
Theses - Daytona Beach Dissertations and Theses 

Spring 1998 

The Effect of Automation on Helicopter Crew Communication: A The Effect of Automation on Helicopter Crew Communication: A 

Low-Fidelity Investigation Low-Fidelity Investigation 

Margaret A. Maclsaac 
Embry-Riddle Aeronautical University - Daytona Beach 

Follow this and additional works at: https://commons.erau.edu/db-theses 

 Part of the Aviation Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Maclsaac, Margaret A., "The Effect of Automation on Helicopter Crew Communication: A Low-Fidelity 
Investigation" (1998). Theses - Daytona Beach. 129. 
https://commons.erau.edu/db-theses/129 

This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at 
ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an 
authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/db-theses
https://commons.erau.edu/dissertation-theses
https://commons.erau.edu/db-theses?utm_source=commons.erau.edu%2Fdb-theses%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1297?utm_source=commons.erau.edu%2Fdb-theses%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/db-theses/129?utm_source=commons.erau.edu%2Fdb-theses%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


THE EFFECT OF AUTOMATION ON HELICOPTER 

CREW COMMUNICATION: 

A LOW-FIDELITY INVESTIGATION 

Margaret A. Maclsaac 

A Thesis Submitted to the 
Aeronautical Science Department 

in Partial Fulfillment of the Requirements for the Degree of 
Master of Aeronautical Science 

Embry-Riddle Aeronautical University 
Daytona Beach, Florida 

Spring 1998 



UMI Number: EP31824 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform EP31824 

Copyright 2011 by ProQuest LLC 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



THE EFFECT OF AUTOMATION ON 

HELICOPTER CREW COMMUNICATION: 

A LOW-FIDELITY INVESTIGATION 

by 

Margaret A. Maclsaac 

This thesis was prepared under the direction of the candidate's thesis 

committee chair, Dr. Gerald D. Gibb, Department of Aeronautical Science, and 

has been approved by the members of her thesis committee. It was submitted 

to the Department of Aeronautical Science and was accepted in partial 

fulfillment of the requirements for the degree of Master of Aeronautical 

Science. 

THESIS COMMITTEE: 

v)=^jccsq s p , J = 4 & ^ 

Dr. Gerald D. Gibb, Chair 

Dr. DanieljrGarland, Member 

Dr. Bruce E. Hamilton, Member 

MAS Graduate Program Chair 

Department Cnair, Aeroti^oitical Science 

i i 

r^nz^i^U^-



Dedicated to the memory of my Uncle, 
Lawrence Paul Doyle, 

"Chief 
Sikorsky Aircraft. 

1937-1994. 

"Faretheewell my bright star, 
you were a brief, brilliant miracle/' 

-Indigo Girls 

i i i 



ACKNOWLEDGMENTS 

I am greatly indebted to a number of persons, and I would like to express 

my sincere appreciation to them. The members of my thesis committee, Dr. 

Gerald D. Gibb, Dr. Daniel J. Garland, and Dr. Bruce E. Hamilton, receive my 

heartfelt gratitude. Their knowledge, feedback and friendship have been 

priceless for the duration and completion of this project. Special thanks go to 

Dr. Gerald D. Gibb for his encouragement and guidance and to Dr. Bruce E. 

Hamilton, who served as a committee member from industry. His feedback 

and insightful comments were invaluable. I would also like to thank Paul 

Novacek for his technical assistance and support. 

Thanks to the administration and faculty of Embry-Riddle Aeronautical 

University, especially Monica Frappier for her guidance and support. I also 

want to thank Dr. John Wise who first taught me about human factors in 

aviation. His enthusiasm for learning and willingness to always help 

students was inspiring. 

Special thanks goes to the many helicopter pilots who participated in this 

study. Their cooperation and input were essential in completing this task and 

their enthusiasm and shared experiences helped shed light on this research 

issue. 

Most importantly, I would like to acknowledge my friend and Uncle, Larry 

Doyle, who first taught me about helicopters when I was a child and whose 

memory was the source of inspiration for this work. I continue to be inspired 

and learn from the courageous example he set throughout his life. 

iv 



ABSTRACT 

Author: Margaret A. Maclsaac 

Title: The Effect of Automation on Helicopter 

Crew Communication: A Low-Fidelity Investigation. 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Aeronautical Science 

Year: 1998 

Increasing levels of technology have changed the task of flying modern 

helicopter cockpits by allowing many crew functions to be performed 

automatically. This study attempted to understand the relation between 

automation and helicopter crew coordination. Twenty-eight helicopter pilots 

were assigned to two-person crews and asked to fly a simulated mission in 

either automated or manual conditions using a low-fidelity helicopter 

simulator. Communication was transcribed and coded into a nine-category 

content classification system by two trained raters. The inter-rater reliability 

was +.84. Results indicated that a higher frequency of total communications 

was demonstrated during manual flights. The interaction of Pilot Position by 

Automation Level was significant (p<.05) for three of the communication 

content categories: Observations, Suggestions, Statements of Intent. The 

results are discussed in terms of their implications for communications and 

Crew Resource Management (CRM) training for crews flying advanced 

technology helicopters. 
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INTRODUCTION 

Effective communication is paramount in an aircraft cockpit. It must occur 

among crew members, and it must occur so that both pilots reach a mutual 

level of understanding, not only of their aircraft, but of each other's 

responsibilities. Without this understanding, safety may be compromised. 

It is becoming more evident that communication patterns and content 

vary with changes in the aircraft. These changes may be a cause for concern 

(see Wiener, 1991). In the current helicopter market there is a growing trend 

toward new sophisticated displays on glass cockpit screens. Flight 

Management Systems and Electronic Flight Instrumentation Systems are 

becoming available in modern heUcopters, as well as in fixed-wing aircraft. It 

is debatable whether this complex technology effectively relates to the quick 

eye, hand coordination of helicopter pilots and how this technology impacts 

crew coordination and communication. As a matter of fact, forty reports were 

listed on helicopter automation and communication in the Aviation Safety 

Reporting System. 

There is a gap in the available understanding of rotary-wing crew 

communication and crew resource management training available for 

helicopter crews. More specifically, it involves a leap of faith into a world of 

increasing automation without an understanding of how it impacts rotary-

wing crew communication. 

1 
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Statement of the Problem 

There have been few studies on the behavioral changes associated with 

cockpit automation. However, the existing studies reveal a change in 

communication and workload as a consequence of automation (Foushee & 

Manos, 1989). Research indicates that there is a growing need to understand 

crew communication and to incorporate these understandings into crew 

resource management training. A 1992 study reports that the development of 

crew training specifically designed to counteract any potential negative effects 

of automation may be required as an interim measure in preserving and 

enhancing crew performance (Thornton, Brown, Bowers & Morgan, Jr.), 

Bowers (1995) states that based on so little empirical data, it is difficult to 

describe effective crew interactions in automatic systems. It is even more 

difficult to describe effective crew interactions with automatic systems in 

rotor craft operations because of the lack of research in rotary-wing crews and 

their aircraft. This study will attempt to contribute to this need by expanding 

the investigation of automation effects on crew communication to the area of 

helicopters. 

It is essential to avoid any assumption that fixed-wing aircrews and their 

aircraft impose the same type of communication requirements as rotary-wing 

crews. Helicopters have a number of unique capabilities that cannot be 

duplicated by airplanes (Helicopter Association International, 1981). "The 

rotary-wing aircraft's versatility, varied mission assignments, and flight-

control characteristics are likely to impose a different type of communication 

requirement on the crew as compared to fixed-wing aircraft" (Oser, Prince, 

Morgan, & Simpson, 1991). 

All forms of mass transportation include accidents due to human error, 

whether it be a car, train, airplane, or helicopter. In 1989 it was reported that 
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human error was the causative factor in approximately 64% of the accidents 

involving helicopters (Alkov). Despite the decrease in the number of 

helicopter accidents, the causes of the accidents have been shifting more 

heavily toward crew involvement (Breiling, 1995). For example, in 1995, the 

crew was cited as a major cause in eight of the twelve accidents and in two 

incidents recorded by U. S. helicopters. 

The Naval Safety Center also reported that aircrew error accounted for 56 

of the 96 (58.3%) Naval and Marine Corps Class A helicopter flight mishaps 

from 1983 to 1988 (Alkov, 1989). In addition, an analysis of Army aviation 

accident data revealed that "failure to communicate critical information" was 

one of four identified causes in Army rotary-wing mishap data (Oser et al., 

1991). 

