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ABSTRACT 

Author: Ronald D. Archer 

Title: An Investigation of the Relationships Between Angle of 
Mental Rotation Required For Spatial Orientation, Response 
Times, and Accuracy 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Aeronautical Science 

Year: 1996 

The purpose of this study is to investigate the relationship between the 

angles of mental rotation when attempting to spatially orientate and the resulting 

response times and levels of accuracy. By means of a computer program, 

participants were presented with 64 mental rotational trials. The mental 

rotational trials consisted of a triangle placed in the center of the screen with a 

standard stick symbol of an aircraft appearing at various headings and 

orientations around the triangle. The participants were required to imagine 

themselves inside the flight deck of the aircraft, and then respond as quickly and 

accurately as possible to where the triangle is in relation to their orientation. 

Analysis of the data indicated that as the amount of angular displacement 

increased from the straight ahead and directly behind positions, the response 

times and accuracy rates increased and decreased respectively. Additionally, 

responses for the cardinal orientations were faster than the non-cardinal 

orientations. 
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INTRODUCTION 

Anyone who has used standard north-up road maps or navigational 

charts understands the dilemma of having to either mentally or physically 

rotate the map/chart in order to help one understand their orientation; where 

they are, what direction are they going, which way to go or turn, etc. This 

typically occurs when heading in any direction other than north since the 

common north-up maps "match" or corresponds to the direction or heading of 

the person. According to Shepard and Hurwitz (1984), "people generally 

report that it is easier to interpret a turn as a left or a right turn when the road 

that leads into that turn has been heading upward on the map (i.e., northward, 

if the map is itself oriented in the conventional way). Under this condition a 

turn that goes to the right on the map is a right turn and a turn that goes to the 

left is a left turn" (p. 172). 

Therefore, for the purpose of this study, the mental rotation required to 

"match" the environment with the person's own orientation is a process that 

occurs when one attempts to orientate where other objects, places, or people 

are in relation to themselves. Obviously, this process is important to the 

aviation industry since spatial orientation is one of the many skills required for 

pilots and air traffic controllers to effectively and safely perform their 

navigational duties. It should be irrefutable that the pilot/air traffic controller 

must have continuos understanding and knowledge of where certain objects 

or places are in relation to their position, location, and direction. 

1 



2 

Statement of the Problem 

In the occupations of pilots as well as air traffic controllers, the use of 

navigational charts and maps are crucial for the user to gain and/or maintain 

spatial orientation; where they are, where they are heading, and which way to 

proceed. In the flight decks of many general, corporate, commuter, and 

commercial aircraft as well as for testing for rental car companies, the 

implementation of navigational maps have been integrated onto electronic 

displays. The two general types of electronic navigational maps are north-up 

and track-up displays. The north-up display is similar to the typical road maps 

or aeronautical charts in that the direction of north remains at the top of the 

display, regardless of the heading of the vehicle (aircraft, automobile, boat, 

etc.). The track-up display is modified so that the map itself rotates in order to 

correspond with the heading of the vehicle. As concluded by Aretz (1988, 

1989), the track-up reduces the amount of mental rotation required since the 

environment on the map/chart corresponds to the viewpoint of the user. With 

these concepts in mind, the data from the present study along with the other 

research will support the use of track-up displays in order to make faster 

navigational decisions. 

Another application of navigation displays becomes prevalent with the 

many issues being addressed with the redesigning of the air traffic control 

displays. Currently, the air traffic controllers display is a north-up depiction of 

a particular sector. The controllers are constantly required to mentally 
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orientate the position and location for each aircraft and the environment 

relating to it. In order for the controllers to give directions to each aircraft, they 

must mentally rotate the environment to match the particular aircraft's so that 

they can direct which heading or direction for the aircraft to go. With the 

supporting data from this mental rotation study, another possible application 

may be for the electronic displays to allow the air traffic controller to rotate the 

map or display in order to lower the amount of mental rotation required. 

There have been several studies investigating the principles of mental 

rotation, but relatively few have investigated mental rotation in regard to the 

orientational and navigational considerations mentioned. Therefore, the 

purpose of this study is to investigate the relationship between the amount of 

mental rotation required (angle of rotation) and the response times and 

accuracy required for achieving/maintaining the spatial orientation required 

for navigational tasks. 

Review of Related Literature 

Spatial orientation and sense of direction are skills necessary to 

adequately perform effectively in occupations which require the ability to 

navigate in an environment such as piloting aircraft, watercraft, and driving 

automobiles. Kozlowski and Bryant (1977) investigated and defined sense of 

direction as an "awareness of location or orientation" (p. 590). They found that 

self-reports of sense of direction were reflective of their spatial orientation 

ability. Even when orientation was emphasized to the participants, the "good 
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sense of direction people" showed improved accuracy of their representation 

of the area, whereas "poor sense of direction people" showed no hint of 

improved performance. Therefore, Kozlowski and Bryant concluded "that the 

improved orientation of people with a good sense of direction is not automatic 

or facile, but it requires possibly both (a) a conscious effort to orient and (b) 

repeated exposure to an environment" (p. 590). 

However, when one is consciously trying to spatially orientate the 

location of other objects in relation to their position or heading, sometimes 

mental rotation is required. This mental rotation is an attempt to "match" the 

actual environment in which one is navigating with the perspective, 

orientation, or heading of the person. Therefore, when investigating the 

requirements for spatial orientation during navigational tasks, research of 

mental rotation becomes necessary. 

The majority of mental rotational studies conducted have been based 

upon the experimental designs of Shepard and Metzler (1971) and Cooper 

and Shepard (1973). Shepard and Metzler required subjects to make same-

different responses to pairs of perspective line drawings depicting unfamiliar, 

three-dimensional objects. The participants were required to respond with the 

"same" response when the two objects where the same, regardless of whether 

they were in the same or different orientations. The "different" responses were 

required when the pair of objects were mirror-image reversals of each other, 

again regardless of the same or different orientations. Shepard and Metzler 
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found that time required for the same-different judgments increased linearly 

with the angular displacement between the two objects. 

The Cooper and Shepard (1973) study, which became the premise for 

the majority of the mental rotation studies, consisted of the stimulus of a 

single alphabet or numerical figure (i.e., "R", "G", or "5") which was rotated 

around in 60 degree increments. In addition to the rotation of the letter, the 

letter also appeared either mirror-imaged or in standard form. As seen in 

Figure 1, the participants were asked to respond to whether the rotated letter 

was of standard or mirror-imaged form, thus requiring the mental rotation of 

the letter to upright in order to discern the form of the letter. 

ADVANCE INFORMATION TEST 

IDENTITY ORIENTATION ,' ^ \ 

2000 "»»• '00 mi. 

700 
1000 

Figure 1. Stimulus for the Cooper & Shepard (1973) Study. 

Cooper and Shepard found that the time required for the judgments 

was nonlinear with the angular displacement of the letter from the 360 degree 

orientation. More specifically, the results provided evidence that the function 

relating response time to orientation was symmetrical with respect to the 180 



6 

degree orientation (see Figure 2). This function indicated that the stimuli 

were rotated through the minimum angle necessary to reach upright. Cooper 

and Shepard also suggested that the nonlinearity may have been due to the 

concept that mental rotation was not required for stimuli presented at 

relatively small disorientations from upright. A study conducted by Hock and 

Tromley (1978) provided a possible explanation by stating that "a familiar 

stimulus can be perceptually upright even though it is not in its physically 

upright, or normal, orientation " (p. 529). 

t i (i i i i i i 
O 6 0 120 180 240 300 360 

ORIENTATION OF TEST STIMULUS (DEGREES, CLOCKWISE FROM UPRIGHT) 

Figure 2. Function of Mean Response Times and Amount of Angular 

Displacement from Cooper & Shepard (1973). 
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With this possibility, Hock and Tromley suggested that the observed 

shape of the letter was an important factor influencing perceptual uprightness. 

Therefore, they selected letters which were based on their shape. The letters 

were either circular (e, G), elongated (e, L, J), or rectangular (e, R, F). Even 

though the letters which were predicted to have a narrow range of perceptual 

uprightness (e, G) produced a linear rotation function, the letters predicted to 

have a broad range of perceptual uprightness (e, F, R; L, J) also produced a 

linear rotation function, but only at orientations outside of their range of 

perceptual uprightness. Their results supported Cooper and Shepard's 

suggestion that one of the possible reasons for the nonlinearity of the mental 

rotation was due to rotation not being required when the orientation of their 

stimuli were perceptually upright. 

However, several other studies (i.e., Hock & Ross, 1975; Cooper & 

Podgorny, 1976; Maki, 1986; Corballis & Cullen, 1986; and Bethell-Fox & 

Shepard, 1988) were conducted to investigate the effects of familiarity, 

similarity, and complexity on mental rotation. The Hock and Ross (1975) study 

examined the effects of familiarity on mental rotation by requiring the 

participants to make same-different decisions concerning unfamiliar dot 

patterns. Based on Hock's (1973) experiment, two dot patterns were 

simultaneously presented. The "same" responses were required when the two 

dot patterns were identical, whether they were in same or different 

orientations. Likewise, the "different" responses were required when the two 
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dot patterns were not identical, whether in same or different orientations. The 

familiarity effect was found to be significantly greater when the pairs of 

patterns were in different orientations. This supported their hypothesis that 

familiarity would facilitate the mental rotation of the dot patterns. 

An example of the studies which investigated the effects of complexity 

and similarity on mental rotation was one conducted by Bethell-Fox and 

Shepard (1988). The stimulus used for this experiment consisted of patterns 

of filled-in squares in a 3x3 matrix. The participants were instructed to inspect 

the presented matrix until its pattern could be remembered and then to press 

the "ready" button. The matrix was then immediately replaced by one of the 

four schematic rotational cues which indicated to the participants whether the 

remembered pattern was now to be imagined as rotated 90 degrees or 180 

degrees , clockwise or counterclockwise. Then, once the participants again 

pressed the "ready" key, they were to select which one of three presented 

patterns corresponds to the way the original pattern would be when rotated as 

specified. The encoding, mental rotation, and comparison of unfamiliar stimuli 

(patterns of filled-in squares in a 3 x 3 matrix) were found to increase with 

stimulus complexity (measured by the number of separated pieces 

constituting each figural pattern). Therefore, the majority of these studies 

provided support for the premise that the time to mentally rotate a stimulus 

was dependent on the familiarity and complexity of the stimulus. 
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Other studies of mental rotation concentrated on the effects of practice. 

The majority of these studies (e.g., Damos; 1991, chap. 7; Thorndyke & 

Hayes-Roth, 1982; Jolicoeur, 1985; and Pylyshyn, 1979) comparably resulted 

with a significant increase in performance, decreases in response times and 

increases in accuracy rates. However, as remarked by Pylyshyn (1979), "The 

influence of practice on rotation rate is found routinely in studies such as 

these, although it has not generally been reported in the literature, since 

published results are invariably obtained from highly practiced subjects using 

overlearned stimuli" (p. 26). 

Another major area of mental rotational studies pertains to the 

investigations of hemispheric, clockwise or counterclockwise, differences in 

the process of conducting mental rotational tasks. As stated by Burton et al. 

(1992), "The nature of hemispheric specialization for mental rotation in 

unclear, with some studies indicating a right hemisphere (RH) advantage and 

others a left hemisphere (LH) advantage" (p. 192). A possible explanation 

given by this study may be that research has suggested that the previously 

discussed areas or factors of mental rotation (familiarity, complexity, practice) 

interacts with the hemispheric process. However, the Burton et al. study did 

result in interactions which suggested that "clockwise rotations were more 

readily performed in the left visual field and counterclockwise rotations in the 

right visual field" (p. 192). 



10 

Another study by Cook et al. (1994) suggested that a cooperation takes 

place between the two hemispheres which perform different functions. They 

explain that their results support other research findings which found that one 

hemisphere (usually the LH) actively manipulates its visual information, while 

the other hemisphere is employed in a reference role. They further stated that 

both roles are essential for the accurate performance of mental rotation. 

Ueker and Obrzut (1993) conducted a study which not only 

investigated the hemispheric differences, but investigated the possible gender 

differences for conducting mental rotation. Their mental rotation involved the 

rotation of a stick figure stimulus which is holding a ball in either the right 

hand or left hand. The stick figure was then rotated in any of the eight 45 

degree orientations and the participants were to respond to which side the 

figure is holding the ball. However, the results from their study indicated that 

"there were neither hemispheric nor gender effects found with a mental 

rotation task" (p. 48). Jones and Anuza (1982) also conducted a study which 

was not able to find a gender difference. 

Based on the Shepard and Metzler (1971) experimental method, the 

Jones and Anuza study focused on the effects of gender and handedness on 

mental rotation. They did find that "right-handers tended to respond more 

rapidly than left-handers" (p. 506). However, in addition to the inability to find 

a gender difference in the response times as already stated, no sex or 

handedness differences in error rates or accuracy were found. 
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Unlike the majority of the studies which investigated gender 

differences, a study conducted by Berg, Hertzog, and Hunt (1982) found age 

differences in the speed of conducting mental rotation tasks. Four different 

age groups participated in a mental rotations task for four consecutive days. 

They found "significant age differences in the linear function relating median 

reaction times to degrees of rotation: older subjects had higher intercepts and 

higher slopes" (p. 95). Additionally, they found no indication that age 

differences in mental rotation performance would disappear after practice. 

With all of the possible aspects studied about mental rotation such as 

the effects of perceptual uprightness, complexity, and familiarity of the stimuli, 

effects of practice, hemispheric differences in the process of conducting 

mental rotation, and the possible differences (i.e., age, gender, etc.) in the 

speed of conducting mental rotation, it can be easily concluded that there are 

hardly, if not any, limitations to the study of mental rotation. Additionally, this 

particular research study investigates the degree of mental rotation which 

becomes required for spatial orientation. Even though the research 

previously discussed provides the foundations for the study of mental rotation, 

the rotation of a letter and the determination of whether or not is mirror-

imaged or normal provides little support to the investigation of mental rotation 

required for spatial orientation. However, the majority of the studies did 

provide a premise which was defined by Koriat and Norman (1984) as "image 

rotation" (p. 421). This term designates a strategy in which the image of the 
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stimulus is first rotated to the upright position in order to make some sort of 

determination concerning the stimuli, such as its spatial orientation. Koriat 

and Norman in their 1988 study further suggested that "spatial transformation 

is normally achieved through image rotation" (p. 93). Therefore, with the 

principles provided by the studies previously discussed, the investigation of 

the mental rotation required when making spatial orientational judgments 

could now be conducted. 

A study conducted by Loftus in 1978, concluded with a two step model 

for comprehending compass directions. For the experiment, the subjects were 

visually presented with a numeric compass direction between 0 and 350 

degrees. The subjects' tasks were to indicate their comprehension of the 

direction by indicating the representation of it on a blank (not labeled or 

numbered) compass rose and then to push a key when done. The response 

times between the presentation of the stimulus and the keypress was then 

used as an indication of the time required to comprehend the direction. The 

premise made for this study was that the "functions relating RT to 1) the 

specific direction presented and 2) the way in which the directional 

information was orientated can then be used to make inferences about the 

manner in which compass directions are represented and processed" (p. 

416). The results suggested that a direction is understood by a two step 

process of mental operations. 
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First, the nearest cardinal heading to the target direction (i.e., north, 

south, east, or west) is computed, and one mentally rotates in order to "face" 

in the same cardinal direction. This supports the idea that people tend to 

orientate cardinal headings faster than non-cardinal headings since the 

cardinal headings were found to be processed first as a means of orientating 

the other specified target direction or heading. This will provide the basis for 

the third hypothesis tested in this study. 

Second, the differences between the cardinal direction and the desired 

target direction is computed and a mental rotation, either clockwise or 

counterclockwise, is conducted until the desired target direction is orientated 

and designated. Therefore, even though the Loftus study concluded with a 

technically different two step process, mental rotation was still found to be 

present and was required when attempting to orientate the location of the 

specified target. 

Other studies which investigated the mental rotation required for 

spatial orientation were conducted by Aretz (1988,1989). Similar to this 

study, the major goal for the two Aretz studies were to investigate the role of 

mental rotation in the cognitive processing required during aircraft navigation. 

A comparison was conducted between the mental alignment of two frames of 

reference: the ego centered reference frame and the world centered reference 

frame. These frames of references corresponds respectively to the track-up 

and north-up types of electronic map displays which were explained 



previously in this report. Aretz concluded that the amount of required mental 

rotation was lower when in the ego centered reference frame, thus producing 

faster response times in making navigational decisions. Aretz (1989) also 

found that "mental rotation was most prevalent in the simultaneous trials and 

diminished considerably in the sequential trials" (p. 11). This supports a 

finding from a study by Hintzman, O'Dell, and Arndt (1981) which theorized 

that mental rotation is only required when a visual map, and not when a 

"cognitive map", (i.e., memory) is used. Therefore, since an electronic map is 

visually available, mental rotation will be performed when the ego centered 

reference frame and the world centered reference frame are not aligned. 

Hintzman, O'Dell, and Arndt (1981) conducted a series of experiments 

where the subjects were required to determine the location of targets while 

trying to imagine themselves facing in various orientations. The study also 

investigated these orientational tasks when the map is either committed to 

memory ("cognitive maps") or when it is visually available as stated in the 

previous paragraph. However, only the visually presented map investigations 

will be discussed since the possible implications for this study pertain to the 

use of physical navigational maps, charts, and displays. 

Figure 3 shows the stimulus display and response board used for the 

experiments. The participants were required to imagine themselves facing in 

the particular direction the arrow and to respond where, in relation to their 

orientation, the large dot is located. Using the response board (right side of 
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Figure 3), the participants were to "point to" the orientation corresponding to 

the location of the large dot. In this example, the large dot is located behind 

and to the left of the direction of the arrow. Each trial would display a different 

orientation (the eight 45 degree points around the compass rose) as indicated 

by the arrow as well as a different target location as indicated by a large dot. 

Figure 3. Stimulus for the Hintzman et al. (1981) Study. 

The mean response times acquired for the eight 45 degree orientations 

resulted with a function as shown in Figure 4. As can be seen, the participants 

responded the fastest when making Front or Back decisions. This supports 

the premise that the participants orientated quicker at the 360 and 180 

orientations since the amount of mental rotation was at its lowest requirement. 

Therefore, the response times required for the participants to spatially 



orientate the location of the target then increased as the amount of required 

mental rotation was increased from the straight ahead and the directly behind 

positions. However, as can also be seen by Figure 4, the response times 

were slightly lower for the "Right" (090) and "Left" (270) orientations as 

compared to the positions immediately surrounding them. A possible 

explanation for this occurrence may be that the participants orientated the 

cardinal directions faster than the non-cardinal directions which is congruent 

with other research, (i.e., Loftus, 1978). 

F RF R RB B LB L LF F 

RESPONSE 

Figure 4. Function of Mean Response Times, Percentage of Errors, and 

Amount of Angular Displacement from Hintzman et al. (1981). 

Figure 4 additionally displays the recorded accuracy rates for each of 

the eight orientations. An inverse function of the response times, the 

participants answered the Front (360 degree) and Back (180) most 

accurately. Therefore, the accuracy rates then decreased as the amount of 
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required mental rotation was increased from the straight ahead and the 

directly behind positions. As for the explanation for the accuracy rates being 

slightly higher for the 090 and 270 positions, it may also be hypothesized that 

the participants were more accurate when conducting the mental rotations at 

the cardinal positions than at the non-cardinal positions. 

The literature on the topic of mental rotation is extensive. This may be 

due to the almost unlimited number of parameters associated with mental 

rotation. As discussed, some of these include familiarity, perceptual 

uprightness, and complexity of the stimulus, effects of practice, hemispheric 

differences in the process of conducting mental rotation, and the possible 

differences (i.e., age, gender, etc.) of mental rotation. However, for the 

purpose of this study, the number of investigations into the mental rotation 

required when attempting to spatially orientate are relatively few. Such 

studies have suggested that an understanding into this realm of mental 

rotation may help to provide guidelines for designing displays to be used by 

people performing navigational tasks. 

Statement of the Hypothesis 

The previous research has shown that larger angles of mental rotation 

require longer times to process the information in order to orientate. 

Therefore, it is hypothesized that as the amount of mental rotation required is 

increased from the straight ahead position (360) and from the directly behind 

position (180), the response times will similarly increase. Additionally, it is 
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hypothesized that as the amount of mental rotation required is increased from 

the straight ahead and from directly behind positions, the accuracy will 

decrease. The third hypothesis states that the response times will be 

significantly less for the mental rotation of the cardinal directions (360, 090, 

180, and, 270) than for the non-cardinal directions (045, 135, 225, and 315). 

The fourth hypothesis states that the accuracy rates will be significantly better 

for the mental rotation of the cardinal directions (360, 090,180, and, 270) 

than for the non-cardinal directions (045, 135, 225, and 315). 



Method 

Subjects 

The subjects were 100 students who volunteered from several upper-

class level air traffic control (ATC) and flight courses at Embry-Riddle 

Aeronautical University. The subjects received extra course credit for 

participating in the experiment. Since most of these students will be employed 

as pilots or air traffic controllers upon graduation, they can be considered as a 

subsample of the larger pilot and ATC populations. 

Convenience and judgment sampling were possible sources of 

sampling bias. The limited resources available for sampling produced the 

major concern for convenience sampling. Also due to the possible limited 

number of volunteers available at the selected cluster, the question of their 

representation of the entire population was of concern for judgment sampling 

bias. Additionally, another bias may be due to the subjects not having as 

much experience as those in the target population. However, these effects 

should be small and the results should be considered applicable to the target 

population. 

Instrument 

A computer program (Appendix B) was designed to present the 

stimulus and to record the response times and accuracy of the subjects. The 

two 486 computers used were located in the same room with a room divider 

between them to eliminate the possibility of distraction between subjects 

19 



participating simultaneously. The second computer was used only when two 

or more participants arrived for the experiment at the same time. When such 

an occasion arose, the two participants were simultaneously tested. 

The stimulus consisted of a triangle centered in the middle of the 

screen with a standard stick aircraft symbol randomly appearing at one of the 

eight 45 degree compass positions around the triangle. The participants were 

then required to respond by pressing one of the eight corresponding outside 

keys of the numeric keypad located on the right side of a standard computer 

keyboard. 

Design 

The design of the experiment was based from the Hintzman et al. 

(1981) study. As discussed earlier, the tasks of their participants were to 

indicate the direction from themselves that the target dot would be if they were 

in the orientation indicated by the arrow. Likewise, the participants in this 

study were required to indicate the direction from themselves that the triangle 

would be if they were in the orientation of the aircraft symbol. The participants 

responded to the stimulus by pressing the corresponding answer with one of 

the eight keys on the numeric keypad. All of the other keys on the keyboard 

were locked out in case the participants were to accidentally strike the wrong 

key. 

The independent variable for the experiment was the amount of mental 

rotation required for the participants to spatially orientate where the triangle is 
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located in relation to the heading of the aircraft symbol. The independent 

variables were categorized by the eight 45 degree points on the standard 360 

degree compass rose (360, 045, 090,135, 180, 225, 270, 315). The order of 

the presentation of the trials were randomly selected and arranged in a fixed 

order for all subjects. Each participant completed a total of 64 trials, eight 

trials for each of the eight variables. The eight trials for each variable were not 

identical even though the correct responses were the same. The location and 

direction of the aircraft symbol appeared at all of the eight different headings 

possible at each of the eight 45 degree positions around the triangle. The 

dependent variables for the experiment were the response times and 

accuracy rates recorded. 

Procedures 

The participants for this study were volunteers from upper-class level 

courses at Embry-Riddle Aeronautical University. They received extra course 

credit for participating in the study. The confidentiality of the participants was 

maintained by identifying the subjects with identification numbers which they 

selected. Throughout the experiment, the participants were only identifiable 

through the use of the identification numbers; names were not used in the 

collection, the analysis, nor the reporting of the results. 

After entering their identification numbers, the participants were 

required to go through a programmed set of instructions, a sample trial, and 

two practice problems (specified in Appendix B). Once these steps were 



completed, the participants completed the 64 random mental 

rotational/orientational trials. The program was designed so that once a 

response was given by the participants, the next trial was immediately begun. 

After half of the trials was completed (32), the program would stop and 

provide the subjects a break. Once the participants were ready to proceed 

with the other half of the trials, they were given a ten second countdown to 

allow them to be prepared when the next trial was given. 

Pilot Study 

The pilot study consisted of two groups of five participants. The first 

group of five were allowed to proceed from the beginning to the end of the 

program without any aid. After the participants completed the experiment, 

they were allowed to ask any questions and to make any suggestions which 

would make the experiment more clear and understandable. A couple of 

problems were discovered from the discussions with the first group of 

participants. The most common misunderstandings regarding the objective of 

the test were: 1) the participants thought that they were to respond to how 

many degrees were needed for them to turn in order to head directly towards 

the triangle; and 2) the participants thought that they were to simply respond 

where the aircraft symbol was in relation to the triangle. Additionally, it was 

suggested that a legend showing the correct corresponding keys in relation to 

the orientations should be provided (see Appendix A). The mean accuracy for 

the first group was 48.12%. 



Therefore, the second group of five participants received the following 

changes in addition to the computer program. The legend was taped to the 

desk to the right of the keyboard for use during the experiment. Additionally, 

a script of further explanation and directions was written and read to each 

subject after they completed the set of instructions on the computer program. 

The screen displayed the sample trial so that the participants could better 

visualize the objective of the experiment while the script was being read. The 

script read as follows: 

"The first pilot study concluded that a couple of misunderstandings 

were occurring regarding the objective of the experiment. First, you are not to 

indicate where the aircraft symbol is in location to the triangle, but you are to 

respond to where the triangle is located in relation to the orientation of the 

aircraft. The second misunderstanding was for the participants to indicate how 

many degrees were needed to turn in order to head towards the triangle. 

Again, this is incorrect. Please make sure you are responding to where the 

triangle is located in relation to the heading of the aircraft. This is usually 

achieved by pretending that you are sitting in the flight deck of the aircraft and 

heading in the direction of the aircraft." 

The participants were then allowed to proceed to the two practice trials 

on the computer program. If they answered incorrectly on the trials, the 

computer program indicated what the correct response should have been. If 
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the participants incorrectly answered both trials, then they were stopped and 

were read the following script: 

"Again, the objective of the experiment is to respond to where the 

triangle is located in relation to the heading of the aircraft. By looking at the 

last practice trial, it may help to pretend you are sitting in the flight deck and 

then identifying where the triangle is located in relation to the nose of the 

aircraft. In this case, the triangle is behind you and to the left which is at the 

225 positions or the #1 key." 

The participants were then allowed to proceed with the remaining 

instructions and actual completion of the 64 trials. With these changes given, 

the mean accuracy for the second group of five participants was 92.80%. With 

this significant increase in accuracy between the first and second section of 

the pilot study, t(8) = -4.40, p < .003, the study was initiated with the 

remainder of the volunteers (91) implementing the same procedures used 

during the second part of the pilot study. 

Upon completion of the experiment, the participants who requested to 

see their results were given the opportunity. They were instructed to return to 

the location where the experiment was held and, by use of their identification 

number, they were able to see their response times and accuracy rates. 



Analysis 

Response Times. 

By means of the Statistica statistical analysis computer program, a 

two-way ANOVA was conducted and found a significant difference between 

the eight 45 degree orientations, F(7, 720) = 13.48, p.< .001.. Table 1 shows 

the resulting mean response times in seconds for each of the eight 45 degree 

orientations. 

Table 1 

Resulting Mean Response Times in Seconds 

The eight 45 degree orientations 

360 degree orientation 

045 degree orientation 

090 degree orientation 

135 degree orientation 

180 degree orientation 

225 degree orientation 

270 degree orientation 

315 degree orientation 

Mean response times in seconds 

2.077 

3.26 

3.10 

3.63 

2.21 

3.62 

2.83 

3.44 
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Figure 5. Function of Mean Response Times and Amount of Angular 

Displacement. 

In order to test the hypothesis, there were eight planned comparisons 

conducted to investigate the relationships between the eight 45 degree 

positions and the corresponding response times. The order of the 

comparisons were conducted as the orientations occur clockwise around the 

compass rose. 

The first planned comparison was between the response times of the 

orientations of the 360 degree position, when the triangle was directed ahead 

of the aircraft so that no mental rotation was required, and the 045 degree 

position. The hypothesis was confirmed between these two variables since 

there was a significant increase in the response times required for the 

participants to orientate between the 360 position and the 045 position, F(1, 

720) = 25.90, p. <.001. 
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The second planned comparison of response times was conducted 

between the orientations of the 045 position and the 090 position. There was 

not a significant difference between these two positions, F(1, 720) = 0.48, p. < 

.489. Even though this comparison is not significantly different, it was found 

that the participants took longer to orientate at the 045 degree position than at 

the 090 position. This does not supports the main hypothesis in that the 

participants did not take longer to mentally rotate and orientate the 090 as 

compared to the lesser amount of rotation required, the 045. However, this 

result was anticipated by the third hypothesis, discussed later, which 

investigated the time required for the participants to mentally rotate and 

orientate the cardinal versus the non-cardinal headings. 

The third planned comparison between the 090 orientation and the 135 

degree orientation concluded that there was a significant difference in 

response times, F(1, 720) = 5.24, p. < .022. This comparison supports the 

main hypothesis in that the participants took longer to mentally rotate and 

orientate at the 135 degree position than at the 090 degree position. This was 

again expected since the angle of rotation required was higher. 

The planned comparison between the 135 orientation and the 180 

orientation concluded that there was a significant difference in response 

times, F(1, 720) = 37.15, p. < .001. When the triangle was directly behind the 

aircraft symbol, at the 180 position, the participants were significantly faster at 

orientating the location of the triangle. This supports the main hypothesis 
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since it was anticipated that the response would begin to lower as the angle of 

rotation approached the 180 position. As discussed and supported from the 

literature, it was common for individuals to mentally rotate up to the 180 

degree position. So even though it is numerically higher moving from the 090 

to the 180 position, the actual amount of mental rotation becomes less when 

orientating with items from directly behind. Then, as the angle of rotation 

proceeds past the 180 position, the actual amount of required mental rotation 

begins to increase up to the 270 position. From that point, it begins to lower 

again when approaching the 360 position, or at the straight ahead position. 

This is further supported by the almost symmetrical formation of mean 

response times found on Figure 5. 

The planned comparison of the response times between the 180 

orientation and the 225 orientation also supports the hypothesis since there 

was a significant increase in the response times, F(1, 720) = 36.57, p. < .001. 

The planned comparison conducted between the 225 orientation and 

the 270 orientation concluded that there was a significant decrease in 

response times, F(1, 720) = 11.71, p. < .001. Likewise with the 090 position, 

this does not support the main hypothesis since the amount of rotation is 

increased while the response times decreased. However, in accordance to 

the third hypothesis, this was also anticipated so that the cardinal 

headings/positions would require lower response times to mentally rotate and 

to orientate than with the non-cardinal headings/positions. 



The seventh planned comparison was conducted between the 270 

orientation and the 315 orientation. The main hypothesis that the response 

times required to mentally rotate and orientate would increase as the amount 

of rotation increased was again supported by the significant increase in 

response times F(1, 720) = 6.96, p. < .008. 

The planned comparison conducted between the 315 orientation and 

the 360 orientation found a significant decrease in response times, F(1, 720) 

= 34.31, p. < .001. Similar to the 180 position, even though the numerical 

angle of rotation is higher, the actual amount of mental rotation is lower; thus 

lower response times. This again supported the main hypothesis and the 

explanation of the symmetrical "M" shaped formation of the mean response 

times correlating to the angles of rotation (see figure 5). 

The final planned comparison for the response times was conducted 

between the cardinal headings/orientations (360, 090, 180, & 270) and the 

non-cardinal headings (045, 135, 225, & 315). The third hypothesis which 

stated that the response times would be lower for the cardinal headings than 

for the non-cardinal headings was confirmed with a significant difference, F(1, 

720) = 64.53, p. < .001. The mean response times in seconds for the cardinal 

orientations was 2.56 where as the non-cardinal orientations resulted with a 

mean of 3.49. 

Accuracy. A two-way ANOVA was conducted and a significant 

difference was found between the eight 45 degree orientations, F(7, 720) = 



5.32, p.< .001. The resulting mean accuracy rates for each of the eight 

orientations are shown in Table 2. 

Table 2 

Resulting Mean Accuracy Rates 

The eight 45 degree orientations 

360 degree orientation 

045 degree orientation 

090 degree orientation 

135 degree orientation 

180 degree orientation 

225 degree orientation 

270 degree orientation 

315 degree orientation 

Resulting accuracy rates 

93.96% 

93.82% 

86.68% 

89.69% 

95.47% 

93.68% 

85.44% 

91.07% 
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Figure 6. Function of Mean Accuracy Rates and Amount of Angular 

Displacement. 

