EMBRY-RIDDLE

Aeronautical University.
SCHOLARLY COMMONS

Theses - Daytona Beach Dissertations and Theses

8-1996

An Investigation of the Relationships Between the Angle of
Mental Rotation Required For Spatial Orientation, Response
Times, and Accuracy

Ronald D. Archer
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/db-theses

b Part of the Aerospace Engineering Commons, and the Aviation Commons

Scholarly Commons Citation

Archer, Ronald D., "An Investigation of the Relationships Between the Angle of Mental Rotation Required
For Spatial Orientation, Response Times, and Accuracy" (1996). Theses - Daytona Beach. 6.
https://commons.erau.edu/db-theses/6

This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University — Daytona Beach at
ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an
authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/db-theses
https://commons.erau.edu/dissertation-theses
https://commons.erau.edu/db-theses?utm_source=commons.erau.edu%2Fdb-theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fdb-theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1297?utm_source=commons.erau.edu%2Fdb-theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/db-theses/6?utm_source=commons.erau.edu%2Fdb-theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

NOTE TO USERS

Page(s) not included in the original manuscript are
unavailable from the author or university. The
manuscript was microfilmed as received

83, 85, 104, 127, 154, 157

This reproduction is the best copy available.

AN INVESTIGATION OF THE RELATIONSHIPS
BETWEEN THE ANGLE OF MENTAL ROTATION REQUIRED

FOR SPATIAL ORIENTATION, RESPONSE TIMES, AND ACCURACY.

by

Ronald D. Archer

A Thesis Submitted to the
Aeronautical Science Department
in Partial Fulfiliment of the Requirements for the Degree of

Master of Aeronautical Science

Embry-Riddle Aeronautical University
Daytona Beach, Florida

August 1996

UMI Number: EP31936

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EP31936
Copyright 2011 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Copyright by Ronald Dwayne Archer 1996

Ali Rights Reserved

AN INVESTIGATION OF THE RELATIONSHIPS
BETWEEN THE ANGLE OF MENTAL ROTATION REQUIRED
FOR SPATIAL ORIENTATION, RESPONSE TIMES, AND ACCURACY.

by

Ronald D. Archer

This thesis was prepared under the direction of the candidate’s thesis committee
chair, Dr. Gerald Gibb, Department of Aeronautical Science,
and has been approved by the members of his thesis committee. It was
submitted to the Department of Aeronautical Science and was accepted
in partial fulfillment of the requirements for the degree of
Master of Aeronautical Science.

THESIS COMMITTEE:

Dr. Gerald Gibb
Chalr

Member

/ -
MAS Graduate grogram Chai

Q@Qﬂv&r O‘/ pfs.

DepafGent Chair, AeronauticalfScience

ACKNOWLEDGEMENTS

There are many people behind the successfull completion of this study.
First and foremost, | thank the Lord for all of the guidance and blessings that He
has provided me. | also want to thank my very supportive family and friends
whom have always been behind me throughout my academic endeavors.

I need to express my sincere appreciation to my commitee members, Dr.
Gerry Gibb, Dr. Richard Gibson, and Dr. John Wise for their expertise and
advice. Additionally, | need to thank to Dr. John Deaton for his assistance in
conducting the statistical analysis; Dr. Garland, Mr. Tilden, and Mr. Smith for
their assistance in providing participants; and Mr. Banerje for making my

experimental design a reality.

ABSTRACT
Author: Ronald D. Archer
Title: An Investigation of the Relationships Between Angle of

Mental Rotation Required For Spatial Orientation, Response
Times, and Accuracy

Institution: Embry-Riddle Aeronautical University
Degree: Master of Aeronautical Science
Year: 1996

The purpose of this study is to investigate the relationship between the
angles of mental rotation when attempting to spatially orientate and the resulting
response times and levels of accuracy. By means of a computer program,
participants were presented with 64 mental rotational trials. The mental
rotational trials consisted of a triangle placed in the center of the screen with a
standard stick symbol of an aircraft appearing at various headings and
orientations around the triangle. The participants were required to imagine
themselves inside the flight deck of the aircraft, and then respond as quickly and
accurately as possible to where the triangle is in relation to their orientation.
Analysis of the data indicated that as the amount of angular displacement
increased from the straight ahead and directly behind positions, the response
times and accuracy rates increased and decreased respectively. Additionally,

responses for the cardinal orientations were faster than the non-cardinal

orientations.

TABLE OF CONTENTS

ACKOWLEDGEMENTS e iv

ABSTRACT v

LISTOF FIGURES. e viii

LISTOF TABLES e iX
Chapter

1. INTRODUCTION e e e 1

Statementofthe Problem L 2

Review of Related Literature 3

Statementofthe Hypothesis 17

2. Method 19

Subjects 19

Instrument. 19

Design 20

Procedures 21

3. Analysis e e 25

Response Times Cee e 25

Accuracy Rates. 29

4 SUMMANYot e 34

References 40

vi

Appendix
A. KeyboardlLegend

B. Mental Rotation/Orientation Computer Program

vii

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

LIST OF FIGURES

Stimulus for the Cooper & Shepard (1973) Study 5

Function of Mean Response Times and Amount of Angular
Displacement from Cooper & Shepard (1973) 6

Stimulus for the Hintzman et al. (1981) Study 16

Function of Mean Response Times, Percentage of Errors,
and Amount of Angular Displacement from Hintzman et al. (1981) . .16

Function of Mean Response Times and Amount of Angular
Displacement from the Results of this Study. 26

Function of Accuracy Rates and Amount of Angular Displacement
fromthe Resultsof thisStudy 31

viii

LIST OF TABLES

Table 1. Resulting Mean Response TimesinSeconds.

Table 2. Resulting Mean Accuracy Rates

INTRODUCTION

Anyone who has used standard north-up road maps or navigational
charts understands the dilemma of having to either mentally or physically
rotate the map/chart in order to help one understand their orientation; where
they are, what direction are they going, which way to go or thrn, etc. This
typically occurs when heading in any direction other than north since the
common north-up maps “match” or corresponds to the direction or heading of
the person. According to Shepard and Hurwitz (1984), “people generally
report that it is easier to interpret a turn as a left or a right turn when the road
that leads into that turn has been heading upward on the map (i.e., northward,
if the map is itself oriented in the conventional way). Under this condition a
turn that goes to the right on the map is a right turn and a turn that goes to the
left is a left turn” (p. 172).

Therefore, for the purpose of this study, the mental rotation required to
“match” the environment with the person’s own orientation is a process that
occurs when one attempts to orientate where other objects, places, or people
are in relation to themselves. Obviously, this process is important to the
aviation industry since spatial orientation is one of the many skills required for
pilots and air traffic controllers to effectively and safely perform their
navigational duties. It should be irrefutable that the pilot/air traffic controller
must have continuos understanding and knowledge of where certain objects

or places are in relation to their position, location, and direction.

Statement of the Problem

In the occupations of pilots as well as air traffic controllers, the use of
navigational charts and maps are crucial for the user to gain and/or maintain
spatial orientation; where they are, where they are heading, and which way to
proceed. In the flight decks of many general, corporate, commuter, and
commercial aircraft as well as for testing for rental car companies, the
implementation of navigational maps have been integrated onto electronic
displays. The two general types of electronic navigational maps are north-up
and track-up displays. The north-up display is similar to the typical road maps
or aeronautical charts in that the direction of north remains at the top of the
display, regardless of the heading of the vehicle (aircraft, automobile, boat,
etc.). The track-up display is modified so that the map itself rotates in order to
correspond with the heading of the vehicle. As concluded by Aretz (1988,
1989), the track-up reduces the amount of mental rotation required since the
environment on the map/chart corresponds to the viewpoint of the user. With
these concepts in mind, the data from the present study along with the other
research will support the use of track-up displays in order to make faster
navigational decisions.

Another application of navigation displays becomes prevalent with the
many issues being addressed with the redesigning of the air traffic control
displays. Currently, the air traffic controller's display is a north-up depiction of

a particular sector. The controllers are constantly required to mentally

orientate the position and location for each aircraft and the environment
relating to it. In order for the controllers to give directions to each aircraft, they
must mentally rotate the environment to match the particular aircraft’s so that
they can direct which heading or direction for the aircraft to go. With the
supporting data from this mental rotation study, another possible application
may be for the electronic displays to allow the air traffic controller to rotate the
map or display in order to lower the amount of mental rotation required.

There have been several studies investigating the principles of mental
rotation, but relatively few have investigated mental rotation in regard to the
orientational and navigational considerations mentioned. Therefore, the
purpose of this study is to investigate the relationship between the amount of
mental rotation required (angle of rotation) and the response times and
accuracy required for achieving/maintaining the spatial orientation required
for navigational tasks.

Review of Related Literature

Spatial orientation and sense of direction are skills necessary to
adequately perform effectively in occupations which require the ability to
navigate in an environment such as piloting aircraft, watercraft, and driving
automobiles. Kozlowski and Bryant (1977) investigated and defined sense of
direction as an “awareness of location or orientation” (p. 590). They found that
self-reports of sense of direction were reflective of their spatial orientation

ability. Even when orientation was emphasized to the participants, the “good

sense of direction people” showed improved accuracy of their representation
of the area, whereas “poor sense of direction people” showed no hint of
improved performance. Therefore, Kozlowski and Bryant concluded “that the
improved orientation of people with a good sense of direction is not automatic
or facile, but it requires possibly both (a) a conscious effort to orient and (b)
repeated exposure to an environment” (p. 520).

However, when one is consciously trying to spatially orientate the
location of other objects in relation to their position or heading, sometimes
mental rotation is required. This mental rotation is an attempt to “match” the
actual environment in which one is navigating with the perspective,
orientation, or heading of the person. Therefore, when investigating the
requirements for spatial orientation during navigational tasks, research of
mental rotation becomes necessary.

The majority of mental rotational studies conducted have been based
upon the experimental designs of Shepard and Metzler (1971) and Cooper
and Shepard (1973). Shepard and Metzler required subjects to make same-
different responses to pairs of perspective line drawings depicting unfamiliar,
three-dimensional objects. The participants were required to respond with the
"same” response when the two objects where the same, regardless of whether
they were in the same or different orientations. The “different” responses were
required when the pair of objects were mirror-image reversals of each other,

again regardless of the same or different orientations. Shepard and Metzler

found that time required for the same-different judgments increased linearly
with the angular displacement between the two objects.

The Cooper and Shepard (1973) study, which became the premise for
the majority of the mental rotation studies, consisted of the stimulus of a
single alphabet or numerical figure (i.e., “R”, “G”, or “5”) which was rotated
around in 60 degree increments. In addition to the rotation of the letter, the
letter also appeared either mirror-imaged or in standard form. As seen in
Figure 1, the participants were asked to respond to whether the rotated letter
was of standard or mirror-imaged form, thus requiring the mental rotation of

the letter to upright in order to discern the form of the letter.

ADVANCE [INFORMATION TEST
IDENTITY ORIENTATION Q
'—\

~b

2000 ms. 100 ma,
400
700
100¢C

_.

Figure 1. Stimulus for the Cooper & Shepard (1973) Study.

Cooper and Shepard found that the time required for the judgments
was nonlinear with the angular displacement of the letter from the 360 degree
orientation. More specifically, the results provided evidence that the function

relating response time to orientation was symmetrical with respect to the 180

degree orientation (see Figure 2). This function indicated that the stimuli
were rotated through the minimum angle necessary to reach upright. Cooper
and Shepard also suggested that the nonlinearity may have been due to the
concept that mental rotation was not required for stimuli presented at
relatively small disorientations from upright. A study conducted by Hock and
Tromley (1978) provided a possible explanation by stating that “a familiar
stimulus can be perceptually upright even though it is not in its physically

upright, or normal, orientation “ (p. 529).

IIOOF

Group Data (N»8)
1000

8-100
A No Information
QO 100 msec

S 400 msec

4 T00 msec

© 1000 msec

® Combined Information

800} / /\\ A\\
\ ‘\
A
L Voo
700 , " \
/O \

600

w
[+]
o

T

MEAN REACTICN TIME (MILLISECONOS)

500

400

o 60 120 180 240 300 360
ORIENTATION OF TEST STWMULUS (DEGREES, CLOCKWISE FROM UPRIGHT)

Figure 2. Function of Mean Response Times and Amount of Angular

Displacement from Cooper & Shepard (1973).

With this possibility, Hock and Tromley suggested that the observed
shape of the letter was an important factor influencing perceptual uprightness.
Therefore, they selected letters which were based on their shape. The letters
were either circular (e, G), elongated (e, L, J), or rectangular (e, R, F). Even
though the letters which were predicted to have a narrow range of perceptual
uprightness (e, G) produced a linear rotation function, the letters predicted to
have a broad range of perceptual uprightness (e, F, R; L, J) also produced a
linear rotation function, but only at orientations outside of their range of
perceptual uprightness. Their results supported Cooper and Shepard’s
suggestion that one of the possible reasons for the nonlinearity of the mental
rotation was due to rotation not being required when the orientation of their
stimuli were perceptually upright.

However, several other studies (i.e., Hock & Ross, 1975; Cooper &
Podgorny, 1976; Maki, 1986; Corballis & Cullen, 1986; and Bethell-Fox &
Shepard, 1988) were conducted to investigate the effects of familiarity,
similarity, and complexity on mental rotation. The Hock and Ross (1975) study
examined the effects of familiarity on mental rotation by requiring the
participants to make same-different decisions concerning unfamiliar dot
patterns. Based on Hock’s (1973) experiment, two dot patterns were
simultaneously presented. The “same” responses were required when the two
dot patterns were identical, whether they were in same or different

orientations. Likewise, the "different” responses were required when the two

dot patterns were not identical, whether in same or different orientations. The
familiarity effect was found to be significantly greater when the pairs of
patterns were in different orientations. This supported their hypothesis that
familiarity would facilitate the mental rotation of the dot patterns.

An example of the studies which investigated the effects of complexity
and similarity on mental rotation was one conducted by Bethell-Fox and
Shepard (1988). The stimulus used for this experiment consisted of patterns
of filled-in squares in a 3x3 matrix. The participants were instructed to inspect
the presented matrix until its pattern could be remembered and then to press
the “ready” button. The matrix was then immediately replaced by one of the
four schematic rotational cues which indicated to the participants whether the
remembered pattern was now to be imagined as rotated 90 degrees or 180
degrees , clockwise or counterclockwise. Then, once the participants again
pressed the “ready” key, they were to select which one of three presented
patterns corresponds to the way the original pattern would be when rotated as
specified. The encoding, mental rotation, and comparison of unfamiliar stimuli
(patterns of filled-in squares in a 3 x 3 matrix) were found to increase with
stimulus complexity (measured by the number of separated pieces
constituting each figural pattern). Therefore, the majority of these studies
provided support for the premise that the time to mentally rotate a stimulus

was dependent on the familiarity and complexity of the stimulus.

Other studies of mental rotation concentrated on the effects of practice.
The majority of these studies (e.g., Damos; 1991, chap. 7; Thorndyke &
Hayes-Roth, 1982; Jolicoeur, 1985; and Pylyshyn, 1979) comparably resulted
with a significant increase in performance, decreases in response times and
increases in accuracy rates. However, as remarked by Pylyshyn (1979), “The
influence of practice on rotation rate is found routinely in studies such as
these, although it has not generally been reported in the literature, since
published results are invariably obtained from highly practiced subjects using
overlearned stimuli” (p. 26).

Another major area of mental rotational studies pertains to the
investigations of hemispheric, clockwise or counterclockwise, differences in
the process of conducting mental rotational tasks. As stated by Burton et al.
(1992), “The nature of hemispheric specialization for mental rotation in
unclear, with some studies indicating a right hemisphere (RH) advantage and
others a left hemisphere (LH) advantage” (p. 192). A possible explanation
given by this study may be that research has suggested that the previously
discussed areas or factors of mental rotation (familiarity, complexity, practice)
interacts with the hemispheric process. However, the Burton et al. study did
result in interactions which suggested that “clockwise rotations were more
readily performed in the left visual field and counterclockwise rotations in the

right visual field” (p. 192).

10

Another study by Cook et al. (1994) suggested that a cooperation takes
place between the two hemispheres which perform different functions. They
explain that their results support other research findings which found that one
hemisphere (usually the LH) actively manipulates its visual information, while
the other hemisphere is employed in a reference role. They further stated that
both roles are essential for the accurate performance of mental rotation.

Ueker and Obrzut (1993) conducted a study which not only
investigated the hemispheric differences, but investigated the possible gender
differences for conducting mental rotation. Their mental rotation involved the
rotation of a stick figure stimulus which is holding a ball in either the right
hand or left hand. The stick figure was then rotated in any of the eight 45
degree orientations and the participants were to respond to which side the
figure is holding the ball. However, the results from their study indicated that
“there were neither hemispheric nor gender effects found with a mental
rotation task” (p. 48). Jones and Anuza (1982) also conducted a study which
was not able to find a gender difference.

Based on the Shepard and Metzler (1971) experimental method, the
Jones and Anuza study focused on the effects of gender and handedness on
mental rotation. They did find that “right-handers tended to respond more
rapidly than left-handers” (p. 506). However, in addition to the inability to find
a gender difference in the response times as already stated, no sex or

handedness differences in error rates or accuracy were found.

11

Unlike the majority of the studies which investigated gender
differences, a study conducted by Berg, Hertzog, and Hunt (1982) found age
differences in the speed of conducting mental rotation tasks. Four different
age groups participated in a mental rotations task for four consecutive days.
They found “significant age differences in the linear function relating median
reaction times to degrees of rotation: older subjects had higher intercepts and
higher slopes” (p. 95). Additionally, they found no indication that age
differences in mental rotation performance would disappear after practice.

With all of the possible aspects studied about mental rotation such as
the effects of perceptual uprightness, complexity, and familiarity of the stimuli,
effects of practice, hemispheric differences in the process of conducting
mental rotation, and the possible differences (i.e., age, gender, etc.) in the
speed of conducting mental rotation, it can be easily concluded that there are
hardly, if not any, limitations to the study of mental rotation. Additionally, this
particular research study investigates the degree of mental rotation which
becomes required for spatial orientation. Even though the research
previously discussed provides the foundations for the study of mental rotation,
the rotation of a letter and the determination of whether or not is mirror-
imaged or normal provides little support to the investigation of mental rotation
required for spatial orientation. However, the majority of the studies did
provide a premise which was defined by Koriat and Norman (1984) as “image

rotation” (p. 421). This term designates a strategy in which the image of the

12

stimulus is first rotated to the upright position in order to make some sort of
determination concerning the stimuli, such as its spatial orientation. Koriat
and Norman in their 1988 study further suggested that “spatial transformation
is normally achieved through image rotation” (p. 93). Therefore, with the
principles provided by the studies previously discussed, the investigation of
the mental rotation required when making spatial orientational judgments
could now be conducted.

A study conducted by Loftus in 1978, concluded with a two step model
for comprehending compass directions. For the experiment, the subjects were
visually presented with a numeric compass direction between 0 and 350
degrees. The subjects’ tasks were to indicate their comprehension of the
direction by indicating the representation of it on a blank (not labeled or
numbered) compass rose and then to push a key when done. The response
times between the presentation of the stimulus and the keypress was then
used as an indication of the time required to comprehend the direction. The
premise made for this study was that the “functions relating RT to 1) the
specific direction presented and 2) the way in which the directional
information was orientated can then be used to make inferences about the
manner in which compass directions are represented and processed” (p.
416). The results suggested that a direction is understood by a two step

process of mental operations.

13

First, the nearest cardinal heading to the target direction (i.e., north,
south, east, or west) is computed, and one mentally rotates in order to “face”
in the same cardinal direction. This supports the idea that people tend to
orientate cardinal headings faster than non-cardinal headings since the
cardinal headings were found to be processed first as a means of orientating
the other specified target direction or heading. This will provide the basis for
the third hypothesis tested in this study.

Second, the differences between the cardinal direction and the desired
target direction is computed and a mental rotation, either clockwise or
counterclockwise, is conducted until the desired target direction is orientated
and designated. Therefore, even though the Loftus study concluded with a
technically different two step process, mental rotation was still found to be
present and was required when attempting to orientate the location of the
specified target.

Other studies which investigated the mental rotation required for
spatial orientation were conducted by Aretz (1988, 1989). Similar to this
study, the major goal for the two Aretz studies were to investigate the role of
mental rotation in the cognitive processing required during aircraft navigation.
A comparison was conducted between the mental alignment of two frames of
reference: the ego centered reference frame and the world centered reference
frame. These frames of references corresponds respectively to the track-up

and north-up types of electronic map displays which were explained

14

previously in this report. Aretz concluded that the amount of required mental
rotation was lower when in the ego centered reference frame, thus producing
faster response times in making navigational decisions. Aretz (1989) also
found that “mental rotation was most prevalent in the simuitaneous trials and
diminished considerably in the sequential trials” (p. 11). This supports a
finding from a study by Hintzman, O’Dell, and Arndt (1981) which theorized
that mental rotation is only required when a visual map, and not when a
“cognitive map”, (i.e., memory) is used. Therefore, since an electronic map is
visually available, mental rotation will be performed when the ego centered
reference frame and the world centered reference frame are not aligned.

Hintzman, O’Dell, and Arndt (1981) conducted a series of experiments
where the subjects were required to determine the location of targets while
trying to imagine themselves facing in various orientations. The study also
investigated these orientational tasks when the map is either committed to
memory (“cognitive maps”) or when it is visually available as stated in the
previous paragraph. However, only the visually presented map investigations
will be discussed since the possible implications for this study pertain to the
use of physical navigational maps, charts, and displays.

Figure 3 shows the stimulus display and response board used for the
experiments. The participants were required to imagine themselves facing in
the particular direction the arrow and to respond where, in relation to their

orientation, the large dot is located. Using the response board (right side of

16

Figure 3), the participants were to “point to” the orientation corresponding to
the location of the large dot. In this example, the large dot is located behind
and to the left of the direction of the arrow. Each trial would display a different
orientation (the eight 45 degree points around the compass rose) as indicated

by the arrow as well as a different target location as indicated by a large dot.

Figure 3. Stimulus for the Hintzman et al. (1981) Study.

The mean response times acquired for the eight 45 degree orientations
resulted with a function as shown in Figure 4. As can be seen, the participants
responded the fastest when making Front or Back decisions. This supports
the premise that the participants orientated quicker at the 360 and 180
orientations since the amount of mental rotation was at its lowest requirement.

Therefore, the response times required for the participants to spatially

16

orientate the location of the target then increased as the amount of required
mental rotation was increased from the straight ahead and the directly behind
positions. However, as can also be seen by Figure 4, the response times
were slightly lower for the “Right” (090) and “Left” (270) orientations as
compared to the positions immediately surrounding them. A possible
explanation for this occurrence may be that the participants orientated the
cardinal directions faster than the non-cardinal directions which is congruent

with other research, (i.e., Loftus, 1978).

150 |
125 (ﬂ
100 } 3 »

5+

J-

T lllji

F R RB a LB L LF F
RESPONSE

Figure 4. Function of Mean Response Times, Percentage of Errors, and

NORMALIZED MEAN RT (%}

\
AY T

SHOUY3 %

Amount of Angular Displacement from Hintzman et al. (1981).

Figure 4 additionally displays the recorded accuracy rates for each of
the eight orientations. An inverse function of the response times, the
participants answered the Front (360 degree) and Back (180) most

accurately. Therefore, the accuracy rates then decreased as the amount of

17

required mental rotation was increased from the straight ahead and the
directly behind positions. As for the explanation for the accuracy rates being
slightly higher for the 090 and 270 positions, it may also be hypothesized that
the participants were more accurate when conducting the mental rotations at
the cardinal positions than at the non-cardinal positions.

The literature on the topic of mental rotation i\s extensive. This may be
due to the almost unlimited number of parameters associated with mental
rotation. As discussed, some of these include familiarity, perceptual
uprightness, and complexity of the stimulus, effects of practice, hemispheric
differences in the process of conducting mental rotation, and the possible
differences (i.e., age, gender, etc.) of mental rotation. However, for the
purpose of this study, the number of investigations into the mental rotation
required when attempting to spatially orientate are relatively few. Such
studies have suggested that an understanding into this realm of mental
rotation may help to provide guidelines for designing displays to be used by
people performing navigational tasks.

Statement of the Hypothesis

The previous research has shown that larger angles of mental rotation
require longer times to process the information in order to orientate.
Therefore, it is hypothesized that as the amount of mental rotation required is
increased from the straight ahead position (360) and from the directly behind

position (180), the response times will similarly increase. Additionally, it is

18

hypothesized that as the amount of mental rotation required is increased from
the straight ahead and from directly behind positions, the accuracy will
decrease. The third hypothesis states that the response times will be
significantly less for the mental rotation of the cardinal directions (360, 090,
180, and, 270) than for the non-cardinal directions (045, 135, 225, and 315).
The fourth hypothesis states that the accuracy rates will be significantly better
for the mental rotation of the cardinal directions (360, 090, 180, and, 270)

than for the non-cardinal directions (045, 135, 225, and 315).

Method
Subjects

The subjects were 100 students who volunteered from several upper-
class level air traffic control (ATC) and flight courses at Embry-Riddle
Aeronautical University. The subjects received extra course credit for
participating in the experiment. Since most of these students will be employed
as pilots or air traffic controllers upon graduation, they can be considered as a
subsample of the larger pilot and ATC populations.

Convenience and judgment sampling were possible sources of
sampling bias. The limited resources availabie for sampling produced the
major concern for convenience sampling. Also due to the possible limited
number of volunteers available at the selected cluster, the question of their
representation of the entire population was of concern for judgment sampling
bias. Additionally, another bias may be due to the subjects not having as
much experience as those in the target population. However, these effects
should be small and the results should be considered applicable to the target
population.

Instrument

A computer program (Appendix B) was designed to present the
stimulus and to record the response times and accuracy of the subjects. The
two 486 computers used were located in the same room with a room divider

between them to eliminate the possibility of distraction between subjects

19

20

participating simultaneously. The second computer was used only when two
or more participants arrived for the experiment at the same time. When such
an occasion arose, the two participants were simultaneously tested.

The stimulus consisted of a triangle centered in the middle of the
screen with a standard stick aircraft symbol randomly appearing at one of the
eight 45 degree compass positions around the triangle. The participants were
then required to respond by pressing one of the eight corresponding outside
keys of the numeric keypad located on the right side of a standard computer
keyboard.

Design

The design of the experiment was based from the Hintzman et al.
(1981) study. As discussed earlier, the tasks of their participants were to
indicate the direction from themselves that the target dot would be if they were
in the orientation indicated by the arrow. Likewise, the participants in this
study were required to indicate the direction from themselves that the triangle
would be if they were in the orientation of the aircraft symbol. The participants
responded to the stimulus by pressing the corresponding answer with one of
the eight keys on the numeric keypad. All of the other keys on the keyboard
were locked out in case the participants were to accidentally strike the wrong
key.

The independent variable for the experiment was the amount of mental

rotation required for the participants to spatially orientate where the triangle is

21

located in relation to the heading of the aircraft symbol. The independent
variables were categorized by the eight 45 degree points on the standard 360
degree compass rose (360, 045, 090, 135, 180, 225, 270, 315). The order of
the presentation of the trials were randomly selected and arranged in a fixed
order for all subjects. Each participant completed a total of 64 trials, eight
trials for each of the eight variables. The eight trials for each variable were not
identical even though the correct responses were the same. The location and
direction of the aircraft symbol appeared at all of the eight different headings
possible at each of the eight 45 degree positions around the triangle. The
dependent variables for the experiment were the response times and
accuracy rates recorded.
Procedures

The participants for this study were volunteers from upper-class level
courses at Embry-Riddle Aeronautical University. They received extra course
credit for participating in the study. The confidentiality of the participants was
maintained by identifying the subjects with identification numbers which they
selected. Throughout the experiment, the participants were only identifiable
through the use of the identification numbers; names were not used in the
collection, the analysis, nor the reporting of the results.

After entering their identification numbers, the participants were
required to go through a programmed set of instructions, a sample trial, and

two practice problems (specified in Appendix B). Once these steps were

22

completed, the participants completed the 64 random mental
rotational/orientational trials. The program was designed so that once a
response was given by the participants, the next trial was immediately begun.
After half of the trials was completed (32), the program would stop and
provide the subjects a break. Once the participants were ready to proceed
with the other half of the trials, they were given a ten second countdown to
allow them to be prepared when the next trial was given.
Pilot Study

The pilot study consisted of two groups of five participants. The first
group of five were allowed to proceed from the beginning to the end of the
program without any aid. After the participants completed the experiment,
they were allowed to ask any questions and to make any suggestions which
would make the experiment more clear and understandable. A couple of
problems were discovered from the discussions with the first group of
participants. The most common misunderstandings regarding the objective of
the test were: 1) the participants thought that they were to respond to how
many degrees were needed for them to turn in order to head directly towards
the triangle; and 2) the participants thought that they were to simply respond
where the aircraft symbol was in relation to the triangle. Additionally, it was
suggested that a legend showing the correct corresponding keys in relation to
the orientations should be provided (see Appendix A). The mean accuracy for

the first group was 48.12%.

23

Therefore, the second group of five participants received the following
changes in addition to the computer program. The legend was taped to the
desk to the right of the keyboard for use during the experiment. Additionally,
a script of further explanation and directions was written and read to each
subject after they completed the set of instructions on the computer program.
The screen displayed the sample trial so that the participants could better
visualize the objective of the experiment while the script was being read. The
script read as follows:

“The first pilot study concluded that a couple of misunderstandings
were occurring regarding the objective of the experiment. First, you are not to
indicate where the aircraft symbol is in location to the triangle, but you are to
respond to where the triangle is located in relation to the orientation of the
aircraft. The second misunderstanding was for the participants to indicate how
many degrees were needed to turn in order to head towards the triangle.
Again, this is incorrect. Please make sure you are responding to where the
triangle is located in relation to the heading of the aircraft. This is usually
achieved by pretending that you are sitting in the flight deck of the aircraft and
heading in the direction of the aircraft.”

The participants were then allowed to proceed to the two practice trials
on the computer program. If they answered incorrectly on the trials, the

computer program indicated what the correct response should have been. If

24

the participants incorrectly answered both trials, then they were stopped and
were read the following script:

“Again, the objective of the experiment is to respond to where the
triangle is located in relation to the heading of the aircraft. By looking at the
last practice trial, it may help to pretend you are sitting in the flight deck and
then identifying where the triangle is located in relation to the nose of the
aircraft. In this case, the triangle is behind you and to the left which is at the
225 positions or the #1 key.“

The participants were then allowed to proceed with the remaining
instructions and actual completion of the 64 trials. With these changes given,
the mean accuracy for the second group of five participants was 92.80%. With
this significant increase in accuracy between the first and second section of
the pilot study, t(8) = -4.40, p < .003, the study was initiated with the
remainder of the volunteers (91) implementing the same procedures used
during the second part of the pilot study.

