
Theses - Daytona Beach Dissertations and Theses

2008

Attitude Determination Using Imaging Lidar Attitude Determination Using Imaging Lidar

Camille Decoust
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/db-theses

 Part of the Aerospace Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Decoust, Camille, "Attitude Determination Using Imaging Lidar" (2008). Theses - Daytona Beach. 40.
https://commons.erau.edu/db-theses/40

This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at
ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an
authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/db-theses
https://commons.erau.edu/dissertation-theses
https://commons.erau.edu/db-theses?utm_source=commons.erau.edu%2Fdb-theses%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fdb-theses%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/db-theses/40?utm_source=commons.erau.edu%2Fdb-theses%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

Embry Riddle Aeronautical University

Aerospace Engineering Department

Master of Science Thesis

Attitude Determination Using

Imaging Lidar

by

Camille Decoust

Daytona Beach, 2008

UMI Number: EP32024

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform EP32024

Copyright 2011 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ATTITUDE DETERMINATION USING IMAGING LIDAR

by

Camille Decoust

This thesis was prepared under the direction of the candidate's thesis committee chairman, Dr.
Bogdan Udrea, Department of Aerospace Engineering, and has been approved by the members
of her thesis committee. It was submitted to the Aerospace Department and was accepted in
partial fulfillment of the requirements for the degree of Master of Aerospace Engineering.

THESIS COMMITTEE:

@*c*%^*b)
Bogdan Udrea, chairman

FrederiqueJDrullion, Member

^ u %==
Yec îpl Crispin, l\lember

JepJurtment pnair^Aerospace Engineering Date

Sociate Provosfiffor Academics, James Cunningham Date

Acknowledgements

The author wishes to express special thanks to her Thesis Advisor, Dr. Bogdan

Udrea, whose constant encouragement, helpful counsel and practical suggestions were

crucial to the successful outcome of this thesis. Appreciation is also due to Drs. Fred-

erique Drullion and Yechiel Crispin, Thesis Committee Members, for their assistance in

preparing this manuscript.

This statement of acknowledgment would be incomplete without an expression of

sincere appreciation and gratitude to both the author's friends, especially Julien Thivend

and Jeremy Hart and family for providing support and encouragement needed to com

plete the task.

ABSTRACT

Author: Camille Decoust

Title: Attitude Determination Using Imaging Lidar

Institution: Embry Riddle Aeronautical University

Degree: Master of Science in Aerospace Engineering

Year: 2008

The purpose of this study is to determine the attitude of an out of control object using

a new technology called lidar (Light Ranging and Detection). As the number of space

craft continues to grow, it is paramount to introduce a new type of autonomous on-orbit

satellite inspection and repair involving docking. Traditional space vision technology is

based on video systems. This method is limited by the necessity of operating when the

target is illuminated by the sunlight or using its own source of illumination. The use of

laser imaging technology offers an elegant solution to these challenges. This approach

allows the collection of range data, while scanning the lidar field-of-view together with

the transmitted laser beam across the required solid angle. A lidar simulator was im

plemented to generate point clouds of digital 3D models. This thesis describes methods

that can be used to detect features such as edges, boundaries, surfaces and corners in the

point cloud. From those features it was possible to define a reference frame and associate

it to the object. Observing the evolution of this body frame, the changes in orientation

can be deduced in the direction cosine matrix form. It was desired to retrieve angular

rates in Euler angle form but since the conversion from rotation matrix to Euler is not

a bijection, no satisfying results were obtained. The results are therefore expressed in

terms of rotation matrix. It was found that depending on the orientation of the space

craft the accuracy of the results varied. The results indicate that filtering of the direction

cosine matrices might yield good data for determining attitude rates.

