According to the generalized averaging theory 

[11], since the averaged system is exponentially stable, there exists an e* > 0 such 

that for 0 < e < e* the control law (5.1) achieves asymptotic attitude regulation of 

the spacecraft. 

5.0.2 Passivity-Based Feedback 

For small satellites, the ability of three-axis stabilization without angular velocity 

measurement is especially important since it eliminates the need for rate sensors. 

The dependence of the control law on velocity information can be eliminated using 

passivity techniques [16, 28]. 

Combining the ideas in [15, 17], we propose the following quaternion feedback law: 

r = -G(t) [e2/ciqv + ek2(q4yv - y4qv - q^y^)] , (5.6) 

d = - a + q, (5.7) 

y = -<* + q, (5.8) 

where k\ and k2 are positive gains, e is a sufficiently small positive parameter; and 

OL = [aj1, a4]
T E 3?4 and y = [yj\ ?/4]

T E 5ft4 are the filter state and output vectors, 

respectively. 

Again as in [17], we can use a generalized averaging procedure to show that there 

exists an e* > 0 such that for 0 < e < e* the passivity-based control law (5.6)-(5.8) 

achieves asymptotic attitude regulation of the spacecraft. 

38 



Chapter 6 

Simulation Results 

6.1 Simulation Results Using the IGRF Model 

This section illustrates the effectiveness of the magnetic stabilization techniques de

scribed in the previous chapter through computer simulations. We consider a pico-

satellite at a circular orbit of radius 7000 km, so that the orbital rate is n=0.00108 

rad/s. The satellite-fixed xt/z-axes are chosen to be the principal axes. The principal 

moments of inertia are given as 

Jx = Jy = Jz = J = 1/600 kg • m2 . 

6.1.1 Full-State Feedback 

A computer implementation of the control law given by (5.1) with the control parame

ters e = 0.0005, k\ = k2 = 107 was used to achieve three-axis stabilized nadir-pointing 

attitude, i.e. to drive the system to the desired state described by the identity quater-
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nion and zero relative angular velocity. Note that since 

r6 

k2 = ltf > (gzl-gil)Jn—, 

the condition (5.5) is satisfied for both the 60°-inclination orbit and the near polar 

orbit. The torque coils were turned off for 1 second for geomagnetic field measure

ments after every 9 seconds of magnetic torquing (i.e., applying a 90% duty cy

cle). The results of the computer simulation for a sample initial condition given by 

(<?i, 92, 93, QA) = (0.5, 0.5, 0.5, 0.5) and (uu UJ2, u3) = (0.1, 0.1, 0.1) rad/s are 

shown in Figures 6.1-6.3 for the 60°-inclination orbit and in Figures 6.4-6.6 for the 

near-polar orbit. It can be seen that the desired state is achieved in about 7 orbits 

while the magnitudes of dipole moments of the magnetic coils about the xyz-ax.es do 

not exceed 0.02 A • m2. 
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Figure 6.1: Quaternions for im = 60° (Full-State Feedback). 
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6.1.2 Passivity-Based Feedback 

We next consider a computer implementation of the control law given by (5.6)-(5.8) 

with the same control parameters as in the full-state feedback case. Again the torque 

coils were turned off for 1 second for geomagnetic field measurements after every 9 

seconds of magnetic torquing. Figures 6.7-6.9 and 6.10-6.12 (for the 60°-inclination 

and 90°-inclination orbits, respectively) show the results of the simulation for the 

same sample initial condition given by (qu q2, g3, q±) = (0.5, 0.5, 0.5, 0.5) and 

(CJI, o>2, u;3) = (0.1, 0.1, 0.1) rad/s. It can be seen that the desired state is achieved 

in about 12 orbits and the magnitudes of dipole moments of the magnetic; coils about 

the xyz-axes do not exceed 0.01 A • m2. 
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Figure 6.7: Quaternions for im = 60° (Passivity-Based Feedback). 
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6.2 Simulation Results for the Tilted Dipole Model 