In order to test the hypothesis, there were eight planned comparisons 

conducted in order to investigate the relationships between the eight 45 

degree positions and the corresponding accuracy rates. The order of the 

comparisons were conducted as the orientations occur clockwise around the 

compass rose. 

The first planned comparison was between the accuracy rates of the 

orientations of the 360 degree position, when the triangle was directed ahead 

of the aircraft so that no mental rotation was required, and the 045 degree 

position. Even though there was a decrease in the accuracy rates, the 

hypothesis was not confirmed between these two variables since there was 

not a significant decrease in the accuracy rates when the participants 

mentally rotated between the 360 orientation and the 045 orientation, F(1, 

720) = .004, p. <.951. 



The second planned comparison of the accuracy rates was conducted 

between the orientations of the 045 position and the 090 position. There was 

a significant difference between these two positions, F(1, 720) = 10.02, p. < 

.001. It was found that the participants were less accurate with the 090 

orientations than the 045 degree position. This supports the main hypothesis 

in that the participants accuracy did decrease as the amount of mental 

rotation increased. However, this result was not anticipated by the third 

hypothesis, discussed later, which investigated the accuracy rates for the 

participants to mentally rotate and orientate the cardinal versus the non-

cardinal headings. 

The third planned comparison between the 090 orientation and the 135 

degree orientation concluded that there was not a significant difference in the 

accuracy rates, F(1, 720) = 1.79, p. < .181. This comparison does not support 

the main hypothesis in that the participants answered the 135 degree 

orientation more accurately than the 090 degree orientation. This was not 

expected since the angle of rotation required was higher. 

The planned comparison between the 135 orientation and the 180 

orientation concluded that there was a significant difference in accuracy rates, 

F(1, 720) = 6.54, p. < .011. When the triangle was directly behind the aircraft 

symbol, at the 180 position, the participants were significantly more accurate 

at orientating the location of the triangle. This supports the main hypothesis 

since it was anticipated that the accuracy would become higher as the angle 



of rotation approached the 180 position. As discussed and supported earlier, 

it was common for individuals to mentally rotate up to the 180 degree position. 

So even though it is numerically higher moving from the 090 to the 180 

position, the actual amount of mental rotation becomes less when orientating 

with items from directly behind. Then, as the angle of rotation proceeds past 

the 180 position, the actual amount of required mental rotation begins to 

increase up to the 270 position. From that point, it begins to decrease again 

when approaching the 360 position, or at the straight ahead position. This is 

further supported by the almost symmetrical formation of the accuracy rates 

found on Figure 6. 

The planned comparison of the accuracy between the 180 orientation 

and the 225 orientation did not support the hypothesis since there was a not a 

significant decrease in accuracy, F(1, 720) = .626, p. < .429. Again, there was 

the anticipated decrease in accuracy since the amount of required mental 

rotation was higher, but it was not significant. 

The planned comparison conducted between the 225 orientation and 

the 270 concluded that there was a significant decrease in accuracy, F(1, 

720) = 13.35, p. < .001. This comparison supports the main hypothesis since 

the increase in the amount of required mental rotation occurred with a 

decrease in accuracy. 

The seventh planned comparison was conducted between the 270 

orientation and the 315 orientation. The main hypothesis that the accuracy 



rates would produce better results as the amount of required mental rotation 

decreased was again supported by the significant increase in accuracy, 

F(1,720) = 6.23,p. <.013. 

The planned comparison conducted between the 315 degree 

orientation and the 360 degree orientation was not significant for accuracy, 

F(1, 720) = 1.63, p. < .201. Similar to the 180 position, even though the 

numerical angle of rotation is higher, the actual amount of mental rotation is 

lower; thus producing higher rates of accuracy. The symmetrical formation of 

the mean accuracy rates correlating to the angles of required mental rotation 

can be easily identified when comparing the two 180 degree halves of Figure 

6. 

The final planned comparison for the response times was conducted 

between the cardinal headings/positions (360, 090, 180, & 270) and the non-

cardinal headings (045, 135, 225, & 315). The fourth hypothesis which stated 

that the accuracy rates would be higher for the cardinal headings than for the 

non-cardinal headings was rejected since there was not a significant 

difference between them, F(1, 720) = 2.22, p. < .136. 

The analysis of the interaction results for the response times and 

accuracy rates was not conducted due to its lack of relevance to the 

hypothesis and the overall scope of the study. The interactions would have 

been an investigation of the response times and accuracy rates over time; 

meaning, how they interacted and differed as the trials progressed 
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throughout the experiment. This would have been appropriate if the stimulus 

for each of the eight variables were identical. However, as previously stated in 

the design section, each participant completed a total of 64 trials, eight trials 

for each of the eight variables. The eight trials for each variable were not 

identical even though the correct responses were the same. The location and 

direction of the aircraft symbol appeared at all of the different headings 

possible at each of the eight 45 degree positions around the triangle. 

Therefore, with this specific experimental design, the investigation of the 

effects of the response times and accuracy rates over time would not be of 

great relevance to the testing of the hypothesis for this study. 



Summary 

The investigation of the relationships between the amount of mental 

rotation required for orientation, response times, and accuracy rates was 

conducted and three of the four hypothesis were supported by the statistical 

data analysis. The first hypothesis stated that as the amount of mental 

rotation required increased from the straight ahead position (360) and from 

the directly behind position (180), the response times will similarly increase. 

The overall ANOVA for this hypothesis concluded with a significant difference 

in response times between the eight 45 degree orientations. Additionally, all 

but one of the eight planned comparisons conducted between the eight 

orientations confirmed the hypothesis, as indicated by the "M" shaped curve 

in figure 5. However, even though the second planned comparison did not 

indicate a significant difference, the participants took longer to mentally rotate 

at the 045 degree position than at the 090 degree position. When compared 

to the results of the Hintzman, O'Dell, and Arndt (1981) study which provided 

the experimental design basis for this study, the curves depicting the function 

between response times and angular displacement are very similar (Figures 4 

&5). 

Similarly, the third hypothesis which investigated the mental rotation of 

the cardinal directions (360, 090, 180, and 270) versus the non-cardinal 

directions (045, 135, 225, and 315) was tested. The hypothesis was 

confirmed with the participants taking significantly longer to respond to the 
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non-cardinal headings. Therefore, the participants took longer to orientate the 

position of the triangle as the amount of required mental rotation increased 

from their straight ahead and directly behind positions. This result supports 

the previously referenced studies such as that of Loftus (1978) and Hintzman 

etal. (1981). 

These results along with those of Aretz (1988, 1989) suggests the 

design of future displays and interfaces should be a track-up design as well 

as providing the availability of rotating the display by 90 degrees. This feature 

may be helpful when using a static computer display such as a MRI or X-Ray. 

The image can be rotated by the four 90 degree positions (i.e., cardinal 

headings) to allow faster, maybe easier orientation and understanding of the 

items being displayed. 

The second hypothesis stated that as the amount of mental rotation 

required increases from the straight ahead position (360) and from the directly 

behind position (180), the accuracy rates will decrease. The overall ANOVA 

for this hypothesis indicated a significant difference in accuracy rates between 

the eight 45 degree orientations. However, the results from this portion of the 

study were very surprising. Only four out of the eight planned comparisons 

confirmed the hypothesis with significant differences. Even though the high 

accuracy rates did occur as expected at the 360 and 180 orientations, the 090 

and 270 orientations had the lowest accuracy rates. The resulting " W shaped 

curve (figure 6) was anticipated, but not with the 090 and 270 orientations 



resulting in lower accuracy rates than the two non-cardinal headings on either 

side of them. In other words, the "true" anticipated function (i.e., the Hintzman, 

et al. study, Figure 4) would have shown a decrease in accuracy between the 

360 and 180 positions as well as the 090 and 270 positions resulting with 

higher accuracy rates than the 045, 135, 225, and 315 positions surrounding 

them respectively. 

However, the results indicated that the participants had the hardest 

time locating whether the triangle was to the left or to the right of the aircraft 

symbol. Additionally, the majority of the incorrect responses made within 

these two orientations were of an inverse nature; meaning that the majority of 

the incorrect responses for the 090 orientation were answered as a 270 

orientation and vice versa. This suggests that since the left and right 

decisions at the 180 degree orientation are reversed in relation to their 

position at the 360 degree orientation, the ability to accurately mentally rotate 

and orientate the 090 and 270 positions may be influenced by a possible 

reversal error. The ability to handle this reversal may be important. 

Another possibility for the reversal errors of the two orientations may 

have been due to the influence of the target-centered experimental design. 

Unlike previous studies (i.e., Hintzman et al.), the stimulus of the experiment, 

the aircraft symbol, was not fixed while the target (the triangle) remained in 

the center of the screen. Therefore, the reversal problem of the subjects to 

accurately orientate the left and right positions may have also been due to 



this change of stimulus and task.; thus possibly requiring a different cognitive 

process of conducting mental rotation required for spatial orientation. 

As a result of this occurrence at the 090 and 270 orientations, the 

fourth hypothesis which investigated the accuracy rates for the mental rotation 

of the cardinal directions (360, 090, 180, and 270) versus the non-cardinal 

directions (045, 135, 225, and 315) was rejected. Even though there was not 

a significant difference between them, the cardinal headings did not score as 

highly as the non-cardinal orientations which was most likely due to the 090 

and 270 phenomena. Additionally, other possible factors which may have 

been of influence for this occurance may be: 1) the location and distance 

differences of the response keys and 2) an ergonomically defined position of 

the hand used to respond was not specified. 

Therefore, further research should explore the relationship between the 

amount of mental rotation required for spatial orientation and accuracy. 

Special attention should be applied to evaluating the conditions that lead to 

left and right reversal errors and their potential significance in flight. If such 

research will help to provide a better understanding between these two 

variables, then the design of future navigational displays and interfaces will 

perhaps result in more accurate performance by the users. 
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/* 
Name BOX C 
Type Toolbox module 
Language Microsoft QuickC version 2 
Video Color or monochrome text mode 

#include <stdio h> 
#include <stdhb h> 
#include <malloc h> 
#include <dos h> 
#include <stnng h> 
#include <graph h> 
#mclude "box h" 

static void determme_video (void), 
static unsigned video_seg = 0, 
static char far "videoptr; 
static int columns, 

/* 
Function boxje tO 
Toolbox BOX C 
Demonstrated BOXTEST C MENU C 

Parameters 
(input) rowl Upper left comer of box 
(input) coll Upper left comer of box 
(input) row2 Lower right comer of box 
(input) col2 Lower nght comer of box 

Returned Address of far integer buffer containing data 
saved from the rectangular area of screen 

Variables i Looping index for lines in box 
width Width of box area 
height Height of box area 
bytes Total number bytes to store box data 
buf Address of far buffer for storage 
bufptr Index into storage buffer memory 
wdeo_off Offset of video address for box data 

Descnption Saves contents of a rectangular area of the 
screen in a dynamically allocated buffer 

unsigned far *box_get( unsigned rowl, unsigned coM, 
unsigned row2, unsigned col2) 

{ 
unsigned i, width, height, bytes, 
unsigned far *buf, far *bufptr, 
unsigned video_off, 

f Calculate the dimensions in bytes 7 
width = (col2 - coll + 1 ) * 2, 
height = row2 - rowl + 1, 
bytes = height * width + 8 

/* Allocate storage space */ 
if ((buf = (unsigned far *)malloc((size_t)bytes)) == NULL) 

{ 
pnntf( "box_getO mallocO failed\n"), 
exrt( 0 ) , 

} 

T Save the box coordinates in the buffer */ 
bufptr = buf, 



*bufptr++ = rowl, 
*bufptr++ = coll, 
*bufptr++ = row2, 
*bufptr++ = col2, 

/* Determine the text mode video segment and number of columns */ 
determine_videoO, 

I* Calculate starting location in video memory */ 
video_off = (unsigned)(( columns * (rowl - 1 ) + 

(coh - 1 ) ) * 2 ) , 

I* Grab each line of the video */ 
for ( i = 0, i < height, i++) 

{ 
movedata( video_seg, video_off, 

FP_SEG( bufptr), FP_OFF( bufptr), width), 
bufptr += width / 2, 
video_off += columns * 2, 
} 

/* Return the buffer */ 
return (buf ) , 

} 

r 
Function box_putO 
Toolbox BOX C 
Demonstrated BOXTEST C MENU C 

Parameters 
(input) buf Far integer buffer previously created 

by the function box_getO 

Returned (function returns nothing) 

Vanables rowl Upper left comer of box 
col 1 U pper left comer of box 
row2 Lower nght comer of box 
col2 Lower nght comer of box 
i Loop index for each line of the box 
width Width of the box 
height Height of the box 
bytes Total number of bytes in the box 
video_off Offset of video address for box data 
workbuf Index into the buffer 

Descnption Restores screen contents that were saved in a 
buffer by a previous call to box_get() 

void box_put( unsigned far * buf) 

{ 
unsigned rowl, coll, row2, col2, 
unsigned i, width, height, bytes, 
unsigned video_off, 
unsigned far 'workbuf, 

/* Get the box coordinates */ 
workbuf = buf, 
rowl =*workbuf++, 
coh = 'workbuf++, 
row2 = *workbuf++, 
col2 = *workbuf++, 

/* Calculate the dimensions in bytes */ 
width = (col2 - coll + 1 ) * 2, 



} 

height = row2 - rowl + 1; 
bytes = height * width; 

I* Determine the text mode video segment and number of columns 7 
determine_videoO; 

f Calculate starting location in video memory */ 
video_off = (columns * (rowl - 1 ) + (coh - 1 )) * 2; 

/* Put each line out to video */ 
for ( i = 0; i < height; i++) 

{ 
movedata( FP_SEG( workbuf), FP_OFF( workbuf), 

video_seg, video_off, width); 
workbuf += width / 2; 
vkteo_pff += columns * 2; 
} 

Function: box_colorO 
Toolbox: BOX.C 
Demonstrated: BOXTEST.C MENU.C 

Parameters: 
(input) rowl Upper left comer of box 
(input) coll Upper left comer of box 
(input) row2 Lower right comer of box 
(input) col2 Lower right comer of box 

Returned: (function returns nothing) 

Variables: x Looping index for each row of box 
y Looping index for each column of box 
fore Current foreground text color 
back Current background text color 
attr Attribute byte combining fore and back 

Description: Sets the foreground and background colors for 
all characters in a box to the current colors. 
Characters in the box are unaffected 

*/ 

void box_color (unsigned rowl, unsigned coll, 
unsigned row2, unsigned col2) 

{ 
unsigned x, y; 
unsigned fore; 
unsigned long back; 
unsigned char attr; 

r Determine the text mode video segment and number of columns */ 
determine_video(); 

T Build the attribute byte */ 
fore = jgettextcolor(); 
back = jgetbkcolorO; 
attr = (unsigned char)(( fore & OxF) | 

((((fore & 0x10) » 1 ) | back) « 4 ) ) ; 

/* Work through the box */ 
for ( x = rowl - 1 ; x < row2; x++) 

for ( y = coM - 1 ; y < col2; y++) 
*( videoptr + (columns * x + y ) * 2 + 1 ) = attr; 

} 



/* 
Function box charfillO 
Toolbox BOXC 
Demonstrated BOXTEST C MENUTEST C 

Parameters 
(input) rowl Upper left comer of box 
(input) coll Upper left comer of box 
(input) row2 Lower nght comer of box 
(input) col2 Lower nght comer of box 
(input) c Character used to fill the box 

Returned (function returns nothing) 

Vanables x Looping index for each row of box 
y Looping index for each column of box 

Descnption Fills a rectangular area of the screen with a 
character Attributes are unaffected 

void box_charfill (unsigned rowl, unsigned coh, 
unsigned row2, unsigned col2, unsigned char c ) 

{ 
unsigned x, y, 

r Determine the text mode video segment and number of columns */ 
determine_videoO, 

/•Work through the box 7 
for (x = rowl - 1 , x < row2, x++) 

for (y = coh - 1 , y < col2, y++) 
*( videoptr + (columns *x + y ) * 2 ) = c, 

} 

/* 
Function box_drawO 
Toolbox BOX C 
Demonstrated BOXTEST C MENU C 

Parameters 
(input) rowl upper left comer of box 
(input) coll upper left comer of box 
(input) row2 lower nght comer of box 
(input) col2 lower nght comer of box 
(input) hne_type Indicates single-line or double-

line box border (or none) 

Returned (function returns nothing) 

Vanables x Keeps track of horizontal position 
y Keeps track of vertical position 
dx Horizontal motion increment 
dy Vertical motion increment 
c Character for each part of the border 

Descnption Draws a single-line or double-line box border 
around a box Does not affect attributes 

void box_draw( unsigned rowl, unsigned coM, 
unsigned row2, unsigned col2, unsigned line_type) 

{ 
unsigned x, y, dx, dy, 
unsigned c, 



I* Determine the text mode video segment and number of columns 7 
determine_videoO, 

I* Work around the box 7 
x = con, 
y=row1, 
dx=1, 
dy = 0, 
do 

{ 

/* Set the default character for unbordered boxes */ 

/* Set the single-line drawing character 7 
if (linejype == 1) 

if(dx) 
c = 196, 

else 
c = 179, 

/* Set the double-line drawing character 7 
else if (linejype == 2 ) 

if(dx) 
c = 205, 

else 
c = 186, 

I* Change direction at top nght comer 7 
if(dx==1&&x==col2) 

{ 
dx = 0, 
dy = 1, 
if (line type == 1) 

c = f91, 
else if (linejype == 2 ) 

c=187, 
} 

/* Change direction at bottom nght comer 7 
if (dy == 1 && y == row2) 

{ 
dx = -1 , 
dy = 0, 
if (linejype == 1) 

c = 217, 
else if (linejype == 2) 

c = 188, 
} 

I* Change direction at bottom left comer 7 
if(dx==-1&&x==col1) 

{ 
dx = 0, 
dy = - 1 , 
if (line type == 1) 

c = 1~92, 
else if (linejype == 2 ) 

c = 200, 
} 

f Check for top left comer 7 
if (dy == -1 && y == rowl) 

{ 
if (line type == 1 ) 

c = 218, 
else if (linejype == 2) 

c = 201, 
} 



} 

/* Put new character to video 7 
*( videoptr + (columns * ( y - 1 ) + ( x - 1 ) ) * 2 ) = (char)c, 

/* Move to next position 7 
x+=dx, 
y+=dy, 

} 
while (dy '= -1 || y >= rowl), 

Function box_erase() 
Toolbox BOX C 
Demonstrated BOXTEST C MENU C 

Parameters 
(input) rowl Upper left comer of box 
(input) coM Upper left comer of box 
(input) row2 Lower nght comer of box 
(input) col2 Lower nght comer of box 

Returned (function returns nothing) 

Vanables i Looping index for each row of the box 
buf Stnng of spaces for each row 

Descnption Fills a box with spaces Uses the current color 
attnbutes 

7 

void box_erase( unsigned rowl, unsigned coM, 
unsigned row2, unsigned col2) 

{ 
unsigned i, 
charbuf[81], 

I* Fill the buffer with spaces 7 
spnntf( buf, "%*s", col2 - coll + 1,""), 

I" Put each line out to video 7 
for ( i = rowl, i <= row2, i++) 

{ 
_settextposition( i, coM ), 
_outtext(buf), 
} 

Function determine videoO 
Note STATIC FUNCTION AVAIUBLE ONLY TO THIS MODULE 
Language Microsoft QuickC 
Toolbox BOX C 

Parameters (none) 

Returned (function returns nothing) 

Variables (none) 

Descnption Determines the text mode video segment and the 
number of character columns currently set 
Fills in static vanables that are 

available only to the functions in this module 



7 

static void determine video( void) 

{ 
if (Ivideo seg) 

{ 
f Determine the text mode video segment 7 

switch ('((char far *)0x449)) 
{ 
caseO: 
case 1: 
case 2: 
case 3: 

video_seg = OxB800; 
videoptr = (char far *)0xB8000000; 
break; 

case 7: 
video_seg = OxBOOO; 
videoptr = (char far *)OxBOOOOOOO; 
break; 

default: 
printf( "BOX.C: not in text mode\n"); 

exit( 0 ) ; 

} 

I* Determine number of columns for current text mode 7 
columns = *( (int far *)0x44A); 
} 

} 



I" 

7 

ftnclude <stdio h> 
ftnclude "getkey h" 
#mclude "typjnrt h" 
#mclude "edit h" 
#include "list h" 
#include "file h" 
#mclude "menu h" 
#include "box h" 
#include "data_plt h" 
ftnclude '1_colors h" 

#definenght "RIGHT' 
#defineleft "LEFT' 
#definemale "MALE" 
#define female "FEMALE" 

char *infoJx>x 1Q = 
{ 
" Student Information Entry", 
" Have you already been entered into the", 
" roster of qualified users?", 
"< Yes or No >", 
NULL 
}. 

char'info box 2Q = 
{ 
" Student Information Entry", 

" Enter a unique 9 character identifier that", 
" I can use to identify you in the future ", 
" Most people use their SS# number ", 

•I > , ^ 

"<>", 
NULL 
}. 

char *infoJx>x_3Q = 
{ 
" Student Information Entry", 

" Please enter your unique identifier at the", 
" identifier below ", 

ii > ,î  

"<>", 
NULL 
}. 

char *infoJx>x_4TJ = 
{ 

" Student Information Entry ', 

" Are you RIGHT handed or are you LEFT handed?", 

"< Right or Left >", 
NULL 
}. 

char 'infoJxjxJjQ = 



{ 
" Student Information Entry", 

" Is it correct that you are RIGHT handed 7", 
HI* 

"<YesorNo>", 
NULL 
}. 

char *info_boxJ5fJ = 
{ 

" Student Information Entry", 

" Is it correct that you are LEFT handed 7", 

"< Yes or No >", 
NULL 
}. 

char *infoJx>x_7[] = 
{ 
" Student Information Entry", 

" I'm sony you are not in the table", 
" of registered users ", 

"< Press any key >", 
NULL 
}. 

char 'info box 8Q = 
{ 

" Student Information Record", 

" Are you MALE or FEMALE 7", 

"< Male or Female >", 
NULL 
}. 

char 'mfojxjx_9{] = 
{ 

" Student Information Record", 

" Student Identifier 

" Right or Left handed ", 

" Male or Female 

" IS THE ABOVE INFORMATION CORRECT"?", 

"<YesorNo>", 
NULL 
}. 

char 'info_boxJ0Q = 
{ 

" Student Information Entry", 

" Is it correct that you are a MALE 7", 

"< Yes or No >", 
NULL 
}. 

char *infoJ»x_11D = 
{ 
" Student Information Entry", 



" Is it correct that you are a FEMALE 7", 

"< Yes or No >", 
NULL 
}. 

char 'info box 20Q = 
{ 
" Student Information Entry", 

" I'm sorry another user already uses that", 
" identifier Please try another one ", 

"< Press any key >", 
NULL 
}. 

char *drop_nghtJeftfJ = 

L 
"Right", 
"Left", 

NULL 
}. 

char *drop_maleJemaleQ = 

{ . . i . 

"Male", 
"Female", 

NULL 
}. 

char *drop_yesjioQ = 
{ 

"Yes", 
"No", 

NULL 
}• 

I* 
Function Function to determine whether candidate 

is male or female 

File TEST_1 C 

Parameters None 

Returned 
(output) 'M' - if candidate is male 

'F' - if candidate is female 

Vanables None 

Descnption Function to determine whether candidate is male 
or female 

char Male_orJemale( void) 
{ 

int finish = 0, 
int malejemale, 
int *save_infoJx>x, 



int yesjio, 

while( finish == 0) { 
r Display infoJ»xJ3 7 
savejnfoJ»x = menu_message( 5,8, infoJ»xJ3), 

I* Get student answer male or female 7 7 
menu_erase( menu_drop( 12,30, drop_maleJemale, &malejemale)), 

r Erase infojxjxj? 7 
menu_erase( save_infoJ»x), 

r 
malejemale = 1 ==> Male 
malejeamle = 2 ==> Female 

7 

if (malejemale == 1) { 
/* Confimi whether student is male 7 
/* Display mfo_box_10 7 
save_infoJx>x = menu_message( 5, 8, infoJxwJO), 

I* Get student answer yes or no ? 7 
menu_erase( menu_drop( 12,30, drop_yes_no, &yes_no)), 

/* Erase infoJ»x_10 7 
menu_erase( savejnfojwx), 
} 

else{ 
/* Confirm whether student is female 7 
r Display infoj>ox_11 7 
savejnfojwx = menu_message( 5, 8, mfojjoxj 1), 

T Get student answer yes or no 7 */ 
menu_erase( menu_drop( 12,30, drop_yes_no, &yes_no)), 

/* Erase infoJx>xJ 1 7 
menu_erase( save_mfoJx>x), 
} 

if (yes_no == 1) 
r Student entry was correct => set flag to quit loop 7 
finish = 1, 

} 
if (malejemale == 1) 

retumCM"), 
else 

retumfF"), 
} 

/* 
Function to determine whether student is nght 
or left handed 

7 

char Right_orJeft handed(void) 
{ 

int finish = 0, 
int nght_orJeft, 
int yes_no, 
int 'savejnfojwx, 

while( finish == 0) { 
r Display infoJ»x_4 7 
savejnfojxjx = menu_message( 5, 8, infoJxjx_4), 

I* Get student answer right or left 7 */ 
menu_erase( menu_drop( 12,30, dropjightjeft, &nght_orJeft)), 



/* Erase info_box_4 7 
menu_erase( savejnfojwx); 

r 
right_orJeft = 1 ==> Right handed 
right_or left = 2 ==> Left handed 

7 

if (right_orJeft == 1 ) { 
r Confirm whether student is right handed 7 
r Display infoJ»x_5 7 
savejnfojwx = menu_message( 5, 8, infoJwx_5); 

/* Get student answer yes or no 7 7 
menu_erase( menu_drop( 12, 30, drop_yes_no, &yes_no)); 

/* Erase infojwxjj 7 
menu_erase( savejnfojwx); 
} 

else{ 
/* Confirm whether student is left handed 7 
/* Display infojwxjj 7 
savejnfojwx = menu_message( 5, 8, infojwxjj); 

r Get student answer yes or no 7 */ 
menu_erase( menu_drop( 12,30, drop_yes_no, &yes_no)); 

/* Erase info_boxJ5 */ 
menu erase( savejnfojwx); 
} 

if (yesjro == 1 ) 

T Student entry was correct => set flag to quit loop */ 
finish = 1; 

} 
if (right_orJeft == 1 ) 

returnfR'); 
else 

returnCL'); 
} 

/* 
Define procedure for getting student data plate 

7 

void get_student_data( NODE *h, STUDENTJRECORD *new_student, long 'positn) 
{ 

int counter; 
int qualified jjser_answer; 
int far 'savejnfojwx; 
int finish = 0; 
int key; 
long offset; 
char uniquejdent[10]; 
char MJranded; 
char malejemale; 

while (finish == 0 ) { 
/* Clear uniquejdent */ 
for (counter = 0; counter <= 8; counter++ ) 

uniqueJdent[counter] =' '; 
uniqueJdent[9] = "\0'; 

/* Display infojwxj 7 
savejnfojwx = menu_message( 5, 8, infoJwx_1 ); 



I* Get student answer yes or no 7 7 
menu_erase( menu_drop( 10,30, drop_yes_no, &qualified_user_answer)), 

I* Erase infojwxj 7 
menujjrase^savejnfojwx), 

/* 
qualified_user_answer = 1 ==> yes 
qualified_user_answer = 2 ==> no 

7 

if (qualifiedjiser_answer == 1) { 
/* Display infojwxj? 7 
savejnfojwx = menu_message( 5,8, infoJwxJ3), 

/* Get unique identifier 7 
_settextposrtion( 10,18), 
editline( uniquejdent), 

/* Erase info_box_3 7 
menu_erase( savejnfojwx), 

r Check student identifier with those held on disk 7 
offset = check( h, uniquejdent), 

I* Save position on disk */ 
'positn = offset, 

r 
offset == 0 => student not registered 
offset <> 0 => student is a registered user 

7 

if (offset ==0L){ 
/* Display info_box_7 7 
savejnfojwx = menu_message( 10,8, infoJwx_7), 

getkey_or_mouse(), 

r Erase mfo_box_7 7 
menu_erase(savejnfo box), 
} 

else{ 
/* fetch student record 7 
Fetch( offset, new_student), 

/* Set finish flag to 1 7 
finish = 1, 
} 

} 
else{ 

/* Display infojwxj? 7 
savejnfojwx = menu_message( 5, 8, info_boxj2), 

r Get unique identifier 7 
_settextposrtion( 11,18), 
editlme( uniquejdent), 

I* Erase infb_box_2 7 
menu_erase( savejnfojwx), 

r Check student identifier with those held on disk 7 
offset = check( h, uniquejdent), 

r Save position on disk 7 
'positn = offset, 

I* offset <> OL then another student uses that identifier 7 
if (offset '= OL) { 



I* Display infojwxJ20 7 
savejnfojwx = menu_message( 10,8, infojwxj>0); 

getkey_or_mouse(); 

I* Erase infojwxJ20 7 
menu erase(save info box); 
} 

else{ 
I* Determine whether right or left handed 7 
rjjianded = Right_orJeftJiandedO; 

I* Determine whether student is male or female 7 
malejemale = Male_orJemaleO; 

I* Last chance for student to validate entered information 7 
I* Display infojwxj? 7 
savejnfojwx = menu_message( 3,8, infojwxJ9); 

I* Display student identifier 7 
_settextposition( 5,33); 
j>uttext( uniquejdent); 

/* Display whether student is right or left handed 7 
settextposition( 7,33); 

if (rjjianded =='R') 
_outtext( right); 

else 
_outtext( left); 

/* Display whether student is male or female 7 
_settextposition( 9,33); 
if (malejemale == 'M') 

_outtext( male); 
else 

jsuttext( female); 

r Get student answer yes or no 7 7 
menu_erase( menu_drop( 16,30, drop_yes_no, &qualifiedjjser_answer)) 

/* Entered information correct 7 
if (qualified_user_answer == 1 ) { 

I* Initialize student record for new student 7 
for (counter = 0; counter <= 9; counter++) 

new_student->qualifier[counter] = uniquejdentfcounter]; 
new_student->rjjianded = rjjianded; 
new_student->malejemale = malejemale; 

I* Set finish flag to 1 7 
finish = 1; 

} 

/* Erase infojwx_9 7 
menu_erase(save info box); 
} 



/* 

7 

ftnclude <stdio h> 
ftnclude <conio h> 
#mclude "getkey h" 
ftnclude "typjnit h" 
ftnclude "list h" 
ftnclude "file h" 
ftnclude "dskjnit h" 
ftnclude "menu h" 
#include "box h" 
ftnclude "t colors h" 

/* Error message data 7 
char 'error box_1_01 Q = 

{ 
"Error Message #101" , 

" Unable to access the following", 
"file STUDENT DAT", 

"< Press any key >", 
NULL 
}, 

char'error box 1_02Q = 
{ 
" Error Message #1 02", 

" Unable to access the following", 
"file STUDENT NDX", 

"< Press any key >", 
NULL 
}, 

r 
Function lnrtialize() 
File DSKJNIT C 

Parameters 
(input) hd pointer to head of linked list of type 

NODE 
tl pointer to tail of linked list of type 

NODE 

Returned (function returns nothing) 

Vanables result Return value from function call 
1 = file on disk 
0 = file not on disk 

nrecs Number of records in student data file 

Descnption Function to detrmine whether student index file 
is on disk If there exists a student index file 
contents of it are read into a linked list 

void lnrtialize( NODE "hd , NODE " t l ) 
{ 



int result; 
int nrecs; 
int counter; 
int *save_error_box; 

/* set the head and tail pointers 7 
*hd = NULL; *tl = NULL; 

r 
Create index file 

7 
CreateJndexJlleO; 

/* Determine whether index file is on disk 7 
result = lndex_on disk(); 
/* 

result == 1 => Index on disk 
result == 0 => Index not on disk 

7 
if (result == 0) 

r 
Index not on disk return to caller. 

7 
return; 

else{ 

r 
Read student data file to detemriine number of records in file. 

7 
nrecs = Numjecords(); 
if (nrecs == 0 ) { 

/* 
nrecs == 0 => En'or reading student data file 

7 
/* 

set error box color to red 
set error text color to white 

7 
menu_back color( BKJ^ED); 
menuJext_color(T.WHITE | TJ3RIGHT ); 

r Display error J w x J J)1 7 
save_error_box = menu_message( 10, 8, errorJwxJ J)1 ); 

getkeyjsrjnouseO; 

T Erase errorjwxj J)1 7 
menu_erase( savejsrrorjwx); 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BKWHITE); 
menuJext_color( TJ3LACK); 
} 

else{ 

r 
Read information in indexfile 
into linked list 

7 
result = IndexJoJinkJist( nrecs, hd, tl); 
r 

result == 1 => Function successful 
result == 0 => Error in reading file! 