Contents

Contents iii

List of Tables vii

List of Figures viii

Symbols and Abbreviations xi

1 Background: Literature Survey 5

1.1 Earth Observation Experiences with Lidars . 5

1.1.1 Lidar In-space Technology Experiment (LITE) 6

1.1.2 Mars Orbiter Laser Altimeter (MOLA) 6

1.1.3 Geoscience Laser Altimeter System (GLAS) 7

1.1.4 Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 7

1.1.5 Phoenix . 7

1.2 Future Projects . . 8

1.2.1 Atmospheric Dynamics Mission (ADM-Aeolus, 2009 8

1.2.2 Water vApour Lidar Experiment in Space (WALES), 2010 . . . 8

1.2.3 EarthCARE, 2013 8

1.3 Lidar for Navigation Instrumentation . . . 9

1.3.1 Neptec Design Group Ltd 9

iii

CONTENTS iv

1.3.2 Jena-Optronik GmBH . 10

1.3.3 Lidar based navigation algorithm 11

1.3.4 LIDAR Technologies Ltd 11

1.3.5 NASA 12

2 Lidar Simulator 13

2.1 Lidar Architecture 13

2.1.1 Principles 13

2.1.2 Quality of measurement 15

2.2 Lidar Simulator 16

2.2.1 General overview of the simulator 17

2.2.2 Model 18

2.2.3 Ray generator 23

2.2.4 Ray tracer . . . 26

2.3 Output: Point Cloud 33

2.3.1 Input table 33

2.3.2 Figures . 34

2.3.3 Conclusion 39

3 Point Cloud Processing 41

3.1 Nearest Neighbor Routine 42

3.2 Edge Detection Routine 42

3.2.1 Covariance matrix 42

3.2.2 Implementation 45

3.2.3 Influence of input parameters 45

3.3 Boundary Detection 47

3.3.1 Implementation 48

CONTENTS v

3.3.2 Influence of input parameters 49

3.4 Surface Detection and Labeling 50

3.4.1 Influence of surface normal tolerance . 5 2

3.5 Summary and Results . . 53

3.5.1 General results 53

3.5.2 Influence of the resolution 54

4 Attitude Determination 59

4.1 Second Level Feature Detection 60

4.1.1 Comer detection 60

4.1.2 Edge labeling 62

4.1.3 Boundary comer 65

4.1.4 Errors in comer and boundary comer detection 65

4.2 Determination of the Center of Rotation . 68

4.2.1 Principle of best fitting sphere 69

4.2.2 Results of best fitting sphere 70

4.3 Choice of a Reference Frame 72

4.3.1 Advantages and drawbacks of rotation matrices 73

4.3.2 Definition of the reference frame (RF) 74

4.4 Results 75

Bibliography 85

A Dimension of the CATIA model of the spacecraft 91

B STL Reader 93

B.l STL Format . . . 93

B.2 Test of the STL Reader 93

CONTENTS vi

C Ray Tracer Pseudo code 95

C.l STL_reader 95

C.2 Ray.gen 95

D Point Cloud Processing Pseudo Code 97

D.l Nearestneighbour function Description 97

D.2 Find_edge_points 100

D.3 Find_bndry_points 101

D.4 SurLsegm 101

D.5 Clusterdata function 102

D.6 Find_corner 103

D.7 LabeLedge 104

List of Tables

2.1 High resolution windows parameters 25

2.2 Ray tracer inputs used to obtain the next figures 33

3.1 Simulation time for different size of neighborhood 46

3.2 Summary of optimal parameters 53

4.1 Error in comer measurement for orientation (6, 10, 0) 67

4.2 Center of rotation coordinates (mm). Sphere fitting comers ONLY . . . 71

4.3 Center of rotation coordinates (mm). Sphere fitting comers AND boundary comers. 72

vn

List of Figures

2.1 Lidar architecture. Example of hardware 15

2.2 Block diagram of the lidar simulator 16

2.3 General structure of the lidar simulator . 18

2.4 CATIA model of a simplified spacecraft. . . 19

2.5 MATLAB rendering of the STL file of the spacecraft mode 21

2.6 Illustration of translation and rotation for a cube 23

2.7 Lidar simulator reference frame setting 24

2.8 Ray generator results without (top) and with two high resolution windows(bottom). 25

2.9 Intersection of a ray and a plane in 3D [6] 28

2.10 Barycentric coordinates of a point in a triangle. [8] 30

2.11 Jena-Optronik RVS specifications. [14] 32

2.12 Rendering of the spacecraft at low resolution. 34

2.13 Rendering of the spacecraft oriented (45, 20, 0) 34

2.14 Rendering of the reference cube 35

2.15 Cube with one high resolution window 36

2.16 Cube with noise in range measurement 37

2.17 Cube with noise in azimuth and elevation measurement 38

2.18 Noise in range, azimuth, elevation and high resolution window 39

viii

LIST OF FIGURES ix

3.1 Nearest neighbor illustration . . 42

3.2 (a) Local neighborhood, (b) Covariance analysis. [12] . . . 44

3.3 Edge detection for different thresholds: 10'1, 10-2, 10"5, 10-10. . . . 46

3.4 Edge detection for different maximum number of neighbors: 5, 10, 16, 50. 47

3.5 Boundary detection for different^ threshold: 0.1,0.6, 1, 1.6. 49

3.6 Boundary detection for different maximum neighborhood size: 10,35. . . . 50

3.7 Surface segmentation for different surface normal tolerances: 10"1, 10"3,10"5 52

3.8 Spacecraft point cloud processing 55

3.9 Low resolution versus high resolution when all the surfaces are well visible. 56

3.10 Low resolution versus high resolution when two of the surfaces are barely visible. 57

4.1 Definition comer and boundary comers . . . 60

4.2 Different cases of intersection between three planes 61

4.3 Comer detection results . 62

4.4 Notation for the line-point distance computation 64

4.5 Results of the edge labeling. . 65

4.6 Comers: theoretical and measured positions . 66

4.7 Distances between theoretical and measured comers as a function of the orientation 68

4.8 Sphere fitting the comers. 71

4.9 Recall on direction cosine matrix 74