6.2.1 Full-State Feedback 

A computer implementation of the control law given by (5.1) with the control parame

ters e = 0.0005, ki = k2 = 107 was used to achieve three-axis stabilized nadir-pointing 

attitude, i.e. to drive the system to the desired state described by the identity quater

nion and zero relative angular velocity. Note that since 

r6 

k2 = 107>(gs1-9i1)Jn—, 
Mm 

the condition (5.5) is satisfied for both the 60°-inclination orbit and the near polar 

orbit. The torque coils were turned off for 1 second for geomagnetic field measure

ments after every 9 seconds of magnetic torquing (i.e., applying a 90% duty cy

cle). The results of the computer simulation for a sample initial condition given by 

{Qu <?2, 93, QA) = (0.5, 0.5, 0.5, 0.5) and (ui, u2, u3) = (0.1, 0.1, 0.1) rad/s are 

shown in Figures 6.13-6.15 for the 60°-inclination orbit and in Figures 6.16-6.18 for 

the near-polar orbit. It can be seen that the desired state is achieved in about 6 orbits 

while the magnitudes of dipole moments of the magnetic coils about the xyz-ax.es do 

not exceed 0.02 A • m2. 
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6.2.2 Passivity-Based Feedback 

We next consider a computer implementation of the control law given by (5.6)-(5.8) 

with the same control parameters as in the full-state feedback case. Again the torque 

coils were turned off for 1 second for geomagnetic field measurements after every 9 

seconds of magnetic torquing. Figures 6.19-6.21 and 6.22-6.24 (for the 60°-inclination 

and 90°-inclination orbits, respectively) show the results of the simulation for the 

same sample initial condition given by (qu q2, q3, g4) = (0.5, 0.5, 0.5, 0.5) and 

(CL>I, UJ2, W3) = (0.1, 0.1, 0.1) rad/s. It can be seen that the desired state is achieved 

in about 12 orbits and the magnitudes of dipole moments of the magnetic coils about 

the xyz-axes do not exceed 0.01 A • m2. 
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Figure 6.21: Magnetic Dipole Moments for im — 60° (Passivity-Based Feedback). 
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Figure 6.22: Quaternions for im = 90° (Passivity-Based Feedback). 
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Figure 6.23: Angular Rates for im = 90° (Passivity-Based Feedback). 
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Figure 6.24: Magnetic Dipole Moments for im = 90° (Passivity-Based Feedback). 
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Chapter 7 

Conclusions 

This thesis has presented two control laws based on averaging for small satellites using 

magnetic torquers to effectively maneuver the spacecraft for nadir-pointing. The two 

cases where the controllers are based on are full-state feedback where attitude and 

angular velocity measurements are used for feedback, and passivity-based feedback 

where angular velocity are not fedback into the system. 

The control laws are demonstrated by running simulations on the tilted dipole 

model and the IGRF model. The simulations that ran for the IGRF and the tilted 

dipole model converged approximately on the same number of orbits. The full-state 

feedback control laws takes around nine to ten orbits to fully converges, while the 

passivity-based feedback takes eleven to twelve orbits. 

Table 7.1: Summary of Simulation Results 
B Case im = 60° im = 90° 

IGRF Full-state 7 7 
Dipole Full-state 6 5 
IGRF Passivity-based 12 12 
Dipole Passivity-based 7 8 

Future research might include design based on sliding mode control since it does 
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very well at disturbances rejection, however this model requires fast switches. This 

might cause problem with the dissipation of the current firing into the magnetic coils. 

69 



Bibliography 

[1] K. T. Alfriend, "Magnetic attitude control system for dual-spin satellites," AIAA 

Journal, Vol. 13, No. 6, 1975, pp. 817-822. 

[2] C. Arduini and P. Baiocco, "Active magnetic damping attitude control for gravity 

gradient stabilized spacecraft," Journal of Guidance, Control, and Dynamics, 

Vol. 20, No. 1, 1997, pp. 117-122. 

[3] S. P. Bhat, "Controllability of nonlinear time-varying systems: applications to 

spacecraft attitude control using magnetic actuation," IEEE Transactions on 

Automatic Control, Vol. 50, No. 11, 2005, pp. 1725-1735. 

[4] A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch, "Control and stabilization 

of nonholonomic dynamic systems," IEEE Transactions on Automatic Control, 

Vol. 37, No. 11, 1992, pp. 1746-1757. 

[5] C. I. Byrnes and A. Isidori, "On the attitude stabilization of rigid spacecraft," 

IF AC Journal Automatica, Vol. 27, No. 1, 1991, pp. 87-95. 