7 
if (result == 0) { 

r 
set error box color to red 



set error text color to white 
7 
menujiack color( BK_RED), 
menuJext_color( TJA/HITE | TJ3RIGHT), 

I* Display error J w x J J)2 7 
savejsrrorjwx = menujnessage( 10,8, error J w x J J32 ), 

getchO, 

/* Erase errorJwxJ J)2 7 
menu_erase( save_error_box), 

/* 
set box color back to cyan 
set text color back to black 

7 

menu Jack jwlor ( BKJ/VHITE), 
menuJext_color( TJ3LACK), 

} 
} 

} 
} 

/* 
Function StatsjnitializeO 
File DSKJNIT C 

Parameters 
(input) hd pointer to head of linked list of type 

RESJJODE 
tl pointer to tail of linked list of type 

RES_NODE 

Returned (function returns nothing) 

Vanables result Return value from function call 
1 = file on disk 
0 = file not on disk 

nrecs Number of records in student data file 

Descnption Function to detrmine whether student data file 
is on disk If there exists a student data file 
contents of it are read into a linked list 

void Statsjnrtialize( RESJJODE "hd , RESJJODE " t l ) 
{ 

int result, 
int nrecs, 
int *save_errorJwx, 

/* Determine whether student data file is on disk 7 
result = File_on_diskO, 

r 
result == 1 => File on disk 
result == 0 => File not on disk 

7 
if (result == 0 ) 

/* 
Index not on disk return to caller 

7 
return, 

else{ 

r 
Read student data file to detemriine number of records in file 



7 
nrecs = NumjecordsO; 
if (nrecs == 0 ) { 

r 
nrecs ==0 => Error reading student data file 

7 

r 
set error box color to red 
set error text color to white 

7 
menuJack_color( BK_RED); 
menuJext_color( TJ/VHITE | T_BRIGHT); 

/* Display er ror jwx j J)1 7 
savejjrrorjwx = menujnessage( 10, 8, e r ro r jwx j J)1 ), 

getkeyjxjnouseO; 

/* Erase errorjwxj_01 7 
menu_erase( save_errorJwx), 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BKWHITE); 
menujext_color( TJ3LACK), 
} 

else{ 
/* 

Read information in indexfile 
into linked list 

7 
result = Student_dataJo_hnkJist( hd , t l); 

/* 
result == 1 => Function successful 
result == 0 => Error in reading filei 

7 
if (result = = 0 ) { 

/* 
set error box color to red 
set error text color to white 

7 
menu_back_color( BK_RED); 
menuJext_color( TJ/VHITE | TJ3RIGHT), 

/* Display error_box_1 _01 7 
save_errorjwx = menu_message( 10,8, e r ro r jwx j J)1 ), 

getkeyj3r_mouse(); 

r Erase er ror jwx j _01 7 
menu_erase( save_error_box), 

r 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BKWHITE), 
menuJext_color( TJ3LACK), 



/• 
Name EDIT C 
Type Toolbox module 
Language Microsoft QuickC 
Demonstrated EDITTEST C 
Video (no special video requirements) 

7 

ftnclude <stdio h> 
ftnclude <stdhb h> 
#include <conio h> 
ftnclude <stnng h> 
ftnclude <graph h> 
ftnclude "edit h" 
#mclude "getkey h" 

/* 
Function next_word() 
Toolbox EDIT C 
Demonstrated EDITTEST C 

Parameters 
(input) str Stnng to be evaluated 
(input) ndx Character position 

Returned Character position of next word 

Vanables len Length of the stnng 

Descnption Finds the start of the next word in the stnng 

7 

int next_word( char *str, int ndx) 
{ 

unsigned len, 

/* Get the length of the stnng 7 
len = strien( str), 

r Move to end of the current word 7 
while (ndx < len && strfndx] i= " ) 

ndx++, 

/* Move to the start of the next word 7 
while (ndx < len && strfndx] == " ) 

ndx++, 

r If at end of stnng, back up to start of last word 7 
if (ndx == len) 

{ 
ndx-, 

/* Move back over any spaces 7 
while (ndx >= 0 && strfndx] == " ) 

ndx-, 

r Move back over preceding word 7 
while (ndx >= 0 && strfndx] i= " ) 

ndx-, 

/* Move one step forward to start of preceding word 7 
ndx++, 
} 

r Return the new position 7 
return (ndx), 



/* 

int prev_word( char "str, int ndx) 

{ 
int len, 

/* Get length of the stnng 7 
len = strien( str), 

I* Move back over nonspace characters in current word 7 
while (ndx && strfndx] i = " ) 

ndx-, 

I* Move back over the spaces between words 7 
while (ndx && strfndx] == " ) 

ndx-, 

I* Move back over characters in previous word 7 
while (ndx >= 0 && strfndx] i= " ) 

ndx-, 

/* Move to first character of the word 7 
while ((ndx < len && strfndx] == " ) || (ndx < 0 ) ) 

ndx++, 

I* If all spaces, then move back to start of stnng 7 
if (ndx == len) 

ndx = 0, 

/* Return the new position 7 
return (ndx) , 

} 

I* 
Function deletejshar() 
Toolbox EDIT C 
Demonstrated EDITTEST C 

Parameters 
(input) str Stnng to be evaluated 
(input) ndx Character position 

Returned Character position 

Vanables (none) 

Descnption Deletes one character from the stnng 

int delete_char( char *str, int ndx) 



{ 
int ndxjstart, 

I* Save current ndx 7 
ndxjstart = ndx, 

I* Shuffle characters back one space 7 
while (strfndx]) 

{ 
strfndx] = strfndx + 1], 
ndx++, 
} 

/* Return the unchanged position 7 
return (ndx), 

} 

r 
Function insertjsharO 
Toolbox EDIT C 
Demonstrated EDITTEST C 

Parameters 
(input) str Stnng to be evaluated 
(input) ndx Character position 
(input) c Character to be inserted 

Returned Next character position 

Vanables i Looping index 

Descnption Inserts a character into the stnng 

int insert_char( char 'str, int ndx, char c ) 
{ 

int i, 

/* Shuffle characters nght one space 7 
for ( i = strlen( str) - 1 , i > ndx, i - ) 

str[i] = str[i-1], 

/* Put character in new position 7 
strfndx] = c, 

/* Return next character position 7 
return (++ndx), 

} 

/* 
Function insertjspacesO 
Toolbox EDIT C 
Demonstrated EDITTEST C 

Parameters 
(input) str Stnng to be evaluated 
(input) ndx Character position 
(input) n Number of spaces 

Returned Next character position 

Vanables i Looping index 

Descnption Inserts a character into the stnng 

7 



int insert spaces( char *str, int ndx, int n) 
{ 

int i, 

I* Shuffle characters to the nght n places 7 
for ( i = strlen( str), i >= ndx, i - ) 

strfi + n] = strfi], 

/* Put n spaces in stnng 7 
while ( n - ) 

strf++i] ="", 

I* Move to the first character after inserted spaces 7 
return (ndx + n - 1 ) , 

} 

/* 
Function replaceO 
Toolbox EDIT C 
Demonstrated EDITTEST C 

Parameters 
(input) str Stnng to be evaluated 
(input) substM Sub stnng to find 
(input) substr2 Sub stnng to replace substrl 

Returned Number of replacements made 

Vanables count Count of replacements made 
len Length of str 
Ien2 Length of substr2 
i Looping index 
shift Amount to shift for insert 

Descnption Replaces each occurrence of substrl in str 
with substr2 

int replace( char *str, char 'substrl, char *substr2) 
{ 

int count = 0, 
int len, Ien2, 
int i, shift, 

r Get length of replacement stnng 7 
Ien2 = strlen( substr2), 

/* Determine amount of shift for each replacement 7 
shift = Ien2 - strlen( substrl ), 

I* Process each occurrence of substrl in str 7 
while ((str = strstr( str, substrl )) i= NULL) 

{ 

/* Keep track of number of replacements 7 
count++, 

/* Find current length of str 7 
len = strlen( str), 

I* Shift left if substr2 is shorter than substrl 7 
if (shift < 0) 

{ 
for ( i = abs( shift), i < len + 1, i++) 

strfi + shift] = strfi], 
} 



I* Shift nght if substr2 is longer than substrl 7 
else if (shift > 0 ) 

{ 
for ( i = len, i, i - ) 

strfi • shift] = strfi], 
} 

/* Copy substr2 into new place in str 7 
stmcpy( str, substr2, Ien2), 

I* Increment str pointer to character beyond replacement 7 
str += Ien2, 
} 

/* Return the number of replacements made 7 
return (count), 

} 

r 
Function editline() 
Toolbox EDIT C 
Demonstrated EDITTEST C 

Parameters 
(input) str Stnng to be edited 

Returned KEYJJP If Cursor Up was last keypress 
KEYJ30WN If Cursor Down was last keypress 
KEY ESCAPE If Escape was last keypress 
KEY^ENTER If Enter was last keypress 

Vanables doneflag Signals when to end the edit 
insertflag Insert or overstnke mode 
index Cursor position 
key Key code returned by getkey() 
len Length of str 
i Looping index 
strpos Onginal cursor position 

Descnption Displays stnng at the current cursor location, 
uses the current text colors and allows user 
to edit the stnng with standard editing keys 

int edrtline( char 'str) 
{ 

unsigned doneflag = 0, 
int insertflag = 1, index = 0, 
int key, len i, 
struct rccoord strpos, 

/* Get the length of the stnng to be edited 7 
len = strlen( str), 

r Record current location of the cursor */ 
strpos = jjettextposition(), 

/* Clear out any keypresses in the keyboard buffer 7 
while (kbhit()) 

getch(), 

I* Main editing loop 7 
while ((doneflag) 

{ 

/* Position the cursor at the onginal location 7 



jsettextposition( strpos row, strpos col), 

/* Display the stnng 7 
_outtext( str), 

r Move cursor to current editing position */ 
_settextposition( strpos row, strpos col + index), 

/* Set cursor type for insert or overstnke mode */ 
if (insertflag) 

_settextcursor( CURSOR JJNDERLINE), 
else 

_settextcursor( CURSORJ3LOCK), 

/* Wait for a keypress or mouse movement 7 
key = getkey_or_mouse(), 

I* Process each keypress 7 
switch (key) 

{ 

case KEYJJP 
doneflag = key, 
break, 

case KEYJDOWN 
doneflag = key, 
break, 

case KEYJ.EFT 
if (index) 

index-, 
break, 

case KEY_RIGHT 
if (index < len - 1 ) 

mdex++, 
break; 

case KEY_ESCAPE 
doneflag = key, 
break, 

case KEY_CTRL_LEFT 
index = prev_word( str, index), 
break, 

case KEY_CTRL_RIGHT 
index = nextj/vord( str, index), 
break, 

case KEY_END 
for (index = len - 1 , strfindex] == " && index, index-) 

{.} 
if (index && index < len -1 ) 

index++, 
break, 

case KEYJ3ACKSPACE 
if (index) 

{ 
index-, 
deletej;har( str, index), 
str[len-1] = ", 
} 

break, 

case KEY_CTRL_END 
for ( i = index, i < len, i++) 



strfi] = "; 
break; 

case KEYJNSERT: 
insertflag A= 1; 
break; 

case KEYJ3ELETE: 
deletej:har( str, index); 
strtlen-1] = ,•; 
break; 

case KEYJENTER: 
doneflag = key; 
break; 

case KEYJHOME: 
index = 0; 
break; 

default: 
if ( key >= " && key < 256) 

{ 
if (insertflag) 

insertj:har( str, index, (char)key); 
else 

strfindex] = (char)key; 
if (index < len - 1 ) 

index++; 
} 

break; 
} 

/* Truncate string at original length 7 
strflen] = 0; 
} 

r Return the key that caused the exit 7 

return (doneflag); 



/* 

7 

ftnclude <stdio h> 
ftnclude <stnng h> 
#mclude <conio h> 
#include "getkey h" 
#include "typjnrt h" 
#include "list.h" 
ftnclude "file h" 
ftnclude "menu h" 
ftnclude "tjwlors h" 
#include "sound h" 

/* Define en'or messages 7 
char 'errorjwxj JD3Q = 

{ 
" Error Message #1 03", 

" Attempt to reposition file pointer", 
" in file STUDENT DAT failed", 

"< Press any key >", 
NULL 
}, 

char'error boxj_04f] = 
{ 
" Error Message #1 04", 

" There are no records in student", 
" data file to read ", 
" Unable to do statistical", 
" analysis of student results ", 

"< Press any key >", 
NULL 
}. 

char 'errorjwxj JD5Q = 
{ 
"ErrorMessaged 05", 

" Unable to save student record", 
" in student data file ", 

" Result => the current student", 
" does not have his record saved", 
" on disk", 

"< Press any key >", 
NULL 
}. 

char'errorJwx 1 06fJ = 
{ 
" Error Message #1 06", 

" Unable to update student record", 
" in student data file ", 

" Result => the current student", 
" record in the student data file", 



" does not contain the latest test", 
" results ", 

"< Press any key >", 
NULL 

}. 

char 'error box 1 07Q = 

{ 
" Error Message #1 07" , 

" Unable to create student index", 
" file from student data file ", 

" Result => the program will not", 
" be able to access student records", 
" held on disk ", 

"< Press any key >", 
NULL 

}, 

I* 
Function Index on_disk() 
File FILE C ~ 

Parameters (none) 

Returned 1 Student index file is on the disk 
0 Student index file is not on disk 

Vanables check file pointer to student data file 

Descnption Function to determine whether the student 
index file is located in the current directory 

int lndex_on_disk( void) 

{ 
FILE 'check, 

/* Attempt to open index file on disk 7 
if ((check = fopen( INDEX, "rt>")) i= NULL) { 

fclose( check), /* Close disk file 7 
retum( 1 ), I* File on disk => return 1 7 

} 
else 

retum( 0 ) , /* Not on disk => return 0 7 
} 

/* 
Function File_on disk() 
File FILE C 

Parameters (none) 

Returned 1 Student data file is on the disk 
0 Student data file is not on disk 

Vanables check file pointer to student data file 

Descnption Function to determine whether the student 
data file is located in the current directory 



7 

int File on disk( void) 
{ 

FILE 'check; 

f Attempt to open index file on disk 7 
if ((check = fopen( FILENAME, "rb")) != NULL) { 

fclose( check); /* Close disk file 7 
retum( 1); I* File on disk => return 1 7 
} 

else 
retum( 0) ; r Not on disk => return 0 7 

} 

r 
Procedure to read student 
data file into linked list 
to allow manipulation for 
statistical analysis 

7 

int Student_dataJoJink_list( RESjNODE "h , RESjNODE " t ) 
{ 

FILE 'check; 
STUDENT_RECORD record; 
int *save_errorjwx; 
int result; 
int counter; 
int nrecs; 

/* Open index file on disk 7 
if ((check = fopen( FILENAME, "rb")) != NULL) { 

I* get number of records to read 7 
nrecs = getw( check); 

I* if number of records <= 0 then en'or 7 
if (nrecs <= 0 ) { 

/* 
set error box color to red 
set error text color to white 

7 
menujjack_color( BK_RED); 
menuJext_color( TJ/VHITE | TJ3RIGHT); 

I* Display error J w x J J M 7 
savejsrrorjwx = menu_message( 10, 8, errorjwxj JD4); 

/* Error Sound 7 
warble( 5); 

I* Get key/mouse press from user 7 
getkey_or_mouseO; 

r Erase errorjwxj 7 
menujsrase( savejsrrorjwx); 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BKJ/VHITE); 
menuJext_color( TJ3LACK); 

fclose( check); /* Close disk file 7 
retum( 0) ; /* Read unsuccessful return 0 7 



} 
else{ 

I* loop size defined by number of recs to read 7 
for (counter = 1, counter <= nrecs, counter++) { 

/* read index record from disk 7 
fread( Srecord, sizeof( STUDENT_RECORD ), 1, check), 

r insert index record into linked list 7 
res_addsl( &record, h, t ) , 
} 

fclose( check), /* Close disk file 7 
retum( 1), /* Read successful return 1 7 

} 
} 
else 

retum( 0) , /* File open failed' return 0 7 
} 

/* 
Functwn Wnte_numjecords(), 
File FILE C 

Parameters 
(input) numberj-ecords value to insert into the number 

of records field in the student 
file 

Returned integer 1 = successful! write 
0 = failure 

Vanables random logical name for student data file 
nrecs number of records in student data 

file 
counter loop counter 

Descnption Inserts the given value at the beginning of the 
student data file (This place in the student data 
file is used to store the number of records the file 
contains) 

7 

int Wntejiumjecords( int number) 
{ 

FILE 'random, 

if (number > 1) { 
r 

Open disk file to write number of student records 
7 
if ((random = fopen ( FILENAME, "r+b")) '= NULL) { 

r 
Position file pointer at beginning of file 

7 
fseek( random, OL, SEEKJ3ET), 
/* 

Write integer value at beginning of file 
7 
putw (number, random), 

fclose( random), /* Close disk file 7 
retum( 1 ), /* Write successful! */ 
} 

else 
retum( 0) , /• Write unsuccessful! 7 

} 
elsef 



r 
Create student data file 

7 
if ((random = fopen ( FILENAME, "wb")) 1= NULL) { 

r 
Write integer value at beginning of file 

7 
putw (number, random), 

fclose( random), 
retum( 1) , 
} 

else 
return( 0 ) , 

} 
} 

r 
Function to return number of 
records in disk file 

7 

int Num_records( void) 
{ 

FILE 'random, 
int nrecs, 

/* Open disk file to read number of student records 7 
if ((random = fopen ( FILENAME, "rb")) '= NULL) { 

nrecs = getw (random); I* Get number of records 
fclose( random), I* Close disk file */ 
retum( nrecs), I* Return number of records 
} 

else 
return( 0 ) , /* File open failed' return 0 7 

/* 
Function to read information in 
student index file into linked 
list 

int IndexJoJinkJist( int recs, NODE "h, NODE " t ) 
{ 

FILE 'check, 
INDEXJNFO record, 
int result, 
int counter, 

/* Open index file on disk 7 
if ((check = fopen( INDEX, "rb")) != NULL) { 

r loop size defined by number of recs to read 7 
for (counter = 1, counter <= recs, counter++) { 

T read index record from disk 7 
fread( &record, sizeof( INDEXJNFO), 1, check), 

/* insert index record into linked list 7 
addsl( record offset, h, t, record qualifier), 

} 
fclose( check), /* Close disk file 7 
retum( 1 ), /* Read successful return 1 7 

} 
else 

return( 0) ; /* File open failed' return 0 7 

r Close disk file 7 
/* Write successful! 7 

/* Write unsuccessful! 7 



} 

/* 
Function to read student record 
from student data file on disk 

7 

void Fetch( long st_offset, STUDENT_RECORD 'buffer) 
{ 

FILE 'random, 
int result, 
int 'savejsrrorjwx, 

/* Open student data disk file 7 
if ((random = fopen ( FILENAME, "rb" )) '= NULL) { 

I* Set file offset pointer in disk file to stjjffset 7 
result = fseek( random, st_offset, SEEKjSET), 

/* Determine whether seek was successful 7 
if (result '= 0 ) { 

/•Seekfailed'7 

I" 
set error box color to red 
set error text color to white 

7 
menu back coior( BK RED); 
menuJext_color( TJ/VHITE | TJ3RIGHT), 

I* Display errorJwx_1_03 7 
save_errorJwx = menu_message( 10, 8, errorJwx_1_03), 

r Error Sound 7 
warble( 5) ; 

I* Get key/mouse press from user 7 
getkey_or_mouseO, 

/* Erase e r ro r jwx j 7 
menu_erase( save_errorJwx); 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BKWHITE), 
menuJext_color( TJ3LACK), 
} 

else{ 
I* Seek successful 7 
r Read student data record into buffer 7 
fread( buffer, sizeof( STUDENT_RECORD), 1 random), 
} 

r Close disk file 7 
fclose( random), 

} 
} 

/* 
Function Savej5tudent_record(), 
File FILE C 

Parameters 
(input) flag 0 = student has record on disk 



1 = student does not have record 
on disk 

buffer student record to save 

Returned (function returns nothing) 

Vanables random logical name for student data file 
nrecs number of records in student data 

file 
counter loop counter 
result error flag 

Descnption Saves student record to the student data file Handles 
the two conditions of the student having a record 
on disk, and the student not having a record on disk 

void Save_studentjecord( long offset, STUDENT_RECORD 'buffer) 
{ 

FILE 'random, 
FILE *tmp, 
int nrecs, 
int counter, 
int result, 
int 'savejsrrorjwx, 

r 
Save new student record 

7 
if (offset ==0L) { 

r 
Get number of records 

7 
nrecs = Numjecords(), 

r 
Update header in student data file that contains 
the number of student records the file contains 

7 
++nrecs, 
result = Wnte_numjecords( nrecs), 

/* 
Open disk file to append student record 

7 
if ((random = fopen ( FILENAME, "ab" )) '= NULL) { 

r 
Append student record 

7 
fwnte( buffer, sizeof( STUDENTJ^ECORD ), 1, random ), 

/* close file 7 
fclose (random), 

} 
else{ 

/* 
Handle possible errors 

7 
r 

set error box color to red 
set error text color to white 

7 
menuJjack_color( BK_RED), 
menujext_color( TJ/VHITE | TJ3RIGHT), 

/* Display er ror jwx j_05 7 



{ 

case 0 image = aircraftjJtrfO], break, 

case 45 image = aircraftjJtrfl], break, 

case 90 image = aircraftjstrf2], break, 

case 135 image = aircraftj>trf3], break, 

case 180 image = aircraft_ptrf4], break, 

case 225 image = aircraftj3tr[5], break, 

case 270 image = aircraft_ptr[6], break, 

case 315 image = aircraftj}tr[7], break, 
} 

I* determine aircraft position required relative to center of screen 
North (0 deg beanng) being up on the screen 

7 
swrtch( acjwsrtion) 
{ 

case 0 x = 400, y = 550, break, 

case 45 x = 575, y = 475, break, 

case 90 x = 650, y = 300, break, 

case 135 x = 575, y= 125, break, 

case 180 x = 400, y = 50, break, 

case 225 x = 225, y = 125, break, 

case 270 x = 150, y = 300, break, 

case 315 x = 225, y = 475, break, 
} 

/* place aircraft image on screen 7 
j3Utimage( device_x( x-25), device_y( y+25), image, J3PSET), 

r 
Function DrawjsxamplejsircraftjproblemO 

File 11 object c 
Parameters onentation of aircraft 

position of aircraft on screen 

Returned None 

Descnption draws the aircraft on screen at the position and 
and onentation specified 

7 
void Draw example aircraftj>roblem( short ac_onentation, short acjwsrtion) 
{ 

char 'image, 
short x, y, 

/* determine aircraft onentation required 7 
swrtch( ac_onentation) 
{ 



/* Erase errorjwxj 7 
menu_erase( savejsrrorjwx), 

/* 
set box color back to cyan 
set text color back to black 

7 
menu Jackjwlor( BK.WHITE), 
menu text color( T_BLACK), 

} 

} 
} 

/* 
Function Createjndexjile 
File FILE C 

Parameters 
(input) 

Returned (function returns nothing) 

Vanables 

Descnption Create index file on disk from student data file 
on disk 

void Createjndexjile( void) 
{ 

int nrecs, rec, 
int 'savejsrrorjwx, 
FILE *fil, *ndx, 
INDEXJNFO ndex, 
STUDENT_RECORD st_rec, 

r 
Open student data file 

7 
if ((fil = fopen( FILENAME, "rb")) '= NULL) { 

/* 
Get number of records in file 

7 
nrecs = getw( fil), 

/* 
Create index file 

7 
ndx = fopen( INDEX, "wb" ), 

for (rec = 1, rec <= nrecs rec++) { 

/* 
read file position 

7 
ndex offset = ftell( fil) 

r 
retneve record from student data file 

7 
fread( &stjec, sizeof( st jec) , 1, fil), 

/* 
copy student record qualifier to index qualifier 

7 



strcpy( ndex qualifier, st jec qualifier), 

r 
write index record to index file 

7 
fwnte( index, sizeof( ndex), 1, ndx), 

} 

/* 
close opened files 

7 
fclose( ndx), 
fclose( fil), 

} 
elsef 

/* 
close opened file 

7 
fclose( fil), 

if ( NumjecordsO '= 0) { 

/* 
Handle possible errors 

7 
/* 

set error box color to red 
set error text color to white 

7 
menuJ>ack_eolor( BK_RED), 
menuJextjwlor( TJ/VHITE | TJ3RIGHT), 

I* Display error_box_1_07 7 
savejsrrorjwx = menujnessage( 10,8, er ror jwx j _07), 

I* Error Sound 7 
warble( 5), 

I* Get key/mouse press from user 7 
getkey_or_mouse(), 

I* Erase er ror jwx j J37 7 
menu_erase( savejsrrorjwx), 

r 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BK.WHITE), 
menuJext_color( TJ3LACK), 



81 

ftnclude <stdio.h> 
ftnclude <conio.h> 
ftnclude <stdlib.h> 
#include <string.h> 
ftnclude "typjnit.h" 

mainO 
{ 

FILE *file_handle, 
'output_file1, 
*output_file2, 
•outputJile3; 

STUDENTJRECORD data; 

int number_of Jiles, count, countl, count2; 
char infof11]; 

I* display general info 7 
systemC'ds"); 
printfC'Mental Rotation Test Filesee 1.10 Written By Animesh Banerjee\n"); 
printf("Adapted from ATC Filesee 2.1 Written By Gordon Jones\n\n"); 
printf("23 May, 1996\n"); 
printf("<Press any key to run program>"); 
getchO; 

system("cls"); 

I* run the main program 7 
printfC'Mental Rotation Test Filesee 1.0 Written By Animesh Banerjee\n\n"); 
printfC'Student Data Convertion to MS Excel 3.0 for Windows 3.X Started...\n\n"); 
if ((outputJilel = fopenfstdj J .xls", "wt")) == NULL) 

exit(-1); 

if ((outputJile2 = fopenfstdJ_2.xls", "wt")) == NULL) 

exit(-1); 

if ((outputJile3 = fopenCstd_1J3.xls", "wt")) == NULL) 

exit(-1); 

if ((filejiandle = fopenC'student.fil", "rb")) == NULL) 

exit(-1); 

else 
{ 

numberjrfjiles = getw( filejiandle); 

fprintf(outputJilel, "Student Test Info:- Correct Answer Times\n\n"); 
fprintf(outputJilel, "Subject #,Sex,Test 1 #1, #2\n\n"); 
fprintf(outputJile2, "Student Test Info:- Incorrect Answer Times\n\n"); 
fprintf(output_file2, "Subject #,Sex,Test 1 #1, #2\n\n"); 
printfC'viWriting Student Data on Test #1 - Mental Rotation\n"); 
fprintf(outputJile3, "Mental Rotation/Orientation Test:- Raw Data\n\n"); 

fprintf(outputJile3," "); 
for (countl = 1; countl <= 64; countl ++) 
{ 

fprintf( output_file3, "Problem #%2d " ,count1); 
} 
fprintf(outputJlle3, "\n"); 
fprintf( outputJlle3, "\nSubject # Sex "); 
for (countl = 1; countl <= 64; countl ++) 
{ 

fprintf( output_file3, "reacjime r/wans " ) ; 
} 

file:///nSubject


for (count = 1; count <= numberjjf files; count++) 
{ 

fread( &data, sizeof( STUDENT_RECORD), 1, filejiandle); 
printfptWriting Data for Student #%s\n", data.qualifier); 
fprintf( output J i l e l , "%s%c,", data.qualifier, data.malejemale); 
fprintf( outputJile2, "%s%c,", data.qualifier, data.malejemale); 
fprintf( output_file3, "\n%s %c ", data.qualifier, data.malejemale); 

for (countl = 0; countl < 2; countl ++) 
{ 

T change to 1 because only 2 trials 7 
sprintf( info, "%f", data.student_info[count1].avgjime_correct); 
fprintf( output J i le l , "\t%s", info"); 
sprintf( info, "%r, data.studentJnfo[count1].avgjimejncorrect); 
fprintf( output_file2, "tt%s", info); 

} 
fprintf( output J i l e l , "\n"); 
fprintf( outputJlle2, "\n"); 

for (count2 = 0; count2 <= 10; count2++) 
infofcount2] = "\0'; 

for (countl = 0; countl < 64; countl ++) 
{ 

sprintf( info, "%7.2f ", data.RESPONSEfcountl ].reactionJime); 
fprintf( output_file3, "%s", info); 
sprintf( info, "%d ", data.RESPONSE[count1].right_wrong); 
fprintf( output_file3, "%s", info); 
sprintf( info, "%c ", data.RESPONSEfcountl ].answer); 
fprintf( outputJile3, "%s", info); 

} 
} 
fprintf( outputJlle3, "\n"); 

fclose( output_file1 ); fclose( filejiandle );fclose( outputJile2); 
fclose( outputJile3); 

return 0; 



Description: Returns an unsigned integer that corresponds to a 
keypress; also detects mouse motion 
it to equivalent keypresses 

7 

unsigned getkeyj>rjnouse( void) 
{ 

unsigned key; 
int status, buttons; 
int horz, vert; 
int presses, horzjws, vertjws; 
int totjwrz, totj/ert; 

I* Set the mouse motion counters to 0 7 
totjiorz = tot_vert = 0; 

/* Clear out the mouse button press counts 7 
mousej>ress( LBUTTON, Sstatus, &presses, Shorzjws, Svertjws); 
mousej>ress( RBUTTON, Sstatus, Spresses, Shorzjws, Svertjws); 

/* Loop starts here, watches for keypress or mouse activity 7 
while (1 ) 

{ 

switch (mousejlag) 
{ 

Shorzjws, Svertjws) 

/* If this is first iteration, check for existence of mouse 7 
caseO: 

mousejeset( Sstatus, Sbuttons); 
if (status == 0) 

mousejlag = - 1 ; 
else 

mousejlag = 1; 
break; 

I* If mouse does not exist, ignore monitoring functions 7 
case-1: 

break; 

/* Check for mouse activity 7 
s1: 

/* Accumulate mouse motion counts 7 
mousejnotion( Shorz, Svert); 
totjiorz += horz; 
totj/ert += vert; 

/* Check for enough horizontal motion 7 
if (totjiorz < -HORZ.COUNTS ) 

return ( KEY LEFT); 
if (totj iorz > HORZ_COUNTS ) 

return (KEY_RIGHT); 

I* Check for enough vertical motion 7 
if (tot_vert < -VERTJDOUNTS ) 

return (KEYjJP) ; 
if (tot_vert > VERT_COUNTS ) 

return (KEY_DOWN ); 

I* Check for mouse left button presses 7 
mousej>ress( LBUTTON, Sstatus, Spresses, 

if (presses) 
return (KEY_ENTER); 

r Check for mouse right button presses 7 



/ 

long studentJimer( int 'key, char 'neutral, unsigned timeout, unsigned wamingjime) 
{ 

int flag = 0, 
int beepjlag = 1, 
char *temp, 
clock t cstart, cend, ct time, 
enunTboolean { TIMEOUTJENABLED = 1, TIMEOUTJDISABLED = 0}, 
enum boolean status, 
long starttime, 
long currentJime, 
long elapsed Jime = 0, 
long endtime, 
long timetaken, 

cstart = clockf), starttime = cstart, 

/* determine if timeout feature is enabled 7 
if (timeout > 0) 

status = TIMEOUT_ENABLED, 
else 

status = TIMEOUT.DISABLED, 

while(1) 
{ 

if (status == TIMEOUTJHNABLED ) 
{ 

ctjime = clockO, current Jime = ctjime, 

/* calculate elapsed time and correct for system clock reset 7 
if (current Jime < starttime) 
{ 

elapsed Jime = 65535 0 - starttime, 
elapsed Jime = elapsed Jime + current Jime, 

} 
else 

elapsed Jime = current Jime - starttime, 

/* check that warning 'beep' feature is enabled 7 
if (wamingjime > 0) 
{ 

I* check if warning should be issued 7 
if (((long)(timeout - wamingjime) <= 

elapsed time/CLK_TCK) SS beepjlag) 
{ 

note(2000,2), 
/* set beepjlag so only one beep is issued to signal warning 7 
beepjlag = 0, 

} 
} 

I* check for timeout expiry 7 
if (elapsedJime/CLK_TCK >= (long)timeout) 
{ 

'key = 0, 
retum( elapsed Jime), 

} 

} 

if (kbhitO) 
{ 

cend = clockO, endtime = cend 
flag = 0, 
temp = neutral, 
'key = getchO, 
while ('temp ' = ' " SS flag < 1) 
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{ 
if ('key == 'temp) 

++flag; 
++temp; 

} 
if (flag > 0 ) 
{ 

if (endtime < starttime) 
{ 

timetaken = 65535.0 - starttime; 
timetaken = timetaken + endtime; 