In spite of the trend toward the single pilot cockpit, if s likely that two-

person crews will continue to flourish because of the benefit that human 

redundancy provides in the cockpit. Human decision-making and judgment 

cannot be substituted with any amount of microprocessing power. Two-

person crews increase the flight experience of skill, knowledge, and judgment 

from which to draw from when making a decision in the cockpit. 

In spite of automated functions, advanced displays and various stability 

and control augmentation systems, there still are not cockpit designs a single 

pilot can fly with the same performance and workload as two-person crews 

can (Hart, 1988). Many next generation helicopters reflect these design 

parameters of a two-person cockpit despite increases in automation, such as 

the Sikorsky S-92 civil and military version. Although the current fleet are 

mostly hybrid cockpits in which most functions remain accomplished 

through dedicated hardware, this will not be the case for next generation 



4 

helicopters. As true glass cockpits get built, more and more coordination 

problems present themselves (Hamilton, 1997). 

Review of the Literature 

Automation and crew communication have become important topics in 

the human factors research community for more than a decade now. 

Automation of fixed-wing aircraft and crew communication appears in the 

literature. However, the study of helicopter automation and crew 

communication does not appear in the literature. For that reason, the 

literature review will address crew communication and helicopter 

automation independently before addressing both together. 

Crew Communication 

Crew communication the flow of information between individual 

operators - serves as the coupling agent that determines the function of 

the operators as an ensemble (Segal, 1990). 

Crew communication has been connected to the performance of crews and 

has also been the focus of crew resource management programs. There are 

two aspects of the communication process that are particularly relevant to air 

crew performance (Kanki, Greaud, & Irwin, 1989). First, communication is 

clearly a means by which crews accomplish their task through the 

coordination of actions by commands, statements of intent, questions. 

Secondly, the "how" and "when" things are communicated as opposed to the 

"what" can characterize some quality of the way in which crews interact with 

each other (Kanki, Greaud, & Irwin, 1989). Good communication is the glue 

that binds a crew together and is essential in two-pilot operations. 
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Foushee and Manos (1981) found better crew performance to be associated 

with more task relevant speech, commands and acknowledgments. It has 

been suggested that the breakdown of communication or less task relevant 

speech, commands, and acknowledgments among crew members is the first 

step leading to an accident or incident (see Foushee & Manos, 1989). This has 

been corroborated in several commercial aviation and helicopter accidents. 

In 1983, a Sikorsky S-61 operating under British Airways Helicopters 

crashed into the sea while on a scheduled passenger route between Scilly and 

the English coastline (Manningham, 1988). Nineteen passengers and a flight 

attendant were killed in that accident. The official accident report blamed 

"the pilot's failure to detect and correct and unintentional descent while 

under VFR rules in poor and deceptive visibility over a calm sea" 

(Manningham, 1988). This was clearly a flight in which communication 

broke down. Crews must agree on what each will each bring to the cockpit 

workload, and then cooperate verbally. "During this flight there was a prime 

opportunity to split the work into vertical and horizontal navigation to better 

coordinate the flight if only the pilots had verbalized this" (Manningham, 

1988). 

Another major accident occurred in 1978 with the crash of United Airlines 

Flight 173 in Portland, Oregon. The probable cause was determined to be the 

failure of the captain to monitor the fuel state, and contributing causes 

included "the failure of the other two flight crew members either to fully 

comprehend the criticality of the fuel state or to successfully communicate 

their concern to the captain" (NTSB, 1979, p.29). 

That investigation resulted in the issuance of FAA Air Carrier Operations 

Bulletin Number 8430.17 which provided instructions regarding resource 

management and interpersonal communications training for air carrier flight 
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crews (Kanki & Palmer, 1993). Crew resource management programs have 

since made their way into helicopter crew training in both the military and 

civilian sectors. 

Foushee and Manos (1981) studied crew communication in a simulated 

setting which provided a model for much of the communication research 

later carried out (Kanki & Palmer, 1993). The goal of their methodology was 

to provide specific characterizations of communication patterns associated 

with effective crew resource management principles so that pertinent 

training implementations could be made (Kanki & Palmer, 1993). Although 

crew resource management has been implemented in several helicopter 

training programs, it may be limited in effectiveness because it is derived 

from commercial aviation; and therefore based on the nature of 

communication of fixed-wing pilots. Helmreich states that CRM training 

should be customized to reflect the nature and needs of the organization 

(1989a). 

A recent study addressed the way in which coordination problems are 

solved, essentially what it is that differentiates flight crews who are 

performing smoothly and effectively from those who are not? (Kanki, Lozito, 

& Foushee, 1987). It was found that crews who had recently flown together, 

performed better, possibly because these crews simply had increased 

opportunity to establish a conventional means of communicating (before 

they were task overloaded and time-pressured). 

Much of the research on crew communication has been studied with fixed-

wing crews. It may be that the lack of rotary-wing crew communication 

research is due to the diverse helicopter missions and functions, and cost of 

simulation. Also, communication research is fairly new, since the first 

significant studies were accomplished in the late 1970's and early 1980's. 
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A study conducted in 1991 by the Naval Training Systems Center, Human 

Factors Division, analyzed rotary-wing crew communication patterns and 

content. 

They posed the following questions: 

• what specific communication patterns and content are demonstrated by 

different helicopter crew members? 

• do tactical air crew communication patterns and content vary as a 

function of the performance demands and requirements of different flight 

conditions? 

• Third, they asked: are the communication patterns and content of more 

effective air crews different from those of less effective air crews? 

• What similarities exist between the communication patterns and content 

of military rotary-wing air crews and commercial fixed-wing air crews? 

A main goal of their research was to apply what they learned to Aircrew 

Coordination Training (ACT). (For a detailed description of results, see 

Technical Report 90-009/Oser et al., 1991) 

The researchers of that report suggested that specific attention needs to be 

focused on the unique communication requirements of tactical rotary-wing 

air crews during routine and non-routine flight conditions (Oser et al., 1991). 

It was also suggested that subsequent research analyze the communication 

patterns and content of tactical air crews in other platforms or aircraft types 

(i.e., fixed-wing, tilt-rotor) to extend and test the generality of their findings. 

Consequently, communication research continues to evolve out of the 

knowledge that pilot skill and technical understanding is not sufficient. 
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Helicopter Automation 

The first practical helicopter is generally considered to be the VS-300, 

designed, built and flown by Igor Sikorsky, who is the man acknowledged as 

the foimding father of today's modern helicopters. Sikorsky's first controlled 

flight on September 14, 1939 provided the way for many designs to come. 

Despite several successful flights, it became evident that the helicopter was 

more difficult to fly than almost any other type of aircraft (Carey, 1986). This 

is due to the inherently unstable characteristics of the helicopter. It wasn't 

until years later with hydraulically boosted, stability augmentation systems, 

computer-assisted controls and autopilots that the large helicopter became 

easier to fly. 

The most basic type of helicopter automation is stability and control 

augmentation (Hart, 1988). This permits a pilot to stabilize a helicopter in an 

established trim condition as flight conditions or tasks require. For example, 

in high speed flight, turn coordination and speed, altitude, and altitude-hold 

are necessary to permit pilots to perform other duties (Hart, 1988). During 

low-speed flight, sensors are required to detect small deviations in speed, 

position, heading, and altitude to provide a stabilized hover without 

continuous pilot inputs (Prouty, 1986b). Control augmentation is essential in 

low-visibility, nap of the earth operations conducted with helmet-mounted 

displays (Aiken, 1984). Recently, the focus of technology has moved from 

automating these inner-loop control tasks to outer-loop, higher-order tasks 

(Hart, 1988). 

Advanced controls and cockpit displays have taken shape in modern day 

helicopters. Multi-function displays are replacing the traditional single-

purpose instruments. Weather, flight path and terrain information can be 

exhibited on one display. Consequently, the number of individual displays in 
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advanced cockpit designs are significantly reduced in comparison to the 

number of instruments and displays (in past helicopters) (Hart, 1988). 

Helicopter automation has reached a pivotal point in development, because 

of receiving great attention from the human factors community. Bob 

Spaulding, an engineering test pilot with Sikorsky on the S-92 program, 

states, "The point we've reached in cockpit design today, is that we're 

relatively happy with the data processing speed, the software, and the quality 

of the displays. Now we have to confront the man-machine relationship 

head-on" (Harvey, 1993). 

From a human factors viewpoint, the implications of cockpit automation 

are an unsettled topic. Technology has allowed automation of functions 

once performed by humans to computers. High-speed processing and 

increased data throughout is allowing helicopter avionics developers to tailor 

next-generation equipment to mission needs more closely than ever before. 

(Harvey, 1993). Despite the reduction of certain human errors, it appears that 

automation may set the stage for new types of errors, such as failures in 

programming or mode awareness (see Wiener, 1991). 

