Ultimate Strength Prediction in Fiberglass/Epoxy Beams Subjected to Three-Point Bending Using Acoustic Emission and Neural Networks

Michele D. Dorfinan
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/db-theses
Part of the Aerospace Engineering Commons

Scholarly Commons Citation

Dorfinan, Michele D., "Ultimate Strength Prediction in Fiberglass/Epoxy Beams Subjected to Three-Point Bending Using Acoustic Emission and Neural Networks" (2004). Theses - Daytona Beach. 294.
https://commons.erau.edu/db-theses/294

ULTIMATE STRENGTH PREDICTION IN FIBERGLASS/EPOXY BEAMS SUBJECTED TO THREE-POINT BENDING USING ACOUSTIC EMISSION AND NEURAL NETWORKS

by

Michele D. Dorfman

A Thesis Submitted to the Graduate Studies Office in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering

Embry-Riddle Aeronautical University
Daytona Beach, Florida
Spring 2004

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI

UMI Microform EP32062
Copyright 2011 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ULTIMATE STRENGTH PREDICTION IN FIBERGLASS/EPOXY BEAMS SUBJECTED TO THREE-POINT BENDING USING ACOUSTIC EMISSION AND NEURAL NETWORKS

by

Michele D. Dorfman

This thesis was prepared under the direction of the candidate's thesis committee chairmen, Dr. Eric v. K. Hill and Dr. Yi Zhao, Department of Aerospace Engineering, and has been approved by the members of her thesis committee. It was submitted to the School of Graduate Studies and Research and was accepted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace engineering.

THESIS COMMITTEE:

Sue c 大 *ill
Dr. Eric v. K. Hill
Chairman

Dr. Yi Zhao
Chairman

$\frac{\text { Department Chair, Aerospace Engineering }}{\text { Neseren }}$ $618 / 14$ Date

ACKNOWLEDGEMENTS

I would first like to thank my thesis committee, Dr. Eric v. K. Hill, Dr. Yi Zhao and Dr. David J. Sypeck for their time, advice and encouragement throughout my thesis research. Without them, none of this would have been possible. I would also like to thank Dr. Hill and Dr. Zhao for providing me with the teaching assistantships that financed my graduate education. A special thanks must go to the following students for their help throughout my thesis research: Alexis Farfaro for all his help in the preliminary stages of this project; Roiann Nimis for all her time spent from start to finish of this project, but especially the many hours she spent with me optimizing the backpropagation neural network; Tuan-Khoi Nguyen for his help with everything, most importantly his help manufacturing the beams; and finally, Darryl Hearn for all his help, but especially the many hours he spent perfecting the Kohonen self organizing map. Last, but definitely not least, I would like to thank my parents, Howard and Carol Dorfman, for all of their support and encouragement throughout my graduate studies.

Abstract

Author:	Michele D. Dorfman
Title:	Ultimate Strength Prediction in Fiberglass/Epoxy Beams Subjected to
	Three-Point Bending Using Acoustic Emission and Neural Networks
Institution:	Embry-Riddle Aeronautical University
Degree:	Master of Science in Aerospace Engineering
Year:	2004

The research presented herein demonstrates the feasibility of predicting ultimate strengths in composite beams subjected to 3 -point bending using a neural network analysis of acoustic emission (AE) amplitude distribution data. Fifteen unidirectional fiberglass/epoxy beams were loaded to failure in a 3-point bend test fixture in an MTS load frame. Acoustic emission data were recorded from the onset of loading until failure. After acquisition, the acoustic emission data were filtered to include only data acquired up to 80 percent of the average ultimate load.

A backpropagation neural network was constructed to predict the ultimate failure load using these AE amplitude distribution data. Architecturally, the network consisted of a 61 processing element input layer for each of the event frequencies, a 13 processing element hidden layer for mapping, and a single processing element output layer for predicting the ultimate load. The network, trained on seven beams, was able to predict ultimate loads in the remaining eight beams with a worst case error of +4.34 percent, which was within the desired goal of ± 5 percent.

A second analysis was performed using a Kohonen self organizing map and multivariate statistical analysis. A Kohonen self organizing map was utilized to classify the AE data into 4 failure mechanisms. Then multivariate statistical analysis was performed using the number of hits associated with each failure mechanism to develop a prediction equation. The prediction equation was able to predict the ultimate failure load with a worst case error of -11.34 percent, which was well outside the desired goal of ± 5 percent. This was thought to be the result of noisy or sparse data, since statistical predictions are inherently sensitive to both, whereas backpropagation neural networks are not.

TABLE OF CONTENTS
Page
Signature Page ii
Acknowledgements iii
Abstract iv
Table of Contents v
List of Tables vii
List of Figures viii
CHAPTER 1 INTRODUCTION 1
1.1 Overview 1
1.2 Previous Research 2
1.3 Current Approach 3
CHAPTER 2 BACKGROUND THEORY 5
2.1 Material System 5
2.3 Acoustic Emission 6
2.3.1 Event Parameters 8
2.3.2 Failure Mechanisms 10
2.3.3 Amplitude Distribution 11
2.4 Neural Networks 13
2.4.1 Backpropagation Neural Networks 15
2.4.2 Kohonen Self Organizing Maps 19
CHAPTER 3 EXPERIMENTAL PROCEDURE 23
3.1 Fiberglass/Epoxy Beams. 23
3.2 Test Setup. 25
3.2.1 Specimen Setup 27
3.2.2 MTS Load Frame Setup 27
3.3 Data Acquisition 28
3.4 Test Procedure 29
CHAPTER 4 ANALYSIS AND RESULTS 32
4.1 Acoustic Emission Data 32
4.2 Backpropagation Neural Network 36
4.3 Kohonen Self Organizing Map 43
4.4 Multivariate Statistical Analysis 52
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 55
5.1 Conclusions 55
5.2 Recommendations 56
REFERENCES 57
BIBLIOGRAPHY 58
APPENDIX 59
A Acoustic Emission Data Plots 59
B Neural Network Parameter Definitions 75
C Backpropagation Neural Network Results 83

LIST OF TABLES

Page
Table 2.1 AE parameters and associated failure mechanisms in fiberglass/epoxy 11
Table 4.1 Ultimate loads and corresponding AE hits. 32
Table 4.2 AE hits associated with percentage of average ultimate load 33
Table 4.3 Training set 36
Table 4.4 Testing set 37
Table 4.5 Network parameters 38
Table 4.6 Final network parameters 42
Table 4.7 Backpropagation neural network results 43
Table 4.820×20 SOM network parameters 44
Table 4.920×20 SOM results for energy, duration, and amplitude 45
Table 4.105×1 SOM network parameters 46
Table 4.115×1 SOM results for energy, duration, and amplitude 47
Table 4.124×1 SOM network parameters 48
Table 4.134×1 SOM results for energy, duration, and amplitude 48
Table 4.144×1 SOM results for 80% data 51
Table 4.15 Multiple linear regression inputs 53
Table 4.16 Multiple linear regression analysis results 54

LIST OF FIGURES

Page
Figure 2.1 Complete acoustic emission system 7
Figure 2.2 Acoustic emission transducer 7
Figure 2.3 Acoustic emission waveform and parameters 9
Figure 2.4 Amplitude distribution histogram 12
Figure 2.5 Processing element (neuron) 13
Figure 2.6 Transfer functions 14
Figure 2.7 Generic neural network architecture 14
Figure 2.8 Backpropagation neural network 15
Figure 2.9 Kohonen self organizing map 19
Figure 3.1 Beams curing at room temperature 24
Figure 3.2 Complete test setup 26
Figure 3.3 MTS setup without beam specimen 26
Figure 3.4 Transducers mounted on specimen 27
Figure 3.5 Waveform with setup parameters 29
Figure 3.6 Test specimen prior to loading 30
Figure 3.7 Test specimen after failure 30
Figure 3.8 Load vs. displacement plot 31
Figure 4.1 Amplitude distribution plot 34
Figure 4.2 Duration vs. amplitude plot 35
Figure 4.3 Duration vs. counts plot 35
Figure 4.4 Optimizing number of processing elements in hidden layer plot. 38
Figure 4.5 Optimizing F' offset plot 39
Figure 4.6 Optimizing transition point plot 39
Figure 4.7 Optimizing the momentum plot 40
Figure 4.8 Optimizing hidden layer learning coefficient plot 40
Figure 4.9 Optimizing output layer learning coefficient plot 41
Figure 4.10 Optimizing learning coefficient ratio plot 41
Figure 4.11 Optimizing RMS error plot 42
Figure 4.12 X-Y coordinate plot. 45
Figure 4.13 Sorted duration vs. amplitude plot 49
Figure 4.14 Sorted amplitude distribution plot 50
Figure 4.15 Sorted duration vs. amplitude plot for 80% data 52

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

In today's aircraft industry, the materials available to designers have always had a strong impact on how aircraft are designed and built. The basic fundamentals of flight, such as the ratios of lift to drag, and thrust to weight have, unsurprisingly, dictated the choice of materials used. The materials chosen have been generally based on their strength to weight criteria.

Composite materials have made the primary impact in the aircraft industry market today. The greatest advantage of these materials is their high strength-to-weight ratios. Composites can produce weight savings of up to 25% over their metallic counterparts [1]. Due to the increased use of composite materials, research in quality control of these structures must be a continuing process.

Proof loading is the application of a load, frequently in excess of the maximum service load, to a component or structure in order to assure safety [2]. The theory behind proof loading is the assumption that if the structure does not fail during the proof test, it will not fail in service.

The research herein involves proof loading composite beams in 3-point bending to 80 percent of their average ultimate strength. Acoustic emission nondestructive testing combined with a neural network analysis were then used to predict the ultimate strengths in fiberglass/epoxy beams.

1.2 PREVIOUS RESEARCH

Previous research has shown that AE data combined with the use of neural networks can be used to create a prediction model for ultimate loads in various applications. Hill, Walker and Rowell [3] tested a set of eighteen ASTM standard 145 mm (5.75 in .) diameter filament wound graphite/epoxy pressure vessels. Acoustic emission amplitude distribution data taken during hydroproof up to 25 percent of the expected burst pressure were used as inputs for a backpropagation neural network. The network, trained on nine bottles, was able to predict burst pressures in the remaining eight bottles with a worst case error of -3.89 percent.

Fisher and Hill [4] tested a set of eleven ASTM standard 145 mm (5.75 in.) diameter filament wound fiberglass/epoxy pressure vessels. Two of these bottles contained simulated manufacturing defects which lowered their burst pressures significantly. Again, acoustic emission amplitude distribution data taken during hydroproof up to 25 percent of the expected burst pressure were used as inputs for a backpropagation neural network. The network, trained on seven bottles (one containing a defect), was able to predict burst pressures in the remaining four bottles (one containing a defect) with a worst case error of +14.7 percent. When the defective bottles were removed from
consideration, the worst case prediction error dropped to -2.1 percent. It was concluded that more defective bottles would need to be tested in order to increase the prediction accuracy.

Fatzinger and Hill [5] tested a set of ten fiberglass/epoxy I-beams loaded in cantilever fashion with a hydraulic ram. Two of these beams were manufactured using a different resin type. Acoustic emission amplitude distribution data taken during loading up to 50 percent of the theoretical ultimate load were used as inputs for a backpropagation neural network. The network, trained on five beams (one from the different resin type), was able to predict ultimate loads in the remaining beams with a worst case error of -10.6 percent. A Kohonen self organizing map was utilized to classify the AE data into failure mechanisms. Then a multivariate statistical analysis was performed using the percentage of AE hits associated with each failure mechanism along with the epoxy type to develop a prediction equation for ultimate load. The multivariate statistical analysis resulted in a prediction equation that had a worst case error of +36.0 percent. The large error for the statistical analysis was probably due to sparse data.

1.3 CURRENT APPROACH

The current approach is similar to those previously mentioned; however, the beams were loaded in 3-point bending. Fifteen unidirectional fiberglass/epoxy beams were loaded to failure in an MTS load frame using a 3-point bend test fixture. Acoustic emission amplitude distribution data taken during loading up to 80 percent of the average ultimate load were used as inputs for a backpropagation neural network. The network was trained
on seven beams, and tested on the remaining eight. Then a second analysis was performed using a Kohonen self organizing map and multivariate statistical analysis. The Kohonen self organizing map was utilized to classify the AE data into failure mechanisms. Then multivariate statistical analysis was performed using the number of hits associated with each failure mechanism to develop a prediction equation.

CHAPTER 2

BACKGROUND THEORY

2.1 MATERIAL SYSTEM

The material system used in this research was Saint-Gobain Vetrotex America, Inc. RO99-625 unidirectional glass roving and West System 105 epoxy resin with a West System 206 slow hardener.

According to the manufacturer, RO99-625 is a high-performance, multi-resin-compatible reinforcement used for filament winding fuel and chemical storage tanks, large diameter pipe, water treatment vessels, pressure vessels, reverse osmosis tubes and electrical fuse tubes. It has been specifically designed to achieve optimum results in polyester, vinylester, phenolic and epoxy resin systems.

According to West System, 105 epoxy resin is a clear, pale yellow, low-viscosity liquid epoxy resin. When cured, the resin is clear. It can be cured in a wide variety of temperature ranges to form a high-strength solid with excellent moisture resistance. It is designed to wet out and bond with wood fiber, fiberglass, reinforcing fabrics and a variety of metals. The 206 slow hardener is a low-viscosity epoxy curing agent for use when extended working and cure time is needed or to provide adequate working time at higher temperatures. When combined with 105 resin in a five-part resin to one-part
hardener ratio, the cured resin/hardener mixture yields a rigid, high-strength, moistureresistant solid with excellent bonding and coating properties.

2.3 ACOUSTIC EMISSION

Acoustic emission (AE) can be defined as the transient elastic waves generated by the rapid release of energy from sources within a stressed material. The most common sources of this energy release in a composite structure are matrix cracking, delaminations and fiber breaks [6]. External sources such as mechanical noises can also be detected. In most cases, the structure is undergoing tension, compression, bending, or pressurization to generate the stresses needed to cause acoustic emissions. The transient elastic stress waves travel outward from the growth source. Acoustic emission transducers are used to convert the mechanical stress waves into usable electrical voltage signals. An AE data acquisition system can be utilized to convert the electrical voltage signals to AE quantification parameters. These AE parameters can be represented graphically and used in analyses. A typical AE system is shown in Figure 2.1, and a detailed view of the AE transducer is given in Figure 2.2.

Figure 2.1 Complete acoustic emission system

Figure 2.2 Acoustic emission transducer

An AE system works in the following way. A mechanical stress wave is generated by the rapid release of energy due to the flaw growth caused by an applied stress. Most AE transducers, which use a piezoelectric element for transduction, convert the mechanical stress wave into an electrical voltage signal. The electrical voltage signal is then passed through a preamplifier and a frequency filter. The preamplifier typically provides a gain of $100(40 \mathrm{~dB})$ and includes a high-pass or bandpass filter. The most common bandpass is $100-300 \mathrm{kHz}$, encompassing the 150 kHz resonant frequency of the most commonly used sensor [7]. It filters out the signals below 100 kHz and above 300 kHz . This eliminates low frequency background noise and high frequency noise caused by electromagnetic interference, but also limits the range of AE signals that can be detected. The amplified and filtered voltage signal is then fed into the data acquisition system, where it is amplified again and stored for future analysis. The data acquisition system extracts information about the voltage signal and generates AE quantification parameters. These AE parameters are displayed on the computer screen in the form of correlation plots or numerical tables.

2.3.1 Event Parameters

A typical AE signal or hit can be represented as a complex, damped, sinusoidal voltage versus time trace. A typical AE signal and its AE quantifying parameters can be seen in Figure 2.3. The five most commonly employed AE parameters are amplitude, duration, counts, rise time, and energy.

Figure 2.3 Acoustic emission waveform and parameters

These parameters are defined as follows. The amplitude is the largest voltage peak in the signal waveform. Amplitude is measured in decibels [dB]. The duration is the length of the hit, from the first crossing of the threshold to the last crossing of the threshold. Duration is measured in microseconds [$\mu \mathrm{s}$]. Counts is defined as the number of times the signal crosses the threshold. Counts is also known as ringdown counts or threshold crossing counts. Rise time is the time from the start of the hit to its peak amplitude. Rise time is measured in microseconds [$\mu \mathrm{s}$]. Energy, also known as MARSE, is the measured area under the rectified waveform. Energy is measured in energy counts.