} 
else 

timetaken = endtime - starttime; 

I* check that reaction time is not too low 7 
if (timetaken >= MIN_REACTION_TIME/1000.0 * CLK.TCK) 

retum( timetaken); 
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Name LIST C 
Type Linked list manipulation module for 

Air Traffic Control Screening Program 
Language Microsoft QuickC version 2 

Last Revision 06/16/92 Gordon Jones 

7 

ftnclude <malloc h> 
ftnclude <stdio h> 
ftnclude <stnng h> 
#mclude "typjnit h" 

#mclude "list h" 

r Memory allocation routines 7 
/* Standard input/output 7 
I* Stnng manipulation 7 

/* structure definitions for 7 
/* STUDENT_COLUMN 7 

I* Linked list routines 7 

Function Addsl 
File LIST C 

Parameters 
(input) offset offset in bytes where student record 

<student fil> 
(input) h pointer to head of linked list 
(input) t pointer to tail of linked list 
(input) key student identifier to be added to 

is in file 

linked 
list 

Returned 

Vanables 

None 

new pointer to tempory record 

Descnption Procedure to add a record (node) to tail of linked 
list 

Note For additional help refer to any data structures 
book on singly linked lists -> simplest' 

7 

void addsl( long offset, NODE " h , NODE"t, char 'key) 

{ 
NODE 'new, 

} 

new = malloc( sizeof ( N O D E ) ) , 
new->offset = offset, /* copy offset into node offset */ 
strcpy( new->qualifier, key), /* copy qualifier into node 7 
if( *t '= NULL) 

( * t ) -> next = new, I* update old tail's pointer field 7 
if( *h == NULL) 

( * h ) = new, /* set head pointer if necessary 7 
*t = new, /* update tail pointer 7 
( * t ) -> next = NULL, I* blank new tail's pointer field 7 

Function 
File 

Freelist 
L ISTC 

Parameters 

Returned 

(input) r 

None 

pointer to head of linked list 



89 

Vanables n pointer to tempory record 

Descnption Procedure to delete linked list from memory 

Note For additional help refer to any data structures 
book on singly linked lists -> simplest' 

7 

void freehst( NODE *h) 

{ 
NODE *n, 

n = h, /* point to head of list 7 
wh i le (n '=NULL) { /* loop until end of list 7 

free(n), /* free current node 7 
n = n->next, /* go to next node 7 

} 
} 

Function Check 
File LIST C 

Parameters 
(input) h 
(input) key 

pointer to head of linked list 
pointer to field containing 

student 
identifier 

Returned offset in bytes of student record in student file 
<student fil> 
if record not found 0 is returned 

Vanables n pointer to tempory record 

Descnption Procedure to determine if student record with 
student identifier <key> is in linked list If 
it is return value of offset field (offset of 
student record in student file <student fil> in 
bytes 

7 

long check( NODE *h, char 'key) 

{ 
NODE *n, 

n = h, /* point to head of list 7 
while( n '= NULL) { T loop until end of list 7 

if (strcmp (n->quahfier, key) == 0 ) 
retum( n->offset), /* qualifier = key then return 7 

n = n->next, /* offset in disk file 7 

} 
retum( OL), /* qualifier not found => return 0 7 

} 

list 

Function Res_addsl 
File LIST C 

Parameters 
(input) n 

(input) h 

pointer to student record to be added 

pointer to head of linked list 

to linked 



(input) t pointer to tail of linked list 

Returned None 

Vanables new pointer to tempory record 
counter tempory loop counter 

Descnption Procedure to add a record (node) to tail of linked 
list 

Note For additional help refer to any data structures 
book on singly linked lists -> simplest' 

void res_addsl( STUDENT_RECORD *n, RESJJODE "h , RESJNODE " t ) 
{ 

RESJNODE 'new, 
register int counter, 

new = malloc( sizeof (RESJNODE)), 

/* 
copy record passed to procedure (STUDENT_RECORD *n) 
into node of type RESjNODE and then add this 
node to linked list 

7 
for( counter = 0, counter <= 29, counter++) 

new->studentjnfo[counter] = n->studentjnfofcounter], 
strcpy( new->quahfier, n->qualifier), 
new->rj_handed = n->rjjianded, 
new->test_no = n->test_no, 

if( *t '= NULL) 
(*t) -> next = new, I* update old tail's pointer field 7 

if( *h == NULL) 
(*h) = new, /* set head pointer if necessary 7 

*t = new, /* update tail pointer 7 
(*t) -> next = N U LL, /* blank new tail's pointer field 7 

} 

Function Resjreelist 
File LIST C 

Parameters 

(input) h pointer to head of linked list 

Returned None 

Vanables n pointer to tempory record 

Descnption Procedure to delete linked list from memory 

Note For additional help refer to any data structures 
book on singly linked lists -> simplest' 

void resjreelist( RES NODE *h ) 
{ 

RESJNODE *n, 

n = h, /* point to head of list 7 
while( n'= NULL) { /* loop until end of list 7 

free(n), I* free current node 7 
n = n->next, I* go to next node 7 

} 



r 

*/ 

ftnclude <graph h> 
ftnclude <stdio h> 
#include <ctype h> 
ftnclude <stnng h> 
#include <malloc h> 
ftnclude "box h" 
ftnclude "mousefun h" 
ftnclude "getkey h" 
ftnclude "t_colors h" 
#include "menu h" 

r Default menu colors 7 
static int cjines = T BLACK 
static int cjitle = TJ3LACK, 
static int cjext = TJ3LACK, 
static int cjprompt = TJ3LACK, 
static int c hitext = T WHITE, 
static int cjiiletter = T WHITE |T BRIGHT, 
static long int c_back = BK.WHITE, 
static long int cjiiback = BKJ3LACK, 

/* Default border lines and shadow control 7 
static int mbjmes = 1, 
static int mbjshadow = 1, 

/* 
Function menuJwxJinesO 

Parameters 
(input) linejype 0,1, or 2 (outline) 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the box outline type Selects single-line or 
double-line border (or none) 

7 

void menujwx_lines( int linejype) 
{ 

mbjmes = linejype, 
} 

r 
Function menuJwx_shadow() 

Parameters 
(input) on_off Shadow control 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the menu box shadow control to on or off 
0 = off, non-zero = on 

7 



void menu box shadow(mton off) 
{ 

mb shadow3on off, 
} 

/* 
Function menuJjack_color() 

Parameters 
(input) back Background color 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the background color for boxes 

7 

void menuj>ack color( long back) 
{ 

cjaack = back, 
} 

/* 
Function menuJine_color() 

Parameters 
(input) lines Border line color 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the box outline color 

7 

void menuJme_color( int lines) 
{ 

cj ines = lines, 
} 

r 
Function menuJitlejwIorO 

Parameters 
(input) title Title text color 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the text color for the title 

7 

void menu trtle_color( int title) 
{ 

cjrtle = title, 
} 

/* 
Function menuJextjwIorO 



Parameters 
(input) text Menu text color 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the menu box text color 

7 

void menuJext_color( int text) 

{ 
cjext = text, 

} 

r 
Function menuj>romptjwlor() 

Parameters 
(input) prompt Menu prompt line color 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the menu box prompt line text color 

7 

void menujjrompt color( int prompt) 

{ 
cjjrompt = prompt, 

} 

/* 
Functwn menuJiilightJetterO 

Parameters 
(input) hiletter Highlighted letter color 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets highlighted character color for menu options 

7 

void menu hilightjetter( int hiletter) 

{ 
cjiiletter = hiletter, 

} 

/* 
Function menujiilightjext() 

Parameters 
(input) hitext Highlighted text color 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets highlighted text color for menu options 



7 

void menu hilightjext( int hitext) 
{ 

cjirtext = hitext, 
} 

r 
Function menuJiilightJjackO 

Parameters 
(input) hiback Highlighted line background 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the background color for the highlighted line 
in the menu box 

7 

void menu hilightj>ack( long hiback) 
{ 

cjiiback = hiback, 
} 

r 
Function menuj)ar() 

Parameters 
(input) row Screen row to locate menu bar 
(input) col Screen column to locate menu bar 
(input) stnng Stnng of menu bar selections 
(output) choice Number of item selected by user 

Returned Buffer used to restore the background 

Vanables len Length of menu stnng 
fore Saves current foreground color 
maxchoice Number of choices 
i Looping index 
j Looping index 
epos 
quitjlag 
savebuf 
fstr 
lastc 
thisc 
bstr 
key 
back 
oldpos 

Current position in the menu 
Signals to exit function 
Buffer containing background 

Foreground color attributes 
Last character checked 
Current character checked 
Background color attributes 
Key code from getkey_or_mouse() 
Saves current background color 
Saves the cursor position 

Descnption Creates a pop-up menu bar 

int far *menu_bar (int row int col, char 'stnng, int 'choice ) 
{ 

int len, 
int fore, 
int maxchoice, 
int i, j , 
int epos, 
int quitjlag = 0, 



int far 'savebuf; 
intfstrf81]; 
char lastc, thisc; 
long int bstr[81]; 
unsigned key; 
long int back; 
struct rccoord oldpos; 

I* Save the current color settings 7 
fore = jjettextcolorO; 
back = jgetbkcolorO; 

/* Save the current cursor position 7 
oldpos = jjettextpositionO; 

/* Calculate the string length only once 7 
len = strlen( string); 

I* Save the menu background 7 
if (mbjshadow) 

savebuf = box_get( row, col, row + 1, col + len + 1 ); 
else 

savebuf = box_get( row, col, row, col + len -1 ); 

/* Put the menu bar on the screen 7 
_settextposition( row, col); 
_outtext( string); 

I* Cast a shadow 7 
if (mbjshadow) 

{ 
_settextcolor( TJ3RAY); 
_setbkcolor( BKBLACK); 
box color(row + 1,col + 2, row+1,col +len +1 ); 
} 

/* Initialize choice if necessary 7 
if ('choice < 1) 

'choice = 1; 

/* Process each key press 7 
while (Iquitjlag) 

{ 

/* Determine the color attributes 7 
j = 0; 
maxchoice = 0; 
lastc = 0; 
for ( i = 0; i < len; i++) 

{ 
thisc = stringfi]; 
if (lastc == " SS thisc == " SS i < len - 1 ) 

{ 

maxchoice++; 
} 

if ( j == 'choice SS i < len - 1 ) 
{ 
fstrfi] = cjiitext; 
bstrfi] = cjiiback; 
} 

else 
{ 
fstrfi] = cjext; 
bstrfi] = cj>ack, 
} 

if (isupper( thisc)) 
{ 
fstrfi] = cjiiletter; 



if (j=='choice) 
cpos = i; 

} 
lastc = thisc; 
} 

r Put the attributes to video 7 
for (i = 0; i < len; i++) 

{ 
_settextcolor( fstrfi]); 
_setbkcolor( bstrfi]); 
box_color( row, col + i, row, col + i); 

/* Put cursor at appropriate position 7 
_settextposition( row, col + epos); 

key = getkeyjjrjnouseO; 

/* Convert to upper case 7 
if (key >= 'a' SS key <= 't) 

key-=32; 

I* Check for alpha key 7 
if (key >= 'A* SS key <= 'Z') 

{ 
for ( i = 0; i < len; i++) 

{ 
if (++cpos >= len) 

{ 
cpos = 0; 
'choice = 0; 
} 

if (isupper( stringfepos])) 
'choice += 1; 

if (stringfepos] == (char)key) 
break; 

} 
} 

/* Check for control keys */ 
switch( key) 

{ 
case KEYJ.EFT: 

if ('choice > 1 ) 
'choice -= 1; 

break; 
case KEY_RIGHT: 

if ('choice < maxchoice) 
'choice += 1; 

break; 
case KEYJHOME: 

'choice = 1; 
break; 

case KEY_END: 
'choice = maxchoice; 
break; 

case KEYJESCAPE: 
case KEYJJP: 

'choice = 0; 
quitjlag = 1; 
break; 

case KEY_ENTER: 
case KEYJ30WN: 

quitjlag = 1; 
break; 

} 
} 



I" Restore onginal conditions 7 
_settextposrtion( oldpos row, oldpos col), 
_settextcolor( fore), 
jsetbkcolor( back), 
return (savebuf), 

I* 
Function menu_dropO 

Parameters 
(input) row Screen row to locate menu bar 
(input) col Screen column to locate menu bar 
(input) strary Stnng array of menu selections 
(output) choice Number of item selected by user 

Returned Buffer used to restore the background 

Vanables n Number of strings in menu 
len Length of menu stnng 

fore Saves current foreground color 
tmpcol Column to start title and prompt 
maxchoice Number of choices 
i Looping index 
quitjlag Signals to exit function 
savebuf Buffer containing background 
key Key code from getkey_orjnouse() 
back Saves current background color 
oldpos Saves the cursor position 

Descnption Creates a popup drop down menu 

7 

int far *menujlrop( int row, int col, char "strary, int 'choice) 

{ 
int n = 0, 
int len = 0, 
int fore, 
int tmpcol, 
int maxchoice, 
int i, 
int quitjlag = 0, 
int far 'savebuf, 
unsigned key, 
long int back, 
struct rccoord oldpos, 

/* Save the current color settings 7 
fore = jjettextcolorO, 
back = jjetbkcolorO, 

r Save the current cursor position 7 
oldpos = jjettextposition(), 

I* Determine the number of stnngs in the menu 7 
while (straryfn] != NULL) 

n++, 

/* Set the maximum choice number 7 
maxchoice = n - 2, 

/* Determine the maximum menu stnng length 7 
f o r ( i = 0, i < n, i++) 

if (strien( straryfi]) > len) 
len = strlen( straryfi]), 

I* Save the menu background 7 



if (mbjshadow) 
savebuf = box_get( row, col, row + n, col + len + 5) , 

else 
savebuf = box_get( row, col, row + n - 1 , col + len + 3 ) , 

I* Create the menu box 7 
_settextcolor( cjines), 
_setbkcolor( c_back), 
box_erase( row, col, row + n - 1 , col + len + 3) , 
box_draw( row, col, row + n - 1 , col + len + 3, mbjmes), 

/* Cast a shadow 7 
if (mbjshadow) 

{ 
_settextcolor( TJ3RAY), 
jsetbkcolor( BKJ3LACK), 
box_color( row + n, col + 2, row + n, col + len + 3) , 
box_color( row + 1 , col + len + 4, row + n, col + len + 5), 
} 

/* Put the title at the top 7 
tmpcol = col + (len - strien( straryfO]) + 4 ) / 2, 
jsettextposition( row, tmpcol), 
_settextcolor( cjitle), 
jsetbkcolor( cjrack), 
_outtext( straryfO]), 

I* Pnnt the choices 7 
_settextcolor( cjext), 
for(i = 1, i<= maxchoice, i++) 

{ 
jsettextposition( row +1, col + 2) , 
_outtext( straryfi]), 
} 

/* Put the prompt at the bottom 7 
tmpcol = col + (len - strlen( straryfn -1 ] ) + 4 ) / 2, 
jsettextposition( row + n - 1 , tmpcol), 
_settextcolor( cjprompt), 
j>uttext( straryfn -1 ]), 

/* Initialize choice 7 
'choice = 1, 

/* Process each key press 7 
while ('quitjlag) 

{ 

I* Determine and set the color attnbutes 7 
for ( i = 1, i <= maxchoice, i++) 

{ 
if ( i == 'choice) 

{ 
_setbkcolor( cjiiback) 
_settextcolor( cjiiletter), 
box_color( row +1, col + 1, row + i, col + 2) , 
jsettextcolor( cjirtext), 
box_color( row +1, col + 3, row + i, col + len + 2) 
} 

else 
{ 
_setbkcolor( cj>ack), 
jsettextcolor( cjiiletter), 
box_color( row +1, col + 1, row +1, col + 2) , 
_settextcolor( cjext), 
box_color( row +1, col + 3, row + i, col + len + 2), 
} 

} 



I* Put cursor at appropnate position 7 
_settextposrtion( row + 'choice, col + 2) , 

key = getkey_or_mouse(), 

/* Convert to upper case 7 
if (key >= 'a' SS key <= "z*) 

key — 32, 

/* Check for alpha key 7 
if (key >= "A" SS key <= '2') 

{ 
for(i = 1, i<= maxchoice, i++) 

{ 
'choice += 1, 
if ('choice > maxchoice) 

'choice = 1, 
if (strary[*choice][0] == (char)key) 

break, 
} 

} 

I* Check for control keys 7 
switch (key) 

{ 
case KEYJJP 

if ('choice > 1 ) 
'choice -= 1, 

break, 
case KEYjDOWN 

if ('choice < maxchoice) 
'choice += 1, 

break, 
case KEY_HOME 

'choice = 1, 
break, 

case KEY_END 
'choice = maxchoice, 
break, 

case KEYJESCAPE 
'choice = 0, 
quitjlag = 1, 
break, 

case KEY_ENTER 
quitjlag = 1, 
break, 

} 
} 

I* Restore onginal conditions 7 
_settextposition( oldpos row, oldpos col), 
_settextcolor( fore), 
jsetbkcolor( back), 
return (savebuf), 

} 

/* -
Function menujnessage() 

Parameters 
(input) row Screen row to locate message box 
(input) col Screen column to locate message box 
(input) strary Stnng array of message text 

Returned Buffer used to restore the background 

Vanables n Number of stnngs in message 
len Length of longest menu stnng 



fore Saves current foreground color 
tmpcol Column to start title and prompt 
i Looping index 
savebuf Buffer containing background 
key Key code from getkey_or_mouse() 
back Saves current background color 
oldpos Saves the cursor position 

Descnption Creates a pop-up message box 

int far *menujnessage( int row, int col, char "strary) 

{ 
int n = 0, 
int len = 0, 
int fore; 
int tmpcol, 
int i, 
int far 'savebuf, 
unsigned key, 
long int back, 
struct rccoord oldpos, 

/* Save the current color settings */ 
fore = jjettextcolorO, 
back = _getbkeolor(), 

I* Save the current cursor position 7 
oldpos = jjettextpositionf), 

I* Detemriine the number of stnngs in the message 7 
while (straryfn] '= NULL) 

n++, 

/* Determine the maximum message stnng length 7 
for ( i = 0, i < n, i++) 

if (strien( straryfi]) > len) 
len = strlen( straryfi]), 

/* Save the message background 7 
if (mbjshadow) 

savebuf = box_get( row, col, row + n, col + len + 5 ) , 
-else 

savebuf = box_get( row, col, row + n - 1 , col + len + 3 ) , 

/* Create the information box 7 
_settextcolor( c j m e s ) , 
_setbkcolor( cjsack), 
boxjsrase( row, col, row + n - 1 , col + len + 3 ) , 
box_draw( row, col, row + n - 1 , col + len + 3, mbjmes) , 

/* Cast a shadow 7 
if (mbjshadow) 

{ 
_settextcolor( TJ3RAY) , 
_setbkcolor( BK_BLACK), 
box_color( row + n, col + 2, row + n, col + len + 3 ) , 
boxjwlor( row + 1, col + len + 4, row + n, col + len + 5 ) , 
} 

/* Put the title at the top 7 
tmpcol = col + (len - strlen( straryfO]) + 4 ) / 2, 
jsettextposition( row, tmpcol), 
jsettextcolor( cjrt le) , 
_setbkcolor( c_back), 
_outtext( straryfO]), 

rPnnt thetext* / 



_settextcolor( cjext); 
for ( i = 1; i < n - 1 ; i++) 

{ 
_settextposition( row + i, col + 2); 

outtext( straryfi]); 
} 

/* Put the prompt at the bottom 7 
tmpcol = col + (len - strlen( straryfn -1 ] ) + 4 ) / 2; 
_settextposition( row + n - 1 , tmpcol); 
_settextcolor( cjprompt); 
_outtext( straryfn -1]); 

/* Restore original conditions 7 
_settextposition( oldpos.row, oldpos.col); 
_settextcolor( fore); 
jsetbkcolor( back); 
return (savebuf); 

} 

/* 
Function: menujsraseO 

Parameters: 
(input) buf Buffer for restoring background 

Returned: (function returns nothing) 

Variables: (none) 

Description: Restores the background behind a bar menu, 
pull-down menu, or message box 

void menu_erase( int far *buf) 
{ 

boxjsut( buf); 
Jfree(buf); 

} 



I* 
Name MN.MENU C 
Type Routines that display the mam 

menu and the choices that are 
available to the user 
Air Traffic Control Screening Program 

Language Microsoft QuickC version 2 

7 

ftnclude <stdio h> 
ftnclude <graph h> 
ftnclude <process h> 
ftnclude "typ inrth" 
ftnclude "fileTi" 
ftnclude "list h" 
ftnclude 'Imanager h" 
ftnclude "menu h" 
#mclude "box h" 
ftnclude "t_colors h" 
ftnclude "dskjnrt h" 
ftnclude "datajplt h" 
#mclude "getkey h" 

char 'error box 1_08Q = 
{ 
" Error Message #1 08", 

" Unable to spawn statistical", 
" analysis program <stjnenu exe> ", 

t 

" Result => the program can not", 
" be loaded and executed ", 

" Action => check that stjnenu exe", 
" is located in the same directory", 

as the other program files", 

"< Press any key >", 
NULL 
}• 

char 'dropjnainjnenuQ = 
{ 
" Main Menu ", 
"Perform Student Tests", 

"Demonstration Tests", 
"Exit Program", 

" Select", 
NULL 

}. 

char 'dropjsub menuQ = 
{ 
" Practice Menu", 
"Test#1", 
"Main Menu", 

NULL 
}. 

char 'drop fulljnenufj = 

f 
" Perform Student Test Menu", 
•Test#1", 
"All Tests", 



NULL 
}. 

/* 
Function Display mam menu 
File MN MENUC 

Parameters 
(input) 

head pointer to head of student index linked 
list of type NODE 

tail pointer to tail of student index linked 
list of type NODE 

rjiead pointer to head of student record linked 
list of type RESJNODE 

rjai l pointer to tail or student record linked 
list of type RESJNODE 

Returned None 

Vanables 
choice User choice from drop down menu 
r Return value from spawn command 
offset Offset of student record in student 

file held on disk 
args arguments passed to the spawn command 

argsfO] is pointer to filename to be 
executed args[1] is NULL pointer to end 
of argument list 

prog filename to be executed by spawn command 

Descnption Displays the mam menu and prompts the user to 
select from one of the choices available 

7 

STUDENT RECORD new student, 

void displayjnain menu( NODE "head, NODE "tail, 
RESJNODE " r j i ead , RESJNODE " r j a i l ) 

{ 
int choice = 0, 
int second_choice = 0, 

intr; 
long offset, 
char *args[2], 
char prog[80] = "stjnenu", 
int 'savejsrrorjwx, 

argsfO] = prog, 
args[1] = NULL, 

newjstudent testj io = -10, 

while (choice '= 3 ) { 
/* 

Display mam menu 
7 
menu_erase( menu_drop( 4,18, dropjnainjnenu, Schoice)), 

swrtch( choice) { 
easel 

/* Perform Student Tests 7 
newjstudent testjio = 0, 

/* Initialize linked list of index to student records on file 7 



/* 

ftnclude <dos h> 
#mclude "mousefun h" 

/* 
Function mousejesetO 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(output) status Status of the mouse 
(output) buttons Number of mouse buttons 

Returned (function returns nothing) 

Vanables ml Local vanable for register ax 
m2 Local vanable for register bx 

Descnption Resets the mouse and venfies its existence 

void mouse reset( int 'status, int 'buttons) 
{ 

int m l , m2, 

_asm 
{ 
xor ax, ax 

int 33h 
mov m l , ax 
mov m2, bx 
} 

'status = m l , 
'buttons = m2, 

/* 
Function mousejshowO 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters (none) 

Returned (function returns nothing) 

Vanables (none) 

Descnption Makes the mouse cursor visible 

void mouse_show( void) 
{ 

_asm 
{ 
mov ax, 1 
int 33h 
} 



} 

/* 
Function mouse hideO 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters (none) 

Returned (function returns nothing) 

Vanables (none) 

Descnption Makes the mouse cursor invisible 

void mouseJiide( void) 
{ 

_asm 
{ 
mov ax, 2 
int 33h 
} 

} 

/* 
Function mousejstatusO 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(output) left_button State of the left button 
(output) nght Jjutton State of the nght button 
(output) horzjws Horizontal position of the mouse 
(output) vertjws Vertical position of the mouse 

Returned (function returns nothing) 

Vanables m2 Local vanable for register bx 
m3 Local vanable for register ex 
m4 Local vanable for register dx 

Descnption Gets the current state of the mouse buttons and 
the mouse cursor position 

void mouse_status( int 'leftjxrtton, int *nght_button, 
int'horzjws int'vertjws) 

{ 
int m2, m3, m4, 

_asm 
{ 
mov ax, 3 
int 33h 
mov m2, bx 
mov m3, ex 
mov m4, dx 
} 

*left_button = m2 S 1, 
*nghtJ>utton = (m2 » 1 ) S 1, 
'horzjws = m3, 
'vertjws = m4, 

} 



/* 

Parameters 
(input) honzontal Honzontal position 
(input) vertical Vertical position 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the mouse cursor to the indicated position 

7 

void mouse_setpos( int honzontal, int vertical) 

{ 
_asm 

{ 
mov ax, 4 
mov ex, honzontal 
mov dx, vertical 
int 33h 
} 

Function mousejsressO 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(input) 
(output) 
(output) 
(output) 
(output) 

button Left or nght button 
status Status of the button 
presses Number of button presses 
horzjws Honzontal position at last press 
vert jws Vertical position at last press 

Returned (function returns nothing) 

Vanables ml Local vanable for register ax 
m2 Local vanable for register bx 
m3 Local vanable for register ex 
m4 Local vanable for register dx 

Descnption Gets button press information 

7 

void mousej>ress( int button, int 'status, int 'presses, 
int 'horz jws, int ' ve r t jws ) 

{ 
int m l , m2, m3, m4, 

asm 
{ 
mov 
mov 

ax, 
bx, 

int 33h 
mov 
mov 
mov 
mov 

ml, 
m2, 
m3, 

b 
button 

,ax 
, bx 
, ex 

m4, dx 



if (button == LBUTTON) 
'status = ml S 1 , 

else 
'status = (m1 » 1 ) S 1 , 

'presses = m2; 
•horzjws = m3, 
•vertjws = m4, 

} 

/* 
Function mousejeleaseO 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(input) button Left or nght button 
(output) status Status of the button 
(output) presses Number of button releases 
(output) horzjws Honzontal position at last release 
(output) vertjws Vertical position at last release 

Returned (function returns nothing) 

Vanables ml Local vanable for register ax 
m2 Local vanable for register bx 
m3 Local vanable for register ex 
m4 Local vanable for register dx 

Descnption Gets button release information 

7 

void mousejelease (mt button, int 'status, int 'releases, 
int 'horzjws, int 'vertjws) 

{ 
int ml, m2, m3, m4, 

asm 
{ 
mov ax, 
mov bx, 
mt 33h 
mov ml 
mov m2 
mov m3 

6 
button 

, ax 
, bx 
, ex 

mov m4, dx 
} 

if (button =• 
'status = 

else 
'status = 

'releases = 
•horzjws = 
'vertjws = 

} 

= LBUTTON) 
ml S 1 , 

(ml » 

m2, 
:m3, 
m4, 

1 ) S 1 

/* 
Function mouse_sethorz() 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(input) horzjnin Minimum honzontal cursor position 



(input) horzjnax Maximum honzontal cursor position 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets minimum and maximum honzontal mouse 
cursor positions 

void mouse sethorz( mt horzjnin, int horzjnax) 
{ 

_asm 
{ 
mov ax, 7 
mov ex, horzjnin 
mov dx, horzjnax 
int 33h 
} 

} 

/* 
Function mousejsetvertO 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(input) vertjnin Minimum vertical cursor position 
(input) vertjnax Maximum vertical cursor position 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets minimum and maximum vertical mouse cursor 
positions 

void mouse_setvert( int vertjnin, int vertjnax) 
{ 

_asm 
{ 
mov ax, 8 
mov ex, vertjnin 
mov dx, vertjnax 
mt 33h 
} 

} 

r 
Function mousejsetgcurs() 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(input) cursor Structure defining a graphics cursor 

Returned (function returns nothing) 

Vanables cursorjseg Segment of the cursor structure 
cursorjsff Offset of the cursor structure 
hotx Hot spot x value 
hoty Hot spot y value 

Descnption Creates a graphics mode mouse cursor 



7 

void mouse setgcurs( struct graphics cursor far 'cursor) 
{ 

unsigned cursorjseg = FPJ3EG( cursor), 
unsigned cursor_off = FP_OFF( cursor), 
mt hotx = cursor->hot_spotj<, 
mt hoty = cursor->hot_spotj/, 

_asm 
{ 
mov ax, 9 
mov bx, hotx 
mov ex, hoty 
mov es, cursorjseg 
mov dx, cursor_off 
mt 33h 
} 

} 

/* 
Function mousejsettcurs() 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(input) cursorjselect Hardware or software cursor 
(input) screenjnask Screen mask (or start scan line) 
(input) cursorjnask Cursor mask (or end scan line) 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the text mode hardware or software cursor 

void mouse_settcurs( mt cursorjselect, int screenjnask, mt cursorjnask) 
{ 

_asm 
{ 
mov ax, 10 
mov bx, cursorjselect 
mov ex, screenjnask 
mov dx, cursorjnask 
mt 33h 
} 

} 

/* 
Function mousejnotion() 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(output) horzjmckeys Horizontal mickeys 
(output) vertjnickeys Vertical mickeys 

Returned (function returns nothing) 

Vanables m3 Local vanable for register ex 
m4 Local vanable for register dx 

Descnption Gets the accumulated mouse motion counts 
(mickeys) since the last call to this function 
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void mouse motion( int *horz mickeys, int 'vertjnickeys) 
{ 

int m3, m4; 

asm 
" { 

mov ax, 11 
int 33h 
mov m3, ex 
mov m4, dx 
} 

•horzjnickeys = m3; 
•vertjnickeys = m4; 

} 

r 
Function: mousejsetratiosO 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(output) horizontal Horizontal mickey/pixel ratio 
(output) vertical Vertical mickey/pixel ratio 

Returned: (function returns nothing) 

Variables: (none) 

Description: Sets the mickey/pixel ratios for mouse motion 

7 

void mouse_setratios( int horizontal, int vertical) 
{ 

_asm 
{ 
mov ax, 15 
mov ex, horizontal 
mov dx, vertical 
int 33h 
} 

} 

/* 
Function: mousejwndoffO 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(input) x1 
(input) y1 
(input) x2 
(input) y2 

Returned: (fu 

Upper left comer of region 
Upper left comer of region 
Lower right comer of region 
Lower right comer of region 

nction returns nothing) 

Variables: (none) 

Description: Sets a region for conditionally tuming off the 
mouse cursor 

7 



void mouse condoff( mt x1, mt y1, mt x2, int y2) 
{ 

asm 
" { 

mov ax, 16 
mov ex, x1 
mov dx, y1 
mov si, x2 
mov di, y2 
int 33h 
} 

} 

r 
Function mousejsetdoubleO 
Toolbox- MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(input) mickeysjwrjsecond Double speed threshold 

Returned (function returns nothing) 

Vanables (none) 

Descnption Sets the mouse double speed threshold 

void mouse_setdouble( mt mickeysjwr second) 
{ 

asm 
" { 

mov ax, 19 
mov dx, mickeysjserjsecond 
int 33h 
} 

} 

/* 
Function mousejstorageO 
Toolbox MOUSEFUN C 
Demonstrated MOUSTEST C 

Parameters 
(output) bufferjsize Bytes for saving mouse state 

Returned (function returns nothing) 

Vanables m2 Local vanable for register bx 

Descnption Detemnines the number of bytes required for 
saving the current state of the mouse 

void mouse storage( mt 'bufferjsize) 
{ 

int m2, 

_asm 
{ 
mov ax, 21 
int 33h 
mov m2, bx 
} 



•buffer size = m2; 
} 

/* 
Function: mouse save() 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(in/out) buffer Buffer for saving mouse state 

Returned: (function returns nothing) 

Variables: bufferjseg Segment of the buffer 
buffer_off Offset of the buffer 

Description: Saves the current state of the mouse 

void mouse_save( char far "buffer) 
{ 

unsigned bufferjseg = FP_SEG( buffer); 
unsigned buffer_off = FPjDFF( buffer); 

_asm 
{ 
mov ax, 22 
mov es, bufferjseg 
mov dx, buffer off 
int 33h 
} 

} 

/* 
Function: mousejestoreO 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(input) buffer Buffer for restoring the mouse state 

Returned: (function returns nothing) 

Variables: bufferjseg Segment of the buffer 
bufferjjff Offset of the buffer 

Description: Restores the current state of the mouse 

void mouse restore( char far 'buffer) 
{ 

unsigned bufferjseg = FPJ3EG( buffer); 
unsigned bufferjjff = FP_OFF( buffer); 