Upon completion of the experiment, the participants who requested to
see their results were given the opportunity. They were instructed to return to
the location where the experiment was held and, by use of their identification

number, they were able to see their response times and accuracy rates.

Analysis

Response Times.

By means of the Statistica statistical analysis computer program, a
two-way ANOVA was conducted and found a significant difference between
the eight 45 degree orientations, F(7, 720) = 13.48, p.< .001. Table 1 shows
the resulting mean response times in seconds for each of the eight 45 degree

orientations.

Table 1

Resulting Mean Response Times in Seconds

The eight 45 degree orientations Mean response times in seconds

360 degree orientation 2077
045 degree orientation 3.26

090 degree orientation 3.10
135 degree orientation 3.63
180 degree orientation 2.21

225 degree orientation 3.62
270 degree orientation 2.83
315 degree orientation 3.44

25

26

44
3.5 1

2.5 -

1.5 -

o T T T L T

360 45 90 135 180 2256 270 315 360

Figure 5. Function of Mean Response Times and Amount of Angular

Displacement.

In order to test the hypothesis, there were eight planned comparisons
conducted to investigate the relationships between the eight 45 degree
positions and the corresponding response times. The order of the
comparisons were conducted as the orientations occur clockwise around the
compass rose.

The first planned comparison was between the response times of the
orientations of the 360 degree position, when the triangle was directed ahead
of the aircraft so that no mental rotation was required, and the 045 degree
position. The hypothesis was confirmed between these two variables since
there was a significant increase in the response times required for the

participants to orientate between the 360 position and the 045 position, F(1,

720) = 25.90, p. <.001.

27

The second planned comparison of response times was conducted
between the orientations of the 045 position and the 090 position. There was
not a significant difference between these two positions, F(1, 720) = 0.48, p. <
.489. Even though this comparison is not significantly different, it was found
that the participants took longer to orientate at the 045 degree position than at
the 090 position. This does not supports the main hypothesis in that the
participants did not take longer to mentally rotate and orientate the 090 as
compared to the lesser amount of rotation required, the 045. However, this
result was anticipated by the third hypothesis, discussed later, which
investigated the time required for the participants to mentally rotate and
orientate the cardinal versus the non-cardinal headings.

The third planned comparison between the 090 orientation and the 135
degree orientation concluded that there was a significant difference in
response times, F(1, 720) = 5.24, p. <.022. This comparison supports the
main hypothesis in that the participants took longer to mentally rotate and
orientate at the 135 degree position than at the 090 degree position. This was
again expected since the angle of rotation required was higher.

The planned comparison between the 135 orientation and the 180
orientation concluded that there was a significant difference in response
times, F(1, 720) = 37.15, p. <.001. When the triangle was directly behind the
aircraft symbol, at the 180 position, the participants were significantly faster at

orientating the location of the triangle. This supports the main hypothesis

28

since it was anticipated that the response would begin to lower as the angle of
rotation approached the 180 position. As discussed and supported from the
literature, it was common for individuals to mentally rotate up to the 180
degree position. So even though it is numerically higher moving from the 090
to the 180 position, the actual amount of mental rotation becomes less when
orientating with items from directly behind. Then, as the angle of rotation
proceeds past the 180 position, the actual amount of required mental rotation
begins to increase up to the 270 position. From that point, it begins to lower
again when approaching the 360 position, or at the straight ahead position.
This is further supported by the almost symmetrical formation of mean
response times found on Figure 5.

The planned comparison of the response times between the 180
orientation and the 225 orientation also supports the hypothesis since there
was a significant increase in the response times, F(1, 720) = 36.57, p. <.001.

The planned comparison conducted between the 225 orientation and
the 270 orientation concluded that there was a significant decrease in
response times, F(1, 720) = 11.71, p. <.001. Likewise with the 090 position,
this does not support the main hypothesis since the amount of rotation is
increased while the response times decreased. However, in accordance to
the third hypothesis, this was also anticipated so that the cardinal
headings/positions would require lower response times to mentally rotate and

to orientate than with the non-cardinal headings/positions.

29

The seventh planned comparison was conducted between the 270
orientation and the 315 orientation. The main hypothesis that the response
times required to mentally rotate and orientate would increase as the amount
of rotation increased was again supported by the significant increase in
response times F(1, 720) = 6.96, p. < .008.

The planned comparison conducted between the 315 orientation and
the 360 orientation found a significant decrease in response times, F(1, 720)
= 34.31, p. <.001. Similar to the 180 position, even though the numerical
angle of rotation is higher, the actual amount of mental rotation is lower; thus
lower response times. This again supported the main hypothesis and the
explanation of the symmetrical “M” shaped formation of the mean response
times correlating to the angles of rotation (see figure 5).

The final planned comparison for the response times was conducted
between the cardinal headings/orientations (360, 090, 180, & 270) and the
non-cardinal headings (045, 135, 225, & 315). The third hypothesis which
stated that the response times would be lower for the cardinal headings than
for the non-cardinal headings was confirmed with a significant difference, F(1,
720) = 64.53, p. <.001. The mean response times in seconds for the cardinal
orientations was 2.56 where as the non-cardinal orientations resulted with a
mean of 3.49.

Accuracy. A two-way ANOVA was conducted and a significant

difference was found between the eight 45 degree orientations, F(7, 720) =

5.32, p.< .001. The resulting mean accuracy rates for each of the eight

orientations are shown in Table 2.

Table 2

Resulting Mean Accuracy Rates

The eight 45 degree orientations

Resulting accuracy rates

360 degree orientation
045 degree orientation
090 degree orientation
135 degree orientation
180 degree orientation
225 degree orientation
270 degree orientation

315 degree orientation

93.96%

93.82%

86.68%

89.69%

95.47%

93.68%

85.44%

91.07%

30

31

80 T T T T T T T 1
360 45 80 136 180 226 270 316 360

Figure 6. Function of Mean Accuracy Rates and Amount of Angular

Displacement.

In order to test the hypothesis, there were eight planned comparisons
conducted in order to investigate the relationships between the eight 45
degree positions and the corresponding accuracy rates. The order of the
comparisons were conducted as the orientations occur clockwise around the
compass rose.

The first planned comparison was between the accuracy rates of the
orientations of the 360 degree position, when the triangle was directed ahead
of the aircraft so that no mental rotation was required, and the 045 degree
position. Even though there was a decrease in the accuracy rates, the
hypothesis was not confirmed between these two variables since there was
not a significant decrease in the accuracy rates when the participants
mentally rotated between the 360 orientation and the 045 orientation, F(1,

720) = .004, p. < .951.

32

The second planned comparison of the accuracy rates was conducted
between the orientations of the 045 position and the 090 position. There was
a significant difference between these two positions, F(1, 720) = 10.02, p. <
.001. It was found that the participants were less accurate with the 090
orientations than the 045 degree position. This supports the main hypothesis
in that the participants accuracy did decrease as the amount of mental
rotation increased. However, this result was not anticipated by the third
hypothesis, discussed later, which investigated the accuracy rates for the
participants to mentally rotate and orientate the cardinal versus the non-
cardinal headings.

The third planned comparison between the 090 orientation and the 135
degree orientation concluded that there was not a significant difference in the
accuracy rates, F(1, 720) = 1.79, p. <.181. This comparison does not support
the main hypothesis in that the participants answered the 135 degree
orientation more accurately than the 090 degree orientation. This was not
expected since the angle of rotation required was higher.

The planned comparison between the 135 orientation and the 180
orientation concluded that there was a significant difference in accuracy rates,
F(1, 720) = 6.54, p. <.011. When the triangle was directly behind the aircraft
symbol, at the 180 position, the participants were significantly more accurate
at orientating the location of the triangle. This supports the main hypothesis

since it was anticipated that the accuracy would become higher as the angle

33

of rotation approached the 180 position. As discussed and supported earlier,
it was common for individuals to mentally rotate up to the 180 degree position.
So even though it is numerically higher moving from the 090 to the 180
position, the actual amount of mental rotation becomes less when orientating
with items from directly behind. Then, as the angle of rotation proceeds past
the 180 position, the actual amount of required mental rotation begins to
increase up to the 270 position. From that point, it begins to decrease again
when approaching the 360 position, or at the straight ahead position. This is
further supported by the almost symmetrical formation of the accuracy rates
found on Figure 6.

The planned comparison of the accuracy between the 180 orientation
and the 225 orientation did not support the hypothesis since there was a not a
significant decrease in accuracy, F(1, 720) = .626, p. <.429. Again, there was
the anticipated decrease in accuracy since the amount of required mental
rotation was higher, but it was not significant.

The planned comparison conducted between the 225 orientation and
the 270 concluded that there was a significant decrease in accuracy, F(1,
720) = 13.35, p. <.001. This comparison supports the main hypothesis since
the increase in the amount of required mental rotation occurred with a
decrease in accuracy.

The seventh planned comparison was conducted between the 270

orientation and the 315 orientation. The main hypothesis that the accuracy

34

rates would produce better results as the amount of required mental rotation
decreased was again supported by the significant increase in accuracy,
F(1,720) = 6.23, p. <.013.

The planned comparison conducted between the 315 degree
orientation and the 360 degree orientation was not significant for accuracy,
F(1, 720) = 1.63, p. <.201. Similar to the 180 position, even though the
numerical angle of rotation is higher, the actual amount of mental rotation is
lower; thus producing higher rates of accuracy. The symmetrical formation of
the mean accuracy rates correlating to the angles of required mental rotation
can be easily identified when comparing the two 180 degree halves of Figure
6.

The final planned comparison for the response times was conducted
between the cardinal headings/positions (360, 090, 180, & 270) and the non-
cardinal headings (045, 135, 225, & 315). The fourth hypothesis which stated
that the accuracy rates would be higher for the cardinal headings than for the
non-cardinal headings was rejected since there was not a significant
difference between them, F(1, 720) =2.22, p. <.136.

The analysis of the interaction results for the response times and
accuracy rates was not conducted due to its lack of relevance to the
hypothesis and the overall scope of the study. The interactions would have
been an investigation of the response times and accuracy rates over time:

meaning, how they interacted and differed as the trials progressed

35

throughout the experiment. This would have been appropriate if the stimulus
for each of the eight variables were identical. However, as previously stated in
the design section, each participant completed a total of 64 trials, eight trials
for each of the eight variables. The eight trials for each variable were not
identical even though the correct responses were the same. The location and
direction of the aircraft symbol appeared at all of the different headings
possible at each of the eight 45 degree positions around the triangle.
Therefore, with this specific experimental design, the investigation of the
effects of the response times and accuracy rates over time would not be of

great relevance to the testing of the hypothesis for this study.

Summary

The investigation of the relationships between the amount of mental
rotation required for orientation, response times, and accuracy rates was
conducted and three of the four hypothesis were supported by the statistical
data analysis. The first hypothesis stated that as the amount of mental
rotation required increased from the straight ahead position (360) and from
the directly behind position (180), the response times will similarly increase.
The overall ANOVA for this hypothesis concluded with a significant difference
in response times between the eight 45 degree orientations. Additionally, all
but one of the eight planned comparisons conducted between the eight
orientations confirmed the hypothesis, as indicated by the “M” shaped curve
in figure 5. However, even though the second planned comparison did not
indicate a significant difference, the participants took longer to mentally rotate
at the 045 degree position than at the 090 degree position. When compared
to the resuilts of the Hintzman, O’Dell, and Arndt (1981) study which provided
the experimental design basis for this study, the curves depicting the function
between response times and angular displacement are very similar (Figures 4
& 5).

Similarly, the third hypothesis which investigated the mental rotation of
the cardinal directions (360, 090, 180, and 270) versus the non-cardinal
directions (045, 135, 225, and 315) was tested. The hypothesis was

confirmed with the participants taking significantly longer to respond to the

36

37

non-cardinal headings. Therefore, the participants took longer to orientate the
position of the triangle as the amount of required mental rotation increased
from their straight ahead and directly behind positions. This result supports
the previously referenced studies such as that of Loftus (1978) and Hintzman
et al. (1981).

These results along with those of Aretz (1988, 1989) suggests the
design of future displays and interfaces should be a track-up design as well
as providing the availability of rotating the display by 90 degrees. This feature
may be helpful when using a static computer display such as a MRI or X-Ray.
The image can be rotated by the four 90 degree positions (i.e., cardinal
headings) to allow faster, maybe easier orientation and understanding of the
items being displayed.

The second hypothesis stated that as the amount of mental rotation
required increases from the straight ahead position (360) and from the directly
behind position (180), the accuracy rates will decrease. The overall ANOVA
for this hypothesis indicated a significant difference in accuracy rates between
the eight 45 degree orientations. However, the results from this portion of the
study were very surprising. Only four out of the eight planned comparisons
confirmed the hypothesis with significant differences. Even though the high
accuracy rates did occur as expected at the 360 and 180 orientations, the 090
and 270 orientations had the lowest accuracy rates. The resulting “W” shaped

curve (figure 6) was anticipated, but not with the 090 and 270 orientations

38

resulting in lower accuracy rates than the two non-cardinal headings on either
side of them. In other words, the “true” anticipated function (i.e., the Hintzman,
et al. study, Figure 4) would have shown a decrease in accuracy between the
360 and 180 positions as well as the 090 and 270 positions resulting with
higher accuracy rates than the 045, 135, 225, and 315 positions surrounding
them respectively.

However, the results indicated that the participants had the hardest
time locating whether the triangle was to the left or to the right of the aircraft
symbol. Additionally, the majority of the incorrect responses made within
these two orientations were of an inverse nature; meaning that the majority of
the incorrect responses for the 090 orientation were answered as a 270
orientation and vice versa. This suggests that since the left and right
decisions at the 180 degree orientation are reversed in relation to their
position at the 360 degree orientation, the ability to accurately mentally rotate
and orientate the 090 and 270 positions may be influenced by a possible
reversal error. The ability to handle this reversal may be important.

Another possibility for the reversal errors of the two orientations may
have been due to the influence of the target-centered experimental design.
Unlike previous studies (i.e., Hintzman et al.), the stimulus of the experiment,
the aircraft symbol, was not fixed while the target (the triangle) remained in
the center of the screen. Therefore, the reversal problem of the subjects to

accurately orientate the left and right positions may have also been due to

39

this change of stimulus and task.; thus possibly requiring a different cognitive
process of conducting mental rotation required for spatial orientation.

As a result of this occurrence at the 090 and 270 orientations, the
fourth hypothesis which investigated the accuracy rates for the mental rotation
of the cardinal directions (360, 090, 180, and 270) versus the non-cardinal
directions (045, 135, 225, and 315) was rejected. Even though there was not
a significant difference between them, the cardinal headings did not score as
highly as the non-cardinal orientations which was most likely due to the 090
and 270 phenomena. Additionally, other possible factors which may have
been of influence for this occurance may be: 1) the location and distance
differences of the response keys and 2) an ergonomically defined position of
the hand used to respond was not specified.

Therefore, further research should explore the relationship between the
amount of mental rotation required for spatial orientation and accuracy.
Special attention should be applied to evaluating the conditions that lead to
left and right reversal errors and their potential significance in flight. If such
research will help to provide a better understanding between these two
variables, then the design of future navigational displays and interfaces will

perhaps result in more accurate performance by the users.

40

References

Aretz, A. J. (1988). A model of electronic map interpretation.
Proceedings of the Human Factors Society - 32nd Annual Meeting, 130-134.

Aretz, A. J. (1989). Spatial cognition and navigation. Proceedings of
the Human Factors Society - 33rd Annual Meeting, 8-12.

Berg, C., Hertzog, C., & Hunt, E. (1982). Age differences in the speed
of mental rotation. Developmental Psychology, 18, 95-107.

Bethell-Fox, C., & Shephard, R. (1988). Mental rotation: Effects of
stimulus complexity and familiarity. Journal of Experimental Psychology:
Human Perception and Performance, 14(1), 12-23.

Burton, L. A, Wagner, N., Lim, C., & Levy, J. (1992). Visual field
differences for clockwise and counterclockwise mental rotation. Brain and
Cognition, 18, 192-207.

Cook, N. D, Fruh, H., Mehr, A, Regard, M., & Landis, T. (1994).
Hemispheric cooperation in visuospatial rotations: Evidence for a
manipulation role for the left hemisphere and a reference role for the right
hemisphere. Brain and Cognition, 25, 240-249.

Cooper, L. A, & Podgorny, P (1976). Mental transformations and
visual comparison processes: effects of complexity and similarity. Journal of
Experimental Psychology: Human Perception and Performance, 2(4), 503-

514.

41

Cooper, L. A., & Shepard, R. A. (1973). The time required to prepare
for a rotated stimulus. Memory and Cognition, 1(3), 246-250.

Corballis, M. C., & Cullen, S. (1986). Decisions about the axes of
disoriented shapes. Memory and Cognition, 14(1), 27-38.

Damos, D. A. (1991). Training mental rotation skills. In E. Farmer (Ed.),
Human Resource Management in Aviation (pp. 67-70). Aldershot, England:
Avebury Technical.

Hintzman, D. L., O’Dell, C. S., & Arndt, D. R. (1981). Orientation in
cognitive maps. Cognitive Psychology, 13, 149-206.

Hock, H. S., & Ross, K. (1975). The effect of familiarity on rotational
transformation. Perception & Psychophysics, 8(1), 15-20.

Hock, H. S., & Tromley, C. L. (1978). Mental rotation and perceptual
uprightness. Perception & Psychopyhsics, 24(6), 529-533.

Jolicoeur, P. (1985).The time to name disorientated natural objects.
Memory & Cognition, 13(4), 289-303.

Jones, B., & Anuza, T. (1982). Effects of sex, handedness, stimulus
and visual field on “mental rotation”. Cortex, 18, 501-514.

Koriat, A., & Norman, J. (1984). What is rotated in mental rotation?
Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(3),

421-434.

42

Koriat, A., & Norman, J. (1988). Frames and Images: Sequential effects
in mental rotation. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 14(1), 93-111.

Kozlowski, L. T., & Bryant, K. J. (1977). Sense of direction, spatial
orientation, and cognitive maps. Journal of Experimental Psychology: Human
Perception and Performance, 3(4), 590-598.

Loftus, G. R. (1978). Comprehending compass directions. Memory &
Cognition, 6(4), 416-422.

Maki, R. H. (1986). Naming and locating the tops of rotated pictures.
Canadian Journal of Psychology, 40(4), 368-387.

Pylyshyn, Z. W. (1979). The rate of “mental rotation” of images: A test
of a holistic analogue hypothesis. Memory & Cognition, 7(1), 19-28.

Shepard, R. N., & Hurwitz, S. (1984). Upward direction, mental rotation,
and discrimination of left and right turns in maps. Cognition, 18, 161-193.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-
dimensional objects. Science, 171, 701-703.

Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial
knowledge acquired from maps and navigation. Cognitive Psychology, 14,
560-589.

Uecker, A., & Obrzut, J. E. (1993). Hemisphere and gender differences

in mental rotation. Brain and Control, 22, 42-50.

APPENDIX A

KEYBOARD LEGEND

43

315°

270°

225°

44

45°

90°

135°

APPENDIX B

MENTAL ROTATION/ORIENTATION COMPUTER PROGRAM

45

Fd

Name BOXC

Type Toolbox module

Language Microsoft QuickC version 2
Video Color or monochrome text mode

*/

#include <stdio h>
#include <stdlib h>
#include <malloc h>
#include <dos h>
#include <stnng h>
#include <graph h>
#mnclude “box h"

static void determine_video (void),
static unsigned video_seg = 0,
static char far *videoptr;

static int columns,

/.
Function box_get()
Toolbox BOXC
Demonstrated BOXTEST C MENU C

Parameters
(input) rowl Upper left comner of box
(input) coll Upper left comer of box
(nput) row2 Lower nght corner of box
(nput) col2 Lower nght comer of box

Returmned Address of far integer buffer containing data
saved from the rectangular area of screen

Vanables 1 Looping index for lines in box
width Width of box area
height Height of box area
bytes Total number bytes to store box data
buf Address of far buffer for storage
bufptr Index into storage buffer memory
video_off Offset of video address for box data

Descnption Saves contents of a rectangular area of the
screen 1n a dynamically allocated buffer

*!

unsigned far *box_get(unsigned row1, unsigned col1,
unsigned row2, unsigned col2)
{

unsigned 1, width, height, bytes,
unsigned far *buf, far *bufptr,
unsigned video_off,

/* Calculate the dimensions in bytes */
width = (col2-colt +1)* 2,

height = row2 - row1 + 1,

bytes = height * width + 8

/* Allocate storage space */
if ((buf = (unsigned far *)malloc((size_t)bytes)) == NULL)

{
prntf("box_get() malloc() falled\n”),
ext(0),

/* Save the box coordinates in the buffer */
bufptr = buf,

46

*bufptr++ = rowt,
*bufptr++ = colt,
*bufptr++ = row2,
*bufptr++ = col2,

I* Determine the text mode video segment and number of columns */
determine_wvideo(),

I* Calculate starting location in video memory */
video_off = (unsigned)((columns * (row1 - 1) +
(coll-1))*2),

/* Grab each Iine of the video */
for (1=0, 1< height, 1++)

movedata(video_seg, video_off,

FP_SEG(bufptr), FP_OFF(bufptr), width),
bufptr +=width/ 2,
video_off += columns * 2,

}

/* Return the buffer */
return (buf),

Il

Function box_put()
Toolbox BOXC
Demonstrated BOXTEST C MENU C

Parameters
(input) buf Far integer buffer previously created
by the function box_get()

Returned (function returns nothing)

Vanables rowl Upper left cormer of box
coll Upper left comer of box
row2 Lower nght comer of box
col2 Lower nght corner of box
1 Loop Index for each line of the box
width Width of the box
height Height of the box
bytes Total number of bytes in the box
video_off Offset of video address for box data
workbuf Index into the buffer

Description Restores screen contents that were saved n a
buffer by a previous call to box_get()

Wi
void box_put(unsigned far * buf)

unsigned row1, col1, row2, col2,
unsigned 1, width, height, bytes,
unsigned video_off,

unsigned far *workbuf,

/* Get the box coordinates */
workbuf = buf,

row1 = *workbuf++,

col1 = *workbuf++,

row2 = *workbuf++,

col2 = *workbuf++,

/* Calculate the dimensions in bytes */
width = (col2-coll +1)* 2,

height = row2 - row1 + 1;
bytes = height * width;

* Determine the text mode video segment and number of columns */
determine_video();

/* Calculate starting location in video memory */
video_off = (columns * (row1 -1)+ (col1 -1))*2;

/* Put each line out to video */
for (i=0;i < height; i++)

{

movedata(FP_SEG(workbuf), FP_OFF(workbuf),
video_seg, video_off, width);

workbuf += width / 2;

video_off += columns * 2;

}

/-
Function: box_color()
Toolbox: BOX.C
Demonstrated: BOXTEST.C MENU.C

Parameters:
(input) rowt Upper left comer of box
(input) coll Upper left comer of box
(input) row2 Lower right comer of box
(input) col2 Lower right comner of box

Retumed: (function returns nothing)

Variables: x Looping index for each row of box
y Looping index for each column of box
fore Current foreground text color
back Curment background text color
attr Attribute byte combining fore and back

Description: Sets the foreground and background colors for
all characters in a box to the current colors.
Characters in the box are unaffected

*/

void box_color (unsigned row1, unsigned col1,
unsigned row2, unsigned col2)
{

unsigned x, y;
unsigned fore;
unsigned long back;
unsigned char attr;

/* Determine the text mode video segment and number of columns */
determine_video();

/* Build the attribute byte */
fore = _gettextcolor();
back = _getbkcolor();
attr = (unsigned char)((fore & OxF) |
({((fore & 0x10) >> 1) | back) << 4));

I* Work through the box */
for { x =row1 - 1; X < row2; x++)
for (y=coll - 1,y <col2; y++)
*(videoptr + (columns *x+y)* 2+ 1) =attr;

*f

Function box_charfill()
Toolbox BOXC
Demonstrated BOXTEST C MENUTEST C

Parameters
(input) rowl Upper left comer of box
(nput) colt Upper left comer of box
(nput) row2 Lower nght corner of box
(nput) col2 Lower nght corner of box
(mput)y ¢ Character used to fill the box

Returned (function retums nothing)

Vanables x Looping index for each row of box
y Looping index for each column of box

Descnption Fills a rectangular area of the screen with a
character Attnbutes are unaffected

void box_charfill (unsigned row1, unsigned col1,

{

*

unsigned row2, unsigned col2, unsigned char ¢)

unsigned x, v,

I* Determine the text mode video segment and number of columns */
determine_wideo(),

/* Work through the box */
for (x =row! - 1, X < row2, x++)
for (y=coll -1,y <col2, y++)
*(wvideoptr + (columns *x+y)*2)=c,

Function box_draw()
Toolbox BOXC
Demonstrated BOXTEST C MENU C

Parameters
(input) rowl upper left comer of box
(nput) coll upper left comer of box
(input) row2 lower nght corner of box
(nput) col2 lower nght comer of box
{input) Ine_type Indicates single-line or double-
line box border (or none)

Returned (function retums nothing)

Vanables X Keeps track of honzontal position
y Keeps track of vertical position
dx Honzontal motion increment
dy Vertical motion increment
c Character for each part of the border

Descnption Draws a single-line or double-line box border
around a box Does not affect attnbutes

void box_draw(unsigned row1, unsigned col1,

{

unsigned row2, unsigned col2, unsigned line_type)

unsigned x, y, dx, dy,
unsigned c,

49

* Determine the text mode video segment and number of columns */
determine_wvideo(),

* Work around the box */
x = colt,

y = rowt,

dx=1,

dy: Ov

do

{

I* Set the default character for unbordered boxes */
c=""

I* Set the single-ine drawing character */
f (line_type==1)
if (dx)
c = 196,
else
c=179,

/* Set the double-line drawing character */
else If (ine_type == 2)
if (dx)
¢ =205,
else
c =186,

* Change direction at top nght corner */
f(dx==18&&x==col2)
{
dx =0,
dy=1,
if (line_type ==1)
c=191,
else if (line_type ==2)
c=187,
}

I* Change direction at bottom nght corner */
f(dy==18&8&y==row2)

{

dx =1,

dy=0,

If (hne_type ==1)
c =217,

else if (line_type ==2)
¢ =188,

}

/* Change direction at bottom left corner */
f (dx==-1&& x==coll)
{
dx =0,
dy=-1,
if (hne_type == 1)
c=192,
else if (ine_type ==2)
c =200,
}

I* Check for top left comer */
if (dy ==-1&&y==rowl)
{

if (hne_type ==1)
c=218,

else If (hne_type == 2)
c =201,

}

50

I* Put new character to video */
*(videoptr + (columns * (y-1)+(x-1))*2)=(char)c,

/* Move to next position */

X += dx,
y+=dy,

}
while (dy '= -1 |}y >=row1),

Function box_erase()
Toolbox BOXC
Demonstrated BOXTEST C MENU C

Parameters
(input) rowl Upper left comner of box
(input) coli Upper left comer of box
(input) row2 Lower nght comner of box
(input) col2 Lower nght comer of box

Returned (function retums nothing)

Vanables [Looping index for each row of the box
buf Stnng of spaces for each row

Descnption Fills 2 box with spaces Uses the current color
attnbutes

!

void box_erase(unsigned row1, unsigned col1,
unsigned row?2, unsigned col2)
{

unsigned 1,
char buf[81],

/* Fill the buffer with spaces */
spnntf(buf, “%*s", col2-col1 +1,™),

/* Put each line out to video */
for (1=row1, 1 <= row2, 1++)

{

_settextposition(1, col1),
_outtext(buf),

}

Function determine_wideo()

Note STATIC FUNCTION AVAILABLE ONLY TO THIS MODULE
Language Microsoft QuickC

Toolbox BOXC

Parameters (none)

Retumed (function returns nothing)

Vanables (none)

Description Determines the text mode video segment and the
number of character columns curently set

Fills in static vanables that are
available only to the functions in this module

51

*/
static void determine_video(void)
if (lvideo_seg)

/* Determine the text mode video segment */
switch (*((char far *)0x449))
{

case 0:

case 1:

case 2

case 3:
video_seg = OxB800;
videoptr = (char far *)0xB8000000;
break;

case 7:
video_seg = OxBOQO;
videoptr = (char far *)OxB0000000;
break;

default:
printf(“BOX.C: not in text mode\n");
exit(0);

}

/* Determine number of columns for current text mode */
columns = *((int far *)Ox44A);
}

52

/v
Name DATA_PLTC
Type Student data routines
Asr Traffic Control Screening Program
Language Microsoft QuickC version 2

*/

#include <stdio h>
#include "getkey h"
#include "typ_init h"
#include "edit h*
#nclude “list A"
#include “file h"
#include "menu h"
#include "box h*
#include "data_pit h"”
#include "t_colors h"

#define nght "RIGHT"
#define left “LEFT"
#define male “MALE"
#define female "FEMALE"

char *info_box_1{] =

" Student Information Entry *,

* Have you already been entered into the ",
" roster of qualified users? ",

"< Yes or No >",

NULL

}D
char "info_box_2[} =

" Student Information Entry ",

" finter a unique 9 character identifier that *,
" | can use to identify you in the future “,

" Most people use therr SS# number *,

n > "'
n<>u,

NULL
b

char *info_box_3[] =

" Student Information Entry “,
Y l"lease enter your unique identifier at the ",
" identifier below ",

" .
>,
"ot

NULL
h

char *info_box_4{] =

" Student Information Entry °,

" Are you RIGHT handed or are you LEFT handed? ",

"< Right or Left >",
NULL
h

char *Iinfo_box_5[] =

{
* Student Information Entry “,

" is it correct that you are RIGHT handed ? ",
< Yes or No >",

NULL

}l

char *info_box_6[] =

* Student Information Entry “,

" I's it correct that you are LEFT handed ?*,
" Yes or No >",

NULL

}’

char *info_box_7[] =

{

* Student Information Entry ",

* I"m sorTy you are not in the table ",
" of registered users “,

" Press any key >,
NULL
h

char "info_box_8[) =

" Student Information Record “,

* Are you MALE or FEMALE 2",
< Male or Female >",

NULL

3

char *info_box_9[] =

" Student Information Record ",

" étudent Identifier "

