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ABSTRACT 

Michele D. Dorfinan 

Ultimate Strength Prediction in Fiberglass/Epoxy Beams Subjected to 

Three-Point Bending Using Acoustic Emission and Neural Networks 

Embry-Riddle Aeronautical University 

Master of Science in Aerospace Engineering 

2004 

The research presented herein demonstrates the feasibility of predicting ultimate 

strengths in composite beams subjected to 3-point bending using a neural network 

analysis of acoustic emission (AE) amplitude distribution data. Fifteen unidirectional 

fiberglass/epoxy beams were loaded to failure in a 3-point bend test fixture in an MTS 

load frame. Acoustic emission data were recorded from the onset of loading until failure. 

After acquisition, the acoustic emission data were filtered to include only data acquired 

up to 80 percent of the average ultimate load. 

A backpropagation neural network was constructed to predict the ultimate 

failure load using these AE amplitude distribution data. Architecturally, the network 

consisted of a 61 processing element input layer for each of the event frequencies, a 13 

processing element hidden layer for mapping, and a single processing element output 

layer for predicting the ultimate load. The network, trained on seven beams, was able to 

predict ultimate loads in the remaining eight beams with a worst case error of +4.34 

percent, which was within the desired goal of ± 5 percent. 

A second analysis was performed using a Kohonen self organizing map and 

multivariate statistical analysis. A Kohonen self organizing map was utilized to classify 

the AE data into 4 failure mechanisms. Then multivariate statistical analysis was 

performed using the number of hits associated with each failure mechanism to develop a 

prediction equation. The prediction equation was able to predict the ultimate failure load 

with a worst case error of-11.34 percent, which was well outside the desired goal of ± 5 

percent. This was thought to be the result of noisy or sparse data, since statistical 

predictions are inherently sensitive to both, whereas backpropagation neural networks are 

not. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

In today's aircraft industry, the materials available to designers have always had a strong 

impact on how aircraft are designed and built. The basic fundamentals of flight, such as 

the ratios of lift to drag, and thrust to weight have, unsurprisingly, dictated the choice of 

materials used. The materials chosen have been generally based on their strength to 

weight criteria. 

Composite materials have made the primary impact in the aircraft industry market today. 

The greatest advantage of these materials is their high strength-to-weight ratios. 

Composites can produce weight savings of up to 25% over their metallic counterparts [1]. 

Due to the increased use of composite materials, research in quality control of these 

structures must be a continuing process. 

Proof loading is the application of a load, frequently in excess of the maximum service 

load, to a component or structure in order to assure safety [2]. The theory behind proof 

loading is the assumption that if the structure does not fail during the proof test, it will not 

fail in service. 
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The research herein involves proof loading composite beams in 3-point bending to 80 

percent of their average ultimate strength. Acoustic emission nondestructive testing 

combined with a neural network analysis were then used to predict the ultimate strengths 

in fiberglass/epoxy beams. 

1.2 PREVIOUS RESEARCH 

Previous research has shown that AE data combined with the use of neural networks can 

be used to create a prediction model for ultimate loads in various applications. Hill, 

Walker and Rowell [3] tested a set of eighteen ASTM standard 145 mm (5.75 in.) 

diameter filament wound graphite/epoxy pressure vessels. Acoustic emission amplitude 

distribution data taken during hydroproof up to 25 percent of the expected burst pressure 

were used as inputs for a backpropagation neural network. The network, trained on nine 

bottles, was able to predict burst pressures in the remaining eight bottles with a worst 

case error of-3.89 percent. 

Fisher and Hill [4] tested a set of eleven ASTM standard 145 mm (5.75 in.) diameter 

filament wound fiberglass/epoxy pressure vessels. Two of these bottles contained 

simulated manufacturing defects which lowered their burst pressures significantly. 

Again, acoustic emission amplitude distribution data taken during hydroproof up to 25 

percent of the expected burst pressure were used as inputs for a backpropagation neural 

network. The network, trained on seven bottles (one containing a defect), was able to 

predict burst pressures in the remaining four bottles (one containing a defect) with a 

worst case error of +14.7 percent. When the defective bottles were removed from 
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consideration, the worst case prediction error dropped to -2.1 percent. It was concluded 

that more defective bottles would need to be tested in order to increase the prediction 

accuracy. 

Fatzinger and Hill [5] tested a set of ten fiberglass/epoxy I-beams loaded in cantilever 

fashion with a hydraulic ram. Two of these beams were manufactured using a different 

resin type. Acoustic emission amplitude distribution data taken during loading up to 50 

percent of the theoretical ultimate load were used as inputs for a backpropagation neural 

network. The network, trained on five beams (one from the different resin type), was 

able to predict ultimate loads in the remaining beams with a worst case error of -10.6 

percent. A Kohonen self organizing map was utilized to classify the AE data into failure 

mechanisms. Then a multivariate statistical analysis was performed using the percentage 

of AE hits associated with each failure mechanism along with the epoxy type to develop 

a prediction equation for ultimate load. The multivariate statistical analysis resulted in a 

prediction equation that had a worst case error of +36.0 percent. The large error for the 

statistical analysis was probably due to sparse data. 

1.3 CURRENT APPROACH 

The current approach is similar to those previously mentioned; however, the beams were 

loaded in 3-point bending. Fifteen unidirectional fiberglass/epoxy beams were loaded to 

failure in an MTS load frame using a 3-point bend test fixture. Acoustic emission 

amplitude distribution data taken during loading up to 80 percent of the average ultimate 

load were used as inputs for a backpropagation neural network. The network was trained 
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on seven beams, and tested on the remaining eight. Then a second analysis was 

performed using a Kohonen self organizing map and multivariate statistical analysis. The 

Kohonen self organizing map was utilized to classify the AE data into failure 

mechanisms. Then multivariate statistical analysis was performed using the number of 

hits associated with each failure mechanism to develop a prediction equation. 
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CHAPTER 2 

BACKGROUND THEORY 

2.1 MATERIAL SYSTEM 

The material system used in this research was Saint-Gobain Vetrotex America, Inc. 

R099-625 unidirectional glass roving and West System 105 epoxy resin with a West 

System 206 slow hardener. 

According to the manufacturer, R099-625 is a high-performance, multi-resin-compatible 

reinforcement used for filament winding fuel and chemical storage tanks, large diameter 

pipe, water treatment vessels, pressure vessels, reverse osmosis tubes and electrical fuse 

tubes. It has been specifically designed to achieve optimum results in polyester, 

vinylester, phenolic and epoxy resin systems. 

According to West System, 105 epoxy resin is a clear, pale yellow, low-viscosity liquid 

epoxy resin. When cured, the resin is clear. It can be cured in a wide variety of 

temperature ranges to form a high-strength solid with excellent moisture resistance. It is 

designed to wet out and bond with wood fiber, fiberglass, reinforcing fabrics and a 

variety of metals. The 206 slow hardener is a low-viscosity epoxy curing agent for use 

when extended working and cure time is needed or to provide adequate working time at 

higher temperatures. When combined with 105 resin in a five-part resin to one-part 
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hardener ratio, the cured resin/hardener mixture yields a rigid, high-strength, moisture-

resistant solid with excellent bonding and coating properties. 

2.3 ACOUSTIC EMISSION 

Acoustic emission (AE) can be defined as the transient elastic waves generated by the 

rapid release of energy from sources within a stressed material. The most common 

sources of this energy release in a composite structure are matrix cracking, delaminations 

and fiber breaks [6]. External sources such as mechanical noises can also be detected. In 

most cases, the structure is undergoing tension, compression, bending, or pressurization 

to generate the stresses needed to cause acoustic emissions. The transient elastic stress 

waves travel outward from the growth source. Acoustic emission transducers are used to 

convert the mechanical stress waves into usable electrical voltage signals. An AE data 

acquisition system can be utilized to convert the electrical voltage signals to AE 

quantification parameters. These AE parameters can be represented graphically and used 

in analyses. A typical AE system is shown in Figure 2.1, and a detailed view of the AE 

transducer is given in Figure 2.2. 
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Figure 2.1 Complete acoustic emission system 
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Figure 2.2 Acoustic emission transducer 
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An AE system works in the following way. A mechanical stress wave is generated by the 

rapid release of energy due to the flaw growth caused by an applied stress. Most AE 

transducers, which use a piezoelectric element for transduction, convert the mechanical 

stress wave into an electrical voltage signal. The electrical voltage signal is then passed 

through a preamplifier and a frequency filter. The preamplifier typically provides a gain 

of 100 (40 dB) and includes a high-pass or bandpass filter. The most common bandpass 

is 100-300 kHz, encompassing the 150 kHz resonant frequency of the most commonly 

used sensor [7]. It filters out the signals below 100 kHz and above 300 kHz. This 

eliminates low frequency background noise and high frequency noise caused by 

electromagnetic interference, but also limits the range of AE signals that can be detected. 

The amplified and filtered voltage signal is then fed into the data acquisition system, 

where it is amplified again and stored for future analysis. The data acquisition system 

extracts information about the voltage signal and generates AE quantification parameters. 

These AE parameters are displayed on the computer screen in the form of correlation 

plots or numerical tables. 

2.3.1 Event Parameters 

A typical AE signal or hit can be represented as a complex, damped, sinusoidal voltage 

versus time trace. A typical AE signal and its AE quantifying parameters can be seen in 

Figure 2.3. The five most commonly employed AE parameters are amplitude, duration, 

counts, rise time, and energy. 
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Figure 2.3 Acoustic emission waveform and parameters 

These parameters are defined as follows. The amplitude is the largest voltage peak in the 

signal waveform. Amplitude is measured in decibels [dB]. The duration is the length of 

the hit, from the first crossing of the threshold to the last crossing of the threshold. 

Duration is measured in microseconds [us]. Counts is defined as the number of times the 

signal crosses the threshold. Counts is also known as ringdown counts or threshold 

crossing counts. Rise time is the time from the start of the hit to its peak amplitude. Rise 

time is measured in microseconds [us]. Energy, also known as MARSE, is the measured 

area under the rectified waveform. Energy is measured in energy counts. 

Threshold is another essential parameter in acoustic emissions signal analysis. The 

threshold is an adjustable amplitude setting that determines when the data acquisition 

system starts recording hits. The sensitivity of the system is determined by the threshold 

setting. Unwanted background noises can be eliminated by setting the threshold above 

the amplitude of the unwanted noise, but also below the amplitude of the AE data needed. 
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2.3.2 Failure Mechanisms 

The three primary failure mechanisms in composite materials are matrix cracking, 

delaminations, and fiber breaks. These failure mechanisms have been characterized by 

Hill [8] using the magnitude of the amplitude, duration, counts, rise time, and energy 

associated with each AE hit in fiberglass/epoxy pressure vessels. 

The first primary failure mechanism is matrix cracking. There are two types of matrix 

cracking, transverse and longitudinal. Transverse matrix cracking is perpendicular to the 

fiber orientation, and longitudinal matrix cracking is parallel to the fiber orientation. 

Transverse matrix cracking hits in fiberglass/epoxy pressure vessels exhibit low 

amplitude, energy, and counts with short durations [8]. Longitudinal matrix cracking 

(fiber/matrix debonding) hits exhibit medium amplitude and energy with high counts and 

long durations. Matrix cracking occurs throughout the loading of the test specimen and is 

usually the least damaging of the three failure mechanisms. 

The second primary failure mechanism is delaminations. Delaminations occur mostly in 

specimens subjected to bending. When delaminations occur in fiberglass bottles, they 

release very high amplitude, high energy signals with long durations and a high number 

of counts [8]. 

The third primary failure mechanism is fiber breaks. Fiber break signals in fiberglass 

pressure vessels exhibit high amplitudes and high energies with short to medium 

durations and low to medium counts [8]. Fiber breaks usually occur at the end of the 
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loading cycle and are the most damaging of the three failure mechanisms. The following 

table illustrates the relative magnitudes of the AE parameters associated with each of the 

three primary failure mechanisms in fiberglass/epoxy pressure vessels. 

Table 2.1 AE parameters and associated failure mechanisms in fiberglass/epoxy 
pressure vessels [8] 

AE Parameter 

Amplitude 

Energy 

Counts 

Duration 

Transverse 
Matrix Cracking 

Low 

Low 

Low 

Short 

Longitudinal 
Matrix Cracking 

Medium 

Medium 

High 

Long 

Delaminations 

High 

High 

High 

Long 

Fiber Breaks 

Low-Medium 

Very High 

Medium-High 

Short- Medium 

2.3.3 Amplitude Distribution 

As stated previously, the amplitude is the largest voltage peak in the signal waveform. 

Acoustic emission signal sources can range from 1 microvolt to 10 volts; therefore, it is 

convenient to represent the amplitude on a logarithmic scale. Amplitude is customarily 

expressed in decibels relative to 1 microvolt at the transducing element. Amplifier gain 

is then given by 

AdB = 20\og^ [dB], 
in 

where Vout = output voltage [dB] and Vin = input voltage [dB]. The detectable range of 

AE amplitudes is on the scale of 0-100 decibels, and typical threshold settings for 

composite materials are 45-60 decibels. 
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Acoustic emission amplitude data can be graphed into a hits vs. amplitude histogram. 

Figure 2.4 shows a typical [differential] amplitude distribution plot for the 

fiberglass/epoxy beams used in this research. Previous research by Kouvarakos and Hill 

[6] has shown that the AE failure mechanisms are represented by the humps that make up 

the amplitude distribution. These humps have a tendency to overlap each other making it 

difficult to differentiate between the failure mechanisms on the amplitude histogram. 

Amplitude Distribution Histogram 

*inr\ 

250 

200 

| 150 

100 

50 

n 

llifliini.. iiiiiiiiiiiiiii 
40 45 50 55 60 65 70 75 80 85 

Amplitude (dB) 

90 95 100 

Figure 2.4 Amplitude distribution histogram 

Neural networks can be useful in analyzing acoustic emission data. The amplitude 

distribution data can be input into a backpropagation neural network for prediction. The 

neural network can associate the hit frequencies with an ultimate load. Moreover, 

Kohonen self organizing maps can be used to classify the failure mechanisms into 

amplitude ranges. 
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2.4 NEURAL NETWORKS 

An artificial neural network is a mathematical modeling and information processing tool 

with performance characteristics similar to those of a biological neural network. An 

artificial neural network, like a biological neural network, consists of a network of 

massively parallel, interconnected processing elements (PE) or neurons. A typical PE is 

shown in Figure 2.5. 