_asm 
{ 
mov ax, 23 
mov es, bufferjseg 
mov dx, bufferjjff 
int 33h 
} 

} 

r 



Function: mouse setsensitivityO 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(input) horz Relative horizontal sensitivity 
(input) vert Relative vertical sensitivity 
(input) threshold Relative double speed threshold 

Returned: (function returns nothing) 

Variables: (none) 

Description: Sets the mouse sensitivity and double speed 
threshold 

void mouse_setsensitivity( int horz, int vert, int threshold) 
{ 

_asm 
{ 
mov ax, 26 
mov bx, horz 
mov ex, vert 
mov dx, threshold 
int 33h 
} 

} 

/* 
Function: mousejjetsensitivityO 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(output) horz Relative horizontal sensitivity 
(output) vert Relative vertical sensitivity 
(output) threshold Relative double speed threshold 

Returned: (function returns nothing) 

Variables: (none) 

Description: Gets the mouse sensitivity and double speed 
threshold 

void mousejjetsensitivity( int 'horz, int *vert, int 'threshold) 
{ 

int m2, m3, m4; 

jssm 
{ 
mov ax, 27 
int 33h 
mov m2, bx 
mov m3, ex 
mov m4, dx 
} 

'horz = m2; 
'vert = m3; 
'threshold = m4; 

} 



/* 
Function: mouse setmaxrateO 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(input) interruptsjjerjsecond Interrupt rate 

Returned: (function returns nothing) 

Variables: rate Number for range of interrupt rates 

Description: Sets the interrupt rate (InPort mouse only) 

void mousejsetmaxrate( int interruptsjjerjsecond) 
{ 

int rate; 

if (interruptsjjerjsecond <= 0 ) 
rate = 0; 

else if (interruptsjjerjsecond > 0 SS interruptsjjerjsecond <= 30) 
rate = 1; 

else if (interruptsjjerjsecond > 30 SS interruptsjjerjsecond <= 50) 
rate = 2; 

else if (interruptsjjerjsecond > 50 SS interruptsjwrjsecond <= 100) 
rate = 3; 

else 
rate = 4; 

jasm 
{ 
mov ax, 28 
mov bx, rate 
int 33h 
} 

} 

r 
Function: mousejsetpageO 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(input) crtjjage Video page for mouse cursor 

Returned: (function returns nothing) 

Variables: (none) 

Description: Sets the video page where mouse cursor appears 

void mousejsetpage( int crtjjage) 
{ 

_asm 
{ 
mov ax, 29 
mov bx, crtjjage 
int 33h 
} 

} 

/* 
Function: mousejjetpagef) 



Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(output) crtjjage Video page for mouse cursor 

Returned: (function returns nothing) 

Variables: m2 Local variable for register bx 

Description: Gets the video page in which mouse cursor appears 

void mousejjetpage( int 'cr t j jage) 

{ 
int m2; 

_asm 

{ 
mov ax, 30 
int 33h 
mov m2, bx 
} 

'crtjjage = m2; 
} 

/* 
Function: mouse setlang() 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(input) language Language number 

Returned: (function returns nothing) 

Variables: (none) 

Description: Sets the language for mouse driver messages 

void mouse_setlang( int language) 

{ 
_asm 

{ 
mov ax, 34 
mov bx, language 
int 33h 
} 

} 

/* 
Function: mouse_getlang() 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(output) language Language number 

Returned: (function returns nothing) 

Variables: (none) 

Description: Gets the language for mouse driver messages 



7 

void mousejjetlang( int 'language) 
{ 

intm2; 

_asm 
{ 
mov ax, 35 
int 33h 
mov m2, bx 
} 

•language = m2; 
} 

r 
Function: mousejjetversion() 
Toolbox: MOUSEFUN.C 
Demonstrated: MOUSTEST.C 

Parameters: 
(output) version Mouse driver version number 
(output) mousejype Type of mouse 
(output) irqjium Interrupt request type 

Returned: (function returns nothing) 

Variables: m2 Local variable for register bx 
m3 Local variable for register ex 
maj Major part of version number 
min Minor part of version number 

Description: Gets the mouse driver version number, mouse type, 
and interrupt request type 

void mousejjetversion( double 'version, int 'mousejype, int "irqjium) 
{ 

int m2, m3; 
int maj, min; 

_asm 
{ 
mov ax, 36 
int 33h 
mov m2, bx 
mov m3, ex 
} 

maj = (m2 » 1 2 ) * 10 + ((m2 » 8 ) S Oxf); 
min = ( ( m 2 » 4 ) S 0 x f ) * 1 0 + (m2S0xf); 
•version = maj + min /100.0; 
•mousejype = m3 » 8; 
•irqjium = m3 S Oxff; 

} 



/* 
Name ROTATE C 
Type Test to collect data for thesis for Ron Archer 
Language Microsoft QuickC version 2 

Program List ROTATE C 
BOXC 
CLOCKC 
DATA PLTC 
DSKJNIT C 
EDITC 
FILEC 
GETKEY C 
LISTC 
MENUC 
MOUSEFUN C 
MN_MENU C 
T MANAGER C 
TEST 1 C 
T1 OBJECT C 
SOUND C 
ST_MENU C 
STATS C 
VIDEO C 

Vanables head global pointer to head of linked list 
of student record indexes 

tail global pointer to tail of linked list 
of student record indexes 

rjiead global pointer to head of linked list 
of student data records 

r ja i l global pointer to head of linked list 
of student data records 

Usage (no command line parameters) 

Descnption Computer based test that measures an individual's 
abliltiies in very specific areas 

Last Revision 10 March 1996 Animesh Banenee 

ftnclude <stdio h> 
ftnclude <graph h> 
ftnclude <dos h> 
ftnclude "typjnit h" 
ftnclude "getkey h" 
ftnclude "menu h" 
ftnclude "box h" 
ftnclude "tjwlors h" 
ftnclude "list h" 
ftnclude "mn menu h" 

char *schooljnfo[] = 
{ 

Mental Rotation Test", 

Ver 1 00", 

" Embry-Riddle Aeronautical University" 

"< Press any key >", 
NULL 
}. 

char *myjnfo[] = 



! . 

" Mental Rotation Test", 
II M 

Version 1.00", 

by", 

Ronald D. Archer", 

" Embry-Riddle Aeronautical University", 
Daytona Beach, FL 32114", 

" ' Tel: (904) 322-5501 ", 
" banerjea@erau.db.erau.edu (internet)", 

"< Press any key >", 
NULL 
}; 

int qjnjecord = 1; 

NODE *head, *tail; 
RESJNODE *r_head, 'rjail; 

void main( void) 
{ 

int 'savejnfojwx; 

/* Initialize text foreground and background color 7 
settextcolor(T BLUE); 

_setbkcolor( BKJ3LACK); 

/* Initialize video 7 
_setvideomode( _TEXTC80); 
_clearscreen( J3CLEARSCREEN); 

/* Display school information message 7 
savejnfojwx = menu_message( 7,18, schoolJnfo); 

I* get key or mouse press 7 
getkeyjjrjnouseO; 

/* Erase school information message 7 
menu_erase( savejnfojwx); 

/* Display my information message 7 
savejnfojwx = menujnessage( 4,18, myjnfo); 

/* get key or mouse press 7 
getkeyjjrjnouseO; 

/* Erase school information message 7 
menu_erase( savejnfojwx); 

/* Set foreground and background colors for program 7 
_setbkcolor( BKCYAN); 
jsettextcolor( TJ3LACK); 

/* Fill the background 7 

box_charfill( 1,1,25, 80,178); 

/* activate main menu 7 
display_main_menu( Shead, Stail, Sr_head, Srjail);} 

mailto:banerjea@erau.db.erau.edu


/* 

ftnclude <como h> 
#include <time h> 
ftnclude "sound h" 

static unsigned control, 
static int control Jlag = 1, 

/* 
Function speakerJoggleO 
Toolbox SOUND C 
Demonstrated SOUNTEST C 

Parameters (none) 

Returned (function returns nothing) 

Vanables (none) 

Descnption Pulses the speaker on or off with each call 

void speakerJoggle( void) 
{ 

if (control flag) 
{ 
control = inp( 0x61), 
control Jlag = 0, 
} 

outp( 0x61, (inp( 0x61 ) S OxFE ) A 2) , 
} 

/* 
Function soundf) 
Toolbox SOUND C 
Demonstrated SOUNTEST C 

Parameters 
(input) frequency Frequency of generated tone 

Returned (function returns nothing) 

Vanables divisor Timer value for given frequency 

Descnption Sets a tone at a given frequency 

void sound( int frequency) 
{ 

unsigned divisor, 

divisor = (unsigned)( 1193180L / frequency), 
if (control Jlag) 

{ 
outp( 0X43,0xB6), 
outp( 0x42, divisor % 256), 
outp( 0x42, divisor / 256), 
control = inp( 0x61), 



control flag = 0; 
} 

else 
{ 
divisor = (unsigned)( 1193180L / frequency); 
outp( 0x42, divisor % 256); 
outp( 0x42, divisor / 256); 
} 

outp( 0x61, control 13); 
} 

/* 
Function: silenceO 
Toolbox: SOUND.C 
Demonstrated: SOUNTEST.C 

Parameters: (none) 

Returned: (function returns nothing) 

Variables: (none) 

Description: Turns off the tone generator 

void silence( void) 
{ 

outp( 0X61, control); 
control flag = 1; 

} 

/* 
Function: waitJicksO 
Toolbox: SOUND.C 
Demonstrated: SOUNTEST.C 

Parameters: 
(input) ticks Number of clock ticks 

Returned: (function returns nothing) 

Variables: now Time as returned by soundf) 

Description: Delays for a given number of clock ticks 

void waitjicks( unsigned ticks) 
{ 

clockj now; 

do 
{ 
now = clockO; 
while (clock()== n o w ) 

{;} 
} 

while( -ticks); 
} 

/* 
Function: warb!e() 
Toolbox: SOUND.C 
Demonstrated: SOUNTEST.C 



Parameters 
(input) count Number of warble cycles 

Returned (function returns nothing) 

Vanables (none) 

Descnption Creates a three-tone warble 

7 

void warble( int count) 
{ 

do 
{ 
sound( 500), 
wartjicks( 1 ), 
sound( 2000), 
wartjicks( 1), 
sound(1000), 
wartjicks( 1 ), 
sound( 750), 
wartjicks( 1 ), 
} 

while (-count), 

silenceO. 
} 

/* 
Function weirdO 
Toolbox SOUND C 
Demonstrated SOUNTEST C 

Parameters count Number of sound generation cycles 

Returned (function returns nothing) 

Vanables i Looping index 
j Tone frequency 

Descnption Creates a modulated sound 

void weird( int count) 
{ 

mt i, j , 

sound( 50), 
do 

for(l = 50, K1200, i+=100) 
for ( j = i, j •« i + 1200. j += 5) 

sound(j), 
while (-count), 

silenceO, 
} 

/* 
Function siren() 
Toolbox SOUND C 
Demonstrated SOUNTEST C 

Parameters count Number of sound generation cycles 

Returned (function returns nothing) 



Variables: i Looping index 

Description: Creates a sound whose frequency rises and falls 

void siren( int count) 
{ 

int i; 

sound( 50); 
do 

{ 
for ( i = 50; i < 2000; i++) 

sound( i ) ; 
for ( i = 2000; i > 50; i - ) 

sound( i ) ; 
} 

while (-count); 

silenceO; 
} 

/* 
Function: white noiseO 
Toolbox: SOUND.C 
Demonstrated: SOUNTEST.C 

Parameters: ticks Number of clock ticks 

Returned: (function returns nothing) 

Variables: i Looping index 
mdm Pseudorandom unsigned integer 
now Time as returned by clockO 

Description: Generates white noise, a widejanging multifrequency 
sound 

void whitejioise( int ticks) 
{ 

unsigned i, mdm; 
clockj now; 

do 
{ 
now = clockO; 
while (clockO = = n o w ) 

{ 
speaker toggle(); 
mdm = mdm'317+ 21317; 
for ( i = mdm S OxFF; i; i - ) 

{;} 
} 

} 
while( -ticks); 

silence(); 
} 

r 
Function: noteO 
Toolbox: SOUND.C 
Demonstrated: SOUNTEST.C 



124 

Parameters: frequency Frequency of the tone 
ticks Number of clock ticks 

Returned: (function returns nothing) 

Variables: (none) 

Description: Creates a tone given its frequency and duration 

7 

void note( int frequency, int ticks) 
{ 

sound( frequency); 
waitjicks( ticks); 
silence(); 

} 



/* 

7 

ftnclude <stdio.h> 
ftnclude <math.h> 
#include <float.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <time.h> 
ftnclude "typjnit.h" 
ftnclude "menu.h" 
ftnclude "getkey.h" 
ftnclude "box.h" 
#include "tjwlors.h" 
#inciude "sound.h" 

I* Error message data 7 
char 'errorjwx 3 010 = 

{ 
" Error Message #3.01", 

" One of the statistical functions", 
" was passed a value for testjio", 
" which is out of range", 

"< Press any key >", 
NULL 
}; 

char 'errorJwx_3_02[] = 
{ 
" Error Message #3.02", 

" There are no student records in", 
" memory to analyze.", 

" RESULT => No statistical analysis", 
" of student results can be done.", 

'• < Press any key >", 
NULL 
}; 

/* 
this function calculates the mean time 
for correct answers for test number 
determined by testjio 

7 

double caljnean time correct( int test no, RESJJODE *h) 

{ 
double sumjime = 0.0; 
int numjstudents; 
int 'savejsrrorjwx; 

RESJNODE *n; 

/* 
check to see if testjio in range 

7 
if (testjio < 0 || testjio > 19) { 

/* 



set error box color to red 
set error text color to white 

7 
menu_back_color( BK RED), 
menu~text_color( TJ/VHITE | TJ3RIGHT), 

/* Display error Jwx_3J31 7 
savejsrrorjwx = menu_message( 10,8, errorJwx_3_01) 

getkeyjjrjnouseO, 

/* Erase errorJwx_3JD1 7 
menu_erase( savejsrrorjwx), 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_backjwlor( BK.WHITE), 
menuJext_color( T_BLACK), 

retum( (double) 0 0 ) , /* error return 0 to caller 7 
} 

n = h, r set pointer to head of list 7 
while (n »= NULL) { /* while not end of list 7 

/* 
increase total time by avg time correct 
for this student for this test number 

7 
sum Jime = sum Jime + n->studentjnfo[testjio] avgJime^correct, 

/* 
increase number of students 
results taken from 

7 
++num_students, 

n = n->next, 

/* 
return the mean time for correct answer times 
for test testjio 

7 
if (num students == 0 ) 

r 
check for divide by zero error 

7 
retum( (double) 0 ) , 

else 
return (sumjime / (double) num students), 

} 

/* 
this function calculates the mean time 
for incorrect answers for test number 
determined by testjio 

7 

double cal_meanJimejncorrect( int testjio RESjNODE *h) 
{ 

double sumjime, 
int numjstudents, 
int 'savejsrrorjwx, 

RESjNODE *n, 



Descnption- This function calculates the statistical 
deviation for correct answers for test number 
determined by testjio 

double cal_stat_deviationj»rrect( int testjio, RESjNODE *h ) 
{ 

double sumjjifference, 
double difference, 
double mean_time_correct, 
int 'savejsrrorjwx, 

RESJNODE *n, 

/* 
check to see if testjio in range 

7 
if (testjio < 01| testjio > 19) { 

/* 
set en'or box color to red 
set error text color to white 

7 
menu_back_color(BK RED), 
menuJext_color( TJ/VHITE | TJ3RIGHT), 

/* Display error_box_3_01 7 
savejsrrorjwx = menu_message( 10,8, errorJwx_3_01 ), 

getchO, 

/* Erase errorJwx_3_01 7 
menujsrase( savejsrrorjwx), 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BKWHITE), 
menuJext_color( TJ5LACK), 

retum( (double) 0) , /* error return 0 to caller 7 
} 

/* 
get the mean response time 
for correct answers 

7 
meanjimejwrrect = cal_meanJime_correct( test_no, h), 

n = h, r set pointer to head of list 7 
while (n '= NULL) { /* while not end of list 7 

/* 
calculate difference from mean 

7 
difference = meanJime_correct -

n->studentjnfo[test_no]avgJime_correct, 

r 
square difference 

7 
difference = difference' difference, 

/* 
update sum of difference 

7 



sumjJifference = sumjdifference + difference, 

n = n->next, 
} 

/* 
return the statistical deviation for correct answer times 
for test test no 

7 
return (sqrt( (double) sumjJifference)), 

} 

/* 
this function calculates the statistical 
deviation for incorrect answers for test number 
determined by testjio 

7 

double caljstat_deviationjncorrect( int testjio, RESjNODE *h) 
{ 

double sumjJifference, 
double difference, 
double meanjimejwrrect, 
int *savejsrrorJwx; 

RESJMODE *n, 

/* 
check to see if test no in range 

7 
if(testjio<0||test no>19){ 

/* 
set error box color to red 
set error text color to white 

7 
menu_back_cok>r( BK_RED), 
menuJext_color( TJ/VHITE | T_BRIGHT), 

/* Display errorJwx_3J)1 7 
savejsrrorjwx = menu_message( 10, 8, error_boxJ3_01 ), 

getchO; 

/* Erase error_box_3_01 7 
menujsrase( savejsrrorjwx), 

r 
set box color back to cyan 
set text color back to black 

7 
menu_backjwlor( BKWHITE), 
menuJext_color( TJ3LACK), 

retum( (double) 0 ) , /* error return 0 to caller */ 
} 

/* 
get the mean response time 
for correct answers 

7 
meanjimejwrrect = cal_meanJimejncorrect( testjio, h), 

n = h, r set pointer to head of list */ 
while (n '= NULL) { /* while not end of list 7 

/* 
calculate difference from mean 

7 
difference = mean time correct-



n->studentjnfo[test_no]avgjimejncorrect, 

I* 
square difference 

7 
difference = difference * difference, 

/• 
update sum of difference 

7 
sum_difference = sum_difference + difference, 

n = n->next, 
} 

r 
return the statistical deviation for correct answer times 
for test testjio 

7 
return (sqrt( (double) sum_difference)), 

} 

/* 
Function StatsJest J 0, 
File STATS C 

Parameters None 

Returned None 

Vanables None 

Descnption Calculates statistics for test #1 given results 
from the test 

void statsjestj (TEMP *st1, STUDENT_RECORD 'newjstudent, int 'correct, 
int test j ium) 

{ 

mt n, 
mt totjiumjwrrect = 0, 
int totjiumjneorrect = 0, 
double totjjmejncorrect = 0 0, 
double tot Jimejwrrect = 0 0, 
char Ikwpjimit, utoopjimit, 
mt sumjwrrect = 0, 
int sumjncorrect = 0, 
double sumjimejwrrect = 0 0, 
double sumjimejncorrect = 0 0, 

/* check tnal number to set corresponding loop counters 7 
if (testjium == 0 ) 
{ 

Ikwpjimit = 0, 
utoopjimit = 32, 

} 
else 
{ 

Ikwpjimit = 32, 
uloopjimit = 64, 

/* begin processing of data 7 

for (n = Ikwpjimit, n < uloopjimit, n++) 
{ 



if (stlfn] answer == correctfn]) { 

++sum_correct, 
sum Jimejwrrect = sumjime correct + 

(st1 fn] reaction Jime / CLK_TCK), 
stlfn] nght wrong = 1, 

} 

else{ 

++sumjncorrect, 
sumjimejncorrect = sumjimejncorrect + 

(st1 [n] reaction Jime / CLKJTCK), 
stlfn] nght_wrong = 0, 

} 

} 
I* get number of questions 7 

newjstudent->studentjnfo[testjium] total_no_questions = 64, 

/* check for divide by zero 7 
if (sum jwrrect •= 0 ) 

/* calculate average time to answer questions correctly for tnal 7 
new_student->studentjnfo[testjium] avgjimejwrrect = 

sumjimejwrrect / (double) sum_correct, 

else 

I* calculate average time to answer questions for tnal correctly 7 
new_student->studentjnfo[test_num] avgJimejwrrect = 00, 

/* check for divide by zero 7 
if (sumjncorrect 1=0) 

I* calculate average time to answer questions for tnal incorrectly 7 
newj5tudent->studentjnfo[test_num] avgjimejncorrect = 

sumjimejncorrect / (double) sumjncorrect, 

else 

/* calculate average time to answer questions incorrectly for the tnal*/ 
newjstudent->studentjnfo[test_num] avgjimejncorrect = 00, 

/" get number of questions answered correctly for tnal 
NOTE Score is (number correct - number incorrect) 7 

newjstudent->studentjnfo[testjium] no_questions_correct = 
sumjwrrect - sumjncorrect, 

/* Calculate the overall average incorrect and correct times for all 64 questions 7 
for( n = 0, n < 64, n++) 
{ 

if(stlfn] nghtjATong == 1 ) 
{ 

tot Jimejwrrect += st1 [n] reaction Jime / CLKJTCK, 
tot_num_correct++, 

} 
else 
{ 

totjimejncorrect += st1 [n] reaction Jime / CLKJTCK, 
tot_numjncon-ect++, 

} 
} 

if (totjiumjwrrect == 0 ) 
new_student->studentjnfo[1] ovrljavgjime_corr = 0 0, 

else 
newjstudent->studentjnfo[1 ] ovri_avgJimejwrr = 



tot Jimejwrrect / (double) totjiumjwiTect, 

if (totjiumjncorrect == 0 ) 
newjstudent->studentjnfo[1] ovn_avgjimejncorr = 0 0, 

else 
newjstudent->studentjnfof1] ovrl_avgJimejncorr = 

totjimejncorrect / (double) totjiumjncorrect, 

for( n = 0, n < 64, n++) 
{newjstudent->RESPONSE[n] reaction Jime = stlfn] reactionJime/CLKJTCK, 

new_student->RESPONSE[n] answer = stlfn] answer, 
new_student->RESPONSE[n] nghtjvrong = stlfn] nghtjvrong, 

} 

r 
update student record to indicate that student has 
accomplished test #1 

7 
new_student->testjio = testjium 

} 

/* 
Function Stats JestJ20, 
File STATS C 

Parameters None 

Returned None 

Vanables None 

Descnption Calculates statistics for test #2 given results 
from the test 

void stats_test_2( TEMP *st1, STUDENTJRECORD 'newjstudent, int 'correct, 
int testjium) 

{ 
int n, 
int totjium jwrrect = 0, 
int totjiumjncorrect = 0, 
double totjimejncorrect = 0 0, 
double tot Jime jwrrect = 0 0, 
char uloopjimit, Ikwpjimit, 
int sumjwrrect = 0, 
int sumjncorrect = 0, 
double sum Jimejwrrect = 0 0, 
double sumjimejncorrect = 0 0, 

/* check tnal number to set corresponding loop counters 7 
if (testjium == 0 ) 
{ 

Ikwpjimit = 0, 
uloop limit = 33, 

} 
else 
{ 

lloopjimit = 33 
uloopjimit = 65, 

r begin processing of data 7 

for (n = lloopjimit, n < uloopjimit, n++) 
{ 

if (st1 fn] answer == correctfn]) { 



++sum_correct, 
sumjimejwrrect = sum time correct + 

(stlfn] reaction Jime / CLKJTCK), 
st1 [n] nghtjvrong = 1, 

} 

else{ 

++sumjncorrect, 
sumjime incorrect = sumjimejncorrect + 

(st1 [n] reactionJime / CLKJTCK), 
stlfn] nghtjvrong = 0, 

} 

J 
/* 

* get number of questions 
* +2 here used to allow for space taken up by test #1 
7 

new_student->studentjnfo[test_num + 2] total_no_questions = 65, 

/* check for divide by zero 7 
if (sum jwrrect '= 0 ) 

/* calculate average time to answer questions correctly for tnal 7 
newjstudent->studentjnfo[testjium + 2] avgJime_correct = 

sumjimejwrrect / (double) sum jwrrect, 

else 

/* calculate average time to answer questions for tnal correctly 7 
new_student->studentjnfo[testjium + 2] avgjimejwrrect = 0 0 

/* check for divide by zero 7 
if (sumjncorrect '= 0 ) 

/* calculate average time to answer questions for tnal incorrectly 7 
new_student->studentjnfo[testjium + 2] avgjimejncorrect = 

sumjimejncorrect / (double) sumjncorrect, 

else 

/* calculate average time to answer questions incorrectly for the tnal*/ 
new_student->studentjnfo[testjium + 2] avgJimejncorrect = 0 0, 

/* get number of questions answered correctly for tnal 
7 

new_student->studentjnfo[test_num + 2] no_questionsjwrrect = sum jwrrect, 

/* Calculate the overall average incorrect and con'ect times for all questions 7 
for( n = 0, n < 65, n++) 
{ 

if( stlfn] nghtjvrong == 1 ) 
{ 

tot Jime jwrrect += stlfn] reaction Jime / CLKJTCK 
tot_num_correct++, 

} 
else 
{ 

totjimejncorrect += st1 [n] reactionjime / CLKJTCK, 
totjiumjncorrect++, 

} 
} 

if ( tot j iumjwrrect == 0 ) 
new_student->studentjnfo[2] ovri_avgJimej»rr = 00 

else 
new_student->studentjnfo[2] ovrl_avgJimejwrr = 



totJime_correct / (double) totjiumjwrrect; 

if (totjiumjncorrect == 0 ) 
newjstudent->studentjnfo[2].ovrl_avgjimejncorr = 0.0; 

else 
newjstudent->student_info[2].ovrl_avg_timeJncorr = 

totjimejncorrect / (double) totjiumjncorrect; 

for( n = 0; n < 65; n++) I* 23 is offset for # problems in test 1 7 
{ 

newjstudent->RESPONSE[n+23].reactionJime = st1 [n].reactionJime/CLK_TCK; 
new_student->RESPONSE[n+23].answer = stlfn] .answer; 
new_student->RESPONSE[n+23].right wrong = st1 [n].right_wrong; 

} 

r 
update student record to indicate that student has 
accomplished test #2 

7 
new_student->test no = testjium; 

} 

/* 
Function: Get mtc data(); 
File: STATS.C ~ 

Parameters: 
(input) value array of tyoe float holding values for 

mean time for correct answer for each 
student 

Returned: None 

Variables: n Pointer to node of type RESjNODE 

Description: Get mean time for correct answer data and 
place it into array value 

void Getjntc_data( float 'value, RESjNODE *h) 
{ 

int counter; 
int *save_errorJwx; 
RESJMODE *n; n = h; 

r 
check to see if any student records 
in linked list 

7 
i f (n==NULL){ 

/* 
set error box color to red 
set error text color to white 

7 
menu_back_color( BK_RED); 
menuJext_color( TJ/VHITE | TJ3RIGHT); 

/* Display error_boxJ3_02 7 
save_errorJwx = menu_message( 13,19, errorJwx_3J)2); 

/* Make error sound 7 
warble( 5) ; 

getkeyjjrjnouseO; 

/* Erase error box 3 02 7 
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menu_erase( savejsrrorjwx), 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_backjwlor( BKJ/VHITE), 
menu text color( TJ3LACK), 
} 

elsef 
for (counter = 0, counter <= n->test_no, counter++) { 

•value = (float) n->studentjnfo[counter] avg_timejwrrect, 

/* advance pointer to next array location 7 
++value, 

} 
} 

} 

r 
Function Stats JestJ3(), 
File STATS C 

Parameters None 

Returned None 

Vanables None 

Descnption Calculates statistics for test #3 given results 
from the test 

void stats JestJ3( TEMP *st1, STUDENT_RECORD 'newjstudent, char 'correctQ, 
int problems, int tnal j i u m ) 

{ 
int n, 
mt present, 
int sumjwrrect = 0, 
int sumjncorrect = 0, 
double sumjimejwrrect = 0 0, 
double sumjimejncorrect = 0 0, 

for (n = 0, n < (problems * 3), n++) { 
/* get digit and convert to integer 7 
present = atoi( correctfn]) + 48, 

I* did student answer correctly 7 
if (st1 [n] answer == present) { 

/* student answered correctly 7 
++sumjwrrect, 
sumjimejwrrect = sumjimejwrrect + 

(st1 [n] reaction Jime / 
CLKJTCK), 

} 

elsef 

I* student answered incorrectly 7 
++sumjncorrect, 
sumjimejncorrect = sumjimejncorrect + 

st1 fn] reaction Jime / CLKJTCK), 
} 

I* move pointer to next result 7 
/* ++correct, 7 



} 
/* get number of questions 7 

new_student->studentjnfo[tnal_num +16] totaljiojauestions = problems * 3, 

I* check for divide by zero 7 
if (sum_correct '= 0 ) 

/* calculate average time to answer questions correctly 7 
newjstudent->studentjnfoftnal_num + 16] avgjimejwrrect = 

sumJime_correct / (double) sumjwrrect, 
else 

/* calculate average time to answer questions correctly 7 
new_student->studentjnfo[tnal_num + 16] avg Jimejwrrect = 0 0, 

I" check for divide by zero 7 
if (sumjncorrect l= 0 ) 

I" calculate average time to answer questions incorrectly 7 
new_student->studentjnfo[tnaljium +16] avgjimejncorrect = 

sumJimejncoiTect / (double) sumjncorrect, 
else 

I* calculate average time to answer questions incorrectly 7 
newjstudent->studentjnfo[tnaljium + 16] avgjimejncorrect = 0 0, 

I* get number of questions answered correctly 7 
newjstudent->studentjnfo[tnal_num +16] no_questionsjwrrect = sumjwrrect, 

r 
update student record to indicate that student has 
accomplished test #3 tnal ftnaljium 

7 
new_student->test_no = tnaljium + 16, 

} 

r 
Function Get_mti_dataO, 
File STATS C 

Parameters 
(input) value array of tyoe float holding values for 

mean time for correct answer for each 
student 

Returned None 

Vanables n Pointer to node of type RESjNODE 

Descnption Get mean time for incorrect answer data and 
place it into array value 

void Get mtijJata( float 'value, RESJMODE *h ) 
{ 

int counter, 
int *save_errorJwx, 
RESJMODE *n, n = h, 

r 
check to see if any student records 
in linked list 

7 
i f (n==NULL){ 



r 
set error box color to red 
set error text color to white 

7 
menu_back_eolor( BK_RED); 
menuJext_color( TJ/VHITE | TJ3RIGHT); 

I* Display error_box_3J)2 7 
savejsrrorjwx = menu_message( 13,19, error_box_3_02); 

/* Make error sound 7 
warble( 5); 

getkeyjjrjnouseO; 

/* Erase errorJwx_3J)2 7 
menu_erase( savejsrrorjwx); 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_backjwlor( BKJ/VHITE); 
menuJext_color( TJ3LACK); 
} 

elsef 

for (counter = 0; counter <= n->test_no; counter++) { 

'value = (float) n->studentjnfo[counter].avg_timejncon-ect; 

/* advance pointer to next array location 7 
++value; 

} 
} 

} 

r 
Function: GetjwjJata(); 
File: STATS.C 

Parameters: 
(input) value array of tyoe float holding values for 

average percentage con'ect for all 
students. 

Returned: None 

Variables: n Pointer to node of type RESJMODE 

Description: Get percentage of correct answers for each 
trial, and place it into array value 

7 
void Getjw data( float 'value, RES NODE *h ) 
{ 

int counter; 
int 'savejsrrorjwx; 
RESjNODE *n; n = h; 

f 
check to see if any student records 
in linked list 

7 
if(n==NULL){ 
r 



set en~or box color to red 
set error text color to white 

7 
menu_back_color( BK_RED); 
menuJext_color( TJ/VHITE | TJ3RIGHT); 

/* Display errorJ»x_3J32 7 
savejsrrorjwx = menu_message( 13,19, errorJwx_3J)2); 

I* Make error sound 7 
warble( 5) ; 

getkeyjjrjnouseO I 

r Erase errorjwxj}JD2 7 
menu_erase( savejsrrorjjox); 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_backjwlor( BKWHITE); 
menuJext_color( TJ3LACK); 
} 

else{ 

for (counter = 0; counter <= n->test_no; counter++) { 

if (n->studentjnfo[counter].total_no_questions >= 1) 

•value = ((float) n->studentjnfo[counter].no_questionsjwrrect / 
(float) n->student info[counter].total no_questions) 
•100.0; 

else 
'value = 0.0; 

r advance pointer to next array location 7 
++value; 

} 
} 

/* 
Function: Mean timejwrrectO; 
File: STATS.C 

Parameters: 
(input) value array of tyoe float holding values for 

average percentage correct for all 
students. 