" Ililght or Left handed ",

" Male or Female

" 1S THE ABOVE INFORMATION CORRECT? "

"e Yes or No >",
NULL
L

char *info_box_10[] =
" Student Information Entry *,

" I's 1t correct that you are a MALE 7",

"e Yes or No >",
NULL
b

char *info_box_11[] =

{
* Student Information Entry ”,

" Is it correct that you are a FEMALE ?*,

"< Yes or No >",
NULL
I3

char *info_box_20(} =

" Student Information Entry *,

" |"m sorry another user already uses that ”,
" identfier Piease try another one ",

< Press any key >",
NULL
.

char *drop_nght_left{] =
“Right",
“Left’,

NULL
b

char *drop_male_female[] =

{

"Male".
"Female”,

NULL
h

char *drop_yes_no[] =
"No",

NULL

Funchtion Function to determine whether candidate
s male or female

File TEST_1C
Parameters None

Retumed
{output) ‘M’ - f candidate 1s male
'F' - if candidate i1s female

Vanables None

Descnption Function to deterrmine whether candidate 1s male
or female

char Male_or_female(void)

int finish = 0,
nt male_female,
int *save_info_box,

int yes_no,

while(finsh==0) {
I* Display info_box_8 */
save_info_box = menu_message(5, 8, info_box_8),

I* Get student answer male or female ? */
menu_erase(menu_drop(12, 30, drop_male_female, &male_female)),

I* Erase info_box_8 */
menu_erase(save_info_box),

/.
male_female = 1 ==> Male
male_feamle = 2 ==> Female
*/

if (male_female == 1) {
I* Confirm whether student is male */
I* Display info_box_10 */
save_info_box = menu_message(5, 8, info_box_10),

I* Get student answer yes orno 7 */
menu_erase(menu_drop(12, 30, drop_yes_no, &yes_no)),

I* Erase info_box_10 */
menu_erase(save_info_box),

else {
I* Confirm whether student 1s female */
I* Display info_box_11 */
save_info_box = menu_message(5, 8, info_box_11),

I* Get student answer yes or no ? */
menu_erase(menu_drop(12, 30, drop_yes_no, &yes_no)),

I* Erase info_box_11 */
menu_erase(save_info_box),

}

if(yes_no==1)
f* Student entry was correct => set flag to qurt loop */
fimsh =1,

if (male_female ==1)
retumn(M’),

else
retumn(F),

/.
Function to determine whether student 1s nght
or left handed

Wi

char Right_or_left_handed(void)

int finish = 0,

nt nght_or_left,

int yes_no,

nt *save_info_box,

while(finsh==0) {
/* Display info_box_4 */
save_info_box = menu_message(5, 8, info_box_4),

I* Get student answer right or left 7 */
menu_erase(menu_drop(12, 30, drop_night_left, &nght_or_left)),

56

I* Erase info_box_4 */
menu_erase(save_info_box);

IQ
right_or_left = 1 ==> Right handed
right_or_left = 2 ==> Left handed
*/

if (right_or_left ==1){
I* Confirm whether student is right handed */
I* Display info_box_5 */
save_info_box = menu_message(5, 8, info_box_5);

I* Get student answer yes or no ? */
menu_erase(menu_drop(12, 30, drop_yes_no, &yes_no });

* Erase info_box_5 */
menu_erase(save_info_box };
}
else {
I* Confirm whether student is left handed */
I* Display info_box_6 */
save_info_box = menu_message(5, 8, info_box_6);

I* Get student answer yes or no ? */
menu_erase(menu_drop(12, 30, drop_yes_no, &yes_no));

I* Erase info_box_6 */
menu_erase(save_info_box);

}

if(yes_no==1)
I* Student entry was correct => set flag to quit loop */
finish = 1;

}
if (right_or_left == 1)
retum(R’);
else
retumn(’L’);
}

/l
Define procedure for getting student data plate
*/

void get_student_data(NODE *h, STUDENT_RECORD *new_student, long *positn)
{
int counter;
int qualified_user_answer;
int far *save_info_box;
int finish = 0;
int key;
long offset;
char unique_ident[10];
char r_|_handed;
char male_female;

while (finish ==0) {
I Clear unique_ident */
for (counter = 0; counter <= 8; counter++)
unique_ident[counter] =",
unique_ident[9] = "\0";

I* Display info_box_1 */
save_info_box = menu_message(S, 8, info_box_1);

I* Get student answer yes or no ? */
menu_erase(menu_drop(10, 30, drop_yes_no, &qualified_user_answer)),

* Erase info_box_1 */
menu_erase(save_info_box),

/‘
qualified_user_answer = 1 ==> yes
qualfied_user_answer = 2 ==> no
“/

if (qualified_user_answer == 1) {
I* Display info_box_3 */
save_info_box = menu_message(5, 8, info_box_3),

I* Get umique identifier */
_settextposition(10, 18),
edithine(unique_ident),

* Erase info_box_3 */
menu_erase(save_info_box),

I* Check student identifier with those held on disk */
offset = check(h, unique_ident),

/* Save position on disk */
‘positn = offset,

/Q
offset ==0 => student not registered
offset <> 0 => student 1s a registered user
*/

if (offset == 0L) {
7* Display info_box_7 */
save_info_box = menu_message(10, 8, info_box_7),

getkey_or_mouse(),

I* Erase info_box_7 */
menu_erase(save_info_box),

}

else {
* fetch student record */
Fetch(offset, new_student),

I* Set fimsh flagto 1 */
finish = 1,

}

else {
/* Display info_box_2 */
save_info_box = menu_message(5, 8, info_box_2),

I* Get unique identifier */
_settextposition(11, 18),
edthne(unique_ident),

I Erase info_box_2 */
menu_erase(save_info_box),

I* Check student identifier with those held on disk */
offset = check(h, umique_ident),

[* Save position on disk */
*positn = offset,

* offset <> OL then another student uses that identifier */
if (offset '=0L) {

58

}

}

}

I Display info_box_20 */
save_info_box = menu_message(10, 8, info_box_20);

getkey_or_mouse();

/* Erase info_box_20 */
menu_erase(save_info_box),
}
else {
/* Determine whether right or left handed */
r_I_handed = Right_or_left_handed();

/* Determine whether student is male or female */
male_female = Male_or_female();

/* Last chance for student to validate entered information */
/* Dispiay info_box_9 */
save_info_box = menu_message(3, 8, info_box _9);

I Display student identifier */
_settextposition(5, 33);
_outtext(unique_ident);

I* Display whether student is right or left handed */
_seftextposition(7, 33);
if (r_]_handed =='R')
_outtext(right);
else
_outtext(left);

/* Display whether student is male or female */
_settextposition(9, 33);
if (male_female =="M')
_outtext(male);
else
_outtext(female);

/* Get student answer yes or no ? */
menu_erase(menu_drop(16, 30, drop_yes_no, &qualified_user_answer));

/* Entered information correct */
if (qualified_user_answer ==1) {

* Initialize student record for new student */

for (counter = O; counter <= 9; counter++)
new_student->qualifierjcounter) = unique_ident{counter];

new_student->r_|_handed = r_|_handed;

new_student->male_female = male_female;

/* Set finish flagto 1 */
finish=1;
}

/* Erase info_box_9 */
menu_erase(save_info_box);

}

59

/t

Name DSK_INITC
Type Routines to manipulate student data, and
student index files on disk
Air Traffic Control Screening Program
Language Microsoft QuickC version 2

*/

#include <stdio h>
#include <conio h>
#include "getkey h"
#include “typ_init h"
#include "list h"
#include "fiie h"
#include "dsk_init h*
#include "menu h"
#include "box h"
#include “t_colors h"

/* Error message data */
char *error_box _1_01[] =

{

" Error Message #1 01 ",

" Unable to access the following “,
" file STUDENT DAT",

"< Press any key >",

NULL

h

char *error_box_1_02[] =

{

" Error Message #1 02,

" Unable to access the following ",
" file STUDENT NDX",

"< Press any key >",

NULL
h
f¥ e e e e meeeeaiccmcmccaaaan

Function Inhalize()

File DSK_INITC

Parameters

(nput) hd pointer to head of linked hst of type
NODE
tl pointer to tail of linked hst of type

NODE

Returned (function returns nothing)

Vanables resutt Retumn value from function cali
1 = file on disk
0 = file not on disk
nrecs Number of records in student data file

Descnption Function to detrmine whether student index file
1s on disk If there exists a student index file
contents of # are read into a linked hist

void Inttialize(NODE **hd, NODE **ti)

{

60

int result;

int nrecs;

int counter;

int "save_error_box;

* set the head and tail pointers */
*hd = NULL,; *tl = NULL;

,Q
Create index file
*/
Create_index_file();

1* Determine whether index file is on disk */
result = Index_on_disk();
/l
result == => Index on disk
result == => [ndex not on disk
*/
if (resut==0)
/.
Index not on disk return to caller.
*f
retum;
else {
,'
Read student data file to determine number of records in file.
*/
nrecs = Num_records();
if (nrecs ==0){
I'
nrecs ==0 => Efor reading student data file
*/

/.
set error box color to red
set error text color to white
*/
menu_back_color(BK_RED);
menu_text_color(T_WHITE | T_BRIGHT),

/* Display error_box_1_01*/
save_error_box = menu_message(10, 8, error_box_1_01);

getkey_or_mouse();

/* Erase error_box_1_01*/
menu_erase(save_error_box);

,‘
set box color back to cyan
set text color back to black
*
menu_back_color(BK_WHITE);
menu_text_color(T_BLACK);

else {
/l
Read information in indexfile
into linked list
*/
result = index_to_link_list(nrecs, hd, I);
I.
result==1 => Function successful
result==0 => Emorin reading file!
*/
if (result ==0){
,Q

set error box color to red

set error text color to white
*/
menu_back_color{ BK_RED),
menu_text_color(T_WHITE | T_BRIGHT),

I* Display error_box_1_02*/
save_error_box = menu_message(10, 8, error_box_1_02),

getch(),

/* Erase error_box_1_02*/
menu_erase(save_error_box),

/‘
set box color back to cyan
set text color back to black
*/
menu_back_color({ BK_WHITE),
menu_text_color(T_BLACK)),

}
}
}
}
[e e cecciccemmceccccemcaca—caan~
Function Stats_intialize()
File DSK_INITC
Parameters
(input) hd pointer to head of linked list of type
RES_NODE
ti pointer to tail of inked list of type
RES_NODE

Returned (function returns nothing)

Vanables resuit Return value from function call
1 = file on disk
0 = file not on disk
nrecs Number of records in student data file

Description Function to detrmine whether student dzta file
1s on disk If there exists a student data file
contents of it are read into a linked list

void Stats_intialize(RES_NODE **hd, RES_NODE **ti)
{

int resuilt,

int nrecs,

int *save_ervor_box,

* Determine whether student data file 1s on disk */
result = File_on_disk(),

1 => Fileondsk
0 => Filenoton disk

if (result==0)
/.
Index not on disk return to calier
*/
return,
else {
/!
Read student data file to determine number of records In file

62

Wi
nrecs = Num_records();
if (nrecs ==0){

/Q

nrecs == 0 => Error reading student data file
*
/
/.

set error box color to red

set error text color to white
*/
menu_back_color(BK_RED);
menu_text_color(T_WHITE | T_BRIGHT);

I* Display error_box_1_01*/
save_error_box = menu_message(10, 8, error_box_1_01),

getkey_or_mouse();

I* Erase error_box_1_01"*/
menu_erase(save_error_box),

I.
set box color back to cyan
set text color back to black
*/
menu_back_color(BK_WHITE };
menu_text_color(T_BLACK),
}
else {
/Q
Read information in indexfile
into linked hist
*/
result = Student_data_to_link_list(hd , ti);

I3
result == => Funchon successful
resuit == => Error in reading file!

*/

if (resutt==0){

/.

set error box color to red

set error text color to white
*/
menu_back_color(BK_RED),
menu_text_color(T_WHITE | T_BRIGHT),

/* Display error_box_1_01 */
save_error_box = menu_message(10, 8, error_box_1_01)

getkey_or_mouse();

I* Erase error_box_1_01 "/
menu_erase(save_error_box),

/C
set box color back to cyan
set text color back to black
*/
menu_back_color(BK_WHITE),
menu_text_color(T_BLACK),

63

Name EDITC

Type Toolbox module

Language Microsoft QuickC
Demonstrated EDITTEST C

Video (no special video requirements)

i

#include <stdio h>
#include <stdlib h>
#include <conio h>
#include <stnng h>
#include <graph h>
#include “edtt h"
#include "getkey h"

Function next_word()
Toolbox EDITC
Demonstrated EDITTESTC

Parameters
(nput) str Stnng to be evaluated
(nput) ndx Character position

Returned Character posttion of next word
Vanables len Length of the stnng

Descnption Finds the start of the next word In the string

int next_word(char *str, int ndx)
unsigned len,

I* Get the length of the stnng */
len = strien(str),

I* Move to end of the current word */
while (ndx < len && strindx} '="")
ndx++,

/* Move to the start of the next word */
while (ndx < len && strindx] =="")
ndx++,

/* If at end of string, back up to start of last word */
if (ndx == len)

ndx—,

/* Move back over any spaces */
while (ndx >= 0 && strindx] =="")
ndx—,

I* Move back over preceding word */
while (ndx >= 0 && strindx] !="")
ndx—,

* Move one step forward to start of preceding word */
ndx++,

}

/* Return the new position */
retumn (ndx),

Function prev_word()
Toolbox EDITC
Demonstrated EDITTEST C

Parameters

(nput) str Stnng to be evaluated

(nput) ndx Character position
Returned Character posttion of previous word
Vanables len Length of the stnng

Descniption Finds start of the previous word in the stnng

int prev_word(char *str, int ndx)

{

int len,

I* Get length of the string */
len = strien(str),

* Move back over nonspace characters in current word */
while (ndx && strfndx] 1="")
ndx--,

/* Move back over the spaces between words */
while (ndx && str{ndx}=="")
ndx-,

/* Move back over characters in previous word */
while (ndx >= 0 && str{ndx] '="")
ndx—,

/* Move to first character of the word */
while ((ndx < len && strindxj =="") || (ndx<0))
ndx++,

/* If all spaces, then move back to start of stnng */
if (ndx==len)
ndx =0,

/* Return the new position */
retumn (ndx),

Function delete_char()
Toolbox EDITC
Demonstrated EDITTESTC

Parameters
(nput) str Stnng to be evaluated
(input) ndx Character position
Returned Character position

Vanables (none)

Descnption Deletes one character from the stnng

int delete_char(char *str, int ndx)

65

int ndx_start,

/* Save current ndx */
ndx_start = ndx,

I* Shuffle characters back one space */
while (str{ndx])

{
str{ndx] = strindx + 1],
ndx++,

}

I* Retum the unchanged posttion */
retum (ndx),

Function insert_char()
Toolbox EDITC
Demonstrated EDITTESTC

Parameters
(input) str Stnng to be evaluated
(input) ndx Character position
(nput) ¢ Character to be inserted

Returned Next character posttion
Vanables 1| Looping index

Descnption Inserts a character into the stnng

int insert_char(char *str, int ndx, charc)

{
int1,

I* Shuffle characters nght one space */
for (1=strlen(str)-1, 1> ndx, 1-)

strfi] = strfi-1},

/* Put character in new postition */
strindx] = ¢,

/* Return next character position */
return (++ndx),

Function insert_spaces()
Toolbox EDITC
Demonstrated EDITTESTC

Parameters
(nput) str Stnng to be evaluated
(input) ndx Character position
(nput) n Number of spaces
Returned Next character position
Vanables | Looping index

Descnption Inserts a character into the stning

Int Insert_spaces(char *str, int ndx, int n)
int1,

* Shuffle characters to the nght n places */
for (1 = strlen(str), 1 >= ndx, I~)
ste]1 + n] = str{)],

/* Put n spaces in stnng */
while (n—)
stri++]="",

/* Move to the first character after inserted spaces */
retum (ndx+n-1),

Function replace()
Toolbox EDITC
Demonstrated EDITTEST C

Parameters
(nput) str Stning to be evaluated
(nput) substr1 Sub stnng to find
(input) substr2 Sub stnng to repiace substr1

Returned Number of replacements made

Vanables count Count of replacements made
len Length of str
len2 Length of substr2
[Looping index
shift Amount to shift for insert

Description Replaces each occurrence of substr1 in str
with substr2

int replace(char *str, char *substri, char *substr2)

int count = 0,
int len, len2,
int 1, shift,

/* Get length of replacement stning */
len2 = strien(substr2),

/* Determine amount of shift for each replacement */
shift = len2 - strien(substr1),

/* Process each occurrence of substr1 in str */
while ((str = strstr(str, substr1)) '= NULL)
{

* Keep track of number of replacements */
count++,

/* Find current length of str */
len = strien(str),

/* Shift left if substr2 is shorter than substri */
if (shit<0)

{
for (1=abs(shift),1<len+1,1++)
strli + shift] = str{i),

67

I* Shift nght If substr2 is longer than substr1 */
elsef (shit>0)
{

for (1=len,1,1-)
stif) + shift] = strfi],

I* Copy substr2 into new place in str */
strncpy(str, substr2, fen2),

/* Increment str pointer to character beyond replacement */

str +=len2,

}

I* Return the number of replacements made */
retumn (count),

Function edithne()
Toolbox EDITC
Demonstrated EDITTESTC

Parameters
(nput) str Stnng to be edited

Retumed KEY_UP If Cursor Up was last keypress
KEY_DOWN If Cursor Down was last keypress
KEY_ESCAPE If Escape was last keypress
KEY_ENTER If Enter was last keypress

Vanables doneflag Signals when to end the edit
insertflag Insert or overstrnke mode

index Cursor position

key Key code returned by getkey()
fen Length of str

1 Looping index

strpos Onginal cursor position

Descnption Displays string at the current cursor location,
uses the current text colors and allows user
to edtt the string with standard editing keys

int edithne(char *str)

{

unsigned doneflag = 0,

int insertflag = 1, index = 0,
int key, len 1,

struct rccoord strpos,

I* Get the length of the stnng to be edited */
len = strien(str),

* Record current location of the cursor */
strpos = _gettextposttion(),

/* Clear out any keypresses In the keyboard buffer */
while (kbhrt())
getch(),

/* Main editing loop */
while ('doneflag)
{

/* Position the cursor at the onginal location */

68

_seftextposition(strpos row, strpos col),

/* Display the stnng */
_outtext(str),

I* Move cursor to current editing posttion */
_seftextposition(strpos row, strpos col + index),

/* Set cursor type for insert or overstnke mode */
if (insertflag)

_settextcursor(CURSOR_UNDERLINE),
else

_settextcursor(CURSOR_BLOCK),

I* Watt for a keypress or mouse movement */
key = getkey_or_mouse(),

/* Process each keypress */

switch (key)
{
case KEY_UP
doneflag = key,
break,

case KEY_DOWN
doneflag = key,
break,

case KEY_LEFT
of (index)
index—,
break,

case KEY_RIGHT
if (index<len-1)
mndex++,
break;

case KEY_ESCAPE
doneflag = key,
break,

case KEY_CTRL_LEFT
ndex = prev_word(str, index),
break,

case KEY_CTRL_RIGHT
index = next_word(str, index),
break,

case KEY_END
for (index = len - 1, strindex} ==""* && index, index—)

{}

if (index && index <len- 1)
index++,

break,

case KEY_BACKSPACE
if (index)

index—,
delete_char(str, index),
strilen-1] ="",

break,

case KEY_CTRL_END
for (1=index, 1 < len, 1++)

69

strfi]="";
break;

case KEY_INSERT:
insertflag *= 1;
break;

case KEY_DELETE:
delete_char(str, index);
strilen-1] ="";
break;

case KEY_ENTER:
doneflag = key;

break;
case KEY_HOME:
index = 0;
break;
default:
if (key>="'&& key < 256)
{
if (insertflag)
insert_char(str, index, (char)key);
else

striindex] = (char)key,
if (index<len-1)
index++;

break;

}

I* Truncate string at original length */
strilen) = 0;
}

/* Retum the key that caused the exit */
return (doneflag);

70

/‘
Name FILEC
Type Disk file handling routines for
Arr Traffic Control Screening Program
Language Microsoft QuickC version 2

*/

#include <stdio h>
#include <stnng h>
#include <conio h>
#include "getkey h"
#include “typ_intt h"
#include "hst.h"
#incilude "file h"
#include "menu h"
#include “t_colors h"
#include "sound h"

* Define error messages */
char *error_box_1_03(} =

{

" Error Message #1 03 ",

" Attempt to reposition file pointer “,
“in file STUDENT DAT failed ",
"< Press any key >,

NULL

}

char *error_box_1_04[] =

{

" Error Message #1 04 ",

" "I'here are no records In student *,
" data file to read ",

" Unable to do statistical *,

" analysis of student resuits ",

"< Press any key >",

NULL

h

char *error_box_1_05[] =

{

" Ervor Message #1 05",

" bnable to save student record ",
“ in student data file “,

" R"&sult => the current student ",

* does not have his record saved ",
* on disk ”,

"< Press any key >",

NULL

3

char *error_box_1_06[] =

" Error Message #1 06 ",

" Unable to update student record ",
" in student data file ",

" R"esult => the current student ",

" record in the student data file ",

" does not contain the latest test “,
" results ",

"< Press any key >",
NULL
b

char *error_box_1_07[] =

{
" Error Message #1 07

" Unable to create student index ",
" file from student data file ",

" Result => the program will not ",
" be able to access student records “,
" held on disk “,

"< Press any key >",
NULL
h

Function Index_on_disk()
File FILEC

Parameters (none)

Returned 1 Student index fite 1s on the disk
0 Student index file s not on disk

Vanables check file pointer to student data file

Descnption Function to determine whether the student
index file Is located in the current directory

int index_on_disk(void)
{
FILE *check,

/* Attempt to open index file on disk */

if ((check = fopen(INDEX, “rb" }) t= NULL) {
fclose(check), /* Close disk file */
return(1), /* Fileon disk => retum 1 */
}

else
retum(0), /* Not on disk => retum 0 */

Function File_on_disk()
File FILEC

Parameters (none)

Returned 1 Student data file is on the disk
0 Student data file 1s not on disk

Vanables check file pointer to student data file

Description Function to determine whether the student
data file 1s located in the current directory

i

int File_on_disk(void)
FILE *check;

/* Attempt to open index file on disk */
if ((check = fopen(FILENAME, “rb")) 1= NULL) {

fclose(check); I* Close disk file *f
retumn(1), /* File on disk => return 1 */
eise
return{ 0), /* Not on disk => retum 0 */
/t
Procedure to read student

data file into linked list
to allow manipulation for
statistical analysis

*/

int Student_data_to_link_list{ RES_NODE “*h, RES_NODE **t)

FILE *check;
STUDENT_RECORD record;
int *save_error_box;

int resuit;

int counter;

int nrecs;

/* Open index file on disk */
if ((check = fopen(FILENAME, "rb")) != NULL) {

/* get number of records to read */
nrecs = getw(check);

/* if number of records <= 0 then error */
if (nrecs <=0) {

/‘
set error box color to red
set error text color to white
*/
menu_back_color(BK_RED);
menu_text_color(T_WHITE | T_BRIGHT);

/* Display error_box_1_04*/
save_error_box = menu_message(10, 8, error_box_1_04);

/* Error Sound */
warble(S);

I* Get key/mouse press from user */
getkey_or_mouse();

I* Erase error_box_1 */
menu_erase(save_error_box);

/‘
set box color back to cyan
set text color back to black
*/
menu_back_color(BK_WHITE);
menu_text_color(T_BLACK),

fclose(check); /* Close disk file *
retum(0); /* Read unsuccessful return 0 */

else {
I* loop size defined by number of recs to read */
for (counter = 1, counter <= nrecs, counter++) {

* read index record from disk */
fread(&record, sizeof(STUDENT_RECORD), 1, check),

/* insert index record into hnked list */
res_addsl(&record, h, t),

}
fclose(check), I* Close disk file *
retum(1), /* Read successful retum1 */
}
}
else
retum(0), I* File open failed! retum 0 */
}
f* et cacacraaanaa
Function White_num_records(),
File FILEC
Parameters

(input) number_records value to insert into the number
of records field tn the student
file

Returned integer 1 = successfull write
0 = failure

Vanables random logical name for student data file
nrecs number of records In student data
file
counter loop counter

Descnption Inserts the given value at the beginning of the
student data file (This place in the student data

file 1s used to store the number of records the file
contains)

int Write_num_records(int number)
FILE *random,
if (number > 1) {
/‘
Open disk file to write number of student records
*/
if ((random = fopen (FILENAME, “r+b")) = NULL) {
/.

Position file pointer at beginning of file

*/
fseek(random, OL, SEEK_SET),
/‘
Write integer value at beginning of file
*/
putw (number, random),
fclose{ random), I* Close disk file *f
retum(1), /* Write successfull */
}
else
retum(0), /* Write unsuccessfull */

}

else {

74

t. Create student data file

If/ ((random = fopen (FILENAME, "wb")} I= NULL) {
ante integer value at beginning of file
p/utw(number, random),

fclose(random), I* Close disk file *
retum(1), /* Write successfull *f
}
else
return(0), I* Write unsuccessfull *
}
}
Il

Function to retum number of
records in disk file
*/

int Num_records(void)

{
FILE *random,
int nrecs,

* Open disk file to read number of student records */
if ((random = fopen (FILENAME, "rb")) '= NULL) {

nrecs = getw (random); * Get number of records */
fclose(random), /* Close disk file *f
retum(nrecs), /* Return number of records */
}
else
retum(0), * File open falled' retum 0 */

/ﬁ
Function to read information in
student index file into linked
hst

*/

int Index_to_link_kst(int recs, NODE **h, NODE **t)

FILE *check,
INDEX_INFO record,
int result,

nt counter,

I* Open index file on disk */
if ((check = fopen(INDEX, “rb")) != NULL) {

I* loop size defined by number of recs to read */
for (counter = 1, counter <= recs, counter++) {

I* read index record from disk */
fread(&record, sizeof(INDEX_INFO), 1, check),

I* insert index record into linked hist */
addsl(record offset, h, t, record qualfier),

}
fclose(check), I* Close disk file *f
retum(1), I* Read successful retum1 ¥/
}
else

retum(0); /* File open failed! retumn 0 */

/‘
Function to read student record
from student data file on disk
*/

void Fetch(long st_offset, STUDENT_RECORD *buffer)
FILE *random,
nt result,
nt *save_error_box,

/* Open student data disk file */
if ((random = fopen (FILENAME, "rb”)) '= NULL) {

/* Set file offset pointer in disk file to st_offset */
result = fseek(random, st_offset, SEEK_SET),

I* Determine whether seek was successful */

if (result '=0) {
* Seek failed! */
/-

set error box color to red
set error text color to white
-
/
menu_back_color(BK_RED);
menu_text_color(T_WHITE | T_BRIGHT),

* Display error_box_1_03 */
save_error_box = menu_message(10, 8, error_box_1_03),

I* Error Sound */
warble(5);

I* Get key/mouse press from user */
getkey_or_mouse(),

/* Erase error_box_1*/
menu_erase(save_error_box);

/.
set box color back to cyan
set text color back to black
*/
menu_back_color(BK_WHITE),
menu_text_color(T_BLACK),

else {
* Seek successful */
/* Read student data record into buffer */
fread(buffer, szeof(STUDENT_RECORD), 1 random),

}

/* Close disk file */
fclose(random),

Function Save_student_record(),
File FILEC

Parameters
(input) flag 0 = student has record on disk

76

1 = student does not have record
on disk

buffer student record to save

Returned (function returns nothing)

Vanables random logical name for student data file
nrecs number of records in student data
file
counter loop counter
resutt error flag

Description Saves student record to the student data file Handles
the two conditions of the student having a record
on disk, and the student not having a record on disk

void Save_student_record(long offset, STUDENT_RECORD *buffer)
{

FILE *random,

FILE *tmp,

int nrecs,

Int counter,

int result,

int *save_error_box,

,‘

Save new student record
*/
If (offset == 0L) {

/.

Get number of records
Wi
nrecs = Num_records(),

/'
Update header n student data file that contains
the number of student records the file contains
*/
++nrecs,
result = Wrte_num_records(nrecs),

/t
Open disk file to append student record
*/
if ((random = fopen (FILENAME, “ab")) '= NULL) {

/Q
Append student record
*
fwrite(buffer, sizeof(STUDENT_RECORD), 1, random),

* close file */
fclose (random),

else {
/‘
Handle possible errors
¢/
/t
set error box color to red
set error text color to white
*/
menu_back_color(BK_RED),
menu_text_color(T_WHITE | T_BRIGHT),

/* Display error_box_1_05 */

77

144

case 0 image = aircraft_ptr{0], break,

case 45 Image = awrcraft_ptr{1], break,
case 90 mage = aircraft_ptr{2], break,
case 135 image = aircraft_ptr{3], break,
case 180 image = aircraft_ptr{4], break,
case 225 1mage = aircraft_ptr{S], break,
case 270 image = aircraft_ptr{6], break,

case 315 image = arrcraft_ptr{7], break,
}

/* determine aircraft position required relative to center of screen
North (O deg bearing) being up on the screen
*/

switch(ac_position)

{ case0 x =400,y =550, break,
case 45 x =575, y =475, break,
case 90 x =650, y =300, break,
case 135 x =575,y = 125, break,
case 180 x =400,y =50, break,
case 225 x =225,y = 125, break,
case 270 x = 150, y = 300, break,
case 315 x =225, y = 475, break,

}

/* place arrcraft image on screen */
_putimage(device_x(x-25), device_y(y+25), image, _GPSET),

Function = Draw_example_aircraft_problem()

File tiobject ¢

Parameters onentation of aircraft
posttion of arrcraft on screen

Returmed None

Description draws the aircraft on screen at the position and

and onentation specified
!/ _________________________________
void Draw_example_aircraft_problem(short ac_onentation, short ac_posttion)
{
char "image,
short x, y,

I* determine aircraft onentation required */
switch(ac_onentation)

{

/* Erase error_box_1 */
menu_erase(save_error_box),

/.
set box color back to cyan
set text color back to black
Wi
menu_back_color(BK_WHITE),
menu_text_color(T_BLACK),

}

Function Create_index_file
File FILEC

Parameters

(input)
Returned (function retumns nothing)
Vanables

Descnption Create index file on disk from student data file
on disk

void Create_index_file(void)

{
int nrecs, rec,
int *save_error_box,
FILE *fil, *ndx,
INDEX_INFO ndex,
STUDENT_RECORD st_rec,

I.
Open student data file
*
if ((fil = fopen(FILENAME, "rb")) '= NULL) {

/.