Figure 2.5 Processing element (neuron) 

Each PE receives a number of input signals that may or may not generate an output signal 

based upon the given inputs. Each input has a relative weight associated with it such that 

the effective input to the PE is a summation of the inputs multiplied by their associated 

weights. This value is then modified by a transfer or activation function (Figure 2.6) and 

passed directly to the output path of the processing element. These outputs can either be 

excitatory or inhibitory. An excitatory output will cause the PE to fire; an inhibitory 

output will keep the PE from firing. This output signal can then be interconnected to the 

input paths of other processing elements. 
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Figure 2.6 Transfer functions [9] 

Processing elements are typically organized into groups called layers. In general, a 

network will consist of an input layer, one or more hidden layers, and an output layer. 

Data are presented to the network in the input layer, processing is accomplished in the 

hidden layers, and the response of the network is presented in the output layer. The 

architecture for a generic neural network is shown in Figure 2.7. 

Input 
Layer 

Processing 
Layer 

Output 
Layer 

Figure 2.7 Generic neural network architecture 
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2.4.1 Backpropagation Neural Networks 

A backpropagation neural network is a multilayered, supervised, feed forward network, 

as shown in Figure 2.8. 

Input Layer Hidden Layer 

Figure 2.8 Backpropagation neural network 

This type of network learns the relationship between the given input and the target output 

vector by minimizing the difference between the target and actual output vectors. The 

learning process consists of two stages. In the first stage, the input vectors are fed 

through the network to generate a response vector. In the second stage, the output error is 

computed for each input response based upon the target output values. The overall 

network error is then reduced by back propagating error adjustments to the network 

weights. 
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The algorithm for a simple backpropagation neural network is given by Walker and Hill 

[9]: 

STAGE 1: Forward propagation of input vector 

Step 1: Initialize weights to small random values 

Step 2: Do while stopping condition is false 

Step 3: Compute input sum and apply activation function for each middle PE: 

yj = f(wn * x,) 

Step 4: Compute input sum and apply activation function for each output PE: 

zk = f(v„ * y,) 

STAGE 2: Back propagation of error 

Step 5: Compute error: 8k = (tk - zk) * f (wjk * y}) 

Step 6: Compute delta weights: Avjk = (a)(6k)(y,) + {Momentum * Avn(old)} 

Step 7: Compute error contribution for each middle layer PE: 

5J = 5k*w jk*f(w tJ*x1) 

Step 8: Compute delta weights: Awy = (a)(6J)(x1) + {Momentum * Awn(old)} 

Step 9: Update weights: Qrs(new) = Qrs(old) + AQrs 

Step 10: Test stopping condition 

Stopping conditions for a backpropagation neural network are when the weight changes 

have reached some minimal value or when the average error across a series of input 

vectors is below some desired level. 
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EXAMPLE 

Consider a backpropagation network with 2 inputs and 2 hidden or middle layer PEs and 

a single output [9]. Find the new weights when the network is presented with an input 

vector Xj = [0.0, 1.0] and target vector Z\ = 1.0 using a learning coefficient of 0.25 and a 

sigmoid activation function. 

Bias 

The initial weights are given as: 

W i , 
0.7 -0.4 ! 0.4 
-0.2 0.3 ! 0.6 

vk= 0.5 0.1 1-0.3 

First compute the middle layer output using the relationship: yj = Wjj Xj 

yi = w n xi + w2i x2 + w,B = (0.7)(0) + (-0.2)(1.0) + 0.4 = 0.2 

y2 = w12 x, + w22 x2 + w2B = (-0.4)(0) + (0.3)(1.0) + 0.6 - 0.9 

yi(ouT) = f(y.) = l / ( l + e - y l ) = 0.55 

y2(ouT) = f (y2)=l / ( l+e- y 2 ) = 0.71 

Next, compute the network output and associated error using the relationship: Zk = Vjj y 

zi = vii yi + V12 y2 + V,B = (0.5)(0.55) + (0.1)(0.71) - 0.3 = 0.046 

z,(ouT) = f ( z , ) = l / ( l + e - z , ) = 0.51 

5k = (Tk - Zk(OUT)) f '(zk(OUT)) 

8Z, =(T,-z, (ouT,)f(zi)(l-f(zi)) = (1.0 -0.51)(0.51)(1- 0.51) = 0.12 
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The middle to output layer weights can now be updates using: Avjk = a 8k VJ(OUT) 

Avn = a 82i y,(ouT) = (0.25)(0.12)(0.55) = 0.017 

Av12 - a 8zl y2(0uT) = (0.25)(0.12)(0.71) = 0.021 

Av1B = a 8Z, Bias = (0.25)(0.12)(1) = 0.030 

vk = | 0.517 0.121 ! -0.270| 

The second stage begins by computing the middle layer error as: b} = 8k vkj f (yj(ouT)) 

8yi = 8zl v n f(y0(l - f(y,)) = (0.12)(0.5)(0.55)(1 - 0.55) = 0.015 

6y2 = 8Z, v12 f(y2)(l - f(y2)) = (0.12)(0.1)(0.71)(1 - 0.71) = 0.0025 

The input to middle layer weights are then updated using: Aw,j = a 8, x, 

Awn = a 8y, x, = (0.25)(0.015)(0) = 0 

Aw12 = a Syi x2 = (0.25)(0.015)(1.0) = 0.0038 

Aw2, - a 8y2 X! = (0.25X0.0025)(0) = 0 

Aw22 = a Sy2 x2 = (0.25X0.0025X1.0) = 0.0006 

Aw1B = a 8yl Bias = (0.25)(0.015)(1.0) = 0.0038 

Aw2B = a 8y2 Bias = (0.25)(0.0025)(1.0) = 0.0006 

Finally, the new updated weights are given as: 

w,j(NEW)= I 0.7 -0.3962 ! 0.4038 I 
I -0.2 0.3006 ] 0.6006 I 

This procedure can be repeated until the weight changes are no longer significant, at 

which point the network is considered to be trained. 
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2.4.2 Kohonen Self Organizing Maps 

A Kohonen self organizing map (SOM) is a single layered, unsupervised, competitive 

neural network, as shown below. 

D, 
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or 
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Neighborhood 

% % % 
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• e o 
O 0 o 

D 

2 - D 

Kohonen layer 

Input 

Figure 2.9 Kohonen self organizing map 

A SOM is a neural network that sorts data into different categories, or creates a two-

dimensional map from multi-dimensional inputs. When trained properly, a SOM can 

take data that is difficult to separate accurately, and divide it into different groups or 

clusters with common characteristics. 

A SOM has an architecture that usually consists of an input layer and a two dimensional 

Kohonen layer. The processing elements in the input layer are not connected to each 

other, although, each processing element in the input layer is connected to all the 

processing elements in the Kohonen layer. Furthermore, the processing elements in the 

Kohonen layer are connected to each other. All of these connections have an associated 

weight. 
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A SOM learns by minimizing the Euclidean distance between the weights and the input 

vectors. The network attempts to cluster the input vectors on a mapping layer. The 

network not only clusters the input vectors but also locates groups with like behaviors 

close to each other. The algorithm for a simple Kohonen self organizing map is given by 

Walker and Hill [9]: 

Step 1: Initialize weights, set neighborhood and learning rate parameters 

Step 2: Do while stooping condition is false 

Step 3: For each input vector, x, 

Step 4: Compute for each processing element: Dj = £ (w.j - xt) 

Step 5: Find index " j " for Dj minimum 

Step 6: Update all weights in neighborhood of " j " 

W,j(NEW) = W,j(OLD) + a (X, - WyfOLD)) 

Step 7: Update learning rate and neighborhood parameters 

Step 8: Test stopping condition 

Typically, stopping conditions for a Kohonen self organizing map are when the network 

is said to have converged, or when the weight changes are small or after a sufficient 

number of training cycles are completed. 
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EXAMPLE 

Consider a Kohonen self organizing network with 2 input processing elements and 5 

cluster units [9]. Find the winning cluster unit for the input vector x\ = [0.5, 0.2] and 

update network weights for one pass using a neighborhood factor of 1 and a learning 

coefficient of 0.2. 

x i O ^ y / 7 ^ 2 The initial weights are given as: 

0.3 0.6 0.1 0.4 0.8 
0.7 0.9 0.5 0.3 0.2 

^ # D5 

First the Euclidean distances are computed using: Dj = £ (wij - x 0 

D, = (wn - X,)2 + (w2, - x2)
2 = (0.3 - 0.5)2 + (0.7 - 0.2)2 = 0.29 

D2 = (w,2 - x,)2 + (w22 - x2)
2 = (0.6 - 0.5)2 + (0.9 - 0.2)2 = 0.50 

D3 = (w,3 - x,)2 + (w23 - x2)
2 = (0.1 - 0.5)2 + (0.5 - 0.2)2 = 0.25 

D4 = (w14 - x,)2 + (w24 - x2)
2 = (0.4 - 0.5)2 + (0.3 - 0.2)2 - O02 

D5 = (w15 - x,)2 + (w25 - x2)
2 = (0.8 - 0.5)2 + (0.2 - 0.2)2 = 0.09 

Since D4 is the closest to zero it is deemed the winning processing element. With a 

neighborhood factor of 1, this implies that the weights for processing element " j " = 3, 4 

and 5 will be updated using: Wij(NEw) = WJJ(0LD) + a (XJ - W^OLD)) 

Wi3(NEW) = Wi3(OLD) + <X (Xi - Wi3(OLD)) = 0.1 + 0.2 (0.5 - 0.1) = 0.18 

W23(NEW) = W23(OLD) + a (x2 - W23(0LD)) = 0.5 + 0.2 (0.2 - 0.5) = 0.44 

WI4(NEW) = WI4(OLD) + a (xi - wi4(0LD)) = 0.4 + 0.2 (0.5 - 0.4) = 0.42 

W j i 
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W24(NEW) = W24(OLD) + a (x2 - w24(oLD)) = 0.3 + 0.2 (0.2 - 0.3) = 0.28 

WI5(NEW) = w,5(0LD) + a (x, - W,5(0LD)) = 0.8 + 0.2 (0.5 - 0.8) = 0.74 

W25(NEW) = W25(0LD) + a (x2 - W25(OLD)) = 0.2 + 0.2 (0.2 - 0.2) = 0.20 

Finally, the new weight matrix is given as: 

wij(NEW)= 0.3 0.6 0.18 0.42 0.74 
0.7 0.9 0.44 0.28 0.20 . 

Again, this procedure can be repeated until the weight changes no longer affect the 

output. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURE 

3.1 FIBERGLASS/EPOXY BEAMS 

All of the fiberglass/epoxy beams used for testing were fabricated at Embry-Riddle 

Aeronautical University. Fifteen beams, measuring 381 mm in length, 36.6 mm in width, 

and 4.3 mm in thickness (15" x 1.4" x 0.17"), were fabricated using a wet layup with a 

room temperature cure. 

Ren tooling was used for the fabrication of the beams (Figure 3.1). The ren tooling was 

cleaned with acetone and then treated with a paste wax release agent to prevent the 

adhesion of the beams to the tooling. The R099-625 direct wind roving from Saint-

Gobain Vetrotex America, Inc. was bundled into groups of seven rovings. Each bundle 

was approximately 137 cm (54 in) long and secured at one end with tape. Ten of these 

bundles laid out axially made up the 35.6 mm (1.4 in) width of each specimen. 

West System 105 epoxy resin and West System 206 slow hardener were thoroughly 

mixed in a 5 to 1 ratio. The fiber bundles were completely wetted out by the epoxy resin, 

then fed through a metal die with a 4 mm (5/32 in) diameter hole to remove the excess 

resin and to ensure a constant fiber to resin ratio. The bundles were then laid one by one 

axially in the ren tool until all ten bundles were inside the tool. The fibers were then 
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pressed flat into the tool with a squeegee and left to cure at room temperature as shown 

below in Figure 3.1. 

• 
• 

Figure 3.1 Beams curing at room temperature 

After the beams were completely cured, a liquid cooled saw with a diamond coated blade 

was used to cut the 137 cm (54 in) beams into three 381 mm (15 in) long test specimens. 

Approximately 102 mm (4 in) of scrap were trimmed off of each end of the 137 cm (54 

in) beams. 

The 381 mm (15 in) test specimens were labeled according to the large beam and location 

they were cut from. Three test specimens were cut from each of the 5 large beams; 

hence, the numbers assigned to the large beams ranged from 1 through 5, and the 

numbers designated to the test specimens ranged from 1 through 3. 

EXAMPLE 

MDDX-X, 
test specimen number [1, 2, 3] 

large beam number [1, 2, 3, 4, 5] 

initials of the researcher 
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3.2 TEST SETUP 

All 3-point bend testing was also performed at Embry-Riddle Aeronautical University. 

The equipment used during testing included the following: 

• 15 Unidirectional fiberglass/epoxy beams 

• MTS Systems Corp. 3-point bend test fixture 

• MTS 10 kip load frame 

• MTS 407 controller 

• MTS 410 digital function generator 

• MTS 464 data display 

• Physical Acoustics Corporation (PAC) laptop 

• PAC (iDiSP/NB-8 data acquisition system 

• 2 PAC R15I acoustic emission transducers 

o Channel 1 — S/N: F122 

o Channel 2 — S/N: FJ61 

• Omega Engineering Inc. X-Y plotter 

• BNC signal cables 

• Sculpey III oven-bake clay 

• Stanley hot melt glue gun 

• Hot melt glue sticks 

• 0.5 mm mechanical pencil with HB pencil lead 
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The complete test setup is shown in Figure 3.2, and the MTS setup is shown in Figure 3.3. 

MTS Load Frame MTS Controller 
and Data Display 

Figure 3.2 Complete test setup 

Figure 3.3 MTS setup without beam specimen 
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3.2.1 Specimen Setup 

Physical Acoustics Corporation R15I transducers were mounted onto the test specimens 

38 mm (1.5 in) from each end using the hot melt glue as a couplant, as shown in Figure 

3.4. (Enough glue was used so that there was visible squeeze out on all sides of the 

transducers.) Transducer S/N F122 was always used as Channel 1, and transducer S/N 

FJ61 was always used as Channel 2. The locations of both Channel 1 and 2 remained 

constant throughout testing. Channel 1 was on the left and Channel 2 was on the right as 

the observer is facing the MTS load frame. The transducers were connected to Channels 

1 and 2 of the PAC data acquisition system. 

Figure 3.4 Transducers mounted on specimen 

3.2.2 MTS Load Frame Setup 

The 3-point bend test fixture was mounted in the hydraulic grips in the MTS machine. 

The span of the test fixture was set at 7 inches. Sculpey clay was applied to the 3 contact 

points on the test fixture to minimize any rubbing noise between the test fixture and the 

test specimen which could lead to unwanted AE data. 
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An X-Y plotter was connected to the load output from the MTS 407 controller to record 

load as a function of time. The data acquisition system also recorded the acoustic 

emission data as a function of time. Hence, if load is know as a function of time and the 

acoustic emission data is know as a function of time, then acoustic emission activity can 

be determined as a function of load. 