Threshold is another essential parameter in acoustic emissions signal analysis. The threshold is an adjustable amplitude setting that determines when the data acquisition system starts recording hits. The sensitivity of the system is determined by the threshold setting. Unwanted background noises can be eliminated by setting the threshold above the amplitude of the unwanted noise, but also below the amplitude of the AE data needed.

2.3.2 Failure Mechanisms

The three primary failure mechanisms in composite materials are matrix cracking, delaminations, and fiber breaks. These failure mechanisms have been characterized by Hill [8] using the magnitude of the amplitude, duration, counts, rise time, and energy associated with each AE hit in fiberglass/epoxy pressure vessels.

The first primary failure mechanism is matrix cracking. There are two types of matrix cracking, transverse and longitudinal. Transverse matrix cracking is perpendicular to the fiber orientation, and longitudinal matrix cracking is parallel to the fiber orientation. Transverse matrix cracking hits in fiberglass/epoxy pressure vessels exhibit low amplitude, energy, and counts with short durations [8]. Longitudinal matrix cracking (fiber/matrix debonding) hits exhibit medium amplitude and energy with high counts and long durations. Matrix cracking occurs throughout the loading of the test specimen and is usually the least damaging of the three failure mechanisms.

The second primary failure mechanism is delaminations. Delaminations occur mostly in specimens subjected to bending. When delaminations occur in fiberglass bottles, they release very high amplitude, high energy signals with long durations and a high number of counts [8].

The third primary failure mechanism is fiber breaks. Fiber break signals in fiberglass pressure vessels exhibit high amplitudes and high energies with short to medium durations and low to medium counts [8]. Fiber breaks usually occur at the end of the
loading cycle and are the most damaging of the three failure mechanisms. The following table illustrates the relative magnitudes of the AE parameters associated with each of the three primary failure mechanisms in fiberglass/epoxy pressure vessels.

Table 2.1 AE parameters and associated failure mechanisms in fiberglass/epoxy pressure vessels [8]

AE Parameter	Transverse Matrix Cracking	Longitudinal Matrix Cracking	Delaminations	Fiber Breaks
Amplitude	Low	Medium	High	Low-Medium
Energy	Low	Medium	High	Very High
Counts	Low	High	High	Medium-High
Duration	Short	Long	Long	Short-Medium

2.3.3 Amplitude Distribution

As stated previously, the amplitude is the largest voltage peak in the signal waveform. Acoustic emission signal sources can range from 1 microvolt to 10 volts; therefore, it is convenient to represent the amplitude on a logarithmic scale. Amplitude is customarily expressed in decibels relative to 1 microvolt at the transducing element. Amplifier gain is then given by

$$
\Delta d B=20 \log \frac{V_{\text {out }}}{V_{\text {in }}}[\mathrm{dB}],
$$

where $\mathrm{V}_{\text {out }}=$ output voltage $[\mathrm{dB}]$ and $\mathrm{V}_{\text {in }}=$ input voltage $[\mathrm{dB}]$. The detectable range of AE amplitudes is on the scale of $0-100$ decibels, and typical threshold settings for composite materials are 45-60 decibels.

Acoustic emission amplitude data can be graphed into a hits vs. amplitude histogram.
Figure 2.4 shows a typical [differential] amplitude distribution plot for the fiberglass/epoxy beams used in this research. Previous research by Kouvarakos and Hill [6] has shown that the AE failure mechanisms are represented by the humps that make up the amplitude distribution. These humps have a tendency to overlap each other making it difficult to differentiate between the failure mechanisms on the amplitude histogram.

Figure 2.4 Amplitude distribution histogram

Neural networks can be useful in analyzing acoustic emission data. The amplitude distribution data can be input into a backpropagation neural network for prediction. The neural network can associate the hit frequencies with an ultimate load. Moreover, Kohonen self organizing maps can be used to classify the failure mechanisms into amplitude ranges.

2.4 NEURAL NETWORKS

An artificial neural network is a mathematical modeling and information processing tool with performance characteristics similar to those of a biological neural network. An artificial neural network, like a biological neural network, consists of a network of massively parallel, interconnected processing elements (PE) or neurons. A typical PE is shown in Figure 2.5.

Figure 2.5 Processing element (neuron)

Each PE receives a number of input signals that may or may not generate an output signal based upon the given inputs. Each input has a relative weight associated with it such that the effective input to the PE is a summation of the inputs multiplied by their associated weights. This value is then modified by a transfer or activation function (Figure 2.6) and passed directly to the output path of the processing element. These outputs can either be excitatory or inhibitory. An excitatory output will cause the PE to fire; an inhibitory output will keep the PE from firing. This output signal can then be interconnected to the input paths of other processing elements.

Figure 2.6 Transfer functions [9]

Processing elements are typically organized into groups called layers. In general, a network will consist of an input layer, one or more hidden layers, and an output layer. Data are presented to the network in the input layer, processing is accomplished in the hidden layers, and the response of the network is presented in the output layer. The architecture for a generic neural network is shown in Figure 2.7.

Figure 2.7 Generic neural network architecture

2.4.1 Backpropagation Neural Networks

A backpropagation neural network is a multilayered, supervised, feed forward network, as shown in Figure 2.8.

Figure 2.8 Backpropagation neural network

This type of network learns the relationship between the given input and the target output vector by minimizing the difference between the target and actual output vectors. The learning process consists of two stages. In the first stage, the input vectors are fed through the network to generate a response vector. In the second stage, the output error is computed for each input response based upon the target output values. The overall network error is then reduced by back propagating error adjustments to the network weights.

The algorithm for a simple backpropagation neural network is given by Walker and Hill [9]:

STAGE 1: Forward propagation of input vector

Step 1: Initialize weights to small random values
Step 2: Do while stopping condition is false
Step 3: Compute input sum and apply activation function for each middle PE:

$$
y_{j}=f\left(w_{1 j} * x_{1}\right)
$$

Step 4: Compute input sum and apply activation function for each output PE:

$$
z_{k}=f\left(v_{1 j} * y_{1}\right)
$$

STAGE 2: Back propagation of error

Step 5: Compute error: $\delta_{\mathrm{k}}=\left(\mathrm{t}_{\mathrm{k}}-\mathrm{z}_{\mathrm{k}}\right) * \mathrm{f}^{\prime}\left(\mathrm{w}_{\mathrm{jk}} * \mathrm{y}_{\mathrm{j}}\right)$
Step 6: Compute delta weights: $\Delta \mathrm{v}_{\mathrm{jk}}=(\alpha)\left(\delta_{\mathrm{k}}\right)\left(\mathrm{y}_{\mathrm{j}}\right)+\left\{\right.$ Momentum $\left.* \Delta \mathrm{v}_{\mathrm{y}}(\mathrm{old})\right\}$
Step 7: Compute error contribution for each middle layer PE:

$$
\delta_{\mathrm{J}}=\delta_{\mathrm{k}} * \mathrm{w}_{\mathrm{jk}} * \mathrm{f}^{\prime}\left(\mathrm{w}_{\mathrm{jJ}} * \mathrm{x}_{\mathrm{l}}\right)
$$

Step 8: Compute delta weights: $\Delta \mathrm{w}_{1 \mathrm{j}}=(\alpha)\left(\delta_{\mathrm{j}}\right)\left(\mathrm{x}_{1}\right)+\left\{\right.$ Momentum $\left.* \Delta \mathrm{w}_{\mathrm{j}}(\mathrm{old})\right\}$
Step 9: Update weights: $\mathrm{Q}_{\mathrm{rs}}($ new $)=\mathrm{Q}_{\mathrm{rs}}($ old $)+\Delta \mathrm{Q}_{\mathrm{rs}}$
Step 10: Test stopping condition

Stopping conditions for a backpropagation neural network are when the weight changes have reached some minimal value or when the average error across a series of input vectors is below some desired level.

EXAMPLE

Consider a backpropagation network with 2 inputs and 2 hidden or middle layer PEs and a single output [9]. Find the new weights when the network is presented with an input vector $X_{i}=[0.0,1.0]$ and target vector $Z_{1}=1.0$ using a learning coefficient of 0.25 and a sigmoid activation function.

The initial weights are given as:

$$
\begin{aligned}
& \mathbf{w}_{\mathrm{ij}}=\left|\begin{array}{rr:r}
0.7 & -0.4 & 0.4 \\
-0.2 & 0.3 & 0.6
\end{array}\right| \\
& \mathrm{v}_{\mathrm{k}}=\left|\begin{array}{ll:l}
0.5 & 0.1 & -0.3
\end{array}\right|
\end{aligned}
$$

First compute the middle layer output using the relationship: $y_{j}=w_{i j} X_{i}$

$$
\begin{aligned}
& y_{1}=w_{11} x_{1}+w_{21} x_{2}+w_{1 B}=(0.7)(0)+(-0.2)(1.0)+0.4=0.2 \\
& y_{2}=w_{12} x_{1}+w_{22} x_{2}+w_{2 B}=(-0.4)(0)+(0.3)(1.0)+0.6=0.9 \\
& y_{1 \text { (OUT) }}=f\left(y_{1}\right)=1 /\left(1+e^{-y 1}\right)=0.55 \\
& y_{2 \text { (OUT) }}=f\left(y_{2}\right)=1 /\left(1+e^{-y 2}\right)=0.71
\end{aligned}
$$

Next, compute the network output and associated error using the relationship: $z_{k}=v_{i j} y_{i}$

$$
\begin{aligned}
& z_{1}=v_{11} y_{1}+v_{12} y_{2}+v_{1 B}=(0.5)(0.55)+(0.1)(0.71)-0.3=0.046 \\
& z_{1(\text { OUT })}=f\left(z_{1}\right)=1 /\left(1+e^{-z l}\right)=0.51 \\
& \delta_{k}=\left(T_{k}-z_{k(\text { OUT })}\right) f^{\prime}\left(z_{k(\text { OUT })}\right) \\
& \delta_{z 1}=\left(T_{1}-z_{1(\text { OUT })}\right) f\left(z_{1}\right)\left(1-f\left(z_{1}\right)\right)=(1.0-0.51)(0.51)(1-0.51)=0.12
\end{aligned}
$$

The middle to output layer weights can now be updates using: $\Delta \mathrm{v}_{\mathrm{jk}}=\alpha \delta_{\mathrm{k}} \mathrm{y}_{\mathrm{J}(\text { OUT })}$

$$
\begin{aligned}
& \Delta \mathrm{v}_{11}=\alpha \delta_{\mathrm{z} 1} \mathrm{y}_{1(\mathrm{OUT})}=(0.25)(0.12)(0.55)=0.017 \\
& \Delta \mathrm{v}_{12}=\alpha \delta_{\mathrm{z} 1} \mathrm{y}_{2(\text { OUT })}=(0.25)(0.12)(0.71)=0.021 \\
& \Delta \mathrm{v}_{1 \mathrm{~B}}=\alpha \delta_{\mathrm{z} 1} \text { Bias }=(0.25)(0.12)(1)=0.030 \\
& \mathrm{v}_{\mathrm{k}}=\left|\begin{array}{ll}
0.517 & 0.121
\end{array}-0.270\right|
\end{aligned}
$$

The second stage begins by computing the middle layer error as: $\delta_{j}=\delta_{k} v_{k j} f^{\prime}\left(y_{j(O U T)}\right)$

$$
\begin{aligned}
& \delta_{\mathrm{y} 1}=\delta_{\mathrm{z} 1} \mathrm{v}_{11} \mathrm{f}\left(\mathrm{y}_{1}\right)\left(1-\mathrm{f}\left(\mathrm{y}_{1}\right)\right)=(0.12)(0.5)(0.55)(1-0.55)=0.015 \\
& \delta_{\mathrm{y} 2}=\delta_{\mathrm{z} 1} v_{12} f\left(\mathrm{y}_{2}\right)\left(1-\mathrm{f}\left(\mathrm{y}_{2}\right)\right)=(0.12)(0.1)(0.71)(1-0.71)=0.0025
\end{aligned}
$$

The input to middle layer weights are then updated using: $\Delta \mathrm{w}_{\mathrm{ij}}=\alpha \delta_{1} \mathrm{x}_{\mathrm{j}}$

$$
\begin{aligned}
& \Delta \mathrm{w}_{11}=\alpha \delta_{\mathrm{y} 1} \mathrm{x}_{1}=(0.25)(0.015)(0)=0 \\
& \Delta \mathrm{w}_{12}=\alpha \delta_{\mathrm{y} 1} \mathrm{x}_{2}=(0.25)(0.015)(1.0)=0.0038 \\
& \Delta \mathrm{w}_{21}=\alpha \delta_{\mathrm{y} 2} \mathrm{x}_{1}=(0.25)(0.0025)(0)=0 \\
& \Delta \mathrm{w}_{22}=\alpha \delta_{\mathrm{y} 2} \mathrm{x}_{2}=(0.25)(0.0025)(1.0)=0.0006 \\
& \Delta \mathrm{w}_{1 \mathrm{~B}}=\alpha \delta_{\mathrm{y} 1} \operatorname{Bias}=(0.25)(0.015)(1.0)=0.0038 \\
& \Delta \mathrm{w}_{2 \mathrm{~B}}=\alpha \delta_{\mathrm{y} 2} \operatorname{Bias}=(0.25)(0.0025)(1.0)=0.0006
\end{aligned}
$$

Finally, the new updated weights are given as:

$$
\mathrm{w}_{\mathrm{y}(\text { NEW })}=\left|\begin{array}{rr|r}
0.7 & -0.3962 & 0.4038 \\
-0.2 & 0.3006 & 0.6006
\end{array}\right|
$$

This procedure can be repeated until the weight changes are no longer significant, at which point the network is considered to be trained.

2.4.2 Kohonen Self Organizing Maps

A Kohonen self organizing map (SOM) is a single layered, unsupervised, competitive neural network, as shown below.

Figure 2.9 Kohonen self organizing map

A SOM is a neural network that sorts data into different categories, or creates a twodimensional map from multi-dimensional inputs. When trained properly, a SOM can take data that is difficult to separate accurately, and divide it into different groups or clusters with common characteristics.

A SOM has an architecture that usually consists of an input layer and a two dimensional Kohonen layer. The processing elements in the input layer are not connected to each other, although, each processing element in the input layer is connected to all the processing elements in the Kohonen layer. Furthermore, the processing elements in the Kohonen layer are connected to each other. All of these connections have an associated weight.

A SOM learns by minimizing the Euclidean distance between the weights and the input vectors. The network attempts to cluster the input vectors on a mapping layer. The network not only clusters the input vectors but also locates groups with like behaviors close to each other. The algorithm for a simple Kohonen self organizing map is given by Walker and Hill [9]:

Step 1: Initialize weights, set neighborhood and learning rate parameters
Step 2: Do while stooping condition is false
Step 3: For each input vector, \mathbf{x}_{1}
Step 4: Compute for each processing element: $D_{j}=\sum\left(w_{1 j}-x_{1}\right)^{2}$
Step 5: Find index " j " for D_{j} minimum
Step 6: Update all weights in neighborhood of " j "

$$
\mathrm{w}_{\mathrm{ij}(\mathrm{NEW})}=\mathrm{w}_{\mathrm{ij}(\mathrm{OLD})}+\alpha\left(\mathrm{x}_{1}-\mathrm{w}_{\mathrm{iJ}(\mathrm{OLD})}\right)
$$

Step 7: Update learning rate and neighborhood parameters
Step 8: Test stopping condition

Typically, stopping conditions for a Kohonen self organizing map are when the network is said to have converged, or when the weight changes are small or after a sufficient number of training cycles are completed.

EXAMPLE

Consider a Kohonen self organizing network with 2 input processing elements and 5 cluster units [9]. Find the winning cluster unit for the input vector $x_{i}=[0.5,0.2]$ and update network weights for one pass using a neighborhood factor of 1 and a learning coefficient of 0.2 .