Returned: None 

Variables: n Pointer to node of type RES JJODE 

Description: Get percentage of con'ect answers for each 
trial, and place it into array value 

7 
void mean Jimejwrrect( float 'value, RES NODE *h) 
{ 

int counter; 

for (counter = 0; counter <= 19; counter**) { 

'value = cal_meanJime_correct( counter, h); 

/* advance pointer to next array location 7 
++value; 



/* 
Name T10BJECTSC 
Type Routines to implement graphic objects that are used 

in the test and other utilities in battery 
Airport Security Personnel Screening Program 

Language Microsoft QuickC version 2 

7 

ftnclude <graph h> 
ftnclude <math h> 
#include <malloc h> 
ftnclude <conio h> 
#include <stdio h> 
#mclude "video h" 
#mclude "tjwlors h" 
#mclude "sound h" 
ftnclude "11 object h" 
ftnclude "video h" 

/* set number of problems in test 7 
#define NUM_PROBLEMS 64 /* NOTE this parameter is also defined in testj c 7 

/* 
Declare global pointers to objects to be drawn on screen 

7 
/* pointers to buffers holding images of all possible onentations of the aircraft 7 

char "aircraftj)trf8], 

/* 

Function DrawJjackgroundO, 

File TESTJ C 

Parameters None 

Returned None 

Descnption Draws 8 white solid circles, on the circumference of 
a larger circle (not drawn), each 45 degrees apart 
from each other with respect to the center of the 
screen A solid white tnangle is drawn in the center 
of the screen as well 

7 

void Draw_background( void) 
{ 

int deljc = 2, delj/ = 2, 

int p1 jc= 392, p1 _y=295, p2j<=408, p2_y=295, p3j<=400, p3_y=306, 

int c0_b1_x = 150, c0_b1_y = 50, c0_b2jc = 650, c0_b2j/ = 550, 

d_b1_x = 650 + delj<, d_b1 _y = 300 + deljy, 
d JJ2JC = 650 - deljc. c1_b2jy = 300 - deljy, 

c2_b1 _% = 575 + delj<, c2_b1 j / = 475 + del j / , 
c2_b2jc = 575 - deljc, c2_b2j/ = 475 - del_y, 

c3_b1 jc = 400 + del_x, c3_b1 _y = 550 + delj/, 
c3_b2j( = 400 - deljc. c3_b2j/ = 550 - del_y, 



} 

/ * • 

c4_b1 _x = 225* deljc, c4 b1_y = 475 + del_y, 
c4_b2j< = 225 - deljc, c432_y = 475 - del_y, 

c5_b1 x = 150 + del x, c5_b1 _y = 300 + del_y, 
c5J>2jc = 150 - deljc, c5_b2_y = 300 - del_y, 

c6_b1 _x = 225 + del x, c6_b1_y = 125 + delj/, 
c6_b2jc = 225 - deljc, c6_b2_y = 125 - del_y, 

c7_b1 jc = 400 + deljc, c7_b1 _y = 50 + del_y, 
c7_b2j< = 400 - deljc, c7_b2_y= 50 -delj/, 

c8_b1 J< = 575 + deljc, c8_b1_y = 125 + delj/, 
c8_b2jc = 575 - deljc, c8_b2_y = 125 - del_y, 

/*jsllipse( J3B0RDER , devicejc(c0_b1_x), device_y(c0_b1j/), 
deviceJC(COJ>2JC), devicej/(cOJj2j/)), 

7 
_elhpse( J3FILLINTERIOR , devicejc(d_b1jc), devicej/(d_b1_y), 

device_x(c1_b2jc), device_y(c1_b2_y)) 
_ellipse( J3FILLINTERIOR , device_x(c2_b1jc), device_y(c2_b1 j / ) , 

devicejc(c2 b2jc), device_y(c2_b2j/)) 
_elhpse( J3FILLINTERIOR , devicejc(c3_b1jc), devicej/(c3_b1_y), 

devicej<(c3_b2jc), device_y(c3_b2_y)) 
_ellipse( J3FILLINTERIOR , devicejc(c4_b1jc), device_y(c4_b1 _y), 

device_x(c4 b2 x), device_y(c4_b2jy)), 
jslhpse(_GFILUNTERIOR , devicejc(c5_b1jc), device_y(c5_b1_y), 

devicejc(c5 b2jc), device_y(c5Jj2_y)) 
_ellipse( J3FILLINTERIOR , devicejc(c6_b1 jc), devicejy(c6_M_y), 

devicejc(c6_b2jc), device_y(c6J>2j/)) 
_ellipse( J3FILLINTERIOR , devicejc(c7_b1jc), devicej/(c7_b1_y), 

device_x(c7_b2jc), device_y(c7_b2_y)) 
jslhpse( J3FILLINTERIOR , devicejc(c8_b1jc), devicej/(c8_b1 j / ) , 

device_x(c8J>2jc), devicej/(c8_b2j/)) 

tnangle(SOLID, devicejc(p1 jc), device_y(p1_y), 
devicejc(p2jc), devicej/(p2j/), 
devicejc(p3jc), device_y(p3_y)), 

Function Drawjsxample_backgroundO, 

File TEST_1 C 

Parameters None 

Returned None 

Descnption Draws 8 white solid circles, on the circumference of 
a larger circle (not drawn), each 45 degrees apart 
from each other with respect to the center of the 
screen A solid white tnangle is drawn in the center 
of the screen as well 

7 

void Drawjsxample_background( void) 
{ 

int deljc = 2, delj/ = 2, 

int p1_x= 392, p1_y=370, p2jc=408, p2_y=370, p3jc=400, p3_y=381. 



} 

/*-

int c0_b1 j c = 200, c0_b1_y = 175, c0_b2jc = 600, c0_b2_y = 575, 

d _b1 j c = 600 + del x, d b1_y = 375 + del_y, 
d_b2 j ( = 600 - deljc, d_b2_y = 375 - del_y, 

c2_b1 j c = 541 + deljc, c2_b1 _y = 516 + del_y, 
c2_b2jc = 541 - deljc, c2_b2j/ = 516 - delj/, 

c3_b1 j c = 400 + deljc, c3_b1 j y = 600 + delj/, 
c3_b2jc = 400 - deljc, c3_b2_y = 600 - del_y, 

c4 b1jc = 259 + del x, c4_b1_y = 516 +del j / , 
c4_b2jc = 259 - deljc, c4_b2_y = 516- del_y, 

c5_b1 x = 200 + del x, c5_b1_y = 375 + delj/, 
c5_b2jc = 200 - deljc, c5_b2j/ = 375 - del_y, 

c6_b1 x = 259 + del x, c6_b1 _y = 234 + delj/, 
C6_b2jc = 259 - deljc, c6_b2_y = 234 - del_y, 

c7 b1 x = 400 +del x, c7_b1j/= 175 + delj/, 
C7JJ2JC = 400 - deljc, c7_b2_y = 175 - delj/, 

c8 b1 j c = 541 + del x, c8 b1_y = 234 + delj/, 
c8J>2jc = 541 - deljc, c8_b2_y = 234 - delj/, 

/*_ellipse( J3BORDER , device_x(c0_b1 jc), device_y(c0_b1_y), 
device_x(c0_b2jc), device_y(c0_b2_y)), 

7 
jsllipse( J3FILLINTERIOR , devtcejc(c1_b1 jc), device_y(c1_b1_y), 

device_x(c1_b2_x), device_y(c1_b2j/)) 
jsllipse( J3FILLINTERI0R , devicejc(c2_b1jc), devicej/(c2_b1_y), 

devicejc(c2Jj2jc), devicejy(c2J>2jy)) 
jslhpse( J3FILLINTERIOR , devicejc(c3_b1_x), device_y(c3_b1_y), 

device_x(c3_b2jc), devicej/(c3_b2jy)) 
_elhpse( J3FILLINTERIOR , devicejc(c4_b1jc), devicej/(c4_b1jy), 

deviceJC(C4JJ2JC), devicejy(c4_b2jy)) 
_ellipse( J3FILLINTERIOR , devicejc(c5_b1jc), devicej/(c5_b1jy), 

device_x(c5_b2jc), devicejy(c5_b2jy)) 
_ellipse( J3FILLINTERIOR , devicejc(c6_b1jc), device_y(c6_b1 jy), 

device_x(c6_b2_x), devicejy(c6_b2jy)) 
jslhpse( J3FILLINTERIOR , devicejc(c7_b1jc), devicejy(c7_b1jy), 

device_x(c7_b2 x), devicejy(c7_b2jy)) 
jsllipse( J3FILLINTERIOR , devicejc(c8_b1_x), device_y(c8_b1 jy), 

devicejc(c8_b2jc), devicejy(c8_b2jy)) 

tnangle(SOLID, device_x(p1_x), devicejy(p1jy), 
devicejc(p2_x), devicejy(p2j/), 
devicejc(p3jc), devicej/(p3j/)), 

Function DrawjjIaneO, 

File TESTJ C 

Parameters float heading (in degrees) 



Returned: None 

Description: Draws a symbol for an airplane at a specified heading. 

7 
void Drawjjlane( float heading) 
{ 

float xf6], y[6], x_set[6], yjset[6]; 
inti; 
short previous; 
double theta; 

x_set[0]= 32.0; y_set[0]= 48.0; 
x_set[1]= 32.0; y_setf1]= 2.0; 
xjset[2]= 50.0; y_set[2]= 25.0; 
x_set[3]= 0.0; yjsetf3]= 25.0; 
x_set[4]= 8.0; yjset[4]= 34.0; 
x_set[5]= 8.0; yjset[5]= 15.0; 

r use rotation matrix to rotate points about center of picture (25,25) 
7 

r convert heading to radians measured from horizontal x-axis*/ 
theta = (double)(90.0 - heading) * 3.1415926536/180.0; 

for( i=0; i < 6; i++) 
{ 

xfi] = (float)cos(theta)*x setfi] - (float)sin(theta)*y setfij + 25*(1-(float)cos(theta)) + 25*(float)sin(theta); 
yfi] = (float)sin(theta)*xjset[i] + (float)cos(theta)*yjset[i] + 25*(1-(float)cos(theta)) - 25*(float)sin(theta); 

} 
previous = jsetcolor(T.WHITE | TJ3RIGHT); 

line( (short)xfOJ, (short)yf0], (short)x[1 ], (short)y[1J); 
line( (short)x[2], (short)yf2J, (short)xf3], (short)y[3J); 
line( (short)xf4], (short)y[4], (short)x[5], (short)yf5]); 

jsetcolor( previous); 
} 
/* 

Function: lnit_acjjrientations() 

File: t1 object.c 

Parameters: None 

Returned: None 
Description: Draws the aircraft in the eight possible orientations, 

saving each image in a buffer. Assigns the global 
aircraft pointers to the starting locations of each 
buffer for future drawing of any aircraft. 

void lnitjac_orientations( void) 
{ 

unsigned imagejsize; 
char 'image; 
inti; 

/-
Set active page to non visual page 

7 
_setactivepage( 1); 



/* determine image see of each aircraft drawing 7 
imagejsize = jmagesize( devicejc( 0 ) , devicej/( 0), 

devicejc( 50), devicejy( 50 ) ) , 

/* draw and save each of the eight onentations 7 
for( i = 0, i <8, i++) 
{ 

/* clear area where image will be drawn 7 
custom_bar( 0,0,50,50, TJ3LACK), 

r draw image 7 
Drawjjlane((float)(i*45)), 

/* allocate memory 7 
aircraftjjtrfi] = (char*)malloc( imagejsize), 
/* place image into memory 7 
jjetimage( devicejc( 0), devicejy( 0), devicejc( 50), devicejy( 50), 

aircraftjjtrfi]), 
} 
_clearscreen(_GCLEARSCREEN), 
/* 

Set active page back to visual page 
7 
_setvisualpage( 1), 

} 
/* 

Function Free_aircraftO 

File. t1 object c 

Parameters None 
Returned None 

Descnption Frees the memory buffers holding the aircraft 
images in vanous onentations 

7 
void Free_ac( void) 
{ 

int i, 
for( i=0, i<8, i++) 

free(aircraftjjtrfij), 
} 

/* 

Function Draw_aircraftj>roblem() 

File t1 object c 

Parameters onentation of aircraft 

position of aircraft on screen 

Returned None 

Descnption draws the aircraft on screen at the position and 
and onentation specified 

7 
void Draw_aircraftjjroblem( short acjjnentation, short acjwsrtion) 

char 'image, 
short x, y; 

/* determine aircraft onentation required 7 
swrtch( acjjnentation) 



{ 

case 0: image = aircraftjjtrfOJ; break; 

case 45: image = aircraft_ptr{1 ]; break; 

case 90: image = aircraftjjtrf2]; break; 

case 135: image = aircraftjjtr[3]; break; 

case 180: image = aircraft jjtrf4]; break; 

case 225: image = aircraftjJtrf5J; break; 

case 270: image = aircraftjjtrf6]; break; 

case 315: image = aircraftjptr[7]; break; 
} 

/* determine aircraft position required relative to center of screen. 
North (0 deg bearing) being up on the screen 

7 
switch( acjwsition) 
{ 

case 0: x = 400; y = 550; break; 

case 45: x = 575; y = 475; break; 

case 90: x = 650; y = 300; break; 

case 135: x = 575; y = 125; break; 

case 180: x = 400; y = 50; break; 

case 225: x = 225; y = 125; break; 

case 270: x = 150; y = 300; break; 

case 315: x = 225; y = 475; break; 
} 

/* place aircraft image on screen 7 
j>utimage( devicejc( x-25), de\n"cejy( y+25), image, J3PSET); 

} 
/* 

Function: DrawjsxamplejaircraftjproblemO 

File: tlobject.c 

Parameters: orientation of aircraft. 

position of aircraft on screen. 

Returned: None 

Description: draws the aircraft on screen at the position and 
and orientation specified. 

7 
void Drawjsxample aircraftj)roblem( short ac orientation, short acjwsition) 
{ 

char 'image; 
short x, y; 

I* determine aircraft orientation required 7 
switch( acjjrientation) 
{ 



} 

case 0 image = aircraftjptrfO], break, 

case 45 image = aircraftjrtrfl], break, 

case 90 image = aircraftjjtrf2], break, 

case 135 image = aircraftjjtr[3], break, 

case 180 image = aircraft_ptrf4], break, 

case 225 image = aircraftj>trf5], break, 

case 270 image = aircraftj>tr[6], break, 

case 315 image = aircraftjjtrf7], break, 

/* determine aircraft position required relative to center of screen 
North (0 deg beanng) being up on the screen 

7 
switch( acjwsition) 
{ 

case 0 x = 400, y = 575, break, 

case 45 x = 541, y = 516, break, 

case 90 x = 600, y = 375, break, 

case 135 x = 541, y = 234, break, 

case 180 x = 400, y= 175, break, 

case 225 x = 259, y = 234, break, 

case 270 x = 200, y = 375, break, 

case 315 x = 259, y = 516, break, 

} 

I* place aircraft image on screen 7 
jjutimage( devicejc( x-25), devicejy( y+25), image, J3PSET), 

} 

............................................................................. 

/* 
Function blueJjarO, 
File TESTJ C 

Parameters None 

Returned None 

Vanables None 

Descnption makes the entire screen blue 

7 
void bluejjar( void) 
{ 

short previous, 

previous =_setcolor( TJ3LUE; 



jectangle( J3FILLINTERI0R, devicej<( 0) , devicejy( 595), 
device_x( 800), devicejy( 0 ) ) ; 

setcolor( previous); 
} 

Function: up_black_barO; 
File: TESTJ .C 

Parameters: None 

Returned: None 

Variables: None 

Description: draws black bar at top of screen 

7 
void up black_bar( void) 
{ 

short previous; 

previous = _setcolor( TJ3LACK); 

jectangle( J3FILLINTERIOR, devicejc( 0), devicejy( 405), 
device_x( 800), devicejy( 595)); 

setcolor( previous); 
} 

Function: text_bar(); 
File: TESTJ .C 

Parameters: None 

Returned: None 

Variables: None 

Description: draws text bar 

7 
void textjjar( void) 
{ 

short previous; 

previous = _setcolor( TJ3LUE); 

jectangle( J3FILLINTERIOR, devicej<( 0) , device_y( 595 ), 
devicejc( 800), devicejy( 440)); 

_setcolor( previous); 
} 

Function: midjext_bar0; 
File: TESTJ .C 

Parameters: None 

Returned: None 

Variables: None 



Descnption draws text bar 

7 
void mid text bar( void) 
{ 

short previous, 

} 

/ " • 

previous = _setcolor( T_BLUE), 

_rectangle( J3FILLINTERIOR, dewcejc( 0) , devicej/( 425), 
devicejc( 800), device_y( 260)), 

_setcolor( previous), 

Function custom_barO, 
File TESTjl C 

Parameters None 

Returned None 

Variables None 

Descnption draws a customized bar given coordinates of 
comers of the bar 

7 
void custom bar( int x1, int y1, mt x2, int y2, mt color) 
{ 

short previous, 

previous = _setcolor( color), 

jectangle( J3FILLINTERIOR, devicejc(x1 ), devicejy( y1), 
device_x( x2), devicej/( y2)) , 

_setcolor( previous), 
} 

/* 
Function downJext_bar(), 
File TESTJ C 

Parameters None 

Returned None 

Vanables None 

Descnption draws text bar 

7 
void down text bar(void) 
{ 

short previous, 

previous = _setcolor( T_BLUE), 

} 

/ * • 

jectangle( J3FILLINTERIOR, devicejc( 0), devicej/( 120), 
devicejc( 800), devicej/( 0 ) ) , 

_setcolor( previous), 

Function press_keyO, 



File TESTJ C 

Parameters None 

Returned None 

Vanables None 

Descnption draws a brown text bar and displays the 
'press any key to continue' message 

7 
void pressjcey( void) 
{ 

short previous, 

static unsigned char list[20], 

r 
The names of the fonts that are available on disk 

7 
static unsigned char *facef4] = 
{ 

"fcouner"', 
"fhelv"', 
'11ms rmn"', 
"fmodem"' 

}• 

char 'temp, 

unsigned imagejsize, 

/* 
Copy previous background to memory 

7 

/* determine size of image (bytes) 7 
image_size = jmagesize( devicejc( 500), devicej/( 125), 

devicejc( 760), device_y( 160)), 

/* allocate memory 7 
temp = malloc( imagejsize), 

I* place image into memory 7 
_getimage( device_x( 500), devicejy( 125), 

devicejc( 760), devicejy( 160), temp) 

/* set the font for the press any key box 7 
strcpy( list, face[2]), 
strcat(hst, "h15w12b"), 

/* set the font 7 
_setfont( list), 

/* delay two seconds before drawing 7 
wartjicks( 36), 

/* first flush the keyboard buffer 7 
while (kbhrtO) 

getch(), 

previous = _setcolor( TJ3ROWN ), 

jectangle( J3FILLINTERI0R, devicejc( 500), device_y( 125), 
devicejc( 760), devicejy( 160)), 



_moveto( devicejc( 510), devicej/( 155)); 

_setcolor( TJ/VHITE | TJ3RIGHT); 

_outgtextC"Press any key to continue"); 

getchO; 

jsetcolor( previous); 

/* replace image on the screen 7 
jjutimage( devicejc( 500), devicej/( 160), temp, J3PSET); 

/* free up allocated memory 7 
free( temp); 

} 

/* 

Function: examplejsoundj>rompt(); 

File: TESTJ C 

Parameters: None 

Returned: None 

Variables: None 

Description: prompts user to press any key to hear example 
warning time sound. 

7 
void example soundjjrompt( void ) 
{ 

short previous; 

static unsigned char hst[20]; 

/• 
The names of the fonts that are available on disk 

7 
static unsigned char *face[4] = 
{ 

Tcourier"', 
Thelv"', 
'11ms rmn'", 
Tmodem"' 

}; 

char *temp; 

unsigned imagejsize; 

r 
Copy previous background to memory 

7 

/* determine size of image (bytes) 7 
imagejsize = Jmagesize( device_x( 140), devicej/( 120), 

devicejc( 552), devicej/( 155)); 

/* allocate memory */ 
temp = malloc( imagejsize); 

/* place image into memory 7 
_getimage( devicejc( 140), devicej/( 120), 



devicejc( 552), devicej/( 155), temp), 

} 
/*-

r set the font for the press any key box 7 
strcpy( list, face[2]), 
strcat(list."h15w12b"), 

/•set the font 7 
_setfont( list), 

/* delay two seconds before drawing 7 
wartjicks( 36), 

/* first flush the keyboard buffer 7 
while (kbhrt()) 

getch(), 

previous = _setcolor( TJ3ROWN ), 

jectangle( J3FILLINTERIOR, devicejc( 140), devicejy( 120), 

device_x( 552), devicejy( 155)), 

_moveto( devicejc( 150), devicej/( 150)), 

_setcolor( TJ/VHITE | TJ3RIGHT), 

jjutgtextC'To hear sound and continue press any key"), 

getch(), 

jsetcolor( previous), 

r replace image on the screen 7 
j>utimage( devicejc( 140), devicej/( 155) temp, J3PSET), 
/* free up allocated memory 7 
free( temp), 

Function timeout_messageO, 

File TESTJ C 

Parameters None 

Returned None 

Vanables None 

Descnption A text bar displaying a message indicating 
timeout has occured and a new problem is being 
presented is flashed on screen for a bnef moment 

7 
void timeout_message( void) 
{ 

short previous, 

static unsigned char list[20] 

r 
The names of the fonts that are available on disk 

7 
static unsigned char *face[4] = 
{ 

Tcouner"', 
Thetv"', 
"ttms rmn"', 
Tmodem'" 



}; 

I* set the font for the press any key box 7 
strcpy( list, face[2]); 
strcat(list,"h15w12b"); 

r set the font 7 
_setfont( list); 

previous = _setcolor( T_RED); 

jectangle( J3FILLINTERIOR, devicejc( 520), devicejy( 245), 
devicejc( 750), devicejy( 180)); 

jsetcolor( TJ/VHITE | TJ3RIGHT); 

jnoveto( device_x( 530), devicejy( 240)); 
_outgtextCTime has elapsed!"); 
_moveto( devicejc( 530), devicejy( 210)); 
jjutgtextC'This is a NEW pattern."); 

/* wait one second for user to read message flash 7 
waitjicks(16); 

/* clear message 7 
_setcolor(T BLACK); 
jectangle( J3FILLINTERIOR, device_x( 520), devicejy( 245), 

device_x( 750), device_y( 180)); 

_setcolor( previous); 

} 
/ * • 

Function: printjwuntdown(); 
File: TESTJ .C 

Parameters: None 

Returned: None 

Variables: None 

Description: prints count down message on the screen 

7 
void print countdown( void) 
{ 

short previous; 

static unsigned char list[20]; 

/* 
The names of the fonts that are available on disk 

7 
static unsigned char *face[4] = 
{ 

Tcourier"', 
ThelV", 
Ttms rmn"', 
"fmodem"' 

}; 

char 'temp, digit[3]; 
int counter; 

unsigned imagejsize; 

/* clear the screen 7 



_clearscreen(_GCLEARSCREEN); 

/* set the font for the press any key box 7 
strcpy( list, face[2]); 
strcat(list,"h15w12b"); 

/* set the font 7 
jsetfont( list); 

previous = _setcolor( T_BROWN); 
jectangle( J3FILLINTERIOR, devicejc( 60), devicejy( 425), 

devicejc( 740), devicejy( 470)); 

_setcolor( TJ3LUE); 
jectangle( J3FILLINTERIOR, devicejc( 230), devicejy( 250), 

device_x( 570), devicejy( 400)); 

_moveto( device_x( 80), devicejy( 460)); 
_setcolor( T WHITE | TJ3RIGHT); 
jJutgtextC'RESPOND AS QUICKLY AND AS ACCURATELY AS YOU CAN"); 

_moveto( devicej<( 250), devicej/( 390)); 
_setcolor( T WHITE | TJ3RIGHT); 
jJUtgtextfTHE TEST WILL BEGIN IN"); 

moveto( device x( 340), devicej/( 290)); 
~setcolor( T WHITE | T BRIGHT); 
jjutgtextC'SECON DS"); 

/* set the font for the press any key box 7 
strcpy( list, face[2]); 
strcat(list, "h20w15b"); 

/* set the font 7 
_setfont( list); 

/* countdown from 10 to 1 7 
digit[2] = 'VJ; 
for (counter = 10; counter >= 1; counter-) { 

/* form digit string to be displayed on screen 9...8.. etc 7 
if (counter >=10){ 

digit[0] = '1';digit[1] = '0'; 
} 

elsef 
digitfO] =''; digitfl] = counter + 48; 
} 

jsetcolorf TJ/VHITE | TJ3RIGHT); 
_moveto( device_x( 380), devicej/( 340)); 
_outgtext(digit); 

/* delay for one second 7 
waitjicks(18); 

_seteolor( T_BLUE); 
_moveto( device_x( 380), devicej/( 340)); 
_outgtext(digit); 

_setcolor( previous); 

/* set the font for the press any key box 7 
strcpy( list, face[2]); 
strcat(list,"h15w12b"); 

/•set the font 7 
jsetfont( list); 



/* clear the screen 7 
j:learscreen(_GCLEARSCREEN); 

} 
/* 

Function: fulljext barO; 
File: TESTJ .C~ 

Parameters: None 

Returned: None 

Variables: None 

Description: draws text bar 

7 
void fulljext bar(void) 
{ 

short previous; 

previous = _setcolor( TJ3LUE); 

jectangle( J3FILLINTERIOR, devicejc( 0) , devicejy( 550), 
devicejc( 800), devicejy( 35)) ; 

} 
/ * • 

jsetcolor( previous); 

Function: full black barO; 
File: TESTJ .C ~ 

Parameters: None 

Returned: None 

Variables: None 

Description: draws black bar 

7 
void full_black_bar( void) 
{ 

short previous; 

previous = _setcolor( TJ3LACK); 

(J3FILLINTERIOR, devicejc( 0 ) , devicejy( 600), 
devicejc( 800), devicejy( 0 ) ) ; 

_setcolor( previous); 

Function: display test name(); 
File: T10BJECTJ~C 

Parameters: None 

Returned: None 

Variables: None 

Description: displays the name of a test for 2 seconds on 
screen 

7 
void displayjest name( char ' test j iame) 
{ 



ThelV", 
"tlms rmn"', 
Tmodem'" 

}; 

r Display digit centered at the top of the screen 7 
strcpy( list, face[2]); 
strcat( list, "h40w32b"); 

/•set the font 7 
_setfont( list); 

/* set text color to green 7 
previous = _setcolor( T_RED); 

/* drawing brown rectangle 7 
jectangle( J3FILLINTERIOR, device_x( 225), devicej/( 420), 

device_x( 575), devicej/( 500)); 
I* reset drawing color 7 
_setcolor( previous); 

/* Draw text on screen 7 
jnoveto( device_x( 330), devicejy( 475)); 

/* output character 7 
_outgtext( "BEGIN!"); 

/* wait one and a half seconds 7 
waitjicks( 27); 

Function: nextJrialjnessageO; 
File: T10BJECTJ.C 

Parameters: None 

Returned: None 

Variables: None 

Description: draws 'next trial message' on the screen 

7 
void next_trial_message( void) 
{ 

short previous; 

static unsigned char list[20]; 

/* 
The names of the fonts that are available on disk 

7 
static unsigned char *face[4] = 
{ 

"f courier"', 
ThelV", 
"tlms rmn"', 
Tmodem'" 

}; 
/* Display digit centered at the top of the screen 7 
strcpy( list, face[2]); 
strcat( list, "h40w32b"); 

/* set the font 7 
_setfont( list); 

/* set text color to green 7 
previous = _setcolor( T_BROWN ); 
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r drawing brown rectangle 7 
jectangle( J3FILLINTERIOR, devicejc( 10), devicej/( 420), 

devicejc( 790), 
device_y( 500)); 

r reset drawing color 7 
_setcoior( previous); 

/* Draw text on screen 7 
_moveto( devicejc( 30), devicejy( 475)); 

/* Make error sound 7 
wart>le( 5); 

/* output character 7 
_outgtext( "PRESS ANY KEY TO START NEXT TRIAL"); 

/* get user key press 7 
getchO; 

Function: nextjnstruction messageO; 
File: T10BJECTJ.C ~ 

Parameters: None 

Returned: None 

Variables: None 

Description: draws 'next instruction message' on the screen 

7 
void nextJnstruction_message( void) 
{ 

short previous; 

static unsigned char list[20]; 

/* 
The names of the fonts that are available on disk 

7 
static unsigned char *facef4] = 
{ 

Tcourier"', 
ThelV", 
"tlms rmn'", 
Tmodem"' 

}; 

/* Display digit centered at the top of the screen 7 
strcpy( list, face[2]); 
strcat( list, "h40w32b"); 

/* set the font 7 
_setfont( list); 

/* set text color to green 7 
previous = _setcolor( T_BROWN ); 

/* drawing brown rectangle 7 
jectangle( J3FILLINTERIOR, device_x( 10), devicej/( 420), 

devicejc( 790), 
devicej/( 500)); 

/* reset drawing color 7 
_setcolor( previous); 

/* Draw text on screen 7 
_moveto( devicejc( 30), devicej/( 475)); 



7 

#mclude 
#mclude 
#mclude 
#include 
#include 
ftnclude 
ftnclude 
ftnclude 
#mclude 

Name TESTJ C 
Type Routines to implement the first 

student test 
Mental Rotation Program 

Language Microsoft QuickC version 2 

<graph h> 
<conio h> 
<malloc h> 
<stdio h> 
"typjnrt h" 
"video h" 
'1_colors h" 
"stats h" 
'11 object h" 

#include "menu h" 
#mclude "sound h" 
#include "getkey h" 
#mclude "box h" 

#defineAC ORIENTATION 0 
#define AC_POSITION 1 

#define NUMJTRIALS 2 
#define NUM_PROBLEMS 64 /* Note this parameter is also defined in t1 object c 7 

#define NFONTS 4 
#define GRID CHAR_FONT 2 

#define FRAMEJ)J) 

#define FRAMEJjl 
fttefine FRAMEJ_2 
#define FRAMEJ _3 
/*#define FRAME 1 _2 
7 
/*#define FRAME 1 _3 
7 
#define FRAME_2J 
ftdefine FRAMEJ2J2 
#define FRAMEJ3J 
ftJefine FRAME_3_2 
#define FRAMEJ3J3 
#define FRAME_4J 
#define FRAME_4_2 
#define FRAME_4_3 
#define FRAMEJ3J 
#define FRAME_5_2 
#define FRAME_5 3 
#define FRAMEJ5J 
#define FRAMEJ7J 
#define FRAMEJ7_2 
#define FRAMEJ*_3 
#define FRAMEJ3_1 
#define FRAMEJ3J2 
#define FRAMEJ3J3 
ftJefine FRAME_9J 
#define FRAME_9_2 
#define FRAME_9_3 
#define FRAME_9_4 
#define FRAME_9_5 
#define FRAME 9J3 
#define FRAME 9 7 

Mental Rotation/Onentation Test" 

"The object of this test is to measure the time and accuracy it" 
"takes for you to onent where the tnangle in the center of the" 
"screen is in relation to the nose of the aircraft icon" 
show the tnangle on the left side S aircraft on left 

"Press Enter to See example" 

"As you can see, the aircraft will appear at one of the eight" 
"45 degree points around the center tnangle" 
"You are to respond by using the numenc keypad on the nght side" 
"of the keyboard The eight outside numenc keys correspond to" 
"the location of the tnangle relative to the aircraft's nose" 
"The numenc keys correspond to the angles as follows" 
"#8 = 0, #9 = 045, #6 = 090, #3 = 135," 
"#2 = 180, #1=225, #4 = 270, #7 = 315" 
"For this example, the tnangle is at the 90 degree point from" 
"the nose of the aircraft Therefore, the correct answer would" 
"be to press the #6 key" 
"Let's try another example " 
"Where is the location of the tnangle in relation to the nose" 
"of the aircraft/?" 
"Press the key which corresponds to the con'ect onentation" 
"Let's try one last example Where is the location of the" 
"tnangle in relation to the nose of the aircraft'?" 
"Press the key which corresponds to the con'ect onentation" 
"Your score will be based on speed as well as accuracy" 
"Therefore, please try to respond as quickly as possible," 
"BUT also as accurately as you can'" 
"After you select your answer to each tnal, the next tnal' 
"will immediately begin on the next screen" 
"There are 64 problems in the test" 
There will be a short break in the middle of the test" 

/* 



Vanables to keep track of reaction time 
and answer for each test 

7 
TEMP resultsfNUMJ'ROBLEMS], 

/* Error message data 7 
char'error box 4_01[] = 

f 
" Error Message #4 01", 
HH 

" You failed to score 55% or greater", 
"on the preview test ", 

"< Press any key >". 
NULL 

}. 

char "error boxj3_01 Q = 
{ 
" Error Message #5 01", 

Unable to register fonts for this test", 
i 

The following files must be in the", 
the current directory for this test", 
to run ", 

1)HELVBFON", 
2) COURB FON", 

" 3) TMSRB FON ", 

"< Press any key >", 
NULL 
}. 

char*infoJwxJ9Q = 
{ 

"Test#1 ", 

" ' TEST COMPLETE ", 

"< Press any key to continue >", 
NULL 
}. 