3.3 DATA ACQUISITION 

Data acquisition was accomplished using a PAC 4 channel data acquisition system. This 

was connected to a PAC laptop computer with PAC AEwin for DiSP software installed. 

Pertinent setup parameters configured within the AEwin software are listed below: 

• Preamp Gain: 40 dB 

• Threshold: 40 dB 

• Peak Detection Time (PDT): 40 |̂ s 

• Hit Definition Time (HDT): 150 |is 

• Hit Lockout Time (HLT): 300 JIS 

The setup parameters listed above were selected based on the recommendations of the 

PAC data acquisition user manual (Bibliography) for composite materials. The preamp 

gain is the amplification within the AE transducers. The PAC R15I transducers each 

have an integral preamplifier with a gain of 40 dB. The PDT is the maximum amount of 

time given for the system to detect the peak voltage of the AE waveform. If the PDT is 

set too high, the amplitude and the rise time parameters may be incorrect because the 
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system will mistakenly choose the wrong peak as the maximum. The HDT determines 

when one AE waveform ends and another begins. The HDT is the span of time spent 

after the AE waveform drops below the given threshold waiting to see if the waveform 

will rise above the threshold again. If the waveform does not rise above the threshold 

during the HDT, then it is considered over. If the HDT is set too high, the acquisition 

system will group several hits into one, causing multiple hit data. The HLT starts exactly 

when the HDT ends. The HLT is the time that it takes the acquisition system to move the 

collected data into its buffers. 

Figure 3.5 Waveform with setup parameters 

3.4 TEST PROCEDURE 

First, the test specimen was centered in the test fixture. The MTS crosshead was then 

adjusted so that the fixture was in contact with the test specimen without applying a load. 

The X-Y plotter and the data acquisition system were then started simultaneously while 

the MTS was ramped at a constant rate of 8.4 mm/min (0.33 in/min). The specimens 

were loaded to failure. Upon failure, the X-Y plotter and the data acquisition system 

were stopped. A test specimen in the test fixture prior to loading can be seen in Figure 

3.6, and a specimen in the test fixture after failure is shown in Figure 3.7. 
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Figure 3.6 Test specimen prior to loading 

Figure 3.7 Test specimen after failure 
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A typical load vs. displacement plot is shown in Figure 3.8. (Note: The apparently 

compliant load-displacement data up to about 1 inch displacement may be due to clay 

deformation rather than beam deformation.) 

Load vs. Displacement 

0.000 0.500 1.000 1.500 

Displacement (in) 

2.000 2.500 

Figure 3.8 Load vs. displacement plot 
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CHAPTER 4 

ANALYSIS AND RESULTS 

4.1 ACOUSTIC EMISSION DATA 

Acoustic emission data were collected from the onset of loading until failure for each of 

the 15 beam specimens. The ultimate load for each of the test specimens and total 

number of AE hits acquired are shown in Table 4.1. Using Chauvenet's criterion [10], no 

outliers were found among the ultimate loads. 

Table 4.1 Ultimate loads and corresponding AE hits 

Specimen ID 
MDD1-1 
MDD1-2 
MDD1-3 
MDD2-1 
MDD2-2 
MDD2-3 
MDD3-1 
MDD3-2 
MDD3-3 
MDD4-1 
MDD4-2 
MDD4-3 
MDD5-1 
MDD5-2 
MDD5-3 

AVE 
STD 

Ultimate Load (lbs) 
375 

312.5 
327.5 
372.5 
365 

357.5 
336 

312.5 
340 
363 

t 372.5 
392.5 
367.5 
375 
365 

355.6 
24.2 

Total Hits 
2757 
5509 
7901 
748 
1379 
3214 
1051 
820 
611 
2540 
1011 
1682 
1009 
1023 
2718 

The next step was to determine how much of the AE data would be required to make the 

desired ultimate load predictions. Fisher and Hill [4] were able to accurately predict 

burst pressures in fiberglass/epoxy filament wound composite pressure vessels using AE 
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data taken up to 25% of the expected burst pressure. Fatzinger and Hill [5] were able to 

predict the ultimate loads in fiberglass/epoxy I-beams using AE data taken up to 50% of 

the theoretical ultimate load. To determine how much to filter the data, the number of 

AE hits associated with the percentage of average ultimate load was needed (see Table 

4.2). The number of hits associated with 75% of the average ultimate load was 

considered too sparse to use as the input to a backpropagation neural network. The 

network will not predict well using an amplitude distribution comprised of only 16 hits. 

Ninety percent and higher was not reasonable because specimens began failing at 312.5 

lbs, which is less than 90% of the average ultimate load of 355.6 lbs; therefore, the neural 

network would be predicting on 100% of those specimens' AE data. The minimum 

number of hits associated with 80% and 85% were similar; however, 80% was chosen 

since the prediction should be made using the lowest possible proof load. 

Table 4.2 AE hits associated with percentage of average ultimate load 

1 Specimen ID 
MDD1-1 
MDD1-2 
MDD1-3 
MDD2-1 
MDD2-2 
MDD2-3 
MDD3-1 
MDD3-2 
MDD3-3 
MDD4-1 
MDD4-2 

[ MDD4-3 
MDD5-1 
MDD5-2 
MDD5-3 

Percentage of Average Ultimate Load 
75 
47 
148 
97 
23 
114 
208 
16 

131 
48 
30 
136 
60 
19 
22 
46 

80 
79 

' 210 
109 
29 

i 154 
267 
32 
185 
64 
39 
142 
106 
28 
29 
54 

85 
92 

326 
280 
36 
191 
328 
41 
245 
86 
65 
168 
138 
32 
37 
61 

90 
140 

5509 
805 
48 

244 
504 
101 
820 
127 
233 
219 
214 
61 
52 
69 

95 
163 

5509 
7901 
105 
400 
1154 
1051 
820 
274 
565 
285 
316 
74 
138 
271 

100 I 
236 
5509 
7901 
409 
619 
1743 
1051 i 
820 | 
611 
1099 
397 
435 
87 

273 
619 J 

indicates specimen failed and total AE data are included 
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Thus, the AE data were filtered to include only those data acquired up to 80% of the 

average ultimate load. A series of plots were then generated to graphically display 

correlations between the AE parameters. Appendix A contains the plots for all 15 test 

specimens. Figures 4.1, 4.2, and 4.3 show example AE plots for specimen MDD2-3. 

The first step was to analyze the amplitude distribution plots. As mentioned previously, 

the amplitude distribution typically will exhibit humps that represent the various failure 

mechanisms. As seen in Figure 4.1, the failure mechanisms humps are blended together 

such that they cannot be readily distinguished because of the large number of hits (267). 

Amplitude Distribution - MDD2-3 
(80% Data) 

30 

25 I 

20 1 

I 15 

10 I 

5 I 

40 

I IIUILK . 
45 50 55 60 65 70 75 80 85 

Amplitude (dB) 

90 95 100 

Figure 4.1 Amplitude distribution plot 

The next step was to analyze the duration vs. amplitude plots. Typically, these plots 

show groups or clusters of hits that represent the failure mechanisms present [7]. As 

shown in Figure 4.2, there are no apparent groups or clusters present in the duration vs. 

amplitude plots either. 
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Duration vs. Amplitude - MDD2-3 
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Figure 4.2 Duration vs. amplitude plot 

The next step was to analyze the duration vs. counts plots. Typically, these plots show a 

linear relationship between the duration (D) of the AE waveform and the number of 

counts (C) for each hit (D = kC). If the plots show unusual scatter, this is an indication 

that there may be multiple hit data [7]. As shown in Figure 4.3, there is a linear 

relationship present in the duration vs. counts plots. Thus, the setup parameters (section 

3.3) are probably correct, and multiple hit data are probably minimal. This is also 

indicated by the coefficient of determination, R2, being greater than 0.90. 

1200 

1000 

~ 800 </) 

o 600 

2 
Q 400 

200 

0 

( 

Duration vs. Counts - MDD2-3 
(80% Data) 

R2 = 0.9029 

• ^ — 

] 20 40 60 80 100 

Counts 

120 140 160 

Figure 4.3 Duration vs. counts plot 
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4.2 BACKPROPAGATION NEURAL NETWORK 

A series of backpropagation neural networks were optimized to predict the ultimate 

failure load using AE amplitude distribution data. Architecturally, each network 

consisted of a 61 neuron input layer for the amplitude hit frequencies, a hidden layer for 

mapping, and a 1 neuron output layer for predicting the ultimate load. NeuralWorks 

Professional II/Plus software by NeuralWare was used to create the neural networks. 

Fifteen specimens were tested in all; each neural network was trained on 7 specimens and 

tested on the remaining 8 specimens. Because the networks were trained on the 

amplitude histograms from only 7 specimens, the data set was tripled to help the software 

learn on a larger set of data (7x3 = 21 data sets). The randomized training and testing 

sets are shown in Tables 4.3 and 4.4, respectively. Note that the training set must include 

the high and low values of ultimate load in order to predict correctly [3]. 

Table 4.3 Training set 

Specimen ID 

MDD3-1 

MDD4-2 

MDD2-3 

MDD1-2 

MDD4-3 

MDD5-2 

MDD5-3 

Ultimate Load (lbs) 

336 

372.5 

357.5 

312.5 

392.5 

375 

365 

Amplitude Distribution Data 

39624200 102000 1001010000 
000000000 00 0 0 00 00 00 00 00 0 
0000000000000 
4 17 14 10 10 1112 7976317371126 
1 1 1001000000000000000000 
00000000000000000 
20 27 30 23 22 15 13 14 12 9 10 10 11 5 9 7 
246252230 120 100000000000 
000000000000000000000 
14 18 189 129 10 14 15 11 5 14 12 5 1 48 
132222410333120100100000 
00000000000000000000 
7 10 978253 142 122234434 134 
5020020121 1 1000000000000 
[00000000000000 
224322121311201001010000 
000000000000000000000000 
0000000000000 
4 1276531231 1001 101 101300 
00 1000000000000000000000 
00000000000000 
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Table 4.4 Testing set 

Specimen ID 

MDD1-1 

MDD3-2 

MDD2-2 

MDD1-3 

MDD3-3 

MDD4-1 

MDD2-1 

MDD5-1 

Ultimate Load (lbs) 

375 

312.5 

365 

327.5 

340 

363 

372.5 

367.5 

Amplitude Distribution Data 

69 10 2 9 4 4 4 2 3 4 3 1 2 1 2 1 2 1 2 2 3 1 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 1924 13 16 12 9 5 4 6 5 2 4 9 3 54 742 
3 2 3 2 3 0 0 0 0 1 0 0 0 0 1 0 1 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
511 15 8 9 8 5 9 7 6 1 0 3 3 3 4 4 4 3 3 3 4 5 
5 2 3 4 2 3 2 2 2 1 2 1 1000 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 15 8 14 10 12 9 3 5 5 3 5 2 1 1 1 21 1 01 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 14 1167771 1 0 0 1 0 2 0 0 1 0 1 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 4 7 5 3 5 3 1 2 0 1 0 0 0 0 1 0 0 0 0 0 0 10 
0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
1 3 4 2 4 1 1 0 1 3 2 0 1 0 0 0 0 0 1 2 3 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 5 2 1 2 1 1 0 1 1 0 1 2 1 0 1 1 2 1 0 1 2 0 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 

The first backpropagation neural network was generated using the parameters as shown 

in Table 4.5. Based on previous research, the normalized-cumulative-delta rule (for 

further explanation, see Appendix B under Learn Rule) was used as the learning rule, 

and the hyperbolic tangent was used as the transfer function. The epoch size was set to 

be twenty-one or the size of the training file repeated three times in random order. The 

network was trained until the RMS error converged to 3%. The remaining parameter 

values were the software defaults and were varied subsequently to obtain the optimum 

values. (For a complete list of definitions of the network parameters see Appendix B.) 
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Table 4.5 Network parameters 

Network Number 
Inputs 

Hidden 1 
Output 

L. Coef. 

Momentum 
Trans. Pt. 

L. Coef. Ratio 
F Offset 

Learn Rule 
Transfer 
Epoch 

RMS Error 

1 
61 
2 
1 

0.3 
0.15 
0.4 

10000 
0.5 
0.1 

NCD 
tanH 
21 

0.03 

The first parameter that was optimized was the number of PEs in the hidden layer. The 

results are summarized in Figure 4.4. For the complete results from all network 

permutations, see Appendix C. 

Optimizing Number of Processing Elements 
in Hidden Layer 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Processing Elements in Hidden Layer 

Figure 4.4 Optimizing number of processing elements in hidden layer plot 
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After the optimum number of PEs in the hidden layer was determined to be 13, that 

parameter and all other parameters were fixed while the F' offset was varied. The results 

are displayed in Figure 4.5. 

£ Q 

6.2 

£ 6.1 
^ 
CD 

2 60 
U 
I 5.9 

5.8 

«; 7 

Optimizing F' Offset 

i 

0.01 0.03 0.05 0 07 0.09 0.11 

F' Offset 

0.13 015 

Figure 4.5 Optimizing F' offset plot 

The above optimization procedure was repeated for the remainder of the network 

parameters. These results are shown in Figures 4.6 through 4.11 and summarized in 

Table 4.6. 

5000 

Optimizing the Transition Point 

7000 9000 11000 

Transition Point 

13000 

Figure 4.6 Optimizing transition point plot 

15000 
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Figure 4.7 Optimizing the momentum plot 
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Figure 4.8 Optimizing hidden layer learning coefficient plot 
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Figure 4.9 Optimizing output layer learning coefficient plot 

18 

16 

£ 12 

! • 
8 8 
o 
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Figure 4.10 Optimizing learning coefficient ratio plot 
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Optimizing RMS Error 

0.01 0.015 0.02 0025 0 03 0.035 0 04 0 045 0 05 

RMS Error 

Figure 4.11 Optimizing RMS error plot 

Table 4.6 Final network parameters 

Network Number 
Inputs 

Hidden 1 
Output 

L. Coef. 

Momentum 
Trans. Pt. 

