
Theses - Daytona Beach Dissertations and Theses

8-1996

An Investigation of the Relationships Between the Angle of An Investigation of the Relationships Between the Angle of

Mental Rotation Required For Spatial Orientation, Response Mental Rotation Required For Spatial Orientation, Response

Times, and Accuracy Times, and Accuracy

Ronald D. Archer
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/db-theses

 Part of the Aerospace Engineering Commons, and the Aviation Commons

Scholarly Commons Citation Scholarly Commons Citation
Archer, Ronald D., "An Investigation of the Relationships Between the Angle of Mental Rotation Required
For Spatial Orientation, Response Times, and Accuracy" (1996). Theses - Daytona Beach. 6.
https://commons.erau.edu/db-theses/6

This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at
ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an
authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/db-theses
https://commons.erau.edu/dissertation-theses
https://commons.erau.edu/db-theses?utm_source=commons.erau.edu%2Fdb-theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fdb-theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1297?utm_source=commons.erau.edu%2Fdb-theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/db-theses/6?utm_source=commons.erau.edu%2Fdb-theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

NOTE TO USERS

Page(s) not included in the original manuscript are
unavailable from the author or university. The

manuscript was microfilmed as received

83, 85, 104,127,154, 157

This reproduction is the best copy available.

UMI

AN INVESTIGATION OF THE RELATIONSHIPS

BETWEEN THE ANGLE OF MENTAL ROTATION REQUIRED

FOR SPATIAL ORIENTATION, RESPONSE TIMES, AND ACCURACY.

by

Ronald D. Archer

A Thesis Submitted to the

Aeronautical Science Department

in Partial Fulfillment of the Requirements for the Degree of

Master of Aeronautical Science

Embry-Riddle Aeronautical University

Daytona Beach, Florida

August 1996

UMI Number: EP31936

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform EP31936

Copyright 2011 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Copyright by Ronald Dwayne Archer 1996

All Rights Reserved

AN INVESTIGATION OF THE RELATIONSHIPS
BETWEEN THE ANGLE OF MENTAL ROTATION REQUIRED

FOR SPATIAL ORIENTATION, RESPONSE TIMES, AND ACCURACY.

by

Ronald D. Archer

This thesis was prepared under the direction of the candidate's thesis committee
chair, Dr. Gerald Gibb, Department of Aeronautical Science,

and has been approved by the members of his thesis committee. It was
submitted to the Department of Aeronautical Science and was accepted

in partial fulfillment of the requirements for the degree of
Master of Aeronautical Science.

THESIS COMMITTEE:

Dr. Gerald Gibb
Chair \

Dr. Richard Gibson
Member

MAS Graduate Program Chai

Department Chair, AeronauticalrScience

0 '

ACKNOWLEDGEMENTS

There are many people behind the successfull completion of this study.

First and foremost, I thank the Lord for all of the guidance and blessings that He

has provided me. I also want to thank my very supportive family and friends

whom have always been behind me throughout my academic endeavors.

I need to express my sincere appreciation to my commitee members, Dr.

Gerry Gibb, Dr. Richard Gibson, and Dr. John Wise for their expertise and

advice. Additionally, I need to thank to Dr. John Deaton for his assistance in

conducting the statistical analysis; Dr. Garland, Mr. Tilden, and Mr. Smith for

their assistance in providing participants; and Mr. Banerje for making my

experimental design a reality.

iv

ABSTRACT

Author: Ronald D. Archer

Title: An Investigation of the Relationships Between Angle of
Mental Rotation Required For Spatial Orientation, Response
Times, and Accuracy

Institution: Embry-Riddle Aeronautical University

Degree: Master of Aeronautical Science

Year: 1996

The purpose of this study is to investigate the relationship between the

angles of mental rotation when attempting to spatially orientate and the resulting

response times and levels of accuracy. By means of a computer program,

participants were presented with 64 mental rotational trials. The mental

rotational trials consisted of a triangle placed in the center of the screen with a

standard stick symbol of an aircraft appearing at various headings and

orientations around the triangle. The participants were required to imagine

themselves inside the flight deck of the aircraft, and then respond as quickly and

accurately as possible to where the triangle is in relation to their orientation.

Analysis of the data indicated that as the amount of angular displacement

increased from the straight ahead and directly behind positions, the response

times and accuracy rates increased and decreased respectively. Additionally,

responses for the cardinal orientations were faster than the non-cardinal

orientations.

TABLE OF CONTENTS

ACKOWLEDGEMENTS iv

ABSTRACT v

LIST OF FIGURES viii

LIST OF TABLES ix

Chapter

1. INTRODUCTION 1

Statement of the Problem 2

Review of Related Literature 3

Statement of the Hypothesis 17

2. Method 19

Subjects 19

Instrument 19

Design 20

Procedures 21

3. Analysis 25

Response Times 25

Accuracy Rates 29

4. Summary 34

References 40

vi

Appendix

A. Keyboard Legend 43

B. Mental Rotation/Orientation Computer Program 45

vii

LIST OF FIGURES

Figure 1. Stimulus for the Cooper & Shepard (1973) Study 5

Figure 2. Function of Mean Response Times and Amount of Angular

Displacement from Cooper & Shepard (1973) 6

Figure 3. Stimulus for the Hintzman et al. (1981) Study 15

Figure 4. Function of Mean Response Times, Percentage of Errors,

and Amount of Angular Displacement from Hintzman et al. (1981). .16
Figure 5. Function of Mean Response Times and Amount of Angular

Displacement from the Results of this Study 26

Figure 6. Function of Accuracy Rates and Amount of Angular Displacement
from the Results of this Study 31

VIM

LIST OF TABLES

Table 1. Resulting Mean Response Times in Seconds 25

Table 2. Resulting Mean Accuracy Rates 30

ix

INTRODUCTION

Anyone who has used standard north-up road maps or navigational

charts understands the dilemma of having to either mentally or physically

rotate the map/chart in order to help one understand their orientation; where

they are, what direction are they going, which way to go or turn, etc. This

typically occurs when heading in any direction other than north since the

common north-up maps "match" or corresponds to the direction or heading of

the person. According to Shepard and Hurwitz (1984), "people generally

report that it is easier to interpret a turn as a left or a right turn when the road

that leads into that turn has been heading upward on the map (i.e., northward,

if the map is itself oriented in the conventional way). Under this condition a

turn that goes to the right on the map is a right turn and a turn that goes to the

left is a left turn" (p. 172).

Therefore, for the purpose of this study, the mental rotation required to

"match" the environment with the person's own orientation is a process that

occurs when one attempts to orientate where other objects, places, or people

are in relation to themselves. Obviously, this process is important to the

aviation industry since spatial orientation is one of the many skills required for

pilots and air traffic controllers to effectively and safely perform their

navigational duties. It should be irrefutable that the pilot/air traffic controller

must have continuos understanding and knowledge of where certain objects

or places are in relation to their position, location, and direction.

1

2

Statement of the Problem

In the occupations of pilots as well as air traffic controllers, the use of

navigational charts and maps are crucial for the user to gain and/or maintain

spatial orientation; where they are, where they are heading, and which way to

proceed. In the flight decks of many general, corporate, commuter, and

commercial aircraft as well as for testing for rental car companies, the

implementation of navigational maps have been integrated onto electronic

displays. The two general types of electronic navigational maps are north-up

and track-up displays. The north-up display is similar to the typical road maps

or aeronautical charts in that the direction of north remains at the top of the

display, regardless of the heading of the vehicle (aircraft, automobile, boat,

etc.). The track-up display is modified so that the map itself rotates in order to

correspond with the heading of the vehicle. As concluded by Aretz (1988,

1989), the track-up reduces the amount of mental rotation required since the

environment on the map/chart corresponds to the viewpoint of the user. With

these concepts in mind, the data from the present study along with the other

research will support the use of track-up displays in order to make faster

navigational decisions.

Another application of navigation displays becomes prevalent with the

many issues being addressed with the redesigning of the air traffic control

displays. Currently, the air traffic controllers display is a north-up depiction of

a particular sector. The controllers are constantly required to mentally

3

orientate the position and location for each aircraft and the environment

relating to it. In order for the controllers to give directions to each aircraft, they

must mentally rotate the environment to match the particular aircraft's so that

they can direct which heading or direction for the aircraft to go. With the

supporting data from this mental rotation study, another possible application

may be for the electronic displays to allow the air traffic controller to rotate the

map or display in order to lower the amount of mental rotation required.

There have been several studies investigating the principles of mental

rotation, but relatively few have investigated mental rotation in regard to the

orientational and navigational considerations mentioned. Therefore, the

purpose of this study is to investigate the relationship between the amount of

mental rotation required (angle of rotation) and the response times and

accuracy required for achieving/maintaining the spatial orientation required

for navigational tasks.

Review of Related Literature

Spatial orientation and sense of direction are skills necessary to

adequately perform effectively in occupations which require the ability to

navigate in an environment such as piloting aircraft, watercraft, and driving

automobiles. Kozlowski and Bryant (1977) investigated and defined sense of

direction as an "awareness of location or orientation" (p. 590). They found that

self-reports of sense of direction were reflective of their spatial orientation

ability. Even when orientation was emphasized to the participants, the "good

4

sense of direction people" showed improved accuracy of their representation

of the area, whereas "poor sense of direction people" showed no hint of

improved performance. Therefore, Kozlowski and Bryant concluded "that the

improved orientation of people with a good sense of direction is not automatic

or facile, but it requires possibly both (a) a conscious effort to orient and (b)

repeated exposure to an environment" (p. 590).

However, when one is consciously trying to spatially orientate the

location of other objects in relation to their position or heading, sometimes

mental rotation is required. This mental rotation is an attempt to "match" the

actual environment in which one is navigating with the perspective,

orientation, or heading of the person. Therefore, when investigating the

requirements for spatial orientation during navigational tasks, research of

mental rotation becomes necessary.

The majority of mental rotational studies conducted have been based

upon the experimental designs of Shepard and Metzler (1971) and Cooper

and Shepard (1973). Shepard and Metzler required subjects to make same-

different responses to pairs of perspective line drawings depicting unfamiliar,

three-dimensional objects. The participants were required to respond with the

"same" response when the two objects where the same, regardless of whether

they were in the same or different orientations. The "different" responses were

required when the pair of objects were mirror-image reversals of each other,

again regardless of the same or different orientations. Shepard and Metzler

5

found that time required for the same-different judgments increased linearly

with the angular displacement between the two objects.

The Cooper and Shepard (1973) study, which became the premise for

the majority of the mental rotation studies, consisted of the stimulus of a

single alphabet or numerical figure (i.e., "R", "G", or "5") which was rotated

around in 60 degree increments. In addition to the rotation of the letter, the

letter also appeared either mirror-imaged or in standard form. As seen in

Figure 1, the participants were asked to respond to whether the rotated letter

was of standard or mirror-imaged form, thus requiring the mental rotation of

the letter to upright in order to discern the form of the letter.

ADVANCE INFORMATION TEST

IDENTITY ORIENTATION ,' ^ \

2000 "»»• '00 mi.

700
1000

Figure 1. Stimulus for the Cooper & Shepard (1973) Study.

Cooper and Shepard found that the time required for the judgments

was nonlinear with the angular displacement of the letter from the 360 degree

orientation. More specifically, the results provided evidence that the function

relating response time to orientation was symmetrical with respect to the 180

6

degree orientation (see Figure 2). This function indicated that the stimuli

were rotated through the minimum angle necessary to reach upright. Cooper

and Shepard also suggested that the nonlinearity may have been due to the

concept that mental rotation was not required for stimuli presented at

relatively small disorientations from upright. A study conducted by Hock and

Tromley (1978) provided a possible explanation by stating that "a familiar

stimulus can be perceptually upright even though it is not in its physically

upright, or normal, orientation " (p. 529).

t i (i i i i i i
O 6 0 120 180 240 300 360

ORIENTATION OF TEST STIMULUS (DEGREES, CLOCKWISE FROM UPRIGHT)

Figure 2. Function of Mean Response Times and Amount of Angular

Displacement from Cooper & Shepard (1973).

7

With this possibility, Hock and Tromley suggested that the observed

shape of the letter was an important factor influencing perceptual uprightness.

Therefore, they selected letters which were based on their shape. The letters

were either circular (e, G), elongated (e, L, J), or rectangular (e, R, F). Even

though the letters which were predicted to have a narrow range of perceptual

uprightness (e, G) produced a linear rotation function, the letters predicted to

have a broad range of perceptual uprightness (e, F, R; L, J) also produced a

linear rotation function, but only at orientations outside of their range of

perceptual uprightness. Their results supported Cooper and Shepard's

suggestion that one of the possible reasons for the nonlinearity of the mental

rotation was due to rotation not being required when the orientation of their

stimuli were perceptually upright.

However, several other studies (i.e., Hock & Ross, 1975; Cooper &

Podgorny, 1976; Maki, 1986; Corballis & Cullen, 1986; and Bethell-Fox &

Shepard, 1988) were conducted to investigate the effects of familiarity,

similarity, and complexity on mental rotation. The Hock and Ross (1975) study

examined the effects of familiarity on mental rotation by requiring the

participants to make same-different decisions concerning unfamiliar dot

patterns. Based on Hock's (1973) experiment, two dot patterns were

simultaneously presented. The "same" responses were required when the two

dot patterns were identical, whether they were in same or different

orientations. Likewise, the "different" responses were required when the two

8

dot patterns were not identical, whether in same or different orientations. The

familiarity effect was found to be significantly greater when the pairs of

patterns were in different orientations. This supported their hypothesis that

familiarity would facilitate the mental rotation of the dot patterns.

An example of the studies which investigated the effects of complexity

and similarity on mental rotation was one conducted by Bethell-Fox and

Shepard (1988). The stimulus used for this experiment consisted of patterns

of filled-in squares in a 3x3 matrix. The participants were instructed to inspect

the presented matrix until its pattern could be remembered and then to press

the "ready" button. The matrix was then immediately replaced by one of the

four schematic rotational cues which indicated to the participants whether the

remembered pattern was now to be imagined as rotated 90 degrees or 180

degrees , clockwise or counterclockwise. Then, once the participants again

pressed the "ready" key, they were to select which one of three presented

patterns corresponds to the way the original pattern would be when rotated as

specified. The encoding, mental rotation, and comparison of unfamiliar stimuli

(patterns of filled-in squares in a 3 x 3 matrix) were found to increase with

stimulus complexity (measured by the number of separated pieces

constituting each figural pattern). Therefore, the majority of these studies

provided support for the premise that the time to mentally rotate a stimulus

was dependent on the familiarity and complexity of the stimulus.

9

Other studies of mental rotation concentrated on the effects of practice.

The majority of these studies (e.g., Damos; 1991, chap. 7; Thorndyke &

Hayes-Roth, 1982; Jolicoeur, 1985; and Pylyshyn, 1979) comparably resulted

with a significant increase in performance, decreases in response times and

increases in accuracy rates. However, as remarked by Pylyshyn (1979), "The

influence of practice on rotation rate is found routinely in studies such as

these, although it has not generally been reported in the literature, since

published results are invariably obtained from highly practiced subjects using

overlearned stimuli" (p. 26).

Another major area of mental rotational studies pertains to the

investigations of hemispheric, clockwise or counterclockwise, differences in

the process of conducting mental rotational tasks. As stated by Burton et al.

(1992), "The nature of hemispheric specialization for mental rotation in

unclear, with some studies indicating a right hemisphere (RH) advantage and

others a left hemisphere (LH) advantage" (p. 192). A possible explanation

given by this study may be that research has suggested that the previously

discussed areas or factors of mental rotation (familiarity, complexity, practice)

interacts with the hemispheric process. However, the Burton et al. study did

result in interactions which suggested that "clockwise rotations were more

readily performed in the left visual field and counterclockwise rotations in the

right visual field" (p. 192).

10

Another study by Cook et al. (1994) suggested that a cooperation takes

place between the two hemispheres which perform different functions. They

explain that their results support other research findings which found that one

hemisphere (usually the LH) actively manipulates its visual information, while

the other hemisphere is employed in a reference role. They further stated that

both roles are essential for the accurate performance of mental rotation.

Ueker and Obrzut (1993) conducted a study which not only

investigated the hemispheric differences, but investigated the possible gender

differences for conducting mental rotation. Their mental rotation involved the

rotation of a stick figure stimulus which is holding a ball in either the right

hand or left hand. The stick figure was then rotated in any of the eight 45

degree orientations and the participants were to respond to which side the

figure is holding the ball. However, the results from their study indicated that

"there were neither hemispheric nor gender effects found with a mental

rotation task" (p. 48). Jones and Anuza (1982) also conducted a study which

was not able to find a gender difference.

Based on the Shepard and Metzler (1971) experimental method, the

Jones and Anuza study focused on the effects of gender and handedness on

mental rotation. They did find that "right-handers tended to respond more

rapidly than left-handers" (p. 506). However, in addition to the inability to find

a gender difference in the response times as already stated, no sex or

handedness differences in error rates or accuracy were found.

11

Unlike the majority of the studies which investigated gender

differences, a study conducted by Berg, Hertzog, and Hunt (1982) found age

differences in the speed of conducting mental rotation tasks. Four different

age groups participated in a mental rotations task for four consecutive days.

They found "significant age differences in the linear function relating median

reaction times to degrees of rotation: older subjects had higher intercepts and

higher slopes" (p. 95). Additionally, they found no indication that age

differences in mental rotation performance would disappear after practice.

With all of the possible aspects studied about mental rotation such as

the effects of perceptual uprightness, complexity, and familiarity of the stimuli,

effects of practice, hemispheric differences in the process of conducting

mental rotation, and the possible differences (i.e., age, gender, etc.) in the

speed of conducting mental rotation, it can be easily concluded that there are

hardly, if not any, limitations to the study of mental rotation. Additionally, this

particular research study investigates the degree of mental rotation which

becomes required for spatial orientation. Even though the research

previously discussed provides the foundations for the study of mental rotation,

the rotation of a letter and the determination of whether or not is mirror-

imaged or normal provides little support to the investigation of mental rotation

required for spatial orientation. However, the majority of the studies did

provide a premise which was defined by Koriat and Norman (1984) as "image

rotation" (p. 421). This term designates a strategy in which the image of the

12

stimulus is first rotated to the upright position in order to make some sort of

determination concerning the stimuli, such as its spatial orientation. Koriat

and Norman in their 1988 study further suggested that "spatial transformation

is normally achieved through image rotation" (p. 93). Therefore, with the

principles provided by the studies previously discussed, the investigation of

the mental rotation required when making spatial orientational judgments

could now be conducted.

A study conducted by Loftus in 1978, concluded with a two step model

for comprehending compass directions. For the experiment, the subjects were

visually presented with a numeric compass direction between 0 and 350

degrees. The subjects' tasks were to indicate their comprehension of the

direction by indicating the representation of it on a blank (not labeled or

numbered) compass rose and then to push a key when done. The response

times between the presentation of the stimulus and the keypress was then

used as an indication of the time required to comprehend the direction. The

premise made for this study was that the "functions relating RT to 1) the

specific direction presented and 2) the way in which the directional

information was orientated can then be used to make inferences about the

manner in which compass directions are represented and processed" (p.

416). The results suggested that a direction is understood by a two step

process of mental operations.

13

First, the nearest cardinal heading to the target direction (i.e., north,

south, east, or west) is computed, and one mentally rotates in order to "face"

in the same cardinal direction. This supports the idea that people tend to

orientate cardinal headings faster than non-cardinal headings since the

cardinal headings were found to be processed first as a means of orientating

the other specified target direction or heading. This will provide the basis for

the third hypothesis tested in this study.

Second, the differences between the cardinal direction and the desired

target direction is computed and a mental rotation, either clockwise or

counterclockwise, is conducted until the desired target direction is orientated

and designated. Therefore, even though the Loftus study concluded with a

technically different two step process, mental rotation was still found to be

present and was required when attempting to orientate the location of the

specified target.

Other studies which investigated the mental rotation required for

spatial orientation were conducted by Aretz (1988,1989). Similar to this

study, the major goal for the two Aretz studies were to investigate the role of

mental rotation in the cognitive processing required during aircraft navigation.

A comparison was conducted between the mental alignment of two frames of

reference: the ego centered reference frame and the world centered reference

frame. These frames of references corresponds respectively to the track-up

and north-up types of electronic map displays which were explained

previously in this report. Aretz concluded that the amount of required mental

rotation was lower when in the ego centered reference frame, thus producing

faster response times in making navigational decisions. Aretz (1989) also

found that "mental rotation was most prevalent in the simultaneous trials and

diminished considerably in the sequential trials" (p. 11). This supports a

finding from a study by Hintzman, O'Dell, and Arndt (1981) which theorized

that mental rotation is only required when a visual map, and not when a

"cognitive map", (i.e., memory) is used. Therefore, since an electronic map is

visually available, mental rotation will be performed when the ego centered

reference frame and the world centered reference frame are not aligned.

Hintzman, O'Dell, and Arndt (1981) conducted a series of experiments

where the subjects were required to determine the location of targets while

trying to imagine themselves facing in various orientations. The study also

investigated these orientational tasks when the map is either committed to

memory ("cognitive maps") or when it is visually available as stated in the

previous paragraph. However, only the visually presented map investigations

will be discussed since the possible implications for this study pertain to the

use of physical navigational maps, charts, and displays.

Figure 3 shows the stimulus display and response board used for the

experiments. The participants were required to imagine themselves facing in

the particular direction the arrow and to respond where, in relation to their

orientation, the large dot is located. Using the response board (right side of

15

Figure 3), the participants were to "point to" the orientation corresponding to

the location of the large dot. In this example, the large dot is located behind

and to the left of the direction of the arrow. Each trial would display a different

orientation (the eight 45 degree points around the compass rose) as indicated

by the arrow as well as a different target location as indicated by a large dot.

Figure 3. Stimulus for the Hintzman et al. (1981) Study.

The mean response times acquired for the eight 45 degree orientations

resulted with a function as shown in Figure 4. As can be seen, the participants

responded the fastest when making Front or Back decisions. This supports

the premise that the participants orientated quicker at the 360 and 180

orientations since the amount of mental rotation was at its lowest requirement.

Therefore, the response times required for the participants to spatially

orientate the location of the target then increased as the amount of required

mental rotation was increased from the straight ahead and the directly behind

positions. However, as can also be seen by Figure 4, the response times

were slightly lower for the "Right" (090) and "Left" (270) orientations as

compared to the positions immediately surrounding them. A possible

explanation for this occurrence may be that the participants orientated the

cardinal directions faster than the non-cardinal directions which is congruent

with other research, (i.e., Loftus, 1978).

F RF R RB B LB L LF F

RESPONSE

Figure 4. Function of Mean Response Times, Percentage of Errors, and

Amount of Angular Displacement from Hintzman et al. (1981).

Figure 4 additionally displays the recorded accuracy rates for each of

the eight orientations. An inverse function of the response times, the

participants answered the Front (360 degree) and Back (180) most

accurately. Therefore, the accuracy rates then decreased as the amount of

17

required mental rotation was increased from the straight ahead and the

directly behind positions. As for the explanation for the accuracy rates being

slightly higher for the 090 and 270 positions, it may also be hypothesized that

the participants were more accurate when conducting the mental rotations at

the cardinal positions than at the non-cardinal positions.

The literature on the topic of mental rotation is extensive. This may be

due to the almost unlimited number of parameters associated with mental

rotation. As discussed, some of these include familiarity, perceptual

uprightness, and complexity of the stimulus, effects of practice, hemispheric

differences in the process of conducting mental rotation, and the possible

differences (i.e., age, gender, etc.) of mental rotation. However, for the

purpose of this study, the number of investigations into the mental rotation

required when attempting to spatially orientate are relatively few. Such

studies have suggested that an understanding into this realm of mental

rotation may help to provide guidelines for designing displays to be used by

people performing navigational tasks.

Statement of the Hypothesis

The previous research has shown that larger angles of mental rotation

require longer times to process the information in order to orientate.

Therefore, it is hypothesized that as the amount of mental rotation required is

increased from the straight ahead position (360) and from the directly behind

position (180), the response times will similarly increase. Additionally, it is

18

hypothesized that as the amount of mental rotation required is increased from

the straight ahead and from directly behind positions, the accuracy will

decrease. The third hypothesis states that the response times will be

significantly less for the mental rotation of the cardinal directions (360, 090,

180, and, 270) than for the non-cardinal directions (045, 135, 225, and 315).

The fourth hypothesis states that the accuracy rates will be significantly better

for the mental rotation of the cardinal directions (360, 090,180, and, 270)

than for the non-cardinal directions (045, 135, 225, and 315).

Method

Subjects

The subjects were 100 students who volunteered from several upper-

class level air traffic control (ATC) and flight courses at Embry-Riddle

Aeronautical University. The subjects received extra course credit for

participating in the experiment. Since most of these students will be employed

as pilots or air traffic controllers upon graduation, they can be considered as a

subsample of the larger pilot and ATC populations.

Convenience and judgment sampling were possible sources of

sampling bias. The limited resources available for sampling produced the

major concern for convenience sampling. Also due to the possible limited

number of volunteers available at the selected cluster, the question of their

representation of the entire population was of concern for judgment sampling

bias. Additionally, another bias may be due to the subjects not having as

much experience as those in the target population. However, these effects

should be small and the results should be considered applicable to the target

population.

Instrument

A computer program (Appendix B) was designed to present the

stimulus and to record the response times and accuracy of the subjects. The

two 486 computers used were located in the same room with a room divider

between them to eliminate the possibility of distraction between subjects

19

participating simultaneously. The second computer was used only when two

or more participants arrived for the experiment at the same time. When such

an occasion arose, the two participants were simultaneously tested.

The stimulus consisted of a triangle centered in the middle of the

screen with a standard stick aircraft symbol randomly appearing at one of the

eight 45 degree compass positions around the triangle. The participants were

then required to respond by pressing one of the eight corresponding outside

keys of the numeric keypad located on the right side of a standard computer

keyboard.

Design

The design of the experiment was based from the Hintzman et al.

(1981) study. As discussed earlier, the tasks of their participants were to

indicate the direction from themselves that the target dot would be if they were

in the orientation indicated by the arrow. Likewise, the participants in this

study were required to indicate the direction from themselves that the triangle

would be if they were in the orientation of the aircraft symbol. The participants

responded to the stimulus by pressing the corresponding answer with one of

the eight keys on the numeric keypad. All of the other keys on the keyboard

were locked out in case the participants were to accidentally strike the wrong

key.

The independent variable for the experiment was the amount of mental

rotation required for the participants to spatially orientate where the triangle is

21

located in relation to the heading of the aircraft symbol. The independent

variables were categorized by the eight 45 degree points on the standard 360

degree compass rose (360, 045, 090,135, 180, 225, 270, 315). The order of

the presentation of the trials were randomly selected and arranged in a fixed

order for all subjects. Each participant completed a total of 64 trials, eight

trials for each of the eight variables. The eight trials for each variable were not

identical even though the correct responses were the same. The location and

direction of the aircraft symbol appeared at all of the eight different headings

possible at each of the eight 45 degree positions around the triangle. The

dependent variables for the experiment were the response times and

accuracy rates recorded.

Procedures

The participants for this study were volunteers from upper-class level

courses at Embry-Riddle Aeronautical University. They received extra course

credit for participating in the study. The confidentiality of the participants was

maintained by identifying the subjects with identification numbers which they

selected. Throughout the experiment, the participants were only identifiable

through the use of the identification numbers; names were not used in the

collection, the analysis, nor the reporting of the results.

After entering their identification numbers, the participants were

required to go through a programmed set of instructions, a sample trial, and

two practice problems (specified in Appendix B). Once these steps were

completed, the participants completed the 64 random mental

rotational/orientational trials. The program was designed so that once a

response was given by the participants, the next trial was immediately begun.

After half of the trials was completed (32), the program would stop and

provide the subjects a break. Once the participants were ready to proceed

with the other half of the trials, they were given a ten second countdown to

allow them to be prepared when the next trial was given.

Pilot Study

The pilot study consisted of two groups of five participants. The first

group of five were allowed to proceed from the beginning to the end of the

program without any aid. After the participants completed the experiment,

they were allowed to ask any questions and to make any suggestions which

would make the experiment more clear and understandable. A couple of

problems were discovered from the discussions with the first group of

participants. The most common misunderstandings regarding the objective of

the test were: 1) the participants thought that they were to respond to how

many degrees were needed for them to turn in order to head directly towards

the triangle; and 2) the participants thought that they were to simply respond

where the aircraft symbol was in relation to the triangle. Additionally, it was

suggested that a legend showing the correct corresponding keys in relation to

the orientations should be provided (see Appendix A). The mean accuracy for

the first group was 48.12%.

Therefore, the second group of five participants received the following

changes in addition to the computer program. The legend was taped to the

desk to the right of the keyboard for use during the experiment. Additionally,

a script of further explanation and directions was written and read to each

subject after they completed the set of instructions on the computer program.

The screen displayed the sample trial so that the participants could better

visualize the objective of the experiment while the script was being read. The

script read as follows:

"The first pilot study concluded that a couple of misunderstandings

were occurring regarding the objective of the experiment. First, you are not to

indicate where the aircraft symbol is in location to the triangle, but you are to

respond to where the triangle is located in relation to the orientation of the

aircraft. The second misunderstanding was for the participants to indicate how

many degrees were needed to turn in order to head towards the triangle.

Again, this is incorrect. Please make sure you are responding to where the

triangle is located in relation to the heading of the aircraft. This is usually

achieved by pretending that you are sitting in the flight deck of the aircraft and

heading in the direction of the aircraft."

The participants were then allowed to proceed to the two practice trials

on the computer program. If they answered incorrectly on the trials, the

computer program indicated what the correct response should have been. If

24

the participants incorrectly answered both trials, then they were stopped and

were read the following script:

"Again, the objective of the experiment is to respond to where the

triangle is located in relation to the heading of the aircraft. By looking at the

last practice trial, it may help to pretend you are sitting in the flight deck and

then identifying where the triangle is located in relation to the nose of the

aircraft. In this case, the triangle is behind you and to the left which is at the

225 positions or the #1 key."

The participants were then allowed to proceed with the remaining

instructions and actual completion of the 64 trials. With these changes given,

the mean accuracy for the second group of five participants was 92.80%. With

this significant increase in accuracy between the first and second section of

the pilot study, t(8) = -4.40, p < .003, the study was initiated with the

remainder of the volunteers (91) implementing the same procedures used

during the second part of the pilot study.

Upon completion of the experiment, the participants who requested to

see their results were given the opportunity. They were instructed to return to

the location where the experiment was held and, by use of their identification

number, they were able to see their response times and accuracy rates.

Analysis

Response Times.

By means of the Statistica statistical analysis computer program, a

two-way ANOVA was conducted and found a significant difference between

the eight 45 degree orientations, F(7, 720) = 13.48, p.< .001.. Table 1 shows

the resulting mean response times in seconds for each of the eight 45 degree

orientations.

Table 1

Resulting Mean Response Times in Seconds

The eight 45 degree orientations

360 degree orientation

045 degree orientation

090 degree orientation

135 degree orientation

180 degree orientation

225 degree orientation

270 degree orientation

315 degree orientation

Mean response times in seconds

2.077

3.26

3.10

3.63

2.21

3.62

2.83

3.44

25

26

4-i

3.5-

2.6-

1.6-

1 -

0.6-

1 1 1 1 1 1 1 1

360 45 90 135 180 225 270 315 360

Figure 5. Function of Mean Response Times and Amount of Angular

Displacement.