The initial weights are given as:

$$
\mathrm{w}_{\mathrm{ij}}=\left|\begin{array}{ccccc}
0.3 & 0.6 & 0.1 & 0.4 & 0.8 \\
0.7 & 0.9 & 0.5 & 0.3 & 0.2
\end{array}\right|
$$

First the Euclidean distances are computed using: $D_{j}=\sum\left(w_{i j}-x_{i}\right)^{2}$

$$
\begin{aligned}
& D_{1}=\left(w_{11}-x_{1}\right)^{2}+\left(w_{21}-x_{2}\right)^{2}=(0.3-0.5)^{2}+(0.7-0.2)^{2}=0.29 \\
& D_{2}=\left(w_{12}-x_{1}\right)^{2}+\left(w_{22}-x_{2}\right)^{2}=(0.6-0.5)^{2}+(0.9-0.2)^{2}=0.50 \\
& D_{3}=\left(w_{13}-x_{1}\right)^{2}+\left(w_{23}-x_{2}\right)^{2}=(0.1-0.5)^{2}+(0.5-0.2)^{2}=0.25 \\
& D_{4}=\left(w_{14}-x_{1}\right)^{2}+\left(w_{24}-x_{2}\right)^{2}=(0.4-0.5)^{2}+(0.3-0.2)^{2}=\underline{0.02} \\
& D_{5}=\left(w_{15}-x_{1}\right)^{2}+\left(w_{25}-x_{2}\right)^{2}=(0.8-0.5)^{2}+(0.2-0.2)^{2}=0.09
\end{aligned}
$$

Since D_{4} is the closest to zero it is deemed the winning processing element. With a neighborhood factor of 1 , this implies that the weights for processing element " j " $=3,4$ and 5 will be updated using: $\mathrm{w}_{\mathrm{ij}(\mathrm{NEW})}=\mathrm{w}_{\mathrm{ij}(\mathrm{OLD})}+\alpha\left(\mathrm{x}_{\mathrm{i}}-\mathrm{w}_{\mathrm{ij}(\mathrm{OLD})}\right)$

$$
\begin{aligned}
& \mathrm{w}_{13(\mathrm{NEW})}=\mathrm{w}_{13(\mathrm{OLD})}+\alpha\left(\mathrm{x}_{1}-\mathrm{w}_{13(\mathrm{OLD})}\right)=0.1+0.2(0.5-0.1)=0.18 \\
& \mathrm{w}_{23(\mathrm{NEW})}=\mathrm{w}_{23(\mathrm{OLD})}+\alpha\left(\mathrm{x}_{2}-\mathrm{w}_{23(\mathrm{OLD})}\right)=0.5+0.2(0.2-0.5)=0.44 \\
& \mathrm{w}_{14(\mathrm{NEW})}=\mathrm{w}_{14(\mathrm{OLD})}+\alpha\left(\mathrm{x}_{1}-\mathrm{w}_{14(\mathrm{OLD})}\right)=0.4+0.2(0.5-0.4)=0.42
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{w}_{24(\mathrm{NEW})}=\mathrm{w}_{24(\mathrm{OLD})}+\alpha\left(\mathrm{x}_{2}-\mathrm{w}_{24(\mathrm{OLD})}\right)=0.3+0.2(0.2-0.3)=0.28 \\
& \mathrm{w}_{15(\mathrm{NEW})}=\mathrm{w}_{15(\mathrm{OLD})}+\alpha\left(\mathrm{x}_{1}-\mathrm{w}_{15(\mathrm{OLD})}\right)=0.8+0.2(0.5-0.8)=0.74 \\
& \mathrm{w}_{25(\mathrm{NEW})}=\mathrm{w}_{25(\mathrm{OLD})}+\alpha\left(\mathrm{x}_{2}-\mathrm{w}_{25(\mathrm{OLD})}\right)=0.2+0.2(0.2-0.2)=0.20
\end{aligned}
$$

Finally, the new weight matrix is given as:

$$
\mathrm{w}_{\mathrm{ij}(\mathrm{NEW})}=\left|\begin{array}{lllll}
0.3 & 0.6 & 0.18 & 0.42 & 0.74 \\
0.7 & 0.9 & 0.44 & 0.28 & 0.20
\end{array}\right|
$$

Again, this procedure can be repeated until the weight changes no longer affect the output.

CHAPTER 3

EXPERIMENTAL PROCEDURE

3.1 FIBERGLASS/EPOXY BEAMS

All of the fiberglass/epoxy beams used for testing were fabricated at Embry-Riddle Aeronautical University. Fifteen beams, measuring 381 mm in length, 36.6 mm in width, and 4.3 mm in thickness ($\left.15^{\prime \prime} \times 1.4^{\prime \prime} \times 0.17 "\right)$, were fabricated using a wet layup with a room temperature cure.

Ren tooling was used for the fabrication of the beams (Figure 3.1). The ren tooling was cleaned with acetone and then treated with a paste wax release agent to prevent the adhesion of the beams to the tooling. The RO99-625 direct wind roving from SaintGobain Vetrotex America, Inc. was bundled into groups of seven rovings. Each bundle was approximately $137 \mathrm{~cm}(54 \mathrm{in})$ long and secured at one end with tape. Ten of these bundles laid out axially made up the 35.6 mm (1.4 in) width of each specimen.

West System 105 epoxy resin and West System 206 slow hardener were thoroughly mixed in a 5 to 1 ratio. The fiber bundles were completely wetted out by the epoxy resin, then fed through a metal die with a $4 \mathrm{~mm}(5 / 32 \mathrm{in})$ diameter hole to remove the excess resin and to ensure a constant fiber to resin ratio. The bundles were then laid one by one axially in the ren tool until all ten bundles were inside the tool. The fibers were then
pressed flat into the tool with a squeegee and left to cure at room temperature as shown below in Figure 3.1.

Figure 3.1 Beams curing at room temperature

After the beams were completely cured, a liquid cooled saw with a diamond coated blade was used to cut the 137 cm (54 in) beams into three 381 mm (15 in) long test specimens. Approximately $102 \mathrm{~mm}(4 \mathrm{in})$ of scrap were trimmed off of each end of the 137 cm (54 in) beams.

The 381 mm (15 in) test specimens were labeled according to the large beam and location they were cut from. Three test specimens were cut from each of the 5 large beams; hence, the numbers assigned to the large beams ranged from 1 through 5 , and the numbers designated to the test specimens ranged from 1 through 3 .

EXAMPLE

3.2 TEST SETUP

All 3-point bend testing was also performed at Embry-Riddle Aeronautical University.
The equipment used during testing included the following:

- 15 Unidirectional fiberglass/epoxy beams
- MTS Systems Corp. 3-point bend test fixture
- MTS 10 kip load frame
- MTS 407 controller
- MTS 410 digital function generator
- MTS 464 data display
- Physical Acoustics Corporation (PAC) laptop
- PAC μ DiSP/NB-8 data acquisition system
- 2 PAC R15I acoustic emission transducers
- Channel $1-\mathrm{S} / \mathrm{N}$: F122
- Channel 2 - S/N: FJ61
- Omega Engineering Inc. X-Y plotter
- BNC signal cables
- Sculpey III oven-bake clay
- Stanley hot melt glue gun
- Hot melt glue sticks
- 0.5 mm mechanical pencil with HB pencil lead

The complete test setup is shown in Figure 3.2, and the MTS setup is shown in Figure 3.3.

Figure 3.2 Complete test setup

Figure 3.3 MTS setup without beam specimen

3.2.1 Specimen Setup

Physical Acoustics Corporation R15I transducers were mounted onto the test specimens $38 \mathrm{~mm}(1.5 \mathrm{in})$ from each end using the hot melt glue as a couplant, as shown in Figure 3.4. (Enough glue was used so that there was visible squeeze out on all sides of the transducers.) Transducer S/N F122 was always used as Channel 1, and transducer S/N FJ61 was always used as Channel 2. The locations of both Channel 1 and 2 remained constant throughout testing. Channel 1 was on the left and Channel 2 was on the right as the observer is facing the MTS load frame. The transducers were connected to Channels 1 and 2 of the PAC data acquisition system.

Figure 3.4 Transducers mounted on specimen

3.2.2 MTS Load Frame Setup

The 3-point bend test fixture was mounted in the hydraulic grips in the MTS machine. The span of the test fixture was set at 7 inches. Sculpey clay was applied to the 3 contact points on the test fixture to minimize any rubbing noise between the test fixture and the test specimen which could lead to unwanted AE data.

An X-Y plotter was connected to the load output from the MTS 407 controller to record load as a function of time. The data acquisition system also recorded the acoustic emission data as a function of time. Hence, if load is know as a function of time and the acoustic emission data is know as a function of time, then acoustic emission activity can be determined as a function of load.

3.3 DATA ACQUISITION

Data acquisition was accomplished using a PAC 4 channel data acquisition system. This was connected to a PAC laptop computer with PAC AEwin for DiSP software installed. Pertinent setup parameters configured within the AEwin software are listed below:

- Preamp Gain:
- Threshold:
- Peak Detection Time (PDT):
- Hit Definition Time (HDT):
- Hit Lockout Time (HLT):

40 dB
40 dB
$40 \mu \mathrm{~s}$ $150 \mu \mathrm{~s}$ $300 \mu \mathrm{~s}$

The setup parameters listed above were selected based on the recommendations of the PAC data acquisition user manual (Bibliography) for composite materials. The preamp gain is the amplification within the AE transducers. The PAC R15I transducers each have an integral preamplifier with a gain of 40 dB . The PDT is the maximum amount of time given for the system to detect the peak voltage of the AE waveform. If the PDT is set too high, the amplitude and the rise time parameters may be incorrect because the
system will mistakenly choose the wrong peak as the maximum. The HDT determines when one AE waveform ends and another begins. The HDT is the span of time spent after the AE waveform drops below the given threshold waiting to see if the waveform will rise above the threshold again. If the waveform does not rise above the threshold during the HDT, then it is considered over. If the HDT is set too high, the acquisition system will group several hits into one, causing multiple hit data. The HLT starts exactly when the HDT ends. The HLT is the time that it takes the acquisition system to move the collected data into its buffers.

Figure 3.5 Waveform with setup parameters

3.4 TEST PROCEDURE

First, the test specimen was centered in the test fixture. The MTS crosshead was then adjusted so that the fixture was in contact with the test specimen without applying a load. The X-Y plotter and the data acquisition system were then started simultaneously while the MTS was ramped at a constant rate of $8.4 \mathrm{~mm} / \mathrm{min}(0.33 \mathrm{in} / \mathrm{min})$. The specimens were loaded to failure. Upon failure, the $\mathrm{X}-\mathrm{Y}$ plotter and the data acquisition system were stopped. A test specimen in the test fixture prior to loading can be seen in Figure 3.6, and a specimen in the test fixture after failure is shown in Figure 3.7.

Figure 3.6 Test specimen prior to loading

Figure 3.7 Test specimen after failure

A typical load vs. displacement plot is shown in Figure 3.8. (Note: The apparently compliant load-displacement data up to about 1 inch displacement may be due to clay deformation rather than beam deformation.)

Figure 3.8 Load vs. displacement plot

CHAPTER 4

ANALYSIS AND RESULTS

4.1 ACOUSTIC EMISSION DATA

Acoustic emission data were collected from the onset of loading until failure for each of the 15 beam specimens. The ultimate load for each of the test specimens and total number of AE hits acquired are shown in Table 4.1. Using Chauvenet's criterion [10], no outliers were found among the ultimate loads.

Table 4.1 Ultimate loads and corresponding AE hits

Specimen ID	Ultimate Load (Ibs)	Total Hits			
MDD1-1	375	2757			
MDD1-2	312.5	5509			
MDD1-3	327.5	7901			
MDD2-1	372.5	748			
MDD2-2	365	1379			
MDD2-3	357.5	3214			
MDD3-1	336	1051			
MDD3-2	312.5	820			
MDD3-3	340	611			
MDD4-1	363	2540			
MDD4-2	372.5	1011			
MDD4-3	392.5	1682			
MDD5-1	367.5	1009			
MDD5-2	375	1023			
MDD5-3	365	2718			
AVE	355.6				
STD	24.2				

The next step was to determine how much of the AE data would be required to make the desired ultimate load predictions. Fisher and Hill [4] were able to accurately predict burst pressures in fiberglass/epoxy filament wound composite pressure vessels using AE
data taken up to 25% of the expected burst pressure. Fatzinger and Hill [5] were able to predict the ultimate loads in fiberglass/epoxy I-beams using AE data taken up to 50% of the theoretical ultimate load. To determine how much to filter the data, the number of AE hits associated with the percentage of average ultimate load was needed (see Table 4.2). The number of hits associated with 75% of the average ultimate load was considered too sparse to use as the input to a backpropagation neural network. The network will not predict well using an amplitude distribution comprised of only 16 hits. Ninety percent and higher was not reasonable because specimens began failing at 312.5 lbs , which is less than 90% of the average ultimate load of 355.6 lbs ; therefore, the neural network would be predicting on 100% of those specimens' AE data. The minimum number of hits associated with 80% and 85% were similar; however, 80% was chosen since the prediction should be made using the lowest possible proof load.

Table 4.2 AE hits associated with percentage of average ultimate load

	Percentage of Average Ultimate Load					
Specimen ID	$\mathbf{7 5}$	$\mathbf{8 0}$	$\mathbf{8 5}$	$\mathbf{9 0}$	$\mathbf{9 5}$	$\mathbf{1 0 0}$
MDD1-1	47	79	92	140	163	236
MDD1-2	148	210	326	5509	5509	5509
MDD1-3	97	109	280	805	7901	7901
MDD2-1	23	29	36	48	105	409
MDD2-2	114	154	191	244	400	619
MDD2-3	208	267	328	504	1154	1743
MDD3-1	16	32	41	101	1051	1051
MDD3-2	131	185	245	820	820	820
MDD3-3	48	64	86	127	274	611
MDD4-1	30	39	65	233	565	1099
MDD4-2	136	142	168	219	285	397
MDD4-3	60	106	138	214	316	435
MDD5-1	19	28	32	61	74	87
MDD5-2	22	29	37	52	138	273
MDD5-3	46	54	61	69	271	619

indicates specimen failed and total AE data are included

Thus, the AE data were filtered to include only those data acquired up to 80% of the average ultimate load. A series of plots were then generated to graphically display correlations between the AE parameters. Appendix A contains the plots for all 15 test specimens. Figures 4.1, 4.2, and 4.3 show example AE plots for specimen MDD2-3.

The first step was to analyze the amplitude distribution plots. As mentioned previously, the amplitude distribution typically will exhibit humps that represent the various failure mechanisms. As seen in Figure 4.1, the failure mechanisms humps are blended together such that they cannot be readily distinguished because of the large number of hits (267).

Figure 4.1 Amplitude distribution plot

The next step was to analyze the duration vs. amplitude plots. Typically, these plots show groups or clusters of hits that represent the failure mechanisms present [7]. As shown in Figure 4.2, there are no apparent groups or clusters present in the duration vs. amplitude plots either.

Figure 4.2 Duration vs. amplitude plot

The next step was to analyze the duration vs. counts plots. Typically, these plots show a linear relationship between the duration (D) of the AE waveform and the number of counts (C) for each hit $(D=k C)$. If the plots show unusual scatter, this is an indication that there may be multiple hit data [7]. As shown in Figure 4.3, there is a linear relationship present in the duration vs. counts plots. Thus, the setup parameters (section 3.3) are probably correct, and multiple hit data are probably minimal. This is also indicated by the coefficient of determination, R^{2}, being greater than 0.90 .

Figure 4.3 Duration vs. counts plot

4.2 BACKPROPAGATION NEURAL NETWORK

A series of backpropagation neural networks were optimized to predict the ultimate failure load using AE amplitude distribution data. Architecturally, each network consisted of a 61 neuron input layer for the amplitude hit frequencies, a hidden layer for mapping, and a 1 neuron output layer for predicting the ultimate load. NeuralWorks Professional II/Plus software by NeuralWare was used to create the neural networks.

Fifteen specimens were tested in all; each neural network was trained on 7 specimens and tested on the remaining 8 specimens. Because the networks were trained on the amplitude histograms from only 7 specimens, the data set was tripled to help the software learn on a larger set of data ($7 \times 3=21$ data sets). The randomized training and testing sets are shown in Tables 4.3 and 4.4, respectively. Note that the training set must include the high and low values of ultimate load in order to predict correctly [3].