/* routine to free memory held by buffers with aircfaft drawn in vanous 
onentations 

7 
/* 

Function Displayjestl instructions 
File TESTJ C 

Parameters None 

Returned None 

Vanables None 

Descnption Displays instructions for test#1 

7 

void Displayjestl instructions( void) 
{ 

static unsigned char list[20], 

int response, 



/* 
The names of the fonts that are available on disk 

7 
static unsigned char *face[NFONTS] = 
{ 

"f courier", 
ThelV", 
"tlms rmn"', 
Tmodem'" 

}; 

/* flush all buffers 7 
flushallO; 

I* 
* frame #0 (Title of Test) 
7 

/* set font type and size 7 
strcpy( list, face[2]); 
strcat(list,"h18w14b"); 

/•set the font 7 
_setfont( list); 

displayjest_name( FRAME_0_0); 

r 
* frame #1 
7 

/* set font type and size 7 
strcpy( list, face{2]); 
strcat(list,"h18w14b"); 

/* set the font 7 
_setfont( list); 

DrawjsxampleJjackgroundO; 
Drawjsxample_aircraftjjroblem( 0, 270); 

I* create text bar 7 
downJext_bar(); 

r display text for frame 1 7 
_moveto( device_x(10), devicejy(120)); 
_outgtext(FRAMEJ_1); 
_moveto( devicejc(10), devicejy(80)); 
_outgtext(FRAMEJ_2); 
_moveto( device x(10), devicejy(40)); 
_outgtext(FRAME_1J3); 

r wait for key press 7 
press_keyO; 

I* 
* frame #2 
7 

/* set the font 7 
_setfont( list); 

/* refresh text bar 7 
downJextJjarQ; 

/* display text for frame 2 7 



moveto( device x(10), devicejy(120)), 
~outgtext(FRAME_2J), 
_moveto( device_x(10), dewcejy(80)), 
_outgtext(FRAME_2_2), 

/* set font type and size back to normal 7 
strcpy( list, face[2]), 
strcat(list,"h18w14b"), 

/•set the font 7 
jsetfont( list), 

/* wait for key press 7 
press_keyO, 

/* 
•frame #3 
7 

/•set the font 7 
_setfont( list), 

/* create text bar for text 7 
downjext_bar0, 

/* display text 7 
_moveto( devicejc(10), devicejy(120)), 
_outgtext(FRAME_3J), 
_moveto( device x(10), devicejy(80)), 
_outgtext(FRAME_3_2), 

moveto( device x(10), devicejy(40)), 
jjutgtext(FRAME_3j3), 

/* wait for key press 7 
press JceyO, 

/* 
• frame #4 
7 

/* set the font 7 
_setfont( list), 

/* create text bar 7 
downJextJjarO, 

/* display text for frame 4 7 
moveto( device_x(10), devicej/(120)), 

~outgtext(FRAME_4J), 
moveto( device x(10), devicejy(80)), 

~outgtext(FRAME_4_2), 
moveto( device_x(10), devicejy(40)), 

~outgtext(FRAME_4_3), 

/* wait for user to press key 7 
press JceyO, 

f 
•frame #5 
7 

/* set the font 7 
_setfont( list), 

/* create text bar 7 
downJextJjarO, 



/* display text for frame 5 7 
moveto( device x(10), devicejy(120)); 

_outgtext(FRAMEJ5_1); 
moveto( device x(10), devicej/(80)); 

_outgtext(FRAMEj3J>); 
_moveto( device x(10), devicej/(40)); 
_outgtext(FRAMEJ5J3); 

/* wait for user to press key 7 
pre 

r 
• frame #6 
7 

/* create text bar 7 
downJextJjarO; 

/•set the font 7 
_setfont( list); 

/* display text for frame 6 7 
moveto( devicejc(10), devicej/(120)); 

j>utgtext(FRAME_6J); 

/* wait for user to press key 7 
press_key(); 

/* 
* frame #7 
7 

/• set the font 7 
_setfont( list); 

/* erase old example from screen 7 
_ctearscreen( J3CLEARSCREEN); 

Draw_example_backgroundO; 
Drawj3xample_aircraftjjroblem( 90, 45); 

/* create text bar 7 
downJextJjarO; 

/* display text for frame 7 7 
_moveto( device_x(10), device_y(120)); 
_outgtext(FRAME_7_1); 
_moveto( device_x(10), devicejy(80)); 
_outgtext(FRAME_7_2); 
_moveto( device_x(10), devicejy(40)); 
_outgtext(FRAME_7J3); 

/* get response from user and check 
then display appropriate message 7 

response = getchO; 

if (response == '3') 
{ 

moveto( devicejc(10), devicejy(200)); 
~outgtext( "Thaf s correct!"); 

} 
else 
{ 
_moveto( devicejc(10), devicej/(400)); 
_outgtext( "Sorry, the triangle is in the"); 
_moveto( devicejc(10), devicej/(360)); 
_outgtext( "135 degree position (#3 key)." 



} 

/* wait for user to press key 7 
press_keyO; 

/* 
•frame #8 
7 

/•set the font 7 
_setfont( list); 

/* erase old example from screen 7 
_clearscreen( J3CLEARSCREEN); 

Drawjsxample_background(); 
Drawjsxample_aircraftj)roblem(135,180); 

r create text bar 7 
downJextJjarO; 

I* display text for frame 7 7 
_moveto( device x(10), devicej/(120)); 
jJutgtext(FRAME_8J); 
_moveto( device_x(10), device_y(80)); 
jJutgtext(FRAME_8_2); 

moveto( device x(10), devicejy(40)); 
~outgtext(FRAMEJ3_3); 

I* get response from user and check 
then display appropriate message 7 

response = getch(); 

if (response =='1') 
{ 
_moveto( devicejc(10), devicejy(200)); 
jjutgtext( "That1 s correct!"); 

} 
else 
{ 
_moveto( devicejc(10), devicejy(400)); 
_outgtext( "Sorry, the triangle is in the"); 
jnoveto( devicejc(10), devicejy(360)); 
_outgtext( "225 degree position (#1 key)."); 

} 

/* wait for user to press key 7 
press_keyO; 

/* 
* frame #9 
7 

I* set font type and size back to normal 7 
strcpy( list, face[2]); 
strcat(list, "h18w14b"); 

_clearscreen( J3CLEARSCREEN); 
jsetfont( list); 

/* set blue background */ 
bluejjarQ; 



/* display text for frame 9 7 
moveto( device x(10), devicejy(510)), 

_outgtext(FRAME_9J), 
moveto( device x(10), device_y(470)), 

j>utgtext(FRAME_9_2), 
_moveto( device x(10), devicejy(430)), 
j>utgtext(FRAME_9_3), 
_moveto( device_x(10), devicejy(390)), 
_outgtext(FRAME_9_4), 
_moveto( devicejc(10), devicejy(350)), 
_outgtext(FRAME_9J5), 
_moveto( devicejc(10), device_y(310)), 
jJUtgtext(FRAME_9_6), 
_moveto( devicejc(10), devicejy(270)), 
.outgtexttFRAMEJJJ7), 

/* wart for user to press key 7 
pressJ<ey(), 

/* pnnt countdown message on the screen 7 
pnntjwuntdownO, 

/* pnnt begin message on the screen 7 
begmjnessageO, 

/* clear the screen 7 
_clearscreen( J3CLEARSCREEN), 

Function Testj 0, 
File TESTJ C 

Parameters None 

Returned None 
0 
Vanables None 

Descnption Procedure to execute testj This test determines 
the mental rotation capabilities of a person 
An airplane icon is presented in any of eight onentations 
(0,45,135,180,225,270,315) on the screen The icon itself 
is placed in one of eight positions on the screen The 
object is to detemriine the angular position of the center 
of the screen if the user were in the airplane and facing 
forward 

void test 1( STUDENT_RECORD 'newjstudent) 
{ 

int numjnals, numjstatements, 
char key_field[9], 

short previous, 
double t, 
intn, 
inttest = 1, 
int *save_errorJwx, 
int 'savejnfojwx, 
long imagejsize, 



FILE *debug_data; 

I* array to hold questions. Format of questions is: 
question[n][0] = aircraftjjrientation (deg) 
questionfnjfl j = aircraftjwsition (deg) 

7 

short questfon[NUM_PROBLEMS]f2] = { 
{ 0, 0}, {45,225}, {135, 90}, {180,315}, {270,180}, 
{ 0, 90}, {45,315}, {135,180}, {225, 45}, {270,270}, 
{90, 0}, {135,225}, {225, 90}, {270,315}, {315,315}, 
{ 0,225}, { 90, 90}, {270,225}, {225,225}, {315, 90}, 
{135,315}, {225,180}, {315, 45}, { 0,270}, { 90,135}, 
{45, 0}, {90,225}, {180, 90}, {225,315}, {315,180}, 
{ 45, 45}, {90,270}, {180,135}, {270, 0}, {315,225}, 
{ 45,135}, {135, 0}, {180,225}, { 0, 45}, {180, 0}, 
{ 45, 90}, { 90,315}, {180,180}, {270, 45}, {315,270}, 
{ 0,315}, {270,135}, {180, 45}, {90, 45}, {315,135}, 
{270, 90}, { 0,135}, {45,270}, {135,135}, { 45,180}, 
{ 0,180}, {225,270}, {135,270}, {225,135}, {315, 0}, 
{225, 0}, {135, 45}, {180,270}, {90,180}}; 

r array that holds correct answer key press for all questions 7 
short answer[64] = { '2 , '8', '3', 7", '6, '4', V, T , '8', 'Z, 

'6\'4','9', T,'Z,'9",'Z,'3', 'Z, 7 \ 
'8', '3', '4', '61, ' 1 ' , '3', '7, '6\ '4\ '9', 
"Z,'8','3','4','6\'4', '9',T, '1 ' , '8', 
'1', '9', 'Z,T,'3', '3', •&,•&, '3', '8', 
'8', T , '9 \ "Z, T , '8', '1 ' ,T, '6' , '1 ' , 
T , '6\ '4', '4' 

}; 

static unsigned char list[20]; 

/* 
The names of the fonts that are available on disk 

7 
static unsigned char *face[NFONTS] = 
{ 

Tcourier"', 
ThelV", 
"tlms rmn'", 
Tmodem'" 

}; 

keyJJeldfO] = '1 ' ; key_field[1] = 'Z; key field[2] = '3'; 
key_field[3] = '4'; key_field[4] = 'o"; key field[5] = T ; 
key_field[6] = '8'; key_field[7] = '91; key_field[8] = "'; 

debug_data = fopen("debug.fil","w+"); 

Read header from all font files 
in current directory 

7 
if (jegisterfonts( "*.fon") < 0) 
{ 

/* 
set error box color to red 
set error text color to white 

7 
menu_back color( BK_RED); 
menuJext_color( TJ/VHITE | TJ3RIGHT); 

/* Display error_box_5_01 7 
savejsrrorjwx = menu_message( 6, 8, errorJwxJ5J51 ); 

/* Make error sound 7 
warble( 5); 



I* Get keypress from user 7 
getchQ, 

/* Erase error_box_5J)1 7 
menu_erase( save_errorJwx), 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BKJ/VHITE), 
menuJext_color( TJ3LACK), 

} 
else 
{ 

/* Place graphics adapter into videomode 7 
best_graph_modeO, 

I* Display digit centered at the top of the screen 7 
strcpy( list, face[GRID_CHAR_FONT]), 
strcat( list, "h40w32b"), 

/* set the font 7 
_setfont( list), 

/* set text color to blue - same as background 7 
previous = _setcolor( TJ3ROWN ), 

I* reset drawing color 7 
_setcolor( previous), 

r Initialize pointers to buffers that draw the aircraft in any 
of the eight given onentations 7 

lnrt_ac_onentationsO, 

/* Display test 1 instructions 7 
Displayjestl jnstructionsO, 

/* run test in two tnals 7 
for (numjnals = 0, numjnals < NUMJTRIALS , numjnals++) 
{ 

for ( num_statements = numJnals*NUMJ3ROBLEMS/2, 
numjstatements < NUM_PROBLEMS/2+numJnals*NUM_PROBLEMS/2, 
num_statements++) 

{ 
/* flush the keyboard buffer 7 
while (kbhrtO) 

getchO, 

/* clear screen and display background 7 
_clearscreen (J3CLEARSCREEN), 
Draw_background(), 

/* check for timeout and display appropnate message 7 
I* NOTE test is initialized to 1 to ensure timeout message is not 

erroneously displayed for first problem 7 
if (test == 0) 

timeoutjnessageO 

Draw_aircraftj)roblem(questionfnumj5tatements][ACjDRIENTATION], 

question[numjstatements][AC_POSITION]), 

/* set timer with 2 minute timeout and 10 second warning 'beep' feature 7 
resultsfnumjstatements] reactionjime = studentJimer( Stest, keyjield, 

(unsigned)120, (unsigned)10), 
results[num_statements] answer = test, 



} 

I* return if this is a demonstration test 7 
if (new student-=>test no<0) 
{ 

/* Return to text mode 7 
textjnodeO, 

/* Set foreground and background colors for program 7 
_setbkcolor( BK.CYAN), 
jsettextcolor( T_BLACK), 

/* Fill the background 7 
box_charfill(1,1,25, 80,178), 

I* Return memory used by fonts 7 
jjnregisterfontsO, 

/* free up memory used by simple figures 7 
Free_acO, 

/* exit test 7 
return, 

/* Statistical analysis of test results 7 
stats_testj( results, newjstudent, answer, numjnals), 

if (num tnals < NUMJTRIALS -1) 
{ 

I* clear the screen 7 
fulljjlack_bar0, 

/* ask user to press key to start the next tnal 7 
nextJnaljnessageO, 

/* clear the screen 7 
fullJjIackJjarO, 

/* pnnt countdown message on the screen 7 
pnntjwuntdownO, 

} 
else 
{ 

I* set graphics background to black 7 
_setbkcolor(_BLACK), 
J5learscreen( J3CLEARSCREEN), 

/* clear the screen 7 
full_black_barO, 

/* ask user to press key to end test 7 
_clearscreen( J3CLEARSCREEN), 
test_complete_message(), 

/* clear the screen 7 
full_black_bar(), 

} 

} 
/* Set text mode 7 
textjnodeO, 

I" Fill the background 7 



box_charfill( 1,1,25, 80,178); 

/* 
set information box color to green 
set information box text color to white 

7 
menu back color( BK GREEN); 
menuJext_color( TJ/VHITE | TJ3RIGHT); 

I* Display informationJwxJ 9 7 
savejnfojwx = menu_message( 8,8, infojwxj 9); 

getch(); 

/* Erase information J w x J 9 7 
menujsrase( savejnfojwx); 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BKJ/VHITE); 
menuJext_color( TJ3LACK); 

I* Free memory taken up by fonts 7 
_unregisterfonts(); 

I* free up memory used by simple figures 7 
FreejscO; 

/* Set foreground S background colors for program 7 
_setbkcolor( BK CYAN); 
_settextcolor( TJ3LACK); 



/* 
Name: TMANAGER.C 
Type: Routines to execute student tests. 

Air Traffic Control Screening Program 
Language: Microsoft QuickC version 2 

7 

ftnclude <graph.h> 
#include <conio.h> 
#include <malloc.h> 
#include "typjnit.h" 
ftnclude "video.h" 
ftnclude "lest 1.h" 

/* 
Function: TestjnanagerO; 
File: TMANAGER.C 

Parameters: student pointer to student record 

Returned: None 

Variables: None 

Description: Executes 

7 

void Testjnanager( STUDENT RECORD 'newjstudent) 
{ 

/* Start test #1 7 
test j (newjstudent); 

} 



/* 
Name 
Type 

Language 

VIDEO C 
Routines to implement virtual 

display area for ATC graphic based 
tests 
Air Traffic Control Screening Program 

Microsoft QuickC version 2 

Last Revision 06/16/92 Gordon Jones 

Note Structure for jjetvideoconfigO as visible to user 

struct videoconfig { 
short numxpixels, 
short numypocels, 
short numtextcols, 
short numtextrows, 
short numcolors, 
short brtsperpixel, 

number of pixels on X axis 
number of pixels on Y axis 
number of text columns available 
number of text rows available 

number of actual colors 
number of bits per pixel 

}. 

short numvideopages, number of available video pages 
short mode, current video mode 
short adapter, active display adapter 
short monitor; active display monitor 
short memory, adapter video memory in K bytes 

7 

ftnclude 
ftnclude 
ftnclude 
#include 
ftnclude 
#mclude 
ftnclude 
ftnclude 
ftnclude 
#mclude 

<graph h> 
<stdio h> 
<malloc h> 
<conio h> 
<stdlib h> 
<time h> 
"tjwlors h" 
"menu h" 
"video h" 
"mkjp h" 

#pragmapack(1) 

#define VH 600 
ftJefine VW 800 

/* height of virtual window 7 
/* width of virtual window 7 

static double xjrans = 0 0, 
static double yjrans = 0 0, 
static mt max j y = 0, 

/* scaling factor for converting 7 
/* from virtual to device coords 7 

/* Error message data */ 
char'error boxJ2JD1Q = 

{ 
1 Error Message #2 01 ", 

UNABLE TO TURN ON GRAPHICS MODE ' 

The Monochrome Display Adapter", 
installed in this computer", 
does NOT support graphics ", 
Graphics capability is needed " 

< Press any key >", 
NULL 
}, 

I* 



Procedure to place video adapter 
in text mode 

7 

void text mode(void) 
{ 

jsetvideomode(_DEFAULTMODE), 
} 

r 
Procedure to place video adapter 
in best graphics mode 

7 

void bestjjraph_mode( void) 
{ 

int 'savejsrrorjwx, 
short best, 
struct videoconfig grconfig, 

I* 
place information about video 
adapter into structure vanable 
grconfig 

7 
_getvideoconfig( Sgrconfig), 
switch (grconfig adapter) { 

/* Monochrome Display Adapter 7 
/*case_MDPA best = - 1 , break, 

/* Color Graphics Adapter 7 
case_CGA best= Jv1RES4COLOR, break, 

/* Enhanced Graphics Adapter 7 
case_EGA best = JERESCOLOR, break, 

/* Video Graphics Array 7 
caseJ/GA best = JERESCOLOR, break, 

/* Multicolor Graphics Adapter 7 
caseJVICGA best = JERESCOLOR, break, 

I* Hercules Graphics Card 7 
caseJHGC best = JHERCMONO, break, 

} 
if (best f= -1 ) { 

r 
Set best video mode 

7 
_setvideomode( best), 

/* 
Initialize video vanables 

7 
xjrans = xJactor(), 
yjrans = yJactor(). 
max j y = maximumjyO, 
} 

else{ 
/* 

Error - Monochrome Display Adapter 
cannot support graphics 

7 

r 
set error box color to red 



set error text color to white 
7 
menu_back_color( BK_RED), 
menuJext_color( TJ/VHITE | TJ3RIGHT), 

/* Display errorjwxj 7 
savejsrrorjwx = menu_message( 10,8, error_boxj2_01 ), 

getchO, 

/* Erase errorjwxj 7 
menu_erase( savejsrrorjwx), 

/* 
set box color back to cyan 
set text color back to black 

7 
menu_back_color( BKCYAN), 
menuJext_color( TJ3LACK), 

} 
} 

/* 
Function to calculate scaling factor 
along the x axis 

7 

double x factor(void) 
{ 

r max number of pixels - x axis 7 
int maxx, 

struct videoconfig video, 

/* 
place information about video 
adapter into structure vanable 
video 

7 
jjetvideoconfig( & video), 

maxx = video numxpixels - 1 , 

/* Calculate scaling factor for x axis 7 
retum( (double) (maxx) / VW), 

} 

/* 
Function to calculate scaling factor 
along the y axis 

7 

double yJactor( void) 
{ 

int maxy, /* max number of pixels - y axis 7 

struct videoconfig video 

/* 
place information about video 
adapter into structure vanable 
video 

7 
jjetvideoconfig( S video), 

maxy = video numypixels - 1 , 



/* Calculate scaling factor for x axis 7 
retum( (double) (maxy) / VH), 

} 

/* 
Function that returns maximum y 
coordinate for video adapter 

7 

mt maximumjy( void) 
{ 

struct videoconfig video, 

/* 
place information about video 
adapter into structure vanable 
video 

7 
_getvideoconfig( S video), 

retum( video numypixels -1 ), 
} 

r 
Function to map virtual x coordinate 
to device x coordinate 

7 

mt device x( register int virtual x) 
{ 

return (int) (xjrans * virtual j c ) , 
} 

/* 
Function to map virtual y coordinate 
to device y coordinate 

7 

int devicejy( register int virtualjy) 
{ 

return (int) (maxjy - (yjrans * virtualjy)), 
} 

I" 
Function ImeO, 
File VIDEO C 

Parameters 
(input) x1,y1 x and y coordinate of start of 

line 
x2,y2 x and y coordinate of end of 

line 

Returned Nothing 

Vanables None 

Descnption Draws a line using the virtual coordinate system 
implemented in this unit on the screen The line 
is drawn from x1 ,y1 to x2,y2 in the current color 

void line( int x1, int y1, int x2, int y2) 
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Parameters 
(input) x1 X-coordinate for first point 
(input) y1 Y-coordmate for first point 
(input) x2 X-coordinate for second point 
(input) y2 Y-coordmate for second point 

Returned Integer buffer containing points on line 

Vanables xi X increment direction 
yi Y increment direction 
dx Relative change in x-coordinate 
dy Relative change in y-coordmate 
xp Current point along the line 
yp Current point along the line 
ex Accumulated x increments 
cy Accumulated y increments 
buf Pointer to returned buffer 
ndx Index into buf for each coordinate 
i Looping index 

Descnption Builds a table of coordinates that form a line 
connecting two given points 

Note Bresenham function used because quicker than 
standard Quick C fill function 

{ 
/* Move cursor position to start of line 7 
jnoveto( devicejc( x1) , device_y( y 1 ) ) , 

/* Draw line from x1 ,y1 to x2,y2 7 
lmeto( device x( x2) , devicejy( y 2 ) ) , 

} " 

/* 
Function. bresenhamQ 

mt *bresenham( mt x1, mt y1, mt x2, int y2) 

{ 
unsigned xi, yi, dx, dy, xp, yp, ex, cy, 
mt *buf, 
int ndx = 1, 
int i, 

/* Right to left from first point to second'' 7 
I f ( x 2 < x 1 ) 

{ 
dx = x1 -x2 , 
xi = - 1 , 
} 

/* Is first y-coordmate greater than second? 7 
i f ( y 2 < y 1 ) 

{ 
dy = y1 -y2 , 
yi = -1, 

For information on how this function works please 
review graphics textbook 

/* Must be left to nght from first point to second 7 
else 

{ 
dx = x2 - x1, 
xi = 1, 
} 



} 

r Second y-coordinate must be greater than first 7 
else 

{ 
dy = y2 - y1; 
yi = 1; 
} 

I* Set the working point to the first point 7 
xp = x1; 
yp = yi; 

/* Is the line more vertical than horizontal? 7 
i f (dx<dy) 

{ 

/* Start with the accumulated count at halfway point 7 
cy = dy » 1; 

r Allocate memory for the buffer 7 
buf = (int *)malloc( ((y2 - y1 + yi) * yi) * 4 + 2); 

if ( buf == NULL) 
{ 
printf( "Not enough memory for bresenhamOW); 
exit( 1 ); 
} 

/* Until we get to the last point 7 
while (yp .'= y2) 

{ 

/* Put the current point in the buffer 7 
buf[ndx++] = xp; 
buffndx++] = yp; 

/* Accumulate the relative counts 7 
cy += dx; 
yp+=yi; 

/* Is it time to change x-coordinate? 7 
if (dy < cy) 

{ 

/* Reset the accumulating count 7 
cy -= dy; 

/* Change the X value 7 
xp+=xi; 
} 

} 
} 

/* Line must be more horizontal than vertical 7 
else 

{ 

/* Start with the accumulated count at halfway point 7 
ex = dx » 1; 

/* Allocate memory for the buffer */ 
buf = (int *)malloc( ((x2 - x1 + xi) * xi) * 4 + 2); 

if (buf == NULL) 
{ 
printf( "Not enough memory for bresenham()\n"); 
exit(1 ); 
} 

I* Until we get to the last point 7 
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while (xp '= x2) 
{ 

/* Put the current point in the buffer 7 
buffndx++] = xp, 
buflndx++] = yp, 

/* Accumulate the relative counts 7 
ex += dy, 
xp+=w, 

/* Is it time to change y-coordinate? 7 
if (dx < ex) 

{ 

/* Reset the accumulating count 7 
ex -= dx, 

/* Change the Y value 7 
yp+=yi , 

} 

} 

/* Save the last point in the buffer 7 
buffndx++] = x2, 
buffndx++] = y2, 

/* Save the number of points at head of buffer 7 
buffO] = ndx » 1 , 

i 

I 

Function 

f Return the buffer 7 
return (buf ) , 

tnangle() 

Parameters 
(input) 
(input) 
(input) 
(input) 
(input) 
(input) 
(input) 

type 
x1 
yi 
x2 
y2 
X3 
y3 

LINED (outline) or SOLID (filled) 
X-coordinate at first point 
Y-coordmate at first point 
X-coordinate at second point 
Y-coordmate at second point 
X-coordinate at third point 
Y-coordmate at third point 

Returned (function returns nothing) 

Vanables buf 12 Points along line from point 1 to 2 
buf23 Points along line from point 2 to 3 
bufl 3 Points along line from point 1 to 3 
xleft Points along left side of tnangle 
xnght Points along nght side of tnangle 
i Looping index 
ymin Minimum Y point of tnangle 
ymax Maximum Y point of tnangle 
xmin Minimum X point of tnangle 
xmax Maximum X point of tnangle 
x X-coordmates along tnangle edges 
y Y-coordinates along tnangle edges 
numy Number of Y-coordinates in tnangle 

Descnption Draws a tnangle, optionally filled in 

Note Bresenham function used because quicker than 
standard Quick C fill function calls 



For information on how this function works please 
review graphics textbook. 

void triangle( int type, int x1, int y1, int x2, int y2, int x3, int y3) 
{ 

int*buf12,*buf23, *buf13; 
int 'xleft, "xright; 
int i, ymin, ymax, xmin, xmax; 
int x, y, numy; 

if (type == LINED) 

/* Draw only the outline 7 
{ 
_moveto( x1, y1); 
Jineto( x2, y2); 
Jineto( x3, y3); 
Jineto( x1, y i ) ; 
} 

else 

/* Fill in solid area 7 
{ 

/* Determine minimum and maximum y-coordinates 7 
ymin = ymax = y1; 
ymin = (y2 < ymin) ? y2: ymin; 
ymin = (y3 < ymin) ? y3: ymin; 
ymax = (y2 > ymax) ? y2: ymax; 
ymax = (y3 > ymax) ? y3 : ymax; 

/* Determine minimum and maximum x-coordinates 7 
xmin = xmax = x1; 
xmin = (x2 < xmin) ? x2: xmin; 
xmin = (x3 < xmin) ? x3 : xmin; 
xmax = (x2 > xmax) ? x2: xmax; 
xmax = (x3 > xmax) ? x3: xmax; 

/* Calculate line coordinates for the triangle sides 7 
buf 12 = bresenham( x1, y1, x2, y2); 
buf23 = bresenham( x2, y2, x3, y3); 
buf13 = bresenham( x1, y1, x3, y3); 

/* Build arrays for x values at all possible y values 7 
numy = ymax - ymin + 1; 
xleft = (int *)malloc( (sizej)( numy * 2)); 
xright = (int *)malloc( (sizej)( numy * 2)); 

I* Fill arrays with starting values 7 
for ( i = 0; i < numy; i++) 

{ 
xleftfi] = xmax; 
xrightfi] = xmin; 
} 

r Put coordinates for first triangle side into arrays */ 
for(i = 0;i<buf12f0];i++) 

{ 
x = buf12[i+i+1]; 
y = buf12fi+i+2] - ymin; 
if(x<xleft[y]) 

xleftfy] = x; 
if (x > xrightfy]) 

xrightfy] = x; 
} 



/* Put coordinates for second triangle side into arrays 7 
for ( i = 0; i < buf23[0]; i++) 

{ 
x = buf23[i+i+1]; 
y = buf23[i+i+2] - ymin; 
if(x<xleft[y]) 

xleftfy] = x; 
if (x > xrightfy]) 

xrightfy] = x; 
} 

/* Put coordinates for third triangle side into arrays 7 
for(i = 0;i<buf13f0];i++) 

{ 
x = buf13[i+i+1]; 
y = buf13fi+i+2] - ymin; 
if(x<xleft[y]) 

xleftfy] = x; 
if (x > xrightfy]) 

xrightfy] = x; 
} 

/* Now we can fill the triangle efficiently 7 
for ( i = 0; i < numy; i++) 

{ 
_moveto( xleftfi], ymin + i); 

lineto( xrightfi], ymin + i); 
} 

r Free some memory */ 
free(buf12); 
free(buf23); 
free(buf13); 
free( xleft); 
free( xright); 
} 



/* 

•i 

#ifndef GETKEY_DEFINED 

ftJefine KEYJM 15104 
ftJefine KEY_F2 15360 
#define KEY_F3 15616 
#define KEY_F4 15872 
#define KEY_F5 16128 
ftJefine KEY F6 16384 
#define KEY_F7 16640 
#define KEY_F8 16896 
#define KEY_F9 17152 
ftJefine KEYJMO 17408 
ftJefine KEY_SHIFT_F1 21504 
ftJefine KEYJ5HIFT_F2 21760 
ftJefine KEY_SHIFT_F3 22016 
ftJefine KEYJ3HIFT_F4 22272 
ftlefine KEY SHIFT F5 22528 
fttefine KEYJ3HIFT F6 22784 
ftJefine KEYJ3HIFT F7 23040 
ftJefine KEY_SHIFT_F8 23296 
ftJefine KEY.SHIFT F9 23552 
ftJefine KEYJ5HIFT_F10 23808 
ftJefine KEY_CTRL_F1 24064 
ftJefine KEY_CTRL_F2 24320 
ftJefine KEY_CTRL F3 24576 
fttefine KEY CTRL F4 24832 
ftJefine KEY_CTRL_F5 25088 
ftJefine KEY_CTRL_F6 25344 
ftlefine KEY_CTRL_F7 25600 
ftJefine KEY_CTRL_F8 25856 
ftJefine KEY_CTRL_F9 26112 
ftlefine KEY_CTRL_F10 26368 
ftlefine KEY_ALT_F1 26624 
ftlefine KEY_ALT_F2 26880 
ftlefine KEY_ALT_F3 27136 
ftJefine KEY_ALT_F4 27392 
ftJefine KEY_ALT_F5 27648 
ftJefine KEY_ALT_F6 27904 
ftJefine KEY_ALT_F7 28160 
ftJefine KEY_ALT_F8 28416 
ftJefine KEY_ALT_F9 28672 
ftJefine KEY_ALT_F10 28928 
ftJefine KEYJNSERT 20992 
ftJefine KEY HOME 18176 
ftlefine KEY PGUP 18688 
ftlefine KEYjOELETE 21248 
ftJefine KEYJEND 20224 
ftJefine KEY_PGDN 20736 
ftJefine KEYJJP 18432 
ftJefine KEYJ.EFT 19200 
ftJefine KEYJDOWN 20480 
ftJefine KEY RIGHT 19712 
ftJefine KEYJENTER 13 
ftJefine KEYJESCAPE 27 
ftJefine KEY.BACKSPACE 8 
ftJefine KEYJTAB 9 
ftJefine KEYJ5HIFTJTAB 3840 
ftJefine KEY_CTRL_LEFT 29440 
ftJefine KEY_CTRL_RIGHT 29696 
ftJefine KEY CTRL HOME 30464 



180 

ftJefine KEY_CTRL_PGUP 33792 
ftlefine KEY CTRL_PGDN 30208 
ftJefine KEY CTRL END 29952 
ftJefine KEY_CTRL_ENTER 10 

unsigned int getkey( void); 
unsigned int getkey_or_mouse( void); 
long studentJimer( int *key, char *neutral, unsigned timeout, unsigned wamingjime); 

ftJefine GETKEYJ3EFINED 
ftsndif 



r 

7 

#ifndef MOUSEFUNJDEFINED 

ftJefine LBUTTON 0 
ftJefine RBUTTON 1 

ftJefine SOFT_TEXT_CURSOR 0 
ftJefine HARD TEXT CURSOR 1 

ftJefine 
ftJefine 
ftJefine 
ftJefine 
ftJefine 
ftJefine 
ftJefine 
ftJefine 
ftJefine 