Get number of records in file
*
nrecs = getw(fil),

/t
Create index file
Wi
ndx = fopen(INDEX, "wb"),

for (rec =1, rec <= nrecs rec++) {

/t
read file position
*/
ndex offset = ftell(fii)

/‘

retneve record from student data file
¢/
fread(&st_rec, sizeof(st_rec), 1, fil),

/.
copy student record qualifier to index qualifier
*!

79

strepy(ndex qualifier, st_rec qualifier),

/l
write index record to Index file
*/
fwrite(&ndex, sizeof(ndex), 1, ndx),
}

/‘

close opened files
*
felose(ndx),
felose(fil),

else {

/ﬁ

close opened file
*
fclose(fil),

if (Num_records() '=0) {

Il
Handle possible errors

*/

/‘
set error box color to red
set error text color to white

L]

/

menu_back_color(BK_RED),
menu_text_color(T_WHITE | T_BRIGHT),

* Display error_box_1_07 */
save_error_box = menu_message(10, 8, error_box_1_07),

* Error Sound */
warble(5),

/* Get key/mouse press from user */
getkey_or_mouse(),

/* Erase error_box_1_07 */
menu_erase(save_error_box),

I.
set box color back to cyan
set text color back to black
*/
menu_back_color(BK_WHITE),
menu_text_color(T_BLACK),

#include <stdio.h>

#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include "typ_init.h"

main()

{

FILE *file_handle,
*output_file1,
*output_file2,
“output_file3;
STUDENT_RECORD data;

int number_of_files, count, count1, count2;
char info[11];

* display general info */

system("cls");

printf("Mental Rotation Test Filesee 1.10 Written By Animesh Banerjee\n");
printf("Adapted from ATC Filesee 2.1 Written By Gordon Jones\n\n");
printf("23 May, 1996\n");

printf("<Press any key to run program>");

getch();

system("cis");
/* run the main program */
printf("Mental Rotation Test Filesee 1.0 Written By Animesh Banerjee\n\n");
printf("Student Data Convertion to MS Excel 3.0 for Windows 3.X Started...\n\n");
if ((output_file1 = fopen("std_1_1.ds", “wt")) == NULL)
exit(-1);
if ((output_file2 = fopen("std_1_2.xis", “wt")) == NULL)
exit(-1);
if ((output_file3 = fopen("std_1_3.xs", "wt")) == NULL)
ext(-1);
if ((file_handle = fopen("student.fil", “rb")) == NULL)
exit(-1);
else
number_of_files = getw(file_handle);
fprintf(output_file1, “Student Test Info:- Correct Answer Times\n\n");
fprintf(output_file1, "Subject #,Sex, Test 1 #1, #2\n\n");
fprintf(output_file2, “Student Test Info:- Incorrect Answer Times\n\n");
fprintf(output_file2, "Subject #,Sex, Test 1 #1, #2\n\n");
printf("\nWriting Student Data on Test #1 - Mental Rotation\n");
fprintf(output_file3, "Mental Rotation/Orientation Test:- Raw Data\n\n");

fprintf(output_file3,” ")
for (count! = 1; count1 <= 64; counti++)

fprintf(output_file3, “Problem #%2d " count1);

)
fprintf(output_file3, "\n");
fprintf(output_file3, "\nSubject# Sex *);

for (count! = 1; countt <= 64; count1++)

fprintf(output_file3, “reac_time riwans ");

81

file:///nSubject

for (count = 1; count <= number_of_files; count++)

fread(&data, sizeof(STUDENT_RECORD), 1, file_handle);
printf("tWriting Data for Student #%s\n", data.qualifier),

fprintf(output_file1, "%s%c,”, data.qualifier, data.male_female);
fprintf(output_file2, "%s%c,", data.qualifier, data.male_female),
fprintf(output_file3, "\n%s %c ", data.qualifier, data.male_female),

for (count! = 0; count! < 2; count1++)

{

/* change to 1 because only 2 trials */

sprintf(info, “%f", data.student_info[count1].avg_time_correct);
fprintf(output_file1, "\t%s", info);

sprintf(info, "%f", data.student_info[count1].avg_time_incorrect);
fprintf(output_file2, “#%s", info);

}
fprintf(output_file1, "\n");
fprintf(output_file2, "\n");

for (count2 = 0; count2 <= 10; count2++)

info[count2] = "0,

for (count1 = 0; count1 < 64; count!++)

{

}

sprintf(info, “%7.2f “, data.RESPONSE[count1].reaction_time);
fprintf(output_file3, "%s", info);

sprintf(info, “%d ", data. RESPONSE[count1].right_wrong);
fprintf(output_file3, “%s", info);

sprintf(info, "%c “, data. RESPONSE[count1].answer);

fprintf(output_file3, "%s", info);

}
fprintf(output_file3, "\n");

}

fclose(output_file1); fclose(file_handle);fclose(output_file2);

fclose(output_file3);

retum O;

82

Description: Retumns an unsigned integer that corresponds to a)
keypress; also detects mouse motion and converts
it to equivalent keypresses

*/
unsigned getkey_or_mouse(void)

unsigned key;

int status, buttons;

int horz, vert;

int presses, horz_pos, vert_pos;
int tot_horz, tot_vert;

/* Set the mouse motion counters to 0 */
tot_horz = tot_vert = O;

* Clear out the mouse button press counts */
mouse_press(LBUTTON, &status, &presses, &horz_pos, &vert_pos);
mouse_press{ RBUTTON, &status, &presses, &horz_pos, &vert_pos);

I* Loop starts here, watches for keypress or mouse activity */
while (1)
{

switch (mouse_flag)
{

/* If this is first iteration, check for existence of mouse */
case O:
mouse_reset(&status, &buttons);
if (status ==0)
mouse_flag = -1;
else
mouse_flag = 1;
break;

/* If mouse does not exist, ignore monitoring functions */
case -1;
break;

/* Check for mouse activity */
case 1.

/* Accumulate mouse motion counts */
mouse_motion(&horz, &vert);
tot_horz += horz;

tot_vert += vert;

I* Check for enough horizontal motion */
if (tot_horz < -HORZ_COUNTS)
retumn (KEY_LEFT);
if (tot_horz > HORZ_COUNTS)
retum (KEY_RIGHT);

/* Check for enough vertical motion */

if (tot_vert < -VERT_COUNTS)
retumn (KEY_UP),

if (tot_vert > VERT_COUNTS)
return (KEY_DOWN);

* Check for mouse left button presses */
mouse_press(LBUTTON, &status, &presses,

&horz_pos, &vert_pos);
if (presses)
return (KEY_ENTER);

I* Check for mouse right button presses */

*f

long student_timer(int *key, ehar *neutral, unsigned timeout, unsigned warning_time)
{

int flag =0,

int beep_flag = 1,

char *temp,

clock_t cstart, cend, ¢t_time,

enum boolean { TIMEOUT_ENABLED = 1, TIMEOUT_DISABLED =0},

enum boolean status,

iong starttime,

long current_time,

long elapsed_time =0,

long endtime,

long timetaken,

cstart = clock(), starthme = cstart,

/* determine if timeout feature is enabled */
if (timeout >0)

status = TIMEOUT_ENABLED,
else

status = TIMEOUT_DISABLED,

while(1)

if (status == TIMEOUT_ENABLED)
{

ct_time = clock(), current_time = ct_time,

/* calculate elapsed time and correct for system clock reset */
if (current_time < starttime)

elapsed_time = 65535 0 - startime,
elapsed_time = elapsed_time + current_time,
}
eise
elapsed_time = current_time - startime,

/* check that waming ‘beep’ feature i1s enabled */
if (warmming_time > 0)

I* check If warning should be 1ssued */
if (((fong)(timeout - warming_time) <=

elapsed_time/CLK_TCK) && beep_flag)
{

note(2000,2),
" set beep_flag so only one beep Is issued to signal warning */
beep_flag = 0,

}

* check for timeout expiry */
if (elapsed_time/CLK_TCK >= (long)imeout)
{

*key =0,
return(elapsed_time),

}
if (kbht())
{

cend = clock(), endtime = cend
flag=0,

temp = neutral,

*key = getch(),

while (*temp !=""' && flag < 1)

{

if ("key == *temp)
++ﬂag;

++temp;

}

if(flag>0)

{
if (endtime < starttime)
{

timetaken = 65535.0 - starttime;
timetaken = timetaken + endtime;
}
else
timetaken = endtime - starttime;

* check that reaction time is not too low */
if (timetaken >= MIN_REACTION_TIME/1000.0 * CLK_TCK)
return(timetaken);

87

/‘
Name LISTC
Type Linked hst manipulation module for
Air Traffic Control Screening Program
Language Microsoft QuickC version 2
Last Revision 06/16/92 Gordon Jones
*/
#include <malloc h> /* Memory allocation routines */
#include <stdio h> /* Standard input/output */
#include <stnng h> /* Stnng manipulation f
#include “typ_init h" * structure definitions for */
/* STUDENT_COLUMN */
#include "hist h* /* Linked hst routines */
¥ e e e e cicmeceeeccacanaan
Function Addsl!
File LISTC
Parameters

(input) offset offset in bytes where student record

<student fil>
(nput) h pointer to head of linked list
(input) t pointer to tail of linked list
(nput) key student identifier to be added to

Iist
Retumed None
Vanables new pointer to tempory record

Descnption Procedure to add a record (node}) to tail of linked
list

Note For additional help refer to any data structures
book on singly finked lists -> simplest!

*

void addsl(long offset, NODE **h, NODE**t, char *key)

{
NODE *new,

new = malloc(sizeof (NODE)),
new->offset = offset, * copy offset into node offset */
strcpy(new->qualifier, key), /* copy qualifier into node *
f(*t 1= NULL)

(*t)-> next = new, * update old tail's pointer field */
if(*h == NULL)

(*h) = new, I set head pointer if necessary */
t = new, I update tail pointer */
(*t)->next = NULL, /* blank new tail's pointer field */

Function Freelst
File LISTC

Parameters
(nput) h pointer to head of linked list

Retumed None

88

1S In file

linked

Vanables n pointer to tempory record
Descnption Procedure to delete linked st from memory

Note For addstional help refer to any data structures
book on singly linked hsts -> simplest!

*
voud freelist{ NODE *h)
{
NODE *n,
n=h, * point to head of list */
while(n = NULL) { /* loop until end of list *
free(n), * free current node *f
n = n->next, /* go to next node */
}
}
¥ e e ceccmccacaaa—an-
Function Check
File LISTC
Parameters
(nput) h pointer to head of linked kst

(nput) key pointer to field contatning
identifier

Returned offset in bytes of student record in student file
<student fil>
if record not found O is retumed

Vanables n pointer to tempory record

Descrniption Procedure to determine if student record with
student identifier <key> is in linked list If
it 1S return value of offset field (offset of
student record in student file <student fil> in

bytes
_________________________________ s
Wi
long check(NODE *h, char *key)
NODE *n,
n=h, /* point to head of hist */
while(n '= NULL) { I loop until end of list */
if (stremp (n->qualifier, key) == 0)
retum(n->offset), /* qualifier = key then retum */
n = n->next, * offset in disk file */
return(OL), /* qualffier not found => retum 0 */
¥ e e ceeae e~
Function Res_addsl
File LISTC
Parameters
(nput) n pointer to student record to be added

list
(nput) h pointer to head of inked list

89

student

to inked

(input) t pointer to tail of linked list
Returned None

Vanables new pointer to tempory record

counter tempory loop counter

Descniption Procedure to add a record (node) to tail of linked
list

Note For addtional help refer to any data structures

book on singly finked lists -> simplest!

*/
void res_addsl(STUDENT_RECORD *n, RES_NODE **h, RES_NODE **t)

RES_NODE *new,
register int counter,

new = malloc(sizeof (RES_NODE)),

/I'
copy record passed to procedure (STUDENT_RECORD *n)
into node of type RES_NODE and then add this
node to linked hst
*/
for(counter = 0, counter <= 29, counter++)
new->student_info[counter] = n->student_info[counter],
strepy(new->qualifier, n->qualifier),
new->r_{_handed = n->r_{_handed,
new->test_no = n->test_no,

if(*t = NULL)
(*t) -> next = new, I* update oid tail's pointer field */
if(*h==NULL)
(*h) = new, 1 set head pointer If necessary */
t = new, / update tail pointer *
(*t)->next = NULL, /* blank new tail's pointer field */
}
JE e e aeeccccccdecccmaae-
Function Res_freelist
File LISTC
Parameters
(nput) h pointer to head of iinked hst

Returned None
Vanables n pointer to tempory record
Description Procedure to delete linked list from memory

Note For addtional help refer to any data structures

book on singly linked lists -> simplest!

*

void res_freelist{ RES_NODE *h)

RES_NODE *n,
n=h, /* point to head of hst */
while(n t= NULL) { * loop until end of list *
free(n), /* free current node *f
n = n->next, /* go to next node *

}

90

d

Name MENU C
Type Toolbox module
Language Microsoft QuickC
Video (no spectal ideo requirements)

*/

#include <graph h>
#include <stdio h>
#include <ctype h>
#include <stnng h>
#include <malloc h>
#include "box h"
#include "mousefun h"
#include "getkey h"
#include "t_colors h"
#include "menu h"

I* Default menu colors */

static int c_lines = T_BLACK,

static int c_ttie = T_BLACK,

static int c_text = T_BLACK,

static int ¢_prompt = T_BLACK,

static int ¢_hrtext = T_WHITE,

static int ¢_hiletter = T_WHITE | T_BRIGHT,
static long int ¢_back = BK_WHITE,

static long int ¢_hiback = BK_BLACK,

I* Default border ines and shadow control */

static int mb_lines = 1,
static int mb_shadow = 1,

Function menu_box_lnes()

Parameters
(nput) Ine_type 0, 1, or 2 (outiine)

Returmed (function returns nothing)
Vanables (none)

Descrption Sets the box outline type Selects single-line or
double-line border (or none)

void menu_box_lines(int line_type)

mb_lines = line_type,

}

f e eeecccceecaceacccccemmem—anna
Function menu_box_shadow()
Parameters

(nput) on_off Shadow control

Returned (function retums nothing)
Vanables (none)
Descnption Sets the menu box shadow control to on or off

0 = off, non-zero = on

91

void menu_box_shadow(int on_off)

mb_shadow = on_off,

}
P
Function menu_back_color()
Parameters
(nput) back Background color

Returned (function retums nothing)
Vanables (none)

Description Sets the background color for boxes

¢_back = back,
}
T om e ee et acccceeteccncmacanan
Function menu_line_color()
Parameters
(nput) lines Border line color

Returned (function retums nothing)

Vanables (none)

Description Sets the box outline color
void menu_line_color(int ines)

c_lines = lines,

}
¥ e e meeeecama—————-
Function menu_ttle_color()
Parameters
(input) title Title text color

Returned (function returns nothing)

Vanables (none)

Descnption Sets the text color for the title
void menu_title_color(int title)

c_title = title,

Function menu_text_color()

92

Parameters
(nput) text Menu text color

Returned (function returns nothing)
Vanables (none)

Descnption Sets the menu box text color

c_text = text,
}
¥ e meeeeeeeemmamemememan
Function menu_prompt_color()
Parameters
(nput) prompt Menu prompt line color

Returned (funchon returns nothing)

Vanables (none)

Descnption Sets the menu box prompt line text color
void menu_prompt_color(int prompt)

¢_prompt = prompt,

}
J¥ e e ccaceaan
Function menu_hiight_letter()
Parameters
(input) hiletter Highhghted letter color

Returned (function retums nothing)

Vanables (none)

Descnption Sets highlighted character color for menu options
vord menu_hilight_letter(int hiletter)

c_hiletter = hiletter,

}
o
Function menu_hilight_text()
Parameters
(nput) hitext Highlighted text color

Returned (function returns nothing)
Vanables (hone)

Descnption Sets highlighted text color for menu options

void menu_hiiight_text(int hitext)
{

c_hitext = hitext,
}
S
Function menu_hthight_back()
Parameters
(input) hiback Highlighted line background

Returned (function returns nothing)
Vaniables (none)

Descniption Sets the background color for the highlighted line
in the menu box

void menu_hilight_back(long hiback)

c_hiback = hiback,

Function menu_bar()

Parameters
(input) row Screen row to locate menu bar
(input) col Screen column to locate menu bar
(input) stnng Stnng of menu bar selections
(output) choice Number of tem selected by user

Returned Buffer used to restore the background

Vanables len Length of menu string
fore Saves current foreground color
maxchoice Number of choices
1 Looping index
J Looping index
cpos Current position in the menu

quit_flag Signals to exit function
savebuf Buffer containing background

fstr Foreground color attnbutes

lastc Last character checked

thisc Current character checked

bstr Background color attnbutes

key Key code from getkey_or_mouse()
back Saves current background color

oldpos Saves the cursor posttion

Descnption Creates a pop-up menu bar

int far *“menu_bar (int row Int col, char *stning, int *choice)
{

nt len,

int fore,

nt maxchoice,

inty,),

nt cpos,
int quit_flag = 0,

int far *savebuf;

int fstr[81);

char laste, thisc;

long int bstr{81};
unsigned key;

long int back;

struct recoord oldpos;

I* Save the current color settings */
fore = _gettextcolor();
back = _getbkcolor();

/* Save the current cursor position */
oldpos = _gettextposition();

/* Calculate the string length only once */
len = strien(string);

/* Save the menu background */
if (mb_shadow)

savebuf = box_get(row, col, row + 1, col + len + 1);
else

savebuf = box_get(row, col, row, col +len-1);

/* Put the menu bar on the screen */
_settextposition(row, col);
_outtext(string);

/* Cast a shadow */
if (mb_shadow)

{

_settextcolor(T_GRAY),

_setbkeolor(BK_BLACK);

box_color(row + 1, col + 2, row + 1, col + len + 1);

}

* Initialize choice if necessary */
if (*choice < 1)
*choice = 1;

I* Process each key press */
while (Iquit_flag)
{

/* Determine the color attributes */
j=0

maxchoice = 0;

lastc = 0;

for (i=0;i<len; i++)

thisc = stringfi];

if (lastc =="*'&& thisc==""'&&i<len-1)
{
j*+;
maxchoice++;

if (j=="choice & i<len-1)

{

fstr{i] = c_hitext;
bstr{i] = ¢_hiback;
}

eise

{
fstr{i] = c_text;
bstrfi] = ¢_back;

}
if (isupper(thisc))

fstr{i} = c_hiletter,

95

if (j == *choice)
cpos =i;

lastc = thisc;

}

/* Put the attributes to video */
for(i=0;i<len;i++)

{

_settextcolor(fstrfi]);

_setbkcolor(bstr{i]);

box_color(row, col + i, row, col +i);

}

* Put cursor at appropriate position */
_settextposition(row, col + cpos);

key = getkey_or_mouse();

I* Convert to upper case */
if (key >=‘a’' && key <='Z')
key -=32;

I* Check for alpha key */
if (key >="A' && key <='Z")

for (i=0;i<len;i++)
{
if (++cpos >=len)
{

cpos = 0;
*choice = 0;

}
if (isupper(string[cpos]))
*choice +=1;
if (string[cpos] == (char)key)
break;
}
}

I* Check for control keys */
switch(key)

{

case KEY_LEFT:
if (*choice > 1)

*choice -= 1;

break;

case KEY_RIGHT:
if (“choice < maxchoice)

*choice += 1;

break;

case KEY_HOME:
*choice = 1,
break;

case KEY_END:
*choice = maxchoice;
break;

case KEY_ESCAPE:

case KEY_UP:
*choice = 0;
quit_flag=1;
break;

case KEY_ENTER:

case KEY_DOWN:
quit_flag=1;
break;

}

}

I* Restore onginal conditions */
_settextposition(oldpos row, oldpos col),
_settextcolor(fore),

_setbkeolor(back),

retumn (savebuf),

Function menu_drop()

Parameters
(input) row Screen row to locate menu bar
(input) col Screen column to locate menu bar
(nput) strary Stnng array of menu selections
(output) choice Number of tem selected by user

Returned Buffer used to restore the background

Varables n Number of stnngs in menu
len Length of menu stnng
fore Saves current foreground color

tmpcol Column to start title and prompt
maxchoice Number of choices

1 Looping index

quit_flag Signals to exit function

savebuf Buffer containing background
key Key code from getkey_or_mouse()
back Saves current background color
oldpos Saves the cursor position

Description Creates a popup drop down menu

int far *menu_drop(int row, int col, char **strary, int *choice)
{

intn=0,

intlen=0,

int fore,

int tmpcol,

int maxchoice,

int1,

nt quit_flag = 0,

mnt far *savebuf,

unsigned key,

long int back,

struct recoord oldpos,

/* Save the current color settings */
fore = _gettextcolor(),
back = _getbkcolor(),

* Save the current cursor position */
oldpos = _gettextposttion(),

/* Determine the number of stnngs in the menu */
while (strary[n] {= NULL)

n++,

I* Set the maximum choice number */
maxchoice =n - 2,

7* Determine the maximum menu string length */
for(1=0,1<n,i++)
if (strien(strary]i]) > len)
len = strien(strary{i]),

/* Save the menu background */

if (mb_shadow)

savebuf = box_get(row, col, row + n,col +len +5),
else

savebuf = box_get(row, col, row + n- 1, col +len + 3),

I* Create the menu box */

_settextcolor(c_lines),

_setbkeolor(¢_back),

box_erase(row, col, row + n -1, col + len + 3),
box_draw(row, col, row + n - 1, col + len + 3, mb_lines),

/* Cast a shadow */
f (mb_shadow)

{

_settextcolor(T_GRAY),

_setbkeolor(BK_BLACK),

box_color(row + n, col + 2, row + n, col + len + 3),
box_color(row + 1, col + len + 4, row + n, col + len +5),

}

/* Put the title at the top */

tmpcol = col + (len - strien(strary[0]) +4) /2,
_settextposttion(row, tmpcol),

_settextcolor(c_title),

_setbkeolor(¢c_back),

—outtext(strary{0]),

* Pnnt the choices */
_settextcolor(c_text),
for (1= 1,1 <= maxchoice, 1++)

{

_settextposttion(row + 1, col + 2),
_outtext(strary{l]),

}

I* Put the prompt at the bottom */

tmpcol = col + (len - sten(strary[n-1]) +4)/2,
_settextposition(row + n - 1, tmpcol),
_settextcolor(¢_prompt),

_outtext(strary[n - 1]),

/* Intialize choice */
*choice = 1,

/* Process each key press */
while ('quit_flag)
{

/* Determine and set the color attnbutes */
for (1=1, 1 <= maxchoice, i++)

if (1=="choice)

{

_setbkeolor(c_hiback)

_settextcolor(¢_hiletter),

box_color(row + 1, cof + 1, row + i, col + 2),
_settextcolor(c_hitext),

box_color(row + 1, col + 3, row +1, col + len + 2)
}

else

{
_setbkeolor(¢_back),
_settextcolor(c_hiletter),
box_color(row + 1, col + 1, row +1, col + 2),
_settextcolor(c_text),
box_color(row +1, col + 3, row + 1, col + len + 2),
}
}

98

/* Put cursor at appropnate position */
_settextposttion(row + *choice, col +2),

key = getkey_or_mouse(),

/* Convert to upper case */
if (key >='a’' && key <='Z')
key -= 32,

/* Check for alpha key */
if (key >="A' && key <='Z")

for (1=1, 1 <= maxchoice, 1++)

*choice += 1,
if (“choice > maxchoice)
*choice = 1,
if (strary[*choice][0] == (char)key)
break,
}
}

/* Check for control keys */
switch (key)

case KEY_UP

if (*choice > 1)
*choice -= 1,

break,

case KEY_DOWN
if (*choice < maxchoice)

*choice += 1,

break,

case KEY_HOME
*choice = 1,
break,

case KEY_END
*choice = maxchoice,
break,

case KEY_ESCAPE
*choice = 0,
quit_flag =1,
break,

case KEY_ENTER
quit_flag =1,
break,

}

}

/* Restore onginal conditions */

_settextposition(oldpos row, oldpos col),
_settextcolor(fore),

_setbkeolor(back),

return (savebuf),

Function

Parameters
(input)
(Input)
(input)

Returned

Vanables
len

menu_message()

row
col

Screen row to locate message box
Screen column to locate message box

strary Stnng array of message text

Buffer used to restore the background

n

Number of strings in message

Length of longest menu stnng

fore Saves current foreground color
tmpcol Column to start title and prompt

1 Looping index

savebuf Buffer containing background
key Key code from getkey_or_mouse()
back Saves current background color

oldpos Saves the cursor position

Descnption Creates a pop-up message box

nt far *menu_message(int row, int col, char **strary)
{

ntn=0,

intlen =0,

int fore;

int tmpcol,

mnti,

int far *savebuf,

unsigned key,

long int back,

struct recoord oldpos,

I* Save the current color settings */
fore = _gettextcolor(),
back = _getbkcolor(),

I* Save the current cursor position */
oldpos = _gettextposttion(),

/* Determine the number of stnngs in the message */
while (strary[n] = NULL)
N+,

/* Determine the maximum message string length */
for(1=0,1<n,i++)
if (stren(straryfi]) > len)
len = strien(strary{l]),

I* Save the message background */
if (mb_shadow)

savebuf = box_get(row, col, row + n, col + len + 5),
else

savebuf = box_get(row, col, row +n -1, col + len + 3),

/* Create the information box */

_settextcolor(c¢_lines),

_setbkeolor(¢_back),

box_erase(row, col, row + n-1, col +len + 3),
box_draw(row, col, row + n - 1, col + len + 3, mb_lines),

/* Cast a shadow */
if (mb_shadow)

{

_settextcolor(T_GRAY),

_setbkeolor(BK_BLACK),

box_color({ row + n, col + 2, row + n, col + len + 3),

box_color(row + 1, col + len + 4, row + n, col + len + 5),

}

/* Put the title at the top */

tmpcol = col + (len - strien(strary{0]) + 4) / 2,
_settextposition(row, tmpcol),

_settextcolor(c_title),

_setbkeolor(¢_back),

_outtext(strary{0]),

I* Pnnt the text */

100

101

_settextcolor(c_text);
for(i=1;i<n-1;i++)

{

_settextposition(row + i, col + 2);
_outtext(strary[i]);

}

I* Put the prompt at the bottom */

tmpcol = col + (len - strlen(straryln-1])+4)/2;
_settextposition(row + n - 1, tmpcol);
_settextcolor(¢_prompt);

_outtext(strary[n - 1});

/* Restore original conditions */
_settextposition(oldpos.row, oldpos.col);

_settextcolor(fore);

_setbkcolor(back);

retum (savebuf),
}
U

Function: menu_erase()

Parameters:
(input) buf Buffer for restoring background

Returned: (function returns nothing)
Variables: (none)

Description: Restores the background behind a bar menu,
pull-down menu, or message box

void menu_erase(int far *buf)
box_put(buf);

_ffree(buf);
}

/0

Name MN_MENUC

Type Routines that display the main
menu and the choices that are
avallable to the user
Air Traffic Control Screening Program

Language Microsoft QuickC version 2

*

#include <stdio h>
#include <graph h>
#include <process h>
#hinclude “typ_imit h"
#include “file h*
#include "ist h"
#include “tmanager h"
#include “menu h"
#include "box h"
#include "t_colors h"
#include "dsk_init h*
#include “data_pit h"
#include "getkey h"

char *error_box_1_08[} =

{

* Error Message #1 08 ",

" !'Jnable to spawn statistical *,

“ analysis program <st_menu exe> “,

“ ;Resun => the program can not ",

" be loaded and executed ",

" 'ACthl"I => check that st_menu exe ",

" 1s located in the same directory “,
as the other program files ",

"< Press any key >,

NULL

h

char *drop_main_menu(] =

* Main Menu “,

"Perform Student Tests",
“Demonstration Tests",
"Exit Program”,

" Select ",

NULL
3

char *drop_sub_menuf] =

" Practice Menu ",
"Test #1”,
“Main Menu",

NULL
I3

char *drop_full_menu[] =

{
" Perform Student Test Menu ",

"Test #1",
"All Tests",

"
1

102

NULL
1

Function Display_main_menu
File MN_MENU C

Parameters
(input)
head pointer to head of student index linked
list of type NODE
tail pointer to tail of student index linked
hist of type NODE

r_head pointer to head of student record linked
hist of type RES_NODE
r_tail pointer to tail or student record linked
list of type RES_NODE

Returmed None

Vanables
choice User choice from drop down menu
T Retumn value from spawn command
offset Offset of student record in student
file held on disk

args arguments passed to the spawn command
args[0] i1s pointer to filename to be
executed args[1] ts NULL pointer to end
of argument list
prog filename to be executed by spawn command

Descrnption Displays the main menu and prompts the user to
select from one of the choices available

STUDENT_RECORD new_student,

void display_main_menu(NODE **head, NODE *“*all,
RES_NODE **r_head, RES_NODE **r_tail)
{

nt choice =0,
int second_choice =0,
intr;
long offset,
char *args{2],
char prog[80] = “st_menu",
int *save_error_box,

args|0] = prog,
args[1] = NULL,

new_student test_no = -10,

while (choice '=3) {
/0
Display main menu
Wi
menu_erase(menu_drop(4, 18, drop_main_menu, &choice)),

switch(choice) {
case 1
/* Perform Student Tests */
new_student test_no =0,

/* Intialize inked hist of index to student records on file */

103

105

Name MOUSEFUNC

Type Toolbox module

Language Microsoft QuickC version 2

Demonstrated MOUSTEST C

Video Some functions require CGA or better graphics

*/
#include <dos h>
#include “mousefun h"

Function mouse_reset()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C
Parameters
(output) status Status of the mouse
(output) buttons Number of mouse buttons
Retumed (function retums nothing)

Vanables m1 Local vanable for register ax
m2 Local vanable for register bx

Description Resets the mouse and venfies ts existence
void mouse_reset(int *status, int *buttons)
nt mi, m2,
_asm
Xor ax, ax
int 33h

mov m1, ax
mov m2, bx

}

*status = m1,
*buttons = m2,

Function mouse_show()

Toolbox MOUSEFUN C
Demonstrated MOUSTEST C
Parameters (none)

Returned (function returns nothing)
Vanables (none)