In order to test the hypothesis, there were eight planned comparisons

conducted to investigate the relationships between the eight 45 degree

positions and the corresponding response times. The order of the

comparisons were conducted as the orientations occur clockwise around the

compass rose.

The first planned comparison was between the response times of the

orientations of the 360 degree position, when the triangle was directed ahead

of the aircraft so that no mental rotation was required, and the 045 degree

position. The hypothesis was confirmed between these two variables since

there was a significant increase in the response times required for the

participants to orientate between the 360 position and the 045 position, F(1,

720) = 25.90, p. <.001.

27

The second planned comparison of response times was conducted

between the orientations of the 045 position and the 090 position. There was

not a significant difference between these two positions, F(1, 720) = 0.48, p. <

.489. Even though this comparison is not significantly different, it was found

that the participants took longer to orientate at the 045 degree position than at

the 090 position. This does not supports the main hypothesis in that the

participants did not take longer to mentally rotate and orientate the 090 as

compared to the lesser amount of rotation required, the 045. However, this

result was anticipated by the third hypothesis, discussed later, which

investigated the time required for the participants to mentally rotate and

orientate the cardinal versus the non-cardinal headings.

The third planned comparison between the 090 orientation and the 135

degree orientation concluded that there was a significant difference in

response times, F(1, 720) = 5.24, p. < .022. This comparison supports the

main hypothesis in that the participants took longer to mentally rotate and

orientate at the 135 degree position than at the 090 degree position. This was

again expected since the angle of rotation required was higher.

The planned comparison between the 135 orientation and the 180

orientation concluded that there was a significant difference in response

times, F(1, 720) = 37.15, p. < .001. When the triangle was directly behind the

aircraft symbol, at the 180 position, the participants were significantly faster at

orientating the location of the triangle. This supports the main hypothesis

28

since it was anticipated that the response would begin to lower as the angle of

rotation approached the 180 position. As discussed and supported from the

literature, it was common for individuals to mentally rotate up to the 180

degree position. So even though it is numerically higher moving from the 090

to the 180 position, the actual amount of mental rotation becomes less when

orientating with items from directly behind. Then, as the angle of rotation

proceeds past the 180 position, the actual amount of required mental rotation

begins to increase up to the 270 position. From that point, it begins to lower

again when approaching the 360 position, or at the straight ahead position.

This is further supported by the almost symmetrical formation of mean

response times found on Figure 5.

The planned comparison of the response times between the 180

orientation and the 225 orientation also supports the hypothesis since there

was a significant increase in the response times, F(1, 720) = 36.57, p. < .001.

The planned comparison conducted between the 225 orientation and

the 270 orientation concluded that there was a significant decrease in

response times, F(1, 720) = 11.71, p. < .001. Likewise with the 090 position,

this does not support the main hypothesis since the amount of rotation is

increased while the response times decreased. However, in accordance to

the third hypothesis, this was also anticipated so that the cardinal

headings/positions would require lower response times to mentally rotate and

to orientate than with the non-cardinal headings/positions.

The seventh planned comparison was conducted between the 270

orientation and the 315 orientation. The main hypothesis that the response

times required to mentally rotate and orientate would increase as the amount

of rotation increased was again supported by the significant increase in

response times F(1, 720) = 6.96, p. < .008.

The planned comparison conducted between the 315 orientation and

the 360 orientation found a significant decrease in response times, F(1, 720)

= 34.31, p. < .001. Similar to the 180 position, even though the numerical

angle of rotation is higher, the actual amount of mental rotation is lower; thus

lower response times. This again supported the main hypothesis and the

explanation of the symmetrical "M" shaped formation of the mean response

times correlating to the angles of rotation (see figure 5).

The final planned comparison for the response times was conducted

between the cardinal headings/orientations (360, 090, 180, & 270) and the

non-cardinal headings (045, 135, 225, & 315). The third hypothesis which

stated that the response times would be lower for the cardinal headings than

for the non-cardinal headings was confirmed with a significant difference, F(1,

720) = 64.53, p. < .001. The mean response times in seconds for the cardinal

orientations was 2.56 where as the non-cardinal orientations resulted with a

mean of 3.49.

Accuracy. A two-way ANOVA was conducted and a significant

difference was found between the eight 45 degree orientations, F(7, 720) =

5.32, p.< .001. The resulting mean accuracy rates for each of the eight

orientations are shown in Table 2.

Table 2

Resulting Mean Accuracy Rates

The eight 45 degree orientations

360 degree orientation

045 degree orientation

090 degree orientation

135 degree orientation

180 degree orientation

225 degree orientation

270 degree orientation

315 degree orientation

Resulting accuracy rates

93.96%

93.82%

86.68%

89.69%

95.47%

93.68%

85.44%

91.07%

96-

94

92

90

88

86

84-

82-

80 -I 1 1 1 1 1 1 1 1
360 45 90 135 180 225 270 315 360

Figure 6. Function of Mean Accuracy Rates and Amount of Angular

Displacement.

In order to test the hypothesis, there were eight planned comparisons

conducted in order to investigate the relationships between the eight 45

degree positions and the corresponding accuracy rates. The order of the

comparisons were conducted as the orientations occur clockwise around the

compass rose.

The first planned comparison was between the accuracy rates of the

orientations of the 360 degree position, when the triangle was directed ahead

of the aircraft so that no mental rotation was required, and the 045 degree

position. Even though there was a decrease in the accuracy rates, the

hypothesis was not confirmed between these two variables since there was

not a significant decrease in the accuracy rates when the participants

mentally rotated between the 360 orientation and the 045 orientation, F(1,

720) = .004, p. <.951.

The second planned comparison of the accuracy rates was conducted

between the orientations of the 045 position and the 090 position. There was

a significant difference between these two positions, F(1, 720) = 10.02, p. <

.001. It was found that the participants were less accurate with the 090

orientations than the 045 degree position. This supports the main hypothesis

in that the participants accuracy did decrease as the amount of mental

rotation increased. However, this result was not anticipated by the third

hypothesis, discussed later, which investigated the accuracy rates for the

participants to mentally rotate and orientate the cardinal versus the non-

cardinal headings.

The third planned comparison between the 090 orientation and the 135

degree orientation concluded that there was not a significant difference in the

accuracy rates, F(1, 720) = 1.79, p. < .181. This comparison does not support

the main hypothesis in that the participants answered the 135 degree

orientation more accurately than the 090 degree orientation. This was not

expected since the angle of rotation required was higher.

The planned comparison between the 135 orientation and the 180

orientation concluded that there was a significant difference in accuracy rates,

F(1, 720) = 6.54, p. < .011. When the triangle was directly behind the aircraft

symbol, at the 180 position, the participants were significantly more accurate

at orientating the location of the triangle. This supports the main hypothesis

since it was anticipated that the accuracy would become higher as the angle

of rotation approached the 180 position. As discussed and supported earlier,

it was common for individuals to mentally rotate up to the 180 degree position.

So even though it is numerically higher moving from the 090 to the 180

position, the actual amount of mental rotation becomes less when orientating

with items from directly behind. Then, as the angle of rotation proceeds past

the 180 position, the actual amount of required mental rotation begins to

increase up to the 270 position. From that point, it begins to decrease again

when approaching the 360 position, or at the straight ahead position. This is

further supported by the almost symmetrical formation of the accuracy rates

found on Figure 6.

The planned comparison of the accuracy between the 180 orientation

and the 225 orientation did not support the hypothesis since there was a not a

significant decrease in accuracy, F(1, 720) = .626, p. < .429. Again, there was

the anticipated decrease in accuracy since the amount of required mental

rotation was higher, but it was not significant.

The planned comparison conducted between the 225 orientation and

the 270 concluded that there was a significant decrease in accuracy, F(1,

720) = 13.35, p. < .001. This comparison supports the main hypothesis since

the increase in the amount of required mental rotation occurred with a

decrease in accuracy.

The seventh planned comparison was conducted between the 270

orientation and the 315 orientation. The main hypothesis that the accuracy

rates would produce better results as the amount of required mental rotation

decreased was again supported by the significant increase in accuracy,

F(1,720) = 6.23,p. <.013.

The planned comparison conducted between the 315 degree

orientation and the 360 degree orientation was not significant for accuracy,

F(1, 720) = 1.63, p. < .201. Similar to the 180 position, even though the

numerical angle of rotation is higher, the actual amount of mental rotation is

lower; thus producing higher rates of accuracy. The symmetrical formation of

the mean accuracy rates correlating to the angles of required mental rotation

can be easily identified when comparing the two 180 degree halves of Figure

6.

The final planned comparison for the response times was conducted

between the cardinal headings/positions (360, 090, 180, & 270) and the non-

cardinal headings (045, 135, 225, & 315). The fourth hypothesis which stated

that the accuracy rates would be higher for the cardinal headings than for the

non-cardinal headings was rejected since there was not a significant

difference between them, F(1, 720) = 2.22, p. < .136.

The analysis of the interaction results for the response times and

accuracy rates was not conducted due to its lack of relevance to the

hypothesis and the overall scope of the study. The interactions would have

been an investigation of the response times and accuracy rates over time;

meaning, how they interacted and differed as the trials progressed

35

throughout the experiment. This would have been appropriate if the stimulus

for each of the eight variables were identical. However, as previously stated in

the design section, each participant completed a total of 64 trials, eight trials

for each of the eight variables. The eight trials for each variable were not

identical even though the correct responses were the same. The location and

direction of the aircraft symbol appeared at all of the different headings

possible at each of the eight 45 degree positions around the triangle.

Therefore, with this specific experimental design, the investigation of the

effects of the response times and accuracy rates over time would not be of

great relevance to the testing of the hypothesis for this study.

Summary

The investigation of the relationships between the amount of mental

rotation required for orientation, response times, and accuracy rates was

conducted and three of the four hypothesis were supported by the statistical

data analysis. The first hypothesis stated that as the amount of mental

rotation required increased from the straight ahead position (360) and from

the directly behind position (180), the response times will similarly increase.

The overall ANOVA for this hypothesis concluded with a significant difference

in response times between the eight 45 degree orientations. Additionally, all

but one of the eight planned comparisons conducted between the eight

orientations confirmed the hypothesis, as indicated by the "M" shaped curve

in figure 5. However, even though the second planned comparison did not

indicate a significant difference, the participants took longer to mentally rotate

at the 045 degree position than at the 090 degree position. When compared

to the results of the Hintzman, O'Dell, and Arndt (1981) study which provided

the experimental design basis for this study, the curves depicting the function

between response times and angular displacement are very similar (Figures 4

&5).

Similarly, the third hypothesis which investigated the mental rotation of

the cardinal directions (360, 090, 180, and 270) versus the non-cardinal

directions (045, 135, 225, and 315) was tested. The hypothesis was

confirmed with the participants taking significantly longer to respond to the

36

37

non-cardinal headings. Therefore, the participants took longer to orientate the

position of the triangle as the amount of required mental rotation increased

from their straight ahead and directly behind positions. This result supports

the previously referenced studies such as that of Loftus (1978) and Hintzman

etal. (1981).

These results along with those of Aretz (1988, 1989) suggests the

design of future displays and interfaces should be a track-up design as well

as providing the availability of rotating the display by 90 degrees. This feature

may be helpful when using a static computer display such as a MRI or X-Ray.

The image can be rotated by the four 90 degree positions (i.e., cardinal

headings) to allow faster, maybe easier orientation and understanding of the

items being displayed.

The second hypothesis stated that as the amount of mental rotation

required increases from the straight ahead position (360) and from the directly

behind position (180), the accuracy rates will decrease. The overall ANOVA

for this hypothesis indicated a significant difference in accuracy rates between

the eight 45 degree orientations. However, the results from this portion of the

study were very surprising. Only four out of the eight planned comparisons

confirmed the hypothesis with significant differences. Even though the high

accuracy rates did occur as expected at the 360 and 180 orientations, the 090

and 270 orientations had the lowest accuracy rates. The resulting " W shaped

curve (figure 6) was anticipated, but not with the 090 and 270 orientations

resulting in lower accuracy rates than the two non-cardinal headings on either

side of them. In other words, the "true" anticipated function (i.e., the Hintzman,

et al. study, Figure 4) would have shown a decrease in accuracy between the

360 and 180 positions as well as the 090 and 270 positions resulting with

higher accuracy rates than the 045, 135, 225, and 315 positions surrounding

them respectively.

However, the results indicated that the participants had the hardest

time locating whether the triangle was to the left or to the right of the aircraft

symbol. Additionally, the majority of the incorrect responses made within

these two orientations were of an inverse nature; meaning that the majority of

the incorrect responses for the 090 orientation were answered as a 270

orientation and vice versa. This suggests that since the left and right

decisions at the 180 degree orientation are reversed in relation to their

position at the 360 degree orientation, the ability to accurately mentally rotate

and orientate the 090 and 270 positions may be influenced by a possible

reversal error. The ability to handle this reversal may be important.

Another possibility for the reversal errors of the two orientations may

have been due to the influence of the target-centered experimental design.

Unlike previous studies (i.e., Hintzman et al.), the stimulus of the experiment,

the aircraft symbol, was not fixed while the target (the triangle) remained in

the center of the screen. Therefore, the reversal problem of the subjects to

accurately orientate the left and right positions may have also been due to

this change of stimulus and task.; thus possibly requiring a different cognitive

process of conducting mental rotation required for spatial orientation.

As a result of this occurrence at the 090 and 270 orientations, the

fourth hypothesis which investigated the accuracy rates for the mental rotation

of the cardinal directions (360, 090, 180, and 270) versus the non-cardinal

directions (045, 135, 225, and 315) was rejected. Even though there was not

a significant difference between them, the cardinal headings did not score as

highly as the non-cardinal orientations which was most likely due to the 090

and 270 phenomena. Additionally, other possible factors which may have

been of influence for this occurance may be: 1) the location and distance

differences of the response keys and 2) an ergonomically defined position of

the hand used to respond was not specified.

Therefore, further research should explore the relationship between the

amount of mental rotation required for spatial orientation and accuracy.

Special attention should be applied to evaluating the conditions that lead to

left and right reversal errors and their potential significance in flight. If such

research will help to provide a better understanding between these two

variables, then the design of future navigational displays and interfaces will

perhaps result in more accurate performance by the users.

40

References

Aretz, A. J. (1988). A model of electronic map interpretation.

Proceedings of the Human Factors Society - 32nd Annual Meeting, 130-134.

Aretz, A. J. (1989). Spatial cognition and navigation. Proceedings of

the Human Factors Society - 33rd Annual Meeting, 8-12.

Berg, O, Hertzog, C, & Hunt, E. (1982). Age differences in the speed

of mental rotation. Developmental Psychology, 18, 95-107.

Bethell-Fox, C, & Shephard, R. (1988). Mental rotation: Effects of

stimulus complexity and familiarity. Journal of Experimental Psychology:

Human Perception and Performance, ?4(1), 12-23.

Burton, L. A , Wagner, N., Lim, C, & Levy, J. (1992). Visual field

differences for clockwise and counterclockwise mental rotation. Brain and

Cognition, 18, 192-207.

Cook, N. D., Fruh, H., Mehr, A, Regard, M., & Landis, T. (1994).

Hemispheric cooperation in visuospatial rotations: Evidence for a

manipulation role for the left hemisphere and a reference role for the right

hemisphere. Brain and Cognition, 25, 240-249.

Cooper, L. A., & Podgorny, P (1976). Mental transformations and

visual comparison processes: effects of complexity and similarity. Journal of

Experimental Psychology: Human Perception and Performance, 2(4), 503-

514.

Cooper, L. A , & Shepard, R. A. (1973). The time required to prepare

for a rotated stimulus. Memory and Cognition, 1(3), 246-250.

Corballis, M. O, & Cullen, S. (1986). Decisions about the axes of

disoriented shapes. Memory and Cognition, 74(1), 27-38.

Damos, D. A. (1991). Training mental rotation skills. In E. Farmer (Ed.),

Human Resource Management in Aviation (pp. 67-70). Aldershot, England:

Avebury Technical.

Hintzman, D. L, O'Dell, C. S., & Arndt, D. R. (1981). Orientation in

cognitive maps. Cognitive Psychology, 13,149-206.

Hock, H. S., & Ross, K. (1975). The effect of familiarity on rotational

transformation. Perception & Psychophysics, 8(1), 15-20.

Hock, H. S., &Tromley, C. L. (1978). Mental rotation and perceptual

uprightness. Perception & Psychopyhsics, 24(6), 529-533.

Jolicoeur, P. (1985).The time to name disorientated natural objects.

Memory & Cognition, 13(4), 289-303.

Jones, B., & Anuza, T. (1982). Effects of sex, handedness, stimulus

and visual field on "mental rotation". Cortex, 18, 501-514.

Koriat, A , & Norman, J. (1984). What is rotated in mental rotation?

Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(3),

421-434.

42

Koriat, A , & Norman, J. (1988). Frames and Images: Sequential effects

in mental rotation. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 14(\), 93-111.

Kozlowski, L. T., & Bryant, K. J. (1977). Sense of direction, spatial

orientation, and cognitive maps. Journal of Experimental Psychology: Human

Perception and Performance, 3(4), 590-598.

Loftus, G. R. (1978). Comprehending compass directions. Memory &

Cognition, 6(4), 416-422.

Maki, R. H. (1986). Naming and locating the tops of rotated pictures.

Canadian Journal of Psychology, 40(4), 368-387.

Pylyshyn, Z. W. (1979). The rate of "mental rotation" of images: A test

of a holistic analogue hypothesis. Memory & Cognition, 7(1), 19-28.

Shepard, R. N., & Hurwitz, S. (1984). Upward direction, mental rotation,

and discrimination of left and right turns in maps. Cognition, 18, 161-193.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-

dimensional objects. Science, 171, 701-703.

Thomdyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial

knowledge acquired from maps and navigation. Cognitive Psychology, 14,

560-589.

Uecker, A., & Obrzut, J. E. (1993). Hemisphere and gender differences

in mental rotation. Brain and Control, 22, 42-50.

APPENDIX A

KEYBOARD LEGEND

43

44

7 £

4

111 15

! 9

6

> 3

315°

270°
i

225°

0°

180°

45°

90°

135°

APPENDIX B

MENTAL ROTATION/ORIENTATION COMPUTER PROGRAM

45

/*
Name BOX C
Type Toolbox module
Language Microsoft QuickC version 2
Video Color or monochrome text mode

#include <stdio h>
#include <stdhb h>
#include <malloc h>
#include <dos h>
#include <stnng h>
#include <graph h>
#mclude "box h"

static void determme_video (void),
static unsigned video_seg = 0,
static char far "videoptr;
static int columns,

/*
Function boxje tO
Toolbox BOX C
Demonstrated BOXTEST C MENU C

Parameters
(input) rowl Upper left comer of box
(input) coll Upper left comer of box
(input) row2 Lower right comer of box
(input) col2 Lower nght comer of box

Returned Address of far integer buffer containing data
saved from the rectangular area of screen

Variables i Looping index for lines in box
width Width of box area
height Height of box area
bytes Total number bytes to store box data
buf Address of far buffer for storage
bufptr Index into storage buffer memory
wdeo_off Offset of video address for box data

Descnption Saves contents of a rectangular area of the
screen in a dynamically allocated buffer

unsigned far *box_get(unsigned rowl, unsigned coM,
unsigned row2, unsigned col2)

{
unsigned i, width, height, bytes,
unsigned far *buf, far *bufptr,
unsigned video_off,

f Calculate the dimensions in bytes 7
width = (col2 - coll + 1) * 2,
height = row2 - rowl + 1,
bytes = height * width + 8

/* Allocate storage space */
if ((buf = (unsigned far *)malloc((size_t)bytes)) == NULL)

{
pnntf("box_getO mallocO failed\n"),
exrt(0) ,

}

T Save the box coordinates in the buffer */
bufptr = buf,

*bufptr++ = rowl,
*bufptr++ = coll,
*bufptr++ = row2,
*bufptr++ = col2,

/* Determine the text mode video segment and number of columns */
determine_videoO,

I* Calculate starting location in video memory */
video_off = (unsigned)((columns * (rowl - 1) +

(coh - 1)) * 2) ,

I* Grab each line of the video */
for (i = 0, i < height, i++)

{
movedata(video_seg, video_off,

FP_SEG(bufptr), FP_OFF(bufptr), width),
bufptr += width / 2,
video_off += columns * 2,
}

/* Return the buffer */
return (buf) ,

}

r
Function box_putO
Toolbox BOX C
Demonstrated BOXTEST C MENU C

Parameters
(input) buf Far integer buffer previously created

by the function box_getO

Returned (function returns nothing)

Vanables rowl Upper left comer of box
col 1 U pper left comer of box
row2 Lower nght comer of box
col2 Lower nght comer of box
i Loop index for each line of the box
width Width of the box
height Height of the box
bytes Total number of bytes in the box
video_off Offset of video address for box data
workbuf Index into the buffer

Descnption Restores screen contents that were saved in a
buffer by a previous call to box_get()

void box_put(unsigned far * buf)

{
unsigned rowl, coll, row2, col2,
unsigned i, width, height, bytes,
unsigned video_off,
unsigned far 'workbuf,

/* Get the box coordinates */
workbuf = buf,
rowl =*workbuf++,
coh = 'workbuf++,
row2 = *workbuf++,
col2 = *workbuf++,

/* Calculate the dimensions in bytes */
width = (col2 - coll + 1) * 2,

}

height = row2 - rowl + 1;
bytes = height * width;

I* Determine the text mode video segment and number of columns 7
determine_videoO;

f Calculate starting location in video memory */
video_off = (columns * (rowl - 1) + (coh - 1)) * 2;

/* Put each line out to video */
for (i = 0; i < height; i++)

{
movedata(FP_SEG(workbuf), FP_OFF(workbuf),

video_seg, video_off, width);
workbuf += width / 2;
vkteo_pff += columns * 2;
}

Function: box_colorO
Toolbox: BOX.C
Demonstrated: BOXTEST.C MENU.C

Parameters:
(input) rowl Upper left comer of box
(input) coll Upper left comer of box
(input) row2 Lower right comer of box
(input) col2 Lower right comer of box

Returned: (function returns nothing)

Variables: x Looping index for each row of box
y Looping index for each column of box
fore Current foreground text color
back Current background text color
attr Attribute byte combining fore and back

Description: Sets the foreground and background colors for
all characters in a box to the current colors.
Characters in the box are unaffected

*/

void box_color (unsigned rowl, unsigned coll,
unsigned row2, unsigned col2)

{
unsigned x, y;
unsigned fore;
unsigned long back;
unsigned char attr;

r Determine the text mode video segment and number of columns */
determine_video();

T Build the attribute byte */
fore = jgettextcolor();
back = jgetbkcolorO;
attr = (unsigned char)((fore & OxF) |

((((fore & 0x10) » 1) | back) « 4)) ;

/* Work through the box */
for (x = rowl - 1 ; x < row2; x++)

for (y = coM - 1 ; y < col2; y++)
*(videoptr + (columns * x + y) * 2 + 1) = attr;

}

/*
Function box charfillO
Toolbox BOXC
Demonstrated BOXTEST C MENUTEST C

Parameters
(input) rowl Upper left comer of box
(input) coll Upper left comer of box
(input) row2 Lower nght comer of box
(input) col2 Lower nght comer of box
(input) c Character used to fill the box

Returned (function returns nothing)

Vanables x Looping index for each row of box
y Looping index for each column of box

Descnption Fills a rectangular area of the screen with a
character Attributes are unaffected

void box_charfill (unsigned rowl, unsigned coh,
unsigned row2, unsigned col2, unsigned char c)

{
unsigned x, y,

r Determine the text mode video segment and number of columns */
determine_videoO,

/•Work through the box 7
for (x = rowl - 1 , x < row2, x++)

for (y = coh - 1 , y < col2, y++)
*(videoptr + (columns *x + y) * 2) = c,

}

/*
Function box_drawO
Toolbox BOX C
Demonstrated BOXTEST C MENU C

Parameters
(input) rowl upper left comer of box
(input) coll upper left comer of box
(input) row2 lower nght comer of box
(input) col2 lower nght comer of box
(input) hne_type Indicates single-line or double-

line box border (or none)

Returned (function returns nothing)

Vanables x Keeps track of horizontal position
y Keeps track of vertical position
dx Horizontal motion increment
dy Vertical motion increment
c Character for each part of the border

Descnption Draws a single-line or double-line box border
around a box Does not affect attributes

void box_draw(unsigned rowl, unsigned coM,
unsigned row2, unsigned col2, unsigned line_type)

{
unsigned x, y, dx, dy,
unsigned c,

I* Determine the text mode video segment and number of columns 7
determine_videoO,

I* Work around the box 7
x = con,
y=row1,
dx=1,
dy = 0,
do

{

/* Set the default character for unbordered boxes */

/* Set the single-line drawing character 7
if (linejype == 1)

if(dx)
c = 196,

else
c = 179,

/* Set the double-line drawing character 7
else if (linejype == 2)

if(dx)
c = 205,

else
c = 186,

I* Change direction at top nght comer 7
if(dx==1&&x==col2)

{
dx = 0,
dy = 1,
if (line type == 1)

c = f91,
else if (linejype == 2)

c=187,
}

/* Change direction at bottom nght comer 7
if (dy == 1 && y == row2)

{
dx = -1 ,
dy = 0,
if (linejype == 1)

c = 217,
else if (linejype == 2)

c = 188,
}

I* Change direction at bottom left comer 7
if(dx==-1&&x==col1)

{
dx = 0,
dy = - 1 ,
if (line type == 1)

c = 1~92,
else if (linejype == 2)

c = 200,
}

f Check for top left comer 7
if (dy == -1 && y == rowl)

{
if (line type == 1)

c = 218,
else if (linejype == 2)

c = 201,
}

}

/* Put new character to video 7
*(videoptr + (columns * (y - 1) + (x - 1)) * 2) = (char)c,

/* Move to next position 7
x+=dx,
y+=dy,

}
while (dy '= -1 || y >= rowl),

Function box_erase()
Toolbox BOX C
Demonstrated BOXTEST C MENU C

Parameters
(input) rowl Upper left comer of box
(input) coM Upper left comer of box
(input) row2 Lower nght comer of box
(input) col2 Lower nght comer of box

Returned (function returns nothing)

Vanables i Looping index for each row of the box
buf Stnng of spaces for each row

Descnption Fills a box with spaces Uses the current color
attnbutes

7

void box_erase(unsigned rowl, unsigned coM,
unsigned row2, unsigned col2)

{
unsigned i,
charbuf[81],

I* Fill the buffer with spaces 7
spnntf(buf, "%*s", col2 - coll + 1,""),

I" Put each line out to video 7
for (i = rowl, i <= row2, i++)

{
_settextposition(i, coM),
_outtext(buf),
}

Function determine videoO
Note STATIC FUNCTION AVAIUBLE ONLY TO THIS MODULE
Language Microsoft QuickC
Toolbox BOX C

Parameters (none)

Returned (function returns nothing)

Variables (none)

Descnption Determines the text mode video segment and the
number of character columns currently set
Fills in static vanables that are

available only to the functions in this module

7

static void determine video(void)

{
if (Ivideo seg)

{
f Determine the text mode video segment 7

switch ('((char far *)0x449))
{
caseO:
case 1:
case 2:
case 3:

video_seg = OxB800;
videoptr = (char far *)0xB8000000;
break;

case 7:
video_seg = OxBOOO;
videoptr = (char far *)OxBOOOOOOO;
break;

default:
printf("BOX.C: not in text mode\n");

exit(0) ;

}

I* Determine number of columns for current text mode 7
columns = *((int far *)0x44A);
}

}

I"

7

ftnclude <stdio h>
ftnclude "getkey h"
#mclude "typjnrt h"
#mclude "edit h"
#include "list h"
#include "file h"
#mclude "menu h"
#include "box h"
#include "data_plt h"
ftnclude '1_colors h"

#definenght "RIGHT'
#defineleft "LEFT'
#definemale "MALE"
#define female "FEMALE"

char *infoJx>x 1Q =
{
" Student Information Entry",
" Have you already been entered into the",
" roster of qualified users?",
"< Yes or No >",
NULL
}.

char'info box 2Q =
{
" Student Information Entry",

" Enter a unique 9 character identifier that",
" I can use to identify you in the future ",
" Most people use their SS# number ",

•I > , ^

"<>",
NULL
}.

char *infoJx>x_3Q =
{
" Student Information Entry",

" Please enter your unique identifier at the",
" identifier below ",

ii > ,î

"<>",
NULL
}.

char *infoJx>x_4TJ =
{

" Student Information Entry ',

" Are you RIGHT handed or are you LEFT handed?",

"< Right or Left >",
NULL
}.

char 'infoJxjxJjQ =

{
" Student Information Entry",

" Is it correct that you are RIGHT handed 7",
HI*

"<YesorNo>",
NULL
}.

char *info_boxJ5fJ =
{

" Student Information Entry",

" Is it correct that you are LEFT handed 7",

"< Yes or No >",
NULL
}.

char *infoJx>x_7[] =
{
" Student Information Entry",

" I'm sony you are not in the table",
" of registered users ",

"< Press any key >",
NULL
}.

char 'info box 8Q =
{

" Student Information Record",

" Are you MALE or FEMALE 7",

"< Male or Female >",
NULL
}.

char 'mfojxjx_9{] =
{

" Student Information Record",

" Student Identifier

" Right or Left handed ",

" Male or Female

" IS THE ABOVE INFORMATION CORRECT"?",

"<YesorNo>",
NULL
}.

char 'info_boxJ0Q =
{

" Student Information Entry",

" Is it correct that you are a MALE 7",

"< Yes or No >",
NULL
}.

char *infoJ»x_11D =
{
" Student Information Entry",

" Is it correct that you are a FEMALE 7",

"< Yes or No >",
NULL
}.

char 'info box 20Q =
{
" Student Information Entry",

" I'm sorry another user already uses that",
" identifier Please try another one ",

"< Press any key >",
NULL
}.

char *drop_nghtJeftfJ =

L
"Right",
"Left",

NULL
}.

char *drop_maleJemaleQ =

{ . . i .