4.10 Reference frames of the lidar and the object . . 74

4.11 Theoretical and experimental reference frames to be compared 75

4.12 Orientation used for simulation (left) and plot of the comers (right) 76

4.13 Angle error for BC1,BC2 and BC3 for each orientation 77

4.14 Error in angle between axis of RFth and RFm 79

4.15 Orientation used for simulation and plot of the Comers 80

LIST OF FIGURES x

4.16 Angle error for BC1,BC2 and BC3 80

4.17 Error in angle between axis of RFth and RFm 81

A.l Catia Model Drawing 92

B.l STL reader tested on a complex shape 94

Symbols and Abbreviations

Abbreviation Description Definition

ADM-Aeolus

ALADIN

ALHATA

ATLID

ATV

az

CAD

CALIPSO

CSA

NRC-CNRC

DCM

deg

DIAL

el.

ESA

FOV

GLAS

Atmospheric Dynamics Mission

Atmospheric Laser Doppler Instrument

Autonomous Landing and Hazard Avoidance Technol

ogy

ATmopsheric LIDar

Automated Transfer Vehicle

Azimuth

Computer Aided Design

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observation

Canadian Space Agency

National Research Council Canada

Direction Cosine Matrix

Degree

Differential Absorption Lidar

Elevation

European Space Agency

Field Of View

Geoscience Laser Altimeter System

XI

Abbreviation Description Definition

GNC

HR

HTV

ICESat

ISS

JAXA

LASSO

LCS

LITE

LS

MGS

MOLA

MSR

NASA

NN

OBSS

RF

RFL

RVS

STDP

STL

SVD

TOF

WALES

Guidance Navigation and Control

High Resolution

Japanese Transfer Vehicle

Ice Cloud and Elevation Satellite

International Space Station

Japanese Space Agency

LCS Algorithms for Spacecraft Servicing On-orbit

Laser Camera System

Lidar In-space Technology Experiment

Least Squares

Mars Global Surveyor

Mars Orbiter Laser Altimeter

Mars Sample Return

National Aeronautics and Space Administration

Nearest Neighbor

Orbiter Boom Sensor System

Reference Frame

Lidar Reference Frame

Rendez-vous and Docking Sensor

Space Technologies Development Program

Stereolithography

Single Value Decomposition

Time Of Flight

Water vApour Lidar Experiment in Space

Introduction

Hundreds of orbiting spacecraft provide a broad variety of services, including global

communication and meteorological monitoring. Among these satellites are the Interna

tional Space Station, Hubble Telescope as well as large number of military satellites. As

their number will certainly continue to grow, it will be paramount to introduce a new

type of autonomous on-orbit satellite inspection and repair including rendezvous and

docking. Precise autonomous performance of space maneuvers, especially within close

proximity to a target satellite, requires a novel type of robotic vision system. Such a sys

tem will provide reliability and high accuracy of all data required to navigate the seeker

spacecraft towards the target satellite. Traditional space vision technology is based on

using various types of video systems. This methodology is limited by the necessity

of operating when the target is illuminated by the sunlight or using its own source of

illumination. Both of these approaches have serious shortcomings:

1. The sunlight limits the operation only to those periods, when the sunlight is present,

2. The use of the hand-made illuminator, even a well collimated source, limits the

range to the target spacecraft

3. Finally, both of theses techniques quite often lead to image distortions that prohibit

or make the navigation extremely difficult and risky.

1

2

Compared with passive optical and active radar/microwave instruments, lidar systems

produce substantially more accurate and precise data without reliance on natural light

sources and with much greater spatial resolution. It is quite common to use a laser

ranging device along with the imaging video system. Laser radar technology has been

demonstrated for about four decades, since the laser source was invented. This technique

is based on the use of a pulsed laser beam aligned with the optical receiver-telescope,

which collects the laser photons reflected back from the target on the system's detec

tor. By using time-of-flight calculations, the range between the laser source and the

target could be accurately derived. However, the image distortions will still make the

required close proximity maneuvering quite risky. The use of laser imaging technol

ogy offers quite elegant solution to these challenges and ESA identified it as "the most

sustainable technology for future exploration mission" This approach allows the collec

tion of range data, while scanning the lidar field-of-view together with the transmitted

laser beam across the required solid angle. Each individual laser pulse provides accu

rate range information, while an extremely accurate knowledge of the scanning optics

position provides with accurate position information. In addition, each point of the point

cloud contains the return signal intensity data. Point cloud is the term use to define a

set of vertices in a three-dimensional coordinate system. So far imaging lidar (Light De

tection and Ranging) has been widely used and tested for earth atmosphere studies and

terrain mapping. The key earth missions in lidar development are described in Chapter