Table 4.3 Training set

Specimen ID	Ultimate Load (lbs)	Amplitude Distribution Data
MDD3-1	336	$\begin{aligned} & \hline 396242001020001001010000 \\ & 0000000000000000000000000 \\ & 0000000000000 ~ \\ & \hline \end{aligned}$
MDD4-2	372.5	
MDD2-3	357.5	2027302322151314129101011597 246252230120100000000000 000000000000000000000
MDD1-2	312.5	141818912910141511514125148 132222410333120100100000 00000000000000000000
MDD4-3	392.5	$\begin{aligned} & 710978253142122234434134 \\ & 5020020121111000000000000 \\ & 00000000000000 \end{aligned}$
MDD5-2	375	$\left.\begin{array}{llllllllllllllllllllll} \hline 2 & 2 & 4 & 3 & 2 & 2 & 1 & 2 & 1 & 3 & 1 & 1 & 2 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \end{array}\right)$
MDD5-3	365	$\begin{aligned} & 4127653123110001101101300 \\ & 001000000000000000000000 \\ & 00000000000000 ~ \\ & \hline \end{aligned}$

Table 4.4 Testing set

Specimen ID	Ultimate Load (Ibs)	Amplitude Distribution Data
MDD1-1	375	$\begin{aligned} & 691029444234312121212231 \\ & 010000000000000000000000 \\ & 00000000000000 \end{aligned}$
MDD3-2	312.5	14192413161295465249354742 323230000100001012000000 00000000000000000
MDD2-2	365	5111589859761033344433345 523423222121100010000000 00000000000000
MDD1-3	327.5	$\begin{aligned} & 9158141012935535211121101 \\ & 100000000000000000000000 \\ & 0000000000000000 \\ & \hline \end{aligned}$
MDD3-3	340	$\begin{aligned} & 3141167771100102001010011 \\ & 000000000000000000000000 \\ & 00000000000000 \end{aligned}$
MDD4-1	363	347535312010000100000010 012000000000000000000000 0000000000000
MDD2-1	372.5	
MDD5-1	367.5	

The first backpropagation neural network was generated using the parameters as shown in Table 4.5. Based on previous research, the normalized-cumulative-delta rule (for further explanation, see Appendix B under Learn Rule) was used as the learning rule, and the hyperbolic tangent was used as the transfer function. The epoch size was set to be twenty-one or the size of the training file repeated three times in random order. The network was trained until the RMS error converged to 3%. The remaining parameter values were the software defaults and were varied subsequently to obtain the optimum values. (For a complete list of definitions of the network parameters see Appendix B.)

Table 4.5 Network parameters

Network Number	$\mathbf{1}$
Inputs	61
Hidden 1	2
Output	1
L. Coef.	0.3
	0.15
Momentum	0.4
Trans. Pt.	10000
L. Coef. Ratio	0.5
F' Offset	0.1
Learn Rule	NCD
Transfer	tanH
Epoch	21
RMS Error	0.03

The first parameter that was optimized was the number of PEs in the hidden layer. The results are summarized in Figure 4.4. For the complete results from all network permutations, see Appendix C.

Figure 4.4 Optimizing number of processing elements in hidden layer plot

After the optimum number of PEs in the hidden layer was determined to be 13 , that parameter and all other parameters were fixed while the F' offset was varied. The results are displayed in Figure 4.5.

Figure 4.5 Optimizing F' offset plot

The above optimization procedure was repeated for the remainder of the network parameters. These results are shown in Figures 4.6 through 4.11 and summarized in Table 4.6.

Figure 4.6 Optimizing transition point plot

Figure 4.7 Optimizing the momentum plot

Figure 4.8 Optimizing hidden layer learning coefficient plot

Figure 4.9 Optimizing output layer learning coefficient plot

Figure 4.10 Optimizing learning coefficient ratio plot

Figure 4.11 Optimizing RMS error plot

Table 4.6 Final network parameters

Network Number	$\mathbf{8 2}$
Inputs	61
Hidden 1	13
Output	1
L. Coef.	0.3
	0.15
Momentum	0.4
Trans. Pt.	7000
L. Coef. Ratio	0.35
F' Offset	0.05
Learn Rule	NCD
Transfer	tanH
Epoch	21
RMS Error	0.03

Using the optimized network parameters, the resulting backpropagation neural network ultimate load predictions are summarized in Table 4.7. As can be seen (highlighted), the backpropagation neural network was able to predict the ultimate loads with a worst case error of 4.34 percent, which is within the desired goal of ± 5 percent.

Table 4.7 Backpropagation neural network results

	Specimen ID	Actual Load (lbs)	Predicted Load (lbs)	\% Error
	MDD3-1	336	333.6	-0.72
	MDD4-2	372.5	372.5	-0.01
	MDD2-3	357.5	357.6	0.03
	MDD1-2	312.5	312.0	-0.16
	MDD4-3	392.5	392.7	0.06
	MDD5-2	375	378.1	0.83
	MDD5-3	365	364.9	-0.02
	MDD1-1	375	359.4	-4.15
	MDD3-2	312.5	326.0	4.34
	MDD2-2	365	354.2	-2.97
	MDD1-3	327.5	334.5	2.14
	MDD3-3	340	325.5	-4.26
	MDD4-1	363	361.9	-0.31
	MDD2-1	372.5	378.8	1.69
	MDD5-1	367.5	383.1	4.25

4.3 KOHONEN SELF ORGANIZING MAP

A series of Kohonen self organizing maps (SOMs) were generated to classify the AE parameter data (energy, duration, and amplitude) into failure mechanisms. The first step was to create a large enough SOM such that each failure mechanism would be sorted into its own category. A 20×20 SOM was chosen because it can sort the data into 400 possible categories. Architecturally, the SOM consisted of a 3 neuron input layer for energy, duration and amplitude, a 20×20 Kohonen layer for processing, and a 2 neuron output layer for X-Y (2-D) output coordinates. The 20×20 SOM was generated using the parameters shown in Table 4.8. NeuralWorks Professional II/Plus software by NeuralWare was used to construct the neural networks. (For a complete list of definitions of the network parameters see Appendix B.)

Table 4.820×20 SOM network parameters

Inputs	3
Rows	20
Columns	20
L. Coef.	0.06
SOM Steps	101730
Gamma	1
L. Coef. Ratio	0.5
Trans. Pt.	10000
Learn Rule	NCD
Tranfer	tanH
Coord. Layer	Yes
Min-Max	Yes
Neighborhood	Square
Start Width	1
End Width	1
Epoch	3391

The SOM was trained using the AE data acquired from the onset of loading until failure for each of the 15 test specimens. Due to the extremely large quantity of data, the training file was filtered to contain only every $10^{\text {th }}$ data hit. Upon completion of training, testing files were created for each of the 15 test specimens. All 15 test files were run through the $20 \times 20 \mathrm{SOM}$, and the results were compiled into one file. The output file contained an X-Y coordinate associated with every data hit. The data vectors were then sorted into failure mechanisms based on their X-Y coordinates. Subsequently, the range, mean, standard deviation and number of hits associated with each failure mechanism were determined for the three AE parameters (energy, duration, and amplitude). The results for the 20×20 SOM are shown in Figure 4.12 and Table 4.9.

Figure 4.12 X-Y coordinate plot

Table 4.920×20 SOM results for energy, duration, and amplitude

Energy							
Mechanism	X	Y	Min	Max	Mean	STD	\# of Hits
1	0.8947	-0.6842	0	8	0	0	20661
2	0.7895	-0.6842	0	40	2	2	9983
3	-0.3684	0.4737	2	264	18	24	3249
4	0.5789	-0.8947	141	2475	551	449	65
5	-0.6842	-0.1579	2647	2647	2647	0	1
6	0.6842	0.0526	1055	1055	1055	0	1
7	0.2632	0.7895	167	646	340	166	13
Duration							
Mechanism	X	Y	Min	Max	Mean	STD	\# of Hits
1	0.8947	-0.6842	1	1375	45	57	20661
2	0.7895	-0.6842	8	3858	186	183	9983
3	-0.3684	0.4737	115	7864	555	722	3249
4	0.5789	-0.8947	989	11996	2908	2481	65
5	-0.6842	-0.1579	26597	26597	26597	0	1
6	0.6842	0.0526	29367	29367	29367	0	1
7	0.2632	0.7895	7469	15456	10599	2991	13
Amplitude							
Mechanism	X	Y	Min	Max	Mean	STD	\# of Hits
1	0.8947	-0.6842	40	46	43	2	20661
2	0.7895	-0.6842	47	56	50	3	9983
3	-0.3684	0.4737	57	84	63	5	3249
4	0.5789	-0.8947	81	99	91	6	65
5	-0.6842	-0.1579	98	98	98	0	1
6	0.6842	0.0526	82	82	82	0	1
7	0.2632	0.7895	61	79	70	6	13

Figure 4.12 shows that the 20×20 SOM classified the input data into 7 failure mechanisms. From Table 4.9, it can be seen that mechanisms 1,2 and 3 contain a large number of hits compared to mechanisms $4,5,6$ and 7 . Also, while the max and min ranges of amplitude for mechanisms 1, 2 and 3 do not overlap, the max and min ranges for mechanisms 4, 5, 6 and 7 do overlap. Therefore, it was thought that it might be possible to combine mechanisms $4,5,6$ and 7 such that the total number of mechanisms would be either 4 or 5 instead of 7 .

Thus, the next step was to generate a $5 \times 1 \mathrm{SOM}$ in order to force the data into 5 categories. The 5×1 SOM used the exact same testing and training files as the 20×20

SOM. The network parameters for the 5×1 SOM are shown in Table 4.10.
Table 4.105×1 SOM network parameters

Inputs	3
Rows	5
Columns	1
L. Coef.	0.06
SOM Steps	101730
Gamma	1
L. Coef. Ratio	0.5
Trans. Pt.	10000
Learn Rule	NCD
Tranfer	tanH
Coord. Layer	Yes
Min-Max	Yes
Neighborhood	Square
Start Width	1
End Width	1
Epoch	3391

The 5×1 SOM was trained using the same procedure as used for the 20×20 SOM. The results for the $5 \times 1 \mathrm{SOM}$ are listed in Table 4.11.

Table 4.115×1 SOM results for energy, duration, and amplitude

Energy								
Mechanism	\mathbf{X}	\mathbf{Y}	Min	Max	Mean	STD	\# of Hits	
1	0	-0.5	0	8	0	0	20661	
2	0	0.5	0	40	2	2	9983	
3	0	1	2	353	19	27	3258	
4	0	-1	514	2647	989	838	6	
5	0	0	141	2475	551	449	65	
Duration								
Mechanism	\mathbf{X}	\mathbf{Y}	Min	Max	Mean	STD	\# of Hits	
1	0	-0.5	1	1375	45	57	20661	
2	0	0.5	8	3858	186	183	9983	
3	0	1	115	11913	578	844	3258	
4	0	-1	13888	29367	19052	6996	6	
5	0	0	989	11996	2908	2481	65	
Mechanism	\mathbf{X}	\mathbf{Y}	Min	Max	Mean	STD	\# of Hits	
1	0	-0.5	40	46	43	2	20661	
2	0	0.5	47	56	50	3	9983	
3	0	1	57	84	63	5	3258	
4	0	-1	69	98	80	10	6	
5	0	0	81	99	91	6	65	

Notice that the 5×1 SOM did force the data into 5 mechanisms. Mechanisms 1,2 and 3 still contained a large number of hits compared to mechanisms 4 and 5. The max and min ranges of amplitude for mechanisms 1, 2 and 3 do not overlap; however, the max and min ranges for mechanisms 4 and 5 do overlap. Therefore, it was decided to combine mechanisms 4 and 5. This required the generation of a 4×1 SOM to force the data into 4 categories instead of 5. Again, the 4×1 SOM used the exact same testing and training files as the 20×20 SOM. The network parameters for the 4×1 SOM are shown in Table 4.12.

Table 4.124×1 SOM network parameters

Inputs	3
Rows	4
Columns	1
L. Coef.	0.06
SOM Steps	101730
Gamma	1
L. Coef. Ratio	0.5
Trans. Pt.	10000
Learn Rule	NCD
Tranfer	tanH
Coord. Layer	Yes
Min-Max	Yes
Neighborhood	Square
Start Width	1
End Width	1
Epoch	3391

Once again, the 4×1 SOM was trained using the same procedure as used for the 20×20
SOM. The results for the 4×1 SOM are summarized in Table 4.13.
Table 4.134×1 SOM results for energy, duration, and amplitude

Energy							
Mechanism	X	Y	Min	Max	Mean	STD	\# of Hits
1	0	-1	0	3	0.02	0.18	16232
2	0	-0.3	0	16	0.74	0.96	10374
3	0	0.3	0	90	4.5	4.7	5633
4	0	1	4	2647	52	153	1734
Duration							
Mechanism	X	Y	Min	Max	Mean	STD	\# of Hits
1	0	-1	1	569	32	43	16232
2	0	-0.3	4	1779	119	103	10374
3	0	0.3	40	7864	295	322	5633
4	0	1	162	29367	891	1666	1734
Amplitude							
Mechanism	X	Y	Min	Max	Mean	STD	\# of Hits
1	0	-1	40	44	42	1.3	16232
2	0	-0.3	45	50	47	1.7	10374
3	0	0.3	51	61	55	3.0	5633
4	0	1	60	99	68	6.7	1734

Here it is seen that the 4×1 SOM forced the data into 4 mechanisms, which agrees with the work of Graham [11]. The max and min ranges of the amplitude only slightly overlap for mechanisms 3 and 4. The sorted data for specimen MDD2-3 can be seen graphically in Figure 4.13. Here the scattered data above the trend line are multiple hits.

Figure 4.13 Sorted duration vs. amplitude plot

Amplitude distribution plots were generated to show how the 4×1 SOM classified the failure mechanisms. Figure 4.14 shows the amplitude distribution for all the data acquired for all 15 specimens. Here the failure mechanism ranges are clearly defined with the exception of mechanisms 3 and 4 overlapping slightly.

Figure 4.14 Sorted amplitude distribution plot

Through visual inspection of the beam specimens, it was seen that transverse matrix cracking, delaminations, fiber breaks and longitudinal matrix cracking (fiber/matrix debonding) were all present. Mechanism 1 had a low amplitude range (40-44 dB), a short duration range ($1-569 \mu \mathrm{~s}$) and a low energy range ($0-3$). Mechanism 2 had a low amplitude range ($45-50 \mathrm{~dB}$), medium short to medium durations ($4-1,779 \mu \mathrm{~s}$), and a low energy range (0-16). Mechanism 3 had a medium amplitude range (51-61 dB), medium durations (40-7,864 $\mu \mathrm{s}$), and a medium energy range ($0-90$). Mechanism 4 has a high amplitude range ($60-99 \mathrm{~dB}$), a long duration ($162-29,367 \mu \mathrm{~s}$), and a high energy range (42,647). In addition, from comparison of the duration vs. amplitude plots containing 100% of the data and the plots filtered to 80% (Figure 4.15), most of the data hits in mechanisms 3 and 4 are not present in the 80% plots. Multiple hits are typically most prevalent during final failure; hence, if failure is eliminated from the data, it would be expected that multiple hits would be eliminated as well.

A second 4×1 SOM was generated to classify the AE data taken up to 80% of the average ultimate load. The 4×1 SOM was trained using the same procedure as used for the 20×20 SOM. Upon completion of training, all 15 test files were again run through the SOM and the results compiled into one file. The output file contained an X-Y coordinate associated with every data hit. The data vectors were then distributed into failure mechanisms based on same $\mathrm{X}-\mathrm{Y}$ coordinates. From this, the range, mean, standard deviation and number of hits associated with each failure mechanism were determined for each AE parameter. The results for the 4×1 SOM are listed in Table 4.14.

Table 4.144×1 SOM results for 80% data

Energy							
Mechanism	X	Y	Min	Max	Mean	STD	\# of Hits
1	0	-1	0	1	0	0.04	608
2	0	-0.3	0	2	0.5	0.55	465
3	0	0.3	1	8	3.5	1.76	328
4	0	1	6	78	16.9	12.3	121
Duration							
Mechanism	X	Y	Min	Max	Mean	STD	\# of Hits
1	0	-1	1	125	25	27.2	608
2	0	-0.3	19	217	93	34.5	465
3	0	0.3	80	333	200	48.2	328
4	0	1	229	924	388	130.8	121
Amplitude							
Mechanism	X	Y	Min	Max	Mean	STD	\# of Hits
1	0	-1	40	45	42	1.3	608
2	0	-0.3	43	52	47	2.0	465
3	0	0.3	49	62	55	3.2	328
4	0	1	59	79	66	4.4	121

Here it is seen that the 4×1 SOM forced the data into 4 mechanisms, again consistent with the results obtained by Graham [11]. The max and min ranges of the amplitude slightly overlap for all mechanisms, as they should. The sorted data for specimen MDD2-3 can be seen in Figure 4.15. Comparing Figure 4.15 with Figure 4.13, it can be
seen that almost all of the multiple hit data are eliminated by taking the load to only 80% of failure, plus mechanisms 3 and 4 are greatly reduced.