Descniption Makes the mouse cursor visible

*/
void mouse_show(void)
{
_asm
{
mov ax, 1
int 33h

}

Function mouse_hide()

Toolbox MOUSEFUN C
Demonstrated MOUSTEST C
Parameters (none)

Returned (funchion retums nothing)
Vanables (none)

Descnption Makes the mouse cursor invisible

*/
void mouse_hide(void)
{
_asm
{
mov ax, 2
int 33h
}
}
2

Function mouse_status()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(output) left_button State of the left button
(output) nght_button State of the nght button
(output) horz_pos Honzonta! position of the mouse
(output) vert_pos Vertical position of the mouse

Retumed (function returns nothing)

Vanables m2 Local vanable for register bx
m3 Local vanable for register cx
m4 Local vanable for register dx

Descnption Gets the current state of the mouse buttons and
the mouse cursor position

void mouse_status(int *left_button, int *nght_button,
int *horz_pos int “vert_pos)
{

int m2, m3, m4,

_asm
{
mov ax, 3
int 33h
mov m2, bx
mov m3, cx
mov m4, dx

}

*left_button =m2 & 1,
*nght_button = (m2>>1)&1,
*horz_pos = m3,

*vert_pos = m4,

106

107

Function mouse_setpos()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters

(nput) honzontal Horizontal position
(input) vertical Vertical position
Retumed (function retumns nothing)

Vanables (none)

Descnption Sets the mouse cursor to the indicated position

*/
void mouse_setpos(int honzontal, int vertical)
{
_asm
{
mov ax, 4
mov c¢x, honzontal
mov dx, vertical
int 33h
}
}
2

Function mouse_press()
Toolbox MOUSEFUN C
Demonstrated MOUSTESTC

Parameters
(input) button Left or nght button
(output) status Status of the button
(output) presses Number of button presses
(output) horz_pos Honzontal postition at last press
(output) vert_pos Vertical position at last press

Returned (function returns nothing)

Vanables m1 Local vanable for register ax
m2 Local vanable for register bx
m3 Local vanable for register cx
m4 Local vanable for register dx

Descniption Gets button press information

void mouse_press(int button, int *status, int *presses,
int *horz_pos, int “vert_pos)

int m1, m2, m3, m4,

_asm
{
mov ax, 5
mov bx, button
int 33h
mov m1,ax
mov m2, bx
mov m3, cx
mov m4, dx

}

if (button == LBUTTON)
*status=m1 &1,

else
‘status=(m1>>1)&1,

*presses = m2;
*horz_pos = m3,
*vert_pos = m4,

Function mouse_release()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(input) button Left or nght button
(output) status Status of the button
(output) presses Number of button releases
(output) horz_pos Honzontal position at last release
(output) vert_pos Vertical position at fast release

Returned (function retuns nothing)

Vanables mi1 Local vanable for register ax
m2 Local vanable for register bx
m3 Local vanable for register ¢x
m4 Local vanable for register dx

Descnption Gets button release information

void mouse_release (int button, int *status, int *releases,
int *horz_pos, int *vert_pos)

int m1, m2, m3, m4,
_asm

mov ax, 6
mov bx, button
int 33h

mov m1, ax
mov m2, bx
mov m3, cx
mov m4, dx

}

if (button == LBUTTON)
*status =m1 &1,

else
*status =(m1>>1)&1,

*releases = m2,
*horz_pos = m3,
*vert_pos = m4,

Function mouse_sethorz()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(nput) horz_min Minimum horizontal cursor position

108

(nput) horz_max Maximum honzontal cursor position
Returned (function returns nothing)
Vanables (none)

Descrnption Sets minimum and maximum honzontal mouse
cursor positions

void mouse_sethorz(int horz_min, int horz_max)
{
_asm
{
mov ax,7
mov c¢x, horz_min
mov dx, horz_max
int 33h

Function mouse_setvert()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(nput) vert_min Minimum vertical cursor position
(input) vert_max Maximum vertical cursor position
Returned (function retumns nothing)

Vanables (none)

Descnption Sets minimum and maximum vertical mouse cursor

positions
*/
void mouse_setvert(int vert_min, int vert_max)
{
_asm
{
mov ax, 8
mov c¢x, vert_min
mov dx, vert_max
nt 33h
}
}
R

Function mouse_setgeurs()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(nput) cursor Structure defining a graphics cursor

Returned (function returns nothing)

Vanables cursor_seg Segment of the cursor structure
cursor_off Offset of the cursor structure
hotx Hot spot x value
hoty Hot spot y value

Description Creates a graphics mode mouse cursor

108

110

void mouse_setgcurs(struct graphics_cursor far *cursor)
{

unsigned cursor_seg = FP_SEG(cursor),

unsigned cursor_off = FP_OFF(cursor),

int hotx = cursor->hot_spot_x,

int hoty = cursor->hot_spot_y,

_asm
{
mov ax, 9
mov bx, hotx
mov cx, hoty
MoV es, cursor_seg
mov dx, cursor_off
int 33h

Function mouse_settcurs()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(nput) cursor_select Hardware or software cursor
(input) screen_mask Screen mask (or start scan line)
(nput) cursor_mask Cursor mask (or end scan line)

Returned (function retumns nothing)

Vanables (none)

Descrniption Sets the text mode hardware or software cursor

*
void mouse_settcurs(int cursor_select, int screen_mask, int cursor_mask)
{
_asm
{
mov ax, 10
mov bx, cursor_select
mov CX, screen_mask
mov dx, cursor_mask
int 33h
}
}
o

Function mouse_motion()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters

(output) horz_mickeys Honzontal mickeys
(output) vert_mickeys Vertical mickeys
Returned (function retums nothing)

Vanables m3 Local vanable for register cx
m4 Local vanable for register dx

Description Gets the accumulated mouse motion counts
(mickeys) since the last call to this function

void mouse_motion(int *horz_mickeys, int *vert_mickeys)

int m3, m4;

_asm

{

mov ax, 11
int 33h
mov ma3, cx
mov m4, dx

}

*horz_mickeys = m3;
*vert_mickeys = m4;

Function: mouse_setratios()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:

(output) horizontal Horizontal mickey/pixel ratio
(output) vertical Vertical mickey/pixel ratio
Returned: (function retums nothing)

Variables: (none)

Description: Sets the mickey/pixel ratios for mouse motion

*/
void mouse_setratios(int horizontal, int vertical)
{
_asm
mov ax, 15
mov cx, horizontal
mov dx, vertical
int 33h
}
}
JH e e e e e eccccidcececmameaan

Function: mouse_condoff()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) xi Upper left comer of region
(input) y1 Upper left comer of region
(input) x2 Lower right comner of region
(input) y2 Lower right comer of region

Returmned: (function returns nothing)
Variables: (none)

Description: Sets a region for conditionally turning off the
mouse cursor

111

void mouse_condoff(int x1, int y1, int x2, int y2)
{
_asm
{
mov ax, 16
mov c¢x, X1
mov dx, y1
mov si, X2
mov di, y2
int 33h

Function mouse_setdouble()
Toolbox: MOUSEFUN C
Demonstrated MOUSTESTC

Parameters
(nput) mickeys_per_second Double speed threshold

Returned (function returns nothing)
Vanables (none)
Descrniption Sets the mouse double speed threshold

void mouse_setdouble(int mickeys_per_second)

{

_asm
mov ax, 19
mov dx, mickeys_per_second
mt 33h
}
}
JE e e e eeceeeectcaccmcmemmaaaa

Function mouse_storage()
Toolbox MOUSEFUN C
Demonstrated MOUSTEST C

Parameters
(output) buffer_size Bytes for saving mouse state

Retumed (function retums nothing)
Vanables m2 Local vanable for register bx

Descnption Determines the number of bytes required for
saving the current state of the mouse

void mouse_storage(int *buffer_size)
int m2,
_asm
mov ax, 21

nt 33h
mov m2, bx

}

112

*buffer_size = m2;

Function: mouse_save()
Toolbox; MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(infout) buffer Buffer for saving mouse state

Returned: (function returns nothing)

Variables: buffer_seg Segment of the buffer
buffer_off Offset of the buffer

Description: Saves the current state of the mouse

void mouse_save(char far *buffer)

{
unsigned buffer_seg = FP_SEG(buffer);
unsigned buffer_off = FP_OFF(buffer);

_asm
{
mov ax, 22
mov es, buffer_seg
mov dx, buffer_off
int 33h

Function: mouse_restore()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) buffer Buffer for restoring the mouse state

Returned: (function retums nothing)

Variables: buffer seg Segment of the buffer
buffer_off Offset of the buffer

Description: Restores the current state of the mouse

void mouse_restore(char far *buffer)

{
unsigned buffer_seg = FP_SEG(buffer);
unsigned buffer_off = FP_OFF(buffer);

_asm
{
mov ax, 23
mov es, buffer_seg
mov dx, buffer_off
int 33h

113

114

Function: mouse_setsensitivity()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) horz Relative horizontal sensitivity

(input) vert Relative vertical sensitivity

(input) threshold Relative double speed threshold
Returned: (function retuns nothing)
Variables: (none)

Description: Sets the mouse sensitivity and double speed

threshold
*f
void mouse_setsensitivity(int horz, int vert, int threshold)
{
_asm

{

mov ax, 26

mov bx, horz

mov cx, vert

mov dx, threshold

int 33h

}
}
A

Function: mouse_getsensitivity()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(output) horz Relative horizontal sensitivity
(output) vert Relative vertical sensitivity
(output) threshold Relative double speed threshold

Retumed: (function returns nothing)
Variables: (none)

Description: Gets the mouse sensitivity and double speed
threshold

void mouse_getsensitivity(int *horz, int *vert, int “threshold)
int m2, m3, m4,
_asm

mov ax, 27
int 33h

mov m2, bx
mov m3, cx
mov m4, dx

}

*horz = m2;
*vert = m3;
‘threshold = m4;

Function: mouse_setmaxrate()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) interrupts_per_second Interrupt rate

Retumed: (function retums nothing)
Variables: rate Number for range of interrupt rates

Description: Sets the interrupt rate (InPort mouse only)

void mouse_setmaxrate(int interrupts_per_second)

{

int rate;

if (interrupts_per_second <=0)
rate = 0;

else if (interrupts_per_second > 0 && interrupts_per_second <= 30)
rate = 1;

else if (interrupts_per_second > 30 && interrupts_per_second <=50)
rate=2;

else if (interrupts_per_second > 50 && interrupts_per_second <= 100)
rate = 3;

else
rate = 4,

_asm
mov ax, 28

mov bx, rate
int 33h

Function: mouse_setpage()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) crt_page Video page for mouse cursor

Retumed: (function retums nothing)
Variables: (none)

Description: Sets the video page where mouse cursor appears

*/
void mouse_setpage(int crt_page)
{
_asm
{
mov ax, 29
mov bx, crt_page
int 33h
}
}
I e e ecmmeeeamem——meeaaaa

Function: mouse_getpage()

115

116

Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(output) crt_page Video page for mouse cursor

Returned: (function retumns nothing)

Variables: m2 Local variable for register bx

Description: Gets the video page in which mouse cursor appears
void mouse_getpage(int *crt_page)

int m2;

_asm

{

mov ax, 30
int 33h
mov m2, bx

}
*crt_page = m2;

Function: mouse_setlang()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(input) language Language number

Returned: (function retums nothing)
Variables: (none)

Description: Sets the language for mouse driver messages

*
void mouse_setlang(int language)
{
_asm
{
mov ax, 34
mov bx, language
int 33h
}
}
[eeeacecccccccccacaccane e aaenn—.

Function: mouse_getlang()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(output) language Language number

Returned: (function retums nothing)
Variables: (none)

Description: Gets the language for mouse driver messages

void mouse_getlang(int *language)
int m2;

_asm
{
mov ax, 35
int 33h
mov m2, bx

}

*fanguage = m2;

Function: mouse_getversion()
Toolbox: MOUSEFUN.C
Demonstrated: MOUSTEST.C

Parameters:
(output) version Mouse driver version number
(output) mouse_type Type of mouse
(output) irq_num Interrupt request type

Retumed: (function retums nothing)

Variables: m2 Local variable for register bx
m3 Local variable for register cx
maj Major part of version number
min Minor part of version number

Description: Gets the mouse driver version number, mouse type,

and interrupt request type

void mouse_getversion(double *version, int *mouse_type, int *irq_num)

int m2, m3;
int maj, min;

_asm
{
mov ax, 36
int 33h
mov m2, bx
mov m3, cx

}

maj=(m2>>12)*10+((m2>>8)& Oxf),
min={(m2>>4)&0xf)* 10+ (m2 & Oxf),
*version = maj + min / 100.0;

*mouse_type = m3 >> 8;

*irq_num = m3 & Oxff;

117

Name ROTATE C
Type Test to collect data for thesis for Ron Archer
Language Microsoft QuickC version 2

Program List ROTATEC
BOXC
CLOCK.C
DATA_PLTC
DSK_INIT C
EDITC
FILEC
GETKEY C
usTC
MENUC
MOUSEFUN C
MN_MENU C
T_MANAGER C
TEST_1C
T10BJECT C
SOUNDC
ST_MENUC
STATS C
VIDEO C

Vanables head global pointer to head of linked list

of student record indexes

tail global pointer to tail of linked list
of student record indexes

r_head global pointer to head of inked list
of student data records

r_tail global pointer to head of linked list
of student data records

Usage (no command hine parameters)

Descnption Computer based test that measures an individual's
abliltues in very specific areas

Last Rewiston 10 March 1996 Animesh Banerjee

*

#include <stdio h>
#include <graph h>
#include <dos h>
#include "typ_init h"
#include "getkey h*
#include "menu h*
#include “box h"
#include “t_colors h"
#include “ist h*
#include “mn_menu h”

char *school_infof] =

o
)

" Mental Rotation Test ",

" Ver 100",

* Embry-Riddie Aeronautical University “,

"<'Press any key >",
NULL
L

char *my_tnfo[] =

118

" Mental Rotation Test ",

" Version 1.00 ",
" by ",

b Ronald D. Archer ",

" 'Embry-RiddIe Aeronautical University *,
" Daytona Beach, FL 32114 ",

" Tel: (904) 322-5501 ",
" banerjea@erau.db.erau.edu (intemet) “,

"<'Press any key >",
NULL
13
int q_in_record = 1;
NODE *head, “tail;
RES_NODE *r_head, *r_tail;
void main(void)
int *save_info_box;
* Initialize text foreground and background color */
_seftextcolor(T_BLUE),
_setbkeolor(BK_BLACK);
I* Initialize video */
_setvideomode(_TEXTCB80);
_clearscreen(_GCLEARSCREEN);

I* Display school information message */
save_info_box = menu_message(7, 18, school_info);

I* get key or mouse press */
getkey_or_mouse();

/* Erase school information message */
menu_erase(save_info_box);

I* Display my information message */
save_info_box = menu_message(4, 18, my_info);

I* get key or mouse press */
getkey_or_mouse();

I* Erase school information message */
menu_erase(save_info_box);

I* Set foreground and background colors for program */
_setbkeolor(BK_CYAN);
_settextcolor(T_BLACK),
/* Fiil the background */
box_charfill(1, 1, 25, 80, 178);

I* activate main menu */
display_main_menu(&head, &tail, &r_head, &r_tail);}

119

mailto:banerjea@erau.db.erau.edu

Name SOUNDC

Type Toolbox module

Language Microsoft QuickC
Demonstrated SOUNTEST C

Video (no special video requirements)

*/

#include <conio h>
#include <time h>
#include “sound h"
static unsigned control,
static int control_flag = 1,

Function speaker_toggle()

Toolbox SOUNDC

Demonstrated SOUNTEST C

Parameters (none)

Returned (funchion returns nothing)

Vanables (none)

Descnption Pulses the speaker on or off with each call
void speaker_toggle(void)

if (control_flag)

control = inp(0x61),
control_flag = 0,

}
outp(Ox61, (Inp(Ox61) & OXFE) 4 2),

Function sound()
Toolbox SOUND C
Demonstrated SOUNTEST C

Parameters
(input) frequency Frequency of generated tone

Returmned (function retums nothing)
Vanables dwisor Timer vaiue for given frequency

Description ~ Sets a tone at a given frequency

void sound(int frequency)

{

unsigned divisor,

dvisor = (unsigned)(1193180L / frequency),
If (control_flag)

{

outp(0x43, OxB6),

outp(0x42, dvisor % 256),
outp(Ox42, divisor / 256),
control = inp(0x61),

120

control_flag = 0;

}

else

{

divisor = (unsigned)(1193180L / frequency);
outp(Ox42, divisor % 256);

outp(0x42, divisor / 256);

}
outp(0x61, control | 3);

Function: silence()

Toolbox: SOUND.C

Demonstrated: SOUNTEST.C
Parameters: (none)

Returned: (function retums nothing)
Variables: (none)

Description: Turns off the tone generator

void silence(void)

outp(0x61, contro!);
control_flag = 1,

Function: wait_ticks()
Toolbox: SOUND.C
Demonstrated: SOUNTEST.C

Parameters:
(input) ticks Number of clock ticks

Returned: (function returns nothing)
Variables: now Time as returned by sound()
Description: Delays for a given number of clock ticks
void wait_ticks(unsigned ticks)

clock_t now,
do

now = clock();

while (clock() == now)

{3

}

while(—ticks);

Function: warble()
Toolbox: SOUND.C
Demonstrated: SOUNTEST.C

121

Parameters
(nput) count Number of warble cycles

Returned (function returns nothing)
Vanables (none)

Description Creates a three-tone warble

Wi
void warble(int count)
{
do
{
sound(500),
wait_ticks(1),
sound(2000),
wart_ticks(1),
sound(1000),
wait_ticks(1),
sound(750),
wart_ticks(1),
}
while (—count),
stlence(),
}
R,

Function weird()
Toolbox SOUND C
Demonstrated SOUNTESTC

Parameters count Number of sound generation cycles
Returned (function retums nothing)

Vanables 1 Looping index
J Tone frequency

void weird(int count)

{

int, §,

sound(50),
do
for (1=50,1<1200,1+=100)
for(j=1,]<1+1200,j+=5)
sound(}),
while (—count),

silence(),

Function siren()

Toolbox SOUNDC

Demonstrated SOUNTEST C

Parameters count Number of sound generation cycles

Returned (function returns nothing)

122

Variables: i Looping index

Description: Creates a sound whose frequency rises and falls

void siren(int count)

t
inti;

sound(50),
do

{

for (i = 50; i < 2000; i++)
sound(i);

for (i =2000;i>50;i-)
sound(i);

while (—count);

silence();

Function: white_noise()
Toolbox: SOUND.C
Demonstrated: SOUNTEST.C

Parameters: ticks Number of clock ticks
Returned: (function returns nothing)
Variables: i Looping index

mdm Pseudorandom unsigned integer
now Time as returned by clock()

Description: Generates white noise, a wide_ranging multifrequency

sound

void white_noise(int ticks)
{
unsigned i, mdm;
clock_t now;

do

now = clock(),
while (clock() == now)

{

speaker_toggle();

mdm = mdm * 317 + 21317,

for (i=rmdm & OxFF; i;i-)
{1}

}

}
while(~ticks);

silence();

Function: note()
Toolbox: SOUND.C
Demonstrated: SOUNTEST.C

123

Parameters: frequency Frequency of the tone
ticks Number of clock ticks

Retumed: (function returns nothing)

Variables: (none)

Description: Creates a tone given its frequency and duration
void note(int frequency, int ticks)

sound(frequency);

wait_ticks(ticks);
silence();
}

124

/t

Name: STATS.C
Type: Routines for statistical analysis

of student results

Air Traffic Control Screening Program
Language: Microsoft QuickC version 2

*/

#include <stdio.h>
#include <math.h>
#include <float.h>
#include <stdlib.h>
#include <conio.h>
#include <time.h>
#include "typ_init.h"
#include "menu.h”
#include “getkey.h"
#include "box.h"
#include "t_colors.h"
#include “sound.h"

* Error message data */
char *error_box_3_01[] =

{

" Emror Message #3.01 ",

“ One of the statistical functions ",
“ was passed a value for test_no ",
" which is out of range ",

"< Press any key >",

NULL

3

char *error_box_3_02[] =

{

" Ermror Message #3.02 ",

" "l'here are no student records in ",

" memory to analyze. ",

“ I'RESULT => No statistical analysis ",
" of student results can be done. ",

o Press any key >",

NULL

¥y

P
this function calculates the mean time
for correct answers for test number
determined by test_no

*/

double cal_mean_time_correct(int test_no, RES_NODE *h)
{

double sum_time = 0.0,

int num_students,

int *save_error_box;

RES_NODE *n;

/&
check to see if test_no in range
*/
if (test_no <0 || test_no>19){
r

125

126

set error box color to red

set error text color to white
*/
menu_back_color(BK_RED),
menu_text_color(T_WHITE | T_BRIGHT),

/* Display error_box_3_01*/
save_error_box = menu_message(10, 8, error_box_3_01)

getkey_or_mouse(),

/* Erase error_box_3_01*/
menu_erase(save_error_box),

/.
set box color back to cyan
set text color back to black
*/
menu_back_color(BK_WHITE),
menu_text_color(T_BLACK),

returmn((doubie) 00), /* error retum Oto caller */
n=h, I* set pointer to head of list */
while (n = NULL) { /* while not end of list *
/.

increase total time by avg time correct
for this student for this test number
*!
sum_time = sum_time + n->student_info[test_no] avg_time_correct,

/0
increase number of students
results taken from

*/

++num_students,

n = n->next,

I.
return the mean time for correct answer times
for test test_no

*!

of (num_students == 0)
I.

check for divide by zero error

*/
retum((double) 0),
else
retumn (sum_time / (double) num_students),
}
r

this function calculates the mean time
for incorrect answers for test number
determined by test_no

*f

double cal_mean_time_incorrect(int test_no RES_NODE *h)
{

double sum_time,

int num_students,

int *save_efror_box,

RES_NODE *n,

double cal_stat_deviation_correct(int test_no, RES_NODE *h)

{

Description: This function calculates the statistical
dewviation for correct answers for test number
determined by test_no

double sum_difference,
double difference,

double mean_time_correct,
int *save_error_box,

RES_NODE *n,

/.
check to see if test_no in range
*/
if (test_no < 0 || test_no > 19){
I.

set error box color to red

set error text color to white
*/
menu_back_color(BK_RED),
menu_text_color(T_WHITE | T_BRIGHT),

/* Display error_box_3_01*/

save_error_box = menu_message(10, 8, error_box_3_01),

getch(),

/* Erase error_box_3_01*/
menu_erase(save_error_box),

/.
set box color back to cyan
set text color back to black
*f
menu_back_color(BK_WHITE),
menu_text_color(T_BLACK),

retum((double) 0), /* error retum O to caller */

}

/t
get the mean response time
for correct answers
*/
mean_time_correct = cal_mean_time_correct(test_no, h),

n=Ah, * set pointer to head of hst */
while (n = NULL) { * while not end of list */
/&

calculate difference from mean
*/
difference = mean_time_correct -
n->student_info[test_no} avg_time_correct,

,l
square difference
Vi
difference = difference ~ difference,
/.

update sum of difference
*/

128

sum_difference = sum_difference + difference,

n = p->next,

}

/.
retum the statistical deviation for correct answer times
for test test_no

*f
retumn (sqrt((double) sum_difference)),

/l
this function calculates the statistical
dewiation for incorrect answers for test number
determined by test_no

*/

double cal_stat_dewviation_incorrect(int test_no, RES_NODE *h)

{

double sum_difference,
double difference,

double mean_time_correct,
nt *save_error_box;

RES_NODE *n,

/0
check to see if test_no in range
*/
if (test no <0 |jtest_no>19){
,ﬁ

set error box color to red

set error text color to white
*/
menu_back_color(BK_RED),
menu_text_color(T_WHITE | T_BRIGHT),

I* Display error_box_3 01 */

save_error_box = menu_message(10, 8, error_box_3_01),

getch();

I* Erase efror_box_3_01*/
menu_erase(save_eiror_box),

/t
set box color back to cyan
set text color back to black
*/
menu_back_color(BK_WHITE),
menu_text_color(T_BLACK),

return((double) 0), * error retum O to caller
}

”
get the mean response time
for correct answers

*/

mean_time_correct = cal_mean_time_incorrect(test_no, h),

n=h, I* set pointer to head of st */
while (n = NULL) { /* while not end of list
/.

calculate difference from mean
*/
difference = mean_time_correct -

129

130

n->student_infoltest_no} avg_time_incorrect,

/i
square difference
*/
difference = difference * difference,
l‘
update sum of difference
*/
sum_difference = sum_difference + difference,
n = n->next,
I.
return the statistical deviation for correct answer times
for test test_no
*/

return (sqrt((double) sum_difference)),

Function Stats_test_1(),
File STATS C

Parameters None
Retumned None
Vanables None

Descnption Calculates statistics for test #1 given results
from the test

*/
void stats_test_1(TEMP *st1, STUDENT_RECORD *new_student, int *correct,
int test_num)
{
intn,

int tot_num_correct = O,

int tot_num_incorrect = 0,

double tot_time_incorrect =0 0,
double tot_time_correct= 00,
char lloop_hmtt, uloop_limt,

int sum_correct = 0,

int sum_incorrect = 0,

double sum_time_correct =0 0,
double sum_time_incorrect = 0 0,

* check tnal number to set corresponding loop counters */
if (test_num ==0)

{ lloop_himit = O,
uloop_limit = 32,

}

else

{
floop_himit = 32,
uloop_hmit = 64,

}

/* begin processing of data */

for (n = lioop_hmit, n < uloop_limit, n++)

{

if (st1[n] answer == correct[n]) {

++sum_correct,

sum_time_correct = sum_time_correct +
(st1(n] reaction_time / CLK_TCK),
st1{n] nght_wrong = 1,

}

else {

++sum_incorrect,

sum_time_tncorrect = sum_time_incorrect +
(st1[n] reaction_time / CLK_TCK),
st1[n] nght_wrong = 0,

/* get number of questions */
new_student->student_infoltest_num)] total_no_questions = 64,

/* check for divide by zero */
if (sum_correct 1=0)

I* calculate average time to answer questions correctly for tnal */
new_student->student_infojtest_num] avg_time_correct =
sum_time_correct / (double) sum_correct,
else

I* calculate average time to answer questions for tnal correctly */
new_student->student_info[test_num] avg_time_correct =00,

/* check for dvide by zero */
if (sum_incorrect 1= 0)

/* calculate average time to answer questions for tnal incorrectly */
new_student->student_info[test_num] avg_time_incorrect =
sum_time_incorrect / (double) sum_incorrect,
else

I* calculate average time to answer questions incorrectly for the tnat*/

new_student->student_infoftest_num] avg_time_incorrect =00,

I/~ get number of questions answered correctly for tnal
NOTE Score 1s (number correct - number incorrect) */
new_student->student_info[test_num] no_questions_correct =
sum_correct - sum_incorrect,

/* Calculate the overall average incorrect and correct times for all 64 questions */
for(n=0, n <64, n++)

if(st1]n] nght_wrong == 1)

tot_time_correct += st1[n] reaction_time / CLK_TCK,
tot_num_correct++,

}

else
tot_time_incorrect += st1[n] reaction_time / CLK_TCK,
tot_num_incorrect++,

}

if (tot_num_correct ==0)

new_student->student_info[1] ovri_avg_time_corr =00,
else

new_student->student_info[1] ovrl_avg_time_comr =

131

{

132

tot_time_correct / (double) tot_num_correct,

if (tot_num_sncorrect ==0)
new_student->student_info[1] ovrl_avg_time_incorr =00,
else
new_student->student_info[1] ovr_avg_time_incorr =
tot_time_incorrect / (double) tot_num_incorrect,

for(n=0,n <64, n++)

{ new_student->RESPONSE[n] reaction_time = st1[n] reaction_time/CLK_TCK,
new_student->RESPONSE[n] answer = st1[n] answer,
new_student->RESPONSE[n) nght_wrong = st1[n] nght_wrong,

}

I.

update student record to indicate that student has
accomplished test #1
*/
new_student->test_no = test_num

Function Stats_test_2(),
File STATSC

Parameters None
Returned None
Vanables None

Descrniption Calculates statistics for test #2 given results

from the test
void stats_test 2(TEMP *st1, STUDENT_RECORD *new_student, int *correct,
int test_num)
intn,

int tot_num_correct = 0,

int tot_num_incorrect = 0,

double tot_time_incorrect =00,
double tot_time_correct = 00,
char uloop_hmt, lloop_limtt,

int sum_correct = 0,

int sum_incorrect = 0,

double sum_time_correct =00,
double sum_time_incorrect = 00,

/* check tnal number to set corresponding loop counters */
if (test_num ==0)

t Hoop_limit =0,
uloop_limit = 33,

}

else

{
lioop_limit = 33
uloop_hmit = €5,

}

/* begin processing of data */

for (n = lloop_hmit, n < uloop_hmit, n++)

{

if (st1[n] answer == correct]n]) {

++sum_correct,

sum_time_correct = sum_time_correct +
(st1[n] reaction_time / CLK_TCK),
st1[n] nght_wrong =1,

else {

++sum_incorrect,

sum_time_incorrect = sum_time_incorrect +
(st1[n] reaction_time / CLK_TCK),
st1{n] nght_wrong =0,

~N -

* get number of questions
* +2 here used to allow for space taken up by test #1
*
new_student->student_info[test_num + 2] total_no_questions = 65,

I* check for divide by zero */
if (sum_correct '=0)

I* calculate average time to answer questions correctly for tnal */
new_student->student_infoftest_num + 2] avg_time_correct =
sum_time_correct / (double) sum_correct,

else
I* calculate average time to answer questions for trial correctly */
new_student->student_infoftest_num + 2] avg_time_correct=00
/* check for divide by zero */

if (sum_incorrect =0)
* calculate average time to answer questions for trial incorrectly */
new_student->student_info[test_num + 2] avg_time_incorrect =
sum_time_tncorrect / (double) sum_incorrect,
else

I* calculate average time to answer questions incorrectly for the triat*/
new_student->student_info[test_num + 2] avg_time_incorrect =00,

I* get number of questions answered correctly for tnal
*/
new_student->student_info[test_num + 2] no_questions_correct = sum_correct,