"Male",
"Female",

NULL
}.

char *drop_yesjioQ =
{

"Yes",
"No",

NULL
}•

I*
Function Function to determine whether candidate

is male or female

File TEST_1 C

Parameters None

Returned
(output) 'M' - if candidate is male

'F' - if candidate is female

Vanables None

Descnption Function to determine whether candidate is male
or female

char Male_orJemale(void)
{

int finish = 0,
int malejemale,
int *save_infoJx>x,

int yesjio,

while(finish == 0) {
r Display infoJ»xJ3 7
savejnfoJ»x = menu_message(5,8, infoJ»xJ3),

I* Get student answer male or female 7 7
menu_erase(menu_drop(12,30, drop_maleJemale, &malejemale)),

r Erase infojxjxj? 7
menu_erase(save_infoJ»x),

r
malejemale = 1 ==> Male
malejeamle = 2 ==> Female

7

if (malejemale == 1) {
/* Confimi whether student is male 7
/* Display mfo_box_10 7
save_infoJx>x = menu_message(5, 8, infoJxwJO),

I* Get student answer yes or no ? 7
menu_erase(menu_drop(12,30, drop_yes_no, &yes_no)),

/* Erase infoJ»x_10 7
menu_erase(savejnfojwx),
}

else{
/* Confirm whether student is female 7
r Display infoj>ox_11 7
savejnfojwx = menu_message(5, 8, mfojjoxj 1),

T Get student answer yes or no 7 */
menu_erase(menu_drop(12,30, drop_yes_no, &yes_no)),

/* Erase infoJx>xJ 1 7
menu_erase(save_mfoJx>x),
}

if (yes_no == 1)
r Student entry was correct => set flag to quit loop 7
finish = 1,

}
if (malejemale == 1)

retumCM"),
else

retumfF"),
}

/*
Function to determine whether student is nght
or left handed

7

char Right_orJeft handed(void)
{

int finish = 0,
int nght_orJeft,
int yes_no,
int 'savejnfojwx,

while(finish == 0) {
r Display infoJ»x_4 7
savejnfojxjx = menu_message(5, 8, infoJxjx_4),

I* Get student answer right or left 7 */
menu_erase(menu_drop(12,30, dropjightjeft, &nght_orJeft)),

/* Erase info_box_4 7
menu_erase(savejnfojwx);

r
right_orJeft = 1 ==> Right handed
right_or left = 2 ==> Left handed

7

if (right_orJeft == 1) {
r Confirm whether student is right handed 7
r Display infoJ»x_5 7
savejnfojwx = menu_message(5, 8, infoJwx_5);

/* Get student answer yes or no 7 7
menu_erase(menu_drop(12, 30, drop_yes_no, &yes_no));

/* Erase infojwxjj 7
menu_erase(savejnfojwx);
}

else{
/* Confirm whether student is left handed 7
/* Display infojwxjj 7
savejnfojwx = menu_message(5, 8, infojwxjj);

r Get student answer yes or no 7 */
menu_erase(menu_drop(12,30, drop_yes_no, &yes_no));

/* Erase info_boxJ5 */
menu erase(savejnfojwx);
}

if (yesjro == 1)

T Student entry was correct => set flag to quit loop */
finish = 1;

}
if (right_orJeft == 1)

returnfR');
else

returnCL');
}

/*
Define procedure for getting student data plate

7

void get_student_data(NODE *h, STUDENTJRECORD *new_student, long 'positn)
{

int counter;
int qualified jjser_answer;
int far 'savejnfojwx;
int finish = 0;
int key;
long offset;
char uniquejdent[10];
char MJranded;
char malejemale;

while (finish == 0) {
/* Clear uniquejdent */
for (counter = 0; counter <= 8; counter++)

uniqueJdent[counter] =' ';
uniqueJdent[9] = "\0';

/* Display infojwxj 7
savejnfojwx = menu_message(5, 8, infoJwx_1);

I* Get student answer yes or no 7 7
menu_erase(menu_drop(10,30, drop_yes_no, &qualified_user_answer)),

I* Erase infojwxj 7
menujjrase^savejnfojwx),

/*
qualified_user_answer = 1 ==> yes
qualified_user_answer = 2 ==> no

7

if (qualifiedjiser_answer == 1) {
/* Display infojwxj? 7
savejnfojwx = menu_message(5,8, infoJwxJ3),

/* Get unique identifier 7
_settextposrtion(10,18),
editline(uniquejdent),

/* Erase info_box_3 7
menu_erase(savejnfojwx),

r Check student identifier with those held on disk 7
offset = check(h, uniquejdent),

I* Save position on disk */
'positn = offset,

r
offset == 0 => student not registered
offset <> 0 => student is a registered user

7

if (offset ==0L){
/* Display info_box_7 7
savejnfojwx = menu_message(10,8, infoJwx_7),

getkey_or_mouse(),

r Erase mfo_box_7 7
menu_erase(savejnfo box),
}

else{
/* fetch student record 7
Fetch(offset, new_student),

/* Set finish flag to 1 7
finish = 1,
}

}
else{

/* Display infojwxj? 7
savejnfojwx = menu_message(5, 8, info_boxj2),

r Get unique identifier 7
_settextposrtion(11,18),
editlme(uniquejdent),

I* Erase infb_box_2 7
menu_erase(savejnfojwx),

r Check student identifier with those held on disk 7
offset = check(h, uniquejdent),

r Save position on disk 7
'positn = offset,

I* offset <> OL then another student uses that identifier 7
if (offset '= OL) {

I* Display infojwxJ20 7
savejnfojwx = menu_message(10,8, infojwxj>0);

getkey_or_mouse();

I* Erase infojwxJ20 7
menu erase(save info box);
}

else{
I* Determine whether right or left handed 7
rjjianded = Right_orJeftJiandedO;

I* Determine whether student is male or female 7
malejemale = Male_orJemaleO;

I* Last chance for student to validate entered information 7
I* Display infojwxj? 7
savejnfojwx = menu_message(3,8, infojwxJ9);

I* Display student identifier 7
_settextposition(5,33);
j>uttext(uniquejdent);

/* Display whether student is right or left handed 7
settextposition(7,33);

if (rjjianded =='R')
_outtext(right);

else
_outtext(left);

/* Display whether student is male or female 7
_settextposition(9,33);
if (malejemale == 'M')

_outtext(male);
else

jsuttext(female);

r Get student answer yes or no 7 7
menu_erase(menu_drop(16,30, drop_yes_no, &qualifiedjjser_answer))

/* Entered information correct 7
if (qualified_user_answer == 1) {

I* Initialize student record for new student 7
for (counter = 0; counter <= 9; counter++)

new_student->qualifier[counter] = uniquejdentfcounter];
new_student->rjjianded = rjjianded;
new_student->malejemale = malejemale;

I* Set finish flag to 1 7
finish = 1;

}

/* Erase infojwx_9 7
menu_erase(save info box);
}

/*

7

ftnclude <stdio h>
ftnclude <conio h>
#mclude "getkey h"
ftnclude "typjnit h"
ftnclude "list h"
ftnclude "file h"
ftnclude "dskjnit h"
ftnclude "menu h"
#include "box h"
ftnclude "t colors h"

/* Error message data 7
char 'error box_1_01 Q =

{
"Error Message #101" ,

" Unable to access the following",
"file STUDENT DAT",

"< Press any key >",
NULL
},

char'error box 1_02Q =
{
" Error Message #1 02",

" Unable to access the following",
"file STUDENT NDX",

"< Press any key >",
NULL
},

r
Function lnrtialize()
File DSKJNIT C

Parameters
(input) hd pointer to head of linked list of type

NODE
tl pointer to tail of linked list of type

NODE

Returned (function returns nothing)

Vanables result Return value from function call
1 = file on disk
0 = file not on disk

nrecs Number of records in student data file

Descnption Function to detrmine whether student index file
is on disk If there exists a student index file
contents of it are read into a linked list

void lnrtialize(NODE "hd , NODE " t l)
{

int result;
int nrecs;
int counter;
int *save_error_box;

/* set the head and tail pointers 7
*hd = NULL; *tl = NULL;

r
Create index file

7
CreateJndexJlleO;

/* Determine whether index file is on disk 7
result = lndex_on disk();
/*

result == 1 => Index on disk
result == 0 => Index not on disk

7
if (result == 0)

r
Index not on disk return to caller.

7
return;

else{

r
Read student data file to detemriine number of records in file.

7
nrecs = Numjecords();
if (nrecs == 0) {

/*
nrecs == 0 => En'or reading student data file

7
/*

set error box color to red
set error text color to white

7
menu_back color(BKJ^ED);
menuJext_color(T.WHITE | TJ3RIGHT);

r Display error J w x J J)1 7
save_error_box = menu_message(10, 8, errorJwxJ J)1);

getkeyjsrjnouseO;

T Erase errorjwxj J)1 7
menu_erase(savejsrrorjwx);

/*
set box color back to cyan
set text color back to black

7
menu_back_color(BKWHITE);
menuJext_color(TJ3LACK);
}

else{

r
Read information in indexfile
into linked list

7
result = IndexJoJinkJist(nrecs, hd, tl);
r

result == 1 => Function successful
result == 0 => Error in reading file!

7
if (result == 0) {

r
set error box color to red

set error text color to white
7
menujiack color(BK_RED),
menuJext_color(TJA/HITE | TJ3RIGHT),

I* Display error J w x J J)2 7
savejsrrorjwx = menujnessage(10,8, error J w x J J32),

getchO,

/* Erase errorJwxJ J)2 7
menu_erase(save_error_box),

/*
set box color back to cyan
set text color back to black

7

menu Jack jwlor (BKJ/VHITE),
menuJext_color(TJ3LACK),

}
}

}
}

/*
Function StatsjnitializeO
File DSKJNIT C

Parameters
(input) hd pointer to head of linked list of type

RESJJODE
tl pointer to tail of linked list of type

RES_NODE

Returned (function returns nothing)

Vanables result Return value from function call
1 = file on disk
0 = file not on disk

nrecs Number of records in student data file

Descnption Function to detrmine whether student data file
is on disk If there exists a student data file
contents of it are read into a linked list

void Statsjnrtialize(RESJJODE "hd , RESJJODE " t l)
{

int result,
int nrecs,
int *save_errorJwx,

/* Determine whether student data file is on disk 7
result = File_on_diskO,

r
result == 1 => File on disk
result == 0 => File not on disk

7
if (result == 0)

/*
Index not on disk return to caller

7
return,

else{

r
Read student data file to detemriine number of records in file

7
nrecs = NumjecordsO;
if (nrecs == 0) {

r
nrecs ==0 => Error reading student data file

7

r
set error box color to red
set error text color to white

7
menuJack_color(BK_RED);
menuJext_color(TJ/VHITE | T_BRIGHT);

/* Display er ror jwx j J)1 7
savejjrrorjwx = menujnessage(10, 8, e r ro r jwx j J)1),

getkeyjxjnouseO;

/* Erase errorjwxj_01 7
menu_erase(save_errorJwx),

/*
set box color back to cyan
set text color back to black

7
menu_back_color(BKWHITE);
menujext_color(TJ3LACK),
}

else{
/*

Read information in indexfile
into linked list

7
result = Student_dataJo_hnkJist(hd , t l);

/*
result == 1 => Function successful
result == 0 => Error in reading filei

7
if (result = = 0) {

/*
set error box color to red
set error text color to white

7
menu_back_color(BK_RED);
menuJext_color(TJ/VHITE | TJ3RIGHT),

/* Display error_box_1 _01 7
save_errorjwx = menu_message(10,8, e r ro r jwx j J)1),

getkeyj3r_mouse();

r Erase er ror jwx j _01 7
menu_erase(save_error_box),

r
set box color back to cyan
set text color back to black

7
menu_back_color(BKWHITE),
menuJext_color(TJ3LACK),

/•
Name EDIT C
Type Toolbox module
Language Microsoft QuickC
Demonstrated EDITTEST C
Video (no special video requirements)

7

ftnclude <stdio h>
ftnclude <stdhb h>
#include <conio h>
ftnclude <stnng h>
ftnclude <graph h>
ftnclude "edit h"
#mclude "getkey h"

/*
Function next_word()
Toolbox EDIT C
Demonstrated EDITTEST C

Parameters
(input) str Stnng to be evaluated
(input) ndx Character position

Returned Character position of next word

Vanables len Length of the stnng

Descnption Finds the start of the next word in the stnng

7

int next_word(char *str, int ndx)
{

unsigned len,

/* Get the length of the stnng 7
len = strien(str),

r Move to end of the current word 7
while (ndx < len && strfndx] i= ")

ndx++,

/* Move to the start of the next word 7
while (ndx < len && strfndx] == ")

ndx++,

r If at end of stnng, back up to start of last word 7
if (ndx == len)

{
ndx-,

/* Move back over any spaces 7
while (ndx >= 0 && strfndx] == ")

ndx-,

r Move back over preceding word 7
while (ndx >= 0 && strfndx] i= ")

ndx-,

/* Move one step forward to start of preceding word 7
ndx++,
}

r Return the new position 7
return (ndx),

/*

int prev_word(char "str, int ndx)

{
int len,

/* Get length of the stnng 7
len = strien(str),

I* Move back over nonspace characters in current word 7
while (ndx && strfndx] i = ")

ndx-,

I* Move back over the spaces between words 7
while (ndx && strfndx] == ")

ndx-,

I* Move back over characters in previous word 7
while (ndx >= 0 && strfndx] i= ")

ndx-,

/* Move to first character of the word 7
while ((ndx < len && strfndx] == ") || (ndx < 0))

ndx++,

I* If all spaces, then move back to start of stnng 7
if (ndx == len)

ndx = 0,

/* Return the new position 7
return (ndx) ,

}

I*
Function deletejshar()
Toolbox EDIT C
Demonstrated EDITTEST C

Parameters
(input) str Stnng to be evaluated
(input) ndx Character position

Returned Character position

Vanables (none)

Descnption Deletes one character from the stnng

int delete_char(char *str, int ndx)

{
int ndxjstart,

I* Save current ndx 7
ndxjstart = ndx,

I* Shuffle characters back one space 7
while (strfndx])

{
strfndx] = strfndx + 1],
ndx++,
}

/* Return the unchanged position 7
return (ndx),

}

r
Function insertjsharO
Toolbox EDIT C
Demonstrated EDITTEST C

Parameters
(input) str Stnng to be evaluated
(input) ndx Character position
(input) c Character to be inserted

Returned Next character position

Vanables i Looping index

Descnption Inserts a character into the stnng

int insert_char(char 'str, int ndx, char c)
{

int i,

/* Shuffle characters nght one space 7
for (i = strlen(str) - 1 , i > ndx, i -)

str[i] = str[i-1],

/* Put character in new position 7
strfndx] = c,

/* Return next character position 7
return (++ndx),

}

/*
Function insertjspacesO
Toolbox EDIT C
Demonstrated EDITTEST C

Parameters
(input) str Stnng to be evaluated
(input) ndx Character position
(input) n Number of spaces

Returned Next character position

Vanables i Looping index

Descnption Inserts a character into the stnng

7

int insert spaces(char *str, int ndx, int n)
{

int i,

I* Shuffle characters to the nght n places 7
for (i = strlen(str), i >= ndx, i -)

strfi + n] = strfi],

/* Put n spaces in stnng 7
while (n -)

strf++i] ="",

I* Move to the first character after inserted spaces 7
return (ndx + n - 1) ,

}

/*
Function replaceO
Toolbox EDIT C
Demonstrated EDITTEST C

Parameters
(input) str Stnng to be evaluated
(input) substM Sub stnng to find
(input) substr2 Sub stnng to replace substrl

Returned Number of replacements made

Vanables count Count of replacements made
len Length of str
Ien2 Length of substr2
i Looping index
shift Amount to shift for insert

Descnption Replaces each occurrence of substrl in str
with substr2

int replace(char *str, char 'substrl, char *substr2)
{

int count = 0,
int len, Ien2,
int i, shift,

r Get length of replacement stnng 7
Ien2 = strlen(substr2),

/* Determine amount of shift for each replacement 7
shift = Ien2 - strlen(substrl),

I* Process each occurrence of substrl in str 7
while ((str = strstr(str, substrl)) i= NULL)

{

/* Keep track of number of replacements 7
count++,

/* Find current length of str 7
len = strlen(str),

I* Shift left if substr2 is shorter than substrl 7
if (shift < 0)

{
for (i = abs(shift), i < len + 1, i++)

strfi + shift] = strfi],
}

I* Shift nght if substr2 is longer than substrl 7
else if (shift > 0)

{
for (i = len, i, i -)

strfi • shift] = strfi],
}

/* Copy substr2 into new place in str 7
stmcpy(str, substr2, Ien2),

I* Increment str pointer to character beyond replacement 7
str += Ien2,
}

/* Return the number of replacements made 7
return (count),

}

r
Function editline()
Toolbox EDIT C
Demonstrated EDITTEST C

Parameters
(input) str Stnng to be edited

Returned KEYJJP If Cursor Up was last keypress
KEYJ30WN If Cursor Down was last keypress
KEY ESCAPE If Escape was last keypress
KEY^ENTER If Enter was last keypress

Vanables doneflag Signals when to end the edit
insertflag Insert or overstnke mode
index Cursor position
key Key code returned by getkey()
len Length of str
i Looping index
strpos Onginal cursor position

Descnption Displays stnng at the current cursor location,
uses the current text colors and allows user
to edit the stnng with standard editing keys

int edrtline(char 'str)
{

unsigned doneflag = 0,
int insertflag = 1, index = 0,
int key, len i,
struct rccoord strpos,

/* Get the length of the stnng to be edited 7
len = strlen(str),

r Record current location of the cursor */
strpos = jjettextposition(),

/* Clear out any keypresses in the keyboard buffer 7
while (kbhit())

getch(),

I* Main editing loop 7
while ((doneflag)

{

/* Position the cursor at the onginal location 7

jsettextposition(strpos row, strpos col),

/* Display the stnng 7
_outtext(str),

r Move cursor to current editing position */
_settextposition(strpos row, strpos col + index),

/* Set cursor type for insert or overstnke mode */
if (insertflag)

_settextcursor(CURSOR JJNDERLINE),
else

_settextcursor(CURSORJ3LOCK),

/* Wait for a keypress or mouse movement 7
key = getkey_or_mouse(),

I* Process each keypress 7
switch (key)

{

case KEYJJP
doneflag = key,
break,

case KEYJDOWN
doneflag = key,
break,

case KEYJ.EFT
if (index)

index-,
break,

case KEY_RIGHT
if (index < len - 1)

mdex++,
break;

case KEY_ESCAPE
doneflag = key,
break,

case KEY_CTRL_LEFT
index = prev_word(str, index),
break,

case KEY_CTRL_RIGHT
index = nextj/vord(str, index),
break,

case KEY_END
for (index = len - 1 , strfindex] == " && index, index-)

{.}
if (index && index < len -1)

index++,
break,

case KEYJ3ACKSPACE
if (index)

{
index-,
deletej;har(str, index),
str[len-1] = ",
}

break,

case KEY_CTRL_END
for (i = index, i < len, i++)

strfi] = ";
break;

case KEYJNSERT:
insertflag A= 1;
break;

case KEYJ3ELETE:
deletej:har(str, index);
strtlen-1] = ,•;
break;

case KEYJENTER:
doneflag = key;
break;

case KEYJHOME:
index = 0;
break;

default:
if (key >= " && key < 256)

{
if (insertflag)

insertj:har(str, index, (char)key);
else

strfindex] = (char)key;
if (index < len - 1)

index++;
}

break;
}

/* Truncate string at original length 7
strflen] = 0;
}

r Return the key that caused the exit 7

return (doneflag);

/*

7

ftnclude <stdio h>
ftnclude <stnng h>
#mclude <conio h>
#include "getkey h"
#include "typjnrt h"
#include "list.h"
ftnclude "file h"
ftnclude "menu h"
ftnclude "tjwlors h"
#include "sound h"

/* Define en'or messages 7
char 'errorjwxj JD3Q =

{
" Error Message #1 03",

" Attempt to reposition file pointer",
" in file STUDENT DAT failed",

"< Press any key >",
NULL
},

char'error boxj_04f] =
{
" Error Message #1 04",

" There are no records in student",
" data file to read ",
" Unable to do statistical",
" analysis of student results ",

"< Press any key >",
NULL
}.

char 'errorjwxj JD5Q =
{
"ErrorMessaged 05",

" Unable to save student record",
" in student data file ",

" Result => the current student",
" does not have his record saved",
" on disk",

"< Press any key >",
NULL
}.

char'errorJwx 1 06fJ =
{
" Error Message #1 06",

" Unable to update student record",
" in student data file ",

" Result => the current student",
" record in the student data file",

" does not contain the latest test",
" results ",

"< Press any key >",
NULL

}.

char 'error box 1 07Q =

{
" Error Message #1 07" ,

" Unable to create student index",
" file from student data file ",

" Result => the program will not",
" be able to access student records",
" held on disk ",

"< Press any key >",
NULL

},

I*
Function Index on_disk()
File FILE C ~

Parameters (none)

Returned 1 Student index file is on the disk
0 Student index file is not on disk

Vanables check file pointer to student data file

Descnption Function to determine whether the student
index file is located in the current directory

int lndex_on_disk(void)

{
FILE 'check,

/* Attempt to open index file on disk 7
if ((check = fopen(INDEX, "rt>")) i= NULL) {

fclose(check), /* Close disk file 7
retum(1), I* File on disk => return 1 7

}
else

retum(0) , /* Not on disk => return 0 7
}

/*
Function File_on disk()
File FILE C

Parameters (none)

Returned 1 Student data file is on the disk
0 Student data file is not on disk

Vanables check file pointer to student data file

Descnption Function to determine whether the student
data file is located in the current directory

7

int File on disk(void)
{

FILE 'check;

f Attempt to open index file on disk 7
if ((check = fopen(FILENAME, "rb")) != NULL) {

fclose(check); /* Close disk file 7
retum(1); I* File on disk => return 1 7
}

else
retum(0) ; r Not on disk => return 0 7

}

r
Procedure to read student
data file into linked list
to allow manipulation for
statistical analysis

7

int Student_dataJoJink_list(RESjNODE "h , RESjNODE " t)
{

FILE 'check;
STUDENT_RECORD record;
int *save_errorjwx;
int result;
int counter;
int nrecs;

/* Open index file on disk 7
if ((check = fopen(FILENAME, "rb")) != NULL) {

I* get number of records to read 7
nrecs = getw(check);

I* if number of records <= 0 then en'or 7
if (nrecs <= 0) {

/*
set error box color to red
set error text color to white

7
menujjack_color(BK_RED);
menuJext_color(TJ/VHITE | TJ3RIGHT);

I* Display error J w x J J M 7
savejsrrorjwx = menu_message(10, 8, errorjwxj JD4);

/* Error Sound 7
warble(5);

I* Get key/mouse press from user 7
getkey_or_mouseO;

r Erase errorjwxj 7
menujsrase(savejsrrorjwx);

/*
set box color back to cyan
set text color back to black

7
menu_back_color(BKJ/VHITE);
menuJext_color(TJ3LACK);

fclose(check); /* Close disk file 7
retum(0) ; /* Read unsuccessful return 0 7

}
else{

I* loop size defined by number of recs to read 7
for (counter = 1, counter <= nrecs, counter++) {

/* read index record from disk 7
fread(Srecord, sizeof(STUDENT_RECORD), 1, check),

r insert index record into linked list 7
res_addsl(&record, h, t) ,
}

fclose(check), /* Close disk file 7
retum(1), /* Read successful return 1 7

}
}
else

retum(0) , /* File open failed' return 0 7
}

/*
Functwn Wnte_numjecords(),
File FILE C

Parameters
(input) numberj-ecords value to insert into the number

of records field in the student
file

Returned integer 1 = successful! write
0 = failure

Vanables random logical name for student data file
nrecs number of records in student data

file
counter loop counter

Descnption Inserts the given value at the beginning of the
student data file (This place in the student data
file is used to store the number of records the file
contains)

7

int Wntejiumjecords(int number)
{

FILE 'random,

if (number > 1) {
r

Open disk file to write number of student records
7
if ((random = fopen (FILENAME, "r+b")) '= NULL) {

r
Position file pointer at beginning of file

7
fseek(random, OL, SEEKJ3ET),
/*

Write integer value at beginning of file
7
putw (number, random),

fclose(random), /* Close disk file 7
retum(1), /* Write successful! */
}

else
retum(0) , /• Write unsuccessful! 7

}
elsef

r
Create student data file

7
if ((random = fopen (FILENAME, "wb")) 1= NULL) {

r
Write integer value at beginning of file

7
putw (number, random),

fclose(random),
retum(1) ,
}

else
return(0) ,

}
}

r
Function to return number of
records in disk file

7

int Num_records(void)
{

FILE 'random,
int nrecs,

/* Open disk file to read number of student records 7
if ((random = fopen (FILENAME, "rb")) '= NULL) {

nrecs = getw (random); I* Get number of records
fclose(random), I* Close disk file */
retum(nrecs), I* Return number of records
}

else
return(0) , /* File open failed' return 0 7

/*
Function to read information in
student index file into linked
list

int IndexJoJinkJist(int recs, NODE "h, NODE " t)
{

FILE 'check,
INDEXJNFO record,
int result,
int counter,

/* Open index file on disk 7
if ((check = fopen(INDEX, "rb")) != NULL) {

r loop size defined by number of recs to read 7
for (counter = 1, counter <= recs, counter++) {

T read index record from disk 7
fread(&record, sizeof(INDEXJNFO), 1, check),

/* insert index record into linked list 7
addsl(record offset, h, t, record qualifier),

}
fclose(check), /* Close disk file 7
retum(1), /* Read successful return 1 7

}
else

return(0) ; /* File open failed' return 0 7

r Close disk file 7
/* Write successful! 7

/* Write unsuccessful! 7

}

/*
Function to read student record
from student data file on disk

7

void Fetch(long st_offset, STUDENT_RECORD 'buffer)
{

FILE 'random,
int result,
int 'savejsrrorjwx,

/* Open student data disk file 7
if ((random = fopen (FILENAME, "rb")) '= NULL) {

I* Set file offset pointer in disk file to stjjffset 7
result = fseek(random, st_offset, SEEKjSET),

/* Determine whether seek was successful 7
if (result '= 0) {

/•Seekfailed'7

I"
set error box color to red
set error text color to white

7
menu back coior(BK RED);
menuJext_color(TJ/VHITE | TJ3RIGHT),

I* Display errorJwx_1_03 7
save_errorJwx = menu_message(10, 8, errorJwx_1_03),

r Error Sound 7
warble(5) ;

I* Get key/mouse press from user 7
getkey_or_mouseO,

/* Erase e r ro r jwx j 7
menu_erase(save_errorJwx);

/*
set box color back to cyan
set text color back to black

7
menu_back_color(BKWHITE),
menuJext_color(TJ3LACK),
}

else{
I* Seek successful 7
r Read student data record into buffer 7
fread(buffer, sizeof(STUDENT_RECORD), 1 random),
}

r Close disk file 7
fclose(random),

}
}

/*
Function Savej5tudent_record(),
File FILE C

Parameters
(input) flag 0 = student has record on disk

1 = student does not have record
on disk

buffer student record to save

Returned (function returns nothing)

Vanables random logical name for student data file
nrecs number of records in student data

file
counter loop counter
result error flag

Descnption Saves student record to the student data file Handles
the two conditions of the student having a record
on disk, and the student not having a record on disk

void Save_studentjecord(long offset, STUDENT_RECORD 'buffer)
{

FILE 'random,
FILE *tmp,
int nrecs,
int counter,
int result,
int 'savejsrrorjwx,

r
Save new student record

7
if (offset ==0L) {

r
Get number of records

7
nrecs = Numjecords(),

r
Update header in student data file that contains
the number of student records the file contains

7
++nrecs,
result = Wnte_numjecords(nrecs),

/*
Open disk file to append student record

7
if ((random = fopen (FILENAME, "ab")) '= NULL) {

r
Append student record

7
fwnte(buffer, sizeof(STUDENTJ^ECORD), 1, random),

/* close file 7
fclose (random),

}
else{

/*
Handle possible errors

7
r

set error box color to red
set error text color to white

7
menuJjack_color(BK_RED),
menujext_color(TJ/VHITE | TJ3RIGHT),

/* Display er ror jwx j_05 7

{

case 0 image = aircraftjJtrfO], break,

case 45 image = aircraftjJtrfl], break,

case 90 image = aircraftjstrf2], break,

case 135 image = aircraftj>trf3], break,

case 180 image = aircraft_ptrf4], break,

case 225 image = aircraftj3tr[5], break,

case 270 image = aircraft_ptr[6], break,

case 315 image = aircraftj}tr[7], break,
}

I* determine aircraft position required relative to center of screen
North (0 deg beanng) being up on the screen

7
swrtch(acjwsrtion)
{

case 0 x = 400, y = 550, break,

case 45 x = 575, y = 475, break,

case 90 x = 650, y = 300, break,

case 135 x = 575, y= 125, break,

case 180 x = 400, y = 50, break,

case 225 x = 225, y = 125, break,

case 270 x = 150, y = 300, break,

case 315 x = 225, y = 475, break,
}

/* place aircraft image on screen 7
j3Utimage(device_x(x-25), device_y(y+25), image, J3PSET),

r
Function DrawjsxamplejsircraftjproblemO

File 11 object c
Parameters onentation of aircraft

position of aircraft on screen

Returned None

Descnption draws the aircraft on screen at the position and
and onentation specified

7
void Draw example aircraftj>roblem(short ac_onentation, short acjwsrtion)
{

char 'image,
short x, y,

/* determine aircraft onentation required 7
swrtch(ac_onentation)
{

/* Erase errorjwxj 7
menu_erase(savejsrrorjwx),

/*
set box color back to cyan
set text color back to black

7
menu Jackjwlor(BK.WHITE),
menu text color(T_BLACK),

}

}
}

/*
Function Createjndexjile
File FILE C

Parameters
(input)

Returned (function returns nothing)

Vanables

Descnption Create index file on disk from student data file
on disk

void Createjndexjile(void)
{

int nrecs, rec,
int 'savejsrrorjwx,
FILE *fil, *ndx,
INDEXJNFO ndex,
STUDENT_RECORD st_rec,

r
Open student data file

7
if ((fil = fopen(FILENAME, "rb")) '= NULL) {

/*
Get number of records in file

7
nrecs = getw(fil),

/*
Create index file

7
ndx = fopen(INDEX, "wb"),

for (rec = 1, rec <= nrecs rec++) {

/*
read file position

7
ndex offset = ftell(fil)

r
retneve record from student data file

7
fread(&stjec, sizeof(st jec) , 1, fil),

/*
copy student record qualifier to index qualifier

7

strcpy(ndex qualifier, st jec qualifier),

r
write index record to index file

7
fwnte(index, sizeof(ndex), 1, ndx),

}

/*
close opened files

7
fclose(ndx),
fclose(fil),

}
elsef

/*
close opened file

7
fclose(fil),

if (NumjecordsO '= 0) {

/*
Handle possible errors

7
/*

set error box color to red
set error text color to white

7
menuJ>ack_eolor(BK_RED),
menuJextjwlor(TJ/VHITE | TJ3RIGHT),

I* Display error_box_1_07 7
savejsrrorjwx = menujnessage(10,8, er ror jwx j _07),

I* Error Sound 7
warble(5),

I* Get key/mouse press from user 7
getkey_or_mouse(),

I* Erase er ror jwx j J37 7
menu_erase(savejsrrorjwx),

r
set box color back to cyan
set text color back to black

7
menu_back_color(BK.WHITE),
menuJext_color(TJ3LACK),

81

ftnclude <stdio.h>
ftnclude <conio.h>
ftnclude <stdlib.h>
#include <string.h>
ftnclude "typjnit.h"

mainO
{

FILE *file_handle,
'output_file1,
*output_file2,
•outputJile3;

STUDENTJRECORD data;

int number_of Jiles, count, countl, count2;
char infof11];

I* display general info 7
systemC'ds");
printfC'Mental Rotation Test Filesee 1.10 Written By Animesh Banerjee\n");
printf("Adapted from ATC Filesee 2.1 Written By Gordon Jones\n\n");
printf("23 May, 1996\n");
printf("<Press any key to run program>");
getchO;

system("cls");