Human factors considerations, presentation of displays, and cleaner cockpit 

arrangements of switches all are on the verge of receiving much greater 

attention than previously provided by helicopter avionics designers (Harvey, 

1993). Developing helicopters include automated functions to "reduce 

workload," however it's questionable whether automation is being added 

randomly, without a broad understanding of the consequences. "Automation 

for the sake of automation" is not reason enough to utilize this technology. 

Hamilton (1997) states that over-automation can lead to the pilot not being 

aware of what the helicopter is doing, what his limitations are, and leave him 

helpless when the automation fails. 
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Helicopter automation will continue to evolve. According to Sandra G. 

Hart, considerable research is still needed to define the role pilots should 

play, and to determine where computer aiding, automation, and "expert" 

systems can provide the most benefit (1988). Along with these technological 

advances comes a removal of the pilot further from the actual manipulation 

of the aircraft. This evolution is illustrated in Figure 1. "As automation 

levels increase, the crew is less able to understand and control the automation 

with the result that workload increases and awareness drops" (Hamilton, 

1997). With these technological advances that remove the pilots further from 

direct control of the aircraft, crew resource management training will become 

more important than ever. 
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Automation and Aircrew Communication 

In the last fifteen years because of the increase in automated flight-decks, 

research has begun to address the effect of automation on crew 

communication. Recent studies of crew communication in modern "all 

glass" cockpits support the argument that changes in the design of displays 

and controls result in significant changes in cockpit communication (Costley, 

Johnson, & Lawson, 1989). 

Earl Wiener and other researchers were the first to raise the concern that 

cockpit automation may not lead to an improvement in crew coordination. 

In fact crew communication and coordination may gain more importance in 

automated systems (Jentsch & Bowers, 1996). Wiener (1984) stated that "the 

insertion of automatic devices into man-machine systems inevitably raises 

questions . . . which probably apply to helicopters as well as transport aircraft. 

He identified the psychosocial aspects of automation as an important research 

area. 

Only two studies have been conducted that collected data during actual 

airline operations. In 1989, a study was conducted in which communication 

rates were compared in three aircraft with increasing levels of automation, 

the B737-200, B737-300, and B757 (Costley et al., 1989). It was found that 

significantly fewer questions were asked in the highly automated B757 

cockpit. Night operations also produced a lower rate of communication 

among crews in the B757. (The results were based on total communication as 

opposed to communication interactions between the pilots). The researchers 

concluded that there is a trend toward lower inter-pilot communication as 

the degree of cockpit automation increases (Costley et al., 1989). 

Lyall (1992) investigated the effects of mixed-fleet flying on pilot 

performance by collecting data during jump-seat observations on the B737-200 
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and B737-300. The results indicated that pilots flying mixed trips (flew both 

the B737-200 and the more automated B737-300) generally engaged in more 

flight-relevant talking between them than did pilots flying pure trips, (flew 

only the B737-200 or B737-300 over three days). No significant differences in 

flight-relevant talking were found when simply comparing the two aircraft 

types (Lyall, 1990). 

Wiener (1991) investigated the effects of automation on crew coordination 

and communication by comparing the performance of crews flying the DC-9 

and the MD-88 aircraft. It was found that the more automated MD-88 

imposed greater workload. Wiener theorized (1989) that the roles and 

responsibiUties of crew members change when automation is introduced into 

the aviation task. 

In 1993, a succeeding analysis showed that crew members in the MD-88 

aircraft (highly automated) demonstrated significantly more frequent 

communications with more questions being asked in the MD-88 (Veinott & 

Irwin). Researchers concluded that automatic systems seem to result in a 

shift in workload rather than a decrease. 

Segal (1993) addressed the connection between automation design and 

group dynamics. The data utilized in this study were video and crew 

performance measures recorded in 1990 at NASA Ames' Advanced Concept 

Flight Simulator. The study found that a reduction in the overall speech 

among crew members occurred in the automated cockpit. 

Simulator studies have collected data on automation and crew 

communication as well. Researchers concluded that it is possible to create 

manipulations of automation in low fidelity simulations which possess 

sufficient psychological fidelity to allow useful research, if care is taken in 

developing the experimental scenario (Bowers, Jentsch, & Salas, 1995). 
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A 1992 study which utilized a low-fidelity simulation concluded that 

automation appeared to require reallocation of the crew coordination 

behaviors (Thornton et al., 1992). 

A subsequent study by Bowers extended the investigation of automation 

effects to general aviation. He tested subjects with a low-fidelity tabletop 

system used to simulate a Cessna 210 aircraft (1995). The communication 

between the crew members were analyzed. The results suggested that the 

incorporation of the automated system is associated with changes in the 

communication patterns initiated by each of the crew-members (Bowers, 

1995). Essentially, the nature of communication varies with changes in the 

demands of the task. 

No studies were found in the literature that addressed the impact of 

automation on rotary-wing crew communication. 

Statement of the Hypothesis 

The research evidence suggests that there may be a change in crew 

communication on the automated versus standard flight deck. It is 

hypothesized that there will be significant differences between the 

communication amount and content of the pilots in the automated and 

manual scenarios under varying conditions of workload. More specifically, it 

is hypothesized that there will be a significant decrease in communication 

amount and content in the automated scenarios. This hypothesis is based 

upon consistent findings in the fixed-wing literature which point to an 

underlying model of the "need" to communicate being lower in the context 

of automation, or perhaps automation masks the "need" to communicate. 

This study could support a null hypothesis, in which case, communication 

content and amount remained the same in both the automated and manual 
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scenarios under varying conditions of workload. This study could support a 

second null hypothesis in which communication amount and content 

increases in the manual scenario's xmder varying conditions of workload. 



METHOD 

This study explored the effects of automation on crew communication in 

an S-76 low-fidelity desktop simulated helicopter. Two derivatives of the 

aircraft were simulated: the automated S-76B helicopter versus the non-

automated S-76B helicopter. 

Subjects 

Subjects were drawn from Embry-Riddle Aeronautical University's 

student population and were also sought from helicopter flight schools in the 

local and extended Florida area. 

Pilots were randomly assigned to two-person crews. A change in crew 

occurred if pilots had previously flown together as a crew. All subjects held a 

minimum of a current private pilot helicopter rating. 

Each of the fourteen crews were composed of a pilot and co-pilot. The pilot 

had the responsibility of flying the mission and was given the responsibility 

for all final decisions made by the crew. The pilot was in command of the 

aircraft. The copilot was responsible for maintaining air traffic control 

conununications, copying clearances, accomplished checkUst items and other 

tasks as directed by the pilot. The copilot was responsible for programming 

the radios, autopilot (if necessary), and instruments. All of this was 

accomplished through pointing and clicking on the appropriate instrument 

with the mouse, and utilizing a keyboard. 

Demographic information was available for all the crews, and is 

summarized in Table 1. 

16 



17 

Table 1 Crew member Demographics 

CREW POSITION 

Pilots 

Mean 

SD 

Min 

Max 

Copilots 

Mean 

SD 

Min 

Max 

AGE (Years) 

42.28 

11.78 

23.00 

60.00 

35.28 

10.60 

23.00 

60.00 

TOTAL HELICOPTER 
FLYING TIME (HOURS) 

2977.92 

870.00 

95.00 

10000.00 

794.78 

993.34 

125.00 

4000.00 

Out of a total twenty-eight subjects, two were female. Eight out of the 

twenty-eight subjects were previously Army heUcopter pilots. Three of the 

total subjects were active airline pilots. All but two of the subjects were 

instrument rated, and six of the total subjects had Air Transport Pilot ratings. 

Only three subjects had experience flying highly automated (EFIS & FMS) 

helicopters (Sikorsky 76C+). A total of four subjects had experience flying a 

highly automated Level D Helicopter simulator. These simulators included 

the S-76C, AH-64, and AH-1. Two of the subjects had previously flown 

offshore oil support. 
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Instrument 

A low-fidelity desktop simulator was used to simulate a Sikorsky S-76B. 

The hardware consisted of one CPU, two computer monitors, three headsets, 

a mouse, a cyclic(joystick), collective, and a video camera and recorder. The 

monitors were connected to a video splitter, allowing both to run off the 

same CPU. The joystick was used as the cyclic, and a collective was integrated. 

This particular collective was obtained from FlightLink and was compatible 

with the software. A partitioner to divide the pilot and copilot was installed 

in between subjects. The purpose for the partitioner was "to create 

interdependence in the two-person crews" (Bowers, Salas, Prince & Brannick, 

1992). Essentially, the task is divided so that each crew member has specific 

responsibilities as well as overlapping functions (Bowers et al., 1992). The 

pilot flew the simulated program and made input to the computer with a 

joystick acting as the cyclic and a collective that was mounted to the floor. 