1. The impressive accuracy of this technology makes it a relevant candidate for guidance

navigation and control (GNC) applications. The European Automated Transfer Vehicle

(ATV) and many studies use lidar for tracking, rendezvous and docking but all of them

use targets (retro-reflectors) on the tracked spacecraft or assume its shape known. A

literature survey describes those studies in the background section (1).

3

In this thesis, it is desired to find the orientation of an unknown spacecraft with no

retro-reflector (or marker) using lidar technology only. Since old spacecraft or space

debris might not have such markers, and may be spinning out of control this study is

essential for on-orbit maintenance and debris recovery/removal. The scenario is the fol

lowing: a chaser equipped with an imaging lidar follows a target at a certain constant

distance "taking pictures" or "snapshots" of the target at different instant, close to each

other in time. Each snapshot results in a point cloud that is processed in order to retrieve

features from the object (edge, boundaries, surfaces, corners). Those features, especially

the corners, are then used to define a frame attached to the object. Comparing the frames

from each point cloud allows retrieving the orientation as a function of time. The whole

algorithm is implemented in MATLAB. The first step, described in Chapter 2, was to

implement a lidar simulator with a model as an input and a point cloud as an output.

Chapter 3 explains the processing of the point cloud. Finally, the definition of the refer

ence frame as well as the overall results are presented in Chapter 4. The concept of this

thesis being so new, little attention was paid to computation efficiency except in the lidar

simulator part for which an extensive optimization of processing time was conducted.

The focus was set on finding creative simple concepts. In the eventuality of the pursuing

of the research, an optimization of the functions could would have to be performed.

Chapter 1

Background: Literature Survey

Until now lidar has been mostly used for geophysical observations. NASA has been

a major investigator in lidar technology and applications from the 1960s starting with

the development of ground-based satellite laser ranging systems for studying crustal

dynamics and plate tectonics [1]. The first part of the section describes key steps in

lidar development and testing over different Earth observation missions. The second

part presents the current studies aiming at introducing lidar as an integral part of the

GNC system for tracking, docking, safe landing and collision avoidance.

1.1 Earth Observation Experiences with Lidars

In the 1970s NASA put together groups to study the capabilities of lidar on satellite

platforms. Because of the heavy-weight and high-power requirements for these early

lidars, the obvious platforms for demonstrating lidar's capabilities were Spacelab and

the Shuttle.

5

LI. EARTH OBSERVATION EXPERIENCES WITH LIDARS 6

1.1.1 Lidar In-space Technology Experiment (LITE)

After some delays in its development, primarily due to the Shuttle Challenger mishap,

the Shuttle Discovery flight of LITE took place for 11 days in September 1994 [16].

LITE is a three-wavelength backscatter lidar developed by NASA Langley Research

Center. The goals of the LITE mission were to validate key lidar technologies for space-

borne applications, to explore the applications of space lidar, and to gain operational

experience which will benefit the development of future systems on free-flying satellite

platforms. This flight was truly a pathfinder mission for future space lidars, and ushered

in a new era of remote sensing from planetary orbit. It showed the science community

the exceedingly important data that a space born lidar can provide [13]. LITE operated

for 53 hours demonstrating the ability of lidar to probe between clouds and penetrate

through optically thin clouds with high horizontal resolution, high sensitivity to aerosol

measurements, and an excellent discrimination against noise because of laser spectral

purity.

However until then, technology did not allow long duration mission. Long-lifetime,

laser power efficiency, cooling and weight issues had to be solved if lidars were to fly for

long-duration on Earth-orbiting spacecraft. In the late 1980s and 1990s diode-pumped

and long-lived ND-YAG lasers, light-weight optics and structures, changed significantly

the feasibility for lidar flights.

1.1.2 Mars Orbiter Laser Altimeter (MOLA)

In November 1996, the Mars Global Surveyor (MGS) mission was launched with MOLA

aboard. This time of flight laser scanner was designed to map the Martian global topog

raphy and measure the height of water and carbon dioxide clouds [20]. MOLA was built

by NASA Goddard Space Flight Center.