I* run the main program 7
printfC'Mental Rotation Test Filesee 1.0 Written By Animesh Banerjee\n\n");
printfC'Student Data Convertion to MS Excel 3.0 for Windows 3.X Started...\n\n");
if ((outputJilel = fopenfstdj J .xls", "wt")) == NULL)

exit(-1);

if ((outputJile2 = fopenfstdJ_2.xls", "wt")) == NULL)

exit(-1);

if ((outputJile3 = fopenCstd_1J3.xls", "wt")) == NULL)

exit(-1);

if ((filejiandle = fopenC'student.fil", "rb")) == NULL)

exit(-1);

else
{

numberjrfjiles = getw(filejiandle);

fprintf(outputJilel, "Student Test Info:- Correct Answer Times\n\n");
fprintf(outputJilel, "Subject #,Sex,Test 1 #1, #2\n\n");
fprintf(outputJile2, "Student Test Info:- Incorrect Answer Times\n\n");
fprintf(output_file2, "Subject #,Sex,Test 1 #1, #2\n\n");
printfC'viWriting Student Data on Test #1 - Mental Rotation\n");
fprintf(outputJile3, "Mental Rotation/Orientation Test:- Raw Data\n\n");

fprintf(outputJile3," ");
for (countl = 1; countl <= 64; countl ++)
{

fprintf(output_file3, "Problem #%2d " ,count1);
}
fprintf(outputJlle3, "\n");
fprintf(outputJlle3, "\nSubject # Sex ");
for (countl = 1; countl <= 64; countl ++)
{

fprintf(output_file3, "reacjime r/wans ") ;
}

file:///nSubject

for (count = 1; count <= numberjjf files; count++)
{

fread(&data, sizeof(STUDENT_RECORD), 1, filejiandle);
printfptWriting Data for Student #%s\n", data.qualifier);
fprintf(output J i l e l , "%s%c,", data.qualifier, data.malejemale);
fprintf(outputJile2, "%s%c,", data.qualifier, data.malejemale);
fprintf(output_file3, "\n%s %c ", data.qualifier, data.malejemale);

for (countl = 0; countl < 2; countl ++)
{

T change to 1 because only 2 trials 7
sprintf(info, "%f", data.student_info[count1].avgjime_correct);
fprintf(output J i le l , "\t%s", info");
sprintf(info, "%r, data.studentJnfo[count1].avgjimejncorrect);
fprintf(output_file2, "tt%s", info);

}
fprintf(output J i l e l , "\n");
fprintf(outputJlle2, "\n");

for (count2 = 0; count2 <= 10; count2++)
infofcount2] = "\0';

for (countl = 0; countl < 64; countl ++)
{

sprintf(info, "%7.2f ", data.RESPONSEfcountl].reactionJime);
fprintf(output_file3, "%s", info);
sprintf(info, "%d ", data.RESPONSE[count1].right_wrong);
fprintf(output_file3, "%s", info);
sprintf(info, "%c ", data.RESPONSEfcountl].answer);
fprintf(outputJile3, "%s", info);

}
}
fprintf(outputJlle3, "\n");

fclose(output_file1); fclose(filejiandle);fclose(outputJile2);
fclose(outputJile3);

return 0;

Description: Returns an unsigned integer that corresponds to a
keypress; also detects mouse motion
it to equivalent keypresses

7

unsigned getkeyj>rjnouse(void)
{

unsigned key;
int status, buttons;
int horz, vert;
int presses, horzjws, vertjws;
int totjwrz, totj/ert;

I* Set the mouse motion counters to 0 7
totjiorz = tot_vert = 0;

/* Clear out the mouse button press counts 7
mousej>ress(LBUTTON, Sstatus, &presses, Shorzjws, Svertjws);
mousej>ress(RBUTTON, Sstatus, Spresses, Shorzjws, Svertjws);

/* Loop starts here, watches for keypress or mouse activity 7
while (1)

{

switch (mousejlag)
{

Shorzjws, Svertjws)

/* If this is first iteration, check for existence of mouse 7
caseO:

mousejeset(Sstatus, Sbuttons);
if (status == 0)

mousejlag = - 1 ;
else

mousejlag = 1;
break;

I* If mouse does not exist, ignore monitoring functions 7
case-1:

break;

/* Check for mouse activity 7
s1:

/* Accumulate mouse motion counts 7
mousejnotion(Shorz, Svert);
totjiorz += horz;
totj/ert += vert;

/* Check for enough horizontal motion 7
if (totjiorz < -HORZ.COUNTS)

return (KEY LEFT);
if (totj iorz > HORZ_COUNTS)

return (KEY_RIGHT);

I* Check for enough vertical motion 7
if (tot_vert < -VERTJDOUNTS)

return (KEYjJP) ;
if (tot_vert > VERT_COUNTS)

return (KEY_DOWN);

I* Check for mouse left button presses 7
mousej>ress(LBUTTON, Sstatus, Spresses,

if (presses)
return (KEY_ENTER);

r Check for mouse right button presses 7

/

long studentJimer(int 'key, char 'neutral, unsigned timeout, unsigned wamingjime)
{

int flag = 0,
int beepjlag = 1,
char *temp,
clock t cstart, cend, ct time,
enunTboolean { TIMEOUTJENABLED = 1, TIMEOUTJDISABLED = 0},
enum boolean status,
long starttime,
long currentJime,
long elapsed Jime = 0,
long endtime,
long timetaken,

cstart = clockf), starttime = cstart,

/* determine if timeout feature is enabled 7
if (timeout > 0)

status = TIMEOUT_ENABLED,
else

status = TIMEOUT.DISABLED,

while(1)
{

if (status == TIMEOUTJHNABLED)
{

ctjime = clockO, current Jime = ctjime,

/* calculate elapsed time and correct for system clock reset 7
if (current Jime < starttime)
{

elapsed Jime = 65535 0 - starttime,
elapsed Jime = elapsed Jime + current Jime,

}
else

elapsed Jime = current Jime - starttime,

/* check that warning 'beep' feature is enabled 7
if (wamingjime > 0)
{

I* check if warning should be issued 7
if (((long)(timeout - wamingjime) <=

elapsed time/CLK_TCK) SS beepjlag)
{

note(2000,2),
/* set beepjlag so only one beep is issued to signal warning 7
beepjlag = 0,

}
}

I* check for timeout expiry 7
if (elapsedJime/CLK_TCK >= (long)timeout)
{

'key = 0,
retum(elapsed Jime),

}

}

if (kbhitO)
{

cend = clockO, endtime = cend
flag = 0,
temp = neutral,
'key = getchO,
while ('temp ' = ' " SS flag < 1)

87

{
if ('key == 'temp)

++flag;
++temp;

}
if (flag > 0)
{

if (endtime < starttime)
{

timetaken = 65535.0 - starttime;
timetaken = timetaken + endtime;

}
else

timetaken = endtime - starttime;

I* check that reaction time is not too low 7
if (timetaken >= MIN_REACTION_TIME/1000.0 * CLK.TCK)

retum(timetaken);

r

88

Name LIST C
Type Linked list manipulation module for

Air Traffic Control Screening Program
Language Microsoft QuickC version 2

Last Revision 06/16/92 Gordon Jones

7

ftnclude <malloc h>
ftnclude <stdio h>
ftnclude <stnng h>
#mclude "typjnit h"

#mclude "list h"

r Memory allocation routines 7
/* Standard input/output 7
I* Stnng manipulation 7

/* structure definitions for 7
/* STUDENT_COLUMN 7

I* Linked list routines 7

Function Addsl
File LIST C

Parameters
(input) offset offset in bytes where student record

<student fil>
(input) h pointer to head of linked list
(input) t pointer to tail of linked list
(input) key student identifier to be added to

is in file

linked
list

Returned

Vanables

None

new pointer to tempory record

Descnption Procedure to add a record (node) to tail of linked
list

Note For additional help refer to any data structures
book on singly linked lists -> simplest'

7

void addsl(long offset, NODE " h , NODE"t, char 'key)

{
NODE 'new,

}

new = malloc(sizeof (N O D E)) ,
new->offset = offset, /* copy offset into node offset */
strcpy(new->qualifier, key), /* copy qualifier into node 7
if(*t '= NULL)

(* t) -> next = new, I* update old tail's pointer field 7
if(*h == NULL)

(* h) = new, /* set head pointer if necessary 7
t = new, / update tail pointer 7
(* t) -> next = NULL, I* blank new tail's pointer field 7

Function
File

Freelist
L ISTC

Parameters

Returned

(input) r

None

pointer to head of linked list

89

Vanables n pointer to tempory record

Descnption Procedure to delete linked list from memory

Note For additional help refer to any data structures
book on singly linked lists -> simplest'

7

void freehst(NODE *h)

{
NODE *n,

n = h, /* point to head of list 7
wh i le (n '=NULL) { /* loop until end of list 7

free(n), /* free current node 7
n = n->next, /* go to next node 7

}
}

Function Check
File LIST C

Parameters
(input) h
(input) key

pointer to head of linked list
pointer to field containing

student
identifier

Returned offset in bytes of student record in student file
<student fil>
if record not found 0 is returned

Vanables n pointer to tempory record

Descnption Procedure to determine if student record with
student identifier <key> is in linked list If
it is return value of offset field (offset of
student record in student file <student fil> in
bytes

7

long check(NODE *h, char 'key)

{
NODE *n,

n = h, /* point to head of list 7
while(n '= NULL) { T loop until end of list 7

if (strcmp (n->quahfier, key) == 0)
retum(n->offset), /* qualifier = key then return 7

n = n->next, /* offset in disk file 7

}
retum(OL), /* qualifier not found => return 0 7

}

list

Function Res_addsl
File LIST C

Parameters
(input) n

(input) h

pointer to student record to be added

pointer to head of linked list

to linked

(input) t pointer to tail of linked list

Returned None

Vanables new pointer to tempory record
counter tempory loop counter

Descnption Procedure to add a record (node) to tail of linked
list

Note For additional help refer to any data structures
book on singly linked lists -> simplest'

void res_addsl(STUDENT_RECORD *n, RESJJODE "h , RESJNODE " t)
{

RESJNODE 'new,
register int counter,

new = malloc(sizeof (RESJNODE)),

/*
copy record passed to procedure (STUDENT_RECORD *n)
into node of type RESjNODE and then add this
node to linked list

7
for(counter = 0, counter <= 29, counter++)

new->studentjnfo[counter] = n->studentjnfofcounter],
strcpy(new->quahfier, n->qualifier),
new->rj_handed = n->rjjianded,
new->test_no = n->test_no,

if(*t '= NULL)
(*t) -> next = new, I* update old tail's pointer field 7

if(*h == NULL)
(*h) = new, /* set head pointer if necessary 7

t = new, / update tail pointer 7
(*t) -> next = N U LL, /* blank new tail's pointer field 7

}

Function Resjreelist
File LIST C

Parameters

(input) h pointer to head of linked list

Returned None

Vanables n pointer to tempory record

Descnption Procedure to delete linked list from memory

Note For additional help refer to any data structures
book on singly linked lists -> simplest'

void resjreelist(RES NODE *h)
{

RESJNODE *n,

n = h, /* point to head of list 7
while(n'= NULL) { /* loop until end of list 7

free(n), I* free current node 7
n = n->next, I* go to next node 7

}

r

*/

ftnclude <graph h>
ftnclude <stdio h>
#include <ctype h>
ftnclude <stnng h>
#include <malloc h>
ftnclude "box h"
ftnclude "mousefun h"
ftnclude "getkey h"
ftnclude "t_colors h"
#include "menu h"

r Default menu colors 7
static int cjines = T BLACK
static int cjitle = TJ3LACK,
static int cjext = TJ3LACK,
static int cjprompt = TJ3LACK,
static int c hitext = T WHITE,
static int cjiiletter = T WHITE |T BRIGHT,
static long int c_back = BK.WHITE,
static long int cjiiback = BKJ3LACK,

/* Default border lines and shadow control 7
static int mbjmes = 1,
static int mbjshadow = 1,

/*
Function menuJwxJinesO

Parameters
(input) linejype 0,1, or 2 (outline)

Returned (function returns nothing)

Vanables (none)

Descnption Sets the box outline type Selects single-line or
double-line border (or none)

7

void menujwx_lines(int linejype)
{

mbjmes = linejype,
}

r
Function menuJwx_shadow()

Parameters
(input) on_off Shadow control

Returned (function returns nothing)

Vanables (none)

Descnption Sets the menu box shadow control to on or off
0 = off, non-zero = on

7

void menu box shadow(mton off)
{

mb shadow3on off,
}

/*
Function menuJjack_color()

Parameters
(input) back Background color

Returned (function returns nothing)

Vanables (none)

Descnption Sets the background color for boxes

7

void menuj>ack color(long back)
{

cjaack = back,
}

/*
Function menuJine_color()

Parameters
(input) lines Border line color

Returned (function returns nothing)

Vanables (none)

Descnption Sets the box outline color

7

void menuJme_color(int lines)
{

cj ines = lines,
}

r
Function menuJitlejwIorO

Parameters
(input) title Title text color

Returned (function returns nothing)

Vanables (none)

Descnption Sets the text color for the title

7

void menu trtle_color(int title)
{

cjrtle = title,
}

/*
Function menuJextjwIorO

Parameters
(input) text Menu text color

Returned (function returns nothing)

Vanables (none)

Descnption Sets the menu box text color

7

void menuJext_color(int text)

{
cjext = text,

}

r
Function menuj>romptjwlor()

Parameters
(input) prompt Menu prompt line color

Returned (function returns nothing)

Vanables (none)

Descnption Sets the menu box prompt line text color

7

void menujjrompt color(int prompt)

{
cjjrompt = prompt,

}

/*
Functwn menuJiilightJetterO

Parameters
(input) hiletter Highlighted letter color

Returned (function returns nothing)

Vanables (none)

Descnption Sets highlighted character color for menu options

7

void menu hilightjetter(int hiletter)

{
cjiiletter = hiletter,

}

/*
Function menujiilightjext()

Parameters
(input) hitext Highlighted text color

Returned (function returns nothing)

Vanables (none)

Descnption Sets highlighted text color for menu options

7

void menu hilightjext(int hitext)
{

cjirtext = hitext,
}

r
Function menuJiilightJjackO

Parameters
(input) hiback Highlighted line background

Returned (function returns nothing)

Vanables (none)

Descnption Sets the background color for the highlighted line
in the menu box

7

void menu hilightj>ack(long hiback)
{

cjiiback = hiback,
}

r
Function menuj)ar()

Parameters
(input) row Screen row to locate menu bar
(input) col Screen column to locate menu bar
(input) stnng Stnng of menu bar selections
(output) choice Number of item selected by user

Returned Buffer used to restore the background

Vanables len Length of menu stnng
fore Saves current foreground color
maxchoice Number of choices
i Looping index
j Looping index
epos
quitjlag
savebuf
fstr
lastc
thisc
bstr
key
back
oldpos

Current position in the menu
Signals to exit function
Buffer containing background

Foreground color attributes
Last character checked
Current character checked
Background color attributes
Key code from getkey_or_mouse()
Saves current background color
Saves the cursor position

Descnption Creates a pop-up menu bar

int far *menu_bar (int row int col, char 'stnng, int 'choice)
{

int len,
int fore,
int maxchoice,
int i, j ,
int epos,
int quitjlag = 0,

int far 'savebuf;
intfstrf81];
char lastc, thisc;
long int bstr[81];
unsigned key;
long int back;
struct rccoord oldpos;

I* Save the current color settings 7
fore = jjettextcolorO;
back = jgetbkcolorO;

/* Save the current cursor position 7
oldpos = jjettextpositionO;

/* Calculate the string length only once 7
len = strlen(string);

I* Save the menu background 7
if (mbjshadow)

savebuf = box_get(row, col, row + 1, col + len + 1);
else

savebuf = box_get(row, col, row, col + len -1);

/* Put the menu bar on the screen 7
_settextposition(row, col);
_outtext(string);

I* Cast a shadow 7
if (mbjshadow)

{
_settextcolor(TJ3RAY);
_setbkcolor(BKBLACK);
box color(row + 1,col + 2, row+1,col +len +1);
}

/* Initialize choice if necessary 7
if ('choice < 1)

'choice = 1;

/* Process each key press 7
while (Iquitjlag)

{

/* Determine the color attributes 7
j = 0;
maxchoice = 0;
lastc = 0;
for (i = 0; i < len; i++)

{
thisc = stringfi];
if (lastc == " SS thisc == " SS i < len - 1)

{

maxchoice++;
}

if (j == 'choice SS i < len - 1)
{
fstrfi] = cjiitext;
bstrfi] = cjiiback;
}

else
{
fstrfi] = cjext;
bstrfi] = cj>ack,
}

if (isupper(thisc))
{
fstrfi] = cjiiletter;

if (j=='choice)
cpos = i;

}
lastc = thisc;
}

r Put the attributes to video 7
for (i = 0; i < len; i++)

{
_settextcolor(fstrfi]);
_setbkcolor(bstrfi]);
box_color(row, col + i, row, col + i);

/* Put cursor at appropriate position 7
_settextposition(row, col + epos);

key = getkeyjjrjnouseO;

/* Convert to upper case 7
if (key >= 'a' SS key <= 't)

key-=32;

I* Check for alpha key 7
if (key >= 'A* SS key <= 'Z')

{
for (i = 0; i < len; i++)

{
if (++cpos >= len)

{
cpos = 0;
'choice = 0;
}

if (isupper(stringfepos]))
'choice += 1;

if (stringfepos] == (char)key)
break;

}
}

/* Check for control keys */
switch(key)

{
case KEYJ.EFT:

if ('choice > 1)
'choice -= 1;

break;
case KEY_RIGHT:

if ('choice < maxchoice)
'choice += 1;

break;
case KEYJHOME:

'choice = 1;
break;

case KEY_END:
'choice = maxchoice;
break;

case KEYJESCAPE:
case KEYJJP:

'choice = 0;
quitjlag = 1;
break;

case KEY_ENTER:
case KEYJ30WN:

quitjlag = 1;
break;

}
}

I" Restore onginal conditions 7
_settextposrtion(oldpos row, oldpos col),
_settextcolor(fore),
jsetbkcolor(back),
return (savebuf),

I*
Function menu_dropO

Parameters
(input) row Screen row to locate menu bar
(input) col Screen column to locate menu bar
(input) strary Stnng array of menu selections
(output) choice Number of item selected by user

Returned Buffer used to restore the background

Vanables n Number of strings in menu
len Length of menu stnng

fore Saves current foreground color
tmpcol Column to start title and prompt
maxchoice Number of choices
i Looping index
quitjlag Signals to exit function
savebuf Buffer containing background
key Key code from getkey_orjnouse()
back Saves current background color
oldpos Saves the cursor position

Descnption Creates a popup drop down menu

7

int far *menujlrop(int row, int col, char "strary, int 'choice)

{
int n = 0,
int len = 0,
int fore,
int tmpcol,
int maxchoice,
int i,
int quitjlag = 0,
int far 'savebuf,
unsigned key,
long int back,
struct rccoord oldpos,

/* Save the current color settings 7
fore = jjettextcolorO,
back = jjetbkcolorO,

r Save the current cursor position 7
oldpos = jjettextposition(),

I* Determine the number of stnngs in the menu 7
while (straryfn] != NULL)

n++,

/* Set the maximum choice number 7
maxchoice = n - 2,

/* Determine the maximum menu stnng length 7
f o r (i = 0, i < n, i++)

if (strien(straryfi]) > len)
len = strlen(straryfi]),

I* Save the menu background 7

if (mbjshadow)
savebuf = box_get(row, col, row + n, col + len + 5) ,

else
savebuf = box_get(row, col, row + n - 1 , col + len + 3) ,

I* Create the menu box 7
_settextcolor(cjines),
_setbkcolor(c_back),
box_erase(row, col, row + n - 1 , col + len + 3) ,
box_draw(row, col, row + n - 1 , col + len + 3, mbjmes),

/* Cast a shadow 7
if (mbjshadow)

{
_settextcolor(TJ3RAY),
jsetbkcolor(BKJ3LACK),
box_color(row + n, col + 2, row + n, col + len + 3) ,
box_color(row + 1 , col + len + 4, row + n, col + len + 5),
}

/* Put the title at the top 7
tmpcol = col + (len - strien(straryfO]) + 4) / 2,
jsettextposition(row, tmpcol),
_settextcolor(cjitle),
jsetbkcolor(cjrack),
_outtext(straryfO]),

I* Pnnt the choices 7
_settextcolor(cjext),
for(i = 1, i<= maxchoice, i++)

{
jsettextposition(row +1, col + 2) ,
_outtext(straryfi]),
}

/* Put the prompt at the bottom 7
tmpcol = col + (len - strlen(straryfn -1]) + 4) / 2,
jsettextposition(row + n - 1 , tmpcol),
_settextcolor(cjprompt),
j>uttext(straryfn -1]),

/* Initialize choice 7
'choice = 1,

/* Process each key press 7
while ('quitjlag)

{

I* Determine and set the color attnbutes 7
for (i = 1, i <= maxchoice, i++)

{
if (i == 'choice)

{
_setbkcolor(cjiiback)
_settextcolor(cjiiletter),
box_color(row +1, col + 1, row + i, col + 2) ,
jsettextcolor(cjirtext),
box_color(row +1, col + 3, row + i, col + len + 2)
}

else
{
_setbkcolor(cj>ack),
jsettextcolor(cjiiletter),
box_color(row +1, col + 1, row +1, col + 2) ,
_settextcolor(cjext),
box_color(row +1, col + 3, row + i, col + len + 2),
}

}

I* Put cursor at appropnate position 7
_settextposrtion(row + 'choice, col + 2) ,

key = getkey_or_mouse(),

/* Convert to upper case 7
if (key >= 'a' SS key <= "z*)

key — 32,

/* Check for alpha key 7
if (key >= "A" SS key <= '2')

{
for(i = 1, i<= maxchoice, i++)

{
'choice += 1,
if ('choice > maxchoice)

'choice = 1,
if (strary[*choice][0] == (char)key)

break,
}

}

I* Check for control keys 7
switch (key)

{
case KEYJJP

if ('choice > 1)
'choice -= 1,

break,
case KEYjDOWN

if ('choice < maxchoice)
'choice += 1,

break,
case KEY_HOME

'choice = 1,
break,

case KEY_END
'choice = maxchoice,
break,

case KEYJESCAPE
'choice = 0,
quitjlag = 1,
break,

case KEY_ENTER
quitjlag = 1,
break,

}
}

I* Restore onginal conditions 7
_settextposition(oldpos row, oldpos col),
_settextcolor(fore),
jsetbkcolor(back),
return (savebuf),

}

/* -
Function menujnessage()

Parameters
(input) row Screen row to locate message box
(input) col Screen column to locate message box
(input) strary Stnng array of message text

Returned Buffer used to restore the background

Vanables n Number of stnngs in message
len Length of longest menu stnng

fore Saves current foreground color
tmpcol Column to start title and prompt
i Looping index
savebuf Buffer containing background
key Key code from getkey_or_mouse()
back Saves current background color
oldpos Saves the cursor position

Descnption Creates a pop-up message box

int far *menujnessage(int row, int col, char "strary)

{
int n = 0,
int len = 0,
int fore;
int tmpcol,
int i,
int far 'savebuf,
unsigned key,
long int back,
struct rccoord oldpos,

/* Save the current color settings */
fore = jjettextcolorO,
back = _getbkeolor(),

I* Save the current cursor position 7
oldpos = jjettextpositionf),

I* Detemriine the number of stnngs in the message 7
while (straryfn] '= NULL)

n++,

/* Determine the maximum message stnng length 7
for (i = 0, i < n, i++)

if (strien(straryfi]) > len)
len = strlen(straryfi]),

/* Save the message background 7
if (mbjshadow)

savebuf = box_get(row, col, row + n, col + len + 5) ,
-else

savebuf = box_get(row, col, row + n - 1 , col + len + 3) ,

/* Create the information box 7
_settextcolor(c j m e s) ,
_setbkcolor(cjsack),
boxjsrase(row, col, row + n - 1 , col + len + 3) ,
box_draw(row, col, row + n - 1 , col + len + 3, mbjmes) ,

/* Cast a shadow 7
if (mbjshadow)

{
_settextcolor(TJ3RAY) ,
_setbkcolor(BK_BLACK),
box_color(row + n, col + 2, row + n, col + len + 3) ,
boxjwlor(row + 1, col + len + 4, row + n, col + len + 5) ,
}

/* Put the title at the top 7
tmpcol = col + (len - strlen(straryfO]) + 4) / 2,
jsettextposition(row, tmpcol),
jsettextcolor(cjrt le) ,
_setbkcolor(c_back),
_outtext(straryfO]),

rPnnt thetext* /

_settextcolor(cjext);
for (i = 1; i < n - 1 ; i++)

{
_settextposition(row + i, col + 2);

outtext(straryfi]);
}

/* Put the prompt at the bottom 7
tmpcol = col + (len - strlen(straryfn -1]) + 4) / 2;
_settextposition(row + n - 1 , tmpcol);
_settextcolor(cjprompt);
_outtext(straryfn -1]);

/* Restore original conditions 7
_settextposition(oldpos.row, oldpos.col);
_settextcolor(fore);
jsetbkcolor(back);
return (savebuf);

}

/*
Function: menujsraseO

Parameters:
(input) buf Buffer for restoring background

Returned: (function returns nothing)

Variables: (none)

Description: Restores the background behind a bar menu,
pull-down menu, or message box

void menu_erase(int far *buf)
{

boxjsut(buf);
Jfree(buf);

}

I*
Name MN.MENU C
Type Routines that display the mam

menu and the choices that are
available to the user
Air Traffic Control Screening Program

Language Microsoft QuickC version 2

7

ftnclude <stdio h>
ftnclude <graph h>
ftnclude <process h>
ftnclude "typ inrth"
ftnclude "fileTi"
ftnclude "list h"
ftnclude 'Imanager h"
ftnclude "menu h"
#mclude "box h"
ftnclude "t_colors h"
ftnclude "dskjnrt h"
ftnclude "datajplt h"
#mclude "getkey h"

char 'error box 1_08Q =
{
" Error Message #1 08",

" Unable to spawn statistical",
" analysis program <stjnenu exe> ",

t

" Result => the program can not",
" be loaded and executed ",

" Action => check that stjnenu exe",
" is located in the same directory",

as the other program files",

"< Press any key >",
NULL
}•

char 'dropjnainjnenuQ =
{
" Main Menu ",
"Perform Student Tests",

"Demonstration Tests",
"Exit Program",

" Select",
NULL

}.

char 'dropjsub menuQ =
{
" Practice Menu",
"Test#1",
"Main Menu",

NULL
}.

char 'drop fulljnenufj =

f
" Perform Student Test Menu",
•Test#1",
"All Tests",

NULL
}.

/*
Function Display mam menu
File MN MENUC

Parameters
(input)

head pointer to head of student index linked
list of type NODE

tail pointer to tail of student index linked
list of type NODE

rjiead pointer to head of student record linked
list of type RESJNODE

rjai l pointer to tail or student record linked
list of type RESJNODE

Returned None

Vanables
choice User choice from drop down menu
r Return value from spawn command
offset Offset of student record in student

file held on disk
args arguments passed to the spawn command

argsfO] is pointer to filename to be
executed args[1] is NULL pointer to end
of argument list

prog filename to be executed by spawn command

Descnption Displays the mam menu and prompts the user to
select from one of the choices available

7

STUDENT RECORD new student,

void displayjnain menu(NODE "head, NODE "tail,
RESJNODE " r j i ead , RESJNODE " r j a i l)

{
int choice = 0,
int second_choice = 0,

intr;
long offset,
char *args[2],
char prog[80] = "stjnenu",
int 'savejsrrorjwx,

argsfO] = prog,
args[1] = NULL,

newjstudent testj io = -10,

while (choice '= 3) {
/*

Display mam menu
7
menu_erase(menu_drop(4,18, dropjnainjnenu, Schoice)),

swrtch(choice) {
easel

/* Perform Student Tests 7
newjstudent testjio = 0,

/* Initialize linked list of index to student records on file 7

/*

ftnclude <dos h>
#mclude "mousefun h"

/*
Function mousejesetO
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(output) status Status of the mouse
(output) buttons Number of mouse buttons

Returned (function returns nothing)

Vanables ml Local vanable for register ax
m2 Local vanable for register bx

Descnption Resets the mouse and venfies its existence

void mouse reset(int 'status, int 'buttons)
{

int m l , m2,

_asm
{
xor ax, ax

int 33h
mov m l , ax
mov m2, bx
}

'status = m l ,
'buttons = m2,

/*
Function mousejshowO
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters (none)

Returned (function returns nothing)

Vanables (none)

Descnption Makes the mouse cursor visible

void mouse_show(void)
{

_asm
{
mov ax, 1
int 33h
}

}

/*
Function mouse hideO
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters (none)

Returned (function returns nothing)

Vanables (none)

Descnption Makes the mouse cursor invisible

void mouseJiide(void)
{

_asm
{
mov ax, 2
int 33h
}

}

/*
Function mousejstatusO
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(output) left_button State of the left button
(output) nght Jjutton State of the nght button
(output) horzjws Horizontal position of the mouse
(output) vertjws Vertical position of the mouse

Returned (function returns nothing)

Vanables m2 Local vanable for register bx
m3 Local vanable for register ex
m4 Local vanable for register dx

Descnption Gets the current state of the mouse buttons and
the mouse cursor position

void mouse_status(int 'leftjxrtton, int *nght_button,
int'horzjws int'vertjws)

{
int m2, m3, m4,

_asm
{
mov ax, 3
int 33h
mov m2, bx
mov m3, ex
mov m4, dx
}

*left_button = m2 S 1,
*nghtJ>utton = (m2 » 1) S 1,
'horzjws = m3,
'vertjws = m4,

}

/*

Parameters
(input) honzontal Honzontal position
(input) vertical Vertical position

Returned (function returns nothing)

Vanables (none)

Descnption Sets the mouse cursor to the indicated position

7

void mouse_setpos(int honzontal, int vertical)

{
_asm

{
mov ax, 4
mov ex, honzontal
mov dx, vertical
int 33h
}

Function mousejsressO
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(input)
(output)
(output)
(output)
(output)

button Left or nght button
status Status of the button
presses Number of button presses
horzjws Honzontal position at last press
vert jws Vertical position at last press

Returned (function returns nothing)

Vanables ml Local vanable for register ax
m2 Local vanable for register bx
m3 Local vanable for register ex
m4 Local vanable for register dx

Descnption Gets button press information

7

void mousej>ress(int button, int 'status, int 'presses,
int 'horz jws, int ' ve r t jws)

{
int m l , m2, m3, m4,

asm
{
mov
mov

ax,
bx,

int 33h
mov
mov
mov
mov

ml,
m2,
m3,

b
button

,ax
, bx
, ex

m4, dx

if (button == LBUTTON)
'status = ml S 1 ,

else
'status = (m1 » 1) S 1 ,

'presses = m2;
•horzjws = m3,
•vertjws = m4,

}

/*
Function mousejeleaseO
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(input) button Left or nght button
(output) status Status of the button
(output) presses Number of button releases
(output) horzjws Honzontal position at last release
(output) vertjws Vertical position at last release

Returned (function returns nothing)

Vanables ml Local vanable for register ax
m2 Local vanable for register bx
m3 Local vanable for register ex
m4 Local vanable for register dx

Descnption Gets button release information

7

void mousejelease (mt button, int 'status, int 'releases,
int 'horzjws, int 'vertjws)

{
int ml, m2, m3, m4,

asm
{
mov ax,
mov bx,
mt 33h
mov ml
mov m2
mov m3

6
button

, ax
, bx
, ex

mov m4, dx
}

if (button =•
'status =

else
'status =

'releases =
•horzjws =
'vertjws =

}

= LBUTTON)
ml S 1 ,

(ml »

m2,
:m3,
m4,

1) S 1

/*
Function mouse_sethorz()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(input) horzjnin Minimum honzontal cursor position