Figure 4.15 Sorted duration vs. amplitude plot for 80% data

4.4 MULTIVARIATE STATISTICAL ANALYSIS

After categorizing the $80 \% \mathrm{AE}$ data into failure mechanisms, multivariate statistical analysis was performed to determine a prediction equation based on the number of hits in each of the failure mechanism categories. Statgraphics Plus was the program used to calculate the coefficients of the prediction equation. The dependent variable was the ultimate load and the four independent variables were the number of hits per failure mechanism for each specimen. The inputs to the analysis software are given in Table 4.15.

Table 4.15 Multiple linear regression inputs

	Number of Hits per Mechanism				
Specimen ID	Mechanism 1	Mechanism 2	Mechanism 3	Mechanism 4	Actual Load (lbs)
MDD1-1	33	24	18	4	375
MDD1-2	62	72	56	20	312.5
MDD1-3	51	41	16	1	327.5
MDD2-1	12	9	7	1	372.5
MDD2-2	45	40	31	38	365
MDD2-3	108	85	63	11	357.5
MDD3-1	24	4	4	0	336
MDD3-2	77	45	43	15	312.5
MDD3-3	40	18	5	1	340
MDD4-1	21	13	2	3	363
MDD4-2	51	57	32	2	372.5
MDD4-3	34	25	26	21	392.5
MDD5-1	9	5	11	3	367.5
MDD5-2	10	13	6	0	375
MDD5-3	31	14	8	1	365

The multiple linear regression (MLR) analysis produced the following prediction equation:

Predicted Load $=372.96-0.687 *($ Mech 1$)+0.214 *($ Mech 2$)+0.107 *($ Mech 3$)+$

$$
0.188 \text { * (Mech 4) }
$$

Using the equation produced by the MLR analysis, the ultimate load was predicted for each specimen using the number of hits per failure mechanism as the variables. The best results were produced when predicting on failure mechanisms 1 and 2 only. Thus, the prediction equation became the following:

$$
\text { Predicted Load }=372.96-0.687 *(\text { Mech } 1)+0.214 *(\text { Mech } 2)
$$

The results of the prediction equation can be seen in Table 4.16. The worst case prediction error was -11.34 percent, which was outside the desired $\pm 5 \%$ worst case error goal.

Table 4.16 Multiple linear regression analysis results

Specimen ID	Actual Load (lbs)	Predicted Load (lbs)	\% Error
MDD1-1	375	355.4	-5.22
MDD1-2	312.5	345.8	10.65
MDD1-3	327.5	346.7	5.86
MDD2-1	372.5	366.6	-1.57
MDD2-2	365	350.6	-3.94
MDD2-3	357.5	317.0	-11.34
MDD3-1	336	357.3	6.35
MDD3-2	312.5	329.7	5.50
MDD3-3	340	349.3	2.74
MDD4-1	363	361.3	-0.46
MDD4-2	372.5	350.1	-6.01
MDD4-3	392.5	355.0	-9.57
MDD5-1	367.5	367.8	0.09
MDD5-2	375	368.9	-1.63
MDD5-3	365	354.7	-2.83

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

- The Kohonen self organizing map appeared to successfully classify the AE data into 4 failure mechanisms. Duration, energy and amplitude data were the only AE parameters used for classification.
- The backpropagation neural network successfully predicted the ultimate loads in unidirectional fiberglass/epoxy beams subjected to 3-point bending from the acoustic emission amplitude data taken up to 80% of the average ultimate load within the desired ± 5 percent goal.
- Multivariate statistical analysis using the number of hits associated with each failure mechanism predicted ultimate failure loads, but not within the desired goal of ± 5 percent.
- The backpropagation neural network probably provided better prediction results than the multivariate statistical analysis because multivariate statistical analyses are inherently sensitive to noisy (multiple hit) or sparse data, whereas backpropagation neural networks are not.

5.2 RECOMMENDATIONS

- Some multiple hit data were acquired during testing mostly at or near failure. The hit lockout time (HLT) and hit definition time (HDT) might be lowered to reduce multiple hit data.
- The failure mechanisms present were assumed to be transverse matrix cracking, longitudinal matrix cracking, fiber breaks and delaminations. The failure mechanisms should be verified using microscopic failure analysis on all of the test specimens.
- The use of broadband transducers for frequency analysis may improve failure mechanism classification.
- No simulated manufacturing defects were placed in the beam specimens. Incorporating defects into future training and testing sets would be recommended.

REFERENCES

1. Hoskin, B., and Baker, A., Composite Materials for Aircraft Structures, American Institute of Aeronautics and Astronautics, Inc., 1986, pp. 1-7.
2. Scott, Ian G., Basic Acoustic Emission, Gordon and Breach Science, 1991, pp. 86-87.
3. Hill, Eric v. K., Walker, James L., and Rowell, Ginger H., "Burst Pressure Prediction in Graphite/Epoxy Pressure Vessels Using Neural Networks and Acoustic Emission Amplitude Data," Materials Evaluation, Volume 54, No. 6, 1996, pp. 748-754.
4. Fisher, Marcus E. and Hill, Eric v. K., "Burst Pressure Prediction of Filament Wound Composite Pressure Vessels Using Acoustic Emission," Materials Evaluation, Volume 56, No. 12, 1998, pp. 1395-1401.
5. Fatzinger, Edward C. and Hill, Eric v. K, "Neural Network Prediction of Ultimate Loads in Fiberglass/Epoxy I-Beams from Acoustic Emission Data," Journal of Composites Technology \& Research.
6. Kouvarakos, M., and Hill, Eric v. K., "Isolating Tensile Failure Mechanisms in Fiberglass/Epoxy from Acoustic Emission Signal Parameters," Materials Evaluation, Volume 54, No. 9, 1996, pp. 1025-1031.
7. Pollock, Adrian A., "Acoustic Emission Inspection," Metals Handbook, Ninth Edition, Volume 17, 1989, pp. 278-294.
8. Hill, Eric v. K., "Predicting Burst Pressures in Filament Wound Composite Pressure Vessels Using Acoustic Emission Data," Materials Evaluation, Volume 50, No. 12, 1992, pp. 1439-1445.
9. Walker, James L., and Hill, Eric v. K., "An Introduction to Neural Networks: A Tutorial," First International Conference on Nonlinear Problems in Aviation and Aerospace, S. Sivasundaram, Editor, Embry-Riddle Aeronautical University Press, Daytona Beach, Florida, 1997, pp. 667-672.
10. Holman, J. P., Experimental Methods for Engineers, Second Edition, McGraw-Hill, 1971, p. 56.
11. Graham, Lloyd J., "Acoustic Emission Signal Analysis for Failure Mode Identification," 1980 Paper Summaries, ASNT National Spring Conference, American Society for Nondestructive Testing, Columbus, OH, 1980, pp. 74-79.

BIBLIOGRAPHY

1. Barbero, Ever J., Introduction to Composite Materials Design, Taylor \& Francis, Pennsylvania, 1999
2. Fausett, Laurene, Fundamentals of Neural Networks, Architecture, Algorithms, and Applications, Englewood Cliffs, New Jersey, 1994.
3. Miller, Ronnie K. and McIntire, Paul, Editors, Nondestructive Testing Handbook, Volume 5 of Acoustic Emission Testing, Second Edition. American Society for Nondestructive Testing (ASNT), 1987.
4. NeuralWare, Incorporated, Reference Guide NeuralWorks Professional II/Plus and NeuralWorks Explorer, 1995.
5. Physical Acoustics Corporation, DiSP User's Manual, Revision 1, Princeton NJ, 2001.
6. Strong, A. Brent, Fundamentals of Composites Manufacturing: Materials, Methods, and Applications, Society of Manufacturing Engineers, Michigan, 1989.
7. Swanson, Stephen R., Introduction to Design and Analysis with Advanced Composite Materials, Upper Saddle River, New Jersey, 1997.
8. Triola, Mario F., Elementary Statistics, Reading, Massachusetts, 1998.
9. Wasserman, Philip D., Neural Computing Theory and Practice, Van Nostrand Reinhold, New York, 1989.

APPENDIX A

ACOUSTIC EMISSION DATA PLOTS

APPENDIX B

NEURAL NETWORK PARAMETER DEFINITIONS

Backpropagation Neural Networks

NeuralWare defines the dialog box components and their functions as:

\# PEs

These text fields specify the number of processing elements (nodes) for each layer in the back-propagation network. Input corresponds to the input or bottom layer, Hid 1 through Hid 3 correspond to three hidden layers (usually you will only need one or two hidden layers), and Output corresponds to the output or top layer. The number of PEs in the input and output layers depend on the number of data fields in each data vector in your training data. The number of outputs depends on what information you want your network to provide (and requires a matching number of data fields for desired output).

LCoef

The LCoef fields correspond to Learning Rate (in the learn and recall schedule, learn section) for each of the hidden layers and the output layer. Learning coefficients are used by the learning and recall schedule, and (if the Default Schedule box in the learning and recall schedule is not checked) the Back-propagation command constructs a separate learning and recall schedule for each hidden layer and the output layer. LCoef works in conjunction with the Trans. Pt. and LCoef ratio values to configure the learning and recall schedules. The value entered in a layer's LCoef field corresponds to the first Coefficient 1 value in the learning and recall schedule (shown in the following table). The Trans. Point corresponds to the learn count value set in column 1 in the schedule. The learn count for the subsequent columns are heuristically set to $3,7,15$ and 31 times the learn count you enter in the Trans. Point field; i.e., the intervals between transition points increase exponentially. The LCoef Ratio sets the amount to divide the LCoef value by for the first transition. This defines an exponential decay which is sampled at subsequent transition points. For example, if you set a learning coefficient of 0.5 and an LCoef Ratio of 0.5 , the values for the various columns in the schedule will be:

> Column 10.5 (the LCoef value)
> Column 20.25 (the previous column value divided by the LCoef ratio value of 2) Column 30.0625 (the previous column value divided by 4)
> Column 40.00391 (the previous column value divided by 16)
> Column 50.00002 (the previous column value divided by 256)

Momentum

The Momentum field value is also used in configuring the learning and recall schedules for the hidden and output layers. Basically, momentum works by adding a tendency for weights to continue to change in the direction they are already changing. For backpropagation networks, momentum is represented in the learning and recall schedules by learning Momentum. The Momentum value interacts with the Trans. Pt. and LCoef Ratio exactly as do the LCoef field values described above.

Trans. Pt.

See the explanation in the LCoef section above.

LCoef Ratio

See the explanation in the LCoef section above.

F^{\prime} Offset

This is a value added to the derivative of the transfer function prior to calculating the value to back propagate from each PE. For a Sigmoid or Tanh transfer function a value of about 0.1 helps networks from getting saturated. The symptom of a saturated network is large weights and summation values. It is difficult for a saturated network to learn any further.

Learn Rule

The Learn Rule scroll window allows you to select the learning rule that is applied to all layers in the back-propagation network. The learning rule specifies how connection weights are changed during the learning process. The six learning rules available are:

- Delta-rule, which is the standard back-propagation learning rule.
- Normalized-cumulative delta-rule - a rule which accumulates weight changes and updates the weights at end of epoch. It is normalized so that the learning rate is independent of the epoch size.
- Extended delta-bar-delta
- Quickprop
- Maxprop
- Delta-bar-delta

You can use the Layer/Edit tool to assign learning rules on a layer-by-layer basis. For most applications we recommend trying extended delta-bar-delta, normalized-cumulative delta-rule, or with fast learning, the delta-rule.

Transfer

The transfer function scroll window allows you to specify a transfer function that is used for all layers in the network. The transfer function is a non-linear function that transfers the internally generated sum for each PE to a potential output value. Available transfer functions are:

Linear

Hyperbolic tangent (TanH)
Sigmoid
DNNA
Sine

Learn

The Learn Browse button is used to select the training data file for the network. Alternatively, you can type the filename into the text entry field. Input data files have a file extension of .nna, .txt or any other extension, but they must have an extension (typing "myfile" becomes "myfile.nna").

Recall/Test

The Recall/Test Browse button allows you to select a data file for recall and test execution. Alternatively, you can type the filename into the text entry field. Like the Learn data file, Recall/Test input data files also have a file extension of .nna, .txt or any other extension.

Connect Prior

For each layer, makes connections from all previous layers.

Auto-Associative

If Auto-Associative is checked, NeuralWorks sets the number of output PEs to the number of input PEs and, when training, uses the input data as the desired output. Backpropagation networks can use this mode for applications such as data compression or noise filtering.

Linear Output

Linear Output overrides the selected transfer function and forces a linear transfer function for the output layer. The linear transfer function takes the current sum for each PE as its output.

SoftMax Output

Softmax forces both a linear transfer function and a "softmax output function". You should use this only on applications that meet these two criteria:

The application is a classification problem
The components of the desired output add up to one.

Fast Learning

Selecting this check box uses a fast version of the back-propagation control strategy. We also recommend that you use the delta-rule learning rule for fast learning.

Gaussian Init

Attaches the Gaussian noise function (instead of the uniform noise function) to all layers in the network. This function is used for both initialization and noise. Three things must occur before a layer actually uses the noise function:

The control strategy must call for a noise function.
The learn and/or recall temperature value in the learning and recall schedule must be set to a non-zero value. By default, NeuralWorks sets these to zero.
A noise function must be attached to the layer. Uniform noise adds a random number within a specified range to each PE summation value in the layer. The range for random numbers is plus or minus one percent of the temperature value. The random number for the noise value is different for each PE in the layer. Gaussian noise is similar to uniform noise, except that the distribution of random numbers within the range is along a bell curve, i.e., more concentrated toward the middle of the range than at the ends.

Minimal Config.

Minimal Config. provides the minimum number of weight fields required for a learning rule. For instance, a minimum configuration of the normalized cumulative delta rule will have two weight fields. Not checking this would provide the normalized cumulative delta-rule with three weight fields, the third being used for momentum. You should only check this box if your computer system does not have enough memory for the default configuration.

MinMax Table

Selecting this check box causes NeuralWorks to compute the low and high values for each data field in the selected data files and store these in a MinMax Table. When data is presented to the network, it is scaled to the network ranges using the MinMax table and the network range values (set through the IO/Parameters command).

Bipolar Inputs

Used in conjunction with a MinMax table. If this is selected and a MinMax Table is used, input values are mapped to lie between -1.0 and 1.0. If it is not selected and a MinMax Table is used, input values are mapped to between 0.0 and 1.0.

Cascade Learn

This activates "Cascade Learn" in the Run menu which implements a form of Cascade Correlation training. In such networks, PEs in the hidden layer are incrementally added, and are trained individually to take responsibility for any remaining output error. Each hidden unit receives input from both the input buffer and from all prior hidden PEs. If you use this option, you still need to specify a number of hidden PEs. This provides a pool of PEs which the Cascade Learning algorithm will activate one by one until no more improvement occurs. Any disabled PEs left after convergence occurs can be purged using the "Utilities/Purge" menu option.

Epoch

Epoch size is used for all learning rules except Delta-Rule. However, even if the DeltaRule is being used, it is useful to set an epoch since certain instruments (such as RMS Error graph) update their calculations at the end of an epoch.

Set Epoch From File

This will set the epoch to the number of vectors in the training file. However, it is recommended that the Epoch size should be LESS THAN the number of vectors in the training file, and for most problems an upper bound of 200 for the epoch is valid.

RMS Error

Choosing this instrument creates a strip chart instrument that shows the RMS error of the output layer. For some applications (though not all) as learning progresses you should see this graph slowly converge to an error near zero. You can activate the convergence threshold in the RMS instrument, which, when reached, will stop network training. Use the Graph/Edit tool to activate Convergence Criterion and change the convergence threshold value. The convergence threshold is set to 0.001 by default.

Kohonen Self Organizing Maps

NeuralWare defines the dialog box components and their functions as:

Inputs

This sets the \# of Inputs going into the SOM.

\# Rows and \# Cols

Sets the \# of neurons in the rows and columns of the two-dimensional grid. Use large (10×10 or greater) to find number of categories. If the number of failure mechanisms are know, use a number of Rows and Columns whose product is equal to greater then know number of mechanisms.