/* Calculate the overall average incorrect and correct times for all questions */
for(n=0,n <65, n++)

if(st1{n] nght_wrong == 1)
{

tot_time_corect += st1[n] reaction_time / CLK_TCK,
tot_num_correct++,

}

else

{
tot_time_incorrect += st1[n] reaction_time / CLK_TCK,
tot_num_incormrect++,

}

if (tot_num_correct ==0)

new_student->student_info[2] ovrl_avg_time_corr =00
else

new_student->student_info[2] ovr_avg_time_corr =

133

134

tot_time_correct / (double) tot_num_correct;

if (tot_num_incormrect == 0)
new_student->student_info[2].ovrl_avg_time_incorr = 0.0,
else
new_student->student_info[2].ovrl_avg_time_incorr =
tot_time_incorrect / (double) tot_num_incorrect;

for(n=0; n <65, n++) /* 23 is offset for # problems in test 1 */

{
new_student->RESPONSE[n+23].reaction_time = st1[n].reaction_time/CLK_TCK;
new_student->RESPONSE[n+23].answer = st1[n].answer;
new_student->RESPONSE[n+23].right_wrong = st1[n].right_wrong;
}
/l
update student record to indicate that student has
accomplished test #2
*/
new_student->test_no = test_num;
Function: Get_mtc_data(),
File: STATS.C
Parameters:

(input) value array of tyoe float holding values for
mean time for correct answer for each
student

Returned: None
Variables: n Pointer to node of type RES_NODE

Description: Get mean time for correct answer data and
place it into array value

void Get_mtc_data(fioat *vaiue, RES_NODE *h)

{

int counter;
int *save_error_box;
RES_NODE *n; n=h;

/.
check to see if any student records
in linked list

*/

if(n==NULL){
/.

set error box color to red

set ermror text color to white
*/
menu_back_color(BK_RED),
menu_text_color(T_WHITE | T_BRIGHT };

/* Display error_box_3_02*/
save_error_box = menu_message(13, 19, error_box_3_02);

I* Make error sound */
warble(5),

getkey_or_mouse();

/* Erase etror_box_3_02*/

135

menu_erase(save_error_box),

/.
set box color back to cyan
set text color back to black

2]

/

menu_back_color(BK_WHITE),

menu_text_color(T_BLACK),

}

else {

for (counter = 0, counter <= n->test_no, counter++) {

*value = (float) n->student_info[counter] avg_time_correct,

/* advance pointer to next array location */
++value,

Function Stats_test_3(),
File STATS C

Parameters None
Returned None
Vanables None

Description Calculates statistics for test #3 given results
from the test

void stats_test_3(TEMP *st1, STUDENT_RECORD *new_student, char *correct(],
int problems, int tnal_num)
{

intn,

int present,

int sum_correct = 0,

int sum_incorrect = 0,

double sum_time_correct = 00,
double sum_time_incorrect = 0 0,

for (n =0, n < (problems * 3), n++) {
/* get digit and convert to integer */
present = atoi correct[n]) + 48,

/* did student answer correctly */
if (st1[n] answer == present) {

* student answered correctly */
++sum_correct,
sum_time_correct = sum_time_correct +
(st1[n] reaction_time /
CLK_TCK),

}
else {
* student answered incorrectly */
++sum_incorrect,
sum_time_incorrect = sum_time_incorrect +

st1[n] reaction_time / CLK_TCK),

I* move pointer to next result */
/" ++correct, */

* get number of questions */
new_student->student_infoftnal_num + 16] total_no_questions = problems * 3,

I* check for divide by zero */
If (sum_correct '=0)

* calculate average time to answer questions correctly */
new_student->student_info[tnal_num + 16] avg_time_correct =
sum_time_correct / (double) sum_correct,
else

I* calculate average time to answer questions correctly */
new_student->student_info[tnal_num + 16] avg_time_correct =00,

/* check for dvide by zero */
if (sum_incorrect |1=0)

I* calculate average time to answer questions incorrectly */
new_student->student_infoltnal_num + 16] avg_time_tncotrect =
sum_time_incorrect / (double) sum_incorrect,
else

/* calculate average time to answer questions incorrectly */
new_student->student_info[tnal_num + 16] avg_time_incorrect =00,

I* get number of questions answered correctly */
new_student->student_info[tnal_num + 16] no_guestions_correct = sum_cofrect,

/.
update student record to indicate that student has
accomplished test #3 tnal #tnal_num
!
new_student->test_no = tnal_num + 16,

Function Get_mti_data(),
File STATSC

Parameters
(nput) value array of tyoe float holding values for
mean time for correct answer for each
student

Returned None
Vanables n Pointer to node of type RES_NODE

Descnption Get mean time for incorrect answer data and
place ¢t into array value

void Get_mti_data(float *value, RES_NODE *h)
{

int counter,

int *save_error_box,

RES_NODE *n,n=h,

/0
check to see If any student records
n linked hst

*/

if (n==NULL){

136

137

/.
set error box color to red
set error text color to white
*/
menu_back_color(BK_RED);
menu_text_color(T_WHITE | T_BRIGHT);

I* Display error_box_3_02*/
save_error_box = menu_message(13, 19, error_box_3_02);

/* Make error sound */
warble(5),

getkey_or_mouse();

I* Erase error_box_3_02*/
menu_erase(save_error_box);

l'
set box color back to cyan
set text color back to black
¢/
menu_back_color(BK_WHITE);
menu_text_color(T_BLACK);
}

else {
for (counter = 0; counter <= n->test_no; counter++) {
*value = (float) n->student_info[counter].avg_time_incorrect;

I* advance pointer to next array location */
++value;

Function: Get_pc_data();
File: STATS.C

Parameters:
(input) value array of tyoe float holding values for
average percentage correct for all
students.

Returned: None
Variables: n Pointer to node of type RES_NODE

Description: Get percentage of correct answers for each
trial, and place it into array value
*t
void Get_pc_data(float “value, RES_NODE *h)
{

int counter;
int *save_error_box;
RES_NODE *n; n =h;

/.
check to see if any student records
in linked list

*f

if (n==NULL){
/.

set error box color to red

set error text color to white
*f
menu_back_color(BK_RED);
menu_text_color(T_WHITE | T_BRIGHT);

I Display error_box_3_02*/
save_eror_box = menu_message(13, 19, error_box_3_02);

I* Make error sound */
warble(5),

getkey_or_mouse();

* Erase error_box_3 02 */
menu_erase(save_error_box);

I.
set box color back to cyan
set text color back to black
*/
menu_back_color(BK_WHITE);
menu_text_color(T_BLACK);

else {
for (counter = 0; counter <= n->test_no; counter++) {
if (n->student_info[counter].total_no_questions >=1)

*value = ((float) n->student_info[counter].no_questions_correct /
(float) n->student_info{counter].total_no_questions)
*100.0;

else
*value = 0.0;

/* advance pointer to next array location */
++value;

Function: Mean_time_correct();
Fite: STATS.C

Parameters:
(input) value array of tyoe float holding values for
average percentage correct for all
students.

Returned: None
Variables: n Pointer to node of type RES_NODE

Description: Get percentage of correct answers for each
trial, and place it into array value

*/
void mean_time_correct(float *value, RES_NODE *h)

{
int counter;
for (counter = 0; counter <= 19; counter++) {

*value = cal_mean_time_correct(counter, h);

/* advance pointer to next array location */
++value;

138

/.

Name T1OBJECTS C

Type Routines to implement graphic objects that are used

in the test and other utilities in battery
Airport Securtty Personnel Screening Program

Language Microsoft QuickC version 2

*

#include <graph h>
#include <math h>
#include <malloc h>
#include <conio h>
#include <stdio h>
#include "wideo h"
#nclude "t_colors h"
#include "sound h”
#include "t1object h”
#include "video h"

* set number of problems in test */

#define NUM_PROBLEMS 64 /* NOTE this parameter Is also defined in test_1 ¢ */

I~

Declare global pointers to objects to be drawn on screen

*

I* pointers to buffers holding images of all possible onentations of the aircraft */

char *aircraft_ptr{8},

File TEST_1C

Parameters None

Retumed None

Function Draw_background(),

Descnption Draws 8 white solid circles, on the circumference of

void Draw_background(void)

{

intdel_x=2,del_y=2,

a larger circle (not drawn), each 45 degrees apart
from each other with respect to the center of the
screen A solid white tnangle 1s drawn in the center
of the screen as well

int p1_x= 392, p1_y=295, p2_x=408, p2_y=295, p3_x=400, p3_y=306,

int c0_b1_x = 150, cO_b1_y =50, ¢0_b2 x =650, c0_b2_y =550,

c1_b1_x =650 + del_x, ¢1_b1_y =300 + del_y,
c1_b2_x=650-del_x, ¢1_b2_y=300-del_y,

c2_b1_x=575+del_x, c2_b1_y=475+del_y,
c2_b2_x=575-del_x, ¢2_b2_y = 475 - del_y,

¢3_b1_x =400 + del_x, ¢3_b1_y =550 +del y,
¢3_b2_x =400 - del_x, ¢3_b2_y =550 - del_y,

139

140

c4_b1_x =225 +del_x, c4_bl_y=475 +del_y,
c4_b2 x=225-del_x, c4_b2_y=475-del_y,

¢5_b1_x =150 + del_x, ¢5_b1_y =300+ del y,
¢5_b2_x=150-del_x, e5_b2_y =300 - del_y,

c6_b1_x =225 +del_x, c6_b1_y=125 +dely,
c6_b2 x =225 -del_x, c6_b2_y=125-del_y,

€7_b1_x =400 + del_x, ¢7_b1_y= 50 + del_y,
€7_b2 x =400 -del_x, c7_b2_y= 50-del_y,

c8_b1_x =575 +del x, c8 b1_y=125 +del_y,
cB_b2 x =575 -del_x, ¢8_b2 y=125-del y,

I*_elipse(_GBORDER , device_x(cO_b1_x), device_y(cO_b1_y),
device_x(c0_b2_x), device_y(c0_b2_y)),

*/
_ellipse(_GFILLINTERIOR , device_x(c1_b1_x), device_y(c1_b1_y),

device_x(c1_b2_x), device_y(c1_b2 y)),
_elipse(_GFILLINTERIOR , device_x(c2_b1_x), device_y(c2_b1_y),

device_x(c2_b2_x), device_y(c2_b2_y)),
_ellipse(_GFILLINTERIOR , device_x(c3_b1_x), device_y(c3_b1_y),

device_x(c3_b2_x), device_y(c3_b2_y)),
_elipse(_GFILLINTERIOR , device_x(c4_b1_x), device_y(c4_b1_y),

device_x(c4_b2_x), device_y(c4_b2 y)),
_ellipse(_GFILLINTERIOR , device_x(c5_b1_x), device_y(c5_b1_y),

device_x(cS_b2_x), device_y(cS_b2_y)),
_elipse(_GFILLINTERIOR , device_x(c6_b1_x), device_y(c6_b1_y),

device_x(c6_b2_x), device_y(c6_b2 y)),
_ellipse(_GFILLINTERIOR , device_x(c7_b1_x), device_y(c7_b1_y),

device_x{c7_b2_x), device_y(c7_b2_y)),
_ellipse(_GFILLINTERIOR , device_x(c8_b1_x), device_y(c8_b1_y),

device_x(c8_b2_x), device_y(c8_b2_y)),

tnangle(SOLID, device_x(p1_x), device_y(p1_y),
device_x(p2_x), device_y(p2_y),
device_x(p3_x), device_y(p3_v)),

Function Draw_exampie_background(),

File TEST_1C

Parameters None

Retumed None

Descnption Draws 8 white solid circles, on the circumference of
a larger circle (not drawn), each 45 degrees apart
from each other with respect to the center of the

screen A solid whtte tnangle 1s drawn n the center
of the screen as well

void Draw_example_background(void)
intdel_x =2, del_y=2,
int p1_x= 392, p1_y=370, p2_x=408, p2_y=370, p3_x=400, p3_y=381,

it cO_b1_x = 200, c0_b1_y = 175, cO_b2_x = 600, c0_b2_y = 575,

I'_elipse(_GBORDER , device_x(c0_b1_x), device_y(cO_b1_y),

*/

c1_b1_x =600 + del_x, ¢1_b1_y =375 +dely,
c1_b2_x =600 - del_x, c1_b2_y =375 - del_y,

c2_b1_x =541 + del_x, ¢2_b1_y =516 + del_y,
€2_b2_x =541 -del_x, c2_b2 y=516 - del_y,

¢3_b1_x =400 + del_x, ¢3_b1_y =600 + del_y,
c3_b2_x =400 -del_x, ¢3 b2_y =600 -del_y,

c4_b1_x=289 +del_x, c4_b1_y=516 +dely,
c4_b2 x =259 -del_x, ¢4_b2_y =516 -del y,

¢5_b1_x =200 + del_x, ¢5_b1_y =375 +dely,
¢S_b2 x =200 -del_x, ¢5 b2 y=375-dely,
1_x =259 + del_x, ¢6_b1_y =234 + del_y,

2_X =250 - del_x, ¢6_b2_y=234-del_y,

¢6_b
¢6_b

c7_b1_x =400 + del_x, ¢7_b1_y =175+ del_y,

c7_b2_x=400-del_x, ¢7_b2_y=175-dely,

c8_b1_x =541 + del_x, c8_b1_y =234 + del_y,
c8_b2_x =541 - del_x, c8_b2_y =234 -del_y,

device_x(cO_b2_x), device_y(cO_b2_y)),

_elipse(_GFILLINTERIOR , device_x(c1_b1_x), device_y(c1_b1_y),

device_x(c1_b2 x), device_y(c1_b2_y)),

_elipse(_GFILLINTERIOR , device_x(c2_b1_x), device_y(c2_b1_y),

device_x{c2_b2_x), device_y(c2_b2_y)),

_elipse(_GFILLINTERIOR , device_x(c3_b1_x), device_y(c3_b1_y),

device_x(c3_b2 x), device_y(c3_b2_y)),

_ellipse(_GFILLINTERIOR , device_x(c4_b1_x), device_y(c4_b1_y),

device_x(c4_b2 x), device_y(c4_b2 y)),

_elipse(_GFILLINTERIOR , device_x(c5_b1_x), device_y(cS_b1_y),

device_x(cS5_b2_x), device_y(c5_b2 y)),

_elipse(_GFILLINTERIOR , device_x(c6_b1_x), device_y(c6_b1_y),

device_x(c6_b2_x), device_y(c6_b2_y)),

_elipse(_GFILLINTERIOR , device_x(c7_b1_x), device_y(c7_b1_y),

device_x(c7_b2_x), device_y(c7_b2_y)),

_ellipse(_GFILLINTERIOR , device_x(c8_b1_x), device_y(c8_b1_y),

tnangle(SOLID, device_x(p1_x), device_y(p1_y),

device_x(p2_x), device_y(p2_y),
device_x(p3_x), device_y(p3_y)),

Function

File

Draw_plane(),

TEST_1C

Parameters float heading (in degrees)

device_x(c8_b2_x), device_y(c8_b2_y)),

141

142

Returmed: None

Description. Draws a symbol for an airplane at a specified heading.

void Draw_plane(float heading)

{

float x|6], y{6), x_set[6], y_set[6];
inti;

short previous;

double theta;

x_set[0}= 32.0; y_set[0]= 48.0;
x_set[1]=32.0; y_set{i}= 2.0;
x_set[2]=50.0; y_set{2]= 25.0;
x_set[3]= 0.0; y_set[3]}= 25.0;
x_set[4]= 8.0; y_set{4]= 34.0;
x_set[S]= 8.0; vy_set[S5)= 15.0;

I* use rotation matrix to rotate points about center of picture (25,25)
*/

/* convert heading to radians measured from horizontal x-axis*/
theta = (double)(90.0 - heading) * 3.1415826536/180.0;

for(i=0; i < 6; i++)
{

oi] = (float)cos(theta)*x_setfi] - (float)sin(theta)*y_set]i] + 25*(1-(float)cos(theta)) + 25*(float)sin(theta);
¥lil = (float)sin(theta)*x_set(i] + (float)cos(theta)*y_set{i] + 25*(1-(float)cos(theta)) - 25*(float)sin(theta);

}
previous = _setcolor(T_WHITE | T_BRIGHT),

line((short)x[0}, (short)y[0], (short)x[1], (short)y[1]);
line((short)x[2], (short)y[2], (short)x{3], (short)y[3]);
line((short)x{4], (short)y[4], (short)x(5], (short)y[S]);

_setcolor(previous);

Function: Init_ac_orientations()

File: ttobject.c

Parameters: None

Returned: None

Description: Draws the aircraft in the eight possible orientations,
saving each image in a buffer. Assigns the global

aircraft pointers to the starting locations of each
buffer for future drawing of any aircraft.

void Init_ac_orientations(void)

{

unsigned iImage_size;
char *image;
int i;

Ih

Set active page to non visual page
*/
_setactivepage(1);

I* determine image size of each aircraft drawing */
image_size = _imagesize(device_x(0), device_y(0),

device_x(50), device_y(50)),

I* draw and save each of the eight onentations */
for(1=0,1<8, 1++)
{

I* clear area where image will be drawn */
custom_bar(0, 0, 50, 50, T_BLACK),

I* draw image */
Draw_plane((float)(1*45)),

I* allocate memory */
arcraft_ptrii} = (char*)malloc(1Image_size),
* place image into memory */
_getimage(device_x(0), device_y(0), device_x(50), device_y(50),
arrcraft_ptrii]),
}
_clearscreen(_GCLEARSCREEN),
l‘
Set active page back to visual page
*

_setvisualpage(1),

Function Free_aircraft()
File. t1objectc
Parameters None
Retumed None

Descnption Frees the memory buffers holding the aircraft
Images In vanous onentations

*
void Free_ac(void)
{

intt,

for(1=0, 1<8, 1++)

free(aircraft_ptr{1]),

}
I e cccccmemceeceeeaaaanan

Function Draw_aircraft_problem()
File ttobjectc

Parameters onentation of aircraft
posittion of aircraft on screen

Returned None

Descnption draws the aircraft on screen at the posttion and
and onentation specified

'/ ---------------------------------
void Draw_aircraft_problem(short ac_onentation, short ac_position)

{

char image,
short x, y;

I* determine aircraft onentation required */
switch(ac_onentation)

143

144

case 0: image = aircraft_ptr{0}; break;

case 45. image = aircraft_ptr{1]; break;
case 90: image = aircraft_ptr{2]; break;
case 135: image = aircraft_ptr[3]; break;
case 180: image = aircraft_ptr{4]; break;
case 225: image = aircraft_ptr{5]; break;
case 270: image = aircraft_ptr{6); break;

case 315: image = aircraft_ptr{7}; break;
}

/* determine aircraft position required refative to center of screen.
North (0 deg bearing) being up on the screen

s/witch(ac_position)

{ case 0. x=400;y = 550; break;
case 45: x =575; y = 475, break;
case 90: x =650; y = 300; break;
case 135: x =575; y = 125; break;
case 180: x =400; y = 50; break;
case 225; x = 225; y = 125, break;
case 270: x = 150; y = 300; break;
case 315; x =225, y = 475, break;

}

* place aircraft image on screen */
_putimage(device_x(x-25), device_y(y+25), image, _GPSET),

Function: Draw_example_aircraft_problem()
File: tiobject.c

Parameters: orientation of aircraft.
position of aircraft on screen.

Retumed: None

Description: draws the aircraft on screen at the position and
and orientation specified.

void Draw_example_aircraft_problem(short ac_orientation, short ac_position)

{

char *image;
short x, y;

* determine aircraft orientation required */
switch(ac_orientation)

{

145

case 0 image = arrcraft_ptr{0], break,

case 45 image = aircraft_ptr{1], break,
case 90 mage = aircraft_ptr{2), break,
case 135 image = aircraft_ptr{3], break,
case 180 image = aircraft_ptr{4], break,
case 225 image = aircraft_ptr{5], break,
case 270 image = aircraft_ptr[6], break,

case 315 image = aircraft_ptr{7], break,
}

* determune aircraft position required relatve to center of screen
North (0 deg beanng) being up on the screen
*/

switch(ac_posttion)

¢ case0 x=400,y =575, break,
case 45 x=541,y=516, break,
case 90 x =600, y= 375, break,
case 135 x =541, y= 234, break,
case 180 x =400, y= 175, break,
case 225 x = 259, y = 234, break,
case 270 x =200, y = 375, break,
case 315 x =259, y =516, break,

}

* place arrcraft image on screen */
_putimage(device_x(x-25), device_y(y+25), image, _GPSET),

}
/ /
/ /
/ /
S
Function blue_bar(},
File TEST_1C
Parameters None
Retumed None
Variables None
Descnption makes the entire screen blue
*/
void blue_bar(void)

{

short previous,

previous = _setcolor(T_BLUE),

*f

_rectangle(_GFILLINTERIOR, device_x(0), device_y(595),
device_x(800), device_y(0));

_setcolor(previous);

Function: up_black_bar();
File: TEST_1.C

Parameters: None
Returned: None
Variables: None

Description: draws black bar at top of screen

void up_black_bar(void)

{

*

short previous;
previous = _setcolor(T_BLACK);

_rectangle(_GFILLINTERIOR, device_x(0), device_y(405),

device_x(800), device_y(595));

_setcolor(previous);

Function: text_bar();
File: TEST_1.C

Parameters: None
Returned: None
Variables: None

Description: draws text bar

void text_bar(void)

{

short previous;

previous = _setcolor(T_BLUE);

_rectangle(_GFILLINTERIOR, device_x(0), device_y(595),

device_x(800), device_y(440));

_setcolor(previous);

Function: mid_text_bar();
File: TEST_1.C

Parameters: None
Retumed: None

Variables: None

146

*/

Descnption draws text bar

void mud_text_bar(void)

{

*

short previous,
previous = _setcolor(T_BLUE),

_rectangle(_GFILLINTERIOR, device_x(0), device_y(425),
device_x(800), device_y(260)),

_setcolor(previous),

Function custom_bar(),
File TEST_1C

Parameters None
Returned None
Vanables None

Descnption draws a customized bar given coordinates of
comers of the bar

void custom_bar(nt x1, int y1, int x2, int y2, int color)

{

Wi

short previous,
previous = _setcolor(color),

_rectangle(_GFILLINTERIOR, device_x(x1), device_y(y1),
device_x(x2), device_y(¥2)),

_setcolor(previous),

Function down_text_bar(),
File TEST_1C

Parameters None
Returned None
Vanables None

Descnption draws text bar

void down_text_bar(void)

{

short previous,
previous = _setcolor(T_BLUE),

_rectangle(_GFILLINTERIOR, device_x(0), device_y(120),
device_x(800), device_y(0)),

_setcolor(previous),

Function press_key(),

147

148

File TEST_1C
Parameters None
Returned None
Vanables None

Description draws a brown text bar and displays the
'press any key to continue’' message

*/
void press_key(void)

short previous,
static unsigned char list[20],
/i
The names of the fonts that are available on disk

*/
static unsigned char *face[4] =

{
"t'couner”,
"thelv",
"ttms rmn™,
“tmodem™

h

char *temp,

unsigned image_stze,

/.
Copy previous background to memory
*

/* determine size of image (bytes) */
Image_size = _imagesize(device_x{ 500), device_y(125),
device_x(760), device_y(160)),

* allocate memory */
temp = malloc(iImage_size),

* place image into memory */
_getimage(device_x(500), device_y(125),
device_x(760), device_y(160), temp),

I+ set the font for the press any key box */
strepy(bist, face(2]),
streat(list, "h15w12b"),

/* set the font */
_setfont(hist),

/* delay two seconds before drawing */
wart_ticks(36),

I first flush the keyboard buffer */
while (kbhit())

geteh(),
previous = _setcolor(T_BROWN),

_rectangle(_GFILLINTERIOR, device_x(500), device_y(125),
device_x(760), device_y(160)),

149

_moveto(device_x(510), device_y(155));
_setcolor(T_WHITE | T_BRIGHT);
_outgtext(“Press any key to continue”);
getch();

_setcolor(previous);

I* replace image on the screen */
_putimage(device_x(500), device_y(160), temp, _GPSET);

I* free up allocated memory */

free(temp);
}
fH e e eccceccaancecncana—aa
Function: example_sound_prompt();
File: TEST_1.C
Parameters: None
Retumed: None
Variables: None
Description: prompts user to press any key to hear example
warning time sound.
*/
void example_sound_prompt(void)
{

short previous;

static unsigned char list[20];

/0
The names of the fonts that are available on disk
*/
static unsigned char *face[4] =
{
“Ycourier",
“thelv",
“ttms rmn",
“Ymodem™
X
char *temp;

unsigned image_size;

/.
Copy previous background to memory
*/

/" determine size of image (bytes) */
image_size = _imagesize(device_x(140), device_y(120},
device_x(552), device_y(155)),

/* allocate memory */
temp = malloc(image_size),

/* place image into memory */
_getimage(device_x(140), device_y(120),

180

device_x(552), device_y(155), temp),

I* set the font for the press any key box */
strepy(hst, face[2]),
streat(hist, "h15w12b"),

/* set the font */
_setfont(ist),

I* delay two seconds before drawing */
wart_ticks(36),

I* first flush the keyboard buffer */
while (kbhit())

getch(),
previous = _setcolor(T_BROWN),

_rectangle(_GFILLINTERIOR, device_x(140), device_y(120),
device_x(552), device_y(155)),

_moveto(device_x(150), device_y(150)),

_setcolor(T_WHITE | T_BRIGHT),

_outgtext("To hear sound and continue press any key"),
getch(),

_setcolor(previous),

/* replace image on the screen */
_putimage(device_x(140), device_y(155) temp, _GPSET),

/* free up allocated memory */

free(temp),
}
¥ e e e e e ciiciccieiacaaan-
Function timeout_message(),
File TEST_1C
Parameters None
Returned None
Vanables None
Descrniption A text bar displaying a message indicating
timeout has occured and a new problem i1s being
presented 1s flashed on screen for a bnef moment
*/
void timeout_message(void)
{

short previous,

static unsigned char list[20]

r
The names of the fonts that are available on disk
*/
static unsigned char *face[4] =
{
“t'couner”,
“thelv",
“ttms rmn"',

"tmodemn™

*/

* set the font for the press any key box */
strepy(list, face[2]);
strcat(list, "h15w12b");

/* set the font */
_setfont(list);

previous = _setcolor(T_RED);

_rectangle(_GFILLINTERIOR, device_x(520), device_y(245),
device_x(750), device_y(180));

_setcolor(T_WHITE | T_BRIGHT);

_moveto{ device _x(530), device_y(240));
_outgtext("Time has elapsed!”);

_moveto(device_x(530), device_y(210));
_outgtext("This is a NEW pattemn.”);

* wait one second for user to read message flash */
wait_ticks(16);

/* clear message */
_setcolor(T_BLACK);
_rectangle(_GFILLINTERIOR, device_x(520), device_y(245),
device_x(750), device_y(180));

_setcolor(previous);

..............................