The copilot made input to the simulated program via a keyboard and mouse. 

ResponsibiUties of the copilot included changing frequencies and instrument 

settings, screen views, as well as the setting of the autopilot. 

The instrument set up for this research was based upon a low-fideUty 

paradigm used to study teams outUned by Bowers, Salas, Prince, and Brannick 

(1992). This model is outlined in Figure 2. 

The simulation software that was used for this research was X-Plane/X-

Rotor by Laminar Research. This software was chosen because of if s 

heUcopter cockpit software and aUowed the experimenter to alter the cockpit 

from manual to automated and manipulate weather changes. 
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Monitor 1 

D 

COPILOT STATION 

Monitor 2 

dF-d 

B. 
PILOT STATION 

A. Video splitter 
B. Audio mixer 
C. Camcorder 
D. Keyboard 
E. Joystick/cyclic 
F. Headsets 
G. Collective 

Figure 2. Schematic illustration of the low-fidelity 
simulation research paradigm. 
(from Bowers, Salas, Prince & Brannick, 1992). 
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Design 

The design and procedure for this study will parallel the procedures 

conducted by Bowers in 1995, while conducting a study entitled "Impact of 

Automation on Air crew Communication and Decision-Making 

Performance." In that study pilots were assigned to two-person crews and 

asked to fly a simulated mission in either automated (autopilot engaged) or 

manual conditions using a low-fidelity desktop simulator. 

In this study seven crews were assigned to the automated condition in 

which they were instructed to fly as much of the scenario as possible with the 

simulator's autopilot engaged. The autopilot consists of directional GPS 

integration, altitude and vertical speed hold. Seven crews were also assigned 

to the manual condition in which they were instructed not to use the 

autopilot function. 

Experimental Scenario 

Each crew flew a scenario designed specifically for this research project. The 

scenario was one which began as a VFR flight and degraded into a high 

workload IFR flight. All subjects received the same script for the experiment. 

Each crew was instructed that their mission involved flying from a 

departure airport (Daytona Beach -DAB) to land at a second airport(MCO-

Orlando Executive). When subjects stated that they were ready to begin, they 

were given a clearance. The study began at that point. 

The scenario involved a period of increased workload while enroute. The 

scenario started as a marginal VFR approach which degraded into an IFR 

approach as crews approached their destination airport. Weather was pre­

programmed before the experiment to meet VFR conditions with weather 

slowly deteriorating into the flight. 
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The scenario began when the crew encountered a deteriorating weather 

condition along the route. Crews were informed of this initially through a 

call to listen to the ATIS in which they heard the following: "Executive 

Information Juliet, 1 Hundred Zooloo Weather, Measured Ceiling 2300 

overcast, visibility 3, temperature 59, dewpoint 54, Winds 360 at 32, arriving 

and departing runway 25, advise on initial contact you have Juliet." The 

weather conditions up to this point had been very good. The ATIS call is the 

first step in a deteriorating weather condition. At this point, crews must 

decided weather to continue on, change their approach, return to departure 

airport, or decide if other actions are needed. The second step in the 

deteriorating weather condition is revealed to the crew after they contact 

Orlando approach in which they are told: "Sikorsky 8375Tango, weather 

deteriorating in approach area, wind 050 at 32, runway 7 in use, contact tower 

on 118.7." At this point, the crew must decide whether it is safe to continue 

flying and what other actions are required by them. The change in weather 

conditions requires the crews to utilize Instrument Flight Rules. And the 

high winds are a significant factor that act to deter the crew and provide 

significant information for them to consider as a helicopter crew. Crews 

must also decide at this point whether to check weather at alternate airports. 

Fuel remaining also becomes a more significant factor at this point in the 

scenario. The third step in the degradation of the weather is the call from the 

Airport Tower informing crew that "8375Tango, Orlando Executive closed 

due to convective weather and windshear in the area, proceed to alternate 

airport." This is a high workload task requiring crews to locate alternate 

airport(s), tune the VOR, locate frequencies, re-program autopilot, check 

maps/approaches, etc... Crews must also decide whether to communicate to 

the air traffic control agency. 
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Each of the crews communicated information orally during scenarios. It is 

important to note that the actual videotape segments varied in length because 

of the choices and different ways in which crews performed the flight. These 

differences in the duration of videotapes required that a twenty-five minute 

"chunk" be taken from each scenario for analyses. 

Procedures 

Before the scenario, subjects completed a background/demographic 

information form. Subjects were randomly assigned to the position of Pilot 

or Copilot-pilot and were allowed to perform practice scenarios that involved 

familiarizing themselves with the simulator. Crews were randomly assigned 

to flight condition (manual or automated). Subjects assigned to the 

automated scenario were given training on the use of the autopilot and were 

instructed to use the autopilot as much as possible during the experiments. 

Subjects in the manual scenario were instructed not to use the autopilot 

feature. After the practice scenario, subjects were given a short scenario to fly 

in which they were required to meet a standard baseline of performance. 

After training criteria were met, subjects were given a short break. Upon 

their return, subjects were given time to flight plan and conduct a "pretakeoff 

briefing" before the experiment began. All the charts, sectionals, and approach 

plates that subjects needed were supplied for them. Subjects were instructed 

to inform the experimenter when the pretakeoff briefing was complete. 

When subjects were ready, they were given a clearance and the experiment 

began at that time. After the experiment subjects were debriefed by the 

experimenter. 



Training Criteria 

Initially subjects were allowed to "play" around with the simulator to 

familiarize themselves with it as well as to adjust the seat height to match 

their body position comfortably with the collective and cyclic. Subjects were 

given training and instruction on the desktop simulator and software. After 

the training, subjects were instructed to fly a short twenty-minute scenario in 

which they were required to meet certain training standards such as holding 

heading plus/minus 10 degrees, holding altitude plus /minus lOOfeet. The 

training criteria for the copilot consisted of demonstrating knowledge of how 

to operate the radios: Coml and Nav2 and autopilot. The co-pilot was also 

required to meet the criteria of using the keyboard for certain functions such 

as changing the view if the Pilot Flying commanded him/her to do so: 

"forward 30 degrees", "downward 50 degrees", "backward view", etc... For 

example, to change screen downward 50 degrees, keyboard function F5 

accomplished this. These training criteria was set forth to insure steady state 

performance from subjects as opposed to being somewhere on the learning 

curve. 

Data Collection 

The scenarios were monitored. Audio and video tape provided the 

primary means of data capture by recording all verbal transactions that 

occured between crew members. 

Communication Coding and Coder Training 

Communication content was coded by three trained raters. Raters received 

training designed to familiarize them with the categories and to facilitate 



reliability. The coder training was based on the technique utilized by Bowers, 

Deaton, Oser, Prince, & Kolb (1995). 

Coder training included: 

• a brief overview of the project 

• an overview of the coding form 

• an overview of the two scenarios 

• an explanation of the definitions and examples of the nine target 

behaviors (SEE TABLE 2) 

• practice coding sessions 

• a discussion on how to handle the ambiguous communications. 

Communication Categories 

Communication content of the participants were coded using a nine-

category coding system, and was adapted from (Oser et al, 1991). SEE TABLE 2. 

The categories were based on the findings of previous aircrew 

communication literature (Oser et al, 1991). The categories were: commands, 

observations, suggestions, statements of intent, inquiries, acknowledgments, 

replies, non-task related, and uncodable communications. 

Commands - Commands are specific assignment(s) of responsibility by one 

group member to another (Foushee & Helmreich, 1988). Although the pilot 

or co-pilot can issue commands, it is typically the pilot in command of the 

aircraft that initiates commands. "Commands serve as a means to 

communicate information related to the division of labor and delegation of 

duties" (Oser, et al. 1991). Commands are also used to communicate 

information about the specific task to be accomplished, its timing, and 

relative priority compared to other tasks (Jensen, 1986). Foushee et al. (1986) 

points out that commands appear to have a coordinating effect on crew 



performance because of their strong influence on subordinate crewmember 

actions. 

Observations - Observations are remarks made by crewmembers aimed at 

orienting others to some aspect of flight status such as references to 

instruments or navigation (Foushee & Manos, 1981). This type of 

verbalization provides information about what a crewmember has seen, 

heard, perceived and is characteristic of their awareness of some aspect of 

flight status. Oser et. al. (1991) note that crewmembers often communicate 

what is taking place internal and external to the aircraft and that the 

observations verbalized provide input for the crewmembers to act upon. 