L. Coef. Ratio 
F Offset 

Learn Rule 
Transfer 
Epoch 

RMS Error 

82 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.35 
0.05 
NCD 
tanH 

21 
0.03 

Using the optimized network parameters, the resulting backpropagation neural network 

ultimate load predictions are summarized in Table 4.7. As can be seen (highlighted), the 

backpropagation neural network was able to predict the ultimate loads with a worst case 

error of 4.34 percent, which is within the desired goal of ± 5 percent. 
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Table 4.7 Backpropagation neural network results 

+* 

Q 
CD 

c 
c 
<5 
u 
r-

O 
w 
• 

Specimen ID 

MDD3-1 
MDD4-2 
MDD2-3 
MDD1-2 
MDD4-3 
MDD5-2 
MDD5-3 
MDD1-1 
MDD3-2 
MDD2-2 
MDD1-3 
MDD3-3 
MDD4-1 
MDD2-1 
MDD5-1 

Actual 
Load (lbs) 

336 
372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Predicted 
Load (lbs) 

333.6 
372.5 
357.6 
312.0 
392.7 
378.1 
364.9 
359.4 
326.0 
354.2 
334.5 
325.5 
361.9 
378.8 
383.1 

% Error 

-0.72 
-0.01 
0.03 
-0.16 
0.06 
0.83 
-0.02 
-4.15 
4.34 
-2.97 
2.14 
-4.26 
-0.31 
1.69 
4.25 

4.3 KOHONEN SELF ORGANIZING MAP 

A series of Kohonen self organizing maps (SOMs) were generated to classify the AE 

parameter data (energy, duration, and amplitude) into failure mechanisms. The first step 

was to create a large enough SOM such that each failure mechanism would be sorted into 

its own category. A 20 x 20 SOM was chosen because it can sort the data into 400 

possible categories. Architecturally, the SOM consisted of a 3 neuron input layer for 

energy, duration and amplitude, a 20 x 20 Kohonen layer for processing, and a 2 neuron 

output layer for X-Y (2-D) output coordinates. The 20 x 20 SOM was generated using 

the parameters shown in Table 4.8. NeuralWorks Professional II/Plus software by 

NeuralWare was used to construct the neural networks. (For a complete list of 

definitions of the network parameters see Appendix B.) 
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Table 4.8 20 x 20 SOM network parameters 

Inputs 
Rows 

Columns 
L. Coef. 

SOM Steps 
Gamma 

L. Coef. Ratio 
Trans. Pt. 
Learn Rule 

Tranfer 
Coord. Layer 

Min-Max 
Neighborhood 

Start Width 
End Width 

Epoch 

3 
20 
20 

0.06 
101730 

1 
0.5 

10000 
NCD 
tanH 
Yes 
Yes 

Square 
1 
1 

3391 

The SOM was trained using the AE data acquired from the onset of loading until failure 

for each of the 15 test specimens. Due to the extremely large quantity of data, the 

training file was filtered to contain only every 10th data hit. Upon completion of training, 

testing files were created for each of the 15 test specimens. All 15 test files were run 

through the 20 x 20 SOM, and the results were compiled into one file. The output file 

contained an X-Y coordinate associated with every data hit. The data vectors were then 

sorted into failure mechanisms based on their X-Y coordinates. Subsequently, the range, 

mean, standard deviation and number of hits associated with each failure mechanism 

were determined for the three AE parameters (energy, duration, and amplitude). The 

results for the 20 x 20 SOM are shown in Figure 4.12 and Table 4.9. 
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Figure 4.12 X-Y coordinate plot 

Table 4.9 20 x 20 SOM results for energy, duration, and amplitude 

| Energy 
1 Mechanism 

1 
2 
3 
4 
5 
6 
7 

X 
0.8947 
0.7895 
-0.3684 
0.5789 
-0.6842 
0.6842 
0.2632 

Y 
-0.6842 
-0.6842 
0.4737 
-0.8947 
-0.1579 
0.0526 
0.7895 

Min 
0 
0 
2 

141 
2647 
1055 
167 

Max 
8 

40 
264 
2475 
2647 
1055 
646 

Mean 
0 
2 
18 

551 
2647 
1055 
340 

STD 
0 
2 

24 
449 

0 
0 

166 

# of Hits 
20661 
9983 
3249 

65 
1 
1 
13 

I Duration 
I Mechanism 

1 
2 
3 
4 
5 
6 
7 

X 
0.8947 
0.7895 
-0.3684 
0.5789 
-0.6842 
0.6842 
0.2632 

Y 
-0.6842 
-0.6842 
0.4737 
-0.8947 
-0.1579 
0.0526 
0.7895 

Min 
1 
8 

115 
989 

26597 
29367 
7469 

Max 
1375 
3858 
7864 
11996 
26597 
29367 
15456 

Mean 
45 
186 
555 

2908 
26597 
29367 
10599 

STD 
57 
183 
722 

2481 
0 
0 

2991 

# of Hits I 
20661 
9983 
3249 

65 
1 
1 
13 

| Amplit 
| Mechanism 

1 
2 
3 
4 
5 
6 
7 

X 
0.8947 
0.7895 
-0.3684 
0.5789 
-0.6842 
0.6842 
0.2632 

Y 
-0.6842 
-0.6842 
0.4737 
-0.8947 
-0.1579 
0.0526 
0.7895 

Min 
40 
47 
57 
81 
98 
82 
61 

ude 
Max 
46 
56 
84 
99 
98 
82 
79 

Mean 
43 
50 
63 
91 
98 
82 
70 

STD 
2 
3 
5 
6 
0 
0 
6 

# of Hits 
20661 
9983 
3249 

65 j 
1 ! 
1 
13 
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Figure 4.12 shows that the 20 x 20 SOM classified the input data into 7 failure 

mechanisms. From Table 4.9, it can be seen that mechanisms 1, 2 and 3 contain a large 

number of hits compared to mechanisms 4, 5, 6 and 7. Also, while the max and min 

ranges of amplitude for mechanisms 1, 2 and 3 do not overlap, the max and min ranges 

for mechanisms 4, 5, 6 and 7 do overlap. Therefore, it was thought that it might be 

possible to combine mechanisms 4, 5, 6 and 7 such that the total number of mechanisms 

would be either 4 or 5 instead of 7. 

Thus, the next step was to generate a 5 x 1 SOM in order to force the data into 5 

categories. The 5 x 1 SOM used the exact same testing and training files as the 20 x 20 

SOM. The network parameters for the 5 x 1 SOM are shown in Table 4.10. 

Table 4.10 5x1 SOM network parameters 

Inputs 
Rows 

Columns 
L. Coef. 

SOM Steps 
Gamma 

L. Coef. Ratio 
Trans. Pt. 
Learn Rule 

Tranfer 
Coord. Layer 

Min-Max 
Neighborhood 

Start Width 
End Width 

Epoch 

3 
5 
1 

0.06 
101730 

1 
0.5 

10000 
NCD 
tanH 
Yes 
Yes 

Square 
1 
1 

3391 

The 5 x 1 SOM was trained using the same procedure as used for the 20 x 20 SOM. The 

results for the 5 x 1 SOM are listed in Table 4.11. 
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Table 4.11 5x1 SOM results for energy, duration, and amplitude 

Energy 
Mechanism 

1 
2 
3 
4 
5 

X 
0 
0 
0 
0 
0 

Y 
-0.5 
0.5 
1 
-1 
0 

Min 
0 
0 
2 
514 
141 

Max 
8 
40 
353 
2647 
2475 

Mean 
0 
2 
19 
989 
551 

STD 
0 
2 
27 
838 
449 

# of Hits 
20661 
9983 
3258 
6 
65 

Durat on 
Mechanism 

1 
2 
3 
4 
5 

X 
0 
0 
0 
0 
0 

Y 
-0.5 
0.5 
1 
-1 
0 

Min 
1 
8 
115 
13888 
989 

Max 
1375 
3858 
11913 
29367 
11996 

Mean 
45 
186 
578 
19052 
2908 

STD 
57 
183 
844 
6996 
2481 

# of Hits 
20661 
9983 
3258 
6 
65 

Amplil 
Mechanism 

1 
2 
3 
4 
5 

X 
0 
0 
0 
0 
0 

Y 
-0.5 
0.5 
1 
-1 
0 

Min 
40 
47 
57 
69 
81 

ude 
Max 
46 
56 
84 
98 
99 

Mean 
43 
50 
63 
80 
91 

STD 
2 
3 
5 
10 
6 

# of Hits 
20661 
9983 
3258 
6 
65 

Notice that the 5 x 1 SOM did force the data into 5 mechanisms. Mechanisms 1, 2 and 3 

still contained a large number of hits compared to mechanisms 4 and 5. The max and 

min ranges of amplitude for mechanisms 1, 2 and 3 do not overlap; however, the max and 

min ranges for mechanisms 4 and 5 do overlap. Therefore, it was decided to combine 

mechanisms 4 and 5. This required the generation of a 4 x 1 SOM to force the data into 4 

categories instead of 5. Again, the 4 x 1 SOM used the exact same testing and training 

files as the 20 x 20 SOM. The network parameters for the 4 x 1 SOM are shown in Table 

4.12. 
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Table 4.12 4 x 1 SOM network parameters 

Inputs 
Rows 

Columns 
L. Coef. 

SOM Steps 
Gamma 

L. Coef. Ratio 
Trans. Pt. 
Learn Rule 

Tranfer 
Coord. Layer 

Min-Max 
Neighborhood 

Start Width 
End Width 

Epoch 

3 
4 
1 

0.06 
101730 

1 
0.5 

10000 
NCD 
tanH 
Yes 

L Yes 
Square 

1 
1 

3391 

Once again, the 4 x 1 SOM was trained using the same procedure as used for the 20 x 20 

SOM. The results for the 4 x 1 SOM are summarized in Table 4.13. 

Table 4.13 4 x 1 SOM results for energy, duration, and amplitude 

Energy 
Mechanism 

1 
2 
3 
4 

X 
0 
0 
0 
0 

Y 
-1 

-0.3 
0.3 
1 

Min 
0 

L ° 
0 
4 

Max 
3 
16 
90 

2647 

Mean 
0.02 
0.74 
4.5 
52 

STD 
0.18 
0.96 
4.7 
153 

# of Hits 
16232 
10374 
5633 | 
1734 | 

Duration 
Mechanism 

1 
2 
3 

I 4 

X 
0 
0 
0 
0 

Y 
-1 

-0.3 
0.3 
1 

Min 
1 
4 
40 
162 

Max 
569 
1779 
7864 

29367 

Mean 
32 
119 
295 
891 

STD 
43 
103 
322 
1666 

# of Hits 
16232 
10374 
5633 
1734 

Amplitude 
Mechanism 

1 
2 
3 
4 

X 
0 
0 
0 
0 

Y 
-1 

-0.3 
0.3 
1 

Min 
40 
45 
51 
60 

Max 
44 

._ 50 
61 
99 

Mean 
42 
47 
55 
68 

STD 
1.3 
1.7 
3.0 
6.7 

# of Hits 
16232 
10374 
5633 
1734 
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Here it is seen that the 4 x 1 SOM forced the data into 4 mechanisms, which agrees with 

the work of Graham [11]. The max and min ranges of the amplitude only slightly overlap 

for mechanisms 3 and 4. The sorted data for specimen MDD2-3 can be seen graphically 

in Figure 4.13. Here the scattered data above the trend line are multiple hits. 
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Figure 4.13 Sorted duration vs. amplitude plot 

Amplitude distribution plots were generated to show how the 4 x 1 SOM classified the 

failure mechanisms. Figure 4.14 shows the amplitude distribution for all the data 

acquired for all 15 specimens. Here the failure mechanism ranges are clearly defined 

with the exception of mechanisms 3 and 4 overlapping slightly. 
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Amplitude Distribution - MDD2-3 
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Figure 4.14 Sorted amplitude distribution plot 

Through visual inspection of the beam specimens, it was seen that transverse matrix 

cracking, delaminations, fiber breaks and longitudinal matrix cracking (fiber/matrix 

debonding) were all present. Mechanism 1 had a low amplitude range (40-44 dB), a 

short duration range (1-569 (is) and a low energy range (0-3). Mechanism 2 had a low 

amplitude range (45-50 dB), medium short to medium durations (4-1,779 (is), and a low 

energy range (0-16). Mechanism 3 had a medium amplitude range (51-61 dB), medium 

durations (40-7,864 (is), and a medium energy range (0-90). Mechanism 4 has a high 

amplitude range (60-99 dB), a long duration (162-29,367 (LIS), and a high energy range (4-

2,647). In addition, from comparison of the duration vs. amplitude plots containing 

100% of the data and the plots filtered to 80% (Figure 4.15), most of the data hits in 

mechanisms 3 and 4 are not present in the 80% plots. Multiple hits are typically most 

prevalent during final failure; hence, if failure is eliminated from the data, it would be 

expected that multiple hits would be eliminated as well. 
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A second 4 x 1 SOM was generated to classify the AE data taken up to 80% of the 

average ultimate load. The 4 x 1 SOM was trained using the same procedure as used for 

the 20 x 20 SOM. Upon completion of training, all 15 test files were again run through 

the SOM and the results compiled into one file. The output file contained an X-Y 

coordinate associated with every data hit. The data vectors were then distributed into 

failure mechanisms based on same X-Y coordinates. From this, the range, mean, 

standard deviation and number of hits associated with each failure mechanism were 

determined for each AE parameter. The results for the 4 x 1 SOM are listed in Table 

4.14. 

Table 4.14 4 x 1 SOM results for 80% data 

Energy 
1 Mechanism 
1 1 

2 
3 

I 4 

X 
0 
0 
0 
0 

Y 
-1 

-0.3 
0.3 
1 

Min 
0 
0 
1 
6 

Max 
1 
2 
8 
78 

Mean 
0 

0.5 
3.5 
16.9 

STD 
0.04 
0.55 
1.76 
12.3 

# of Hits 
608 
465 
328 
121 I 

Duration 
I Mechanism 

1 
2 
3 
4 

X 
0 
0 
0 
0 

Y 
-1 

-0.3 
0.3 
1 

Min 
1 
19 
80 

229 

Max 
125 
217 
333 
924 

Mean 
25 
93 

200 
388 

STD 
27.2 
34.5 
48.2 
130.8 

# of Hits 
608 
465 
328 
121 

Amplitude 
I Mechanism 
1 1 

2 
3 
4 

X 
0 
0 
0 
0 

Y 
-1 

-0.3 
0.3 
1 

Min 
40 
43 
49 
59 

Max 
45 
52 
62 
79 

Mean 
42 
47 
55 
66 

STD 
1.3 
2.0 
3.2 
4.4 

# of Hits 
608 
465 
328 
121 

Here it is seen that the 4 x 1 SOM forced the data into 4 mechanisms, again consistent 

with the results obtained by Graham [11]. The max and min ranges of the amplitude 

slightly overlap for all mechanisms, as they should. The sorted data for specimen 

MDD2-3 can be seen in Figure 4.15. Comparing Figure 4.15 with Figure 4.13, it can be 
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seen that almost all of the multiple hit data are eliminated by taking the load to only 80% 

of failure, plus mechanisms 3 and 4 are greatly reduced. 
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Figure 4.15 Sorted duration vs. amplitude plot for 80% data 

4.4 MULTIVARIATE STATISTICAL ANALYSIS 

After categorizing the 80% AE data into failure mechanisms, multivariate statistical 

analysis was performed to determine a prediction equation based on the number of hits in 

each of the failure mechanism categories. Statgraphics Plus was the program used to 

calculate the coefficients of the prediction equation. The dependent variable was the 

ultimate load and the four independent variables were the number of hits per failure 

mechanism for each specimen. The inputs to the analysis software are given in Table 

4.15. 
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Table 4.15 Multiple linear regression inputs 

Number of Hits per Mechanism 
Specimen ID 

MDD1-1 
MDD1-2 
MDD1-3 
MDD2-1 
MDD2-2 
MDD2-3 
MDD3-1 
MDD3-2 
MDD3-3 
MDD4-1 
MDD4-2 
MDD4-3 
MDD5-1 
MDD5-2 
MDD5-3 

Mechanism 1 
33 
62 
51 
12 
45 
108 
24 
77 
40 
21 
51 
34 
9 
10 
31 

Mechanism 2 
24 
72 
41 
9 

40 
85 
4 

45 
18 
13 
57 
25 
5 
13 
14 

Mechanism 3 
18 
56 
16 
7 

31 
63 
4 

43 
5 
2 

32 
26 
11 
6 
8 

Mechanism 4 
4 
20 
1 
1 

L— 38 
11 
0 
15 
1 
3 
2 

21 
3 
0 
1 

Actual Load (lbs) 
375 

312.5 
327.5 
372.5 
365 

357.5 
336 

312.5 
340 
363 

372.5 
392.5 
367.5 
375 
365 

The multiple linear regression (MLR) analysis produced the following prediction 

equation: 

Predicted Load = 372.96 - 0.687 * (Mech 1) + 0.214 * (Mech 2) + 0.107 * (Mech 3) + 
0.188*(Mech4). 