Function: print_countdown();
File: TEST_1.C

Parameters: None
Returned: None
Variables: None

Description: prints count down message on the screen

void print_countdown(void)

short previous;

static unsigned char list{20};

,'
The names of the fonts that are available on disk
Wi
static unsigned char *face{4] =
{
“t'courier”,
“thelv™”,
“ttms rmn™,
“tmodern™
b3
char *temp, digit[3},
int counter;

unsigned image_size;

* clear the screen */

151

152

Clearscreen(GCLEARSCREEN);

I* set the font for the press any key box */
strepy(list, face[2]);
streat(list, "h15wi2b"),

/* set the font */
_setfont(list);

previous = _setcolor(T_BROWN);
_rectangle(_GFILLINTERIOR, device_x(60), device_y(425),
device_x(740), device_y(470)),

_setcolor(T_BLUE);
_rectangle(_GFILLINTERIOR, device_x(230), device_y(250),
device_x(570), device_y(400)),

_moveto(device_x(80), device_y(460));
_setcolor(T_WHITE | T_BRIGHT);
_outgtext("RESPOND AS QUICKLY AND AS ACCURATELY AS YOU CAN");

_moveto(device_x(250), device_y(390));
_setcolor(T_WHITE | T_BRIGHT);
_outgtext("THE TEST WILL BEGIN IN");

_moveto(device_x(340), device_y(290));
_seteolor(T_WHITE | T_BRIGHT);
_outgtext("SECONDS");

* set the font for the press any key box */
strepy(list, facef2]);
streat(list, "h20w15b");

I* set the font */
_setfont(list);

/* countdown from 10to 1 */
digit[2] = "\0";
for (counter = 10; counter >= 1, counter-) {

I* form digit string to be displayed on screen 9...8.. etc */
if (counter >=10) {

digit[0] = '1'; digit[1] = '0";

}

else {
digit[0] =" ; digit[1] = counter + 48;
}

_setcolor(T_WHITE | T_BRIGHT);
_moveto(device_x(380), device_y(340));
_outgtext(digit);

/* delay for one second */
wait_ticks(18);

_setcolor(T_BLUE),
_moveto(device_x(380), device_y(340));
_outgtext(digit);

}

_setcolor(previous),

I* set the font for the press any key box */

strepy(list, face[2]);

streat(list, "h15w12b");

I* set the font */
_setfont(list);

163

/* clear the screen */
_clearscreen(GCLEARSCREEN),

}
[e eccecacemcectcecanccaccraa—na
Function: full_text_bar();
File: TEST_1.C
Parameters: None
Returned: None
Variables: None
Description: draws text bar
*/
void full_text_bar(void)
{
short previous;
previous = _setcolor(T_BLUE);
_rectangle(_GFILLINTERIOR, device_x(0), device_y(550),
device_x(800), device_y(35));
_Setcolor(previous);
}
P e eecec e cceicacccnccsacnacnan
Function: full_black_bar();
File: TEST_1.C
Parameters: None
Retumed: None
Variables: None
Description: draws black bar
*/
void full_black_bar(void)
{
short previous;
previous = _setcolor(T_BLACK),
(_GFILLINTERIOR, device_x(0), device_y(600),
device_x(800), device_y(0));
_setcolor(previous);
}
[e e eemmeeeceecmcacaeeanceenm——acn
Function: display_test_name();
File: T1OBJECT_1.C
Parameters: None
Retumed: None
Variables: None
Description: displays the name of a test for 2 seconds on
screen
*/

void display_test_name(char *test_name)

*l

"thelv",

"ttms rmn*",

“fmodem™
¥

I* Display digit centered at the top of the screen */
strepy(list, face[2]);
streat(list, "h40w32b"),

I* set the font */
_setfont(list);

I* set text color to green */
previous = _setcolor(T_RED);

I* drawing brown rectangle */

_rectangle(_GFILLINTERIOR, device_x(225), device_y(420),
device_x(575), device_y(500));

I* reset drawing color */

_setcolor(previous);

/* Draw text on screen */
_moveto(device_x(330), device_y(475));

I* output character */
_outgtext("BEGIN!");

/* wait one and a half seconds */
wait_ticks(27),

Function: next_trial_message();
File: T10BJECT_1.C

Parameters: None
Retumed: None
Variables: None

Description: draws ‘next trial message’ on the screen

void next_trial_message(void)

short previous;

static unsigned char list[20];

"
The names of the fonts that are available on disk
*f
static unsigned char *face[4] =
{
"t'courier”,
“Yhev™,
"ttms rmn"',
"Ymodern™
I

I* Display digit centered at the top of the screen */
strepy(list, face[2]),
streat(list, "h40w32b");

I* set the font */
_setfont(list);

I* set text color to green */
previous = _setcolor(T_BROWN);

165

156

I* drawing brown rectangle */
_rectangle(_GFILLINTERIOR, device_x(10), device_y(420),
device_x(780),
device_y(500));
I* reset drawing color */
_setcolor(previous);

I* Draw text on screen */
_moveto(device_x(30), device_y(475));

I* Make error sound */
warble(5);

I* output character */
_outgtext("PRESS ANY KEY TO START NEXT TRIAL");

I* get user key press */
getch();

Function: next_instruction_message();
File: T10BJECT_1.C

Parameters: None
Retumned: None
Variables: None

Description: draws 'next instruction message’ on the screen

*/
void next_instruction_message(void)

short previous;
static unsigned char list{20];

/.
The names of the fonts that are available on disk
*/
static unsigned char *face{4] =
{
"Ycourier”,
“thelv”,
“ttms rmn",
"tmodern™

Y

I* Display digit centered at the top of the screen */
strepy(list, face[2]),
strcat(list, "h40w32b");

/* set the font */
_setfont(list),

I* set text color to green */
previous = _setcolor(T_BROWN);

/* drawing brown rectangle */
_rectangle(_GFILLINTERIOR, device_x(10), device_y(420),
device_x(790),
device_y(500)),
I* reset drawing color */
_setcolor(previous),

* Draw text on screen */
_moveto(device_x(30), device_y(475));

158

#include <conio h>
#include <malloc h>
#include <stdio h>
#include "typ_init h*
#include “video h”
#include "t_colors h"
#include "stats h"
#include "t1object h"

#include "menu h"

#include "sound h"
#include "getkey h”
#include "box h"

l.
Name TEST_1C
Type Routines to implement the first
student test
Mental Rotation Program
Language Microsoft QuickC version 2
*/
#include <graph h>

#define AC_ORIENTATION 0
#define AC_POSITION 1

#define NUM_TRIALS 2
#define NUM_PROBLEMS 64 / Note this parameter Is also defined in t1object ¢ */

#idefine NFONTS 4

#define GRID_CHAR_FONT 2

#define FRAME_O_0

#define FRAME_1_1

#define FRAME_1_2

#idefine FRAME_1_3

[*#define FRAME 1_2
*/

[*#define FRAME 1_3
*/

#define FRAME_2
#define FRAME_2
#define FRAME_: 3
fidefine FRAME_ 3
#define FRAME_: 3
#define FRAME_ 4
#define FRAME_ 4
#define FRAME_4_:
#define FRAME_! 5
#define FRAME_ 5
#define FRAME_ 5
#define FRAME_(6
ftdefine FRAME_ 7
#define FRAME_ 7
#define FRAME_ 7
#define FRAME_8_
#define FRAME_8
#define FRAME_ 8
#define FRAME_9_
#define FRAME_ 9
#define FRAME_9_:
#define FRAME_ 9
#define FRAME_9_!
#define FRAME_9_(
#define FRAME_9

/0

" Mental Rotation/Onentation Test”

“The object of this test is to measure the time and accuracy it"
“takes for you to onent where the tnangle 1n the center of the”
"screen 1s In relation to the nose of the aircraft icon *

show the tnangle on the left side & aircraft on left

“Press Enter to See example”

"As you can see, the aircraft will appear at one of the eight”

“45 degree points around the center tnangle ”

"You are to respond by using the numenc keypad on the nght side”
“of the keyboard The eight outside numenc keys correspond to"
“the location of the tnangle relative to the aircraft's nose "

“The numenc keys correspond to the angles as follows *

“#8 =0, #9=045 #6=090, #3=135"

“#2=180, #1=225 #4=270, #7=315"

“For this example, the tnangle s at the S0 degree point from"

“the nose of the aircraft Therefore, the correct answer would"

“be to press the #6 key "
“Let's try another example
“Where is the location of the tnangle In relation to the nose”
“of the aircraft?”

"Press the key which corresponds to the correct onentation *
“Let's try one last example Where 1s the location of the”
“tnangle in relation to the nose of the arrcraft?”’

“Press the key which corresponds to the correct onentation *
“Your score will be based on speed as well as accuracy "
"Therefore, please try to respond as quickly as possible,”
"BUT also as accurately as you can!”

"After you select your answer to each tnal, the next tnal’

“will immediately begin on the next screen "

"There are 64 problems in the test *

“There will be a short break in the middle of the test "

Vanables to keep track of reaction time

and answer for each test

TEMP resultsINUM_PROBLEMS],

/* Error message data */
char “error_box_4 01[} =

{
* Error Message #4 01 ¥,

" \'(ou failed to score 55% or greater ~,

" on the preview test “,
"e Press any key >",
NULL

}

char “error_box_5 01[=

{
" Error Message #5 01 ",

" I'Jnable to register fonts for this test “,
" "I'he following files must be in the ",

* the current directory for this test ",
“torun *,

“" 1) HELVB FON ",

" 2)COURBFON",

" 3)TMSRBFON",

"< Press any key >",

NULL

L

char *info_box_19[] =

{
"Test#1”,

" TEST COMPLETE ",
"< Press any key to continue >",
NULL

b

I* routine to free memory held by buffers with aircfaft drawn in varnous

onentations

Function Display_test1_instructions

File TEST_1C
Parameters None
Returned None

Vanables None

Descnption Displays instructions for test#1

*
void Display_test1_instructions(void)
static unsigned char list[20),

int response,

159

/‘
The names of the fonts that are available on disk
*f
static unsigned char *face[NFONTS] =
{

"courier,
"thelv",
“ttms rmn*,
"tmodemn™

¥

/* flush all buffers */
flushall();

/ﬁ
* frame #0 (Title of Test)
o

I* set font type and size */
strepy(list, face[2]);
strcat(list, "h18w14b");

™ set the font */
_setfont(list);

display_test_name(FRAME_0_0);

/.
* frame #1
*

" set font type and size */
strepy(list, face[2]);
streat(list, "h18w14b");

I* set the font */
_setfont(list);

Draw_example_background();
Draw_example_aircraft_problem(0, 270),

/* create text bar */
down_text_bar(),

* display text for frame 1 */

_moveto(device_x(10), device_y(120));
_outgtext(FRAME_1_1);

_moveto(device_x(10), device_y(80));
_outgtext(FRAME_1_2);

_moveto(device_x(10), device_y(40));
_outgtext(FRAME_1_3);

* wait for key press */
press_key();

/.
* frame #2
*/

* set the font */
_setfont(list);

* refresh text bar */
down_text_bar();

[* display text for frame 2 */

160

—moveto(device_x(10), device_y(120)),
_outgtext(FRAME_2_1),

_moveto(device_x(10), device_y(80)),
_outgtext(FRAME_2_2),

I* set font type and size back to normal */
strepy(hst, face[2]),
streat(hst, "h18w14b"),

I* set the font */
_setfont(Iist),

/* watt for key press */
press_key(),

,.
* frame #3
*f

/* set the font */
_setfont(Iist),

I* create text bar for text */
down_text_bar(),

/* display text */

_moveto(device_x(10), device_y(120)),
_outgtext(FRAME_3_1),

_moveto(device_x(10), device_y(80)),
_outgtext(FRAME_3_2),

—moveto(device_x(10), device_y(40)),
_outgtext(FRAME_3_3)

/* watt for key press */
press_key(),

/'
* frame #4
*/

/* set the font */
_setfont(hist),

I* create text bar */
down_text_bar(),

/* display text for frame 4 */

_—moveto(device_x(10), device_y(120)),
_outgtext(FRAME_4_1),

_moveto(device_x(10), device_y(80)),
_outgtext(FRAME_4_2),

—moveto(device_x(10), device_y(40)),
_outgtext(FRAME_4_3),

I* watt for user to press key */
press_key(),

/.
* frame #5
*/

I* set the font */
_setfont(Iist),

I* create text bar */
down_text_bar(),

161

I display text for frame 5 */

_moveto(device_x(10), device_y(120));
_outgtext(FRAME_5_1);

_moveto(device_x(10), device_y(80));
_outgtext(FRAME_S_2);

_moveto(device_x(10), device_y(40));
_outgtext(FRAME_S_3);

1* wait for user to press key */
press_key();

/t
* frame #6
Wi

I create text bar */
down_text_bar();

1* set the font */
_setfont(list);

I* display text for frame 6 */
_moveto(device_x(10), device_y(120));
_outgtext(FRAME_6_1);

/* wait for user to press key */
press_key(),

/.
* frame #7
*/

I* set the font */
_setfont(list);

/* erase old example from screen */
_clearscreen(_GCLEARSCREEN);

Draw_example_background();
Draw_example_aircraft_problem(90, 45);

/* create text bar */
down_text_bar();

/* display text for frame 7 */

_moveto(device_x(10), device_y(120)),
_outgtext(FRAME_7_1),

_moveto(device_x(10), device_y(80));
_outgtext(FRAME_7_2);

_moveto(device_x(10), device_y(40));
_outgtext(FRAME_7_3);

I* get response from user and check
then display appropriate message */

response = getch();
if (response =='3')

{
_moveto(device_x(10), device_y(200));
_outgtext(“That's correct!");

eise

_moveto(device_x(10), device_y(400));
_outgtext("Sorry, the triangle is in the");
_moveto(device_x(10), device_y(360));
_outgtext("135 degree position (#3 key).");

162

I* wait for user to press key */
press_key();

/C
* frame #8
*

I* set the font */
_setfont(list);

I* erase old example from screen */
_clearscreen(_GCLEARSCREEN);

Draw_example_background();
Draw_example_aircraft_problem(135,180);

/* create text bar */
down_text_bar();

I* display text for frame 7 */

_moveto(device_x(10), device_y(120));
_outgtext(FRAME_8_1);

_moveto(device_x(10), device_y(80));
_outgtext(FRAME_8_2);

_moveto(device_x(10), device_y(40));
_outgtext(FRAME_8_3);

I* get response from user and check
then display appropriate message */

response = getch();
if (response =='1")

_moveto(device_x(10), device_y(200));
_outgtext("That's correct!");

else

{
_moveto(device_x(10), device_y(400));
_outgtext(“Sorry, the triangle is in the");
_moveto(device_x(10), device_y(360));
_outgtext("225 degree position (#1 key).");

}

I* wait for user to press key */
press_key();

,0
* frame #9
*

I* set font type and size back to normal */
strepy(list, face[2]);
strcat(list, "h18w14b™);

_clearscreen{ _GCLEARSCREEN);
_setfont(list);

I set blue background */
blue_bar();

163

*f

* display text for frame 9 */

_moveto(device_x(10), device_y(510)),
_outgtext(FRAME_9_1),

_moveto(device_x(10), device_y(470)),
_outgtext(FRAME_9_2),

_moveto(device_x(10), device_y(430)),
_outgtext(FRAME_S_3),

_moveto(device_x(10), device_y(390)),
_outgtext(FRAME_9_4),

_moveto(device_x(10), device_y(350)),
_outgtext(FRAME_9_5),

_moveto(device_x(10), device_y(310)),
_outgtext(FRAME_9_6),

_moveto(device_x(10), device_y(270)),
_outgtext(FRAME_S_7),

I* watt for user to press key */
press_key(),

/* pnnt countdown message on the screen */
print_countdown(),

I* pnint begin message on the screen */
begin_message(),

I* clear the screen */
_clearscreen(_GCLEARSCREEN),

Functon Test_1(),
File TEST_1C

Parameters None

Returmed None
0
Vanables None

Description Procedure to execute test_1 This test determines
the mental rotation capabilities of a person
An airplane icon Is presented in any of eight onentations
(0,45,135,180,225,270,315) on the screen The icon ttself
1s placed in one of eight positions on the screen The
object is to determine the angular posttion of the center
of the screen if the user were 1n the airplane and facing
forward

vod test_1(STUDENT_RECORD *new_student)

{

it num_tnals, num_statements,
char key_field[9)],

short previous,
double t,

intn,

inttest=1,

int *save_error_box,
int *save_info_box,
long iImage_size,

164

165

FILE *debug_data;

I* array to hold questions. Format of questions is:
question[n}[0] = aircraft_orientation (deg)
question[n][1] = aircraft_position (deg)

]

short question[NUM_PROBLEMS][2] = {
{ 0, 0}, { 45,225}, {135, 90}, {180,315}, {270,180},
{ 0, 90}, { 45,315}, {135,180}, {225, 45}, {270,270},
{90, 0}, {135,225}, {225, 90}, {270,315}, {315,315},
{ 0,225}, { 90, 90}, {270,225}, {225,225}, {315, 90},
{135,315}, {225,180}, {315, 45}, { 0,270}, { 90,135},
{ 45, 0}, { 90,225}, {180, 90}, {225,315}, {315,180},
{ 45, 45}, { 90,270}, {180,135}, {270, 0}, {315,225},
{ 45,135}, {135, 0}, {180,225}, { 0, 45}, {180, O},
{ 45, 90}, { 90,315}, {180,180}, {270, 45}, {315,270},
{ 0,315}, {270,135}, {180, 45}, { 90, 45}, {315,135},
{270, 90}, { 0,135}, { 45,270}, {135,135}, { 45,180},
{ 0,180}, {225,270}, {135,270}, {225,135}, {315, O},
{225, 0}, {135, 45}, {180,270}, { 90,180}};

I array that holds correct answer key press for all questions */

short answer{64] = {2, '8', '3, '7",'¢','4,'6', '1', '8, ‘2,
'6','4,'9',"1",'2,'9','2,'3,'2,'T,
'8,'3,'4,'¢",'1','3,'7, ', '4,'9,
'2,'8,'3,'4,'6','4,'9",'1",'1', '8,
1,'¢,'2,'7,'3,'3,'9,'9, '3, '8,
'8,'7,'¢,'2,'7,'8,'1",'T,'6, "',
'T,'6,'4,'4

¥

static unsigned char list[20];

/.
The names of the fonts that are available on disk
*/
static unsigned char *face[NFONTS] =
{
“t'courier”,
“t'helv*”,
"ttms rmn™,
"tmodemn™
I8

key_field[0] = 1'; key_field[1] = ‘2 key_field[2] = ‘3';
key_field[3] = '4'; key_field[4] ="6', key_field[5] = '7";
key_field[6] = ‘8 key_field[7] ='9'; key_field[8] = "

debug data= fopen("debug.fil","'w+"),

/C
Read header from all font files
in current directory
*f
if (_registerfonts(**.fon") < 0)
{
/‘
set error box color to red
set error text color to white
Vi

menu_back_color(BK_RED);
menu_text_color(T_WHITE | T_BRIGHT);

I* Display error_box_5_01*/
save_efror_box = menu_message(6, 8, error_box_5_01);

/* Make error sound */
warble(5),

166

I* Get keypress from user */
getch(),

I* Erase error_box_5_01*/
menu_erase(save_error_box),

/.
set box color back to cyan
set text color back to black
*
menu_back_color(BK_WHITE),
menu_text_color(T_BLACK),

/* Place graphics adapter into videomode */
best_graph_mode(),

I* Display digit centered at the top of the screen */
strepy(hst, face]GRID_CHAR_FONT]),
strcat(ist, “h40w32b"),

I* set the font */
_setfont(list),

I* set text color to blue — same as background */
previous = _setcolor(T_BROWN),

I* reset drawing color */
_setcolor(previous),

/* Imtialize pointers to buffers that draw the aircraft in any
of the eight given onentations */
Init_ac_onentations(),

/* Dispiay test 1 instructions */
Display_test1_instructions(),

/* run test in two tnals */
for (num_tnals = 0, num_tnals < NUM_TRIALS , num_tnals++)

for (num_statements = num_tnals*"NUM_PROBLEMS/2,
num_statements < NUM_PROBLEMS/2+num_tnals*NUM_PROBLEMS/2,
num_statements++)

* flush the keyboard buffer */
while (kbhit())
getch(),

* clear screen and display background */
clearscreen (GCLEARSCREEN),
Draw_background(),

* check for timeout and display appropnate message */
" NOTE test is inttialized to 1 to ensure timeout message s not
erroneously displayed for first problem */
if (test==0)
timeout_message()

Draw_aircraft_problem(question[num_statements)JAC_ORIENTATION]

question[num_statements][AC_POSITION]),

I* set timer with 2 minute timeout and 10 second waming ‘beep’ feature */

results[num_statements] reaction_time = student_timer(&test, key_field,
(unsigned)120, (unsigned)10),

results[num_statements] answer = test,

* return if this 1s a demonstration test */
if (new_student->test_no<0)

/* Return to text mode */
text_mode(),

I* Set foreground and background colors for program */
_setbkecolor(BK_CYAN),
_settextcolor(T_BLACK),

I* Fill the background */
box_charfill(1, 1, 25, 80, 178),

/* Return memory used by fonts */
_unregsterfonts(),

* free up memory used by simple figures */
Free_ac(),

I extt test */
retum,

}

* Statistical analysis of test results */
stats_test_1(results, new_student, answer, num_tnals),

If (num_tnals < NUM_TRIALS - 1)
{

I* clear the screen */
full_black_bar(),

* ask user to press key to start the next tnai */
next_tnal_message(),

/* clear the screen */
full_black_bar(),

/* pnint countdown message on the screen */
pnint_countdown(),

* set graphics background to black */
_setbkeolor(_BLACK),
_clearscreen(_GCLEARSCREEN),

/* clear the screen */
full_black_bar(),

I* ask user to press key to end test */
_clearscreen({ _GCLEARSCREEN),
test_complete_message(),

* clear the screen */
full_black_bar(),

}
I* Set text mode */
text_mode(),

I* Fill the background */

167

168

box_charfill(1, 1, 25, 80, 178);

/l
set information box color to green
set information box text color to white
*/
menu_back_color(BK_GREEN);
menu_text_color(T_WHITE | T_BRIGHT);

I* Display information_box_19 */
save_info_box = menu_message(8, 8, info_box_19);

getch();

/* Erase information_box_19 */
menu_erase(save_info_box);

/.
set box color back to cyan
set text color back to black
*
menu_back_color(BK_WHITE),
menu_text_color(T_BLACK);

/* Free memory taken up by fonts */
_unregisterfonts();

* free up memory used by simple figures */
Free_ac();

* Set foreground & background colors for program */
_setbkcolor(BK_CYAN),
_settextcolor(T_BLACK);

169

lﬁ
Name: TMANAGER.C
Type: Routines to execute student tests.
Air Traffic Control Screening Program
Language: Microsoft QuickC version 2

*/

#include <graph.h>
#include <conio.h>
#include <malloc.h>
#include "typ_init.h"
#include "video.h"
#include "test_1.h"

Function: Test_manager();
File: TMANAGER.C

Parameters: student pointer to student record
Retumned: None
Variables: None

Description: Executes

void Test_manager(STUDENT_RECORD *new_student)

{
/" Start test #1 */
test_1(new_student);

/h
Name VIDEO C
Type Routines to implement virtual
display area for ATC graphic based
tests

Arr Traffic Control Screening Program
Language Microsoft QuickC version 2

Last Revision 06/16/92 Gordon Jones
Note Structure for _getvideoconfig() as visible to user

struct videoconfig {
short numxpixels, number of piels on X axis
short numypixels, number of pixels on Y axis
short numtextcols, number of text columns available
short numtextrows, number of text rows available
short numcolors, number of actual colors
short bitsperpeel, number of bits per pixel
short numvideopages, number of available video pages

short mode, current video mode
short adapter, active display adapter
short monitor; active display monitor
short memory, adapter video memory in K bytes
h

*

#include <graph h>

#include <stdio h>

#nclude <malloc h>

#include <conio h>

#include <stdib h>

#include <time h>

#include *t_colors h"

#include "menu h"

#include “video h"

#include "mk_fp h"

#pragma pack(1)

#define VH 600 /* height of virtual window ~ */

#define VW 800 /* width of vitual window ~ */

static double x_trans =0 0, I* scaling factor for converting */

static double y_trans =00, /* from virtual to device coords */

static int max_y =0,

/* Error message data */
char *error_box_2_01[] =

{
" Error Message #2 01 “,

" l'JNABLE TO TURN ON GRAPHICS MODE ",
" 'The Monochrome Display Adapter *,

* instailed in this computer ",

* does NOT support graphics ",

" Graphics capability 1s needed "

" Press any key >",

NULL

h

170

Procedure to place video adapter
in text mode
Wi

void text_mode(void)

{
_setvideomode(_DEFAULTMODE),
}

/0
Procedure to place video adapter
in best graphics mode

i

void best_graph_mode(void)

nt “save_error_box,
short best,
struct videoconfig grconfig,

/Q
place information about video
adapter into structure vanable
greonfig
*/
_getvideoconfig(&grconfig),
switch (grconfig adapter) {

/* Monochrome Display Adapter */
I* case _MDPA best=-1, break,

/* Color Graphics Adapter */
case _CGA best=_MRES4COLOR, break,

/* Enhanced Graphics Adapter */
case _EGA best=_ERESCOLOR, break,

/* Video Graphics Array */
case _VGA best=_ERESCOLOR, break,

/* Multicolor Graphics Adapter */
case _MCGA best=_ERESCOLOR, break,

/* Hercules Graphics Card */
case _HGC best=_HERCMONO, break,

}
if (best t=-1){
/Q

Set best video mode
*
_setvideomode(best),

I.
Intialize wideo vanables
Wi
x_trans = x_factor(),
y_trans =y_factor(),
max_y = maximum_y(),

}
else {
/.
Error - Monochrome Display Adapter
cannot support graphics
*/
/&

set error box color to red

171

172

set error text color to white
*/
menu_back_color(BK_RED),
menu_text_color(T_WHITE | T_BRIGHT),

/* Display error_box_1 */
save_error_box = menu_message(10, 8, error_box_2_01),

getch(),

/I* Erase error_box_1 */
menu_erase(save_error_box),

/‘
set box color back to cyan
set text color back to black

*

menu_back_color(BK_CYAN),

menu_text_color(T_BLACK),

}
}

lﬁ
Function to calculate scaling factor
along the x axis

*/

double x_factor(void)
{

/* max number of pixels - x axas */
nt maxx,

struct videoconfig video,

,.
place information about video
adapter into structure vanable
video

*/

_getwideoconfig(&video),

maxx = video numxpixels - 1,

I* Calculate scaling factor for x axis */
return((double) (maxx) / VW),

,0
Function to calculate scaling factor
along the y axis
*/
double y_factor(void)
nt maxy, * max number of pneels - y axas */
struct videoconfig video
/.
place information about video
adapter into structure vanable
video
*
_getwideoconfig(&video),

maxy = video numypixels - 1,

/* Calculate scaling factor for x axis */
retum((double) (maxy)/ VH),

}

,0
Function that retums maximum y
coordinate for video adapter

*/

int maximum_y(void)
struct videoconfig video,

/b
place information about video
adapter into structure vanable
video

*

_getvideoconfig(&video),

retum(video numypixels - 1),

}

/.
Function to map virtual x coordinate
to device x coordinate

*

int device_x(register int virtual_x)

return { int) (x_trans * virtual_x),

/ﬁ
Function to map virtual y coordinate
to device y coordinate

*/

int device_y(register int virtual_y)

retumn (int) (max_y - (y_trans * virtual_y)),

Function hne(),
File VIDEO C

Parameters
(nput) x1,yt x and y coordinate of start of
line
x2y2 x and y coordinate of end of
line

Returned Nothing
Vanables None
Descnption Draws a line using the virtual coordinate system

implemented in this unit on the screen The ne
1s drawn from x1,y1 to x2,y2 in the current color

voud Ime(int x1, int y1, int x2, int y2)

173

I* Move cursor position to start of iine */
_moveto(device_x(x1), device_y(y1)),

/* Draw hine from x1,y1 tox2,y2 */
_lineto(device_x(x2), device_y(y2)),

Parameters

Function. bresenham()

(nput) xt X-coordinate for first point
(nput) v1 Y-coordinate for first point
(nput) x2 X-coordinate for second point
(input) y2 Y-coordinate for second point

Returned Integer buffer containing points on line

Vanables xi X increment direction

y Y increment direction
dx Relative change in x-coordinate
dy Relative change in y-coordinate
xp Current point along the line
yp Current point along the line
cX Accumulated x increments
cy Accumulated y increments
buf Pointer to returned buffer
ndx Index into buf for each coordinate
! Looping index
Description Builds a table of coordinates that form a ine
connecting two given points
Note Bresenham function used because quicker than

standard Quick C fill function calls

For information on how this function works please
review graphics textbook

*
int *bresenham(Int x1, int y1, Int X2, int y2)
{

unsigned x, y1, dx, dy, xp, Yp, ¢X, ¢y,

int *buf,

int ndx = 1,

tnt,

/* Right to left from first point to second? */

f(2<x1)
{

dx =x1-x2,
=1,

}

* Must be left to nght from first point to second */

eise

{
dx=x2-x1,
xi=1,

}

/* Is first y-coordinate greater than second? */

f(y2<yl)
{

dy=yl-y2,
w=-1,

174

}

I* Second y-coordinate must be greater than first */
else

=y2-y1;
yi=1,
}

I* Set the working point to the first point */
xp=x1;
=yl

/* Is the line more vertical than horizontal? */

if (dx <dy)
{

1* Start with the accumulated count at halfway point */

oy =dy>> 1;

/* Allocate memory for the buffer */
buf = (int *)malloc(((y2-y1 +vyi) *vyi) * 4+ 2),
if (buf == NULL)

printf("Not enough memory for bresenham()\n");
exit(1);
}

* Until we get to the last point */
while (yp !=y2)
{

/* Put the current point in the buffer */
buffndx++] = xp;
buffndx++] = yp;

I* Accumulate the relative counts */
Cy += dx;
Yp += Vi,
/* Is it time to change x-coordinate? */
if (dy <cy)

{

/* Reset the accumulating count */

cy-=dy;

/* Change the X value */
Xp +=;
}
}
}

/* Line must be more horizontal than vertical */
else
{

/* Start with the accumulated count at halfway point */

cx = dx >> 1;
* Allocate memory for the buffer */
buf = (int *)malloc((X2 - x1 +xi) * xi) * 4+ 2),
if (buf == NULL)
printf("Not enough memory for bresenham()\n");
exit(1);

/* Until we get to the last point */

175

while (xp 1=x2)
{

I* Put the current point in the buffer */
buffndx++] = xp,
buf[ndx++] = yp,

/* Accumulate the relative counts */
cx += dy,
Xp +=,

" Is it time to change y-coordinate? */
if (dx<cx)
{

}
}

I* Reset the accumulating count */
ox -= dx,

/* Change the Y value */
yp+=y,
}

I* Save the last point in the buffer */
bufndx++] =>2,
buffndx++] = y2,

I* Save the number of points at head of buffer */
buff0] = ndx >> 1,

I* Return the buffer */
retun (buf),

Function tnangle()
Parameters
(nput) type LINED (outhne) or SOLID (filled)
(nput) x1 X-coordinate at first point
(nput) y1 Y-coordinate at first point
(nput) x2 X-coordinate at second point
(nput) y2 Y-coordinate at second point
(nput) x3 X-coordinate at third point
(nput) y3 Y-coordinate at third point
Returned (function retums nothing)
Vanables bufi2 Points along line from point 1 to 2

buf23 Points along line from point 2 to 3
buf1i3 Points along line from point 1 to 3
xieft Points along left side of tnangle
xnght Points along nght side of tnangle

1 Looping Index

ymin Minmum Y point of tnangle

ymax Maxomum Y point of tnangle

xmin Minimum X pont of tnangle

xmax Maxmum X point of tnangle

X X-coordinates along tnangle edges
y Y-coordinates along tnangle edges
numy Number of Y-coordinates in tnangle

Description Draws a tnangle, optionally filled in

Note

Bresenham function used because quicker than
standard Quick C fill function calls

176

*/

void triangle(int type, int x1, int y1, int X2, int y2, int x3, int y3)
{

int *buf12, *buf23, *buf13;
int “weft, “xright;

int i, ymin, ymax, xmin, xmax;
int x, y, numy;

if (type == LINED)

else

I* Draw only the outline */

{

_moveto(x1, y1);
_lineto(2, y2);
_lineto(X3, y3);
_lineto(x1,y1);

}

/* Fill in solid area */

{

/* Determine minimum and maximum y-coordinates */
ymin = ymax = yt;

ymin = (y2 <ymin) ? y2 : ymin;

ymin = (y3 <ymin) 7 y3 : ymin;

ymax = (y2 > ymax) ? y2 : ymax;

ymax = (y3 > ymax) ? y3 : ymax;

I* Determine minimum and maximum x-coordinates */
xmin = xmax = x1;

xmin = (X2 < xmin) ? X2 : xmin;

xmin = (X3 <xmin) ? x3 : xmin;

ximax = (X2 > xmax) ? X2 ; xmax;

xmax = (X3 > xmax) ? X3 : xmax;

I* Calculate line coordinates for the triangle sides */
buf12 = bresenham(x1, y1,)2, y2);
buf23 = bresenham(x2, y2, X3, y3),
buf13 = bresenham(x1, y1, X3, y3);

/* Build arrays for x values at all possible y values */
numy = ymax - ymin + 1,

seft = (int *)malloc((size_t)(numy * 2));

xright = (int *)malloc((size_t)(numy * 2));

I* Fill arrays with starting values */
for (i=0;i<numy, i++)

xleft[i] = xmax;
xright[i] = xmin;

I* Put coordinates for first triangle side into arrays */
for (i = 0; i < buf12[0); i++)

{

x = buf12[i+i+1];

y = buf12[i+i+2] - ymin;

if (x < xeftfy])
xleftly] = x;

if (x > xrightly])
xrightfy] = x;

}

For information on how this function works please
review graphics textbook.