Suggestions - Suggestions are recommendations for a specific course of 

action (Foushee, Lauber, Baetge, & Acomb, 1986) or the introduction of an 

idea for consideration from one crewmember to another (Jensen, 1986). 

Suggestions involve a recommendation or an idea put forth by one 

crewmember to the other about a flight topic (Oser, et al., 1991). 

Statements of Intent Statements of intent are announcements of intended 

actions, present or future, by the speaker (Foushee et al., 1986). These types of 

communication occur prior to the crew performing a duty and include tasks 

or specific actions such as navigational, tactical or procedural (Oser et al., 

1991). Statements of intent keep other crewmembers informed about actions 

that either the speaker or crew is about to undertake (Jensen, 1986). Foushee 

et al. (1986) suggested that statements of intent reflect the amount of overall 

coordination between crewmembers. 

Inquiries Inquiries are requests for information in regards to some aspect 

of flight status (Foushee & Manos, 1981) or for assistance on a particular task 

(Jensen, 1986). Communication of these type are information seeking 

behaviors designed to elicit assistance from others and are generally in the 
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form of a question (Oser et al., 1991). Inquiries are used by crewmembers to 

formally request inputs from each other and obtain needed information 

about a task (Oser et al., 1991). 

Acknowledgments - Acknowledgments are recognitions of a given 

communication (Foushee & Manos, 1981). They provide an indication that a 

prior speech act was heard, but do not supply any additional information or 

evaluative response (Foushee et al., 1986). Typical acknowledgments are 

"yeah," "okay," or "roger." These types of communication are important 

because they are informative in nature and let the other crewmember know 

that his/her communication was received. Acknowledgments tend to 

reinforce the interaction process (Foushee et al. 1986). 

Replies - Replies are statements used to respond to an inquiry, suggestion, 

or other communication that involves more information than a simple 

acknowledgment (Kanki et al., 1987). Replies provide more information than 

a simple acknowledgment. Also, replies may provide an indication to the 

sender of a message that information has been properly understood or 

accurately received (Oser et al., 1991). 

Non-task related These types of communication are unrelated to the 

flight task at hand. These behaviors include all socio-emotional 

communications exhibited between crewmembers (Oser et al., 1991). Non-

task related communications include incidents of embarrassment, tension 

release, humor, frustration, etc. (Oser et al., 1991). Non-task related 

communications accounted for a very small percentage of the total 

communications in this investigation. 

Uncodable "These communications include interactions that can not be 

classified, either because no accurate category exists or because they are 

unintelligible" (Oser et al., 1991). Less than 6.9% of all the communications in 



this study were uncodable. Uncodable communications result from a 

crewmember mumbling or malfunctioning radio equipment or two 

crewmembers trying to talk at the same time. Oser et al. (1991) notes that the 

presence of uncodable communication may be suggestive of difficulties that 

exist in the interaction process between crewmembers. 

Each of these categories was analyzed separately. The commimication 

content results were used as dependent variables to explore how the content 

of communication was affected by crewmember position and type of flight: 

manual or autopilot. 



TABLE 2 
COMMUNICATION CATEGORIES, DEFINITIONS, AND EXAMPLES 

(Bowers, Deaton, Oser, Prince, & Kolb, 1995) 

Category 
Commands (CMD) 

Observations (OBS) 

Suggestions (SUG) 

Statements of Intent 
(SOI) 

Inquiries (INQ) 

Acknowledgments 
(ACK) 

Replies (REP) 

Nontask related (NTR) 

Uncodable (UNC) 

Definition 
Specific assignments of 
responsibility by one group 
member to another. 
Remarks made by 
crewmembers aimed at 
orienting others to some 
aspect of flight status, such as 
references to instruments, 
environment or navigation. 
Recommendations for a 
specific course of action or the 
introduction of an idea for 
consideration from one 
crewmember to another. 
Announcements of intended 
actions, present or future, by 
the speaker. 
Requests for information 
regarding some aspect of 
flight status. 
Statements that are u sed to 
reply to an inquiry, 
observation, or other 
communication that only 
indicates that a 
communication was received. 
Statements used to respond to 
an inquiry, suggestion, or 
other communication that 
involves more information 
than a simple 
acknowledgment. 
Any speech acts referring to 
something other than the 
present task. 
Any speech acts that are 
unintelligible or 
unclassifiable with respect to 
the present coding scheme. 

Examples 
"I need timing there please" 
"You need to come a little bit 
to the right here." 
"Altitude looks good." 
"And I got you at about 100 
feet prior." 
"We're starting to go in and 
out of the clouds here." 

"I don't think this is gonna 
get us there " 
"And you might want to let 
ATC know that we're 
heading back." 
"Okay, I'm coming right." 
"I'm gonna change us to 
operations." 
"What supply are we picking 
up next?" 
"When do we call?" 
"You say 13?" (OBS) 
"Roger." (ACK) 
"Lewis is next?" (INQ) 
"Yeah" (ACK) 

"What's our ETA?" (INQ) 
"11:47:34" (REP) 
"Slow down your airspeed." 
(CMD) 
"Slowing down to 80knots." 
(REP) 
"I'm not comfortable here." 
"Good call Joe, you read my 
mind." 

". . . righf 
'The cards there." 



ANALYSIS 

Video tapes were randomized when played back for analysis coding so as to 

conceal the flight condition (automated or manual) to the raters. The 

transcripts were categorized using a nine category coding system adapted from 

Oser et al. (1991). The communication content of the subjects' speech were 

transcribed onto coding forms. Raters were given the task of categorizing 

speech acts into one of nine categories: commands, observations, suggestions, 

statements of intent, inquiries, acknowledgments, replies, non-task related, 

and uncodable communications. The data from the coding sessions indicated 

that raters could perform this task with acceptable levels of agreement (the 

average inter-rater r was .84). 

The hypotheses of how crew communication content is affected by pilot 

position and automation level was examined using a Multivariate Analyses 

of Variance (MANOVA). A MANOVA was selected because multiple 

dependent variables (i.e., nine communication content categories) were 

assessed. Advantages to using MANOVA instead of multiple one or two-way 

variance (ANOVA) is that MANOVA can reveal differences not shown in a 

series of individual ANOVAs and MANOVA can provide increased 

protection against Type-1 errors (Oser, et al. 1991). 

The MANOVA focused on assessing changes in the frequency of the 

communication content measures (i.e., dependent variables) as a function of 

crew member position (i.e., pilot, copilot) and flight level (i.e.,manual, 

automated). 
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Results 

The results of this research are discussed in two sections. The first section 

provides the results of descriptive analyses (i.e., totals, means, standard 

deviations) performed for the communication patterns. The descriptive 

analyses provide a preliminary examination of the general nature of 

heUcopter crew communication. 

The second section of the results investigates how communication content 

is affected by pilot position (pilot vs. copilot) and flight requirement (manual 

vs. automated). These results emphasize the relationship between 

communication and automation level. The results of this analysis identify 

specific types of communication content that are associated with the flight 

type: manual or automated. 

Descriptive Analyses 

Frequency-based Communication Content 

Using the nine category classification system, a total of 3012 transcript lines 

were coded for the fourteen crews (mean=253 lines /crew). The means and 

standard deviations for the frequencies of communication content during 

manual and automated flight scenarios are presented in Tables 2 and 3. 

Preliminary analyses indicated that a higher frequency of total 

communications was demonstrated during manual flights (1771 lines in 

manual vs. 1241 in automated). The mean frequency of communications 

during the manual and automated flights were 126.5 (manual) and 88.6 

(automated). 

Observations were the most frequently coded communications initiated by 

both crew members during manual and automated flights. Observations 

accoimted for 24.4% of the total communications during manual flights and 
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26.5% of the total communications during automated flights. In comparison, 

the initiation of suggestions were the least frequently coded type of 

communication during the manual flights, accounting for only 5.4% of the 

total communications in manual flights. The initiation of non-task related 

communications were the least frequently coded type of communication 

during the automated flights, accounting for only 1.4% of the total 

communications, respectively. 



Table 3 
Means and Standard Deviations (SD) For Frequencies of Communication 

Content By Crew members During Manual Flight. 