Using the equation produced by the MLR analysis, the ultimate load was predicted for 

each specimen using the number of hits per failure mechanism as the variables. The best 

results were produced when predicting on failure mechanisms 1 and 2 only. Thus, the 

prediction equation became the following: 

Predicted Load = 372.96 - 0.687 * (Mech 1) + 0.214 * (Mech 2). 

The results of the prediction equation can be seen in Table 4.16. The worst case 

prediction error was -11.34 percent, which was outside the desired ± 5% worst case error 

goal. 
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Table 4.16 Multiple linear regression analysis results 

Specimen ID 
MDD1-1 
MDD1-2 
MDD1-3 
MDD2-1 
MDD2-2 
MDD2-3 
MDD3-1 
MDD3-2 
MDD3-3 
MDD4-1 
MDD4-2 
MDD4-3 
MDD5-1 
MDD5-2 
MDD5-3 

Actual Load (lbs) 
375 

312.5 
327.5 
372.5 
365 

357.5 
336 

312.5 
340 
363 

372.5 
392.5 
367.5 
375 
365 

Predicted Load (lbs) 
355.4 
345.8 
346.7 
366.6 
350.6 
317.0 
357.3 
329.7 
349.3 
361.3 
350.1 
355.0 
367.8 
368.9 
354.7 

% Error 
-5.22 
10.65 
5.86 
-1.57 
-3.94 

-11.34 
6.35 
5.50 
2.74 
-0.46 
-6.01 
-9.57 
0.09 
-1.63 
-2.83 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

• The Kohonen self organizing map appeared to successfully classify the AE data into 

4 failure mechanisms. Duration, energy and amplitude data were the only AE 

parameters used for classification. 

• The backpropagation neural network successfully predicted the ultimate loads in 

unidirectional fiberglass/epoxy beams subjected to 3-point bending from the acoustic 

emission amplitude data taken up to 80% of the average ultimate load within the 

desired ± 5 percent goal. 

• Multivariate statistical analysis using the number of hits associated with each failure 

mechanism predicted ultimate failure loads, but not within the desired goal of ± 5 

percent. 

• The backpropagation neural network probably provided better prediction results than 

the multivariate statistical analysis because multivariate statistical analyses are 

inherently sensitive to noisy (multiple hit) or sparse data, whereas backpropagation 

neural networks are not. 
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5.2 RECOMMENDATIONS 

• Some multiple hit data were acquired during testing mostly at or near failure. The hit 

lockout time (HLT) and hit definition time (HDT) might be lowered to reduce 

multiple hit data. 

• The failure mechanisms present were assumed to be transverse matrix cracking, 

longitudinal matrix cracking, fiber breaks and delaminations. The failure 

mechanisms should be verified using microscopic failure analysis on all of the test 

specimens. 

• The use of broadband transducers for frequency analysis may improve failure 

mechanism classification. 

• No simulated manufacturing defects were placed in the beam specimens. 

Incorporating defects into future training and testing sets would be recommended. 
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APPENDIX A 

ACOUSTIC EMISSION DATA PLOTS 
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Amplitude Distribution - MDD1-1 
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APPENDIX B 

NEURAL NETWORK PARAMETER DEFINITIONS 



Backpropagation Neural Networks 

NeuralWare defines the dialog box components and their functions as: 

#PEs 
These text fields specify the number of processing elements (nodes) for each layer in the 
back-propagation network. Input corresponds to the input or bottom layer, Hid 1 through 
Hid 3 correspond to three hidden layers (usually you will only need one or two hidden 
layers), and Output corresponds to the output or top layer. The number of PEs in the input 
and output layers depend on the number of data fields in each data vector in your training 
data. The number of outputs depends on what information you want your network to 
provide (and requires a matching number of data fields for desired output). 

LCoef 
The LCoef fields correspond to Learning Rate (in the learn and recall schedule, learn 
section) for each of the hidden layers and the output layer. Learning coefficients are used 
by the learning and recall schedule, and (if the Default Schedule box in the learning and 
recall schedule is not checked) the Back-propagation command constructs a separate 
learning and recall schedule for each hidden layer and the output layer. LCoef works in 
conjunction with the Trans. Pt. and LCoef ratio values to configure the learning and recall 
schedules. The value entered in a layer's LCoef field corresponds to the first Coefficient 
1 value in the learning and recall schedule (shown in the following table). The Trans. 
Point corresponds to the learn count value set in column 1 in the schedule. The learn 
count for the subsequent columns are heuristically set to 3, 7, 15 and 31 times the learn 
count you enter in the Trans. Point field; i.e., the intervals between transition points 
increase exponentially. The LCoef Ratio sets the amount to divide the LCoef value by for 
the first transition. This defines an exponential decay which is sampled at subsequent 
transition points. For example, if you set a learning coefficient of 0.5 and an LCoef Ratio 
of 0.5, the values for the various columns in the schedule will be: 

Column 1 0.5 (the LCoef value) 
Column 2 0.25 (the previous column value divided by the LCoef ratio value of 2) 
Column 3 0.0625 (the previous column value divided by 4) 
Column 4 0.00391 (the previous column value divided by 16) 
Column 5 0.00002 (the previous column value divided by 256) 

Momentum 
The Momentum field value is also used in configuring the learning and recall schedules 
for the hidden and output layers. Basically, momentum works by adding a tendency for 
weights to continue to change in the direction they are already changing. For back-
propagation networks, momentum is represented in the learning and recall schedules by 
learning Momentum. The Momentum value interacts with the Trans. Pt. and LCoef Ratio 
exactly as do the LCoef field values described above. 

Trans. Pt. 
See the explanation in the LCoef section above. 
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LCoef Ratio 
See the explanation in the LCoef section above. 

F' Offset 
This is a value added to the derivative of the transfer function prior to calculating the 
value to back propagate from each PE. For a Sigmoid or Tanh transfer function a value of 
about 0.1 helps networks from getting saturated. The symptom of a saturated network is 
large weights and summation values. It is difficult for a saturated network to learn any 
further. 

Learn Rule 
The Learn Rule scroll window allows you to select the learning rule that is applied to all 
layers in the back-propagation network. The learning rule specifies how connection 
weights are changed during the learning process. The six learning rules available are: 

• Delta-rule, which is the standard back-propagation learning rule. 
• Normalized-cumulative delta-rule - a rule which accumulates weight changes and 

updates the weights at end of epoch. It is normalized so that the learning rate is 
independent of the epoch size. 

• Extended delta-bar-delta 
• Quickprop 
• Maxprop 
• Delta-bar-delta 

You can use the Layer/Edit tool to assign learning rules on a layer-by-layer basis. For 
most applications we recommend trying extended delta-bar-delta, normalized-cumulative 
delta-rule, or with fast learning, the delta-rule. 

Transfer 
The transfer function scroll window allows you to specify a transfer function that is used 
for all layers in the network. The transfer function is a non-linear function that transfers 
the internally generated sum for each PE to a potential output value. Available transfer 
functions are: 

Linear 
Hyperbolic tangent (TanH) 
Sigmoid 
DNNA 
Sine 

Learn 
The Learn Browse button is used to select the training data file for the network. 
Alternatively, you can type the filename into the text entry field. Input data files have a 
file extension of .nna, .txt or any other extension, but they must have an extension (typing 
"myfile" becomes "myfile.nna"). 
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Recall/Test 
The Recall/Test Browse button allows you to select a data file for recall and test 
execution. Alternatively, you can type the filename into the text entry field. Like the 
Learn data file, Recall/Test input data files also have a file extension of .nna, .txt or any 
other extension. 

Connect Prior 
For each layer, makes connections from all previous layers. 

Auto-Associative 
If Auto-Associative is checked, NeuralWorks sets the number of output PEs to the 
number of input PEs and, when training, uses the input data as the desired output. 
Backpropagation networks can use this mode for applications such as data compression 
or noise filtering. 

Linear Output 
Linear Output overrides the selected transfer function and forces a linear transfer function 
for the output layer. The linear transfer function takes the current sum for each PE as its 
output. 

SoftMax Output 
Softmax forces both a linear transfer function and a "softmax output function". You 
should use this only on applications that meet these two criteria: 

The application is a classification problem 
The components of the desired output add up to one. 

Fast Learning 
Selecting this check box uses a fast version of the back-propagation control strategy. We 
also recommend that you use the delta-rule learning rule for fast learning. 

Gaussian Ink 
Attaches the Gaussian noise function (instead of the uniform noise function) to all layers 
in the network. This function is used for both initialization and noise. Three things must 
occur before a layer actually uses the noise function: 

The control strategy must call for a noise function. 
The learn and/or recall temperature value in the learning and recall schedule must 

be set to a non-zero value. By default, NeuralWorks sets these to zero. 
A noise function must be attached to the layer. Uniform noise adds a random 

number within a specified range to each PE summation value in the layer. 
The range for random numbers is plus or minus one percent of the 
temperature value. The random number for the noise value is different for 
each PE in the layer. Gaussian noise is similar to uniform noise, except 
that the distribution of random numbers within the range is along a bell 
curve, i.e., more concentrated toward the middle of the range than at the 
ends. 
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Minimal Config. 
Minimal Config. provides the minimum number of weight fields required for a learning 
rule. For instance, a minimum configuration of the normalized cumulative delta rule will 
have two weight fields. Not checking this would provide the normalized cumulative 
delta-rule with three weight fields, the third being used for momentum. You should only 
check this box if your computer system does not have enough memory for the default 
configuration. 

MinMax Table 
Selecting this check box causes NeuralWorks to compute the low and high values for 
each data field in the selected data files and store these in a MinMax Table. When data is 
presented to the network, it is scaled to the network ranges using the MinMax table and 
the network range values (set through the IO/Parameters command). 

Bipolar Inputs 
Used in conjunction with a MinMax table. If this is selected and a MinMax Table is used, 
input values are mapped to lie between -1.0 and 1.0. If it is not selected and a MinMax 
Table is used, input values are mapped to between 0.0 and 1.0. 

Cascade Learn 
This activates "Cascade Learn" in the Run menu which implements a form of Cascade 
Correlation training. In such networks, PEs in the hidden layer are incrementally added, 
and are trained individually to take responsibility for any remaining output error. Each 
hidden unit receives input from both the input buffer and from all prior hidden PEs. If 
you use this option, you still need to specify a number of hidden PEs. This provides a 
pool of PEs which the Cascade Learning algorithm will activate one by one until no more 
improvement occurs. Any disabled PEs left after convergence occurs can be purged using 
the "Utilities/Purge" menu option. 

Epoch 
Epoch size is used for all learning rules except Delta-Rule. However, even if the Delta-
Rule is being used, it is useful to set an epoch since certain instruments (such as RMS 
Error graph) update their calculations at the end of an epoch. 

Set Epoch From File 
This will set the epoch to the number of vectors in the training file. However, it is 
recommended that the Epoch size should be LESS THAN the number of vectors in the 
training file, and for most problems an upper bound of 200 for the epoch is valid. 

RMS Error 
Choosing this instrument creates a strip chart instrument that shows the RMS error of the 
output layer. For some applications (though not all) as learning progresses you should see 
this graph slowly converge to an error near zero. You can activate the convergence 
threshold in the RMS instrument, which, when reached, will stop network training. Use 
the Graph/Edit tool to activate Convergence Criterion and change the convergence 
threshold value. The convergence threshold is set to 0.001 by default. 
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Kohonen Self Organizing Maps 

NeuralWare defines the dialog box components and their functions as: 

Inputs 
This sets the # of Inputs going into the SOM. 

# Rows and # Cols 
Sets the # of neurons in the rows and columns of the two-dimensional grid. Use large 
(10x10 or greater) to find number of categories. If the number of failure mechanisms are 
know, use a number of Rows and Columns whose product is equal to greater then know 
number of mechanisms. 

Hidden and Output 
These are for if you want a mapping network at the output of the SOM. Set the values to 
0 if no hidden layer is created. 

# SOM Steps 
This sets the number of learning iterations for the SOM. (If you use the Set Epoch From 
File button, # SOM Steps is set to 30 times the number of hits in the training file.) 

LCoef 
Sets the first item under LCoef to be the desired learning rate for the Kohonen layer. 

Beta 
Beta is used in the equation to update the estimate of how frequently a Kohonen neuron 
wins. If you use the Set Epoch From File button the default value for Beta is set based on 
the number of training cases: Beta = 1 / (# training hits) 

Gamma 
Gamma is used in conjunction the frequency estimation to determine a bias term which is 
added to the Euclidean distance function for the ith Kohonen neuron. The effect of this is 
to favor neurons which have not won recently, and this encourages all the Kohonen 
neurons to be utilized. 

Coord. Layer 
This creates a layer above the two-dimensional Kohonen layer which outputs the feature 
map as a pair of coordinates. These coordinates are normalized to lie between -1.0 and 
1.0. 

Output Network 
This creates a back-propagation layer above the two-dimensional coordinate layer or 
above the coordinate layer. Use this option if you have desired outputs to which you want 
to map. 
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MinMax Table 
If selected, NeuralWorks will compute the low and high values for each data field in the 
selected data files, and store these in a MinMax Table. 