177

178

I* Put coordinates for second triangle side into arrays */
for (i=0; i < buf23[0]; i++)
{

X = buf23[i+i+1];
y = buf23[i+i+2] - ymin;
if (x < xeftly])
xiefty] = x;
if (x> xrightly])
xrightfy] = x;

I* Put coordinates for third triangle side into arrays */
for (i =0; i < buf13[0}; i++)

x = buf13[i+i+1];
y = buf13[i+i+2] - ymin;
if (x < xlefily])
xleftly] = x;
if (x > xright[y])
xrightly] = x;
}

/* Now we can fill the triangle efficiently */
for (i =0; i <numy;i++)

_moveto(xleft[i], ymin +i);
_lineto(xright[i], ymin +i);

I* Free some memory */
free(buf12),

free(buf23);

free(buf13);

free(xeft);

free(xright),

}

Name: GETKEY.H

Type: Include

Language: Microsoft QuickC
Demonstrated: GETKEY.C GETKTEST.C
Description: Prototypes and definitions for GETKEY.C

*/

#ifndef GETKEY_DEFIN

ED

#define KEY_F1 15104
#define KEY_F2 15360
#define KEY_F3 15616
#define KEY_F4 15872
#define KEY_F5 16128
#define KEY_F6 16384
#define KEY_F7 16640
#idefine KEY_F8 16896
#define KEY_F9 17152
#define KEY_F10 17408

#define KEY_SHIFT_F1
#define KEY_SHIFT_F2
#define KEY_SHIFT_F3
#define KEY_SHIFT_F4
#define KEY_SHIFT_F5
#define KEY_SHIFT_F6
#define KEY_SHIFT_F7
#define KEY_SHIFT_F8
#define KEY_SHIFT_F9

23552

#define KEY_SHIFT_F10 23808

#define KEY_CTRL_F1
#define KEY_CTRL_F2
#define KEY_CTRL_F3
#define KEY_CTRL_F4
#define KEY_CTRL_FS
#define KEY_CTRL_F6
#define KEY_CTRL_F7
#define KEY_CTRL_F8
#define KEY_CTRL_F9

24064
24320
24576

#define KEY_CTRL_F10 26368

#define KEY_ALT_F1
#define KEY_ALT_F2
#define KEY_ALT_F3
#define KEY_ALT_F4
#define KEY_ALT_F5
#define KEY_ALT_F6
#define KEY_ALT_F7
#define KEY_ALT_F8
#define KEY_ALT_F9
#define KEY_ALT_F10
#define KEY_INSERT
#define KEY_HOME
#define KEY_PGUP
#define KEY_DELETE

26624
26880
27136
27392

21248

#define KEY_END 20224

#define KEY_PGDN

20736

#define KEY_UP 18432

#define KEY_LEFT 1
#define KEY_DOWN
#define KEY_RIGHT
#define KEY_ENTER
#define KEY_ESCAPE

9200
20480
19712
13
27

#define KEY_BACKSPACE 8

#define KEY_TAB 9
#define KEY_SHIFT_TA|

#define KEY_CTRL_LEFT 29440
#define KEY_CTRL_RIGHT 29696
#define KEY_CTRL_HOME 30464

B 3840

179

180

#define KEY_CTRL_PGUP 33792
#define KEY_CTRL_PGDN 30208
#tdefine KEY_CTRL_END 29952
#define KEY_CTRL_ENTER 10

unsigned int getkey(void);
unsigned int getkey_or_mouse(void);
long student_timer(int *key, char *neutral, unsigned timeout, unsigned waming_time);

#define GETKEY_DEFINED
#endif

181

Name MOUSEFUN H

Type’ Include

Language Microsoft QuickC version 2

Demonstrated MOUSEFUN C MOUSTEST C
Descnption Prototypes and defintions for MOUSEFUN C

*/
#ifndef MOUSEFUN_DEFINED

#define LBUTTON O
#idefine RBUTTON 1

#define SOFT_TEXT_CURSOR 0
#define HARD_TEXT_CURSOR 1

#define ENGLISH 0
#define FRENCH 1
#define DUTCH 2
#define GERMAN 3
#define SWEDISH 4
fidefine FINNISH 5
#idefine SPANISH 6
#define PORTUGESE 7
#define ITALIAN 8

#define MOUSE_BUS 1
#define MOUSE_SERIAL 2
#define MOUSE_INPORT 3
#define MOUSE_PS2 4
#define MOUSE_HP 5

#define IRQ_PS20

/* Structure definition for graphics mode mouse cursors */
struct graphics_cursor

{

int screen_mask{16),

nt cursor_mask{16),

int hot_spot_x,

nt hot_spot_y,
void mouse_reset(int *, int *), I* Function 0*/
void mouse_show(void), /* Function 1%/
void mouse_hide(vod), I* Function 2*/
void mouse_status(int *, nt *,int *, nt *), /* Function 3*/
void mouse_setpos(int, int), {* Function 4*/

void mouse_press(int, nt *, int*, int *, int *), /* Function 5*/
void mouse_release(int, int *, int *, int *, nt *), /* Function 6*/

void mouse_sethorz(int, int), /* Function 7*/
void mouse_setvert(int, int), /* Function 8*/
void mouse_setgeurs(struct graphics_cursor far *), f* Function 9°/
void mouse_settcurs(int, int, int), /* Function 10 */
void mouse_motion(it *, int *), * Function 11 */
void mouse_setratios(int, int), * Function 15 */
void mouse_condoff(int, int, int, it), f* Function 16 */
void mouse_setdouble(int), /* Function 19 */
void mouse_storage(int *), /* Function 21 */
void mouse_save(char far *), /* Funchtion 22 */
void mouse_restore(char far *), /* Function 23 */
void mouse_setsensitivity(int, int, int), f* Function 26 */
void mouse_getsensitivity(int *, int *, int *), * Function 27 */
void mouse_setmaxrate(int), /* Function 28 */
void mouse_setpage(Int), * Function 29 */
void mouse_getpage(int*), /* Function 30 */
void mouse_setlang(int), /* Function 34 %/

void mouse_getlang(int *), /* Function 35 */

void mouse_getversion(double *, int *, int *);

/* Default graphics mode cursor */

static struct graphics_cursor far gcursor_default =

/* screen mask */

OXCFFF, /1100111111111111 %/
OxC7FF, /*1100011111111114 %/
OxC3FF, /*1100001111111111 %/
OxC1FF, /* 1100000111111111 %/
OxCOFF, /* 1100000011111111 %/
OxCO7F, /* 1100000001111111 */
OxCO3F, /* 1100000000111111 */
OxCO1F, /* 1100000000011111 */
OxCOOF, /* 1100000000001111 */
OxC007, /* 1100000000000111 */
OxCO7F, /* 1100000001111111 */
OxC43F, /* 1100010000111111 */

OxCC3F, /*1100110000111111 */

OXFE1F, /*1111111000011111 %/
OxFE1F, 7/ 1111111000011111 %/
OxFF1F, /*1111111100011111 %/

/* cursor mask */

0x0000, /* 0000000000000000 */
Ox1000, /* 0001000000000000 */
0x1800, /* 0001100000000000 */
0x1C00, /* 0001110000000000 */
OAEQD, /* 0001111000000000 */
Ox1F0Q, /* 0001111100000000 */
Ox1F80, /* 0001111110000000 */
Ox1FCO, /* 0001111111000000 */
O1FEQ, 7/ 0001111111100000*/
Ox1F0Q, /* 0001111100000000 */
Ox1B00, /* 0001101100000000 */
0x1180, /* 0001000110000000 */
0x0180, /* 00000001 10000000 */
0x00CO0, /* 0000000011000000 */
0x00CO, /* 0000000011000000 */
0x0000, /* 0000000000000000 */

I* hot spot x.y */
02, 00
k

I* Graphics mode cursor, pointing hand */
static struct graphics_cursor far gcursor_hand =
{

/* screen mask */

OxE1FF, / 11100h0111111111 %/
OxE1FF, /* 1110000111111111*/
OxE1FF, /*1110000111111111*/
OxE1FF, /*1110000111111111*/
OxE1FF, /7 1110000111111111 %/
OxE000, /* 1110000000000000 */

/* Function 36 */

182

183

/* cursor mask */

Ox1E00, /* 00011H1000000000 */
0x1200, /* 0001001000000000 */
0x1200, /* 0001001000000000 */
O0x1200, /* 0001001000000000 */
0x1200, /* 0001001000000000 */
OA3FF, /*0001001111111111*/
0x1249, /* 0001001001001001 */
Ox1249, /* 0001001001001001 */
0xF249, /*1111001001001001 */
0@001, /* 1001000000000001 */
»@001, 7/ 1001000000000001 */
0x9001, /* 1001000000000001 */
0x8001, /* 1000000000000001 */
0x8001, /* 1000000000000001 */
0x8001, /* 1000000000000001 */
OxFFFF, /M 1111111111111191 %/

/* hot spot x,y */

Y

/* Graphics mode cursor, check mark */
static struct graphics_cursor far gcursor_check =

/* screen mask */

OxFFFO, /1111111111110000*/
OxFFEO, 7/ 1111111111100000 */
OxFFCO, 7 1111111111000000 */
OxFF81, /*1111111110000001 */
OxFFO3, /*1111111100000011 */
0x0607, /* 0000011000000111 */
Ox000F, /* 0000000000001111 */
Ox001F, /* DOOO0O0000011111 */
OxCO3F, /* 1100000000111111 %/
OxFO7F, /* 1111000001111111 %/
OxXFFFF, /1111111111111 %
OxFFFF, /t111111111111111 Y
OxFFFF, M 111111111111111 Y
OxFFFF, /1111111111111 %
OxFFFF, 1111111111111 %/
OxFFFF, Mm1111111111111111 Y

/* cursor mask */

0x0000, /+ 0000000000000000 */
Ox0006, /* 0000000000000110 */
Ox000C, /* 0000000000001100 */
0x0018, /* 0000000000011000 */
0x0030, /* 0O00000000110000 */
0x0060, /* 0000000001 100000 */
Ox70C0, /* 0111000011000000 */
Ox1D80, /* 0001110110000000 */

/* hot spot x,y */
06, 07
|

1* Graphics mode cursor, hour glass */

static struct graphics_cursor far gcursor_hour =

I* screen mask */

0xC003, /* 1100000000000011 */
OxE007, /* 1110000000000111 */
OxFOOF, /* 1111000000001111 */
OxE007, /* 1110000000000111 */

/* cursor mask */

0x0000, /* 0000000000000000 */
OGFFE, /0111111111111110%
Ox6006, /* 0110000000000110 */
0x300C, /* 0011000000001100 */
0x1818, /* 0001100000011000 */
0x0C30, / 0000110000110000 */
0x0660, /* 0000011001100000 */
Ox03C0, /* 0000001111000000 */
0x0660, /* 0000011001100000 */
0x0C30, /* 0000110000110000 */
Ox1998, /* 0001100110011000 */
0x33CC, /*0011001111001100*/
Ox67E6, /*0110011111100110*/
OX7FFE, 7*0111111111111110%/
0x0000, /* 0000000000000000 */
0x0000, /* 0000000C000000000 */

/* hot spot x,y */

07,07
I

* Graphics mode cursor, jet aircraft */

static struct graphics_cursor far gcursor_jet =

I* screen mask */

OxFFFF, r1111111111111111 %/
OxFEFF, 7/ 1111111011111111 %/
OxFC7F, 7/ 1111110001111111 %/
OxF83F, /*1111100000111111 */
OxF83F, /" 1111100000111111 %/
OxF83F, / 1111100000111111 */
OxFO1F, /* 1111000000011111 */
OxEOOF, /* 1140000000001111 */
OxC007, /* 1100000000000111 */
0x8003, /* 1000000000000011 */
0x8003, 7 1000000000000011 */
OxF83F, /*1111100000111111*/
OxF83F, /*1111100000111111*/
OxFO1F, /* 1111000000011111 %/
OxEOOF, /* 1110000000001111 */
OxFFFF, /*1111111111111111 7%/

/* cursor mask */
0x0000, /* 0000000000000000 “/

184

OXOFEOQ,
Ox1FFO,
OX3FF8,
0x638C,
0x0380,
0x0380,
07CoO,
0x0C60,
0x0000,

* 0000000000000000 */
* 0000000100000000 */
f* 0000001110000000 */
 0000001110000000 */
/* 0000001110000000 */
* 0000011111000000 */
/* 0000111111100000 */
/* 0001111111110000 */
I 0011149111114000 %/
/* 0110001110001100 */
/* 0000001 110000000 */
* 0000001 110000000 */
7* 06000011111000000 */
* 0000110001100000 */
* 6000000000000000 */

I* hot spot x,y */

07, 01
I

I* Graphics mode cursor, left pointing arrow */
static struct graphics_cursor far gcursor_left =

/* screen mask */

OXFE1F,
OXFO1F,
0x0000,
0x0000,
0x0000,
OXFOTF,
OXFE1F,
OXFFFF,
OXFFFF,
OXFFFF,
OXFFFF,
OXFFFF,
OXFFFF,
OXFFFF,
OXFFFF,
OXFFFF,

7 1111111000011111 */
/* 1111000000011111 ¢/
* 0000000000000000 */
/* 0000000000000000 */
* 0000000000000000 */
/ 1111000000011111 */
7 1111111000011111 %/
IR ARRRRRARERRRRRSNY)
R ARARRRARRERREEN Y]
AR ARRRERRRERAREE LAY
(R A RRRRRARRRERRE Y
TR R RRR AR R ARR SR Y
TR AR RRAEERRR AR RV
[ARRRRRERERRRRRE Y]
VR PARR R RRELRRE LR
MMmmiimnniiny

/* cursor mask */

0x0000,
0x00CO0,
0x07CO0,
OX7FFE,
0x07CO0,
0x00CO,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,

/* 0000000000000000 */
/* 000000001 1000000 */
/* 0000011111000000 */
roti111111141110%
/* 0000011111000000 */

* hot spot x,y */

00, 03
%

I* Graphics mode cursor, plus sign */

static struct graphics_cursor far geursor_plus =

185

186

/* screen mask */

OFC3F, 7/ 1111110000111111 %/
OxFC3F, 7/ 1111110000111111*/
OxFC3F, 7/ 1111110000111114 */

OxFC3F, /1111110000111111 %/
OxFC3F, /*1111110000111111 */
OxFC3F, /1111110000111111 */
OxFFFF, 1111111111111 %/
OxFFFF, /1111111111111 %
OxFFFF, M 1t11111111111111 %/
OxFFFF, /1111111111111 %/
OxFFFF, 1111111911111 %/
OxFFFF, 7/ 1111111111111111 %/
OxFFFF, M 1111111111111 Y/

/* cursor mask */

Ox0000, /* 0000000000000000 */
Ox0180, /* 00000001 10000000 */
0x0180, /* 0000000110000000 */
Ox0180, /* 00000001 10000000 */
OX7FFE, /0111111111111110%/
0x0180, /* 0000000110000000 */
0x0180, /* 0000000110000000 */
0x0180, /* 00000001 10000000 */
0x0000, /* 0000000000000000 */
0x0000, /* 0000000000000000 */

/* hot spot x.y */
07,04
Y

/* Graphics mode cursor, up pointing arrow */
static struct graphics_cursor far gcursor_up =

I* screen mask */

OxFOFF, /1111100111111 %/
OxFOFF, /*1111000011111111*/
OxEO7F, /* 1110000001111111 */
OxEO7F, /* 1110000001111111*/
OxCO3F, /* 1100000000111111 */
OxCO3F, /* 1100000000111111 */
Ox801F, /* 1000000000011111 %/
O0x801F, /* 1000000000011111 */
O0xO00F, /* 0000000000001111 */
OxO00F, /* 0000000000001111 */
OxFOFF, /*1111000011111111 %/
OxFOFF, /*1111000011111111*/
OxFOFF, /* 1111000011111111*/
OxFOFF, /*1111000011111111*/
OxFOFF, /*1111000011111111 %/
OxFOFF, /* 1111000011111111 %/

/* cursor mask */

O0x0000, /* 0000000000000000 */
0x0600, /* 0000011000000000 */
0xOF00, /* 0000111100000000 */
OxOF00, /* 0000111100000000 */

Ox1F80, /* 0001111110000000 */
Ox1F80, /*0001111110000000 */
Ox3FCO, / 0011111111000000 */
O3FCO, / 0011111111000000 */
Ox7FEOQ, /* 0111111111100000 */
0x0600, /* 000001 1000000000 */
, 1* 0000011000000000 */
, " 0000011000000000 */
0x0600, /* 0000011000000000 */
, /* 0000011000000000 */
, /* 0000011000000000 */
, * 0000000000000000 */

/* hot spot x,y */
05, 00
%

/* Graphics mode cursor, X mark */
static struct graphics_cursor far gcursor_x =

/* screen mask */

OO7EO, /* 0000011111100000*/
Ox0180, /* 00000001 10000000 */
0x0000, /* 0000000000000000 */
0xC003, /* 1100000000000011 */
OxFOOF, /*1111000000001111 */
OxC003, /* 1100000000000011 */
0x0000, /* COO0000000000000 */
0x0180, /* 0000000110000000 */
Ox03C0, 7/ 0000001111000000 */
OxFFFF, /M 1111111111111111 %/
OxFFFF, 1111111111111 ¢/
OXFFFF, M i111111111111111 %/
OxFFFF, /1111111111111111 %/
OxFFFF, /1111111111111 %/
OXFFFF, M 1111111111111 %
OFFFF, M 1111111111111 %/

/* cursor mask */

0x0000, /* 0000000000000000 */
Ox700E, /* 0111000000001110*/
Ox1C38, /* 0001110000111000 */
0x0660, /* 0000011001100000 */
Ox03C0, /* 0000001111000000 */
0x0660, /* 0000011001100000 */
Ox1C38, /* 0001110000111000 */
Ox700E, /* 0111000000001110*/
Ox0000, /* 0000000000000000 */
Ox0000, /* 0000000000000000 */
0x0000, /* 0000000000000000 */
Ox0000, /* 0000000000000000 */
0x0000, /* 0000000000000000 */
Ox0000, /* 0OOO0000000000000 */
0x0000, /* 0000000000000000 */
0x0000, /* 0000000000000000 */

* hot spot x,y */
07,04

%

#define MOUSEFUN_DEFINED
#endif

187

/0
Name: VIDEO.H
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definitions for VIDEO.C
*/

#ifndef VIDEO_DEFINED

#define FALSE 0
#tdefine TRUE !FALSE

#define LINED O
#define SOLID 1

int *bresenham(int, int, int, int);

void triangle(int, int, int, int, int, int, int);
void polygon(int, int, int [][2]);

void line(int xt, int y1, int X2, int y2);

/* define structures */
struct points
{
short x;
short y;
I

* Define functions */

void text_mode(void);

void best_graph_mode(void);
double x_factor(void);
double y_factor(void);

int maximum_y(void);

int device_x(int);

int device_y(int);

void line(int, int, int, int);

void saveimage(int, int, int, int);
void restimage(void);

double k_time(int *key);
double m_time(int *key);
double time_3(int *key);

#define VIDEO_DEFINED
#endif

188

/.
Name: TYPE_INIT.H
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definitions for use
with various modules used by SECURE.C
Wi
#pragma pack(1)
I* Type defintions */
typedef struct {
char qualifier{10};
long offset;
} INDEX_INFO;
/‘
* Student Column # Test# Triak#
* 0 1 1
* 1 2 1
* 2 2 2
* 3 2 3
* 4 2 4
* S 2 5
* 6 2 6
* 7 3 1
Wi
typedef struct {

double avg_time_correct;
double ovrl_avg_time_corr,
double avg_time_incorrect;
double ovrl_avg_time_incorr,
int no_questions_correct;
int total_no_questions;

} STUDENT_COLUMN;

typedef struct {
double reaction_time; /* reaction time to question */
char answer; /* answer to question *f
char right_wrong; /* 1 if comrect answer, O if incorrect */
} TEMP;
typedef struct {
int test_no;

char qualifier{10];

char r_|_handed,

char male_female;

STUDENT_COLUMN student_info[10];

TEMP RESPONSE]65]; /* 64 problems in test 1 */
} STUDENT_RECORD;

typedef struct qualifier_rec {
char quatifier{10};
long offset;
struct qualifier_rec *next;
} NODE;
typedef struct results_rec {
int test_no;
char qualifierf10};
char r_|_handed;
STUDENT_COLUMN student_info{30];
struct results_rec *next;
} RES_NODE;

189

190

/.

Name: TMANAGER.H
Type: inciude
Language: Microsoft QuickC version 2
Description: Definition of functions for test manager

*/

/* Function definitions */
void Test_manager(STUDENT_RECORD *new_student);

,I

Name: MN_MENU.H

Type: Include

Language: Microsoft QuickC version 2

Description: Prototypes and definitions for MN_MENU.C
*/
/* Define functions */

void disptay_main_menu(NODE **, NODE **, RES_NODE **, RES_NODE **);

,.

Name DSK_INITH

Type: Include

Language Microsoft QuickC version 2

Descnption Prototypes and definttions for DSK_INIT H
*

* Define functions */
void Initialize(NODE **, NODE **),
void Stats_mnitialize(RES_NODE **, RES_NODE **),

,l

Name DATA_PLTH

Type Include

Language Microsoft QuickC version 2

Descnption Prototypes and definttions for DATA_PLT C
*

char nght_or_left_handed(void),
char Male_or_female(void),
voud get_student_data(NODE *, STUDENT_RECORD *, long *),

fd

Name BOXH

Type Include

Language Microsoft QuickC version 2
Descniption Prototypes and definitions for BOX C

*/
#ifndef BOX_DEFINED

unsigned far *box_get(unsigned, unsigned, unsigned, unsigned),

void box_put(unsigned far *),

void box_color(unsigned, unsigned, unsigned, unsigned),

vord box_charfill{ unsigned, unsigned, unsigned, unsigned, unsigned char),
void box_draw(unsigned, unsigned, unsigned, unsigned, unsigned),

void box_erase(unsigned, unsigned, unsigned, unsigned),

#define BOX_DEFINED

#endif
/.
Name MK_FP H
Type Include
Language Microsoft QuickC version 2
Descnption Macro to form a far ponter
«/

#define MK_FP(seg, off) ((void far *) \
(((unsigned long)(seg) << 16) + (unsigned)(off)))

191

/t
Name: STATS.H
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definitions for STATS.C
*/
I* Define functions */

double cal_mean_time_correct(int, RES_NODE *);

double cal_mean_time_incorrect(int, RES_NODE * };

double cal_stat_deviation_correct(int, RES_NODE *);

double cal_stat_deviation_incormect(int, RES_NODE *),

void stats_test_1(TEMP *, STUDENT_RECORD *, int *, int);
void stats_test_2(TEMP *, STUDENT_RECORD *, int *, int);
void stats_test_3(TEMP *, STUDENT_RECORD *, char *, int, int);
void stats_test 4(TEMP *, STUDENT_RECORD *, intf], int, int);
void Get_mtc_data(float *, RES_NODE *);

void Get_mti_data(float *, RES_NODE *);

void Get_pc_data(float *, RES_NODE *);

void mean_time_correct(float *, RES_NODE *),

/ﬁ

Name: SOUND.H

Type: Include

Language: Microsoft QuickC

Description: Prototypes and definitions for SOUND.C

*/
#ifndef SOUND_DEFINED

void sound(int);

void silence(void);

void speaker_toggle(void);
void wait_ticks(unsigned int);
void warble(int);

void weird(int);

void siren{ int);

void white_noise(int);

void note(int, int);

#define SOUND_DEFINED

#endif
,ﬁ
Name: FILEH
Type: Include
Language: Microsoft QuickC version 2
Description: Prototypes and definitions for FILE.C
*
I* Defines */

#define FILENAME "STUDENT.FIL"
#define INDEX "STUDENT.NDX"
#define TEMP "STUDENT.TMP"

I* Define functions */

int Index_on_disk(void);

int File_on_disk(void);

int Num_records(void),

int Index_to_link_list(int, NODE **, NODE **);
void Fetch(long, STUDENT_RECORD *),

192

/0

Name EDITH

Type Include

Language Microsoft QuickC version 2
Demonstrated EDIT C EDITTESTC
Descnption Prototypes and definitions for EDIT

*/
#ifndef EDIT_DEFINED

#define CURSOR_UNDERLINE 0x0707
#define CURSOR_BLOCK 0x0007
#define CURSOR_DOUBLELINE 0x0607
#define CURSOR_NONE 0x2000

int next_word(char *, int),

int prev_word(char *, int),

int delete_char(char *, int),

int insert_char(char *, int, char),
int insert_spaces(char *, int, int),
nt replace(char *, char *, char *),
int edtline(char *),

#define EDIT_DEFINED

#endif

/.
Name MENU H
Type Include

Language Microsoft QuickC
Demonstrated MENU C MENUTEST C
Descnption Prototypes and defintions for MENU module

*/
#ifndef MENU_DEFINED

void menu_box_lines(int),

void menu_box_shadow(int),

void menu_back_color(fong int),

vord menu_line_color(int),

void menu_title_color(int),

void menu_text_color(int),

void menu_prompt_color(int),

void menu_hilight_letter(nt),

void menu_hilight_text(int),

void menu_hiight_back(long int),

nt far *menu_bar(int, int, char *, int *),
int far *menu_drop(int, int, char **, int *),
int far *menu_message(int, int, char **),
void menu_erase(int far *),

#define MENU_DEFINED
#endlf

193

/‘

Name: T10BJECTS.H

Type: Include

Language: Microsoft QuickC version 2

Description: Prototypes and definitions for TIOBJECTS.C
*/

#ifndef TTOBJECTS_DEFINED

I* Define functions */
void Draw_background(void);
void Draw_example_background(void);
void Draw_plane(float heading);
void Draw_aircraft_problem(short ac_orientation, short ac_position);
void Draw_example_aircraft_problem(short ac_orientation, short ac_position);
void Init_ac_orientations(void);
void Free_ac(void);
void press_key(void);
void example_sound_prompt(void);
void text_bar(void);
void mid_text_bar(void);
void down_text_bar(void);
void up_black_bar(void);
void custom_bar(int x1, int y1, int x2, int y2, int color);
void print_countdown(void);
void begin_message(void);
void Dash_line(int xcoord_1, int ycoord_1,
int xcoord_2, int ycoord_2, int num_dashes),
void display_test_name(char *test_name };

#define TIOBJECTS_DEFINED

#endif
,Q
Name: T_COLORS.H
Type: Include

Language: Microsoft QuickC version 2

Demonstrated: BOXTEST.C COLORS.C EDITTEST.C
MENU.C LOOK.C OBJECT.C

Description: Definitions for text mode color constants

*
#ifndef T_COLORS_DEFINED

I* Standard text mode colors */
#define T_BLACKO

#define T_BLUE 1

#define T_GREEN 2

#define T_CYAN 3

#define T_RED 4

#define T_MAGENTA S
#define T_BROWN 6

#define T_WHITE 7

/* Modifiers that can be added to the text mode color constants */
#define T_BRIGHT 8
#define T_BLINK 16

/* Common combinations */
#define T_GRAY (T_BLACK| T_BRIGHT)
#define T_YELLOW (T_BROWN | T_BRIGHT)

/* Background text mode color constants */
#define BK_BLACK OL

#define BK_BLUE 1L

#define BK_GREEN 2L

194

,Q
Name LISTH
Type Include
Language Microsoft QuickC version 2
Descniption Prototypes and definttions for LIST C
*
/.
Routines are used to load information held in index
file nto inked hst Linked list Is for determining
which students the system has test data
Define functions for manipulating nodes of type NODE
Wi

void addsl(long, NODE **, NODE **, char *),
void freelist{ NODE *),
long check(NODE *, char *),

/ﬁ

Routines are used to load information held in student

data file into inked hist Linked hist 1s for used

for statisitical manipulation of test data

Define functions for manipulating nodes of type RES_NODE
*/

void res_addsl(STUDENT_RECORD *, RES_NODE **, RES_NODE **),
void res_freehst{ RES_NODE *),

195

PROJ =ROTATE

DEBUG =1

cc =qcl

AS =qel

CFLAGS_G =/AL W1 [Ze

CFLAGS_D = /Zd /Zr /IGI$(PROJ) mdt /Od
CFLAGS_R =/0 /Ot /Gs /IDNDEBUG
CFLAGS =$(CFLAGS_G) $(CFLAGS_D)
AFLAGS_G =/Cx W1 /P2

AFLAGS_D =/zd

AFLAGS_R = /DNDEBUG

AFLAGS =$(AFLAGS_G) $(AFLAGS_D)

LFLAGS_G ICP Oxffff /NOI /SE 0x80 /ST Ox1000
LFLAGS_D
LFLAGS_R
LFLAGS =$(LFLAGS_G) $(LFLAGS_D)
RUNFLAGS =

OBJS_EXT =

LIBS_EXT =

asmobj , $(AS) $(AFLAGS) ¢ $* asm
alt $(PROJ) EXE

rotate ob} rotate ¢ $(H)

data_plt oby data_plt ¢ $(H)
dsk_intt obj dsk_init ¢ $(H)
editoby editc $(H)

fileoby file c $(H)

getkey ob) getkey ¢ $(H)
hstobj list c $(H)

menu obj menu ¢ $(H)

mn_menu obj mn_menu ¢ $(H)
mousefun obj mousefun ¢ $(H)
sound obj sound ¢ $(H)

stats obj stats ¢ $(H)

t1object oby t1object ¢ $(H)
test_1 obj test_1 ¢ $(H)

tmanager ob) tmanager c $(H)
video obj video ¢ $(H)

boxob; boxc $(H)

$(PROJ) EXE rotate obj data_plt obj dsk_init obj edit obj file obj getkey obj ist obj \
menu obj mn_menu ob) mousefun obj sound obj stats obj t1object obj test_1 ob) tmanager obj \

video obj box obj $(OBJS_EXT)
echo >NUL @<<$(PROJ) crf

rotate obj +

data_plt oby +

dsk_irit ob) +

edit ob) +

file ob} +

getkey obj +

hist obj +

196

menu.obj +
mn_menu.obj +
mousefun.obj +
sound.obj +
stats.obj +
t1object.obj +
test_1.obj +
tmanager.obj +
video.obj +
box.obj +
$(OBJS_EXT)
$(PROJ).EXE

$(LIBS_EXT);
<<
ilink -a -e "glink $(LFLAGS) @$(PROJ).crf* $(PROJ)

run: $(PROJ).EXE
$(PROJ) $(RUNFLAGS)

197

	An Investigation of the Relationships Between the Angle of Mental Rotation Required For Spatial Orientation, Response Times, and Accuracy
	Scholarly Commons Citation

	ProQuest Dissertations