Pilots 
Freq. 
Mean 
SD 
CPs 
Freq. 
Mean 
SD 
Crew 
Freq. 
Mean 
SD 

CMD 
232 

31.71 
13.32 

21 
3.00 
1.63 

253 
17.35 
17.46 

OBS 
185 

26.42 
8.81 

248 
35.42 
9.64 

433 
30.92 
10.02 

SUG 
50 

6.71 
2.43 

47 
6.71 
2.28 

97 
6.71 
2.26 

SOI 
63 

9.00 
3.74 

84 
12.57 
3.40 

147 
10.78 
3.90 

INQ 
95 

13.57 
5.62 

90 
12.85 
2.26 

185 
13.21 
4.13 

ACK 
109 

15.57 
7.76 

192 
27.42 
5.79 

301 
21.50 
9.01 

REP 
61 

8.71 
4.02 

99 
14.14 
3.48 

160 
11.42 
4.58 

NTR 
125 

15.28 
9.48 

56 
7.85 
2.96 

181 
11.57 
7.77 

UNC 
5 

.7143 
1.49 

9 
1.28 
1.79 

14 
1.00 
1.61 

Table 4 
Means and Standard Deviations (SD) For Frequencies of Communication 

Content By Crew members During Automated Flights. 

Pilots 
Freq. 
Mean 
SD 
CPs 
Freq. 
Mean 
SD 
Crew 
Freq. 
Mean 
SD 

CMD 
171 
24.42 
7.63 

3 
.4286 
.5345 

174 
12.42 
13.49 

OBS 
179 
25.57 
9.67 

150 
21.42 
4.07 

329 
23.5 
7.44 

SUG 
55 
7.85 
3.07 

22 
3.14 
2.67 

77 
5.50 
3.69 

SOI 
82 
11.71 
3.54 

59 
8.42 
2.07 

141 
10.07 
3.26 

INQ 
59 
8.42 
4.11 

59 
8.42 
2.99 

118 
8.42 
3.45 

ACK 
72 
10.28 
4.30 

135 
19.28 
7.15 

207 
14.78 
7.35 

REP 
59 
8.42 
1.90 

114 
16.28 
2.05 

173 
12.35 
4.49 

NTR 
12 
1.71 
.9512 

6 
" .8571 
.8997 

18 
1.28 
.9945 

UNC 
2 
.2857 
.4880 

2 
.2857 
.4880 

4 
.2857 
.4688 

Note. CMD=Commands; OBS=Observations; SUG=Suggestions; 
SOI=Statements of Intent; INQ=Inquiries; ACK=Acknowledgments; 
REP=Replies; NTR=Non-task related; UNC=Uncodable. 



Frequency-Based Communication Analyses 

This section of the results focuses on identifying the effects of crew 

member position and automation level on communication amount and 

content. A Multivariate Analyses of Variance (MANOVA) was performed to 

analyze the frequency data for each of the nine content categories. 

Multivariate tests yielded a significant effect among the nine categories, in 

terms of both main effects and their interaction. Through the use of Wilks' 

Lambda criterion for the data analysis, the content categories were found to be 

significantly affected by crew position [F (9,16) = 19.178, p<.05], automation 

level [F, 9,16) = 9.842, p<.05], and their interaction [F (9,16) = 3.037, p,.05]. 

Based on the significant results of the MANOVA, a series of univariate 

ANOVAs was performed to identify the specific dependent variables (i.e., 

communication content categories) that were affected by the independent 

variables (i.e., crew position, automation level) or their interaction. The 

results of the univariate ANOVAs are presented in Table 4. 

The univariate ANOVAs yielded significant main effects for the crew 

member position variable on five of the communication content categories 

(i.e., commands, suggestions, acknowledgments, replies, non-task related) and 

for the automation level variable on four of the communication content 

categories (i.e., observations, inquiries, acknowledgments, non-task related). 

In addition, three position-by-automation level interactions were found to 

be significant (i.e., observations, suggestions, statements of intent). 
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Commands 

The main effect for automation was not significant, nor was the interaction 

of pilot position X automation level. However, the main effect for pilot 

position was significant, F (1,27), = 81.452, p<.05. The mean command 

response rate for the pilots was 28.07, whereas the mean for the copilots was 

1.71. Figure 3 illustrates the main effect for pilot position on command 

responses. 
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responses as a function of pilot position. 
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Observations 

The main effect for automation was significant, F (1,27) = 5.50, p<.05. The 

mean for the manual condition was 30.92, whereas the mean for the 

automated condition was 23.50. 

Observation responses were produced .2444 (or 24.4%) of the time in the 

manual mode and .3083 (or 30.8%) of the time in the automated mode. 

The Pilot Position X Level of Automation interaction was significant, 

F (1, 27) = 4.306, p<.05. Figure 4 shows the Observation response rate as 

function of pilot position and level of automation. Essentially, figure 4 

displays that the mean for pilots in the manual condition was 26.42, whereas 

the mean Observations for pilots in the automated condition was 25.57. The 

mean Observations for copilots in the manual condition was 35.42, as 

compared to a mean of 21.42 for copilots in the automated condition. 
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Figure 4. Observation rate as a function 
of pilot position and automation level. 



Suggestions 

The main effect for automation was not significant. However, the main 

effect for pilot position was significant, F (1,27) = 5.604, p<.05. The mean 

suggestion response rate for pilots was 7.28 as compared to a mean of 4.92 for 

copilots. 

The interaction of Pilot Position X Automation level was significant, 

F, (1,27) = 5.604, p<.05. The mean number of Suggestions for the pilots in the 

manual condition was 6.71 and the mean for the automated condition was 

7.85. In addition, the mean number of Suggestions for copilots in the manual 

condition was 6.71 with a decrease to a mean of 3.14 in the automated 

condition. Suggestion response rate as a function of pilot position and level 

of automation is displayed in Figure 5. 

Figure 5. Suggestion response rate as a 
function of pilot position and automation 
l eve l . 



Statements of Intent 

The main effect for automation was not significant, nor was the main 

effect for pilot position. The interaction of Pilot Position X Level of 

Automation was significant, F (1,27) = 7.749, p<.05. Figure 6 shows the 

"Statements of Intent" response rate as a function of pilot position and level 

of automation. The mean number of "Statements of Intent" issued by pilots 

in the manual condition was 9.00 as compared to 11.71 mean statements of 

intent issued by pilots in the automated condition. The mean number of 

Statements of Intent issued by copilots in the manual condition was 12.57 and 

8.42 in the automated condition. 
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Inquiries 

The main effect for automation was significant, F (1,27) = 10.233, p<.05. 

The mean for the manual condition was 13.2143, whereas the mean for the 

automated condition was 8.4286. Figure 7 illustrates the main effect for 

automation. The main effect for pilot position was not significant, nor was 

the interaction of pilot position by automation level. 
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Acknowledgments 

The main effect for automation was significant, F (1,27) = 7.710, p<.05. The 

mean for the manual condition was 21.50, as compared to the mean for the 

automated condition which was 14.78. 

In addition, the main effect for pilot position was significant, 

F (1,27) = 18.600, p<.05. The mean for the Pilots in the manual condition was 

15.57, whereas the mean for the pilots in the automated condition were 10.28. 

The mean for the Copilots in the manual condition were 27.42, whereas the 

mean for the Copilots in the automated condition were 19.28. The interaction 

of pilot position and level of automation was not significant. Figure 8 

illustrates these main effects. 
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Replies 

The main effect for automation was not significant, nor was the Interaction 

between Pilot Position and Level of Automation. Yet, the main effect for 

pilot position was significant, F(l,27) = 34.09, p<.05. The mean reply response 

rate for pilots in the manual condition were 8.71, as compared to a mean reply 

response rate of 8.42 in the automated condition. The mean reply response 

rate for the copilots in the manual condition was 14.14, whereas the mean for 

the copilots in the automated condition was 16.28. Figure 9 illustrates the 

percentage of the response "replies" for pilot position and automation level. 

For example, in the manual condition, 6.5% of pilots' total speech acts were 

replies as compared to 8.5% in the automated condition. For copilots, 11.7% 

of their total speech acts consisted of replies, as compared to 20% in the 

automated condition. 
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as a function of pilot position and automation level 



41 

Non-task related 

The main effect for automation level was significant, F (1,27) = 29.49, p<.05. 

The mean number of non-task related speech acts was 11.57 in the manual 

condition, versus a mean response rate of 1.28 in the automated condition. 

The main effect for pilot position was also significant, F (1,27) = 4.783, 

p<.05. The mean number of non-task related responses for the pilots flying in 

the manual condition was 15.28, as compared to a mean of 1.71 in the 

automated condition. Also, the mean number of non-task related responses 

for the copilots-pilots in the manual condition was 7.85, as compared to a 

mean of .85 in the automated condition. Figure 10 illustrates the mean 

number of non-task related responses as a function of pilot position and 

automation level. 
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Uncodable 

None of the effects were significant. 