1.1. EARTH OBSERVATION EXPERIENCES WITH LIDARS 7

1.1.3 Geoscience Laser Altimeter System (GLAS)

GLAS is the first lidar instrument for continuous global observations of Earth [21].

From aboard the Ice Cloud and Elevation Satellite (ICESat) spacecraft, it makes atmo

spheric observations, including measuring ice-sheet topography, cloud and atmospheric

properties. GLAS was successfully launched aboard the ICESat in 2003.

1.1.4 Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observa

tion (CALIPSO)

CALIPSO combines an active lidar instrument with passive infrared and visible im

agers to probe the vertical structure and properties of thin clouds and aerosols over the

globe. CALIPSO was built by Ball Aerospace and launched in 2006 on the CloudSat

satellite. CALIPSO is a joint U.S. (NASA) and French (Centre National d'Etudes Spa-

tiales/CNES) satellite mission with an expected 3 year lifetime. The lidar is designed

to scan the atmosphere with green and infrared laser light and detect backscatter from

clouds and aerosols.

1.1.5 Phoenix

The Mars mission Phoenix launched in August 2007 carried a meteorological station

built by the Canadian Space Agency based on lidar technology. Together, Optech and

MD Robotics (Canada) designed and built the meteorological lidar system for the 2007

NASA Phoenix Mars mission. Optech is the world leader in the development, manufac

ture and marketing of advanced laser-based survey instruments.

1.2. FUTURE PROJECTS 8

1.2 Future Projects

ESA planned various missions of Earth observation based on lidar technology for the

coming years.

1.2.1 Atmospheric Dynamics Mission (ADM-Aeolus, 2009

As part as its Living Planet program, ADM-Aeolus will make novel advances in global

wind-profile observation and will provide much-needed information to improve weather

forecasting. It will carry a highly sophisticated instrument called ALADIN (Atmo

spheric Laser Doppler Instrument) to measure wind velocity with unequaled accuracy.

The instrument emits short and high-energy pulses towards the atmosphere and analyses

the Doppler shift of the backscattered signal for different altitudes. Recently the laser

diodes, which are the core components of the mission's instrument, have successfully

passed their long-lifetime test.

1.2.2 Water vApour Lidar Experiment in Space (WALES), 2010

The WALES mission will provide accurate profiles of water vapor contents. It consists of

a single satellite in Sun-synchronous dawn-dusk orbit carrying a Differential Absorption

Lidar (DIAL).

1.2.3 EarthCARE, 2013

EarthCARE is a joint European-Japanese mission addressing the need for a better un

derstanding of the interactions between cloud, radiative and aerosol processes that play

a role in climate regulation. It will use a high spectral resolution ATmopsheric LEDar

(ATLID).

The lidars used for those three missions were developed by LIDAR Technologies

1.3. LIDAR FOR NAVIGATION INSTRUMENTATION 9

Ltd. which specializes in the design, manufacture and testing of lidar instrumentation.

Now that lidar is a well known and established technology for Earth atmosphere ob

servation and terrain mapping, researchers and agencies are trying to integrate it as part

as the navigation system on spacecraft. It is thought to be an efficient instrument for ren

dezvous and docking maneuvers, planetary and small body mapping, hazard avoidance

and precision landing.

1.3 Lidar for Navigation Instrumentation

Lidars have many desirable characteristics and advantages: high spatial resolution, inde

pendence from lighting conditions, it avoids problems of scaling by measuring directly

the range. A lidar sensor acquires thousands of range measurements of the target in

its field of view and generates three-dimensional maps of the scanned object in sensor

reference frame (RF). The lidar hardware has to be coupled with on-board autonomous

software that can extract "intelligent" data from the raw data so that higher-level forms

of observables can be used at lower bandwidth and data rates in the on-board GNC

system.

1.3.1 Neptec Design Group Ltd.

Neptec Design Group Ltd. is actively researching on imaging sensors. The development

of the Laser Camera System (LCS), was Neptec's first entry into the world of 3D data

acquisition. Focused on the development of a 3D tracking capability, the LCS was devel

oped with a flexible two-axis steering that allows standard raster scanning for imaging

and custom scan patterns for tracking targets. This capability has since become one of

the significant advantages of the basic LCS design and is a fundamental feature of the

1.3. LIDAR FOR NAVIGATION INSTRUMENTATION 10

new generation of Neptec scanners [11]. LCS flew on board Space Shuttle Discovery

in 2001 on STS - 105. After the Columbia accident, LCS was chosen to be part of the

Orbiter Boom Sensor System (OBSS) that will perform inspection of the Space Shut

tle Thermal Protection System before re-entry. In 2005, Neptec revealed an interesting

application of their Laser Camera Systems (LCS) called LASSO (LCS Algorithms for

Spacecraft Servicing On-orbit) [17]. The project was funded by the Canadian Space

Agency (CSA) under the Space Technologies Development Program (STDP). The 3D

LASSO system is designed to perform real-time tracking and 6 degree of freedom pose

estimation of target spacecraft from sparse and noisy 3D data and the shape of the space

craft . The approach is compatible with any sensor capable of providing 3D data. The

algorithms have been successfully tested with Neptec's LCS in a variety of test scenarios.