(input) horzjnax Maximum honzontal cursor position

Returned (function returns nothing)

Vanables (none)

Descnption Sets minimum and maximum honzontal mouse
cursor positions

void mouse sethorz(mt horzjnin, int horzjnax)
{

_asm
{
mov ax, 7
mov ex, horzjnin
mov dx, horzjnax
int 33h
}

}

/*
Function mousejsetvertO
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(input) vertjnin Minimum vertical cursor position
(input) vertjnax Maximum vertical cursor position

Returned (function returns nothing)

Vanables (none)

Descnption Sets minimum and maximum vertical mouse cursor
positions

void mouse_setvert(int vertjnin, int vertjnax)
{

_asm
{
mov ax, 8
mov ex, vertjnin
mov dx, vertjnax
mt 33h
}

}

r
Function mousejsetgcurs()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(input) cursor Structure defining a graphics cursor

Returned (function returns nothing)

Vanables cursorjseg Segment of the cursor structure
cursorjsff Offset of the cursor structure
hotx Hot spot x value
hoty Hot spot y value

Descnption Creates a graphics mode mouse cursor

7

void mouse setgcurs(struct graphics cursor far 'cursor)
{

unsigned cursorjseg = FPJ3EG(cursor),
unsigned cursor_off = FP_OFF(cursor),
mt hotx = cursor->hot_spotj<,
mt hoty = cursor->hot_spotj/,

_asm
{
mov ax, 9
mov bx, hotx
mov ex, hoty
mov es, cursorjseg
mov dx, cursor_off
mt 33h
}

}

/*
Function mousejsettcurs()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(input) cursorjselect Hardware or software cursor
(input) screenjnask Screen mask (or start scan line)
(input) cursorjnask Cursor mask (or end scan line)

Returned (function returns nothing)

Vanables (none)

Descnption Sets the text mode hardware or software cursor

void mouse_settcurs(mt cursorjselect, int screenjnask, mt cursorjnask)
{

_asm
{
mov ax, 10
mov bx, cursorjselect
mov ex, screenjnask
mov dx, cursorjnask
mt 33h
}

}

/*
Function mousejnotion()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(output) horzjmckeys Horizontal mickeys
(output) vertjnickeys Vertical mickeys

Returned (function returns nothing)

Vanables m3 Local vanable for register ex
m4 Local vanable for register dx

Descnption Gets the accumulated mouse motion counts
(mickeys) since the last call to this function

111

7

void mouse motion(int *horz mickeys, int 'vertjnickeys)
{

int m3, m4;

asm
" {

mov ax, 11
int 33h
mov m3, ex
mov m4, dx
}

•horzjnickeys = m3;
•vertjnickeys = m4;

}

r
Function: mousejsetratiosO
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(output) horizontal Horizontal mickey/pixel ratio
(output) vertical Vertical mickey/pixel ratio

Returned: (function returns nothing)

Variables: (none)

Description: Sets the mickey/pixel ratios for mouse motion

7

void mouse_setratios(int horizontal, int vertical)
{

_asm
{
mov ax, 15
mov ex, horizontal
mov dx, vertical
int 33h
}

}

/*
Function: mousejwndoffO
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) x1
(input) y1
(input) x2
(input) y2

Returned: (fu

Upper left comer of region
Upper left comer of region
Lower right comer of region
Lower right comer of region

nction returns nothing)

Variables: (none)

Description: Sets a region for conditionally tuming off the
mouse cursor

7

void mouse condoff(mt x1, mt y1, mt x2, int y2)
{

asm
" {

mov ax, 16
mov ex, x1
mov dx, y1
mov si, x2
mov di, y2
int 33h
}

}

r
Function mousejsetdoubleO
Toolbox- MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(input) mickeysjwrjsecond Double speed threshold

Returned (function returns nothing)

Vanables (none)

Descnption Sets the mouse double speed threshold

void mouse_setdouble(mt mickeysjwr second)
{

asm
" {

mov ax, 19
mov dx, mickeysjserjsecond
int 33h
}

}

/*
Function mousejstorageO
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(output) bufferjsize Bytes for saving mouse state

Returned (function returns nothing)

Vanables m2 Local vanable for register bx

Descnption Detemnines the number of bytes required for
saving the current state of the mouse

void mouse storage(mt 'bufferjsize)
{

int m2,

_asm
{
mov ax, 21
int 33h
mov m2, bx
}

•buffer size = m2;
}

/*
Function: mouse save()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(in/out) buffer Buffer for saving mouse state

Returned: (function returns nothing)

Variables: bufferjseg Segment of the buffer
buffer_off Offset of the buffer

Description: Saves the current state of the mouse

void mouse_save(char far "buffer)
{

unsigned bufferjseg = FP_SEG(buffer);
unsigned buffer_off = FPjDFF(buffer);

_asm
{
mov ax, 22
mov es, bufferjseg
mov dx, buffer off
int 33h
}

}

/*
Function: mousejestoreO
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) buffer Buffer for restoring the mouse state

Returned: (function returns nothing)

Variables: bufferjseg Segment of the buffer
bufferjjff Offset of the buffer

Description: Restores the current state of the mouse

void mouse restore(char far 'buffer)
{

unsigned bufferjseg = FPJ3EG(buffer);
unsigned bufferjjff = FP_OFF(buffer);

_asm
{
mov ax, 23
mov es, bufferjseg
mov dx, bufferjjff
int 33h
}

}

r

Function: mouse setsensitivityO
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) horz Relative horizontal sensitivity
(input) vert Relative vertical sensitivity
(input) threshold Relative double speed threshold

Returned: (function returns nothing)

Variables: (none)

Description: Sets the mouse sensitivity and double speed
threshold

void mouse_setsensitivity(int horz, int vert, int threshold)
{

_asm
{
mov ax, 26
mov bx, horz
mov ex, vert
mov dx, threshold
int 33h
}

}

/*
Function: mousejjetsensitivityO
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(output) horz Relative horizontal sensitivity
(output) vert Relative vertical sensitivity
(output) threshold Relative double speed threshold

Returned: (function returns nothing)

Variables: (none)

Description: Gets the mouse sensitivity and double speed
threshold

void mousejjetsensitivity(int 'horz, int *vert, int 'threshold)
{

int m2, m3, m4;

jssm
{
mov ax, 27
int 33h
mov m2, bx
mov m3, ex
mov m4, dx
}

'horz = m2;
'vert = m3;
'threshold = m4;

}

/*
Function: mouse setmaxrateO
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) interruptsjjerjsecond Interrupt rate

Returned: (function returns nothing)

Variables: rate Number for range of interrupt rates

Description: Sets the interrupt rate (InPort mouse only)

void mousejsetmaxrate(int interruptsjjerjsecond)
{

int rate;

if (interruptsjjerjsecond <= 0)
rate = 0;

else if (interruptsjjerjsecond > 0 SS interruptsjjerjsecond <= 30)
rate = 1;

else if (interruptsjjerjsecond > 30 SS interruptsjjerjsecond <= 50)
rate = 2;

else if (interruptsjjerjsecond > 50 SS interruptsjwrjsecond <= 100)
rate = 3;

else
rate = 4;

jasm
{
mov ax, 28
mov bx, rate
int 33h
}

}

r
Function: mousejsetpageO
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) crtjjage Video page for mouse cursor

Returned: (function returns nothing)

Variables: (none)

Description: Sets the video page where mouse cursor appears

void mousejsetpage(int crtjjage)
{

_asm
{
mov ax, 29
mov bx, crtjjage
int 33h
}

}

/*
Function: mousejjetpagef)

Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(output) crtjjage Video page for mouse cursor

Returned: (function returns nothing)

Variables: m2 Local variable for register bx

Description: Gets the video page in which mouse cursor appears

void mousejjetpage(int 'cr t j jage)

{
int m2;

_asm

{
mov ax, 30
int 33h
mov m2, bx
}

'crtjjage = m2;
}

/*
Function: mouse setlang()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) language Language number

Returned: (function returns nothing)

Variables: (none)

Description: Sets the language for mouse driver messages

void mouse_setlang(int language)

{
_asm

{
mov ax, 34
mov bx, language
int 33h
}

}

/*
Function: mouse_getlang()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(output) language Language number

Returned: (function returns nothing)

Variables: (none)

Description: Gets the language for mouse driver messages

7

void mousejjetlang(int 'language)
{

intm2;

_asm
{
mov ax, 35
int 33h
mov m2, bx
}

•language = m2;
}

r
Function: mousejjetversion()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(output) version Mouse driver version number
(output) mousejype Type of mouse
(output) irqjium Interrupt request type

Returned: (function returns nothing)

Variables: m2 Local variable for register bx
m3 Local variable for register ex
maj Major part of version number
min Minor part of version number

Description: Gets the mouse driver version number, mouse type,
and interrupt request type

void mousejjetversion(double 'version, int 'mousejype, int "irqjium)
{

int m2, m3;
int maj, min;

_asm
{
mov ax, 36
int 33h
mov m2, bx
mov m3, ex
}

maj = (m2 » 1 2) * 10 + ((m2 » 8) S Oxf);
min = ((m 2 » 4) S 0 x f) * 1 0 + (m2S0xf);
•version = maj + min /100.0;
•mousejype = m3 » 8;
•irqjium = m3 S Oxff;

}

/*
Name ROTATE C
Type Test to collect data for thesis for Ron Archer
Language Microsoft QuickC version 2

Program List ROTATE C
BOXC
CLOCKC
DATA PLTC
DSKJNIT C
EDITC
FILEC
GETKEY C
LISTC
MENUC
MOUSEFUN C
MN_MENU C
T MANAGER C
TEST 1 C
T1 OBJECT C
SOUND C
ST_MENU C
STATS C
VIDEO C

Vanables head global pointer to head of linked list
of student record indexes

tail global pointer to tail of linked list
of student record indexes

rjiead global pointer to head of linked list
of student data records

r ja i l global pointer to head of linked list
of student data records

Usage (no command line parameters)

Descnption Computer based test that measures an individual's
abliltiies in very specific areas

Last Revision 10 March 1996 Animesh Banenee

ftnclude <stdio h>
ftnclude <graph h>
ftnclude <dos h>
ftnclude "typjnit h"
ftnclude "getkey h"
ftnclude "menu h"
ftnclude "box h"
ftnclude "tjwlors h"
ftnclude "list h"
ftnclude "mn menu h"

char *schooljnfo[] =
{

Mental Rotation Test",

Ver 1 00",

" Embry-Riddle Aeronautical University"

"< Press any key >",
NULL
}.

char *myjnfo[] =

! .

" Mental Rotation Test",
II M

Version 1.00",

by",

Ronald D. Archer",

" Embry-Riddle Aeronautical University",
Daytona Beach, FL 32114",

" ' Tel: (904) 322-5501 ",
" banerjea@erau.db.erau.edu (internet)",

"< Press any key >",
NULL
};

int qjnjecord = 1;

NODE *head, *tail;
RESJNODE *r_head, 'rjail;

void main(void)
{

int 'savejnfojwx;

/* Initialize text foreground and background color 7
settextcolor(T BLUE);

_setbkcolor(BKJ3LACK);

/* Initialize video 7
_setvideomode(_TEXTC80);
_clearscreen(J3CLEARSCREEN);

/* Display school information message 7
savejnfojwx = menu_message(7,18, schoolJnfo);

I* get key or mouse press 7
getkeyjjrjnouseO;

/* Erase school information message 7
menu_erase(savejnfojwx);

/* Display my information message 7
savejnfojwx = menujnessage(4,18, myjnfo);

/* get key or mouse press 7
getkeyjjrjnouseO;

/* Erase school information message 7
menu_erase(savejnfojwx);

/* Set foreground and background colors for program 7
_setbkcolor(BKCYAN);
jsettextcolor(TJ3LACK);

/* Fill the background 7

box_charfill(1,1,25, 80,178);

/* activate main menu 7
display_main_menu(Shead, Stail, Sr_head, Srjail);}

mailto:banerjea@erau.db.erau.edu

/*

ftnclude <como h>
#include <time h>
ftnclude "sound h"

static unsigned control,
static int control Jlag = 1,

/*
Function speakerJoggleO
Toolbox SOUND C
Demonstrated SOUNTEST C

Parameters (none)

Returned (function returns nothing)

Vanables (none)

Descnption Pulses the speaker on or off with each call

void speakerJoggle(void)
{

if (control flag)
{
control = inp(0x61),
control Jlag = 0,
}

outp(0x61, (inp(0x61) S OxFE) A 2) ,
}

/*
Function soundf)
Toolbox SOUND C
Demonstrated SOUNTEST C

Parameters
(input) frequency Frequency of generated tone

Returned (function returns nothing)

Vanables divisor Timer value for given frequency

Descnption Sets a tone at a given frequency

void sound(int frequency)
{

unsigned divisor,

divisor = (unsigned)(1193180L / frequency),
if (control Jlag)

{
outp(0X43,0xB6),
outp(0x42, divisor % 256),
outp(0x42, divisor / 256),
control = inp(0x61),

control flag = 0;
}

else
{
divisor = (unsigned)(1193180L / frequency);
outp(0x42, divisor % 256);
outp(0x42, divisor / 256);
}

outp(0x61, control 13);
}

/*
Function: silenceO
Toolbox: SOUND.C
Demonstrated: SOUNTEST.C

Parameters: (none)

Returned: (function returns nothing)

Variables: (none)

Description: Turns off the tone generator

void silence(void)
{

outp(0X61, control);
control flag = 1;

}

/*
Function: waitJicksO
Toolbox: SOUND.C
Demonstrated: SOUNTEST.C

Parameters:
(input) ticks Number of clock ticks

Returned: (function returns nothing)

Variables: now Time as returned by soundf)

Description: Delays for a given number of clock ticks

void waitjicks(unsigned ticks)
{

clockj now;

do
{
now = clockO;
while (clock()== n o w)

{;}
}

while(-ticks);
}

/*
Function: warb!e()
Toolbox: SOUND.C
Demonstrated: SOUNTEST.C

Parameters
(input) count Number of warble cycles

Returned (function returns nothing)

Vanables (none)

Descnption Creates a three-tone warble

7

void warble(int count)
{

do
{
sound(500),
wartjicks(1),
sound(2000),
wartjicks(1),
sound(1000),
wartjicks(1),
sound(750),
wartjicks(1),
}

while (-count),

silenceO.
}

/*
Function weirdO
Toolbox SOUND C
Demonstrated SOUNTEST C

Parameters count Number of sound generation cycles

Returned (function returns nothing)

Vanables i Looping index
j Tone frequency

Descnption Creates a modulated sound

void weird(int count)
{

mt i, j ,

sound(50),
do

for(l = 50, K1200, i+=100)
for (j = i, j •« i + 1200. j += 5)

sound(j),
while (-count),

silenceO,
}

/*
Function siren()
Toolbox SOUND C
Demonstrated SOUNTEST C

Parameters count Number of sound generation cycles

Returned (function returns nothing)

Variables: i Looping index

Description: Creates a sound whose frequency rises and falls

void siren(int count)
{

int i;

sound(50);
do

{
for (i = 50; i < 2000; i++)

sound(i) ;
for (i = 2000; i > 50; i -)

sound(i) ;
}

while (-count);

silenceO;
}

/*
Function: white noiseO
Toolbox: SOUND.C
Demonstrated: SOUNTEST.C

Parameters: ticks Number of clock ticks

Returned: (function returns nothing)

Variables: i Looping index
mdm Pseudorandom unsigned integer
now Time as returned by clockO

Description: Generates white noise, a widejanging multifrequency
sound

void whitejioise(int ticks)
{

unsigned i, mdm;
clockj now;

do
{
now = clockO;
while (clockO = = n o w)

{
speaker toggle();
mdm = mdm'317+ 21317;
for (i = mdm S OxFF; i; i -)

{;}
}

}
while(-ticks);

silence();
}

r
Function: noteO
Toolbox: SOUND.C
Demonstrated: SOUNTEST.C

124

Parameters: frequency Frequency of the tone
ticks Number of clock ticks

Returned: (function returns nothing)

Variables: (none)

Description: Creates a tone given its frequency and duration

7

void note(int frequency, int ticks)
{

sound(frequency);
waitjicks(ticks);
silence();

}

/*

7

ftnclude <stdio.h>
ftnclude <math.h>
#include <float.h>
#include <stdlib.h>
#include <conio.h>
#include <time.h>
ftnclude "typjnit.h"
ftnclude "menu.h"
ftnclude "getkey.h"
ftnclude "box.h"
#include "tjwlors.h"
#inciude "sound.h"

I* Error message data 7
char 'errorjwx 3 010 =

{
" Error Message #3.01",

" One of the statistical functions",
" was passed a value for testjio",
" which is out of range",

"< Press any key >",
NULL
};

char 'errorJwx_3_02[] =
{
" Error Message #3.02",

" There are no student records in",
" memory to analyze.",

" RESULT => No statistical analysis",
" of student results can be done.",

'• < Press any key >",
NULL
};

/*
this function calculates the mean time
for correct answers for test number
determined by testjio

7

double caljnean time correct(int test no, RESJJODE *h)

{
double sumjime = 0.0;
int numjstudents;
int 'savejsrrorjwx;

RESJNODE *n;

/*
check to see if testjio in range

7
if (testjio < 0 || testjio > 19) {

/*

set error box color to red
set error text color to white

7
menu_back_color(BK RED),
menu~text_color(TJ/VHITE | TJ3RIGHT),

/* Display error Jwx_3J31 7
savejsrrorjwx = menu_message(10,8, errorJwx_3_01)

getkeyjjrjnouseO,

/* Erase errorJwx_3JD1 7
menu_erase(savejsrrorjwx),

/*
set box color back to cyan
set text color back to black

7
menu_backjwlor(BK.WHITE),
menuJext_color(T_BLACK),

retum((double) 0 0) , /* error return 0 to caller 7
}

n = h, r set pointer to head of list 7
while (n »= NULL) { /* while not end of list 7

/*
increase total time by avg time correct
for this student for this test number

7
sum Jime = sum Jime + n->studentjnfo[testjio] avgJime^correct,

/*
increase number of students
results taken from

7
++num_students,

n = n->next,

/*
return the mean time for correct answer times
for test testjio

7
if (num students == 0)

r
check for divide by zero error

7
retum((double) 0) ,

else
return (sumjime / (double) num students),

}

/*
this function calculates the mean time
for incorrect answers for test number
determined by testjio

7

double cal_meanJimejncorrect(int testjio RESjNODE *h)
{

double sumjime,
int numjstudents,
int 'savejsrrorjwx,

RESjNODE *n,

Descnption- This function calculates the statistical
deviation for correct answers for test number
determined by testjio

double cal_stat_deviationj»rrect(int testjio, RESjNODE *h)
{

double sumjjifference,
double difference,
double mean_time_correct,
int 'savejsrrorjwx,

RESJNODE *n,

/*
check to see if testjio in range

7
if (testjio < 01| testjio > 19) {

/*
set en'or box color to red
set error text color to white

7
menu_back_color(BK RED),
menuJext_color(TJ/VHITE | TJ3RIGHT),

/* Display error_box_3_01 7
savejsrrorjwx = menu_message(10,8, errorJwx_3_01),

getchO,

/* Erase errorJwx_3_01 7
menujsrase(savejsrrorjwx),

/*
set box color back to cyan
set text color back to black

7
menu_back_color(BKWHITE),
menuJext_color(TJ5LACK),

retum((double) 0) , /* error return 0 to caller 7
}

/*
get the mean response time
for correct answers

7
meanjimejwrrect = cal_meanJime_correct(test_no, h),

n = h, r set pointer to head of list 7
while (n '= NULL) { /* while not end of list 7

/*
calculate difference from mean

7
difference = meanJime_correct -

n->studentjnfo[test_no]avgJime_correct,

r
square difference

7
difference = difference' difference,

/*
update sum of difference

7

sumjJifference = sumjdifference + difference,

n = n->next,
}

/*
return the statistical deviation for correct answer times
for test test no

7
return (sqrt((double) sumjJifference)),

}

/*
this function calculates the statistical
deviation for incorrect answers for test number
determined by testjio

7

double caljstat_deviationjncorrect(int testjio, RESjNODE *h)
{

double sumjJifference,
double difference,
double meanjimejwrrect,
int *savejsrrorJwx;

RESJMODE *n,

/*
check to see if test no in range

7
if(testjio<0||test no>19){

/*
set error box color to red
set error text color to white

7
menu_back_cok>r(BK_RED),
menuJext_color(TJ/VHITE | T_BRIGHT),

/* Display errorJwx_3J)1 7
savejsrrorjwx = menu_message(10, 8, error_boxJ3_01),

getchO;

/* Erase error_box_3_01 7
menujsrase(savejsrrorjwx),

r
set box color back to cyan
set text color back to black

7
menu_backjwlor(BKWHITE),
menuJext_color(TJ3LACK),

retum((double) 0) , /* error return 0 to caller */
}

/*
get the mean response time
for correct answers

7
meanjimejwrrect = cal_meanJimejncorrect(testjio, h),

n = h, r set pointer to head of list */
while (n '= NULL) { /* while not end of list 7

/*
calculate difference from mean

7
difference = mean time correct-

n->studentjnfo[test_no]avgjimejncorrect,

I*
square difference

7
difference = difference * difference,

/•
update sum of difference

7
sum_difference = sum_difference + difference,

n = n->next,
}

r
return the statistical deviation for correct answer times
for test testjio

7
return (sqrt((double) sum_difference)),

}

/*
Function StatsJest J 0,
File STATS C

Parameters None

Returned None

Vanables None

Descnption Calculates statistics for test #1 given results
from the test

void statsjestj (TEMP *st1, STUDENT_RECORD 'newjstudent, int 'correct,
int test j ium)

{

mt n,
mt totjiumjwrrect = 0,
int totjiumjneorrect = 0,
double totjjmejncorrect = 0 0,
double tot Jimejwrrect = 0 0,
char Ikwpjimit, utoopjimit,
mt sumjwrrect = 0,
int sumjncorrect = 0,
double sumjimejwrrect = 0 0,
double sumjimejncorrect = 0 0,

/* check tnal number to set corresponding loop counters 7
if (testjium == 0)
{

Ikwpjimit = 0,
utoopjimit = 32,

}
else
{

Ikwpjimit = 32,
uloopjimit = 64,

/* begin processing of data 7

for (n = Ikwpjimit, n < uloopjimit, n++)
{

if (stlfn] answer == correctfn]) {

++sum_correct,
sum Jimejwrrect = sumjime correct +

(st1 fn] reaction Jime / CLK_TCK),
stlfn] nght wrong = 1,

}

else{

++sumjncorrect,
sumjimejncorrect = sumjimejncorrect +

(st1 [n] reaction Jime / CLKJTCK),
stlfn] nght_wrong = 0,

}

}
I* get number of questions 7

newjstudent->studentjnfo[testjium] total_no_questions = 64,

/* check for divide by zero 7
if (sum jwrrect •= 0)

/* calculate average time to answer questions correctly for tnal 7
new_student->studentjnfo[testjium] avgjimejwrrect =

sumjimejwrrect / (double) sum_correct,

else

I* calculate average time to answer questions for tnal correctly 7
new_student->studentjnfo[test_num] avgJimejwrrect = 00,

/* check for divide by zero 7
if (sumjncorrect 1=0)

I* calculate average time to answer questions for tnal incorrectly 7
newj5tudent->studentjnfo[test_num] avgjimejncorrect =

sumjimejncorrect / (double) sumjncorrect,

else

/* calculate average time to answer questions incorrectly for the tnal*/
newjstudent->studentjnfo[test_num] avgjimejncorrect = 00,

/" get number of questions answered correctly for tnal
NOTE Score is (number correct - number incorrect) 7

newjstudent->studentjnfo[testjium] no_questions_correct =
sumjwrrect - sumjncorrect,

/* Calculate the overall average incorrect and correct times for all 64 questions 7
for(n = 0, n < 64, n++)
{

if(stlfn] nghtjATong == 1)
{

tot Jimejwrrect += st1 [n] reaction Jime / CLKJTCK,
tot_num_correct++,

}
else
{

totjimejncorrect += st1 [n] reaction Jime / CLKJTCK,
tot_numjncon-ect++,

}
}

if (totjiumjwrrect == 0)
new_student->studentjnfo[1] ovrljavgjime_corr = 0 0,

else
newjstudent->studentjnfo[1] ovri_avgJimejwrr =

tot Jimejwrrect / (double) totjiumjwiTect,

if (totjiumjncorrect == 0)
newjstudent->studentjnfo[1] ovn_avgjimejncorr = 0 0,

else
newjstudent->studentjnfof1] ovrl_avgJimejncorr =

totjimejncorrect / (double) totjiumjncorrect,

for(n = 0, n < 64, n++)
{newjstudent->RESPONSE[n] reaction Jime = stlfn] reactionJime/CLKJTCK,

new_student->RESPONSE[n] answer = stlfn] answer,
new_student->RESPONSE[n] nghtjvrong = stlfn] nghtjvrong,

}

r
update student record to indicate that student has
accomplished test #1

7
new_student->testjio = testjium

}

/*
Function Stats JestJ20,
File STATS C

Parameters None

Returned None

Vanables None

Descnption Calculates statistics for test #2 given results
from the test

void stats_test_2(TEMP *st1, STUDENTJRECORD 'newjstudent, int 'correct,
int testjium)

{
int n,
int totjium jwrrect = 0,
int totjiumjncorrect = 0,
double totjimejncorrect = 0 0,
double tot Jime jwrrect = 0 0,
char uloopjimit, Ikwpjimit,
int sumjwrrect = 0,
int sumjncorrect = 0,
double sum Jimejwrrect = 0 0,
double sumjimejncorrect = 0 0,

/* check tnal number to set corresponding loop counters 7
if (testjium == 0)
{

Ikwpjimit = 0,
uloop limit = 33,

}
else
{

lloopjimit = 33
uloopjimit = 65,

r begin processing of data 7

for (n = lloopjimit, n < uloopjimit, n++)
{

if (st1 fn] answer == correctfn]) {

++sum_correct,
sumjimejwrrect = sum time correct +

(stlfn] reaction Jime / CLKJTCK),
st1 [n] nghtjvrong = 1,

}

else{

++sumjncorrect,
sumjime incorrect = sumjimejncorrect +

(st1 [n] reactionJime / CLKJTCK),
stlfn] nghtjvrong = 0,

}

J
/*

* get number of questions
* +2 here used to allow for space taken up by test #1
7

new_student->studentjnfo[test_num + 2] total_no_questions = 65,

/* check for divide by zero 7
if (sum jwrrect '= 0)

/* calculate average time to answer questions correctly for tnal 7
newjstudent->studentjnfo[testjium + 2] avgJime_correct =

sumjimejwrrect / (double) sum jwrrect,

else

/* calculate average time to answer questions for tnal correctly 7
new_student->studentjnfo[testjium + 2] avgjimejwrrect = 0 0

/* check for divide by zero 7
if (sumjncorrect '= 0)

/* calculate average time to answer questions for tnal incorrectly 7
new_student->studentjnfo[testjium + 2] avgjimejncorrect =

sumjimejncorrect / (double) sumjncorrect,

else

/* calculate average time to answer questions incorrectly for the tnal*/
new_student->studentjnfo[testjium + 2] avgJimejncorrect = 0 0,

/* get number of questions answered correctly for tnal
7

new_student->studentjnfo[test_num + 2] no_questionsjwrrect = sum jwrrect,

/* Calculate the overall average incorrect and con'ect times for all questions 7
for(n = 0, n < 65, n++)
{

if(stlfn] nghtjvrong == 1)
{

tot Jime jwrrect += stlfn] reaction Jime / CLKJTCK
tot_num_correct++,

}
else
{

totjimejncorrect += st1 [n] reactionjime / CLKJTCK,
totjiumjncorrect++,

}
}

if (tot j iumjwrrect == 0)
new_student->studentjnfo[2] ovri_avgJimej»rr = 00

else
new_student->studentjnfo[2] ovrl_avgJimejwrr =

totJime_correct / (double) totjiumjwrrect;

if (totjiumjncorrect == 0)
newjstudent->studentjnfo[2].ovrl_avgjimejncorr = 0.0;

else
newjstudent->student_info[2].ovrl_avg_timeJncorr =

totjimejncorrect / (double) totjiumjncorrect;

for(n = 0; n < 65; n++) I* 23 is offset for # problems in test 1 7
{

newjstudent->RESPONSE[n+23].reactionJime = st1 [n].reactionJime/CLK_TCK;
new_student->RESPONSE[n+23].answer = stlfn] .answer;
new_student->RESPONSE[n+23].right wrong = st1 [n].right_wrong;

}

r
update student record to indicate that student has
accomplished test #2

7
new_student->test no = testjium;

}

/*
Function: Get mtc data();
File: STATS.C ~

Parameters:
(input) value array of tyoe float holding values for

mean time for correct answer for each
student

Returned: None

Variables: n Pointer to node of type RESjNODE

Description: Get mean time for correct answer data and
place it into array value

void Getjntc_data(float 'value, RESjNODE *h)
{

int counter;
int *save_errorJwx;
RESJMODE *n; n = h;

r
check to see if any student records
in linked list

7
i f (n==NULL){

/*
set error box color to red
set error text color to white

7
menu_back_color(BK_RED);
menuJext_color(TJ/VHITE | TJ3RIGHT);

/* Display error_boxJ3_02 7
save_errorJwx = menu_message(13,19, errorJwx_3J)2);

/* Make error sound 7
warble(5) ;

getkeyjjrjnouseO;

/* Erase error box 3 02 7

135

menu_erase(savejsrrorjwx),

/*
set box color back to cyan
set text color back to black

7
menu_backjwlor(BKJ/VHITE),
menu text color(TJ3LACK),
}

elsef
for (counter = 0, counter <= n->test_no, counter++) {

•value = (float) n->studentjnfo[counter] avg_timejwrrect,

/* advance pointer to next array location 7
++value,

}
}

}

r
Function Stats JestJ3(),
File STATS C

Parameters None

Returned None

Vanables None

Descnption Calculates statistics for test #3 given results
from the test

void stats JestJ3(TEMP *st1, STUDENT_RECORD 'newjstudent, char 'correctQ,
int problems, int tnal j i u m)

{
int n,
mt present,
int sumjwrrect = 0,
int sumjncorrect = 0,
double sumjimejwrrect = 0 0,
double sumjimejncorrect = 0 0,

for (n = 0, n < (problems * 3), n++) {
/* get digit and convert to integer 7
present = atoi(correctfn]) + 48,

I* did student answer correctly 7
if (st1 [n] answer == present) {

/* student answered correctly 7
++sumjwrrect,
sumjimejwrrect = sumjimejwrrect +

(st1 [n] reaction Jime /
CLKJTCK),

}

elsef

I* student answered incorrectly 7
++sumjncorrect,
sumjimejncorrect = sumjimejncorrect +

st1 fn] reaction Jime / CLKJTCK),
}

I* move pointer to next result 7
/* ++correct, 7

}
/* get number of questions 7

new_student->studentjnfo[tnal_num +16] totaljiojauestions = problems * 3,

I* check for divide by zero 7
if (sum_correct '= 0)

/* calculate average time to answer questions correctly 7
newjstudent->studentjnfoftnal_num + 16] avgjimejwrrect =

sumJime_correct / (double) sumjwrrect,
else

/* calculate average time to answer questions correctly 7
new_student->studentjnfo[tnal_num + 16] avg Jimejwrrect = 0 0,

I" check for divide by zero 7
if (sumjncorrect l= 0)

I" calculate average time to answer questions incorrectly 7
new_student->studentjnfo[tnaljium +16] avgjimejncorrect =

sumJimejncoiTect / (double) sumjncorrect,
else

I* calculate average time to answer questions incorrectly 7
newjstudent->studentjnfo[tnaljium + 16] avgjimejncorrect = 0 0,

I* get number of questions answered correctly 7
newjstudent->studentjnfo[tnal_num +16] no_questionsjwrrect = sumjwrrect,

r
update student record to indicate that student has
accomplished test #3 tnal ftnaljium

7
new_student->test_no = tnaljium + 16,

}

r
Function Get_mti_dataO,
File STATS C

Parameters
(input) value array of tyoe float holding values for

mean time for correct answer for each
student

Returned None

Vanables n Pointer to node of type RESjNODE

Descnption Get mean time for incorrect answer data and
place it into array value

void Get mtijJata(float 'value, RESJMODE *h)
{

int counter,
int *save_errorJwx,
RESJMODE *n, n = h,

r
check to see if any student records
in linked list

7
i f (n==NULL){

r
set error box color to red
set error text color to white

7
menu_back_eolor(BK_RED);
menuJext_color(TJ/VHITE | TJ3RIGHT);

I* Display error_box_3J)2 7
savejsrrorjwx = menu_message(13,19, error_box_3_02);

/* Make error sound 7
warble(5);

getkeyjjrjnouseO;

/* Erase errorJwx_3J)2 7
menu_erase(savejsrrorjwx);

/*
set box color back to cyan
set text color back to black

7
menu_backjwlor(BKJ/VHITE);
menuJext_color(TJ3LACK);
}

elsef

for (counter = 0; counter <= n->test_no; counter++) {

'value = (float) n->studentjnfo[counter].avg_timejncon-ect;

/* advance pointer to next array location 7
++value;

}
}

}

r
Function: GetjwjJata();
File: STATS.C

Parameters:
(input) value array of tyoe float holding values for

average percentage con'ect for all
students.