CONCLUSIONS 

The purpose of this investigation was to clarify the relationship between 

cockpit automation and helicopter crew communication. This study was 

designed based on previous research carried out with fixed-wing crews, but it 

was restructured to address helicopter crew issues. The conclusions that are 

presented here thus refer to the helicopter environment. However, some 

conclusions do parallel situations already recognized by research in this area 

with fixed-wing crews, therefore highlighting that some effects of automation 

are not unique to a specific flight platform. 

Overall, crews in the automated condition exhibited far less 

communication behaviors than crews in the manual conditions. The results 

suggest that the introduction of automation reduces the amount of cockpit 

crew communication used by crews. Another explanation for the decrease in 

overall communication in the automated conditions is that the automation 

"masks" the need to communicate. 

Automation Level, Pilot Position Interactions 

Observations 

The primary task of the pilot was to provide control inputs to the 

simulator to sustain the flight requirement. In the automated scenario, this 

task was changed to a monitoring of the controls and system. The results of 

the analyses showed that pilots exhibited higher rates of Observations in the 

manual conditions than did pilots in the automated conditions. This finding 



is somewhat surprising as the removal of the physical task of flying would 

increase the need for pilots to provide observations during automated 

conditions. The only explanation for the increased rates of observations on 

the part of the pilots in the manual must be due to other task requirements. 

A likely explanation is that although the copilot has taken over the task 

requirement of flying (essentially by programming and having control over 

the autopilot), the shift in workload has not occurred in a mutual way. That 

is, the pilot has not taken over the traditional monitoring and observing role 

in the automated scenario from the copilot. The pilot is still concerned with 

other tasks in the automated condition and does not willingly move into an 

observer role, or realize that his/her copilot is making fewer observations. 

The results of the analyses also indicated that pilots exhibited higher rates 

of Observations during automated conditions than did their copilots in the 

automated conditions indicating the shift in roles with the copilot becoming 

more active with the programming of the autopilot in flight and therefore 

less time to devote to observation. The introduction of automation changed 

the copilots role to that of a programmer of the autopilot. Essentially, it 

appears the copilots using an automated cockpit had less time to monitor and 

scan for traffic, with more "heads down" time with the programming of the 

autopilot (this is expressed in the decreased number of observations in the 

automated condition). 

The results also show that copilots exhibited higher rates of Observations 

in the manual conditions than copilots in the automated conditions. This is 

not surprising as the task of the copilots in the manual is one of an observer 

of flight status (as the pilot does most of the work in the physical task of 

flying). Again, it appears from the results that the copilot role changed from 

one of a observer in the manual condition to one of a programmer in the 



automated condition. Hence, the copilots' communication is indicative of 

the switch in roles. These results validate Wiener's theory (1989) that the 

roles and responsibilities of the crew members change when automation is 

introduced into an aviation task. 

Suggestions 

The results of the analyses indicated that pilots exhibited a higher rate of 

suggestions as compared to copilots during automated conditions. These 

results suggest that the incorporation of automation into the system relieves 

the pilot of the task of flying, thereby freeing up his/her resources and 

allowing more attention to be focused on decision-making and future courses 

of action(as indicated by the increased number of suggestions in the 

automated conditions). 

The role of the copilot as a "communicator of suggestions" was greater in 

the manual conditions as compared to copilots in the automated conditions. 

This indicates the shift in workload. Essentially, the copilots' workload 

became higher in the automated conditions as he/she had the responsibility 

of programming the autopilot in addition to traditional responsibilities. It 

appears that the copilot has less resources to lend to the decision-making task, 

as indicated by the decrease in suggestions under automation. 

Again, these results validate Wiener's (1989) hypothesis that roles and 

responsibilities of crew members change when automation is introduced into 

the aviation task. In essence, the nature of communication varies with 

changes in the demands of the task itself. 
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Statements of Intent 

The results of the analyses indicated that pilots initiated higher rates of 

statements of intent in the automated condition than did pilots in the 

manual condition. This finding is somewhat surprising because the need for 

pilots to make control inputs and therefore the need to inform their copilots 

of their intended actions should be reduced with the introduction of the 

automated system. Hence, it is reasonable to assume that the increased rate of 

statements of intent initiated by pilots in the automated conditions must be 

due to other task requirements. One likely explanation is that the pilots in 

the automated flight were stating more of their intended actions (going over 

their approaches, what they will do, etc..) to keep themselves in the loop of 

flying and their copilots informed. This could be observed in the videotapes 

of the automated conditions where the pilots exhibited almost a "nervous 

chatter" of intended actions as a result of the hands off (which is unusual for 

helo. pilots), autopilot flying. Their role became more of a manager and 

planner as a result of the removal of the physical task of flying. The increased 

statements of intent in the automated conditions were composed of more 

future intended actions rather than present actions initiated. For example, in 

one crew, the pilot began to review his intended approach with his copilot 

once the autopilot was engaged. Several communications were initiated 

between the crew, most of which were composed of statement of intent by the 

pilot such as: "We'll do the 18right, and our decision height will be 540 

feet...upon station passage we'll do a right turn, etc..." 

OVERALL CONCLUSIONS 

The results of the analyses indicated that the roles (as indicated by the rates 

of observations, suggestions and statements of intent) for each of the crew 
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members were different as a function of whether the crew was performing in 

the automated or manual conditions. The roles shift as a function of the task 

demand (Bowers et. al., 1995). Overall, pilots exhibited far less 

communication in the automated conditions. However, the pilots role as a 

communicator of observations, suggestions and statements of intent was 

greater in the automated conditions than the manual. The results suggest 

that the incorporation of automation is associated with changes in the 

communication amount and content initiated by each of the crew members. 

In other words, the verbalization demands placed on pilots and copilots differ 

as a result of automation. 

In summary, the above results have led the researcher to accept the initial 

hypothesis and conclude that, within the helicopter environment, crew 

communication and therefore, crew coordination is influenced by 

automation under varying conditions of workload. 



RECOMMENDATIONS 

This investigation provided an initial understanding of how automation 

influences the unique communication patterns and characteristics of 

heUcopter pilots. Based on the findings, the following recommendations are 

proposed: 

1. A low-fideUty research paradigm was utilized for this study. Therefore, the 

first recommendation is to study the effects of automation in a full-motion 

simulator, with a LOFT type scenario to obtain a more reaUstic, high fideUty 

environment. 

2. Only one experimental scenario was utilized in this study. It would be 

beneficial to repeat this study design with different scenarios. For example, 

the ASRS (Aviation Safety Reporting System) frequently cited incidents that 

occurred in congested cities. It would be beneficial to understand how 

different terrain's affect the use of automation. To illustrate, many of the 

former Army heUcopter pilots in this study considered automation a benefit 

to long-range missions such as offshore oil support and Coast Guard 

operations, and a hazard to other types of heUcopter flying, such as in 

congested cities or short flights. 

3. This study made no distinction between military and civilian trained 

heUcopter pilots. MiUtary pilots receive some form of ACT (Aircrew 

Coordination Training) and were very cognizant of crew coordination in this 

study, whereas most of the civiUan helicopter pilots had Uttle or no CRM 

training. Although this aUowed for a good representative sample of 



commercial heUcopter pilots flying today, it would be beneficial to study the 

effects of automation on crew coordination in a miUtary setting as weU as in 

the commercial (civilian) heUcopter market. Essentially, the use of 

automated systems is driven by mission requirements in the miUtary. It 

would be beneficial to understand the result of this technology on crew 

coordination with the goal of implementing the findings into Aircrew 

Coordination Training for crews flying highly advanced heUcopters. 

4. To the researcher's knowledge, automation effects on crew coordination 

are not taken into account in Helicopter CRM (Crew Resource Management) 

training programs. This might caU for a unique program or an addition to 

CRM programs to address this issue. 
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HELICOPTERSTUDY 

MINIMUM REQUIREMENTS ARE A PRIVATE PILOT 
LICENSE. 

1. Helicopter pilot Certificates and Experience: 

private commercial instrument 
ATP 

other (please explain): 

Flight Time Total: 

Last 90 days: 

2. Were you trained as a helicopter pilot in the military? no yes 
If yes, what helicopter(s) are you certified in? 

3. Do you have any experience flying a highly automated 
helicopter(s)? (automated = EFIS and FMS) no yes 
(If yes, please elaborate on type of helicopter and automated systems): 

EXPERIMENT WILL CONSIST OF FLYING A SIMULATED HELICOPTER 
SCENARIO IN A TWO-PERSON CREW. A DESKTOP SIMULATOR WILL 
BE USED TO SIMULATE A SIKORSKY S-76B HELICOPTER. THE 
EXPERIMENT SHOULD TAKE APPROXIMATELY 1 HOUR TO COMPLETE. 