[6] J. Davis, Mathematical Modeling of Earth's Magnetic Field. Techical Note, Vir

ginia Tech, Blacksburg, May 12, 2004. 

70 



[7] R. DeCarlo, S. Zak, and S. V. Drakunov, "Variable structure and sliding mode 

control," in The Control Handbook, CRC Press, Inc., The Electrical Engineering 

Handbook Series, 1996. 

[8] S. V. Drakunov, "Sliding mode control with multiple equilibrium manifolds," 

Proceedings of ME94 International Congress and Exposition (The Winter An

nual Meeting of ASME), Chicago, IL, Nov. 6-11, 1994, DSC-Vol. 55-1, Dynamic 

Systems and Control, pp. 101-108. 

[9] P. S. Goel, and S. Rojaram, "Magnetic attitude control of a momentum-biased 

satellite in near-equatorial orbit," Journal of Guidance and Control, Vol. 2, No. 

4, 1979, pp. 334-338. 

[10] IAGA V-MOD Geomagnetic Field. International Geomagnetic Reference Field, 

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html. 

[11] H. K. Khalil, Nonlinear systems, 3rd Edition, Prentice Hall, 2002. 

[12] H. Krishnan, N. H. McClamroch, and M. Reyhanoglu, "Attitude stabilization 

of a rigid spacecraft using two momentum wheel actuators," AIAA Journal of 

Guidance, Control, and Dynamics, Vol. 18, No. 2, 1995, pp. 256-263. 

[13] H. Krishnan, M. Reyhanoglu, and N. H. McClamroch, "Attitude stabilization 

of a rigid spacecraft using two controls: a nonlinear control approach based on 

spacecraft dynamics," IF AC Journal Automatica, Vol. 30, No. 6, 1994, pp. 1023-

1027. 

[14] R. Kristianen, Attitude Control of Microsatellite. Master's Thesis, Department 

of Engineering Cybernetics, Norwegian University of Science and Technology, 

TVondheim. 2000. 

71 

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html


[15] J. Lawton and R. W. Beard, "Model independent eigenaxis maneuvers using 

quaternion feedback," Proceedings of the American Control Conference, 2001, 

pp. 2339-2344. 

[16] F. Lizarralde and J. Wen, "Attitude control without velocity measurement: A 

passivity approach," IEEE Transactions on Automatic Control, Vol. 41, 1996, 

pp. 468-472. 

[17] M. Lovera and A. Astolfi, "Spacecraft attitude control using magnetic actuators," 

IFAC Journal Automatica, Vol. 40, 2004, pp. 1405-1414. 

[18] K. L. Makovec, Satellite attitude control using only electromagnetic actuation, 

M.S. Thesis, Virginia Polytechnic Institute and State University, Virginia, USA, 

2001. 

[19] P. Morin, C. Samson, J.-B. Pomet, and Z.-P. Jiang, "Time-varying feedback 

stabilization of the attitude of a rigid spacecraft with two controls," Systems and 

Control Letters, Vol. 25, 1995, pp. 375-385. 

[20] K. L. Musser and W. L. Ebert, "Autonomous spacecraft attitude control using 

magnetic torquing only," Proceedings of Flight Mechanics/Estimation Theory 

Symposium, 1989, pp. 23-38. 

[21] E.J Overby, Attitude Control of Norwegian student satellite nCube. Master's The

sis, Department of Engineering Cybernetics, Norwegian University of Science and 

Technology, Trondheim. 2004. 

[22] M. E. Pittelkau, "Optimal periodic control for spacecraft pointing and attitude 

determination," AIAA Journal of Guidance, Control, and Dynamics, Vol. 16, 

No. 6, 1993, pp. 1078-1084. 

72 



[23] M. L. Psiaki, "Magnetic torquer attitude control via asymptotic periodic linear 

quadratic regulation," AIAA Journal of Guidance, Control, and Dynamics, Vol. 

24, No. 2, 2001, pp. 386-394. 

[24] M. L. Renard, "Command laws for magnetic attitude control of spin-stabilized 

earth satellites," Journal of Spacecraft and Rockets, Vol. 4, No. 2, 1967, pp. 

156-163. 

[25] M. Reyhanoglu, A. J. van der Schaft, N.H. McClamroch, and I. Kol-

manovsky, "Dynamics and control of a class of underactuated mechanical sys

tems," IEEE Transactions on Automatic Control, Vol. 44, No. 9, 1999, pp. 1663-

1671. 