Returned: None

Variables: n Pointer to node of type RESJMODE

Description: Get percentage of correct answers for each
trial, and place it into array value

7
void Getjw data(float 'value, RES NODE *h)
{

int counter;
int 'savejsrrorjwx;
RESjNODE *n; n = h;

f
check to see if any student records
in linked list

7
if(n==NULL){
r

set en~or box color to red
set error text color to white

7
menu_back_color(BK_RED);
menuJext_color(TJ/VHITE | TJ3RIGHT);

/* Display errorJ»x_3J32 7
savejsrrorjwx = menu_message(13,19, errorJwx_3J)2);

I* Make error sound 7
warble(5) ;

getkeyjjrjnouseO I

r Erase errorjwxj}JD2 7
menu_erase(savejsrrorjjox);

/*
set box color back to cyan
set text color back to black

7
menu_backjwlor(BKWHITE);
menuJext_color(TJ3LACK);
}

else{

for (counter = 0; counter <= n->test_no; counter++) {

if (n->studentjnfo[counter].total_no_questions >= 1)

•value = ((float) n->studentjnfo[counter].no_questionsjwrrect /
(float) n->student info[counter].total no_questions)
•100.0;

else
'value = 0.0;

r advance pointer to next array location 7
++value;

}
}

/*
Function: Mean timejwrrectO;
File: STATS.C

Parameters:
(input) value array of tyoe float holding values for

average percentage correct for all
students.

Returned: None

Variables: n Pointer to node of type RES JJODE

Description: Get percentage of con'ect answers for each
trial, and place it into array value

7
void mean Jimejwrrect(float 'value, RES NODE *h)
{

int counter;

for (counter = 0; counter <= 19; counter**) {

'value = cal_meanJime_correct(counter, h);

/* advance pointer to next array location 7
++value;

/*
Name T10BJECTSC
Type Routines to implement graphic objects that are used

in the test and other utilities in battery
Airport Security Personnel Screening Program

Language Microsoft QuickC version 2

7

ftnclude <graph h>
ftnclude <math h>
#include <malloc h>
ftnclude <conio h>
#include <stdio h>
#mclude "video h"
#mclude "tjwlors h"
#mclude "sound h"
ftnclude "11 object h"
ftnclude "video h"

/* set number of problems in test 7
#define NUM_PROBLEMS 64 /* NOTE this parameter is also defined in testj c 7

/*
Declare global pointers to objects to be drawn on screen

7
/* pointers to buffers holding images of all possible onentations of the aircraft 7

char "aircraftj)trf8],

/*

Function DrawJjackgroundO,

File TESTJ C

Parameters None

Returned None

Descnption Draws 8 white solid circles, on the circumference of
a larger circle (not drawn), each 45 degrees apart
from each other with respect to the center of the
screen A solid white tnangle is drawn in the center
of the screen as well

7

void Draw_background(void)
{

int deljc = 2, delj/ = 2,

int p1 jc= 392, p1 _y=295, p2j<=408, p2_y=295, p3j<=400, p3_y=306,

int c0_b1_x = 150, c0_b1_y = 50, c0_b2jc = 650, c0_b2j/ = 550,

d_b1_x = 650 + delj<, d_b1 _y = 300 + deljy,
d JJ2JC = 650 - deljc. c1_b2jy = 300 - deljy,

c2_b1 _% = 575 + delj<, c2_b1 j / = 475 + del j / ,
c2_b2jc = 575 - deljc, c2_b2j/ = 475 - del_y,

c3_b1 jc = 400 + del_x, c3_b1 _y = 550 + delj/,
c3_b2j(= 400 - deljc. c3_b2j/ = 550 - del_y,

}

/ * •

c4_b1 _x = 225* deljc, c4 b1_y = 475 + del_y,
c4_b2j< = 225 - deljc, c432_y = 475 - del_y,

c5_b1 x = 150 + del x, c5_b1 _y = 300 + del_y,
c5J>2jc = 150 - deljc, c5_b2_y = 300 - del_y,

c6_b1 _x = 225 + del x, c6_b1_y = 125 + delj/,
c6_b2jc = 225 - deljc, c6_b2_y = 125 - del_y,

c7_b1 jc = 400 + deljc, c7_b1 _y = 50 + del_y,
c7_b2j< = 400 - deljc, c7_b2_y= 50 -delj/,

c8_b1 J< = 575 + deljc, c8_b1_y = 125 + delj/,
c8_b2jc = 575 - deljc, c8_b2_y = 125 - del_y,

/*jsllipse(J3B0RDER , devicejc(c0_b1_x), device_y(c0_b1j/),
deviceJC(COJ>2JC), devicej/(cOJj2j/)),

7
_elhpse(J3FILLINTERIOR , devicejc(d_b1jc), devicej/(d_b1_y),

device_x(c1_b2jc), device_y(c1_b2_y))
_ellipse(J3FILLINTERIOR , device_x(c2_b1jc), device_y(c2_b1 j /) ,

devicejc(c2 b2jc), device_y(c2_b2j/))
_elhpse(J3FILLINTERIOR , devicejc(c3_b1jc), devicej/(c3_b1_y),

devicej<(c3_b2jc), device_y(c3_b2_y))
_ellipse(J3FILLINTERIOR , devicejc(c4_b1jc), device_y(c4_b1 _y),

device_x(c4 b2 x), device_y(c4_b2jy)),
jslhpse(_GFILUNTERIOR , devicejc(c5_b1jc), device_y(c5_b1_y),

devicejc(c5 b2jc), device_y(c5Jj2_y))
_ellipse(J3FILLINTERIOR , devicejc(c6_b1 jc), devicejy(c6_M_y),

devicejc(c6_b2jc), device_y(c6J>2j/))
_ellipse(J3FILLINTERIOR , devicejc(c7_b1jc), devicej/(c7_b1_y),

device_x(c7_b2jc), device_y(c7_b2_y))
jslhpse(J3FILLINTERIOR , devicejc(c8_b1jc), devicej/(c8_b1 j /) ,

device_x(c8J>2jc), devicej/(c8_b2j/))

tnangle(SOLID, devicejc(p1 jc), device_y(p1_y),
devicejc(p2jc), devicej/(p2j/),
devicejc(p3jc), device_y(p3_y)),

Function Drawjsxample_backgroundO,

File TEST_1 C

Parameters None

Returned None

Descnption Draws 8 white solid circles, on the circumference of
a larger circle (not drawn), each 45 degrees apart
from each other with respect to the center of the
screen A solid white tnangle is drawn in the center
of the screen as well

7

void Drawjsxample_background(void)
{

int deljc = 2, delj/ = 2,

int p1_x= 392, p1_y=370, p2jc=408, p2_y=370, p3jc=400, p3_y=381.

}

/*-

int c0_b1 j c = 200, c0_b1_y = 175, c0_b2jc = 600, c0_b2_y = 575,

d _b1 j c = 600 + del x, d b1_y = 375 + del_y,
d_b2 j (= 600 - deljc, d_b2_y = 375 - del_y,

c2_b1 j c = 541 + deljc, c2_b1 _y = 516 + del_y,
c2_b2jc = 541 - deljc, c2_b2j/ = 516 - delj/,

c3_b1 j c = 400 + deljc, c3_b1 j y = 600 + delj/,
c3_b2jc = 400 - deljc, c3_b2_y = 600 - del_y,

c4 b1jc = 259 + del x, c4_b1_y = 516 +del j / ,
c4_b2jc = 259 - deljc, c4_b2_y = 516- del_y,

c5_b1 x = 200 + del x, c5_b1_y = 375 + delj/,
c5_b2jc = 200 - deljc, c5_b2j/ = 375 - del_y,

c6_b1 x = 259 + del x, c6_b1 _y = 234 + delj/,
C6_b2jc = 259 - deljc, c6_b2_y = 234 - del_y,

c7 b1 x = 400 +del x, c7_b1j/= 175 + delj/,
C7JJ2JC = 400 - deljc, c7_b2_y = 175 - delj/,

c8 b1 j c = 541 + del x, c8 b1_y = 234 + delj/,
c8J>2jc = 541 - deljc, c8_b2_y = 234 - delj/,

/*_ellipse(J3BORDER , device_x(c0_b1 jc), device_y(c0_b1_y),
device_x(c0_b2jc), device_y(c0_b2_y)),

7
jsllipse(J3FILLINTERIOR , devtcejc(c1_b1 jc), device_y(c1_b1_y),

device_x(c1_b2_x), device_y(c1_b2j/))
jsllipse(J3FILLINTERI0R , devicejc(c2_b1jc), devicej/(c2_b1_y),

devicejc(c2Jj2jc), devicejy(c2J>2jy))
jslhpse(J3FILLINTERIOR , devicejc(c3_b1_x), device_y(c3_b1_y),

device_x(c3_b2jc), devicej/(c3_b2jy))
_elhpse(J3FILLINTERIOR , devicejc(c4_b1jc), devicej/(c4_b1jy),

deviceJC(C4JJ2JC), devicejy(c4_b2jy))
_ellipse(J3FILLINTERIOR , devicejc(c5_b1jc), devicej/(c5_b1jy),

device_x(c5_b2jc), devicejy(c5_b2jy))
_ellipse(J3FILLINTERIOR , devicejc(c6_b1jc), device_y(c6_b1 jy),

device_x(c6_b2_x), devicejy(c6_b2jy))
jslhpse(J3FILLINTERIOR , devicejc(c7_b1jc), devicejy(c7_b1jy),

device_x(c7_b2 x), devicejy(c7_b2jy))
jsllipse(J3FILLINTERIOR , devicejc(c8_b1_x), device_y(c8_b1 jy),

devicejc(c8_b2jc), devicejy(c8_b2jy))

tnangle(SOLID, device_x(p1_x), devicejy(p1jy),
devicejc(p2_x), devicejy(p2j/),
devicejc(p3jc), devicej/(p3j/)),

Function DrawjjIaneO,

File TESTJ C

Parameters float heading (in degrees)

Returned: None

Description: Draws a symbol for an airplane at a specified heading.

7
void Drawjjlane(float heading)
{

float xf6], y[6], x_set[6], yjset[6];
inti;
short previous;
double theta;

x_set[0]= 32.0; y_set[0]= 48.0;
x_set[1]= 32.0; y_setf1]= 2.0;
xjset[2]= 50.0; y_set[2]= 25.0;
x_set[3]= 0.0; yjsetf3]= 25.0;
x_set[4]= 8.0; yjset[4]= 34.0;
x_set[5]= 8.0; yjset[5]= 15.0;

r use rotation matrix to rotate points about center of picture (25,25)
7

r convert heading to radians measured from horizontal x-axis*/
theta = (double)(90.0 - heading) * 3.1415926536/180.0;

for(i=0; i < 6; i++)
{

xfi] = (float)cos(theta)*x setfi] - (float)sin(theta)*y setfij + 25*(1-(float)cos(theta)) + 25*(float)sin(theta);
yfi] = (float)sin(theta)*xjset[i] + (float)cos(theta)*yjset[i] + 25*(1-(float)cos(theta)) - 25*(float)sin(theta);

}
previous = jsetcolor(T.WHITE | TJ3RIGHT);

line((short)xfOJ, (short)yf0], (short)x[1], (short)y[1J);
line((short)x[2], (short)yf2J, (short)xf3], (short)y[3J);
line((short)xf4], (short)y[4], (short)x[5], (short)yf5]);

jsetcolor(previous);
}
/*

Function: lnit_acjjrientations()

File: t1 object.c

Parameters: None

Returned: None
Description: Draws the aircraft in the eight possible orientations,

saving each image in a buffer. Assigns the global
aircraft pointers to the starting locations of each
buffer for future drawing of any aircraft.

void lnitjac_orientations(void)
{

unsigned imagejsize;
char 'image;
inti;

/-
Set active page to non visual page

7
_setactivepage(1);

/* determine image see of each aircraft drawing 7
imagejsize = jmagesize(devicejc(0) , devicej/(0),

devicejc(50), devicejy(50)) ,

/* draw and save each of the eight onentations 7
for(i = 0, i <8, i++)
{

/* clear area where image will be drawn 7
custom_bar(0,0,50,50, TJ3LACK),

r draw image 7
Drawjjlane((float)(i*45)),

/* allocate memory 7
aircraftjjtrfi] = (char*)malloc(imagejsize),
/* place image into memory 7
jjetimage(devicejc(0), devicejy(0), devicejc(50), devicejy(50),

aircraftjjtrfi]),
}
_clearscreen(_GCLEARSCREEN),
/*

Set active page back to visual page
7
_setvisualpage(1),

}
/*

Function Free_aircraftO

File. t1 object c

Parameters None
Returned None

Descnption Frees the memory buffers holding the aircraft
images in vanous onentations

7
void Free_ac(void)
{

int i,
for(i=0, i<8, i++)

free(aircraftjjtrfij),
}

/*

Function Draw_aircraftj>roblem()

File t1 object c

Parameters onentation of aircraft

position of aircraft on screen

Returned None

Descnption draws the aircraft on screen at the position and
and onentation specified

7
void Draw_aircraftjjroblem(short acjjnentation, short acjwsrtion)

char 'image,
short x, y;

/* determine aircraft onentation required 7
swrtch(acjjnentation)

{

case 0: image = aircraftjjtrfOJ; break;

case 45: image = aircraft_ptr{1]; break;

case 90: image = aircraftjjtrf2]; break;

case 135: image = aircraftjjtr[3]; break;

case 180: image = aircraft jjtrf4]; break;

case 225: image = aircraftjJtrf5J; break;

case 270: image = aircraftjjtrf6]; break;

case 315: image = aircraftjptr[7]; break;
}

/* determine aircraft position required relative to center of screen.
North (0 deg bearing) being up on the screen

7
switch(acjwsition)
{

case 0: x = 400; y = 550; break;

case 45: x = 575; y = 475; break;

case 90: x = 650; y = 300; break;

case 135: x = 575; y = 125; break;

case 180: x = 400; y = 50; break;

case 225: x = 225; y = 125; break;

case 270: x = 150; y = 300; break;

case 315: x = 225; y = 475; break;
}

/* place aircraft image on screen 7
j>utimage(devicejc(x-25), de\n"cejy(y+25), image, J3PSET);

}
/*

Function: DrawjsxamplejaircraftjproblemO

File: tlobject.c

Parameters: orientation of aircraft.

position of aircraft on screen.

Returned: None

Description: draws the aircraft on screen at the position and
and orientation specified.

7
void Drawjsxample aircraftj)roblem(short ac orientation, short acjwsition)
{

char 'image;
short x, y;

I* determine aircraft orientation required 7
switch(acjjrientation)
{

}

case 0 image = aircraftjptrfO], break,

case 45 image = aircraftjrtrfl], break,

case 90 image = aircraftjjtrf2], break,

case 135 image = aircraftjjtr[3], break,

case 180 image = aircraft_ptrf4], break,

case 225 image = aircraftj>trf5], break,

case 270 image = aircraftj>tr[6], break,

case 315 image = aircraftjjtrf7], break,

/* determine aircraft position required relative to center of screen
North (0 deg beanng) being up on the screen

7
switch(acjwsition)
{

case 0 x = 400, y = 575, break,

case 45 x = 541, y = 516, break,

case 90 x = 600, y = 375, break,

case 135 x = 541, y = 234, break,

case 180 x = 400, y= 175, break,

case 225 x = 259, y = 234, break,

case 270 x = 200, y = 375, break,

case 315 x = 259, y = 516, break,

}

I* place aircraft image on screen 7
jjutimage(devicejc(x-25), devicejy(y+25), image, J3PSET),

}

...

/*
Function blueJjarO,
File TESTJ C

Parameters None

Returned None

Vanables None

Descnption makes the entire screen blue

7
void bluejjar(void)
{

short previous,

previous =_setcolor(TJ3LUE;

jectangle(J3FILLINTERI0R, devicej<(0) , devicejy(595),
device_x(800), devicejy(0)) ;

setcolor(previous);
}

Function: up_black_barO;
File: TESTJ .C

Parameters: None

Returned: None

Variables: None

Description: draws black bar at top of screen

7
void up black_bar(void)
{

short previous;

previous = _setcolor(TJ3LACK);

jectangle(J3FILLINTERIOR, devicejc(0), devicejy(405),
device_x(800), devicejy(595));

setcolor(previous);
}

Function: text_bar();
File: TESTJ .C

Parameters: None

Returned: None

Variables: None

Description: draws text bar

7
void textjjar(void)
{

short previous;

previous = _setcolor(TJ3LUE);

jectangle(J3FILLINTERIOR, devicej<(0) , device_y(595),
devicejc(800), devicejy(440));

_setcolor(previous);
}

Function: midjext_bar0;
File: TESTJ .C

Parameters: None

Returned: None

Variables: None

Descnption draws text bar

7
void mid text bar(void)
{

short previous,

}

/ " •

previous = _setcolor(T_BLUE),

_rectangle(J3FILLINTERIOR, dewcejc(0) , devicej/(425),
devicejc(800), device_y(260)),

_setcolor(previous),

Function custom_barO,
File TESTjl C

Parameters None

Returned None

Variables None

Descnption draws a customized bar given coordinates of
comers of the bar

7
void custom bar(int x1, int y1, mt x2, int y2, mt color)
{

short previous,

previous = _setcolor(color),

jectangle(J3FILLINTERIOR, devicejc(x1), devicejy(y1),
device_x(x2), devicej/(y2)) ,

_setcolor(previous),
}

/*
Function downJext_bar(),
File TESTJ C

Parameters None

Returned None

Vanables None

Descnption draws text bar

7
void down text bar(void)
{

short previous,

previous = _setcolor(T_BLUE),

}

/ * •

jectangle(J3FILLINTERIOR, devicejc(0), devicej/(120),
devicejc(800), devicej/(0)) ,

_setcolor(previous),

Function press_keyO,

File TESTJ C

Parameters None

Returned None

Vanables None

Descnption draws a brown text bar and displays the
'press any key to continue' message

7
void pressjcey(void)
{

short previous,

static unsigned char list[20],

r
The names of the fonts that are available on disk

7
static unsigned char *facef4] =
{

"fcouner"',
"fhelv"',
'11ms rmn"',
"fmodem"'

}•

char 'temp,

unsigned imagejsize,

/*
Copy previous background to memory

7

/* determine size of image (bytes) 7
image_size = jmagesize(devicejc(500), devicej/(125),

devicejc(760), device_y(160)),

/* allocate memory 7
temp = malloc(imagejsize),

I* place image into memory 7
_getimage(device_x(500), devicejy(125),

devicejc(760), devicejy(160), temp)

/* set the font for the press any key box 7
strcpy(list, face[2]),
strcat(hst, "h15w12b"),

/* set the font 7
_setfont(list),

/* delay two seconds before drawing 7
wartjicks(36),

/* first flush the keyboard buffer 7
while (kbhrtO)

getch(),

previous = _setcolor(TJ3ROWN),

jectangle(J3FILLINTERI0R, devicejc(500), device_y(125),
devicejc(760), devicejy(160)),

_moveto(devicejc(510), devicej/(155));

_setcolor(TJ/VHITE | TJ3RIGHT);

_outgtextC"Press any key to continue");

getchO;

jsetcolor(previous);

/* replace image on the screen 7
jjutimage(devicejc(500), devicej/(160), temp, J3PSET);

/* free up allocated memory 7
free(temp);

}

/*

Function: examplejsoundj>rompt();

File: TESTJ C

Parameters: None

Returned: None

Variables: None

Description: prompts user to press any key to hear example
warning time sound.

7
void example soundjjrompt(void)
{

short previous;

static unsigned char hst[20];

/•
The names of the fonts that are available on disk

7
static unsigned char *face[4] =
{

Tcourier"',
Thelv"',
'11ms rmn'",
Tmodem"'

};

char *temp;

unsigned imagejsize;

r
Copy previous background to memory

7

/* determine size of image (bytes) 7
imagejsize = Jmagesize(device_x(140), devicej/(120),

devicejc(552), devicej/(155));

/* allocate memory */
temp = malloc(imagejsize);

/* place image into memory 7
_getimage(devicejc(140), devicej/(120),

devicejc(552), devicej/(155), temp),

}
/*-

r set the font for the press any key box 7
strcpy(list, face[2]),
strcat(list."h15w12b"),

/•set the font 7
_setfont(list),

/* delay two seconds before drawing 7
wartjicks(36),

/* first flush the keyboard buffer 7
while (kbhrt())

getch(),

previous = _setcolor(TJ3ROWN),

jectangle(J3FILLINTERIOR, devicejc(140), devicejy(120),

device_x(552), devicejy(155)),

_moveto(devicejc(150), devicej/(150)),

_setcolor(TJ/VHITE | TJ3RIGHT),

jjutgtextC'To hear sound and continue press any key"),

getch(),

jsetcolor(previous),

r replace image on the screen 7
j>utimage(devicejc(140), devicej/(155) temp, J3PSET),
/* free up allocated memory 7
free(temp),

Function timeout_messageO,

File TESTJ C

Parameters None

Returned None

Vanables None

Descnption A text bar displaying a message indicating
timeout has occured and a new problem is being
presented is flashed on screen for a bnef moment

7
void timeout_message(void)
{

short previous,

static unsigned char list[20]

r
The names of the fonts that are available on disk

7
static unsigned char *face[4] =
{

Tcouner"',
Thetv"',
"ttms rmn"',
Tmodem'"

};

I* set the font for the press any key box 7
strcpy(list, face[2]);
strcat(list,"h15w12b");

r set the font 7
_setfont(list);

previous = _setcolor(T_RED);

jectangle(J3FILLINTERIOR, devicejc(520), devicejy(245),
devicejc(750), devicejy(180));

jsetcolor(TJ/VHITE | TJ3RIGHT);

jnoveto(device_x(530), devicejy(240));
_outgtextCTime has elapsed!");
_moveto(devicejc(530), devicejy(210));
jjutgtextC'This is a NEW pattern.");

/* wait one second for user to read message flash 7
waitjicks(16);

/* clear message 7
_setcolor(T BLACK);
jectangle(J3FILLINTERIOR, device_x(520), devicejy(245),

device_x(750), device_y(180));

_setcolor(previous);

}
/ * •

Function: printjwuntdown();
File: TESTJ .C

Parameters: None

Returned: None

Variables: None

Description: prints count down message on the screen

7
void print countdown(void)
{

short previous;

static unsigned char list[20];

/*
The names of the fonts that are available on disk

7
static unsigned char *face[4] =
{

Tcourier"',
ThelV",
Ttms rmn"',
"fmodem"'

};

char 'temp, digit[3];
int counter;

unsigned imagejsize;

/* clear the screen 7

_clearscreen(_GCLEARSCREEN);

/* set the font for the press any key box 7
strcpy(list, face[2]);
strcat(list,"h15w12b");

/* set the font 7
jsetfont(list);

previous = _setcolor(T_BROWN);
jectangle(J3FILLINTERIOR, devicejc(60), devicejy(425),

devicejc(740), devicejy(470));

_setcolor(TJ3LUE);
jectangle(J3FILLINTERIOR, devicejc(230), devicejy(250),

device_x(570), devicejy(400));

_moveto(device_x(80), devicejy(460));
_setcolor(T WHITE | TJ3RIGHT);
jJutgtextC'RESPOND AS QUICKLY AND AS ACCURATELY AS YOU CAN");

_moveto(devicej<(250), devicej/(390));
_setcolor(T WHITE | TJ3RIGHT);
jJUtgtextfTHE TEST WILL BEGIN IN");

moveto(device x(340), devicej/(290));
~setcolor(T WHITE | T BRIGHT);
jjutgtextC'SECON DS");

/* set the font for the press any key box 7
strcpy(list, face[2]);
strcat(list, "h20w15b");

/* set the font 7
_setfont(list);

/* countdown from 10 to 1 7
digit[2] = 'VJ;
for (counter = 10; counter >= 1; counter-) {

/* form digit string to be displayed on screen 9...8.. etc 7
if (counter >=10){

digit[0] = '1';digit[1] = '0';
}

elsef
digitfO] =''; digitfl] = counter + 48;
}

jsetcolorf TJ/VHITE | TJ3RIGHT);
_moveto(device_x(380), devicej/(340));
_outgtext(digit);

/* delay for one second 7
waitjicks(18);

_seteolor(T_BLUE);
_moveto(device_x(380), devicej/(340));
_outgtext(digit);

_setcolor(previous);

/* set the font for the press any key box 7
strcpy(list, face[2]);
strcat(list,"h15w12b");

/•set the font 7
jsetfont(list);

/* clear the screen 7
j:learscreen(_GCLEARSCREEN);

}
/*

Function: fulljext barO;
File: TESTJ .C~

Parameters: None

Returned: None

Variables: None

Description: draws text bar

7
void fulljext bar(void)
{

short previous;

previous = _setcolor(TJ3LUE);

jectangle(J3FILLINTERIOR, devicejc(0) , devicejy(550),
devicejc(800), devicejy(35)) ;

}
/ * •

jsetcolor(previous);

Function: full black barO;
File: TESTJ .C ~

Parameters: None

Returned: None

Variables: None

Description: draws black bar

7
void full_black_bar(void)
{

short previous;

previous = _setcolor(TJ3LACK);

(J3FILLINTERIOR, devicejc(0) , devicejy(600),
devicejc(800), devicejy(0)) ;

_setcolor(previous);

Function: display test name();
File: T10BJECTJ~C

Parameters: None

Returned: None

Variables: None

Description: displays the name of a test for 2 seconds on
screen

7
void displayjest name(char ' test j iame)
{

ThelV",
"tlms rmn"',
Tmodem'"

};

r Display digit centered at the top of the screen 7
strcpy(list, face[2]);
strcat(list, "h40w32b");

/•set the font 7
_setfont(list);

/* set text color to green 7
previous = _setcolor(T_RED);

/* drawing brown rectangle 7
jectangle(J3FILLINTERIOR, device_x(225), devicej/(420),

device_x(575), devicej/(500));
I* reset drawing color 7
_setcolor(previous);

/* Draw text on screen 7
jnoveto(device_x(330), devicejy(475));

/* output character 7
_outgtext("BEGIN!");

/* wait one and a half seconds 7
waitjicks(27);

Function: nextJrialjnessageO;
File: T10BJECTJ.C

Parameters: None

Returned: None

Variables: None

Description: draws 'next trial message' on the screen

7
void next_trial_message(void)
{

short previous;

static unsigned char list[20];

/*
The names of the fonts that are available on disk

7
static unsigned char *face[4] =
{

"f courier"',
ThelV",
"tlms rmn"',
Tmodem'"

};
/* Display digit centered at the top of the screen 7
strcpy(list, face[2]);
strcat(list, "h40w32b");

/* set the font 7
_setfont(list);

/* set text color to green 7
previous = _setcolor(T_BROWN);

156

r drawing brown rectangle 7
jectangle(J3FILLINTERIOR, devicejc(10), devicej/(420),

devicejc(790),
device_y(500));

r reset drawing color 7
_setcoior(previous);

/* Draw text on screen 7
_moveto(devicejc(30), devicejy(475));

/* Make error sound 7
wart>le(5);

/* output character 7
_outgtext("PRESS ANY KEY TO START NEXT TRIAL");

/* get user key press 7
getchO;

Function: nextjnstruction messageO;
File: T10BJECTJ.C ~

Parameters: None

Returned: None

Variables: None

Description: draws 'next instruction message' on the screen

7
void nextJnstruction_message(void)
{

short previous;

static unsigned char list[20];

/*
The names of the fonts that are available on disk

7
static unsigned char *facef4] =
{

Tcourier"',
ThelV",
"tlms rmn'",
Tmodem"'

};

/* Display digit centered at the top of the screen 7
strcpy(list, face[2]);
strcat(list, "h40w32b");

/* set the font 7
_setfont(list);

/* set text color to green 7
previous = _setcolor(T_BROWN);

/* drawing brown rectangle 7
jectangle(J3FILLINTERIOR, device_x(10), devicej/(420),

devicejc(790),
devicej/(500));

/* reset drawing color 7
_setcolor(previous);

/* Draw text on screen 7
_moveto(devicejc(30), devicej/(475));

7

#mclude
#mclude
#mclude
#include
#include
ftnclude
ftnclude
ftnclude
#mclude

Name TESTJ C
Type Routines to implement the first

student test
Mental Rotation Program

Language Microsoft QuickC version 2

<graph h>
<conio h>
<malloc h>
<stdio h>
"typjnrt h"
"video h"
'1_colors h"
"stats h"
'11 object h"

#include "menu h"
#mclude "sound h"
#include "getkey h"
#mclude "box h"

#defineAC ORIENTATION 0
#define AC_POSITION 1

#define NUMJTRIALS 2
#define NUM_PROBLEMS 64 /* Note this parameter is also defined in t1 object c 7

#define NFONTS 4
#define GRID CHAR_FONT 2

#define FRAMEJ)J)

#define FRAMEJjl
fttefine FRAMEJ_2
#define FRAMEJ _3
/*#define FRAME 1 _2
7
/*#define FRAME 1 _3
7
#define FRAME_2J
ftdefine FRAMEJ2J2
#define FRAMEJ3J
ftJefine FRAME_3_2
#define FRAMEJ3J3
#define FRAME_4J
#define FRAME_4_2
#define FRAME_4_3
#define FRAMEJ3J
#define FRAME_5_2
#define FRAME_5 3
#define FRAMEJ5J
#define FRAMEJ7J
#define FRAMEJ7_2
#define FRAMEJ*_3
#define FRAMEJ3_1
#define FRAMEJ3J2
#define FRAMEJ3J3
ftJefine FRAME_9J
#define FRAME_9_2
#define FRAME_9_3
#define FRAME_9_4
#define FRAME_9_5
#define FRAME 9J3
#define FRAME 9 7

Mental Rotation/Onentation Test"

"The object of this test is to measure the time and accuracy it"
"takes for you to onent where the tnangle in the center of the"
"screen is in relation to the nose of the aircraft icon"
show the tnangle on the left side S aircraft on left

"Press Enter to See example"

"As you can see, the aircraft will appear at one of the eight"
"45 degree points around the center tnangle"
"You are to respond by using the numenc keypad on the nght side"
"of the keyboard The eight outside numenc keys correspond to"
"the location of the tnangle relative to the aircraft's nose"
"The numenc keys correspond to the angles as follows"
"#8 = 0, #9 = 045, #6 = 090, #3 = 135,"
"#2 = 180, #1=225, #4 = 270, #7 = 315"
"For this example, the tnangle is at the 90 degree point from"
"the nose of the aircraft Therefore, the correct answer would"
"be to press the #6 key"
"Let's try another example "
"Where is the location of the tnangle in relation to the nose"
"of the aircraft/?"
"Press the key which corresponds to the con'ect onentation"
"Let's try one last example Where is the location of the"
"tnangle in relation to the nose of the aircraft'?"
"Press the key which corresponds to the con'ect onentation"
"Your score will be based on speed as well as accuracy"
"Therefore, please try to respond as quickly as possible,"
"BUT also as accurately as you can'"
"After you select your answer to each tnal, the next tnal'
"will immediately begin on the next screen"
"There are 64 problems in the test"
There will be a short break in the middle of the test"

/*

Vanables to keep track of reaction time
and answer for each test

7
TEMP resultsfNUMJ'ROBLEMS],

/* Error message data 7
char'error box 4_01[] =

f
" Error Message #4 01",
HH

" You failed to score 55% or greater",
"on the preview test ",

"< Press any key >".
NULL

}.

char "error boxj3_01 Q =
{
" Error Message #5 01",

Unable to register fonts for this test",
i

The following files must be in the",
the current directory for this test",
to run ",

1)HELVBFON",
2) COURB FON",

" 3) TMSRB FON ",

"< Press any key >",
NULL
}.

char*infoJwxJ9Q =
{

"Test#1 ",

" ' TEST COMPLETE ",

"< Press any key to continue >",
NULL
}.