Hidden and Output

These are for if you want a mapping network at the output of the SOM. Set the values to 0 if no hidden layer is created.

\# SOM Steps

This sets the number of learning iterations for the SOM. (If you use the Set Epoch From File button, \# SOM Steps is set to 30 times the number of hits in the training file.)

LCoef

Sets the first item under LCoef to be the desired learning rate for the Kohonen layer.

Beta

Beta is used in the equation to update the estimate of how frequently a Kohonen neuron wins. If you use the Set Epoch From File button the default value for Beta is set based on the number of training cases: Betạ = $1 /$ (\# training hits)

Gamma

Gamma is used in conjunction the frequency estimation to determine a bias term which is added to the Euclidean distance function for the ith Kohonen neuron. The effect of this is to favor neurons which have not won recently, and this encourages all the Kohonen neurons to be utilized.

Coord. Layer

This creates a layer above the two-dimensional Kohonen layer which outputs the feature map as a pair of coordinates. These coordinates are normalized to lie between -1.0 and 1.0 .

Output Network

This creates a back-propagation layer above the two-dimensional coordinate layer or above the coordinate layer. Use this option if you have desired outputs to which you want to map.

MinMax Table

If selected, NeuralWorks will compute the low and high values for each data field in the selected data files, and store these in a MinMax Table.

Interpolate

If this is checked, the top three winners in the two-dimensional Kohonen layer are calculated at each Kohonen learn step.

Neighborhood

1. Choose between a Diamond shaped or Square shaped neighborhood, or Alternating square and diamond shaped neighborhoods.
2. Choose the neighborhood sizes by setting the Starting Width and Ending Width. We recommend that you start with a large width (7 or above) and progress to a small width (1 or 3) by the end.
3. Optionally select horizontal or vertical wrap-around.

Learn

Select a training file using the Learn Browse button. Alternatively, you can type the filename into the text entry field.

Recal//Test

Select a test file using the Recall/Test Browse button. Alternatively, you can type the filename into the text entry field.

Connect Prior

If selected, and your network has a hidden layer, the output layer is fully connected from the Kohonen or coordinate layer as well as from the hidden layer.

Connect Bias

If selected, this creates connections from the bias neuron to the mapping layers.

Linear Output

If selected, this overrides the selected transfer function and forces a linear transfer function for the output layer.

SoftMax Output

If selected, this option forces a linear transfer function and a SoftMax output function. This should only be used with classification type problems in which the desired output is categorical in nature, and the components of each desired output vector sum to 1 .

Epoch

The epoch size is used for all learning rules in the mapping layers except the delta-rule. However, even if the delta-rule is being used, it is useful to set an epoch since certain instruments (such as RMS Error graph) update their calculations at the end of an epoch. Set Epoch From File button will set the epoch to the number of hits in the training file.

Learn Rule

- Delta-rule, which is the standard back-propagation learning rule.
- Norm-cum-delta, a rule which accumulates weight changes and updates the weights at end of epoch. It is normalized so that the learning rate is independent of the epoch size.
- Ext DBD (extended delta-bar-delta)
- QuickProp
- MaxProp
- Delta-bar-delta

The chosen rule is used for each layer of the network.

Transfer

- Linear
- TanH (hyperbolic tangent)
- Sigmoid
- DNNA

The tool recommends that you use either the TanH or sigmoid transfer functions. The chosen function is used for each layer of the network.

APPENDIX C

BACKPROPAGATION NEURAL NETWORK RESULTS

ع0＇0	ع0\％	E0＇0	ع0 0	ع0＇0	ع0＇0	ع0＇0	EO 0	EOO	800	10ג13 SWY
12	12	12	12	12	12	12	12	12	12	y30d3
Huel	$\mathrm{Huel}^{\text {l }}$	Huel	Huel	Hue）	Huel	$\mathrm{H}^{\text {Uel }}$	Huet	Hue）	Huel	dejsues 1
OJN	OJN	OON	OON	OON	OON	OON	OJN	ODN	OJN	ojny useof
S00	S0 0	SO＇0	SOO	S0 0	S0＇0	S0\％	S0＇0	S0＇0	SO＇0	1日SH0．s
S0	$\mathrm{S}^{0} 0$	${ }_{9} 0$	So	$\mathrm{c}^{\circ} 0$	S 0	G 0	90	S＇0	S＇0	O！ley＇je0 7
0002	0002	0002	000L	0002	0002	0002	0002	000	0002	Id＇sued 1
$t 0$	to	¢0	$\angle 0$	99\％	90	Sc＊ 0	S＇0	Sto	$\dagger 0$	unłuemow
Sl＊ 0	S10	Slo	Sto	S10	S10	Slo	Sl＇0	Sto	G10	$\checkmark 30007$
で0	St＇0	10	$\varepsilon 0$	ع＇0	$\varepsilon{ }^{\prime} 0$	$\varepsilon 0$	$\varepsilon{ }^{1}$	ع＇0	$\varepsilon 0$	
1	\downarrow	\downarrow	1	1	\downarrow	\downarrow	\downarrow	1	\downarrow	Indino
$\varepsilon \downarrow$	$\varepsilon \downarrow$	\＆	عا	عا	عا	$\varepsilon 1$	$\varepsilon \downarrow$	$\varepsilon 1$	ع1	\downarrow uepp！
19	19	19	19	19	19	19	19	19	19	sindul
09	67	$8{ }^{8}$	20	96	St	切	$8 t$	27	10	

ع0＇0	ع0＇0	E0＇0	E0＇0	ع00	ع0＇0	ع0＇0	ع0＇0	800	800	10113 SWy
LZ	LZ	12	12	12	LZ	12	12	12	12	400d3
Huel	Huel	Huet	Huel	Huet	Huet	Huet	Hue）	Huel	Huel	sejsue．」
OJN	OJN	OON	OON	OON	ODN	OJN	OON	OJN	OJN	өpny useef
S00	SO＇0	S0＇0	S0\％	S0＇0	S0＇0	S0\％	SO＇0	SO 0	S0＇0	resho at
S0	S＇0	S＇0	So	S＇0	S 0	G＇0	S＇0	S＇0	G＇0	onfey＇j00） 7
0002	0002	0002	0002	00091	000ヶ1	000ع1	000Z1	00011	00001	Id ${ }^{\text {d }}$ Sued 1
Sと＇0	$\varepsilon 0$	GZ＇0	で0	$\bigcirc 0$	${ }^{\circ} 0$	－ 0	$\rightarrow 0$	${ }^{\circ} 0$	$\bigcirc 0$	unłuewow
S10	Sto	S1＇0	S1＇0	St＇0	Sl＇0	G10	Sto	St＇0	Sl＇0	\bigcirc
$\varepsilon 0$	$\varepsilon 0$	ع＇0	$\varepsilon{ }^{\circ}$	$\varepsilon 0$	$\varepsilon{ }^{\circ}$	$\varepsilon \cdot 0$	$\varepsilon{ }^{\prime}$	$\varepsilon 0$	$\varepsilon{ }^{\circ}$	30007
1	L	L	L	1	\downarrow	1	\downarrow	\downarrow	1	indino
$\varepsilon 1$	$\varepsilon \downarrow$	عl	$\varepsilon 1$	\＆	$\varepsilon 1$	$\varepsilon 1$	\＆1	$\varepsilon 1$	$\varepsilon 1$	\downarrow Lepp！${ }^{\text {S }}$
19	19	19	19	19	19	19	19	19	19	stindul
06	68	8ε	$L \varepsilon$	98	SE	七®	$\varepsilon \varepsilon$	ZE	18	jequinn Yjomion

ع0＇0	ع0＇0	ع0\％	ع0＇0	ع0＇0	ع0＇0	ع0＇0	ع0＇0	$\varepsilon 00$	800	10.19 SWy
12	12	12	12	12	12	12	12	12	12	yoods
Huel	Hue）	Huel	Huel	Huet	Huel	Huet	Huet	Huel	Huel	dejsued 1
OJN	OON	OJN	OON	өןny useof						
SO＇0	S0＇0	SO＇0	S0＇0	S0＇0	S0＇0	St＇0	10	10	10	1esho，
S＇0	S＇0	S0	S＇0	S 0	S 0	S＇0	S 0	S＇0	S＇0	0lfey
0006	0008	0002	0009	O009	OOS 2	OOS 2	O0S 2	00001	00001	＇Id＇sued
${ }^{\circ} 0$	－0	－ 0	＋0	＋0	†0	$\dagger 0$	ナ0	$\rightarrow 0$	$\dagger 0$	unłuemow
St＇0	Sl＇0	Sl＇0	St＇0	Sl＇0	Sl＇0	Sl＇0	S10	Slo	S10	7000
$\varepsilon 0$	$\varepsilon 0$	$\varepsilon 0$	$\varepsilon{ }^{\circ}$	$\varepsilon{ }^{\circ}$	$\varepsilon 0$	$\varepsilon 0$	$\varepsilon 0$	$\varepsilon{ }^{\circ}$	ع＇0	yooj 1
1	\downarrow	\downarrow	1	1	1	\downarrow	1	1	1	Indino
$\varepsilon \downarrow$	$\varepsilon \stackrel{1}{ }$	$\varepsilon 1$	ع	$\varepsilon 1$	عا	$\varepsilon 1$	11	$\varepsilon 乙$	ZZ	し uepp！${ }^{\text {chen }}$
19	19	19	19	19	19	19	19	19	19	slndul
0ε	62	82	12	92	S2	¢	$\varepsilon \downarrow$	Z2	12	Jequnn yjomion

800	ع0＇0	$\varepsilon 0^{\circ} 0$	$80^{\circ} 0$	$\varepsilon 0^{\circ} 0$	ع0＇0	E0＇0	ع0＇0	800	ع0＇0	10 1， 3 SW
12	12	12	12	12	12	12	12	12	12	प30d3
Huel	Hue	Huel	Huet	dejsued 1						
OON	OON	OJN	OON	OJN	OON	OJN	ODN	OON	OJN	비니 useo
10	10	10	10	10	L＇0	10	10	＇0	10	10SH0．J
90	S＇0	S＇0	G＇0	G\％	S0	G\％	S＇0	S＇0	S＇0	－1xey＇tooう 7
00001	00001	00001	00001	00001	00001	00001	00001	00001	00001	＇Id＇sued1
＋0	＋0	＋ 0	$\dagger 0$	$\dagger 0$	¢0	$\dagger 0$	＋0	＋0	$\dagger 0$	wnjuemow
Sto	S10	G10	St＇0	S10	Slo	S＇0	S10	Slo	Sto	
$\varepsilon{ }^{\prime} 0$	$\varepsilon 0$	$\varepsilon 0$	$\varepsilon 0$	$\varepsilon 0$	$\varepsilon{ }^{\prime} 0$	$\varepsilon 0$	$\varepsilon 0$	$\varepsilon 0$	$\varepsilon 0$	ソ003 7
1	1	1	1	1	\downarrow	1	1	L	1	Indino
12	02	61	81	L1	91	S1	－1	ع	21	Ł иepp！
19	19	19	19	19	19	19	19	19	19	s？${ }^{\text {a }}$ dul
02	61	8.	21	91	Sl	－	\＆	21	11	Jequinn $\times 10 \mathrm{Ml}$（en

ع0 0	EO 0	ع0 0	E0 0	E00	ع0 0	ع0\％ 0	ع0＇0	ع0＇0	ع0＇0	10113 SWY
12	12	12	12	12	12	12	LZ	12	12	yood3
Huel	Huet	Huet	Huel	Hue）	$\mathrm{Huef}^{\text {l }}$	Huet	Huet	$\mathrm{H}^{\text {Uel }}$	Huet	103 Sued1
ODN	OJN	OON	OON	OON	OJN	OJN	OJN	ODN	OON	өjny usee］
10	10	10	10	10	10	10	10	10	10	1esfo．g
G0	So	90	G0	G 0	90	90	S＇0	S＇0	90	Olfey $3000 \cdot 7$
00001	00001	00001	00001	00001	00001	00001	00001	00001	00001	＇rd｀sue』1
$\dagger 0$	70	＋0	unjuemow							
S\％	S10	Sl＇0	Sto	Sto	St＇0	Slo	Slo	Sto	Sto	
$\varepsilon 0$	$\varepsilon 0$	$\varepsilon 0$	$\varepsilon{ }^{\circ}$	$\varepsilon 0$	$\varepsilon{ }^{\circ}$	$\varepsilon 0$	$\varepsilon{ }^{\circ}$	$\varepsilon 0$	$\varepsilon 0$	7009 7 \％
1	1	1	1	1	1	1	\downarrow	1	1	Indino
11	01	6	8	L	9	¢	t	ε	2	\downarrow uepp！
19	19	19	19	19	19	19	19	19	19	s？ndul
01	6	8	L	8	S	\dagger	ε	2	\downarrow	

Network Number	51	52	53	54	55	56	57	58	59	60
Inputs	61	61	61	61	61	61	61	61	61	61
Hidden 1	13	13	13	13	13	13	13	13	13	13
Output	1	1	1	1	1	1	1	1	1	1
L. Coef.	0.25	0.3	0.35	0.4	0.45	0.5	0.3	0.3	0.3	0.3
	0.15	0.15	0.15	0.15	0.15	0.15	005	01	015	02
Momentum	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Trans. Pt.	7000	7000	7000	7000	7000	7000	7000	7000	7000	7000
L. Coef. Ratio	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
F' Offset	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Learn Rule	NCD									
Transfer	tanH	tan H	tanH	tanH	$\tan \mathrm{H}$	$\tan \mathrm{H}$	$\tan \mathrm{H}$	tanH	$\tan \mathrm{H}$	tanH
Epoch	21	21	21	21	21	21	21	21	21	21
RMS Error	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03

| Network Number | $\mathbf{6 1}$ | $\mathbf{6 2}$ | $\mathbf{6 3}$ | $\mathbf{6 4}$ | $\mathbf{6 5}$ | $\mathbf{6 6}$ | $\mathbf{6 7}$ | $\mathbf{6 8}$ | $\mathbf{6 9}$ | $\mathbf{7 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inputs | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |
| Hidden 1 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
| Output | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| L. Coef. | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
| | 0.25 | 0.3 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
| Momentum | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
| Trans. Pt. | 7000 | 7000 | 7000 | 7000 | 7000 | 7000 | 7000 | 7000 | 7000 | 7000 |
| L. Coef. Ratio | 0.5 | 0.5 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 |
| F' Offset | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
| Learn Rule | NCD |
| Transfer | tanH |
| Epoch | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
| RMS Error | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |

Network Number	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$
Inputs	61	61	61	61	61	61	61	61	61	61
Hidden 1	13	13	13	13	13	13	13	13	13	13
Output	1	1	1	1	1	1	1	1	1	1
L. Coef.	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Momentum	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Trans. Pt.	7000	7000	7000	7000	7000	7000	7000	7000	7000	7000
L. Coef. Ratio	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.35
F' Offset	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Learn Rule	NCD									
Transfer	tanH	$\tan \mathrm{H}$								
Epoch	$\mathbf{2 1}$	21	21	21	21	21	21	21	21	21
RMS Error	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.01

Network Number	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	84
Inputs	61	61	61	61
Hidden 1	13	13	13	13
Output	$\mathbf{1}$	1	1	1
L. Coef.	0.3	0.3	0.3	0.3
	0.15	0.15	0.15	0.15
Momentum	0.4	0.4	0.4	0.4
Trans. Pt.	7000	7000	7000	7000
L. Coef. Ratio	0.35	0.35	0.35	0.35
F' Offset	0.05	0.05	0.05	0.05
Learn Rule	NCD	NCD	NCD	NCD
Transfer	tanH	tanH	tanH	tanH
Epoch	21	21	21	21
RMS Error	0.02	0.03	0.04	0.05