[26] M. Shigehara, "Geomagnetic attitude control of an axisymmetric spinning satel

lite," Journal of Spacecraft and Rockets, Vol. 9, No. 6, 1972, pp. 391-398. 

[27] J. A. Sorenson, "A Magnetic attitude control system for an axisymmetric spin

ning spacecraft," Journal of Spacecraft and Rockets, Vol. 8, No. 5, 1971, pp. 

441-448. 

[28] P. Tsiotras, "Further passivity results for the attitude control problem," IEEE 

Transactions on Automatic Control, Vol. 43, No. 11, 1998, pp. 1597-1998. 

[29] P. Wang and Y. B. Shtessel, "Satellite attitude control using only magnetic tor

quers," Proceedings of the AIAA Guidance, Navigation, and Control Conference, 

1998, pp. 1490-1498. 

[30] J. T.-Y. Wen and K. Kreutz-Delgado, "The attitude control problem," IEEE 

Transactions on Automatic Control, Vol. 36, No. 10, 1991, pp. 1148-1162. 

73 



[31] J. Wertz, Spacecraft attitude determination and control, Kluwer Academic Pub

lishers, 1978. 

[32] P. C. Wheeler, "Spinning spacecraft attitude control via the environmental mag

netic field," Journal of Spacecraft and Rockets, Vol. 4, No. 12, 1967, pp. 1631-

1637. 

[33] B. Wie, Space Vehicle Dynamics and Control, AIAA Education Series, 1998. 

[34] R. Wisniewski, Satellite attitude control using only electromagnetic actuation, 

Ph.D. Thesis, Aalborg University, Denmark, 1996. 

[35] R. Wisniewski and M. Blanke, "Fully magnetic attitude control for spacecraft 

subject to gravity gradient," IFAC Journal Automatica, Vol. 35, No. 7, 1999, pp. 

1201-1214. 

74 



Appendix A 

Simulink Diagram 
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Figure A.l: Converting the magnetic field vector from Orbit frame to Body frame. 
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Figure A. 15: Block diagram of the whole system. 
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Appendix B 

Matlab m-file 

This m-file contains the constants that 's needed to be run before running the Simulink 
Model 

°/0Constants fo r s imul ink 
c l e a r ; c l c 

A=eye(3); 
J=[1/600 0 0;0 1/600 0;0 0 1/600]; 
J 1 = J ( 1 ) ; J 2 = J ( 2 ) ; J3=J (3 ) ; 
AA=-l*eye(4); 
BB=l*eye(4); 
P= l*eye(4) ; 
r=7000; 
wo=0.00108; 
ep=.0005; 
kp=10~7; 
kv=kp; 

tmax=5828.5; 

t span=[0 tmax] ; 

Bo=10~7/(r~3); 
q0=[ .5 .5 . 5 ] ; 
q 4 0 = s q r t ( l - q 0 * q 0 ' ) ; 
w0=[ . l .1 . 1 ] ; 
b0=[Bo 0 0 ] ; 
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aO=[0 0 0 0 ] ; 
k= l ; 

inc = 90 + 11 .5 ; " / . incl inat ion angle (degrees) 

r_ascen = 0; 
p e r i g = 0; 
i_m = ( i n c - 1 1 . 5 ) * p i / 1 8 0 ; 

w_e = 7 .2921e-5 ; 
we=w_e; 

re=6371.42; 
gOl = -29556 .8e -9 ; 
g l l = -1671 .8e -9 ; 
h l l = 5080e-9; 
Ho = sqr t (g01*g01 + g l l * g l l + h l l * h l l ) ; 

VI, For q_skew 
Aql = [0 0 0; 0 0 - 1 ; 0 1 0 ] ; 
Aq2 = [0 0 1; 0 0 0; - 1 0 0 ] ; 
Aq3 = [0 - 1 0; 1 0 0; 0 0 0 ] ; 
VI. For Transpose of skew f o r S 
Asl = [0 0 0; 0 0 1; 0 - 1 0 ] ; 
As2 = [0 0 - 1 ; 0 0 0; 1 0 0 ] ; 
As3 = [0 1 0; - 1 0 0; 0 0 0 ] ; 

'/.inclination angle with respect 
%to the magnetic equator (rad) 
%rad/sec 
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