/* routine to free memory held by buffers with aircfaft drawn in vanous
onentations

7
/*

Function Displayjestl instructions
File TESTJ C

Parameters None

Returned None

Vanables None

Descnption Displays instructions for test#1

7

void Displayjestl instructions(void)
{

static unsigned char list[20],

int response,

/*
The names of the fonts that are available on disk

7
static unsigned char *face[NFONTS] =
{

"f courier",
ThelV",
"tlms rmn"',
Tmodem'"

};

/* flush all buffers 7
flushallO;

I*
* frame #0 (Title of Test)
7

/* set font type and size 7
strcpy(list, face[2]);
strcat(list,"h18w14b");

/•set the font 7
_setfont(list);

displayjest_name(FRAME_0_0);

r
* frame #1
7

/* set font type and size 7
strcpy(list, face{2]);
strcat(list,"h18w14b");

/* set the font 7
_setfont(list);

DrawjsxampleJjackgroundO;
Drawjsxample_aircraftjjroblem(0, 270);

I* create text bar 7
downJext_bar();

r display text for frame 1 7
_moveto(device_x(10), devicejy(120));
_outgtext(FRAMEJ_1);
_moveto(devicejc(10), devicejy(80));
_outgtext(FRAMEJ_2);
_moveto(device x(10), devicejy(40));
_outgtext(FRAME_1J3);

r wait for key press 7
press_keyO;

I*
* frame #2
7

/* set the font 7
_setfont(list);

/* refresh text bar 7
downJextJjarQ;

/* display text for frame 2 7

moveto(device x(10), devicejy(120)),
~outgtext(FRAME_2J),
_moveto(device_x(10), dewcejy(80)),
_outgtext(FRAME_2_2),

/* set font type and size back to normal 7
strcpy(list, face[2]),
strcat(list,"h18w14b"),

/•set the font 7
jsetfont(list),

/* wait for key press 7
press_keyO,

/*
•frame #3
7

/•set the font 7
_setfont(list),

/* create text bar for text 7
downjext_bar0,

/* display text 7
_moveto(devicejc(10), devicejy(120)),
_outgtext(FRAME_3J),
_moveto(device x(10), devicejy(80)),
_outgtext(FRAME_3_2),

moveto(device x(10), devicejy(40)),
jjutgtext(FRAME_3j3),

/* wait for key press 7
press JceyO,

/*
• frame #4
7

/* set the font 7
_setfont(list),

/* create text bar 7
downJextJjarO,

/* display text for frame 4 7
moveto(device_x(10), devicej/(120)),

~outgtext(FRAME_4J),
moveto(device x(10), devicejy(80)),

~outgtext(FRAME_4_2),
moveto(device_x(10), devicejy(40)),

~outgtext(FRAME_4_3),

/* wait for user to press key 7
press JceyO,

f
•frame #5
7

/* set the font 7
_setfont(list),

/* create text bar 7
downJextJjarO,

/* display text for frame 5 7
moveto(device x(10), devicejy(120));

_outgtext(FRAMEJ5_1);
moveto(device x(10), devicej/(80));

_outgtext(FRAMEj3J>);
_moveto(device x(10), devicej/(40));
_outgtext(FRAMEJ5J3);

/* wait for user to press key 7
pre

r
• frame #6
7

/* create text bar 7
downJextJjarO;

/•set the font 7
_setfont(list);

/* display text for frame 6 7
moveto(devicejc(10), devicej/(120));

j>utgtext(FRAME_6J);

/* wait for user to press key 7
press_key();

/*
* frame #7
7

/• set the font 7
_setfont(list);

/* erase old example from screen 7
_ctearscreen(J3CLEARSCREEN);

Draw_example_backgroundO;
Drawj3xample_aircraftjjroblem(90, 45);

/* create text bar 7
downJextJjarO;

/* display text for frame 7 7
_moveto(device_x(10), device_y(120));
_outgtext(FRAME_7_1);
_moveto(device_x(10), devicejy(80));
_outgtext(FRAME_7_2);
_moveto(device_x(10), devicejy(40));
_outgtext(FRAME_7J3);

/* get response from user and check
then display appropriate message 7

response = getchO;

if (response == '3')
{

moveto(devicejc(10), devicejy(200));
~outgtext("Thaf s correct!");

}
else
{
_moveto(devicejc(10), devicej/(400));
_outgtext("Sorry, the triangle is in the");
_moveto(devicejc(10), devicej/(360));
_outgtext("135 degree position (#3 key)."

}

/* wait for user to press key 7
press_keyO;

/*
•frame #8
7

/•set the font 7
_setfont(list);

/* erase old example from screen 7
_clearscreen(J3CLEARSCREEN);

Drawjsxample_background();
Drawjsxample_aircraftj)roblem(135,180);

r create text bar 7
downJextJjarO;

I* display text for frame 7 7
_moveto(device x(10), devicej/(120));
jJutgtext(FRAME_8J);
_moveto(device_x(10), device_y(80));
jJutgtext(FRAME_8_2);

moveto(device x(10), devicejy(40));
~outgtext(FRAMEJ3_3);

I* get response from user and check
then display appropriate message 7

response = getch();

if (response =='1')
{
_moveto(devicejc(10), devicejy(200));
jjutgtext("That1 s correct!");

}
else
{
_moveto(devicejc(10), devicejy(400));
_outgtext("Sorry, the triangle is in the");
jnoveto(devicejc(10), devicejy(360));
_outgtext("225 degree position (#1 key).");

}

/* wait for user to press key 7
press_keyO;

/*
* frame #9
7

I* set font type and size back to normal 7
strcpy(list, face[2]);
strcat(list, "h18w14b");

_clearscreen(J3CLEARSCREEN);
jsetfont(list);

/* set blue background */
bluejjarQ;

/* display text for frame 9 7
moveto(device x(10), devicejy(510)),

_outgtext(FRAME_9J),
moveto(device x(10), device_y(470)),

j>utgtext(FRAME_9_2),
_moveto(device x(10), devicejy(430)),
j>utgtext(FRAME_9_3),
_moveto(device_x(10), devicejy(390)),
_outgtext(FRAME_9_4),
_moveto(devicejc(10), devicejy(350)),
_outgtext(FRAME_9J5),
_moveto(devicejc(10), device_y(310)),
jJUtgtext(FRAME_9_6),
_moveto(devicejc(10), devicejy(270)),
.outgtexttFRAMEJJJ7),

/* wart for user to press key 7
pressJ<ey(),

/* pnnt countdown message on the screen 7
pnntjwuntdownO,

/* pnnt begin message on the screen 7
begmjnessageO,

/* clear the screen 7
_clearscreen(J3CLEARSCREEN),

Function Testj 0,
File TESTJ C

Parameters None

Returned None
0
Vanables None

Descnption Procedure to execute testj This test determines
the mental rotation capabilities of a person
An airplane icon is presented in any of eight onentations
(0,45,135,180,225,270,315) on the screen The icon itself
is placed in one of eight positions on the screen The
object is to detemriine the angular position of the center
of the screen if the user were in the airplane and facing
forward

void test 1(STUDENT_RECORD 'newjstudent)
{

int numjnals, numjstatements,
char key_field[9],

short previous,
double t,
intn,
inttest = 1,
int *save_errorJwx,
int 'savejnfojwx,
long imagejsize,

FILE *debug_data;

I* array to hold questions. Format of questions is:
question[n][0] = aircraftjjrientation (deg)
questionfnjfl j = aircraftjwsition (deg)

7

short questfon[NUM_PROBLEMS]f2] = {
{ 0, 0}, {45,225}, {135, 90}, {180,315}, {270,180},
{ 0, 90}, {45,315}, {135,180}, {225, 45}, {270,270},
{90, 0}, {135,225}, {225, 90}, {270,315}, {315,315},
{ 0,225}, { 90, 90}, {270,225}, {225,225}, {315, 90},
{135,315}, {225,180}, {315, 45}, { 0,270}, { 90,135},
{45, 0}, {90,225}, {180, 90}, {225,315}, {315,180},
{ 45, 45}, {90,270}, {180,135}, {270, 0}, {315,225},
{ 45,135}, {135, 0}, {180,225}, { 0, 45}, {180, 0},
{ 45, 90}, { 90,315}, {180,180}, {270, 45}, {315,270},
{ 0,315}, {270,135}, {180, 45}, {90, 45}, {315,135},
{270, 90}, { 0,135}, {45,270}, {135,135}, { 45,180},
{ 0,180}, {225,270}, {135,270}, {225,135}, {315, 0},
{225, 0}, {135, 45}, {180,270}, {90,180}};

r array that holds correct answer key press for all questions 7
short answer[64] = { '2 , '8', '3', 7", '6, '4', V, T , '8', 'Z,

'6\'4','9', T,'Z,'9",'Z,'3', 'Z, 7 \
'8', '3', '4', '61, ' 1 ' , '3', '7, '6\ '4\ '9',
"Z,'8','3','4','6\'4', '9',T, '1 ' , '8',
'1', '9', 'Z,T,'3', '3', •&,•&, '3', '8',
'8', T , '9 \ "Z, T , '8', '1 ' ,T, '6' , '1 ' ,
T , '6\ '4', '4'

};

static unsigned char list[20];

/*
The names of the fonts that are available on disk

7
static unsigned char *face[NFONTS] =
{

Tcourier"',
ThelV",
"tlms rmn'",
Tmodem'"

};

keyJJeldfO] = '1 ' ; key_field[1] = 'Z; key field[2] = '3';
key_field[3] = '4'; key_field[4] = 'o"; key field[5] = T ;
key_field[6] = '8'; key_field[7] = '91; key_field[8] = "';

debug_data = fopen("debug.fil","w+");

Read header from all font files
in current directory

7
if (jegisterfonts("*.fon") < 0)
{

/*
set error box color to red
set error text color to white

7
menu_back color(BK_RED);
menuJext_color(TJ/VHITE | TJ3RIGHT);

/* Display error_box_5_01 7
savejsrrorjwx = menu_message(6, 8, errorJwxJ5J51);

/* Make error sound 7
warble(5);

I* Get keypress from user 7
getchQ,

/* Erase error_box_5J)1 7
menu_erase(save_errorJwx),

/*
set box color back to cyan
set text color back to black

7
menu_back_color(BKJ/VHITE),
menuJext_color(TJ3LACK),

}
else
{

/* Place graphics adapter into videomode 7
best_graph_modeO,

I* Display digit centered at the top of the screen 7
strcpy(list, face[GRID_CHAR_FONT]),
strcat(list, "h40w32b"),

/* set the font 7
_setfont(list),

/* set text color to blue - same as background 7
previous = _setcolor(TJ3ROWN),

I* reset drawing color 7
_setcolor(previous),

r Initialize pointers to buffers that draw the aircraft in any
of the eight given onentations 7

lnrt_ac_onentationsO,

/* Display test 1 instructions 7
Displayjestl jnstructionsO,

/* run test in two tnals 7
for (numjnals = 0, numjnals < NUMJTRIALS , numjnals++)
{

for (num_statements = numJnals*NUMJ3ROBLEMS/2,
numjstatements < NUM_PROBLEMS/2+numJnals*NUM_PROBLEMS/2,
num_statements++)

{
/* flush the keyboard buffer 7
while (kbhrtO)

getchO,

/* clear screen and display background 7
_clearscreen (J3CLEARSCREEN),
Draw_background(),

/* check for timeout and display appropnate message 7
I* NOTE test is initialized to 1 to ensure timeout message is not

erroneously displayed for first problem 7
if (test == 0)

timeoutjnessageO

Draw_aircraftj)roblem(questionfnumj5tatements][ACjDRIENTATION],

question[numjstatements][AC_POSITION]),

/* set timer with 2 minute timeout and 10 second warning 'beep' feature 7
resultsfnumjstatements] reactionjime = studentJimer(Stest, keyjield,

(unsigned)120, (unsigned)10),
results[num_statements] answer = test,

}

I* return if this is a demonstration test 7
if (new student-=>test no<0)
{

/* Return to text mode 7
textjnodeO,

/* Set foreground and background colors for program 7
_setbkcolor(BK.CYAN),
jsettextcolor(T_BLACK),

/* Fill the background 7
box_charfill(1,1,25, 80,178),

I* Return memory used by fonts 7
jjnregisterfontsO,

/* free up memory used by simple figures 7
Free_acO,

/* exit test 7
return,

/* Statistical analysis of test results 7
stats_testj(results, newjstudent, answer, numjnals),

if (num tnals < NUMJTRIALS -1)
{

I* clear the screen 7
fulljjlack_bar0,

/* ask user to press key to start the next tnal 7
nextJnaljnessageO,

/* clear the screen 7
fullJjIackJjarO,

/* pnnt countdown message on the screen 7
pnntjwuntdownO,

}
else
{

I* set graphics background to black 7
_setbkcolor(_BLACK),
J5learscreen(J3CLEARSCREEN),

/* clear the screen 7
full_black_barO,

/* ask user to press key to end test 7
_clearscreen(J3CLEARSCREEN),
test_complete_message(),

/* clear the screen 7
full_black_bar(),

}

}
/* Set text mode 7
textjnodeO,

I" Fill the background 7

box_charfill(1,1,25, 80,178);

/*
set information box color to green
set information box text color to white

7
menu back color(BK GREEN);
menuJext_color(TJ/VHITE | TJ3RIGHT);

I* Display informationJwxJ 9 7
savejnfojwx = menu_message(8,8, infojwxj 9);

getch();

/* Erase information J w x J 9 7
menujsrase(savejnfojwx);

/*
set box color back to cyan
set text color back to black

7
menu_back_color(BKJ/VHITE);
menuJext_color(TJ3LACK);

I* Free memory taken up by fonts 7
_unregisterfonts();

I* free up memory used by simple figures 7
FreejscO;

/* Set foreground S background colors for program 7
_setbkcolor(BK CYAN);
_settextcolor(TJ3LACK);

/*
Name: TMANAGER.C
Type: Routines to execute student tests.

Air Traffic Control Screening Program
Language: Microsoft QuickC version 2

7

ftnclude <graph.h>
#include <conio.h>
#include <malloc.h>
#include "typjnit.h"
ftnclude "video.h"
ftnclude "lest 1.h"

/*
Function: TestjnanagerO;
File: TMANAGER.C

Parameters: student pointer to student record

Returned: None

Variables: None

Description: Executes

7

void Testjnanager(STUDENT RECORD 'newjstudent)
{

/* Start test #1 7
test j (newjstudent);

}

/*
Name
Type

Language

VIDEO C
Routines to implement virtual

display area for ATC graphic based
tests
Air Traffic Control Screening Program

Microsoft QuickC version 2

Last Revision 06/16/92 Gordon Jones

Note Structure for jjetvideoconfigO as visible to user

struct videoconfig {
short numxpixels,
short numypocels,
short numtextcols,
short numtextrows,
short numcolors,
short brtsperpixel,

number of pixels on X axis
number of pixels on Y axis
number of text columns available
number of text rows available

number of actual colors
number of bits per pixel

}.

short numvideopages, number of available video pages
short mode, current video mode
short adapter, active display adapter
short monitor; active display monitor
short memory, adapter video memory in K bytes

7

ftnclude
ftnclude
ftnclude
#include
ftnclude
#mclude
ftnclude
ftnclude
ftnclude
#mclude

<graph h>
<stdio h>
<malloc h>
<conio h>
<stdlib h>
<time h>
"tjwlors h"
"menu h"
"video h"
"mkjp h"

#pragmapack(1)

#define VH 600
ftJefine VW 800

/* height of virtual window 7
/* width of virtual window 7

static double xjrans = 0 0,
static double yjrans = 0 0,
static mt max j y = 0,

/* scaling factor for converting 7
/* from virtual to device coords 7

/* Error message data */
char'error boxJ2JD1Q =

{
1 Error Message #2 01 ",

UNABLE TO TURN ON GRAPHICS MODE '

The Monochrome Display Adapter",
installed in this computer",
does NOT support graphics ",
Graphics capability is needed "

< Press any key >",
NULL
},

I*

Procedure to place video adapter
in text mode

7

void text mode(void)
{

jsetvideomode(_DEFAULTMODE),
}

r
Procedure to place video adapter
in best graphics mode

7

void bestjjraph_mode(void)
{

int 'savejsrrorjwx,
short best,
struct videoconfig grconfig,

I*
place information about video
adapter into structure vanable
grconfig

7
_getvideoconfig(Sgrconfig),
switch (grconfig adapter) {

/* Monochrome Display Adapter 7
/*case_MDPA best = - 1 , break,

/* Color Graphics Adapter 7
case_CGA best= Jv1RES4COLOR, break,

/* Enhanced Graphics Adapter 7
case_EGA best = JERESCOLOR, break,

/* Video Graphics Array 7
caseJ/GA best = JERESCOLOR, break,

/* Multicolor Graphics Adapter 7
caseJVICGA best = JERESCOLOR, break,

I* Hercules Graphics Card 7
caseJHGC best = JHERCMONO, break,

}
if (best f= -1) {

r
Set best video mode

7
_setvideomode(best),

/*
Initialize video vanables

7
xjrans = xJactor(),
yjrans = yJactor().
max j y = maximumjyO,
}

else{
/*

Error - Monochrome Display Adapter
cannot support graphics

7

r
set error box color to red

set error text color to white
7
menu_back_color(BK_RED),
menuJext_color(TJ/VHITE | TJ3RIGHT),

/* Display errorjwxj 7
savejsrrorjwx = menu_message(10,8, error_boxj2_01),

getchO,

/* Erase errorjwxj 7
menu_erase(savejsrrorjwx),

/*
set box color back to cyan
set text color back to black

7
menu_back_color(BKCYAN),
menuJext_color(TJ3LACK),

}
}

/*
Function to calculate scaling factor
along the x axis

7

double x factor(void)
{

r max number of pixels - x axis 7
int maxx,

struct videoconfig video,

/*
place information about video
adapter into structure vanable
video

7
jjetvideoconfig(& video),

maxx = video numxpixels - 1 ,

/* Calculate scaling factor for x axis 7
retum((double) (maxx) / VW),

}

/*
Function to calculate scaling factor
along the y axis

7

double yJactor(void)
{

int maxy, /* max number of pixels - y axis 7

struct videoconfig video

/*
place information about video
adapter into structure vanable
video

7
jjetvideoconfig(S video),

maxy = video numypixels - 1 ,

/* Calculate scaling factor for x axis 7
retum((double) (maxy) / VH),

}

/*
Function that returns maximum y
coordinate for video adapter

7

mt maximumjy(void)
{

struct videoconfig video,

/*
place information about video
adapter into structure vanable
video

7
_getvideoconfig(S video),

retum(video numypixels -1),
}

r
Function to map virtual x coordinate
to device x coordinate

7

mt device x(register int virtual x)
{

return (int) (xjrans * virtual j c) ,
}

/*
Function to map virtual y coordinate
to device y coordinate

7

int devicejy(register int virtualjy)
{

return (int) (maxjy - (yjrans * virtualjy)),
}

I"
Function ImeO,
File VIDEO C

Parameters
(input) x1,y1 x and y coordinate of start of

line
x2,y2 x and y coordinate of end of

line

Returned Nothing

Vanables None

Descnption Draws a line using the virtual coordinate system
implemented in this unit on the screen The line
is drawn from x1 ,y1 to x2,y2 in the current color

void line(int x1, int y1, int x2, int y2)

174

Parameters
(input) x1 X-coordinate for first point
(input) y1 Y-coordmate for first point
(input) x2 X-coordinate for second point
(input) y2 Y-coordmate for second point

Returned Integer buffer containing points on line

Vanables xi X increment direction
yi Y increment direction
dx Relative change in x-coordinate
dy Relative change in y-coordmate
xp Current point along the line
yp Current point along the line
ex Accumulated x increments
cy Accumulated y increments
buf Pointer to returned buffer
ndx Index into buf for each coordinate
i Looping index

Descnption Builds a table of coordinates that form a line
connecting two given points

Note Bresenham function used because quicker than
standard Quick C fill function

{
/* Move cursor position to start of line 7
jnoveto(devicejc(x1) , device_y(y 1)) ,

/* Draw line from x1 ,y1 to x2,y2 7
lmeto(device x(x2) , devicejy(y 2)) ,

} "

/*
Function. bresenhamQ

mt *bresenham(mt x1, mt y1, mt x2, int y2)

{
unsigned xi, yi, dx, dy, xp, yp, ex, cy,
mt *buf,
int ndx = 1,
int i,

/* Right to left from first point to second'' 7
I f (x 2 < x 1)

{
dx = x1 -x2 ,
xi = - 1 ,
}

/* Is first y-coordmate greater than second? 7
i f (y 2 < y 1)

{
dy = y1 -y2 ,
yi = -1,

For information on how this function works please
review graphics textbook

/* Must be left to nght from first point to second 7
else

{
dx = x2 - x1,
xi = 1,
}

}

r Second y-coordinate must be greater than first 7
else

{
dy = y2 - y1;
yi = 1;
}

I* Set the working point to the first point 7
xp = x1;
yp = yi;

/* Is the line more vertical than horizontal? 7
i f (dx<dy)

{

/* Start with the accumulated count at halfway point 7
cy = dy » 1;

r Allocate memory for the buffer 7
buf = (int *)malloc(((y2 - y1 + yi) * yi) * 4 + 2);

if (buf == NULL)
{
printf("Not enough memory for bresenhamOW);
exit(1);
}

/* Until we get to the last point 7
while (yp .'= y2)

{

/* Put the current point in the buffer 7
buf[ndx++] = xp;
buffndx++] = yp;

/* Accumulate the relative counts 7
cy += dx;
yp+=yi;

/* Is it time to change x-coordinate? 7
if (dy < cy)

{

/* Reset the accumulating count 7
cy -= dy;

/* Change the X value 7
xp+=xi;
}

}
}

/* Line must be more horizontal than vertical 7
else

{

/* Start with the accumulated count at halfway point 7
ex = dx » 1;

/* Allocate memory for the buffer */
buf = (int *)malloc(((x2 - x1 + xi) * xi) * 4 + 2);

if (buf == NULL)
{
printf("Not enough memory for bresenham()\n");
exit(1);
}

I* Until we get to the last point 7

176

while (xp '= x2)
{

/* Put the current point in the buffer 7
buffndx++] = xp,
buflndx++] = yp,

/* Accumulate the relative counts 7
ex += dy,
xp+=w,

/* Is it time to change y-coordinate? 7
if (dx < ex)

{

/* Reset the accumulating count 7
ex -= dx,

/* Change the Y value 7
yp+=yi ,

}

}

/* Save the last point in the buffer 7
buffndx++] = x2,
buffndx++] = y2,

/* Save the number of points at head of buffer 7
buffO] = ndx » 1 ,

i

I

Function

f Return the buffer 7
return (buf) ,

tnangle()

Parameters
(input)
(input)
(input)
(input)
(input)
(input)
(input)

type
x1
yi
x2
y2
X3
y3

LINED (outline) or SOLID (filled)
X-coordinate at first point
Y-coordmate at first point
X-coordinate at second point
Y-coordmate at second point
X-coordinate at third point
Y-coordmate at third point

Returned (function returns nothing)

Vanables buf 12 Points along line from point 1 to 2
buf23 Points along line from point 2 to 3
bufl 3 Points along line from point 1 to 3
xleft Points along left side of tnangle
xnght Points along nght side of tnangle
i Looping index
ymin Minimum Y point of tnangle
ymax Maximum Y point of tnangle
xmin Minimum X point of tnangle
xmax Maximum X point of tnangle
x X-coordmates along tnangle edges
y Y-coordinates along tnangle edges
numy Number of Y-coordinates in tnangle

Descnption Draws a tnangle, optionally filled in

Note Bresenham function used because quicker than
standard Quick C fill function calls

For information on how this function works please
review graphics textbook.

void triangle(int type, int x1, int y1, int x2, int y2, int x3, int y3)
{

int*buf12,*buf23, *buf13;
int 'xleft, "xright;
int i, ymin, ymax, xmin, xmax;
int x, y, numy;

if (type == LINED)

/* Draw only the outline 7
{
_moveto(x1, y1);
Jineto(x2, y2);
Jineto(x3, y3);
Jineto(x1, y i) ;
}

else

/* Fill in solid area 7
{

/* Determine minimum and maximum y-coordinates 7
ymin = ymax = y1;
ymin = (y2 < ymin) ? y2: ymin;
ymin = (y3 < ymin) ? y3: ymin;
ymax = (y2 > ymax) ? y2: ymax;
ymax = (y3 > ymax) ? y3 : ymax;

/* Determine minimum and maximum x-coordinates 7
xmin = xmax = x1;
xmin = (x2 < xmin) ? x2: xmin;
xmin = (x3 < xmin) ? x3 : xmin;
xmax = (x2 > xmax) ? x2: xmax;
xmax = (x3 > xmax) ? x3: xmax;

/* Calculate line coordinates for the triangle sides 7
buf 12 = bresenham(x1, y1, x2, y2);
buf23 = bresenham(x2, y2, x3, y3);
buf13 = bresenham(x1, y1, x3, y3);

/* Build arrays for x values at all possible y values 7
numy = ymax - ymin + 1;
xleft = (int *)malloc((sizej)(numy * 2));
xright = (int *)malloc((sizej)(numy * 2));

I* Fill arrays with starting values 7
for (i = 0; i < numy; i++)

{
xleftfi] = xmax;
xrightfi] = xmin;
}

r Put coordinates for first triangle side into arrays */
for(i = 0;i<buf12f0];i++)

{
x = buf12[i+i+1];
y = buf12fi+i+2] - ymin;
if(x<xleft[y])

xleftfy] = x;
if (x > xrightfy])

xrightfy] = x;
}

/* Put coordinates for second triangle side into arrays 7
for (i = 0; i < buf23[0]; i++)

{
x = buf23[i+i+1];
y = buf23[i+i+2] - ymin;
if(x<xleft[y])

xleftfy] = x;
if (x > xrightfy])

xrightfy] = x;
}

/* Put coordinates for third triangle side into arrays 7
for(i = 0;i<buf13f0];i++)

{
x = buf13[i+i+1];
y = buf13fi+i+2] - ymin;
if(x<xleft[y])

xleftfy] = x;
if (x > xrightfy])

xrightfy] = x;
}

/* Now we can fill the triangle efficiently 7
for (i = 0; i < numy; i++)

{
_moveto(xleftfi], ymin + i);

lineto(xrightfi], ymin + i);
}

r Free some memory */
free(buf12);
free(buf23);
free(buf13);
free(xleft);
free(xright);
}

/*

•i

#ifndef GETKEY_DEFINED

ftJefine KEYJM 15104
ftJefine KEY_F2 15360
#define KEY_F3 15616
#define KEY_F4 15872
#define KEY_F5 16128
ftJefine KEY F6 16384
#define KEY_F7 16640
#define KEY_F8 16896
#define KEY_F9 17152
ftJefine KEYJMO 17408
ftJefine KEY_SHIFT_F1 21504
ftJefine KEYJ5HIFT_F2 21760
ftJefine KEY_SHIFT_F3 22016
ftJefine KEYJ3HIFT_F4 22272
ftlefine KEY SHIFT F5 22528
fttefine KEYJ3HIFT F6 22784
ftJefine KEYJ3HIFT F7 23040
ftJefine KEY_SHIFT_F8 23296
ftJefine KEY.SHIFT F9 23552
ftJefine KEYJ5HIFT_F10 23808
ftJefine KEY_CTRL_F1 24064
ftJefine KEY_CTRL_F2 24320
ftJefine KEY_CTRL F3 24576
fttefine KEY CTRL F4 24832
ftJefine KEY_CTRL_F5 25088
ftJefine KEY_CTRL_F6 25344
ftlefine KEY_CTRL_F7 25600
ftJefine KEY_CTRL_F8 25856
ftJefine KEY_CTRL_F9 26112
ftlefine KEY_CTRL_F10 26368
ftlefine KEY_ALT_F1 26624
ftlefine KEY_ALT_F2 26880
ftlefine KEY_ALT_F3 27136
ftJefine KEY_ALT_F4 27392
ftJefine KEY_ALT_F5 27648
ftJefine KEY_ALT_F6 27904
ftJefine KEY_ALT_F7 28160
ftJefine KEY_ALT_F8 28416
ftJefine KEY_ALT_F9 28672
ftJefine KEY_ALT_F10 28928
ftJefine KEYJNSERT 20992
ftJefine KEY HOME 18176
ftlefine KEY PGUP 18688
ftlefine KEYjOELETE 21248
ftJefine KEYJEND 20224
ftJefine KEY_PGDN 20736
ftJefine KEYJJP 18432
ftJefine KEYJ.EFT 19200
ftJefine KEYJDOWN 20480
ftJefine KEY RIGHT 19712
ftJefine KEYJENTER 13
ftJefine KEYJESCAPE 27
ftJefine KEY.BACKSPACE 8
ftJefine KEYJTAB 9
ftJefine KEYJ5HIFTJTAB 3840
ftJefine KEY_CTRL_LEFT 29440
ftJefine KEY_CTRL_RIGHT 29696
ftJefine KEY CTRL HOME 30464