Name (Print): 
Phone: 
E-mail: 
Primary language: 
Date of Birth: 

- HELICOPTER 

instructor 
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CREW CONCEPT BRIEFING 

PILOT 

You have been randomly assigned to the position of PILOT. 

Responsibilities include making control inputs into the simulator with 

respect to the course and altitude, airspeed, etc... For the purposes of this 

study this also means that you are the PIC. Pilot in Command is responsible 

for the conduct and safety of the flight. PIC designates pilot flying and copilot 

duties. 
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CREW CONCEPT BRIEFING 

COPILOT 

You have been randomly assigned to the position of COPILOT. 

Copilot maintains ATC communications, copies clearances, accomplishes 

checklists and other tasks as directed by the Pilot (PIC). 

Through the use of a keyboard and mouse, the instruments, radio settings, 

and autopilot functions can be manipulated. 
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ASSIGNED MISSION 

YOUR MISSION IS TO FLY FROM DAYTONA BEACH AIRPORT (DAB) TO 

ORLANDO EXECUTIVE AIRPORT (ORL). 

Do not use the Autopilot function to fly the scenario. 

Your alternate landing airports are: 

Orlando Sanford (SFB) 

All the charts, sectionals, and approach plates that you need will be supplied 

for you. 

You will now have fifteen minutes (or more if needed) to conduct a preflight 

briefing as a crew: 

-review departure procedures (route and altitude) 

-review required callouts 

-ask your crewmember if there are any questions. 

PLEASE INFORM THE EXPERIMENTER WHEN YOU ARE FINISHED WITH 

THE PREFLIGHT BRIEFING. 



APPENDLX E. ASSIGNED MISSION SHEET FOR AUTOMATED 
CONDITION 
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ASSIGNED MISSION 

YOUR MISSION IS TO FLY FROM DAYTONA BEACH AIRPORT (DAB) TO 

ORLANDO EXECUTIVE AIRPORT (ORL). 

Fly as much of the scenario as possible with the simulators Autopilot 

engaged. 

Your alternate landing airports are: 

Orlando Sanford (SFB) 

All the charts, sectionals, and approach plates that you need will be supplied 

for you. 

You will now have fifteen minutes (or more if needed) to conduct a preflight 

briefing as a crew: 

-review departure procedures (route and altitude) 

-review required callouts 

-ask your crewmember if there are any questions. 

PLEASE INFORM THE EXPERIMENTER WHEN YOU ARE FINISHED WITH 

THE PREFLIGHT BRIEFING. 
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DEPARTURE CHECKLIST 

Pilot flying calls for checklist items and copilot "reads back" item as action 
is completed. Pilot flying must complete departure checklist. 

1. SEAT ADJUST (Both) 
2. FUEL CHECK (Copilot) 
3. TRIM CENTERED (Pilot) 
4. ATIS (120.5) COPIED (Copilot) 
5. ALTIMETER SET (Copilot) 
6. CLEARANCE (119.3) RECEIVED (Copilot) 
7. NAVs SET (Copilot) 
8. HEADING AND COURSE BUG SET (Copilot) 
9. DME SET (Copilot) 
10. TRANSPONDER SET (Copilot) 
11. DEPARTURE BRIEFING COMPLETE (Pilot) 
12. COM TO TWR. (120.7) SET (Copilot) 
13. REQUEST TAKEOFF COMPLETE (Copilot) 

(Begin flight by clicking yellow "paused" button.) 
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DEPARTURE CHECKLIST 

Pilot flying calls for checklist items and copilot "reads back" item as action 
is completed. Pilot flying must complete departure checklist. 

1. SEAT ADJUST (Both) 
2. FUEL CHECK (Copilot) 
3. TRIM CENTERED (Pilot) 
4. ATIS (120.5) COPIED (Copilot) 
5. ALTIMETER SET (Copilot) 
6. CLEARANCE (119.3) RECEIVED (Copilot) 
7. NAVs SET (Copilot) 
8. HEADING AND COURSE BUG SET (Copilot) 
9. DME SET (Copilot) 
10. TRANSPONDER SET (Copilot) 
11. DEPARTURE BRIEFING COMPLETE (Pilot) 
12. COM TO TWR. (120.7) SET (Copilot) 
13. REQUEST TAKEOFF COMPLETE (Copilot) 
14. PROGRAM AUTOPILOT CHECK (Copilot) 

(Begin flight by clicking yellow "paused" button.) 
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ATC SCRIPT 

ATC calls are listed in order of first, second, etc... 

1. ATIS DAYTONA (120.05) : "Daytona Beach International -InformationXRay 
Zero Hundred Zooloo Weather. Sky clear, visibility 5, Temp. 59, Dewpoint 0. 
Wind 050 at 6. Altimeter 29.92. Arriving and departing runway 7 left. 
Advise on initial contact you have X-ray/7 

2. ATC CLEARANCE OUT OF DAYTONA: "8375Tango you are cleared as 
filed, maintain at or below 1500 initially, expect higher after that. Departure 
will be on 123.9. Squawk 4244. Advise when ready to takeoff/' 

3. TAKEOFF CLEARANCE: "8375Tango cleared for takeoff runway 7 left/' 

4. ONE MINUTE AFTER DEPARTURE: "8375Tango contact departure on 
123.9." 

5. DEPARTURE: "8375Tango, Radar Contact, climb to 2000 approved, proceed 
on course to Orlando Executive." 

6. ON COURSE, SEVEN MINUTES INTO SCENARIO: "8375Tango turn left 
20 degrees for traffic avoidance." 

7. ON COURSE, TWELVE MINUTES INTO SCENARIO: "8375Tango, Proceed 
on course." 

8. ORLANDO EXECUTIVE ATIS (127.25) : "Executive Information Juliet. 1 
Hundred Zooloo weather, Measured ceiling 2300 overcast. Visibility 3. 
Temperature 59. 
Dewpoint 54. Wind 360 at 32. Arriving and Departing runway 25. Advise on 
initial contact you have Juliet." 

9. APPROACH CALL(124.8) : "8375Tango weather deteriorating in approach 
area, wind 050 at 32, runway 7 in use, contact tower on 118.7." 

10. TOWER CALL (118.7): "8375Tango, Orlando Executive closed due to 
connective weather and windshear in the area, proceed to alternate airport." 

11. ATIS FOR SANFORD ALTERNATE: "Orlando Sanford, Information 
November. Measured ceiling 3000, visibility 4 miles, temp. 59, dewpoint 56, 
wind 350 at 15. Altimeter 29.92. Arriving and departing runway 9 left. Advise 
on initial contact you have November." 
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KEY COMMAND INSTRUCTIONS - COPILOT/MANUAL 

Operating the system can be accomplised in two ways: (1) By pointing and 

clicking with the mouse, or (2) Using the keyboard command equivalents 

listed below: 

(By depressing the key function on the left, the instrument on the right is 

manipulated). For example, press the "y" key and the heading bug turns left. 

Press the "u" key and the heading bug turns right. 

y u Heading bug 

n m Adjust OBS 

Views: 

Listed below are the keyboard command equivalents for views in the view 

menu. For example, pressing the "S" key results in the screen view shifting 

down 4 degrees. 

W Forward 

Z Backwards 

S Down 4 degrees 

X Down 8 degrees 

F Above 10 degrees 

R Above 40 degrees 

Q Left 

E Right 

Shift + Full screen without HUD 

Shift - Full screen with HUD 

= Zoom In 

Zoom Out 
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KEY COMMAND INSTRUCTIONS - COPII OT/AUTOMATED 
Operating the system can be accomplised in two ways: (1) By pointing and 
clicking with the mouse, or (2) Using the keyboard command equivalents 
listed below: 
(By depressing the key function on the left, the instrument on the right is 
manipulated). For example, press the "y" key and the heading bug turns left. 
Press the "u" key and the heading bug turns right. 

y u Heading bug 

n m Adjust OBS 

Autopilot commands: 
Shift + 1 Autopilot Disconnect 
Shift + 4 Autopilot Heading 
Shift + 5 Autopilot Nav Course 1 
Shift + 6 Autopilot Nav Course 2 
Shift + 7 Autopilot Altitude Hold 
Shift + 8 Autopilot Glide Slope 2 

Views: 

Listed below are the keyboard command equivalents for views in the view 

menu. For example, pressing the "S" key results in the screen view shifting 

down 4 degrees. 

W Forward 

Z Backwards 

S Down 4 degrees 

X Down 8 degrees 

F Above 10 degrees 

R Above 40 degrees 

Q Left 

E Right 

Shift + Full screen without HUD 

Shift - Full screen with HUD 

= Zoom In 

Zoom Out 
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