Interpolate 
If this is checked, the top three winners in the two-dimensional Kohonen layer are 
calculated at each Kohonen learn step. 

Neighborhood 
1. Choose between a Diamond shaped or Square shaped neighborhood, or Alternating 
square and diamond shaped neighborhoods. 
2. Choose the neighborhood sizes by setting the Starting Width and Ending Width. We 
recommend that you start with a large width (7 or above) and progress to a small width (1 
or 3) by the end. 
3. Optionally select horizontal or vertical wrap-around. 

Learn 
Select a training file using the Learn Browse button. Alternatively, you can type the 
filename into the text entry field. 

Recall/Test 
Select a test file using the Recall/Test Browse button. Alternatively, you can type the 
filename into the text entry field. 

Connect Prior 
If selected, and your network has a hidden layer, the output layer is fully connected from 
the Kohonen or coordinate layer as well as from the hidden layer. 

Connect Bias 
If selected, this creates connections from the bias neuron to the mapping layers. 

Linear Output 
If selected, this overrides the selected transfer function and forces a linear transfer 
function for the output layer. 

SoftMax Output 
If selected, this option forces a linear transfer function and a SoftMax output function. 
This should only be used with classification type problems in which the desired output is 
categorical in nature, and the components of each desired output vector sum to 1. 

Epoch 
The epoch size is used for all learning rules in the mapping layers except the delta-rule. 
However, even if the delta-rule is being used, it is useful to set an epoch since certain 
instruments (such as RMS Error graph) update their calculations at the end of an epoch. 
Set Epoch From File button will set the epoch to the number of hits in the training file. 
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Learn Rule 
• Delta-rule, which is the standard back-propagation learning rule. 

Norm-cum-delta, a rule which accumulates weight changes and updates the 
weights at end of epoch. It is normalized so that the learning rate is independent 
of the epoch size. 
Ext DBD (extended delta-bar-delta) 

• QuickProp 
• MaxProp 
• Delta-bar-delta 
The chosen rule is used for each layer of the network. 

Transfer 
• Linear 
• TanH (hyperbolic tangent) 
• Sigmoid 

DNNA 
The tool recommends that you use either the TanH or sigmoid transfer functions. The 
chosen function is used for each layer of the network. 
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APPENDIX C 

BACKPROPAGATION NEURAL NETWORK RESULTS 
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Network Number 
Inputs 

Hidden 1 
Output 

L. Coef. 

Momentum 
Trans. Pt. 

L. Coef. Ratio 
F Offset 

Learn Rule 
Transfer 
Epoch 

RMS Error 

51 
61 
13 
1 

0.25 
0.15 
0.4 

7000 
0.5 
0.05 
NCD 
tanH 
21 

0.03 

52 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

53 
61 
13 
1 

0.35 
0.15 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

54 
61 
13 
1 

0.4 
0.15 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

55 
61 
13 
1 

0.45 
0.15 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

56 
61 
13 
1 

0.5 
0.15 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

57 
61 
13 
1 

0.3 
0.05 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

58 
61 
13 
1 

0.3 
0.1 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

59 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

60 
61 
13 
1 

0.3 
0.2 
0.4 

7000 
0.5 
0.05 
NCD 
tanH 
21 

0.03 

Network Number 
Inputs 

Hidden 1 
Output 

L. Coef. 

Momentum 
Trans. Pt. 

L. Coef. Ratio 
F Offset 

Learn Rule 
Transfer 
Epoch 

RMS Error 

61 
61 
13 
1 

0.3 
0.25 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

62 
61 
13 
1 

0.3 
0.3 
0.4 

7000 
0.5 

0.05 
NCD 
tanH 
21 

0.03 

63 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.1 

0.05 
NCD 
tanH 
21 

0.03 

64 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.15 
0.05 
NCD 
tanH 
21 

0.03 

65 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.2 
0.05 
NCD 
tanH 
21 

0.03 

66 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.25 
0.05 
NCD 
tanH 
21 

0.03 

67 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.3 

0.05 
NCD 
tanH 
21 

0.03 

68 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.35 
0.05 
NCD 
tanH 
21 

0.03 

69 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.4 
0.05 
NCD 
tanH 
21 

0.03 

70 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.45 
0.05 
NCD 
tanH 
21 

0.03 

Network Number 
Inputs 

Hidden 1 
Output 

L. Coef. 

Momentum 
Trans. Pt. 

L. Coef. Ratio 
F Offset 

Learn Rule 
Transfer 
Epoch 

RMS Error 

71 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.5 
0.05 
NCD 
tanH 
21 

0.03 

72 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.55 
0.05 
NCD 
tanH 
21 

0.03 

73 ! 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.6 

0.05 
NCD 
tanH 
21 

0.03 

74 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.65 
0.05 
NCD 
tanH 
21 

0.03 

75 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.7 

0.05 
NCD 
tanH 
21 

0.03 

76 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.75 
0.05 
NCD 
tanH 
21 

0.03 

77 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.8 

0.05 
NCD 
tanH 
21 

0.03 

78 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.85 
0.05 
NCD 
tanH 
21 

0.03 

79 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.9 

0.05 
NCD 
tanH 
21 

0.03 

80 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.35 
0.05 
NCD 
tanH 
21 

0.01 

Network Number 
Inputs 

Hidden 1 
Output 

L. Coef. 

Momentum 
Trans. Pt. 

L. Coef. Ratio 
F Offset 

Learn Rule 
Transfer 
Epoch 

RMS Error 

81 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.35 
0.05 
NCD 
tanH 
21 

0.02 

82 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.35 
0.05 
NCD 

L tanH 
21 

0.03 

83 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.35 
0.05 
NCD 
tanH 
21 

0.04 

84 
61 
13 
1 

0.3 
0.15 
0.4 

7000 
0.35 
0.05 
NCD 
tanH 
21 

0.05 

85 



2 
(0 

Q 
D> 
c 
c 

<o 
a 
M 
O 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net1 
333.72 
372.69 
357.58 
312.26 
392.15 
378.19 
364.68 
369.20 
394.96 
395.42 
373.99 
349.48 
366.05 
395.91 
341.85 
Worst 

% Error 
-0.679 
0.051 
0.023 
-0.077 
-0.090 
0.849 
-0.088 
-1.546 
26.387 
8.335 
14.196 
2.787 
0.839 
6.283 
-6.980 
26.387 

Net 2 
334.36 
372.50 
357.75 
312.13 
392.13 
378.32 
363.85 
393.64 
354.24 
396.01 
389.70 
376.81 
375.45 
378.30 
399.83 
Worst 

•/• Error 
-0.487 
0.000 
0.071 
-0.117 
-0.095 
0.884 
-0.315 
4.971 
13.356 
8.496 
18.993 
10.825 
3.429 
1.556 
8.798 
18.993 

Net 3 
333.83 
372.52 
357.59 
311.94 
392.50 
378.14 
365.31 
332.70 
324.55 
318.89 
374.59 
323.93 
351.43 
379.70 
370.34 
Worst 

% Error 
-0.647 
0.005 
0.025 
-0.180 
0.001 
0.836 
0.084 

-11.281 
3.857 

-12.632 
14.378 
-4.726 
-3.187 
1.933 
0.773 
14.378 

Net 4 
333.01 
372.30 
357.42 
312.31 
392.40 
377.35 
366.04 
335.64 
309.98 
381.62 
327.61 
317.65 
341.33 
369.46 
369.44 
Worst 

% Error 
-0.891 
-0.053 
-0.023 
-0.061 
-0.026 
0.626 
0.285 

-10.496 
-0.807 
4.555 
0.033 
-6.575 
-5.969 
-0.817 
0.527 

-10.496 

Nets 
333.27 
372.51 
357.56 
312.16 
392.49 
377.78 
365.36 
346.63 
308.13 
399.35 
343.51 
335.09 
353.25 
371.73 
358.89 
Worst 

% Error 
-0.811 
0.003 
0.016 
-0.108 
-0.002 
0.740 
0.098 
-7.564 
-1.399 
9.410 
4.889 
-1.443 
-2.687 
-0.206 
-2.342 
9.410 

3 
nj 
Q 
O) 
c 
c 
ra 

1 -

n 
<o 
Q *-> 
V) o 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 6 
333.16 
372.56 
357.48 
312.16 
392.36 
377.67 
365.48 
338.17 
313.60 
357.85 
361.13 
321.55 
342.36 
376.12 
367.61 
Worst 

% Error 
-0.844 
0.016 
-0.005 
-0.110 
-0.035 
0.711 
0.131 
-9.821 
0.353 
-1.959 
10.269 
-5.426 
-5.685 
0.971 
0.029 
10.269 

Net 7 
333.71 
372.24 
357.70 
312.26 
392.06 
378.11 
364.33 
383.94 
385.49 
380.75 
355.10 
335.53 
339.00 
391.65 
386.55 
Worst 

% Error 
-0.681 
-0.069 
0.055 
-0.076 
-0.113 
0.828 
-0.185 
2.383 

23.356 
4.316 
8.429 
-1.316 
-6.610 
5.141 
5.183 

23.356 

Net 8 
333.26 
372.58 
357.53 
312.14 
392.46 
377.80 
365.23 
329.81 
340.20 
390.72 
338.40 
317.94 
352.33 
377.34 
344.76 
Worst 

% Error 
-0.816 
0.021 
0.007 
-0.116 
-0.011 
0.746 
0.063 

-12.050 
8.865 
7.047 
3.329 
-6.487 
-2.939 
1.299 
-6.187 

-12.050 

Net 9 
333.31 
372.55 
357.58 
312.17 
392.29 
377.86 
365.26 
334.11 
339.58 
369.42 
339.04 
321.56 
330.53 
382.89 
343.11 
Worst 

% Error 
-0.801 
0.013 
0.021 
-0.107 
-0.053 
0.763 
0.071 

-10.905 
8.665 
1.212 
3.522 
-5.424 
-8.945 
2.790 
-6.636 

-10.905 

Net 10 
333.19 
372.48 
357.55 
312.13 
393.00 
377.69 
365.40 
357.53 
322.33 
375.42 
338.73 
320.93 
342.04 
385.64 
366.18 
Worst 

% Error 
-0.838 
-0.006 
0.014 
-0.119 
0.128 
0.717 
0.109 
-4.658 
3.146 
2.854 
3.429 
-5.608 
-5.775 
3.527 
-0.359 
-5.775 

5 
<o 
Q 
O) 
c 
c 
2 

5 
O 

0 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 11 
333.32 
372.49 
357.46 
312.30 
392.18 
377.59 
365.45 
344.79 
332.31 
350.39 
352.64 
336.81 
369.69 
387.35 
380.14 
Worst 

% Error 
-0.798 
-0.001 
-0.011 
-0.064 
-0.080 
0.690 
0.124 
-8.056 
6.338 
-4.003 
7.675 
-0.938 
1.842 
3.987 
3.439 
-8.056 

Net 12 
333.07 
372.35 
357.48 
312.02 
392.43 
377.61 
364.82 
352.08 
328.93 
352.96 
331.29 
322.51 
353.87 
376.89 
374.05 
Worst 

% Error 
-0.872 
-0.040 
-0.006 
-0.154 
-0.019 
0.697 
-0.048 
-6.113 
5.258 
-3.298 
1.157 
-5.146 
-2.516 
1.180 
1.781 
-6.113 

Net 13 
333.74 
372.71 
357.55 
312.25 
392.42 
378.20 
365.32 
345.61 
323.99 
350.89 
356.60 
330.67 
372.19 
377.65 
387.13 
Worst 

% Error 
-0.674 
0.056 
0.013 
-0.080 
-0.020 
0.854 
0.089 
-7.836 
3.677 
-3.867 
8.884 
-2.745 
2.532 

L 1.384 
5.342 
8.884 

Net 14 
333.48 
372.63 
357.42 
312.61 
391.62 
377.92 
365.06 
339.64 
334.84 
379.20 
342.28 
327.80 
370.31 
381.71 
373.36 
Worst 

% Error 
-0.751 
0.035 
-0.022 
0.037 
-0.224 
0.778 
0.016 
-9.428 
7.149 
3.890 
4.512 
-3.587 
2.014 
2.473 
1.595 
-9.428 

Net 15 
333.14 
372.81 
357.41 
312.40 
392.44 
377.61 
365.47 
348.36 
349.92 
352.03 
345.74 
317.75 
360.61 
386.05 
374.74 
Worst 

% Error 
-0.851 
0.082 
-0.024 
-0.031 
-0.016 
0.696 
0.127 
-7.103 
11.973 
-3.553 
5.568 
-6.544 
-0.658 
3.638 
1.971 

11.973 

10 

3 
Q 
c 
c 
« 

10 
10 

O 
"SI o 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 16 
333.30 
372.37 
357.49 
312.27 
392.45 
377.77 
365.54 
368.40 
353.91 
383.04 
371.03 
333.85 
364.70 
377.86 
390.61 
Worst 

% Error 
-0.804 
-0.036 
-0.002 
-0.074 
-0.014 
0.739 
0.148 
-1.761 
13.251 
4.943 
13.290 
-1.810 
0.469 
1.439 
6.290 
13.290 

Net 17 
333.35 
372.39 
357.36 
312.75 
392.30 
377.93 
365.21 
365.45 
325.40 
319.58 
356.75 
327.46 
333.23 
385.39 
379.20 
Worst 

% Error 
-0.788 
-0.030 
-0.038 
0.079 
-0.051 
0.781 
0.056 
-2.546 
4.129 

-12.444 
8.930 
-3.687 
-8.201 
3.461 
3.183 

-12.444 

Net 18 
333.43 
372.40 
357.54 
312.04 
392.11 
377.88 
365.18 
374.53 
375.33 
365.14 
358.56 
335.10 
354.94 
385.19 
387.96 
Worst 

% Error 
-0.765 
-0.026 
0.010 
-0.147 
-0.100 
0.768 
0.049 
-0.125 
20.107 
0.037 
9.484 
-1.441 
-2.219 
3.405 
5.568 

20.107 

Net 19 
333.68 
372.57 
357.53 
312.23 
392.49 
378.19 
364.66 
365.37 
323.97 
358.24 
363.77 
339.18 
357.89 
383.56 
381.15 
Worst 

% Error 
-0.691 
0.020 
0.007 
-0.088 
-0.002 
0.850 
-0.093 
-2.567 
3.670 
-1.852 
11.076 
-0.242 
-1.409 
2.968 
3.713 

11.076 

Net 20 
333.03 
372.81 
357.37 
312.27 
392.65 
377.52 
365.44 
359.49 
354.06 
375.52 
354.50 
326.09 
360.53 
385.06 
376.18 
Worst 