	Actual	Net 1	\% Error	Net 2	\% Error	Net 3	\% Error	Net 4	\% Error	Not 5	\% Error
$\begin{aligned} & \text { No } \\ & \text { Oi } \\ & \text { 읃 } \\ & \text { 들 } \end{aligned}$	336	333.72	-0.679	334.36	-0.487	333.83	-0.647	333.01	-0.891	333.27	-0.811
	372.5	372.69	0.051	372.50	0.000	372.52	0.005	372.30	-0.053	372.51	0.003
	357.5	357.58	0.023	357.75	0.071	357.59	0025	357.42	-0.023	357.56	0.016
	312.5	312.26	-0.077	312.13	-0.117	311.94	-0.180	312.31	-0.061	312.16	-0.108
	392.5	392.15	-0.090	392.13	-0.095	392.50	0.001	392.40	-0.026	392.49	-0.002
	375	378.19	0.849	378.32	0.884	378.14	0.836	377.35	0.626	377.78	0.740
	365	364.68	-0.088	363.85	-0.315	365.31	0.084	366.04	0.285	365.36	0.098
	375	369.20	-1.546	393.64	4.971	332.70	-11.281	335.64	-10.496	346.63	-7.564
	312.5	394.96	26.387	354.24	13.356	324.55	3.857	309.98	-0.807	30813	-1 399
	365	395.42	8.335	396.01	8.496	318.89	-12.632	381.62	4.555	399.35	9.410
	327.5	373.99	14.196	389.70	18.993	374.59	14.378	327.61	0.033	343.51	4.889
	340	349.48	2.787	376.81	10.825	323.93	-4.726	317.65	-6.575	335.09	-1.443
	363	366.05	0.839	375.45	3.429	351.43	-3.187	341.33	-5.969	353.25	-2.687
	372.5	395.91	6.283	378.30	1.556	379.70	1.933	369.46	-0.817	371.73	-0. 206
	367.5	341.85	-6.980	399.83	8.798	370.34	0.773	369.44	0.527	358.89	-2 342
		Worst	26.387	Worst	18.993	Worst	14.378	Worst	-10.496	Worst	9.410

	Actual	Net 6	\% Error	Net 7	\% Error	Net 8	\% Error	Net 9	\% Error	Net 10	\% Error
	336	333.16	-0.844	333.71	-0.681	333.26	-0.816	333.31	-0.801	333.19	-0.838
	372.5	372.56	0.016	372.24	-0.069	372.58	0.021	372.55	0.013	372.48	-0.006
	357.5	357.48	-0.005	357.70	0.055	357.53	0.007	357.58	0.021	357.55	0.014
	312.5	312.16	-0.110	312.26	-0.076	312.14	-0.116	312.17	-0.107	312.13	-0.119
	392.5	392.36	-0.035	392.06	-0.113	392.46	-0.011	392.29	-0.053	393.00	0.128
	375	377.67	0.711	378.11	0.828	377.80	0.746	377.86	0.763	377.69	0.717
	365	365.48	0.131	364.33	-0.185	365.23	0.063	365.26	0.071	365.40	0.109
	375	338.17	-9.821	383.94	2.383	329.81	-12.050	334.11	-10.905	357.53	-4.658
	312.5	313.60	0.353	385.49	23.356	340.20	8.865	339.58	8.665	322.33	3.146
	365	357.85	-1.959	380.75	4.316	390.72	7.047	369.42	1.212	375.42	2.854
	327.5	361.13	10.269	355.10	8.429	338.40	3.329	339.04	3.522	338.73	3.429
	340	321.55	-5.426	335.53	-1.316	317.94	-6.487	321.56	-5.424	320.93	-5.608
	363	342.36	-5.685	339.00	-6.610	352.33	-2.939	330.53	-8.945	342.04	-5.775
	372.5	376.12	0.971	391.65	5.141	377.34	1.299	382.89	2.790	385.64	3.527
	367.5	367.61	0.029	386.55	5.183	344.76	-6.187	343.11	-6.636	366.18	-0.359
		Worst	10.269	Worst	23.356	Worst	-12.050	Worst	-10.905	Worst	-5.775

	Actual	Net 11	\% Error	Net 12	\% Error	Net 13	\% Error	Net 14	\% Error	Net 15	\% Error
	336	333.32	-0.798	333.07	-0.872	333.74	-0.674	333.48	-0.751	333.14	-0.851
	372.5	372.49	-0.001	372.35	-0.040	372.71	0.056	372.63	0.035	372.81	0.082
	357.5	357.46	-0.011	357.48	-0.006	357.55	0.013	357.42	-0.022	357.41	-0.024
	312.5	312.30	-0.064	312.02	-0.154	312.25	-0.080	312.61	0.037	312.40	-0.031
	392.5	392.18	-0.080	392.43	-0.019	392.42	-0.020	391.62	-0.224	392.44	-0.016
	375	377.59	0.690	377.61	0.697	378.20	0.854	377.92	0.778	377.61	0.696
	365	365.45	0.124	364.82	-0.048	365.32	0.089	365.06	0.016	365.47	0.127
	375	344.79	-8.056	352.08	-6.113	345.61	-7.836	339.64	-9.428	348.36	-7.103
	312.5	332.31	6.338	328.93	5.258	323.99	3.677	334.84	7.149	349.92	11.973
	365	350.39	-4.003	352.96	-3.298	350.89	-3.867	379.20	3.890	352.03	-3.553
	327.5	352.64	7.675	331.29	1.157	356.60	8.884	342.28	4.512	345.74	5.568
	340	336.81	-0.938	322.51	-5.146	330.67	-2.745	327.80	-3.587	317.75	-6.544
	363	369.69	1.842	353.87	-2.516	372.19	2.532	370.31	2.014	360.61	-0.658
	372.5	387.35	3.987	376.89	1.180	377.65	1.384	381.71	2.473	386.05	3.638
	367.5	380.14	3.439	374.05	1.781	387.13	5.342	373.36	1.595	374.74	1.971
		Worst	-8.056	Worst	-6.113	Worst	8.884	Worst	-9.428	Worst	11.973
						Net 18	\% Error	Net 19	\% Error	Net 20	\% Error
	Actual	Net 16	\% Error	Net 173	\% Error	Net 333.43	\% Error	Net 333.68	\% Error	333.03	\% Error
	372.5	372.37	-0.036	372.39	-0.030	372.40	-0.026	372.57	0.020	372.81	0.084
	357.5	357.49	-0.002	357.36	-0.038	357.54	0.010	357.53	0.007	357.37	-0.036
	312.5	312.27	-0.074	312.75	0.079	312.04	-0.147	312.23	-0.088	312.27	-0.075
	392.5	392.45	-0.014	392.30	-0.051	392.11	-0.100	392.49	-0.002	392.65	0.039
	375	377.77	0.739	377.93	0.781	377.88	0.768	378.19	0.850	377.52	0.673
	365	365.54	0.148	365.21	0.056	365.18	0.049	364.66	-0.093	365.44	0.120
	375	368.40	-1.761	365.45	-2.546	374.53	-0.125	365.37	-2.567	359.49	-4.135
	312.5	353.91	13.251	325.40	4.129	375.33	20.107	323.97	3.670	354.06	13.298
	365	383.04	4.943	319.58	-12.444	365.14	0.037	358.24	-1.852	375.52	2.882
	327.5	371.03	13.290	356.75	8.930	358.56	9.484	363.77	11.076	354.50	8.244
	340	333.85	-1.810	327.46	-3.687	335.10	-1.441	339.18	-0.242	326.09	-4.092
	363	364.70	0.469	333.23	-8.201	354.94	-2.219	357.89	-1.409	360.53	-0.679
	372.5	377.86	1.439	385.39	3.461	385.19	3.405	383.56	2.968	385.06	3.372
	367.5	390.61	6.290	379.20	3.183	387.96	5.568	381.15	3.713	376.18	2.362
		Worst	13.290	Worst	-12.444	Worst	20.107	Worst	11.076	Worst	13.298

	Actual	Net 21	\% Error	Net 22	\% Error	Net 23	\% Error	Net 24	\% Error	Net 25	\% Error
	336	333.45	-0.760	333.21	-0.831	333.17	-0.841	33336	-0.786	33346	-0.755
	372.5	372.36	-0.039	372.47	-0.007	372.54	0.012	372.25	-0.067	372.65	0.040
	357.5	357.56	0.018	357.46	-0.012	357.43	-0.019	357.66	0.046	357.53	0.010
	312.5	311.88	-0.198	312.37	-0.041	312.17	-0.107	312.12	-0.120	311.97	-0.169
	392.5	391.92	-0.148	393.00	0.128	392.47	-0.008	392.33	-0.044	393.35	0.216
	375	377.89	0.770	377.64	0.704	377.70	0.721	377.89	0.769	377.87	0.764
	365	364.66	-0.094	365.35	0.095	365.41	0.113	365.19	0.053	365.28	0.077
	375	330.87	-11.768	370.70	-1.148	356.26	-4.999	352.71	-5.944	353.36	-5.770
	312.5	362.43	15.977	346.14	10.764	321.34	2.829	329.13	5.322	328.47	5.111
	365	349.22	-4.323	339.24	-7.059	374.08	2.487	354.01	-3.010	353.21	-3.230
	327.5	361.10	10.261	369.75	12.902	339.25	3.588	332.30	1.465	330.78	1.000
	340	334.52	-1.613	338.73	-0.373	320.60	-5.705	323.21	-4.939	322.76	-5.070
	363	353.53	-2.610	339.23	-6.549	339.99	-6.339	354.07	-2.459	354.86	-2.242
	372.5	378.83	1.700	384.02	3.094	385.42	3.469	377.13	1.243	37747	1335
	367.5	373.28	1.572	378.58	3.015	363.03	-1.216	374.26	1.840	37572	2.237
		Worst	15.977	Worst	12.902	Worst	-6.339	Worst	-5.944	Worst	-5.770

	Actual	Net 26	\% Error	Net 27	\% Error	Net 28	\% Error	Net 29	\% Error	Net 30	\% Error
	336	333.59	-0.718	333.48	-0.750	333.56	-0.726	333.25	-0.819	333.31	-0.800
	372.5	372.35	-0.040	372.41	-0.024	372.45	-0.014	372.55	0.013	372.54	0.011
	357.5	357.69	0.054	357.62	0.033	357.62	0.034	357.57	0.018	357.54	0.011
	312.5	311.98	-0.167	311.98	-0.166	311.93	-0.182	311.97	-0.171	311.94	-0.178
	392.5	392.80	0.077	392.98	0.123	393.02	0.133	393.07	0.144	392.97	0.120
	375	378.07	0.818	377.93	0.782	377.99	0.797	377.76	0.736	377.77	0.738
	365	364.88	-0.032	364.93	-0.018	364.73	-0.074	365.17	0.047	365.14	0.039
	375	350.87	-6.435	353.10	-5.840	354.39	-5.496	353.01	-5.865	353.21	-5.811
	312.5	326.09	4.347	327.53	4.811	327.79	4.894	328.36	5.074	328.83	5.225
	365	350.69	-3.921	352.22	-3.502	352.48	-3.431	353.58	-3.128	353.43	-3.169
	327.5	329.36	0.567	331.40	1.190	331.65	1.266	331.12	1.105	331.04	1.082
	340	322.03	-5.286	322.68	-5.094	323.21	-4.939	322.71	-5.084	322.86	-5.041
	363	355.19	-2.151	354.92	-2.227	356.01	-1.925	354.63	-2.307	354.81	-2.255
	372.5	377.17	1.253	377.48	1.336	377.51	1.344	377.26	1.277	377.28	1.284
	367.5	376.08	2.334	375.58	2.199	377.02	2.590	375.34	2.135	375.51	2.181
		Worst	-6.435	Worst	-5.840	Worst	-5.496	Worst	-5.865	Worst	-5.811

	Actual	Net 31	\% Error	Net 32	\% Error	Net 33	\% Error	Net 34	\% Error	Net 35	\% Error
	336	333.29	-0.806	333.30	-0.804	333.48	-0.751	333.01	-0.890	333.19	-0.837
	372.5	372.57	0.019	372.58	0.023	372.66	0.042	372.60	0.026	372.69	0.052
	357.5	357.48	-0.004	357.50	0.000	357.55	0.013	357.42	-0.022	357.42	-0.022
	312.5	311.99	-0.164	311.98	-0.168	311.97	-0.171	311.99	-0.163	311.98	-0.166
	392.5	392.96	0.117	392.96	0.118	392.43	-0.017	392.72	0.056	392.92	0.108
	375	377.74	0.730	377.77	0.740	377.97	0.792	377.50	0.665	377.67	0.711
	365	365.24	0.066	365.14	0.039	364.90	-0.029	364.95	-0.015	365.19	0.053
	375	353.13	-5.833	353.30	-5.786	353.46	-5.744	352.78	-5.924	352.90	-5.894
	312.5	328.88	5.241	328.82	5.223	328.65	5.167	328.40	5.088	328.72	5.189
	365	353.45	-3.165	353.36	-3.190	351.83	-3.608	353.30	-3.205	353.17	-3.242
	327.5	330.77	0.998	330.80	1.007	331.32	1.165	330.69	0.975	330.62	0.952
	340	322.77	-5.068	322.82	-5.054	322.83	-5.049	322.55	-5.134	322.58	-5.124
	363	354.67	-2.294	354.82	-2.254	354.69	-2.288	354.18	-2.430	354.54	-2.331
	372.5	377.34	1.299	377.35	1.301	377.49	1.340	377.26	1.279	377.35	1.302
	367.5	375.48	2.171	375.68	2.225	375.01	2.042	374.66	1.948	375.16	2.085
		Worst	-5.833	Worst	-5.786	Worst	-5.744	Worst	-5.924	Worst	-5.894

	Actual	Net 36	\% Error	Net 37	\% Error	Net 38	\% Error	Net 39	\% Error	Net 40	\% Error
	336	333.21	-0.831	333.28	-0.810	333.35	-0.790	333.41	-0.771	333.32	-0.797
	372.5	372.84	0.091	372.41	-0.024	372.36	-0.036	372.42	-0.022	372.29	-0.056
	357.5	357.39	-0.031	357.55	0.013	357.58	0.021	357.60	0.028	357.54	0.010
	312.5	311.94	-0.179	311.99	-0.163	312.06	-0.141	312.00	-0.159	312.05	-0.143
	392.5	392.89	0.100	392.73	0.058	392.61	0.028	392.72	0.057	392.41	-0.022
	375	377.71	0.722	377.81	0.750	377.90	0.773	377.93	0.780	377.84	0.757
	365	365.14	0.040	365.17	0.046	365.11	0.031	365.10	0.026	364.71	-0.078
	375	352.94	-5.882	351.59	-6.243	351.35	-6.308	351.57	-6.249	350.63	-6.498
	312.5	328.66	5.172	327.35	4.751	327.69	4.862	327.53	4.811	326.01	4.324
	365	353.40	-3.179	349.16	-4.340	349.19	-4.331	349.88	-4.143	347.49	-4.797
	327.5	330.51	0.918	331.90	1.344	332.32	1.471	331.01	1.072	331.80	1.312
	340	322.54	-5.136	322.68	-5.094	322.83	-5.049	322.57	-5.125	321.96	-5.305
	363	354.32	-2.391	354.89	-2.235	354.53	-2.334	355.06	-2.187	353.14	-2.717
	372.5	377.52	1.347	376.73	1.135	376.39	1.044	377.17	1.253	376.22	0.998
	367.5	374.85	2.001	375.06	2.057	374.74	1.971	375.48	2.171	373.85	1.727
		Worst	-5.882	Worst	-6.243	Worst	-6.308	Worst	-6.249	Worst	-6.498