180

ftJefine KEY_CTRL_PGUP 33792
ftlefine KEY CTRL_PGDN 30208
ftJefine KEY CTRL END 29952
ftJefine KEY_CTRL_ENTER 10

unsigned int getkey(void);
unsigned int getkey_or_mouse(void);
long studentJimer(int *key, char *neutral, unsigned timeout, unsigned wamingjime);

ftJefine GETKEYJ3EFINED
ftsndif

r

7

#ifndef MOUSEFUNJDEFINED

ftJefine LBUTTON 0
ftJefine RBUTTON 1

ftJefine SOFT_TEXT_CURSOR 0
ftJefine HARD TEXT CURSOR 1

ftJefine
ftJefine
ftJefine
ftJefine
ftJefine
ftJefine
ftJefine
ftJefine
ftJefine

ENGLISH 0
FRENCH 1
DUTCH 2
GERMAN 3
SWEDISH 4
FINNISH 5
SPANISH 6
PORTUGESE 7
ITALIAN 8

ftJefine MOUSE BUS 1
ftJefine MOUSEJ3ERIAL 2
ftJefine MOUSEJNPORT 3
ftJefine MOUSE_PS2 4
ftJefine MOUSEJHP 5

ftJefine IRQ_PS2 0

/* Structure definition for graphics mode mouse cursors 7
struct graphicsjsursor

{
int screen_mask[16],
int cursor_mask[16],
int hot_spot_x,
int hotjspotjy,
}.

void mousejeset(int *, mt *) ,
void mouse_show(void),
void mouse_hide(void),
void mouse_status(mt *, int *, mt *, int *) ,
void mouse_setpos(int, int),
void mousejjress(int, int *, mt *, mt *, mt *) ,
void mouse_release(int, int *, mt *, int *, int *)
void mouse_sethorz(int, int),
void mouse_setvert(int, int),
void mouse~setgcurs(struct graphicsjsursor
void mouse_settcurs(int, int, int),
void mouse_motion(int *, mt *) ,
void mouse_setratios(int, int),
void mousejwndoff(int, int, int, int),
void mouse_setdouble(int),
void mousejstorage(int *) ,
void mouse_save(char far *) ,
void mousejestore(char far *) ,
void mouse_setsensrtivity(int, int, int),
void mousejjetsensrtivity(int *, int *, int *) ,
void mouse_setmaxrate(int),
void mouse_setpage(int),
void mousejjetpage(int *) ,
void mouse_setlang(mt),
void mousejjetlang(int *) ,

/* Function 0 7
/* Function 1 7

/* Function 2 7
/* Function 3 7

r Function 4 7
r Function 5 7
/* Function 6 7

/* Function 7 7
/* Function 8 */

far *) , r Function 9 7
I* Function 10 7
/* Function 11 7
/* Function 15 7
/•Function 16 7
/•Function 19 7

/* Function 21 7
/* Function 22 7
r Function 23 7
/* Function 26 7
r Function 27 7

/* Function 28 7
/* Function 29 7
/* Function 30 7

/* Function 34 7
/* Function 35 7

182

void mousejjetversion(double *, int *, int *) ; /* Function 36 7

/* Default graphics mode cursor 7
static struct graphicsjjursor far gcursor default =

{

/* screen mask 7
OxCFFF, /* 1100111111111111 7
0xC7FF, /* 1100011111111111 7
0xC3FF, /* 1100001111111111 7
0XC1FF, /* 1100000111111111 7
OxCOFF, /* 1100000011111111 7
0xC07F, /* 1100000001111111 7
0xC03F, /* 1100000000111111 7
OxCOIF, /* 1100000000011111 7
OXCOOF, r 1100000000001111 7
OXC007, /* 11CJ0000000000111 7
0xC07F, /* 1100000001111111 7
0XC43F, /* 1100010000111111 7
0XCC3F, /* 1100110000111111 7
OxFEIF, /* 1111111000011111 7
OxFEIF, /* 1111111000011111 7
OxFFIF, r 1111111100011111 */

/* cursor mask 7
0x0000. /* 0000000000000000 7
0x1000, roooiotxxxxxxxxxx)*/
0x1800, rO(X)11(XXXXXXXXXX)7
oxicoo, roooi 110000000000 7
OxIEOO, /* 0001111000000000 7
OxIFOO, /* 0001111100000000 7
0x1F80. /* 0001111110000000 7
OxIFCO, r 0001111111000000 7
OxIFEO, /* 0001111111100000 7
OxIFOO, r 0001111100000000 7
0x1 BOO, r 0001101100000000 7
0X1180, /* 0001000110000000 7
0X0180, /* 0000000110000000 7
OxOOCO, /* (XXJ0000011000000 7
OxOOCO, /* 0000000011000000 7
0x0000, /* OXXXXXXXXXXXXXXX) 7

/* hot spot x,y 7
02,00
};

/* Graphics mode cursor, pointing hand 7
static struct graphics_cursor far gcursor Jiand :

{

/* screen mask 7
OxEIFF, r 11100h0111111111 */
OxEIFF, /* 1110000111111111 */
OxEIFF. /* 1110000111111111 */
OxEIFF. /* 1110000111111111 7
OxEIFF. r 1110000111111111 */
OxEOOO, T 1110CO0CXXXXXXXX)7
OxEOOO, ri11(XXXXXXXXXXXX)7
OxEOOO, T 1 1 1 () 0 C X X X X X X X X X X J 7
oxoooo, /* oooaxxxxxxjooooo 7
OxOOOO, /* OXXJOOOOOOOOOOOO 7
oxoooo, r oaxxxxxxxxxxxxx) */
0x0000, r 0000000000000000 7
oxoooo, /* oocwaxxxxxxxxxx) */
0x0000, /* OOOCXXXXJOOOOOOOO 7
0x0000, r (XXXXXXXXXXXXXXX) 7
0x0000, /*()0CXXXXXXXXXXXX)0 7

I* cursor mask 7
0X1E00, /* 00011H1000000000 7
0x1200, /* 0001001000000000 7
0x1200, /* 0001001000000000 7
0x1200, /*0001001000000000 7
0x1200, /*0001001000000000 7
0X13FF, /•0001001111111111 7
0x1249. /* 0001001001001001 7
0x1249, /* 0001001001001001 7
0xF249, /* 1111001001001001 7
0x9001, /* 1001000000000001 7
0x9001, /* 10010MXXXXXXXX)1 7
0x9001, /* 1001000000000001 7
0x8001, /* 1000000rXXXXXXX)1 7
0x8001, /* iooooorxxxxxxxx)i */
0x8001, /* 100CXXXXXXXXXXX)1 7
OxFFFF, /•11111111111111117

/* hot spot X,y 7
05,00
};

/* Graphics mode cursor, check mark 7
static struct graphics cursor far gcursor_check =

{

/* screen mask 7
OxFFFO, /* 1111111111110000*/
OxFFEO, /* 11111111111000007
OxFFCO, /* 11111111110000007
0XFF81, /* 1111111110000001 7
0xFF03, /* 1111111100000011 7
0x0607, /* 0000011000000111 7
OxOOOF, /*0tXXXXXXXXXX)1111 7
OxOOIF, T 0 (X X X X X X X X X J 1 1 1 1 1 7
0xC03F, /* 1100000000111111 7
OxF07F, /* 1111000001111111 7
OxFFFF, /* 1111111111111111 7
OxFFFF, /•11111111111111117
OxFFFF, /•11111111111111117
OxFFFF, /•11111111111111117
OxFFFF, /* 1111111111111111 7
OxFFFF, /* 1111111111111111 7

/* cursor mask 7
0x0000, /* OOOOCXXXXXXXXXXX) 7
0x0006, /*0OCXXXXXXXXXX)110 7
OxOOOC, /*00000CXXXXXX)1100 7
0x0018, /* 0000000000011000 7
0x0030, rtXXXXXXXXX)110000 7
0x0060, /* 0000000001100000 7
0x70C0, /* 0111000011000000 7
0x1D80, /* 0001110110000000 7
0x0700, /* 000001110CXXXXXX) 7
0x0000, /* 0000000000000000 7
0x0000, /* OOOOOCXXXXXXXXXX) 7
0x0000, /* OOCXXXXXXXXXXXXX) 7
0x0000, r 0000000000000000 7
0x0000, /• ooooorxxxxxxxxxx) 7
oxoooo, /* ooorxxxxxxxxxxxxi 7
oxoooo, /* oooooooooooooooo 7

r hot spot x,y 7
06,07
};

/* Graphics mode cursor, hour glass 7
static struct graphics cursor far gcursor hour =

{

/* screen mask 7
0x0000, /* CXXXXXXXXXXXXXXX) 7
0x0000, /* ooocxxxxxxxoooooo 7
0x0000, /* 0000000000000000 7
0x8001, /* 1000000000000001 7
0xC003, /* 1100000000000011 7
0xE007, /* 11100CXXXXXXX)111 7
OxFOOF, /* 1111000000001111 7
OxE007, /* 1110000000000111 7
0XC003. /* 1100000000000011 7
0x8001, /* 10<XXXXXXXXXXXX)1 7
0x0000, /* (XXXXXXXXXXXXXXX) 7
0x0000, /* 0000000000000000 7
0x0000, /* OOOOOOCXXXXXXXXX) 7
0x0000, /* CXXXXXXXXXXXXXXX) 7
0x0000, /* OOCXXXXXXXXXXXXX) 7
0x0000, /* OOOOOOCXXXXXXXXX) 7

/* cursor mask 7
0x0000, /* 0000000000000000 7
0x7FFE, /•01111111111111107
0x6006, /* 0110000000000110 7
0X300C, r 00110000000011007
0x1818, /* 0001100000011000 7
0X0C30, /* 0000110000110000 7
0x0660, /* 0000011001100000 7
0x03C0, /* 0000001111000000 7
0x0660, /* 0000011001100000 7
0x0C30, T 0000110000110000 7
0x1998, /* 0001100110011000 7
0X33CC, /* 0011001111001100 7
0x67E6, /* 01100111111001107
0x7FFE, 7*0111111111111110*/
0x0000, /* OOCX)OOOOC)0000000 7
oxoooo, /* ooc)cx)oc)ooooooooo */

r hot spot x,y 7
07,07
};

/* Graphics mode cursor, jet aircraft 7
static struct graphics_cursor far gcursorjet =

{

r screen mask 7
OxFFFF, /* 1111111111111111 */
OxFEFF, /* 1111111011111111 7
0xFC7F, r 1111110001111111 7
0xF83F, /* 1111100000111111 7
0xF83F, r 1111100000111111 7
0xF83F, /* 1111100000111111 7
OxFOIF, /* 1111000000011111 7
OxEOOF, r 1110000000001111 7
0xC007, r 1100CXXXXXX)00111 7
0x8003, /* 1000000000000011 7
0x8003, /* 1000000000000011 7
0xF83F, /* 1111100000111111 7
0xF83F, /* 1111100000111111 7
OxFOIF, /* 1111000000011111 7
OxEOOF, /* 1110000000001111 7
OxFFFF, /* 1111111111111111 */

/* cursor mask 7
0x0000, /* 0000000000000000 7

0x0000, /* (XXXXXXXXXXXXXXX) 7
0x0100, /* 00000001CJ0O0O0O0 7
0x0380, I* 0000001110000000 7
0x0380, /* 0000001110000000 7
0X0380, /* 0000001110000000 7
0X07C0, /*(XXXX)11111000000 7
OxOFEO, /* 0000111111100000 7
0X1FF0, /* 00011111111100007
0X3FF8, /*00111111111110007
0X638C, /* 0110001110001100 7
0x0380. /*0000C»1110000000 7
0x0380, /* 00000011100000007
0X07C0, /*CX)00011111000000 7
OxOC60, r 0000110001100000 7
0x0000, /* OOOCK)0CXXXXXXXXX) 7

rhotspotx,y7
07.01
};

/* Graphics mode cursor, left pointing arrow 7
static struct graphicsjjursor far gcursorJeft =

{

I* screen mask 7
0XFE1F, /* 1111111000011111 7
OxFOIF, ri111CXXXXXX)111117
oxoooo, /* c)ooooooooooooooo */
0x0000, /* OCXXXXXXXXXXXXXX) 7
0x0000, rOOOOCBOOOOOTOOOO*/
OxFOIF, /* 1111000000011111 7
OxFEIF, r 1111111000011111 7
OxFFFF, /* 1111111111111111 */
OxFFFF, /* 1111111111111111 7
OxFFFF, /* 1111111111111111 7
OxFFFF, /-1111111111111111 */
OxFFFF, /* 1111111111111111 */
OxFFFF, /* 1111111111111111 */
OxFFFF, /* 1111111111111111 */
OxFFFF, 7*1111111111111111 */
OxFFFF, 7* 1111111111111111 */

/* cursor mask 7
0x0000, /* OCXXXXXXXXXXXXXX) 7
OxOOCO, /* 0000000011000000 7
0X07C0, /* 0000011111000000 7
0x7FFE, 7*0111111111111110*/
0X07C0, /* 0000011111000000 7
OxOOCO, /* 0000000011000000 7
0x0000, /* OCJOOOOOCOOOOOOOO 7
0x0000, /* OCXXXXXXXXXXXXXX) 7
0x0000. /* OOOOOOCXXXXXXXXX) 7
0x0000, /* OCXX)OOO0CX)O00OO0 7
0x0000. /* 0C)OOOOOOOCXX)OOO0 7
0x0000. rOOOC»C)0OCX)0OO00O7
0x0000, r CWOOOOOOOtXXXXXX) 7
oxoooo, r ooootxxxxxxxxxxx) */
oxoooo, rcwoocxxxxxxxxxxx)*/
0x0000, /* OOOOOOCXXXXXXXXX) 7

/* hot spot x,y 7
00,03
};

/* Graphics mode cursor, plus sign 7
static struct graphics_cursor far gcursorJJIUS =

{

I* screen mask 7
0xFC3F, /* 1111110000111111 7
0xFC3F, 7*11111100001111117
0XFC3F, /* 1111110000111111 7
0x0000, 7* OCXXXXXXXXXXXXXX) 7
0x0000, 7* CXXXXXXXXXXXXXXX) 7
0x0000. /* OCXXXXXXXXXXXXXX) 7
0XFC3F, 7* 1111110000111111 7
0XFC3F, 7*11111100001111117
OxFC3F, 7*11111100001111117
OxFFFF, 7*1111111111111111 */
OxFFFF, 7*11111111111111117
OxFFFF, 7*11111111111111117
OxFFFF, 7*11111111111111117
OxFFFF, /* 1111111111111111 7
OxFFFF, 7*11111111111111117
OxFFFF, 7*11111111111111117

7* cursor mask 7
0x0000, 7* 0000000000000000 7
0x0180, r 0000000110000000 7
0x0180, 7*0000000110000000 7
0x0180, /* 0000000110000000 7
0x7FFE, 7*0111111111111110*/
0x0180, 7*0000000110000000 7
0x0180, r 0000000110000000 7
0x0180, 7* 0000000110000000 7
0x0000, 7* OCXXXXXXXXXXXXXX) 7
0x0000, 7* OCXXX)00(XXXXXXXX) 7
0x0000, 7* OCXXXXXXXXXXXXXX) 7
0x0000, /* OCXXJCXXXXXXXXXXX) 7
0x0000, 7* OCX)CX)OCXXXXXXXXX) 7
0x0000. 7* OCXXXXXXXXXXXXXX) 7
0x0000. 7* CXXXXXXXXXXXXXXX) */
0x0000, /* CXXXXXXXXXXXXXXX) 7

7* hot spot x,y 7
07,04
};

7* Graphics mode cursor, up pointing arrow */
static struct graphics_cursor far gcursor_up =

{

/* screen mask 7
0XF9FF, 7*11111001111111117
OxFOFF, 7*11110000111111117
0XE07F, 7* 1110000001111111 7
0xE07F, 7* 1110000001111111 7
0xC03F, /* 1100000000111111 7
0xC03F, 7*11000000001111117
0x801F, 7*10000000000111117
0x801F, 7*10000000000111117
OxOOOF, r0000000000001111 7
OxOOOF, 7* 0000000000001111 7
OxFOFF, r 1111000011111111 */
OxFOFF, r 1111000011111111 */
OxFOFF, /* 1111000011111111 7
OxFOFF, 7*11110000111111117
OxFOFF, 7* 1111000011111111 7
OxFOFF. 7*11110000111111117

7* cursor mask 7
0x0000, 7* CXX)OO(XXXXX)OOOO0 7
0x0600, 7*0000011000000000 7
OxOFOO, 7* 0000111100000000 7
OxOFOO, 7* 00001111O0OOOOO0 7

OX1F80, 7*0001111110000000 7
0x1F80, T000111111C)OOOC)00 7
0X3FC0, 7* 0011111111000000 7
0X3FC0, rCXj11111111000000 7
OX7FE0. 7*01111111111000007
0x0600, 7* 0000011000000000 7
0x0600, 7*0000011000000000 7
0x0600, /*CXXXX)110CXXXXXX)0 7
0x0600, TOCXXX)110OCX)O0O0O7
0x0600, /*OOOCX)1100CXXXX)00 7
0x0600, 7*0000011000000000 7
0x0000, 7* OOCXXXXXXXXXXXXX) 7

7* hot spot x,y 7
05,00
};

7* Graphics mode cursor, X mark 7
static struct graphics_cursor far gcursorjc =

{

/* screen mask 7
0X07E0, 7*0000011111100000 7
0x0180, 7*0000000110000000 7
oxoooo, r ocioooooooooooooo •/
0xC003, 7* 11OCX)OOOOOO0O011 7
OxFOOF, 7*11110000000011117
0XC003, 7* 110CXXMOOO00O011 7
0x0000, /* 0000000000000000 7
0x0180, 7* 0000000110000000 7
0x03C0, 7* 0000001111000000 7
OxFFFF, 7*11111111111111117
OxFFFF, 7*11111111111111117
OxFFFF, 7*1111111111111111 */
OxFFFF, 7*11111111111111117
OxFFFF, 7*11111111111111117
OxFFFF, 7*1111111111111111 */
OxFFFF, 7*11111111111111117

7* cursor mask 7
OXOOOO, 7* CXXXXXXXXXXXXXXX) 7
0x700E, 7*0111000000001110 7
0x1C38, 7*0001110000111000 7
0x0660. 7* 0000011001100000 7
0x03C0, 7*0000001111000000 7
0x0660, 7*0000011001100000 7
0x1C38, 7*0001110000111000 7
0x700E, 7* 0111000000001110 7
0x0000, /* OOOOOOOOCXXXXXXX) 7
0x0000, /* oooooorxxxxxxxxx) 7
0x0000, 7* CXXXXXXXXXXXXXXX) 7
0x0000, 7* CXXXXXXXXXXXXXXX) 7
0x0000, 7* OOOOOOOOOCXXXXXX) 7
0x0000, 7* CXXXXXXXXXXXXXXX)'/
oxoooo, r oocxxxxxxxxxxxxx) •/
0x0000, 7* CXX)CX)O0OOO0O0O00 7

7* hot spot x,y 7
07,04
};

ftJefine MOUSEFUN_DEFINED
ftsndif

7*

Name: VIDEO.H
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definitions for VIDEO.C

7

#ifndef VIDEOJDEFINED

ftlefine FALSE 0
ftJefine TRUE IFALSE

ftJefine LINED 0
ftJefine SOLID 1

int *bresenham(int, int, int, int);
void trianglefmt, int. int, int, int, Int, int);
void polygon(int, int, int Q[2]);
void line(int x i , int y1, int x2, int y2);

7* define structures 7
struct points
{

short x;
short y;

};

/* Define functions 7
void text_mode(void);
void bestjjraphjnode(void);
double x_factor(void);
double yJactor(void);
int maximumj/(void);
int device_x(int);
int devicejy(int);
void line(int, int, int, int);
void saveimage(int, int, int, int);
void restimage(void);
double kjime(int *key);
double mJJme(int *key);
double time_3(int *key);

ftJefine VIDEOJ3EFINED
ftsndif

7*

Name: TYPEJNIT.H
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definitions for use

with various modules used by SECURE.C

7

#pragmapack(1)

7* Type defintions 7

typedef struct {
charqualifier[10];
long offset;

} INDEXJNFO;

Student Column # Test* Trial*

0
1
2
3
4
5
6
7

7
typedef struct {

double avgJime_correct;
double ovri_avgjime_oorr;
double avgjimejncorrect;
double ovri_avgJimeJncorr;
int no_questionsjwrrect;
int total no_questions;

} STUDENTJOOLUMN;

typedef struct {
double reaction Jime;
char answer;
char rightjivrong;

}TEMP;

f reaction time to question 7
7* answer to question 7

7* 1 if con-ect answer, 0 if incorrect 7

typedef struct {
int testj io;
char qualifierflO];
char r j j ianded;
char malejemale;
STUDENT_COLUMN studentJnfoflO];
TEMP RESPONSE[65]; 7* 64 problems in test 1 */

} STUDENT_RECORD;

typedef struct qualifierjec {
char qualifierflO];
long offset;
struct qualifier_rec 'next;

} NODE;
typedef struct results j e c {

int testj io;
char qualifierflO];
char r j j ianded;
STUDENT_COLUMN studentJnfo[30];
struct resultsjec 'next;

} RESjNODE;

7*

7

7* Function definitions 7
void Testjnanager(STUDENT_RECORD *new_student);

Name: MN_MENU.H
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definrtions for MN_MENU.C

7* Define functions 7
void display_main_menu(NODE **, NODE **, RESJNODE **, RESJNODE

7*

Name DSKJNIT H
Type* Include
Language Microsoft QuickC version 2
Descnption Prototypes and definitions for DSKJNIT H

7

7* Define functions 7
void lnrtialize(NODE **, NODE * *) ,
void Statsjnrtialize(RESjNODE **, RESJNODE **) ,

7* _ _ _ _ _ _

Name DATA_PLT H
Type Include
Language Microsoft QuickC version 2
Descnption Prototypes and definitions for DATA_PLT C

7

char nght_orJeft_handed(void),
char Male or female(void),
void get_student_data(NODE *, STUDENT RECORD *, long *) ,

r
Name BOX H
Type Include
Language Microsoft QuickC version 2
Descnption Prototypes and definrtions for BOX C

7

ftfndef BOXJDEFINED

unsigned far *box_get(unsigned, unsigned, unsigned, unsigned),
void boxjjut(unsigned far *) ,
void box_color(unsigned, unsigned, unsigned, unsigned),
void box_charfill(unsigned, unsigned, unsigned, unsigned, unsigned char),
void box_draw(unsigned, unsigned, unsigned, unsigned, unsigned),
void box_erase(unsigned, unsigned, unsigned, unsigned),

ftJefine BOXJDEFINED
ftsndif

/• .

Name MK_FP H
Type Include
Language Microsoft QuickC version 2
Descnption Macro to form a far pointer

7

ftJefine MK_FP(seg, off) ((void far *) \
(((unsigned long)(seg) « 16) + (unsigned)(off)))

7*

Name: STATS.H
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definitions for STATS.C

7

7* Define functions 7
double cal_meanJime_correct(int, RESJJODE *) ;
double cal_meanjimejncwrrect(int, RESJJODE *) ;
double caljstat_deviationjwrrect(int, RESJNODE *) ;
double caljstatjJeviationjncorrect(int, RESJNODE *) ;
void statsJest_1(TEMP *, STUDENT_RECORD *, int *, int);
void statsJest_2(TEMP *, STUDENT_RECORD *, int *, int);
void stats JestJ3(TEMP *, STUDENT_RECORD *, char *, int, int);
void stats_test_4(TEMP *, STUDENT_RECORD *, intQ, int, int);
void Get_mtc_data(float *, RESjNODE *) ;
void Getjnti_data(float *, RESjNODE *);
void Getjw_data(float *, RESjNODE *);
void mean Jime_correct(float *, RESJNODE *) ;

7 * — — —
Name: SOUND.H
Type: Include
Language: Microsoft QuickC
Description: Prototypes and definrtions for SOUND.C

7

ftfndef SOUND_DEFINED

void sound(int);
void silence(void);
void speaker Joggle(void);
void waitjicks(unsigned int);
void warble(int);
void weird(int);
void siren(int);
void white_noise(int);
void note(int, int);

ftJefine SOUND_DEFINED
#endif

/*

Name: FILE.H
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definitions for FILE.C

*/

7* Defines */
ftlefine FILENAME "STUDENT.FIL"
ftJefine INDEX "STUDENT.NDX"
ftJefine TEMP "STUDENT.TMP"

7* Define functions 7
int lndex_on_disk(void);
int File_onjJisk(void);
int Numjecords(void);
int lndex_tojinkjist(int, NODE **, NODE **) ;
void Fetch(long, STUDENT_RECORD *) ;

7*

7

#ifndefEDIT_DEFINED

ftJefine CURSORJJNDERLINE 0x0707
ftJefine CURSORJ3LOCK 0x0007
ftJefine CURSORJDOUBLELINE 0x0607
ftJefine CURSORJJONE 0x2000

mt nextj«ord(char *, int),
int prev_word(char *, int),
int deletej;har(char *, int),
int insert_char(char *, int, char),
int insert_spaces(char *, int, int),
int replace(char *, char *, char *) ,
int edithne(char *) ,

ftJefine EDITJ3EFINED
ftsndif
r

Name MENU H
Type Include
Language Microsoft QuickC
Demonstrated MENUC MENUTESTC
Descnption Prototypes and definrtions for MENU module

7

#lfndefMENU_DEFINED

void menujwxjines(int),
void menuJwx_shadow(int),
void menu_back_color(long mt),
void menuJine_color(mt),
void menujrtle_color(int),
void menuJext_color(int),
void menujjrompt_color(mt),
void menu_hilightjetter(mt),
void menujiilightjext(mt),
void menujiilightjjack(long mt),
int far *menu_bar(int, int, char *, int *) ,
int far "menu_drop(int, mt, char **, int *) ,
mt far *menu_message(int, int, char **) ,
void menu_erase(int far *) ,

ftJefine MENUJ5EFINED
ftsndif

7*

Name: T10BJECTS.H
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definitions for T1 OBJECTS.C

7

ftfndef T10BJECTS_DEFINED

7* Define functions 7
void Draw_background(void);
void Drawjsxample_background(void);
void Drawjjlane(float heading);
void Draw_aircraftjjroblem(short acjjnentation, short acjwsition);
void Drawjsxample_aircraftjjroblem(short acjjnentation, short acjwsition);
void lnitjsc_orientations(void);
void Free_ac(void);
void press_key(void);
void example_soundjjrompt(void);
void text_bar(void);
void midjext_bar(void);
void downJext_bar(void);
void up_black_bar(void);
void custom_bar(int x1, int y1, int x2, int y2, int color);
void printjwuntdown(void);
void begin_message(void);
void Dashjine(int xcoordJ, int ycoordjl,

int xcoord_2, int ycoord_2, int numjlashes);
void displayjest_name(char 'testjiame);

ftJefine T1 OBJECTS_DEFINED
ftsndif
/•

Name: T_COLORS.H
Type: Include
Language: Microsoft QuickC version 2
Demonstrated: BOXTEST.C COLORS.C EDITTEST.C

MENU.C LOOK.C OBJECT.C
Description: Definitions for text mode color constants

7

ftfndef TJDOLORSJDEFINED

7* Standard text mode colors 7
ftJefine TJ3LACK0
ftJefine TJ3LUE1
ftJefine T.GREEN 2
ftJefine T_CYAN 3
ftJefine T RED 4
ftJefine TJVIAGENTA 5
ftJefine TJ3ROWN 6
ftlefine TJ/VHITE 7

7* Modifiers that can be added to the text mode color constants 7
ftJefine TJ3RIGHT 8
ftJefine TJ3LINK16

7* Common combinations 7
ftJefine TJ3RAY (TJ3LACK | TJ3RIGHT)
ftJefine TJYELLOW (TJ3ROWN | TJ3RIGHT)

7* Background text mode color constants 7
ftJefine BKJ3LACK0L
ftJefine BKJ3LUE1L
ftJefine BK GREEN 2L

7*

Name LIST H
Type Include
Language Microsoft QuickC version 2
Descnption Prototypes and definrtions for LIST C

Routines are used to load information held in index
file into linked list Linked list is for determining
which students the system has test data

Define functions for manipulating nodes of type NODE

void addsl(long, NODE **, NODE **, char *),
void freehst(NODE *) ,
long check(NODE *, char *) ,

Routines are used to load information held in student
data file into linked list Linked list is for used
for statisrtical manipulation of test data

Define functions for manipulating nodes of type RESJJODE
7

void res addsl(STUDENT_RECORD *, RESJJODE **, RES_NODE "),
void resjreehst(RES_NODE *),

PROJ =ROTATE
DEBUG =1
CC =qcl
AS =qcl
CFLAGSj3 =/AL/W1 TZe
CFLAGS_D =/Zd72r/Gi$(PROJ)mdt/Od
CFLAGS_R =/0/Ot/Gs/DNDEBUG
CFLAGS =$(CFLAGSJ3) $(CFLAGSJD)
AFLAGSJ3 =/Cx/W1/P2
AFLAGS_D = 72d
AFLAGS R =/DNDEBUG
AFLAGS~=$(AFLAGSJ3) $(AFLAGS_D)
LFLAGSJ3 = /CP Oxffff /NOI /SE 0x80 /ST 0x1000
LFLAGSJD
LFLAGS_R
LFLAGS =$(LFLAGSJ3) $(LFLAGS_D)
RUNFLAGS
OBJSJEXT =
LIBSJEXT =

asm obj , $(AS) $(AFLAGS) -c $* asm

all $(PROJ) EXE

rotate obj rotate c$(H)

datajjlt obj datajjlt c $(H)

dskjnrt obj dskjnrt c $(H)

edit obj edrt c $(H)

file obj filec$(H)

getkey obj getkey c $(H)

list obj hstc$(H)

menu obj menuc$(H)

mnjnenu obj mnjnenu c $(H)

mousefun obj mousefun c $(H)

sound obj sound c $(H)

stats obj stats c $(H)

t1 object obj t1 object c $(H)

testj obj testj c $(H)

tmanager obj tmanager c $(H)

video obj video c $(H)

box obj box c $(H)

$(PROJ) EXE rotate obj datajjlt obj dskjnrt obj edrt obj file obj getkey obj list obj \
menu obj mnjnenu obj mousefun obj sound obj stats obj t1 object obj testj obj tmanager obj \
video obj box obj $(OBJS_EXT)
echo >NUL @«$(PROJ) erf

rotate obj +
datajjlt obj +
dskjnrt obj +
edit obj +
file obj +
getkey obj +
list obj +

197

menu.obj +
mnjnenu.obj +
mousefun.obj +
sound.obj +
stats.obj +
t1object.obj +
testjl .obj +
tmanager.obj +
video.obj +
box.obj +
$(OBJS_EXT)
$(PROJ).EXE

$(LIBSJEXT);
«

ilink -a -e "qlink $(LFLAGS) @$(PROJ).crf $(PROJ)

run: $(PROJ).EXE
$(PROJ) $(RUNFLAGS)

	An Investigation of the Relationships Between the Angle of Mental Rotation Required For Spatial Orientation, Response Times, and Accuracy
	Scholarly Commons Citation

	ProQuest Dissertations