% Error 
-0.883 
0.084 
-0.036 
-0.075 
0.039 
0.673 
0.120 
-4.135 
13.298 
2.882 
8.244 
-4.092 
-0.679 
3.372 
2.362 
13.298 
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J3 
(0 
Q 
O) 
c 
c 
re 
k_ 

h-

5 re 
a 
-*-• 
<n 
o> 

1 -

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 21 
333.45 
372.36 
357.56 
311.88 
391.92 
377.89 
364.66 
330.87 
362.43 
349.22 
361.10 
334.52 
353.53 
378.83 
373.28 
Worst 

% Error 
-0.760 
-0.039 
0.018 
-0.198 
-0.148 
0.770 
-0.094 

-11.768 
15.977 
-4.323 
10.261 
-1.613 
-2.610 
1.700 
1.572 

15.977 

Net 22 
333.21 
372.47 
357.46 
312.37 
393.00 
377.64 
365.35 
370.70 
346.14 
339.24 
369.75 
338.73 
339.23 
384.02 
378.58 
Worst 

% Error 
-0.831 
-0.007 
-0.012 
-0.041 
0.128 
0.704 
0.095 
-1.148 
10.764 
-7.059 
12.902 
-0.373 
-6.549 
3.094 
3.015 
12.902 

Net 23 
333.17 
372.54 
357.43 
312.17 
392.47 
377.70 
365.41 
356.26 
321.34 
374.08 
339.25 
320.60 
339.99 
385.42 
363.03 
Worst 

% Error 
-0.841 
0.012 
-0.019 
-0.107 
-0.008 
0.721 
0.113 
-4.999 
2.829 
2.487 
3.588 
-5.705 
-6.339 
3.469 
-1.216 
-6.339 

Net 24 
333.36 
372.25 
357.66 
312.12 
392.33 
377.89 
365.19 
352.71 
329.13 
354.01 
332.30 
323.21 
354.07 
377.13 
374.26 
Worst 

% Error 
-0.786 
-0.067 
0.046 
-0.120 
-0.044 
0.769 
0.053 
-5.944 
5.322 
-3.010 
1.465 
-4.939 
-2.459 
1.243 
1.840 

-5.944 

Net 25 
333.46 
372.65 
357.53 
311.97 
393.35 
377.87 
365.28 
353.36 
328.47 
353.21 
330.78 
322.76 
354.86 
377.47 
375.72 
Worst 

% Error I 
-0.755 
0.040 | 
0.010 ! 
-0.169 
0.216 [ 
0.764 | 
0.077 
-5.770 
5.111 
-3.230 
1.000 I 
-5.070 
-2.242 
1.335 
2.237 
-5.770 | 

3 re 
Q 
O) 
c 
E 
S 

10 
* • • re 
Q 
to 
Q> 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 26 
333.59 
372.35 
357.69 
311.98 
392.80 
378.07 
364.88 
350.87 
326.09 
350.69 
329.36 
322.03 
355.19 
377.17 
376.08 
Worst 

% Error 
-0.718 
-0.040 

L 0.054 
-0.167 
0.077 
0.818 
-0.032 
-6.435 
4.347 
-3.921 
0.567 
-5.286 
-2.151 
1.253 
2.334 
-6.435 

Net 27 
333.48 
372.41 
357.62 
311.98 
392.98 
377.93 
364.93 
353.10 
327.53 
352.22 
331.40 
322.68 
354.92 
377.48 
375.58 
Worst 

% Error 
-0.750 
-0.024 
0.033 
-0.166 
0.123 
0.782 
-0.018 
-5.840 
4.811 
-3.502 
1.190 
-5.094 
-2.227 
1.336 
2.199 
-5.840 

Net 28 
333.56 
372.45 
357.62 
311.93 
393.02 
377.99 
364.73 
354.39 
327.79 
352.48 
331.65 
323.21 
356.01 
377.51 
377.02 
Worst 

% Error 
-0.726 
-0.014 
0.034 
-0.182 
0.133 
0.797 
-0.074 
-5.496 
4.894 
-3.431 
1.266 
-4.939 
-1.925 
1.344 
2.590 
-5.496 

Net 29 
333.25 
372.55 
357.57 
311.97 
393.07 
377.76 
365.17 
353.01 
328.36 
353.58 
331.12 
322.71 
354.63 
377.26 
375.34 
Worst 

% Error 
-0.819 
0.013 
0.018 
-0.171 
0.144 
0.736 
0.047 
-5.865 
5.074 
-3.128 
1.105 
-5.084 
-2.307 
1.277 
2.135 
-5.865 

Net 30 
333.31 
372.54 
357.54 
311.94 
392.97 
377.77 
365.14 
353.21 
328.83 
353.43 
331.04 
322.86 
354.81 
377.28 
375.51 
Worst 

% Error 
-0.800 
0.011 
0.011 
-0.178 
0.120 
0.738 
0.039 | 
-5.811 
5.225 
-3.169 
1.082 
-5.041 
-2.255 
1.284 
2.181 | 
-5.811 | 

3 re 
Q 
o> 
c 
c 

2 

3 
re 
Q 
G) 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 31 
333.29 
372.57 
357.48 
311.99 
392.96 
377.74 
365.24 
353.13 
328.88 
353.45 
330.77 
322.77 
354.67 
377.34 
375.48 
Worst 

% Error 
-0.806 
0.019 
-0.004 
-0.164 
0.117 
0.730 
0.066 
-5.833 
5.241 
-3.165 
0.998 
-5.068 
-2.294 
1.299 
2.171 
-5.833 

Net 32 
333.30 
372.58 
357.50 
311.98 
392.96 
377.77 
365.14 
353.30 
328.82 
353.36 
330.80 
322.82 
354.82 
377.35 
375.68 
Worst 

% Error 
-0.804 
0.023 
0.000 
-0.168 
0.118 
0.740 
0.039 
-5.786 

I 5.223 
-3.190 
1.007 
-5.054 
-2.254 
1.301 
2.225 
-5.786 

Net 33 
333.48 
372.66 
357.55 
311.97 
392.43 
377.97 
364.90 
353.46 
328.65 
351.83 
331.32 
322.83 
354.69 
377.49 
375.01 
Worst 

% Error 
-0.751 
0.042 
0.013 
-0.171 
-0.017 
0.792 
-0.029 
-5.744 
5.167 
-3.608 
1.165 

-5.049 
-2.288 
1.340 
2.042 
-5.744 

Net 34 
333.01 
372.60 
357.42 
311.99 
392.72 
377.50 
364.95 
352.78 
328.40 
353.30 
330.69 
322.55 
354.18 
377.26 
374.66 
Worst 

% Error 
-0.890 
0.026 
-0.022 
-0.163 
0.056 
0.665 
-0.015 
-5.924 
5.088 
-3.205 
0.975 
-5.134 
-2.430 
1.279 
1.948 

-5.924 

Net 35 
333.19 
372.69 
357.42 
311.98 
392.92 
377.67 
365.19 
352.90 
328.72 
353.17 
330.62 
322.58 
354.54 
377.35 
375.16 
Worst 

% Error I 
-0.837 
0.052 [ 
-0.022 
-0.166 
0.108 
0.711 
0.053 
-5.894 
5.189 | 
-3.242 
0.952 I 
-5.124 
-2.331 
1.302 
2.085 
-5.894 | 

5 re 
Q 
O) 

c 
c 
2 

3 re 
Q 
t) 
0) 

1-

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 36 
333.21 
372.84 
357.39 
311.94 
392.89 
377.71 
365.14 
352.94 
328.66 
353.40 
330.51 
322.54 
354.32 
377.52 
374.85 
Worst 

% Error 
-0.831 
0.091 
-0.031 
-0.179 
0.100 
0.722 
0.040 
-5.882 
5.172 
-3.179 
0 . 9 1 8 ^ 
-5.136 
-2.391 
1.347 
2.001 
-5.882 

Net 37 
333.28 
372.41 
357.55 
311.99 
392.73 
377.81 
365.17 
351.59 
327.35 
349.16 
331.90 
322.68 
354.89 
376.73 
375.06 
Worst 

% Error 
-0.810 
-0.024 
0.013 
-0.163 
0.058 
0.750 
0.046 
-6.243 
4.751 
-4.340 
1.344 

-5.094 
-2.235 
1.135 
2.057 
-6.243 

Net 38 
333.35 
372.36 
357.58 
312.06 
392.61 
377.90 
365.11 
351.35 
327.69 
349.19 
332.32 
322.83 
354.53 
376.39 
374.74 
Worst 

% Error 
-0.790 
-0.036 
0.021 
-0.141 
0.028 
0.773 
0.031 
-6.308 
4.862 
-4.331 
1.471 
-5.049 
-2.334 
1.044 
1.971 

-6.308 

Net 39 
333.41 
372.42 
357.60 
312.00 
392.72 
377.93 
365.10 
351.57 
327.53 
349.88 
331.01 
322.57 
355.06 
377.17 
375.48 
Worst 

% Error 
-0.771 
-0.022 
0.028 
-0.159 
0.057 
0.780 
0.026 
-6.249 
4.811 
-4.143 
1.072 

-5.125 
-2.187 
1.253 
2.171 
-6.249 

Net 40 
333.32 
372.29 
357.54 
312.05 
392.41 
377.84 
364.71 
350.63 
326.01 
347.49 
331.80 
321.96 
353.14 
376.22 
373.85 
Worst 

% Error I 
-0.797 
-0.056 
0.010 j 
-0.143 
-0.022 
0.757 I 
-0.078 
-6.498 
4.324 
-4.797 
1.312 
-5.305 
-2.717 
0.998 
1.727 

i -6.498 
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3 re 
Q 
O) 
c 
c 
2 

3 re 
O *-> 
w 
0) 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 41 
333.56 
372.45 
357.62 
311.93 
393.02 
377.99 
364.73 
354.39 
327.79 
352.48 
331.65 
323.21 
356.01 
377.51 
377.02 
Worst 

% Error 
-0.726 
-0.014 
0.034 
-0.182 
0.133 
0.797 
-0.074 
-5.496 
4.894 
-3.431 
1.266 
-4.939 
-1.925 
1.344 
2.590 
-5.496 

Net 42 
333.83 
372.42 
357.60 
312.09 
392.45 
378.24 
365.23 
352.14 
329.25 
349.06 
330.95 
323.02 
354.99 
377.26 
374.59 
Worst 

% Error 
-0.647 
-0.022 
0.029 
-0.132 
-0.012 
0.864 
0.064 
-6.097 
5.361 
-4.367 
1.054 
-4.993 
-2.208 
1.279 
1.929 

-6.097 

Net 43 
333.97 
372.26 
357.69 
311.82 
392.38 
378.27 
364.43 
353.47 
322.77 
344.85 
328.84 
322.26 
357.72 
379.12 
378.25 
Worst 

% Error 
-0.605 
-0.064 
0.054 
-0.219 
-0.030 
0.872 
-0.157 
-5.742 
3.285 
-5.520 
0.408 
-5.217 
-1.455 
1.778 
2.924 
-5.742 

Net 44 
333.27 
372.42 
357.51 
312.15 
392.34 
377.74 
365.46 
338.31 
328.31 
353.42 
318.02 
317.10 
348.97 
380.29 
375.94 
Worst 

% Error 
-0.812 
-0.023 
0.004 
-0.112 
-0.040 
0.732 
0.125 
-9.784 
5.060 
-3.171 
-2.894 
-6.735 
-3.865 
2.090 
2.297 
-9.784 

Net 45 
333.28 
372.13 
357.63 
312.01 
392.35 
377.80 
364.83 
350.21 
327.88 
351.40 
329.23 
321.78 
352.74 
376.54 
373.61 
Worst 

% Error 
-0.809 
-0.099 
0.036 
-0.158 
-0.038 
0.746 
-0.047 
-6.610 
4.923 
-3.725 
0.529 
-5.358 
-2.826 
1.085 
1.664 

-6.610 

re 
re 
Q 
o> 
c 
c 
re 

re 
re 
Q 

a> 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 46 
333.77 
372.13 
357.67 
312.12 
392.41 
378.17 
364.70 
340.75 
317.61 
352.31 
327.09 
320.46 
354.62 
378.94 
371.59 
Worst 

% Error 
-0.663 
-0.098 
0.047 
-0.122 
-0.022 
0.846 
-0.081 
-9.135 
1.635 
-3.476 
-0.125 
-5.747 
-2.309 
1.730 
1.113 
-9.135 

Net 47 
333.76 
372.34 
357.62 
311.70 
392.49 
378.10 
364.86 
322.10 
309.43 
363.60 
311.17 
310.37 
344.71 
388.28 
375.78 
Worst 

% Error 
-0.666 
-0.044 
0.033 
-0.255 
-0.003 
0.827 
-0.038 

-14.108 
-0.981 
-0.383 
-4.987 
-8.714 
-5.038 
4.237 
2.254 

-14.108 

Net 48 
333.50 
372.59 
357.55 
312.15 
392.72 
377.97 
365.53 
350.94 
326.48 
349.18 
332.54 
322.53 
354.54 
376.60 
374.69 
Worst 

% Error 
-0.743 
0.025 
0.014 
-0.113 
0.056 
0.793 
0.144 
-6.416 
4.474 
-4.335 
1.540 
-5.138 
-2.330 
1.101 
1.957 

-6.416 

Net 49 
333.17 
372.42 
357.53 
312.11 
392.67 
377.69 
365.38 
350.83 
327.62 
350.91 
331.61 
322.43 
353.73 
376.69 
373.59 
Worst 

% Error 
-0.843 
-0.023 
0.009 
-0.125 
0.044 
0.719 
0.103 
-6.446 
4.839 
-3.860 
1.255 
-5.167 
-2.554 
1.126 
1.658 
-6.446 

Net 50 
333.38 
372.40 
357.56 
312.02 
392.82 
377.91 
365.07 
350.94 
326.52 
348.33 
332.10 
322.32 
355.05 
376.65 
374.75 
Worst 

% Error 
-0.781 
-0.027 
0.017 
-0.153 
0.080 
0.776 
0.018 
-6.415 
4.487 
-4.568 
1.403 

-5.200 
-2.189 
1.113 
1.972 

-6.415 

3 re 
Q 
Ol 
c 
c 
re 
k_ 

1-

3 re 
O 
+-» </> 
O 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 51 
333.27 
372.41 
357.54 
311.94 
392.77 
377.77 
365.32 
352.07 
328.40 
352.06 
331.44 
322.64 
354.64 
376.88 
374.46 
Worst 

% Error 
-0.811 
-0.025 
0.012 
-0.178 
0.069 
0.738 
0.087 
-6.115 
5.089 
-3.546 
1.204 
-5.106 
-2.302 
1.176 
1.895 