Still under development, Tridar is Neptec's newest promising lidar based sensor [5].

The TriDAR is a hybrid scanner combining the best features of the space qualified,

near field LCS (based on triangulation) with a long range lidar system. Unlike pure

lidar systems the TriDAR operates at distances ranging from 0.5 meters to over 2000

meters without sacrificing speed or precision at either end of the range. Neptec's 3D

Automated Rendezvous and Docking Sensor system is based on two Neptec innovations:

the TriDAR 3D sensor and Neptec's Intelligent 3D (3Di) software toolkit.

1.3.2 Jena-Optronik GmBH

Jena-Optronik developed the Rendezvous and Docking Sensor (RVS) for ESA's ATV

and JAXA's HTV for docking with the ISS. An RVS prototype had already been suc

cessfully demonstrated in orbit during two campaigns of the Space Shuttles STS-84 and

STS-86 docking to the MIR space station in 1997.

This year, the first ATV named "Jules Verne" has approached the International Space

Station with a successful docking maneuver based on RVS. RVS uses the time of flight

1.3. LIDAR FOR NAVIGATION INSTRUMENTATION 11

(TOF) principle, operates at ranges from 1 to 1000 m and estimates the pose by tracking

retro-reflectors on the ISS during the approach. Using targets imposes restrictions on the

rendezvous and docking operations, and approach trajectories, and may require control

over the target spacecraft. In some cases it is necessary to approach the target spacecraft

from any direction or perform a fly around operation using visual feedback. The use

of optical targets also introduces a failure mode when one or more targets may not be

detectable due to damage. Jena-Optronik also designed a Lunar Landing 3D lidar [3].

1.3.3 Lidar based navigation algorithm

Researchers in Canada managed to remove the need of target but their algorithm requires

the model of the spacecraft for pose estimation. Piotr Jasiobedzki et Al. have set a model

and algorithm for autonomous rendezvous and docking using lidar. They developed a

system that uses scanning lidar to estimate the pose of a spacecraft from which the shape

is known. The main purpose of such study is servicing failed spacecraft. The fact that

the spacecraft to be serviced has to be known is a big limit to the algorithm [15]. Canada

through The National Research Council Canada, universities and Optech Inc. is very

active in the field of lidar.

1.3.4 LIDAR Technologies Ltd.

In addition to atmospheric lidar, Technologies Ltd. is developing an imaging lidar for

Landing on Mars. This is part of the Aurora program [7] for the Mars Sample Return

(MSR) mission. Lidar has been identified as one of the most sustainable technologies

for exploration [2]. Sample Return Mission is a complex mission which calls for five

spacecraft: an Earth/Mars transfer stage, a Mars orbiter, a descent module, an ascent

module and an Earth re-entry vehicle. Lidar is considered for hazard mapping, to im

prove landing accuracy and rendezvous maneuvers.

1.3. LIDAR FOR NAVIGATION INSTRUMENTATION 12

1.3.5 NASA

The future crew exploration vehicle, which is to replace the space shuttle and be used for

a crewed mission to the moon, will most likely rely on a lidar sensor for its rendezvous

and docking maneuvers. The lidar technique is being considered for providing critical

distance, approach velocity, and relative orientation of the docking port during the ren

dezvous and docking maneuver. The precision and frequent update rate offered by the

lidar could be key for mating the vehicle with the International Space Station and, in the

case of the human mission to the moon, for mating the lunar crew module with the Earth

re-entry vehicle that will be awaiting it in the moon orbit.

Currently, NASA is actively advancing the lidar technology for future lunar landing mis

sions through its Autonomous Landing and Hazard Avoidance Technology (ALHAT)

project. This program is developing three-dimensional imaging and Doppler velocity

lidar technologies as part of the landing GNC system. The lidar sensors being developed

under ALHAT will enable safe soft-landing of large robotic, cargo and crewed vehicles

with a high degree of precision at the designated landing site under any lighting condi

tions.

Chapter 2

Lidar Simulator

2.1 Lidar Architecture

This section describes an imaging Light Detection and Ranging (lidar) system and its

functional simulator. The lidar architecture section presents the basic principles of the li

dar, together with a notional architecture. The simulation section presents the functional

simulator of the lidar and the results of the simulated tests. Note that in equations, bold

variables are vectors.