ENGLISH 0 
FRENCH 1 
DUTCH 2 
GERMAN 3 
SWEDISH 4 
FINNISH 5 
SPANISH 6 
PORTUGESE 7 
ITALIAN 8 

ftJefine MOUSE BUS 1 
ftJefine MOUSEJ3ERIAL 2 
ftJefine MOUSEJNPORT 3 
ftJefine MOUSE_PS2 4 
ftJefine MOUSEJHP 5 

ftJefine IRQ_PS2 0 

/* Structure definition for graphics mode mouse cursors 7 
struct graphicsjsursor 

{ 
int screen_mask[16], 
int cursor_mask[16], 
int hot_spot_x, 
int hotjspotjy, 
}. 

void mousejeset( int *, mt * ) , 
void mouse_show( void), 
void mouse_hide( void), 
void mouse_status( mt *, int *, mt *, int * ) , 
void mouse_setpos( int, int), 
void mousejjress( int, int *, mt *, mt *, mt * ) , 
void mouse_release( int, int *, mt *, int *, int * ) 
void mouse_sethorz( int, int), 
void mouse_setvert( int, int), 
void mouse~setgcurs( struct graphicsjsursor 
void mouse_settcurs( int, int, int), 
void mouse_motion( int *, mt * ) , 
void mouse_setratios( int, int), 
void mousejwndoff( int, int, int, int), 
void mouse_setdouble( int), 
void mousejstorage( int * ) , 
void mouse_save( char far * ) , 
void mousejestore( char far * ) , 
void mouse_setsensrtivity( int, int, int), 
void mousejjetsensrtivity( int *, int *, int * ) , 
void mouse_setmaxrate( int), 
void mouse_setpage( int), 
void mousejjetpage( int * ) , 
void mouse_setlang( mt), 
void mousejjetlang( int * ) , 

/* Function 0 7 
/* Function 1 7 

/* Function 2 7 
/* Function 3 7 

r Function 4 7 
r Function 5 7 
/* Function 6 7 

/* Function 7 7 
/* Function 8 */ 

far * ) , r Function 9 7 
I* Function 10 7 
/* Function 11 7 
/* Function 15 7 
/•Function 16 7 
/•Function 19 7 

/* Function 21 7 
/* Function 22 7 
r Function 23 7 
/* Function 26 7 
r Function 27 7 

/* Function 28 7 
/* Function 29 7 
/* Function 30 7 

/* Function 34 7 
/* Function 35 7 
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void mousejjetversion( double *, int *, int * ) ; /* Function 36 7 

/* Default graphics mode cursor 7 
static struct graphicsjjursor far gcursor default = 

{ 

/* screen mask 7 
OxCFFF, /* 1100111111111111 7 
0xC7FF, /* 1100011111111111 7 
0xC3FF, /* 1100001111111111 7 
0XC1FF, /* 1100000111111111 7 
OxCOFF, /* 1100000011111111 7 
0xC07F, /* 1100000001111111 7 
0xC03F, /* 1100000000111111 7 
OxCOIF, /* 1100000000011111 7 
OXCOOF, r 1100000000001111 7 
OXC007, /* 11CJ0000000000111 7 
0xC07F, /* 1100000001111111 7 
0XC43F, /* 1100010000111111 7 
0XCC3F, /* 1100110000111111 7 
OxFEIF, /* 1111111000011111 7 
OxFEIF, /* 1111111000011111 7 
OxFFIF, r 1111111100011111 */ 

/* cursor mask 7 
0x0000. /* 0000000000000000 7 
0x1000, roooiotxxxxxxxxxx)*/ 
0x1800, rO(X)11(XXXXXXXXXX)7 
oxicoo, roooi 110000000000 7 
OxIEOO, /* 0001111000000000 7 
OxIFOO, /* 0001111100000000 7 
0x1F80. /* 0001111110000000 7 
OxIFCO, r 0001111111000000 7 
OxIFEO, /* 0001111111100000 7 
OxIFOO, r 0001111100000000 7 
0x1 BOO, r 0001101100000000 7 
0X1180, /* 0001000110000000 7 
0X0180, /* 0000000110000000 7 
OxOOCO, /* (XXJ0000011000000 7 
OxOOCO, /* 0000000011000000 7 
0x0000, /* OXXXXXXXXXXXXXXX) 7 

/* hot spot x,y 7 
02,00 
}; 

/* Graphics mode cursor, pointing hand 7 
static struct graphics_cursor far gcursor Jiand : 

{ 

/* screen mask 7 
OxEIFF, r 11100h0111111111 */ 
OxEIFF, /* 1110000111111111 */ 
OxEIFF. /* 1110000111111111 */ 
OxEIFF. /* 1110000111111111 7 
OxEIFF. r 1110000111111111 */ 
OxEOOO, T 1110CO0CXXXXXXXX)7 
OxEOOO, ri11(XXXXXXXXXXXX)7 
OxEOOO, T 1 1 1 ( ) 0 C X X X X X X X X X X J 7 
oxoooo, /* oooaxxxxxxjooooo 7 
OxOOOO, /* OXXJOOOOOOOOOOOO 7 
oxoooo, r oaxxxxxxxxxxxxx) */ 
0x0000, r 0000000000000000 7 
oxoooo, /* oocwaxxxxxxxxxx) */ 
0x0000, /* OOOCXXXXJOOOOOOOO 7 
0x0000, r (XXXXXXXXXXXXXXX) 7 
0x0000, /*()0CXXXXXXXXXXXX)0 7 



I* cursor mask 7 
0X1E00, /* 00011H1000000000 7 
0x1200, /* 0001001000000000 7 
0x1200, /* 0001001000000000 7 
0x1200, /*0001001000000000 7 
0x1200, /*0001001000000000 7 
0X13FF, /•0001001111111111 7 
0x1249. /* 0001001001001001 7 
0x1249, /* 0001001001001001 7 
0xF249, /* 1111001001001001 7 
0x9001, /* 1001000000000001 7 
0x9001, /* 10010MXXXXXXXX)1 7 
0x9001, /* 1001000000000001 7 
0x8001, /* 1000000rXXXXXXX)1 7 
0x8001, /* iooooorxxxxxxxx)i */ 
0x8001, /* 100CXXXXXXXXXXX)1 7 
OxFFFF, /•11111111111111117 

/* hot spot X,y 7 
05,00 
}; 

/* Graphics mode cursor, check mark 7 
static struct graphics cursor far gcursor_check = 

{ 

/* screen mask 7 
OxFFFO, /* 1111111111110000*/ 
OxFFEO, /* 11111111111000007 
OxFFCO, /* 11111111110000007 
0XFF81, /* 1111111110000001 7 
0xFF03, /* 1111111100000011 7 
0x0607, /* 0000011000000111 7 
OxOOOF, /*0tXXXXXXXXXX)1111 7 
OxOOIF, T 0 ( X X X X X X X X X J 1 1 1 1 1 7 
0xC03F, /* 1100000000111111 7 
OxF07F, /* 1111000001111111 7 
OxFFFF, /* 1111111111111111 7 
OxFFFF, /•11111111111111117 
OxFFFF, /•11111111111111117 
OxFFFF, /•11111111111111117 
OxFFFF, /* 1111111111111111 7 
OxFFFF, /* 1111111111111111 7 

/* cursor mask 7 
0x0000, /* OOOOCXXXXXXXXXXX) 7 
0x0006, /*0OCXXXXXXXXXX)110 7 
OxOOOC, /*00000CXXXXXX)1100 7 
0x0018, /* 0000000000011000 7 
0x0030, rtXXXXXXXXX)110000 7 
0x0060, /* 0000000001100000 7 
0x70C0, /* 0111000011000000 7 
0x1D80, /* 0001110110000000 7 
0x0700, /* 000001110CXXXXXX) 7 
0x0000, /* 0000000000000000 7 
0x0000, /* OOOOOCXXXXXXXXXX) 7 
0x0000, /* OOCXXXXXXXXXXXXX) 7 
0x0000, r 0000000000000000 7 
0x0000, /• ooooorxxxxxxxxxx) 7 
oxoooo, /* ooorxxxxxxxxxxxxi 7 
oxoooo, /* oooooooooooooooo 7 

r hot spot x,y 7 
06,07 
}; 



/* Graphics mode cursor, hour glass 7 
static struct graphics cursor far gcursor hour = 

{ 

/* screen mask 7 
0x0000, /* CXXXXXXXXXXXXXXX) 7 
0x0000, /* ooocxxxxxxxoooooo 7 
0x0000, /* 0000000000000000 7 
0x8001, /* 1000000000000001 7 
0xC003, /* 1100000000000011 7 
0xE007, /* 11100CXXXXXXX)111 7 
OxFOOF, /* 1111000000001111 7 
OxE007, /* 1110000000000111 7 
0XC003. /* 1100000000000011 7 
0x8001, /* 10<XXXXXXXXXXXX)1 7 
0x0000, /* (XXXXXXXXXXXXXXX) 7 
0x0000, /* 0000000000000000 7 
0x0000, /* OOOOOOCXXXXXXXXX) 7 
0x0000, /* CXXXXXXXXXXXXXXX) 7 
0x0000, /* OOCXXXXXXXXXXXXX) 7 
0x0000, /* OOOOOOCXXXXXXXXX) 7 

/* cursor mask 7 
0x0000, /* 0000000000000000 7 
0x7FFE, /•01111111111111107 
0x6006, /* 0110000000000110 7 
0X300C, r 00110000000011007 
0x1818, /* 0001100000011000 7 
0X0C30, /* 0000110000110000 7 
0x0660, /* 0000011001100000 7 
0x03C0, /* 0000001111000000 7 
0x0660, /* 0000011001100000 7 
0x0C30, T 0000110000110000 7 
0x1998, /* 0001100110011000 7 
0X33CC, /* 0011001111001100 7 
0x67E6, /* 01100111111001107 
0x7FFE, 7*0111111111111110*/ 
0x0000, /* OOCX)OOOOC)0000000 7 
oxoooo, /* ooc)cx)oc)ooooooooo */ 

r hot spot x,y 7 
07,07 
}; 

/* Graphics mode cursor, jet aircraft 7 
static struct graphics_cursor far gcursorjet = 

{ 

r screen mask 7 
OxFFFF, /* 1111111111111111 */ 
OxFEFF, /* 1111111011111111 7 
0xFC7F, r 1111110001111111 7 
0xF83F, /* 1111100000111111 7 
0xF83F, r 1111100000111111 7 
0xF83F, /* 1111100000111111 7 
OxFOIF, /* 1111000000011111 7 
OxEOOF, r 1110000000001111 7 
0xC007, r 1100CXXXXXX)00111 7 
0x8003, /* 1000000000000011 7 
0x8003, /* 1000000000000011 7 
0xF83F, /* 1111100000111111 7 
0xF83F, /* 1111100000111111 7 
OxFOIF, /* 1111000000011111 7 
OxEOOF, /* 1110000000001111 7 
OxFFFF, /* 1111111111111111 */ 

/* cursor mask 7 
0x0000, /* 0000000000000000 7 



0x0000, /* (XXXXXXXXXXXXXXX) 7 
0x0100, /* 00000001CJ0O0O0O0 7 
0x0380, I* 0000001110000000 7 
0x0380, /* 0000001110000000 7 
0X0380, /* 0000001110000000 7 
0X07C0, /*(XXXX)11111000000 7 
OxOFEO, /* 0000111111100000 7 
0X1FF0, /* 00011111111100007 
0X3FF8, /*00111111111110007 
0X638C, /* 0110001110001100 7 
0x0380. /*0000C»1110000000 7 
0x0380, /* 00000011100000007 
0X07C0, /*CX)00011111000000 7 
OxOC60, r 0000110001100000 7 
0x0000, /* OOOCK)0CXXXXXXXXX) 7 

rhotspotx,y7 
07.01 
}; 

/* Graphics mode cursor, left pointing arrow 7 
static struct graphicsjjursor far gcursorJeft = 

{ 

I* screen mask 7 
0XFE1F, /* 1111111000011111 7 
OxFOIF, ri111CXXXXXX)111117 
oxoooo, /* c)ooooooooooooooo */ 
0x0000, /* OCXXXXXXXXXXXXXX) 7 
0x0000, rOOOOCBOOOOOTOOOO*/ 
OxFOIF, /* 1111000000011111 7 
OxFEIF, r 1111111000011111 7 
OxFFFF, /* 1111111111111111 */ 
OxFFFF, /* 1111111111111111 7 
OxFFFF, /* 1111111111111111 7 
OxFFFF, /-1111111111111111 */ 
OxFFFF, /* 1111111111111111 */ 
OxFFFF, /* 1111111111111111 */ 
OxFFFF, /* 1111111111111111 */ 
OxFFFF, 7*1111111111111111 */ 
OxFFFF, 7* 1111111111111111 */ 

/* cursor mask 7 
0x0000, /* OCXXXXXXXXXXXXXX) 7 
OxOOCO, /* 0000000011000000 7 
0X07C0, /* 0000011111000000 7 
0x7FFE, 7*0111111111111110*/ 
0X07C0, /* 0000011111000000 7 
OxOOCO, /* 0000000011000000 7 
0x0000, /* OCJOOOOOCOOOOOOOO 7 
0x0000, /* OCXXXXXXXXXXXXXX) 7 
0x0000. /* OOOOOOCXXXXXXXXX) 7 
0x0000, /* OCXX)OOO0CX)O00OO0 7 
0x0000. /* 0C)OOOOOOOCXX)OOO0 7 
0x0000. rOOOC»C)0OCX)0OO00O7 
0x0000, r CWOOOOOOOtXXXXXX) 7 
oxoooo, r ooootxxxxxxxxxxx) */ 
oxoooo, rcwoocxxxxxxxxxxx)*/ 
0x0000, /* OOOOOOCXXXXXXXXX) 7 

/* hot spot x,y 7 
00,03 
}; 

/* Graphics mode cursor, plus sign 7 
static struct graphics_cursor far gcursorJJIUS = 

{ 



I* screen mask 7 
0xFC3F, /* 1111110000111111 7 
0xFC3F, 7*11111100001111117 
0XFC3F, /* 1111110000111111 7 
0x0000, 7* OCXXXXXXXXXXXXXX) 7 
0x0000, 7* CXXXXXXXXXXXXXXX) 7 
0x0000. /* OCXXXXXXXXXXXXXX) 7 
0XFC3F, 7* 1111110000111111 7 
0XFC3F, 7*11111100001111117 
OxFC3F, 7*11111100001111117 
OxFFFF, 7*1111111111111111 */ 
OxFFFF, 7*11111111111111117 
OxFFFF, 7*11111111111111117 
OxFFFF, 7*11111111111111117 
OxFFFF, /* 1111111111111111 7 
OxFFFF, 7*11111111111111117 
OxFFFF, 7*11111111111111117 

7* cursor mask 7 
0x0000, 7* 0000000000000000 7 
0x0180, r 0000000110000000 7 
0x0180, 7*0000000110000000 7 
0x0180, /* 0000000110000000 7 
0x7FFE, 7*0111111111111110*/ 
0x0180, 7*0000000110000000 7 
0x0180, r 0000000110000000 7 
0x0180, 7* 0000000110000000 7 
0x0000, 7* OCXXXXXXXXXXXXXX) 7 
0x0000, 7* OCXXX)00(XXXXXXXX) 7 
0x0000, 7* OCXXXXXXXXXXXXXX) 7 
0x0000, /* OCXXJCXXXXXXXXXXX) 7 
0x0000, 7* OCX)CX)OCXXXXXXXXX) 7 
0x0000. 7* OCXXXXXXXXXXXXXX) 7 
0x0000. 7* CXXXXXXXXXXXXXXX) */ 
0x0000, /* CXXXXXXXXXXXXXXX) 7 

7* hot spot x,y 7 
07,04 
}; 

7* Graphics mode cursor, up pointing arrow */ 
static struct graphics_cursor far gcursor_up = 

{ 

/* screen mask 7 
0XF9FF, 7*11111001111111117 
OxFOFF, 7*11110000111111117 
0XE07F, 7* 1110000001111111 7 
0xE07F, 7* 1110000001111111 7 
0xC03F, /* 1100000000111111 7 
0xC03F, 7*11000000001111117 
0x801F, 7*10000000000111117 
0x801F, 7*10000000000111117 
OxOOOF, r0000000000001111 7 
OxOOOF, 7* 0000000000001111 7 
OxFOFF, r 1111000011111111 */ 
OxFOFF, r 1111000011111111 */ 
OxFOFF, /* 1111000011111111 7 
OxFOFF, 7*11110000111111117 
OxFOFF, 7* 1111000011111111 7 
OxFOFF. 7*11110000111111117 

7* cursor mask 7 
0x0000, 7* CXX)OO(XXXXX)OOOO0 7 
0x0600, 7*0000011000000000 7 
OxOFOO, 7* 0000111100000000 7 
OxOFOO, 7* 00001111O0OOOOO0 7 



OX1F80, 7*0001111110000000 7 
0x1F80, T000111111C)OOOC)00 7 
0X3FC0, 7* 0011111111000000 7 
0X3FC0, rCXj11111111000000 7 
OX7FE0. 7*01111111111000007 
0x0600, 7* 0000011000000000 7 
0x0600, 7*0000011000000000 7 
0x0600, /*CXXXX)110CXXXXXX)0 7 
0x0600, TOCXXX)110OCX)O0O0O7 
0x0600, /*OOOCX)1100CXXXX)00 7 
0x0600, 7*0000011000000000 7 
0x0000, 7* OOCXXXXXXXXXXXXX) 7 

7* hot spot x,y 7 
05,00 
}; 

7* Graphics mode cursor, X mark 7 
static struct graphics_cursor far gcursorjc = 

{ 

/* screen mask 7 
0X07E0, 7*0000011111100000 7 
0x0180, 7*0000000110000000 7 
oxoooo, r ocioooooooooooooo •/ 
0xC003, 7* 11OCX)OOOOOO0O011 7 
OxFOOF, 7*11110000000011117 
0XC003, 7* 110CXXMOOO00O011 7 
0x0000, /* 0000000000000000 7 
0x0180, 7* 0000000110000000 7 
0x03C0, 7* 0000001111000000 7 
OxFFFF, 7*11111111111111117 
OxFFFF, 7*11111111111111117 
OxFFFF, 7*1111111111111111 */ 
OxFFFF, 7*11111111111111117 
OxFFFF, 7*11111111111111117 
OxFFFF, 7*1111111111111111 */ 
OxFFFF, 7*11111111111111117 

7* cursor mask 7 
OXOOOO, 7* CXXXXXXXXXXXXXXX) 7 
0x700E, 7*0111000000001110 7 
0x1C38, 7*0001110000111000 7 
0x0660. 7* 0000011001100000 7 
0x03C0, 7*0000001111000000 7 
0x0660, 7*0000011001100000 7 
0x1C38, 7*0001110000111000 7 
0x700E, 7* 0111000000001110 7 
0x0000, /* OOOOOOOOCXXXXXXX) 7 
0x0000, /* oooooorxxxxxxxxx) 7 
0x0000, 7* CXXXXXXXXXXXXXXX) 7 
0x0000, 7* CXXXXXXXXXXXXXXX) 7 
0x0000, 7* OOOOOOOOOCXXXXXX) 7 
0x0000, 7* CXXXXXXXXXXXXXXX)'/ 
oxoooo, r oocxxxxxxxxxxxxx) •/ 
0x0000, 7* CXX)CX)O0OOO0O0O00 7 

7* hot spot x,y 7 
07,04 
}; 

ftJefine MOUSEFUN_DEFINED 
ftsndif 



7* 

Name: VIDEO.H 
Type: Include 
Language: Microsoft QuickC version 2 
Description: Prototypes and definitions for VIDEO.C 

7 

#ifndef VIDEOJDEFINED 

ftlefine FALSE 0 
ftJefine TRUE IFALSE 

ftJefine LINED 0 
ftJefine SOLID 1 

int *bresenham( int, int, int, int); 
void trianglefmt, int. int, int, int, Int, int); 
void polygon( int, int, int Q[2]); 
void line( int x i , int y1, int x2, int y2); 

7* define structures 7 
struct points 
{ 

short x; 
short y; 

}; 

/* Define functions 7 
void text_mode( void); 
void bestjjraphjnode( void); 
double x_factor( void); 
double yJactor( void); 
int maximumj/( void); 
int device_x( int); 
int devicejy( int); 
void line( int, int, int, int); 
void saveimage( int, int, int, int); 
void restimage( void); 
double kjime( int *key); 
double mJJme( int *key); 
double time_3( int *key); 

ftJefine VIDEOJ3EFINED 
ftsndif 



7* 

Name: TYPEJNIT.H 
Type: Include 
Language: Microsoft QuickC version 2 
Description: Prototypes and definitions for use 

with various modules used by SECURE.C 

7 

#pragmapack(1) 

7* Type defintions 7 

typedef struct { 
charqualifier[10]; 
long offset; 

} INDEXJNFO; 

Student Column # Test* Trial* 

0 
1 
2 
3 
4 
5 
6 
7 

7 
typedef struct { 

double avgJime_correct; 
double ovri_avgjime_oorr; 
double avgjimejncorrect; 
double ovri_avgJimeJncorr; 
int no_questionsjwrrect; 
int total no_questions; 

} STUDENTJOOLUMN; 

typedef struct { 
double reaction Jime; 
char answer; 
char rightjivrong; 

}TEMP; 

f reaction time to question 7 
7* answer to question 7 

7* 1 if con-ect answer, 0 if incorrect 7 

typedef struct { 
int testj io; 
char qualifierflO]; 
char r j j ianded; 
char malejemale; 
STUDENT_COLUMN studentJnfoflO]; 
TEMP RESPONSE[65]; 7* 64 problems in test 1 */ 

} STUDENT_RECORD; 

typedef struct qualifierjec { 
char qualifierflO]; 
long offset; 
struct qualifier_rec 'next; 

} NODE; 
typedef struct results j e c { 

int testj io; 
char qualifierflO]; 
char r j j ianded; 
STUDENT_COLUMN studentJnfo[30]; 
struct resultsjec 'next; 

} RESjNODE; 



7* 

7 

7* Function definitions 7 
void Testjnanager( STUDENT_RECORD *new_student); 

Name: MN_MENU.H 
Type: Include 
Language: Microsoft QuickC version 2 
Description: Prototypes and definrtions for MN_MENU.C 

7* Define functions 7 
void display_main_menu( NODE **, NODE **, RESJNODE **, RESJNODE 



7* 

Name DSKJNIT H 
Type* Include 
Language Microsoft QuickC version 2 
Descnption Prototypes and definitions for DSKJNIT H 

7 

7* Define functions 7 
void lnrtialize( NODE **, NODE * * ) , 
void Statsjnrtialize( RESjNODE **, RESJNODE ** ) , 

7* _ _ _ _ _ _ 

Name DATA_PLT H 
Type Include 
Language Microsoft QuickC version 2 
Descnption Prototypes and definitions for DATA_PLT C 

7 

char nght_orJeft_handed( void), 
char Male or female( void), 
void get_student_data( NODE *, STUDENT RECORD *, long * ) , 

r 
Name BOX H 
Type Include 
Language Microsoft QuickC version 2 
Descnption Prototypes and definrtions for BOX C 

7 

ftfndef BOXJDEFINED 

unsigned far *box_get( unsigned, unsigned, unsigned, unsigned), 
void boxjjut( unsigned far * ) , 
void box_color( unsigned, unsigned, unsigned, unsigned), 
void box_charfill( unsigned, unsigned, unsigned, unsigned, unsigned char), 
void box_draw( unsigned, unsigned, unsigned, unsigned, unsigned), 
void box_erase( unsigned, unsigned, unsigned, unsigned), 

ftJefine BOXJDEFINED 
ftsndif 

/• . 

Name MK_FP H 
Type Include 
Language Microsoft QuickC version 2 
Descnption Macro to form a far pointer 

7 

ftJefine MK_FP( seg, off) ((void far * ) \ 
(((unsigned long)(seg) « 16) + (unsigned)(off))) 



7* 

Name: STATS.H 
Type: Include 
Language: Microsoft QuickC version 2 
Description: Prototypes and definitions for STATS.C 

7 

7* Define functions 7 
double cal_meanJime_correct( int, RESJJODE * ) ; 
double cal_meanjimejncwrrect( int, RESJJODE * ) ; 
double caljstat_deviationjwrrect( int, RESJNODE * ) ; 
double caljstatjJeviationjncorrect( int, RESJNODE * ) ; 
void statsJest_1(TEMP *, STUDENT_RECORD *, int *, int); 
void statsJest_2( TEMP *, STUDENT_RECORD *, int *, int); 
void stats JestJ3( TEMP *, STUDENT_RECORD *, char *, int, int); 
void stats_test_4( TEMP *, STUDENT_RECORD *, intQ, int, int); 
void Get_mtc_data( float *, RESjNODE * ) ; 
void Getjnti_data( float *, RESjNODE * ); 
void Getjw_data( float *, RESjNODE * ); 
void mean Jime_correct( float *, RESJNODE * ) ; 

7 * — — — 
Name: SOUND.H 
Type: Include 
Language: Microsoft QuickC 
Description: Prototypes and definrtions for SOUND.C 

7 

ftfndef SOUND_DEFINED 

void sound( int); 
void silence( void); 
void speaker Joggle( void); 
void waitjicks( unsigned int); 
void warble( int); 
void weird( int); 
void siren( int); 
void white_noise( int); 
void note( int, int); 

ftJefine SOUND_DEFINED 
#endif 

/* 

Name: FILE.H 
Type: Include 
Language: Microsoft QuickC version 2 
Description: Prototypes and definitions for FILE.C 

*/ 

7* Defines */ 
ftlefine FILENAME "STUDENT.FIL" 
ftJefine INDEX "STUDENT.NDX" 
ftJefine TEMP "STUDENT.TMP" 

7* Define functions 7 
int lndex_on_disk( void); 
int File_onjJisk( void); 
int Numjecords( void); 
int lndex_tojinkjist( int, NODE **, NODE ** ) ; 
void Fetch( long, STUDENT_RECORD * ) ; 



7* 

7 

#ifndefEDIT_DEFINED 

ftJefine CURSORJJNDERLINE 0x0707 
ftJefine CURSORJ3LOCK 0x0007 
ftJefine CURSORJDOUBLELINE 0x0607 
ftJefine CURSORJJONE 0x2000 

mt nextj«ord( char *, int), 
int prev_word( char *, int), 
int deletej;har( char *, int), 
int insert_char( char *, int, char), 
int insert_spaces( char *, int, int), 
int replace( char *, char *, char * ) , 
int edithne( char * ) , 

ftJefine EDITJ3EFINED 
ftsndif 
r 

Name MENU H 
Type Include 
Language Microsoft QuickC 
Demonstrated MENUC MENUTESTC 
Descnption Prototypes and definrtions for MENU module 

7 

#lfndefMENU_DEFINED 

void menujwxjines( int), 
void menuJwx_shadow( int), 
void menu_back_color( long mt), 
void menuJine_color( mt), 
void menujrtle_color( int), 
void menuJext_color( int), 
void menujjrompt_color( mt), 
void menu_hilightjetter( mt), 
void menujiilightjext( mt), 
void menujiilightjjack( long mt), 
int far *menu_bar( int, int, char *, int * ) , 
int far "menu_drop( int, mt, char **, int * ) , 
mt far *menu_message( int, int, char ** ) , 
void menu_erase( int far * ) , 

ftJefine MENUJ5EFINED 
ftsndif 



7* 

Name: T10BJECTS.H 
Type: Include 
Language: Microsoft QuickC version 2 
Description: Prototypes and definitions for T1 OBJECTS.C 

7 

ftfndef T10BJECTS_DEFINED 

7* Define functions 7 
void Draw_background( void); 
void Drawjsxample_background( void); 
void Drawjjlane( float heading); 
void Draw_aircraftjjroblem( short acjjnentation, short acjwsition); 
void Drawjsxample_aircraftjjroblem( short acjjnentation, short acjwsition); 
void lnitjsc_orientations( void); 
void Free_ac( void); 
void press_key( void); 
void example_soundjjrompt( void); 
void text_bar( void); 
void midjext_bar( void); 
void downJext_bar( void); 
void up_black_bar( void); 
void custom_bar( int x1, int y1, int x2, int y2, int color); 
void printjwuntdown( void); 
void begin_message( void); 
void Dashjine( int xcoordJ, int ycoordjl, 

int xcoord_2, int ycoord_2, int numjlashes); 
void displayjest_name( char 'testjiame); 

ftJefine T1 OBJECTS_DEFINED 
ftsndif 
/• 

Name: T_COLORS.H 
Type: Include 
Language: Microsoft QuickC version 2 
Demonstrated: BOXTEST.C COLORS.C EDITTEST.C 

MENU.C LOOK.C OBJECT.C 
Description: Definitions for text mode color constants 

7 

ftfndef TJDOLORSJDEFINED 

7* Standard text mode colors 7 
ftJefine TJ3LACK0 
ftJefine TJ3LUE1 
ftJefine T.GREEN 2 
ftJefine T_CYAN 3 
ftJefine T RED 4 
ftJefine TJVIAGENTA 5 
ftJefine TJ3ROWN 6 
ftlefine TJ/VHITE 7 

7* Modifiers that can be added to the text mode color constants 7 
ftJefine TJ3RIGHT 8 
ftJefine TJ3LINK16 

7* Common combinations 7 
ftJefine TJ3RAY (TJ3LACK | TJ3RIGHT) 
ftJefine TJYELLOW (TJ3ROWN | TJ3RIGHT) 

7* Background text mode color constants 7 
ftJefine BKJ3LACK0L 
ftJefine BKJ3LUE1L 
ftJefine BK GREEN 2L 



7* 

Name LIST H 
Type Include 
Language Microsoft QuickC version 2 
Descnption Prototypes and definrtions for LIST C 

Routines are used to load information held in index 
file into linked list Linked list is for determining 
which students the system has test data 

Define functions for manipulating nodes of type NODE 

void addsl( long, NODE **, NODE **, char * ), 
void freehst( NODE * ) , 
long check( NODE *, char * ) , 

Routines are used to load information held in student 
data file into linked list Linked list is for used 
for statisrtical manipulation of test data 

Define functions for manipulating nodes of type RESJJODE 
7 

void res addsl( STUDENT_RECORD *, RESJJODE **, RES_NODE " ), 
void resjreehst( RES_NODE * ), 



PROJ =ROTATE 
DEBUG =1 
CC =qcl 
AS =qcl 
CFLAGSj3 =/AL/W1 TZe 
CFLAGS_D =/Zd72r/Gi$(PROJ)mdt/Od 
CFLAGS_R =/0/Ot/Gs/DNDEBUG 
CFLAGS =$(CFLAGSJ3) $(CFLAGSJD) 
AFLAGSJ3 =/Cx/W1/P2 
AFLAGS_D = 72d 
AFLAGS R =/DNDEBUG 
AFLAGS~=$(AFLAGSJ3) $(AFLAGS_D) 
LFLAGSJ3 = /CP Oxffff /NOI /SE 0x80 /ST 0x1000 
LFLAGSJD 
LFLAGS_R 
LFLAGS =$(LFLAGSJ3) $(LFLAGS_D) 
RUNFLAGS 
OBJSJEXT = 
LIBSJEXT = 

asm obj , $(AS) $(AFLAGS) -c $* asm 

all $(PROJ) EXE 

rotate obj rotate c$(H) 

datajjlt obj datajjlt c $(H) 

dskjnrt obj dskjnrt c $(H) 

edit obj edrt c $(H) 

file obj filec$(H) 

getkey obj getkey c $(H) 

list obj hstc$(H) 

menu obj menuc$(H) 

mnjnenu obj mnjnenu c $(H) 

mousefun obj mousefun c $(H) 

sound obj sound c $(H) 

stats obj stats c $(H) 

t1 object obj t1 object c $(H) 

testj obj testj c $(H) 

tmanager obj tmanager c $(H) 

video obj video c $(H) 

box obj box c $(H) 

$(PROJ) EXE rotate obj datajjlt obj dskjnrt obj edrt obj file obj getkey obj list obj \ 
menu obj mnjnenu obj mousefun obj sound obj stats obj t1 object obj testj obj tmanager obj \ 
video obj box obj $(OBJS_EXT) 
echo >NUL @«$(PROJ) erf 

rotate obj + 
datajjlt obj + 
dskjnrt obj + 
edit obj + 
file obj + 
getkey obj + 
list obj + 
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menu.obj + 
mnjnenu.obj + 
mousefun.obj + 
sound.obj + 
stats.obj + 
t1object.obj + 
testjl .obj + 
tmanager.obj + 
video.obj + 
box.obj + 
$(OBJS_EXT) 
$(PROJ).EXE 

$(LIBSJEXT); 
« 

ilink -a -e "qlink $(LFLAGS) @$(PROJ).crf $(PROJ) 

run: $(PROJ).EXE 
$(PROJ) $(RUNFLAGS) 
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