-6.115 

Net 52 
333.56 
372.45 
357.62 
311.93 
393.02 
377.99 
364.73 
354.39 
327.79 
352.48 
331.65 
323.21 
356.01 
377.51 
377.02 
Worst 

% Error 
-0.726 
-0.014 
0.034 
-0.182 
0.133 
0.797 
-0.074 
-5.496 
4.894 
-3.431 
1.266 
-4.939 
-1.925 
1.344 
2.590 
-5.496 

Net 53 
333.55 
372.29 
357.57 
311.99 
392.24 
378.05 
364.95 
348.64 
326.79 
352.06 
326.95 
320.41 
354.85 
377.75 
375.62 
Worst 

% Error 
-0.729 
-0.056 
0.018 
-0.164 
-0.066 
0.814 
-0.014 
-7.031 
4.574 
-3.546 
-0.168 
-5.763 
-2.246 
1.408 
2.211 
-7.031 

Net 54 
333.26 
372.38 
357.61 
311.71 
392.25 
377.70 
365.35 
351.19 
326.92 
350.68 
330.93 
321.98 
353.79 
376.84 
373.77 
Worst 

% Error 
-0.816 
-0.031 
0.030 
-0.253 
-0.063 
0.721 
0.096 
-6.348 
4.614 
-3.923 
1.046 
-5.300 
-2.537 
1.166 
1.705 

-6.348 

Net 55 
333.57 
371.99 
357.67 
311.85 
393.90 
377.58 
364.48 
348.97 
324.29 
351.99 
327.70 
320.72 
352.19 
377.75 
375.55 
Worst 

% Error 
-0.725 
-0.136 
0.048 
-0.208 
0.357 
0.688 
-0.141 
-6.941 
3.773 
-3.565 
0.060 
-5.671 
-2.978 
1.410 
2.190 
-6.941 

3 re 
O 
cn 
c 
c 
2 

3 re 
Q •— 
m 
o 

Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 56 
334.30 
372.08 
357.84 
312.19 
392.38 
378.45 
364.43 
349.83 
325.88 
355.69 
331.73 
322.43 
350.05 
382.58 
373.85 
Worst 

% Error 
-0.506 
-0.114 
0.095 
-0.098 
-0.030 
0.920 
-0.157 
-6.713 
4.282 
-2.552 
1.291 
-5.168 
-3.567 
2.705 
1.727 

-6.713 

Net 57 
332.92 
371.63 
356.62 
312.36 
392.29 
376.13 
365.14 
351.12 
328.69 
352.44 
335.96 
322.62 
351.09 
374.98 
368.98 
Worst 

% Error 
-0.917 
-0.234 
-0.247 
-0.044 
-0.055 
0.301 
0.038 
-6.369 
5.181 
-3.441 
2.584 
-5.111 
-3.281 
0.666 
0.403 
-6.369 

Net 58 
332.90 
373.01 
357.27 
312.31 
392.96 
377.13 
365.92 
350.13 
328.30 
353.26 
329.95 
321.49 
351.44 
376.83 
371.69 
Worst 

% Error 
-0.922 
0.137 
-0.063 
-0.060 
0.117 
0.569 
0.252 
-6.633 
5.055 
-3.217 
0.749 
-5.445 
-3.184 

L 1.162 
1.140 

-6.633 

Net 59 
333.56 
372.45 
357.62 
311.93 
393.02 
377.99 
364.73 
354.39 
327.79 
352.48 
331.65 
323.21 
356.01 
377.51 
377.02 
Worst 

% Error 
-0.726 
-0.014 
0.034 
-0.182 
0.133 
0.797 
-0.074 
-5.496 
4.894 
-3.431 
1.266 
-4.939 
-1.925 
1.344 
2.590 
-5.496 

Net 60 
333.43 
372.38 
357.59 
312.11 
392.66 
377.98 
365.08 
351.11 
328.36 
357.37 
330.91 
322.54 
354.31 
376.17 
376.84 
Worst 

% Error 
-0.764 
-0.031 
0.026 
-0.125 
0.041 
0.795 
0.022 
-6.370 
5.074 
-2.090 
1.042 
-5.134 
-2.394 
0.985 
2.542 
-6.370 
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Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 61 
332.63 
372.08 
357.39 
312.20 
392.39 
377.40 
364.43 
354.31 
324.51 
357.27 
335.37 
323.59 
356.20 
375.27 
377.72 
Worst 

% Error 
-1.004 
-0.112 
-0.030 
-0.097 
-0.029 
0.640 
-0.156 
-5.518 
3.842 
-2.119 
2.404 
-4.827 
-1.873 
0.743 
2.780 
-5.518 

Net 62 
329.64 
373.01 
357.02 
312.34 
393.16 
379.30 
367.34 
326.14 
314.71 
400.85 
305.66 
311.77 
347.49 
388.14 
381.57 
Worst 

% Error 
-1.893 
0.138 
-0.133 
-0.052 
0.169 
1.146 
0.641 

-13.030 
0.706 
9.823 
-6.669 
-8.303 
-4.272 
4.199 
3.830 

-13.030 

Net 63 
303.09 
372.53 
357.46 
312.25 
392.75 
377.10 
365.75 
316.23 
305.88 
391.25 
313.24 
302.92 
316.40 
392.57 
371.69 
Worst 

% Error 
-9.795 
0.009 
-0.011 
-0.080 
0.063 
0.560 
0.207 

-15.673 
-2.119 
7.191 
-4.356 

-10.906 
-12.837 
5.389 
1.141 

-15.673 

Net 64 
303.32 
372.55 
357.45 
312.23 
392.78 
377.35 
365.86 
318.44 
306.46 
389.78 
314.37 
303.09 
318.81 
391.92 
373.20 
Worst 

% Error 
-9.725 
0.013 
-0.013 
-0.087 
0.070 
0.627 
0.235 

-15.083 
-1.933 
6.789 
-4.009 

-10.856 
-12.174 
5.213 
1.552 

-15.083 

Net 65 
303.83 
372.58 
357.44 
312.18 
392.85 
377.88 
366.08 
322.17 
307.45 
387.38 
316.22 
303.46 
322.92 
391.00 
375.52 
Worst 

% Error 
-9.574 
0.020 
-0.018 
-0.103 
0.090 
0.767 
0.295 

-14.089 
-1.618 
6.132 
-3.443 

-10.748 
-11.042 
4.966 
2.182 

-14.089 
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Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 66 
306.05 
372.71 
357.35 
312.00 
393.14 
379.95 
367.02 
332.11 
310.11 
381.10 
321.11 
305.06 
334.17 
389.47 
380.63 
Worst 

% Error 
-8.912 
0.056 
-0.041 
-0.161 
0.163 
1.320 
0.554 

-11.438 
-0.763 
4.410 
-1.950 
-10.275 
-7.943 
4.556 
3.573 

-11.438 

Net 67 
333.29 
372.38 
357.56 
312.03 
392.66 
377.83 
364.98 
361.92 
325.31 
355.92 
335.63 
327.17 
365.15 
378.98 
385.94 
Worst 

% Error 
-0.807 
-0.031 
0.018 
-0.151 
0.041 
0.755 
-0.005 
-3.489 
4.099 
-2.489 
2.482 
-3.772 
0.592 
1.741 
5.019 
5.019 

Net 68 
333.58 
372.45 
357.60 
311.99 
392.75 
378.11 
364.91 
359.45 
326.05 
354.16 
334.49 
325.50 
361.87 
378.79 
383.11 
Worst 

% Error 
-0.720 
-0.013 
0.028 
-0.163 
0.063 
0.829 
-0.024 
-4.147 
4.335 
-2.970 
2.136 
-4.264 
-0.313 
1.687 
4.248 
4.335 

Net 69 
333.64 
372.43 
357.64 
311.97 
392.81 
378.08 
364.62 
357.70 
326.69 
352.70 
333.60 
324.43 
359.22 
378.36 
380.66 
Worst 

% Error 
-0.704 
-0.020 
0.039 
-0.170 
0.079 
0.823 
-0.105 
-4.615 
4.540 
-3.369 
1.862 
-4.579 
-1.042 
1.573 
3.581 
-4.615 

Net 70 
333.84 
372.56 
357.65 
311.98 
393.00 
378.16 
364.89 
356.16 
327.34 
352.41 
332.86 
323.85 
357.45 
378.07 
378.69 
Worst 

% Error 
-0.644 
0.015 
0.042 
-0.167 
0.128 
0.844 
-0.031 
-5.023 
4.748 
-3.448 
1.638 
-4.750 
-1.530 
1.497 
3.046 
-5.023 
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Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 71 
333.56 
372.45 
357.62 
311.93 
393.02 
377.99 
364.73 
354.39 
327.79 
352.48 
331.65 
323.21 
356.01 
377.51 
377.02 
Worst 

% Error 
-0.726 
-0.014 
0.034 
-0.182 
0.133 
0.797 
-0.074 
-5.496 
4.894 
-3.431 
1.266 
-4.939 
-1.925 
1.344 
2.590 
-5.496 

Net 72 
333.20 
372.21 
357.57 
311.95 
392.93 
377.50 
364.36 
353.49 
328.09 
352.68 
330.98 
322.87 
355.18 
376.92 
376.06 
Worst 

% Error 
-0.833 
-0.078 
0.020 
-0.177 
0.110 
0.667 
-0.174 
-5.737 
4.990 
-3.374 
1.062 
-5.038 
-2.155 
1.186 
2.330 
-5.737 

Net 73 
333.91 
372.79 
357.67 
311.94 
393.10 
378.33 
365.49 
354.60 
328.30 
353.35 
331.75 
323.58 
356.63 
377.93 
377.46 
Worst 

% Error 
-0.622 
0.077 
0.048 
-0.180 
0.152 
0.889 
0.135 
-5.439 
5.058 
-3.191 
1.298 
-4.830 
-1.753 
1.458 
2.709 
-5.439 

Net 74 
336.15 
372.98 
357.14 
312.37 
392.81 
376.29 
366.14 
352.96 
329.96 
352.28 
330.98 
324.54 
354.32 
375.93 
373.28 
Worst 

% Error 
0.046 
0.128 
-0.102 
-0.042 
0.080 
0.344 
0.312 
-5.878 
5.587 
-3.486 
1.063 
-4.548 
-2.392 
0.921 
1.572 

-5.878 

Net 75 
332.77 
372.93 
357.36 
312.06 
393.12 
378.29 
366.05 
350.73 
328.00 
353.24 
330.30 
321.31 
352.17 
377.82 
372.88 
Worst 

% Error 
-0.961 
0.116 
-0.038 
-0.139 
0.158 
0.876 
0.287 
-6.473 
4.961 
-3.222 
0.856 
-5.496 
-2.984 
1.427 
1.463 

-6.473 
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Actual 
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372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 76 
331.49 
373.54 
357.23 
311.76 
393.60 
380.06 
367.02 
351.38 
327.01 
354.78 
330.64 
320.45 
353.18 
380.00 
375.22 
Worst 

% Error 
-1.343 
0.280 
-0.074 
-0.236 
0.281 
1.349 
0.553 
-6.299 
4.643 
-2.801 
0.958 
-5.749 
-2.706 
2.012 
2.101 
-6.299 

Net 77 
330.99 
374.28 
357.15 
311.62 
394.09 
381.90 
368.72 
352.60 
326.88 
356.59 
331.30 
320.21 
354.80 
382.28 
377.71 
Worst 

% Error 
-1.492 
0.479 
-0.097 
-0.283 
0.404 
1.840 
1.019 

-5.973 
4.603 
-2.305 
1.160 

-5.820 
-2.260 
2.624 
2.778 
-5.973 

Net 78 
331.40 
375.98 
357.19 
311.23 
394.64 
385.47 
371.38 
355.21 
326.82 
357.40 
333.63 
320.42 
358.20 
385.81 
381.54 
Worst 

% Error 
-1.370 
0.935 
-0.087 
-0.406 
0.545 
2.793 
1.749 
-5.277 
4.582 
-2.081 
1.871 
-5.758 
-1.324 
3.574 
3.822 
-5.758 

Net 79 
310.92 
359.50 
353.16 
312.63 
387.63 
363.37 
345.96 
330.02 
316.50 
358.69 
317.28 
307.74 
329.11 
366.10 
357.39 
Worst 

% Error 
-7.464 
-3.491 
-1.213 
0.043 
-1.241 
-3.102 
-5.217 

-11.994 
1.281 
-1.729 
-3.119 

-9.489 
-9.337 
-1.719 
-2.750 

-11.994 

Net 80 
335.16 
372.45 
357.55 
312.31 
392.57 
375.99 
364.86 
360.09 
327.37 
354.10 
334.53 

327.35 
362.12 
377.09 
382.44 
Worst 

% Error 
-0.249 
-0.013 
0.013 
-0.062 
0.018 
0.264 
-0.038 
-3.975 
4.760 
-2.985 
2.145 

-3.719 
-0.241 
1.232 
4.067 
4.760 
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Actual 
336 

372.5 
357.5 
312.5 
392.5 
375 
365 
375 

312.5 
365 

327.5 
340 
363 

372.5 
367.5 

Net 81 
334.37 
372.45 
357.59 
312.14 
392.65 
377.04 
364.84 
359.77 
326.72 
354.09 
334.50 
326.43 
361.98 
377.91 
382.76 
Worst 

% Error 
-0.484 
-0.014 
0.025 
-0.116 
0.039 
0.543 
-0.044 
-4.061 
4.550 
-2.990 
2.137 
-3.992 
-0.281 
1.451 
4.152 
4.550 

Net 82 
333.58 
372.45 
357.60 
311.99 
392.75 
378.11 
364.91 
359.45 
326.05 
354.16 
334.49 
325.50 
361.87 
378.79 
383.11 
Worst 

% Error 
-0.720 
-0.013 
0.028 
-0.163 
0.063 
0.829 
-0.024 
-4.147 
4.335 
-2.970 
2.136 
-4.264 
-0.313 
1.687 
4.248 
4.335 

Net 83 
332.61 
372.41 
357.63 
311.89 
392.82 
378.98 
364.92 
358.98 
325.36 
354.36 
334.37 
324.49 
361.56 
379.54 
383.34 
Worst 

% Error 
-1.008 
-0.023 
0.036 
-0.196 
0.082 
1.060 
-0.023 
-4.273 
4.116 
-2.916 
2.099 
-4.561 
-0.398 
1.889 
4.311 
-4.561 

Net 84 
331.67 
372.41 
357.60 
311.81 
392.92 
379.90 
365.10 
358.54 
324.67 
354.70 
334.30 
323.51 
361.31 
380.39 
383.64 
Worst 

% Error 
-1.288 
-0.024 
0.029 
-0.221 
0.107 
1.307 
0.027 
-4.391 
3.893 
-2.822 
2.076 
-4.849 
-0.465 
2.119 
4.393 
-4.849 
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