2.1.1 Principles

An imaging lidar is an electro-optical instrument employed to obtain 3D data from an

object placed in its field of view. It usually consists of a laser source, a scanning mech

anism, a detector and its associated focusing optics. Like the similar radar technology,

which uses radio waves instead of light, the range to an object is determined by measur

ing the time delay or time of flight (TOF) between transmission of a pulse and detection

of the reflected signal:

TOF = td-te = — (2.1)
c

13

2.1. LIDAR ARCHITECTURE 14

Where:

D = Distance traveled

td = Detection time

te = Emission time

c = Speed of light in medium

Lidar can be classified by the relative position between the emitter and the receiver.

A monostatic lidar is a system in which its transmitter and detector are in the almost same

location. A near-monostatic lidar is defined as a system which is close to a monostatic

system and the assumption of remter « rreceiver is valid [10]. To derive spatial data

from the target object the direction of the pulse is modulated in two directions with the

help of a scan mechanism, as illustrated in Figure 2.1. This scan mechanism consists

of an azimuth scan mirror, an elevation scan mirror, and their associated electronics.

Each scan mirror oscillates about its longitudinal axis a certain number of degrees. The

projection of the path of the pulses on a plane perpendicular to the longitudinal axis of

the laser source (XL) describes a scan pattern. The pattern shown in Figure 2.1 is the so

called "TV scan pattern" where the spot travels from left to right and top to bottom. The

angular position of each mirror at the time of the firing of the laser pulse is measured by

a shaft encoder and thus the direction of the pulse can be determined. For each of the

firings of the laser pulse the direction and the distance to the target object are employed

to generate a point cloud. The point cloud represents the three dimensional position

vector (JC, y, z) of each of the reflected pulses in a coordinate frame attached to the lidar.

2.1. LIDAR ARCHITECTURE 15

Figure 2.1: Lidar architecture. Example of hardware.

In addition to the range the lidar can also determine the intensity of the reflected

pulse. In this study a variable has been included in the code for the intensity but not

used. It is recommended that it is used later should someone continue the work.

2.1.2 Quality of measurement

The following parameters do NOT affect measurements:

• Day or night: laser radar is an "active illumination" technique that, unlike pho

tography, does not depend on ambient illumination. It works during the day or at

night.

• Target's angle of repose: laser measurements can be made to targets at any angle.

2.2. LIDAR SIMULATOR 16

• Background noise and radiation: the laser is not affected by background noise.

• Temperature variations: laser measurements are based on the speed of light and

are unaffected by temperature variations. However the electronic might operate

only in a certain range.

• Vessel pressure and off-Gas layers: the laser is unaffected by pressure or vacuum

variations, or off-gas layers.

The following parameters can affect measurements:

• Dust and vapor: laser measurements can be weakened by interacting with dust

and vapor particles, which scatter the laser beam and the signal returning from the

target. This principle is used for Earth atmosphere study presented in section 1.

• Sunlight and reflections and angle of measurement: a strong sunlight reflection

off a highly reflective target may "saturate" a receiver, producing an invalid or less

accurate reading. However, laser measurements are not usually affected by other

reflections.

• Reflectivity of the object: highly reflective objects may saturate some laser detec

tors, while the return signal from low-reflectivity objects may occasionally be too

weak to register as valid.

2.2 Lidar Simulator

Input Output
— > n n I >
Model Point Cloud

Figure 2.2: Block diagram of the lidar simulator.

2.2. LIDAR SIMULATOR 17

The first step in creating a lidar simulator was to have a model of a spacecraft so the

simulator could be tested. The model constitute the input of the system, its creation and

manipulation are explained in the first section.

The two primary functions of a lidar are:

1. Produce and emit laser rays in defined directions to scan a field of view,

2. Compute TOF for each ray and deduce the distance to the scanned object.

The simulator must produce rays and find the distance between the origin of the ray

and its intersection with the model. Those two functions are described in the two next

sections. A ray generator was implement to create rays and store their directions. The in

tersection computation are performed by a simple ray tracer. The output of the simulator

is a 3D point cloud.

2.2.1 General overview of the simulator

The diagram in Figure 2.3 shows the general organization of the lidar simulator. Each

function is described in detail in the next sections.

2.2. LIDAR SIMULATOR 18

Main

Read model
(STL file)

i
Primitives
(triangles)

Vertices
Facet vertices

Normals
Facet normal

Key

^ Function ")

Xputput/

Structure

Condition

LIDAR model
ray generation

i
Intersection

If super-sampling
window is needed

Else

Super-
sampling

trigger

Geometry Optics

Intersection
coordinates

Intensity

x /
Point cloud

Figure 2.3: General structure of the lidar simulator.