	Actual	Net 41	\% Error	Net 42	\% Error	Not 43	\% Error	Net 44	\% Error	Net 45	\% Error
efeg 6upuient	336	333.56	-0.726	333.83	-0.647	333.97	-0.605	33327	-0 812	33328	-0.809
	372.5	372.45	-0.014	372.42	-0.022	372.26	-0.064	372.42	-0.023	372.13	-0.099
	357.5	357.62	0.034	357.60	0.029	357.69	0.054	357.51	0.004	357.63	0.036
	312.5	311.93	-0.182	312.09	-0.132	311.82	-0.219	312.15	-0.112	312.01	-0.158
	392.5	393.02	0.133	392.45	-0.012	392.38	-0.030	392.34	-0.040	392.35	-0.038
	375	377.99	0.797	378.24	0.864	378.27	0.872	377.74	0.732	377.80	0.746
	365	364.73	-0.074	365.23	0.064	364.43	-0.157	365.46	0.125	364.83	-0.047
	375	354.39	-5.496	352.14	-6.097	353.47	-5.742	338.31	-9.784	350.21	-6.610
	312.5	327.79	4.894	329.25	5.361	322.77	3.285	328.31	5.060	327.88	4.923
	365	352.48	-3.431	349.06	-4.367	344.85	-5.520	353.42	-3.171	351.40	-3.725
	327.5	331.65	1.266	330.95	1.054	328.84	0.408	318.02	-2.894	329.23	0.529
	340	323.21	-4.939	323.02	-4.993	322.26	-5.217	317.10	-6.735	321.78	-5.358
	363	356.01	-1.925	354.99	-2.208	357.72	-1.455	348.97	-3.865	352.74	-2.826
	372.5	377.51	1.344	377.26	1.279	379.12	1.778	38029	2.090	376.54	1.085
	367.5	377.02	2.590	374.59	1.929	378.25	2924	37594	2.297	373.61	1.664
$\begin{aligned} & \text { IN } \\ & \text { Ó } \\ & \text { OT } \\ & \text { 듣 } \\ & \text { Nib } \end{aligned}$		Worst	-5.496	Worst	-6.097	Worst	-5.742	Worst	-9.784	Worst	-6.610
	Actual	Net 46	\% Error	Net 47	\% Error	Net 48	\% Error	Net 49	\% Error	Net 50	\% Error
	336	333.77	-0.663	333.76	-0.666	333.50	-0.743	333.17	-0.843	333.38	-0.781
	372.5	372.13	-0.098	372.34	-0.044	372.59	0.025	372.42	-0.023	372.40	-0.027
	357.5	357.67	0.047	357.62	0.033	357.55	0.014	357.53	0.009	357.56	0.017
	312.5	312.12	-0.122	311.70	-0.255	312.15	-0.113	312.11	-0.125	312.02	-0.153
	392.5	392.41	-0.022	392.49	-0.003	392.72	0.056	392.67	0.044	392.82	0.080
	375	378.17	0.846	378.10	0.827	377.97	0.793	377.69	0.719	377.91	0.776
	365	364.70	-0.081	364.86	-0.038	365.53	0.144	365.38	0.103	365.07	0.018
	375	340.75	-9.135	322.10	-14.108	350.94	-6.416	350.83	-6.446	350.94	-6.415
	312.5	317.61	1.635	309.43	-0.981	326.48	4.474	327.62	4.839	326.52	4.487
	365	352.31	-3.476	363.60	-0.383	349.18	-4.335	350.91	-3.860	348.33	-4.568
	327.5	327.09	-0.125	311.17	-4.987	332.54	1.540	331.61	1.255	332. 10	1.403
	340	320.46	-5.747	310.37	-8.714	322.53	-5.138	322.43	-5.167	322.32	-5.200
	363	354.62	-2.309	344.71	-5.038	354.54	-2.330	353.73	-2.554	355.05	-2.189
	372.5	378.94	1.730	388.28	4.237	376.60	1.101	376.69	1.126	376.65	1.113
	367.5	371.59	1.113	375.78	2.254	374.69	1.957	373.59	1.658	374.75	1.972
		Worst	-9.135	Worst	-14.108	Worst	-6.416	Worst	-6.446	Worst	-6.415
	Actual	Net 51	\% Error	Net 52	\% Error	Net 53	\% Error	Net 54	\% Error	Net 55	\% Error
	336	333.27	-0.811	333.56	-0.726	333.55	-0.729	333.26	-0.816	333.57	-0.725
	372.5	372.41	-0.025	372.45	-0.014	372.29	-0.056	372.38	-0.031	371.99	-0.136
	357.5	357.54	0.012	357.62	0.034	357.57	0.018	357.61	0.030	357.67	0.048
	312.5	311.94	-0.178	311.93	-0.182	311.99	-0.164	311.71	-0.253	311.85	-0.208
	392.5	392.77	0.069	393.02	0.133	392.24	-0.066	392.25	-0.063	393.90	0.357
	375	377.77	0.738	377.99	0.797	378.05	0.814	377.70	0.721	377.58	0.688
	365	365.32	0.087	364.73	-0.074	364.95	-0.014	365.35	0.096	364.48	-0.141
	375	352.07	-6.115	354.39	-5.496	348.64	-7.031	351.19	-6.348	348.97	-6.941
	312.5	328.40	5.089	327.79	4.894	326.79	4.574	326.92	4.614	324.29	3.773
	365	352.06	-3.546	352.48	-3.431	352.06	-3.546	350.68	-3.923	351.99	-3.565
	327.5	331.44	1.204	331.65	1.266	326.95	-0.168	330.93	1.046	327.70	0.060
	340	322.64	-5.106	323.21	-4.939	320.41	-5.763	321.98	-5.300	320.72	-5.671
	363	354.64	-2.302	356.01	-1.925	354.85	-2.246	353.79	-2.537	352.19	-2.978
	372.5	376.88	1.176	377.51	1.344	377.75	1.408	376.84	1.166	377.75	1.410
	367.5	374.46	1.895	377.02	2.590	375.62	2.211	373.77	1.705	375.55	2.190
		Worst	-6.115	Worst	-5.496	Worst	-7.031	Worst	-6.348	Worst	-6.941
	Actual	Net 56	\% Error	Net 57	\% Error	Net 58	\% Error	Net 59	\% Error	Net 60	\% Error
	336	334.30	-0.506	332.92	-0.917	332.90	-0.922	333.56	-0.726	333.43	-0.764
	372.5	372.08	-0.114	371.63	-0.234	373.01	0.137	372.45	-0.014	372.38	-0.031
	357.5	357.84	0.095	356.62	-0.247	357.27	-0.063	357.62	0.034	357.59	0.026
	312.5	312.19	-0.098	312.36	-0.044	312.31	-0.060	311.93	-0.182	312.11	-0.125
	392.5	392.38	-0.030	392.29	-0.055	392.96	0.117	393.02	0.133	392.66	0.041
	375	378.45	0.920	376.13	0.301	377.13	0.569	377.99	0.797	377.98	0.795
	365	364.43	-0.157	365.14	0.038	365.92	0.252	364.73	-0.074	365.08	0.022
	375	349.83	-6.713	351.12	-6.369	350.13	-6.633	354.39	-5.496	351.11	-6.370
	312.5	325.88	4.282	328.69	5.181	328.30	5.055	327.79	4.894	328.36	5.074
	365	355.69	-2.552	352.44	-3.441	353.26	-3.217	352.48	-3.431	357.37	-2.090
	327.5	331.73	1.291	335.96	2.584	329.95	0.749	331.65	1.266	330.91	1.042
	340	322.43	-5.168	322.62	-5.111	321.49	-5.445	323.21	-4.939	322.54	-5.134
	363	350.05	-3.567	351.09	-3.281	351.44	-3.184	356.01	-1.925	354.31	-2.394
	372.5	382.58	2.705	374.98	0.666	376.83	1.162	377.51	1.344	376.17	0.985
	367.5	373.85	1.727	368.98	0.403	371.69	1.140	377.02	2.590	376.84	2.542
		Worst	-6.713	Worst	-6.369	Worst	-6.633	Worst	-5.496	Worst	-6.370

	Actual	Net 61	\% Error	Net 62	\% Error	Net 63	\% Error	Net 64	\% Error	Net 65	\% Error
	336	332.63	-1.004	329.64	-1.893	303.09	-9.795	303.32	-9.725	303.83	-9.574
	372.5	372.08	-0.112	373.01	0.138	372.53	0.009	372.55	0.013	372.58	0.020
	357.5	357.39	-0.030	357.02	-0.133	357.46	-0.011	357.45	-0.013	357.44	-0.018
	312.5	312.20	-0.097	312.34	-0.052	312.25	-0.080	312.23	-0.087	312.18	-0.103
	392.5	392.39	-0.029	393.16	0.169	39275	0.063	392.78	0.070	392.85	0.090
	375	377.40	0.640	379.30	1.146	377.10	0.560	377.35	0.627	377.88	0.767
	365	364.43	-0.156	367.34	0.641	36575	0.207	365.86	0.235	366.08	0.295
	375	354.31	-5.518	326.14	-13.030	31623	-15.673	318.44	-15.083	322.17	-14.089
	312.5	324.51	3.842	314.71	0.706	305.88	-2.119	306.46	-1.933	307.45	-1.618
	365	357.27	-2.119	400.85	9.823	391.25	7.191	389.78	6.789	387.38	6.132
	327.5	335.37	2.404	305.66	-6.669	313.24	-4.356	314.37	-4.009	316.22	-3.443
	340	323.59	-4.827	311.77	-8.303	302.92	-10.906	303.09	-10.856	303.46	-10.748
	363	356.20	-1.873	347.49	-4.272	31640	-12.837	318.81	-12.174	322.92	-11.042
	372.5	375.27	0.743	388.14	4.199	39257	5389	391.92	5.213	391.00	4.966
	367.5	377.72	2.780	381.57	3.830	371.69	1.141	373.20	1.552	375.52	2.182
		Worst	-5.518	Worst	-13.030	Worst	-15.673	Worst	-15.083	Worst	-14.089

	Actual	Net 66	\% Error	Net 67	\% Error	Net 68	\% Error	Net 69	\% Error	Net 70	\% Error
	336	306.05	-8.912	333.29	-0.807	333.58	-0.720	333.64	-0.704	333.84	-0.644
	372.5	372.71	0.056	372.38	-0.031	372.45	-0.013	372.43	-0.020	372.56	0.015
	357.5	357.35	-0.041	357.56	0.018	357.60	0.028	357.64	0.039	357.65	0.042
	312.5	312.00	-0.161	312.03	-0.151	311.99	-0.163	311.97	-0.170	311.98	-0.167
	392.5	393.14	0.163	392.66	0.041	392.75	0.063	392.81	0.079	393.00	0.128
	375	379.95	1.320	377.83	0.755	378.11	0.829	378.08	0.823	378.16	0.844
	365	367.02	0.554	364.98	-0.005	364.91	-0.024	364.62	-0.105	364.89	-0.031
	375	332.11	-11.438	361.92	-3.489	359.45	-4.147	357.70	-4.615	356.16	-5.023
	312.5	310.11	-0.763	325.31	4.099	326.05	4.335	326.69	4.540	327.34	4.748
	365	381.10	4.410	355.92	-2.489	354.16	-2.970	352.70	-3.369	352.41	-3.448
	327.5	321.11	-1.950	335.63	2.482	334.49	2.136	333.60	1.862	332.86	1.638
	340	305.06	-10.275	327.17	-3.772	325.50	-4.264	324.43	-4.579	323.85	-4.750
	363	334.17	-7.943	365.15	0.592	361.87	-0.313	359.22	-1.042	357.45	-1.530
	372.5	389.47	4.556	378.98	1.741	378.79	1.687	378.36	1.573	378.07	1.497
	367.5	380.63	3.573	385.94	5.019	383.11	4.248	380.66	3.581	378.69	3.046
		Worst	-11.438	Worst	5.019	Worst	4.335	Worst	-4.615	Worst	-5.023

	Actual	Net 71	\% Error	Net 72	\% Error	Net 73	\% Error	Net 74	\% Error	Net 75	\% Error
	336	333.56	-0.726	333.20	-0.833	333.91	-0.622	336.15	0.046	332.77	-0.961
	372.5	372.45	-0.014	372.21	-0.078	372.79	0.077	372.98	0.128	372.93	0.116
	357.5	357.62	0.034	357.57	0.020	357.67	0.048	357.14	-0.102	357.36	-0.038
	312.5	311.93	-0.182	311.95	-0.177	311.94	-0.180	312.37	-0.042	312.06	-0.139
	392.5	393.02	0.133	392.93	0.110	393.10	0.152	392.81	0.080	393.12	0.158
	375	377.99	0.797	377.50	0.667	378.33	0.889	376.29	0.344	378.29	0.876
	365	364.73	-0.074	364.36	-0.174	365.49	0.135	366.14	0.312	366.05	0.287
	375	354.39	-5.496	353.49	-5.737	354.60	-5.439	352.96	-5.878	350.73	-6.473
	312.5	327.79	4.894	328.09	4.990	328.30	5.058	329.96	5.587	328.00	4.961
	365	352.48	-3.431	352.68	-3.374	353.35	-3.191	352.28	-3.486	353.24	-3.222
	327.5	331.65	1.266	330.98	1.062	331.75	1.298	330.98	1.063	330.30	0.856
	340	323.21	-4.939	322.87	-5.038	323.58	-4.830	324.54	-4.548	321.31	-5.496
	363	356.01	-1.925	355.18	-2.155	356.63	-1.753	354.32	-2.392	352.17	-2.984
	372.5	377.51	1.344	376.92	1.186	377.93	1.458	375.93	0.921	377.82	1.427
	367.5	377.02	2.590	376.06	2.330	377.46	2.709	373.28	1.572	372.88	1.463
		Worst	-5.496	Worst	-5.737	Worst	-5.439	Worst	-5.878	Worst	-6.473

	Actual	Net 76	\% Error	Net 77	\% Error	Net 78	\% Error	Net 79	\% Error	Net 80	\% Error
	336	331.49	-1.343	330.99	-1.492	331.40	-1.370	310.92	-7.464	335.16	-0.249
	372.5	373.54	0.280	374.28	0.479	375.98	0.935	359.50	-3.491	372.45	-0.013
	357.5	357.23	-0.074	357.15	-0.097	357.19	-0.087	353.16	-1.213	357.55	0.013
	312.5	311.76	-0.236	311.62	-0.283	311.23	-0.406	312.63	0.043	312.31	-0.062
	392.5	393.60	0.281	394.09	0.404	394.64	0.545	387.63	-1.241	392.57	0.018
	375	380.06	1.349	381.90	1.840	385.47	2.793	363.37	-3.102	375.99	0.264
	365	367.02	0.553	368.72	1.019	371.38	1.749	345.96	-5.217	364.86	-0.038
	375	351.38	-6.299	352.60	-5.973	355.21	-5.277	330.02	-11.994	360.09	-3.975
	312.5	327.01	4.643	326.88	4.603	326.82	4.582	316.50	1.281	327.37	4.760
	365	354.78	-2.801	356.59	-2.305	357.40	-2.081	358.69	-1.729	354.10	-2.985
	327.5	330.64	0.958	331.30	1.160	333.63	1.871	317.28	-3.119	334.53	2.145
	340	320.45	-5.749	320.21	-5.820	320.42	-5.758	307.74	-9.489	327.35	-3.719
	363	353.18	-2.706	354.80	-2.260	358.20	-1.324	329.11	-9.337	362.12	-0.241
	372.5	380.00	2.012	382.28	2.624	385.81	3.574	366.10	-1.719	377.09	1.232
	367.5	375.22	2.101	377.71	2.778	381.54	3.822	357.39	-2.750	382.44	4.067
		Worst	-6.299	Worst	-5.973	Worst	-5.758	Worst	-11.994	Worst	4.760

	Actual	Net 81	\% Error	Not 82	\% Error	Net 83	\% Error	Not 84	\% Error
$\begin{aligned} & \text { 끙 } \\ & \text { O } \\ & \text { 읕 } \\ & \text { Nㅡㄴ } \end{aligned}$	336	334.37	-0.484	333.58	-0.720	332.61	-1.008	331.67	-1.288
	372.5	372.45	-0.014	372.45	-0.013	372.41	-0.023	372.41	-0.024
	357.5	357.59	0.025	357.60	0.028	357.63	0.036	357.60	0.029
	312.5	312.14	-0.116	311.99	-0.163	311.89	-0.196	311.81	-0.221
	392.5	392.65	0.039	392.75	0.063	392.82	0.082	392.92	0.107
	375	377.04	0.543	378.11	0.829	378.98	1.060	379.90	1.307
	365	364.84	-0.044	364.91	-0.024	364.92	-0.023	365.10	0.027
	375	359.77	-4.061	359.45	-4.147	358.98	-4.273	358.54	-4.391
	312.5	326.72	4.550	326.05	4.335	325.36	4.116	324.67	3.893
	365	354.09	-2.990	354.16	-2.970	354.36	-2.916	354.70	-2.822
	327.5	334.50	2.137	334.49	2.136	334.37	2.099	334.30	2.076
	340	326.43	-3.992	325.50	-4.264	324.49	-4.561	323.51	-4.849
	363	361.98	-0.281	361.87	-0.313	361.56	-0.398	361.31	-0.465
	372.5	377.91	1.451	378.79	1.687	379.54	1.889	380.39	2.119
	367.5	382.76	4.152	383.11	4.248	383.34	4.311	383.64	4.393
		Worst	4.550	Worst	4.335	Worst	-4.561	Worst	-4.849