2.2.2 Model

CATIA modeling

The models used for this study were made with CATIA V5. It is widely and internation

ally used, reliable, and relatively easy. For simplicity purpose the models were centered

at (0, 0, 0) and later moved and rotated in a separate file. A simple cube as well as

simplified spacecraft were designed (Figure 2.4).

2.2. LIDAR SIMULATOR 19

Figure 2.4: CATIA model of a simplified spacecraft.

A drawing of the model with all the dimensions can be found in Appendix A. The

models are saved as .STL files. The format is described in next section.

2.2. LIDAR SIMULATOR 20

STL format

STL is a file format native to the stereo lithography CAD software created by 3D Sys

tems. An STL file is a triangular representation of a 3D surface geometry. The surface

is tessellated logically into a set of oriented triangles (facets). Each facet is described by

the unit outward normal and three points listed in counterclockwise order representing

the vertices of the triangle. While the aspect ratio and orientation of individual facets

is governed by the surface curvature, the size of the facets is driven by the tolerance

controlling the quality of the surface representation in terms of the distance of the facets

from the surface. The format of an STL file is given in Appendix C.

The next section describes the MATLAB routine that reads the model STL files.

STL reader

The STL reader function opens the STL file, counts the number of lines, deduces the

number of facets and vertices, read each facet, stores its vertices and normal and closes

the STL file.

Figure 2.5 shows the facets the spacecraft modeled in CATIA. This file is read by the

STL reader and plotted using the command patch which allows to plot polygons given

N vertices (three vertices give a triangle).

2.2. LIDAR SIMULATOR 21

Figure 2.5: MATLAB rendering of the STL file of the spacecraft mode.

A reference frame is attached to the lidar (RFL), the lidar being its origin. The

models from CATIA are centered at zero meaning they are centered at origin of RFi.

In order for the object to appear in the lidar FOV, the model must be translated. Also

since the goal is to retrieve attitude of the model it must be rotate. A separate function

translates and rotates the target.

Orientation of the model

After the STL file is read, each facet is defined by three points and a normal stored in

two different arrays (3D for the vertices, 2D for the normals). In the f Jar get sot Jrarts

function, the vertices of each facet are first rotated using a rotation matrix, and then

translated. The user chooses the desired rotation and translation in the main command

2.2. LIDAR SIMULATOR 22

file. The input rotation is input in terms of Euler angle (a, /?, y) according to the (3, 2,

1) convention for simplicity. It is immediately converted to rotation matrix to perform

the rotation of the object. The conversion Euler-Rotation matrix (inertial to object frame

convention) is done as follow:

R7 =

cos(a) -sin(a) 0

sin(a) cos(a) 0

0 0 1

, Ry -

cos(J3) 0 sin(J3)

0 1 0

-sin(P) 0 cos{f3)

,RX =

1 0 0

0 cos(y) -sin(y)

0 siniy) cos(y)

Then, each point of the model is multiplied by the following rotation matrix:

Protated = Rx * [Ry * (Rz * ^initial)]

The translation parameter is fed as an input to the function under the form of a

vector with three components: translation in x-direction, translation in y-direction and

finally translation in z-direction. As an example, let's consider a cube with a side of 1

m initially centered at (0, 0, 0). It desired to translate it 1.5 m along the x-axis and 1 m

along y-axis (translation = [1500 1000 0] (mm)) and rotate it 45 degrees about z-axis

(rotation = [45 0 0]).

In Figure 2.6, the green cube is the original model centered at (0, 0, 0). The yellow

cube is the result of the translation and rotation. The new center is [1500 1000 0] due to

the translation. The new orientation is [45 0 0] due to the rotation.

2.2. LIDAR SIMULATOR 23

y(mm) o u u x (mm)

Figure 2.6: Illustration of translation and rotation for a cube.

2.2.3 Ray generator

Simulating a lidar means generating rays. A ray is a thin, straight line used to model a

beam of light. It can be seen as a long thread that starts at an origin and is extended in a

direction. The point (0, 0, 0) is taken as the origin, in this study the lidar beam. The rays

are expressed in RFi. Ray directions are generated by sweeping a field of view (FOV)

through a double loop. The index i represents the elevation, the index j represents the

azimuth.

As can be seen on Figure 2.7, the elevation is the angle in the (YL, Zi) plane, the

azimuth is the angle in the (Xi, Zi) plane. The projections of the directions are given

by:

dx = COS(OE) COS(#A)

dy = s'm(6E)

dz - COS(6E) sin(^)

where:

2.2. LIDAR SIMULATOR 24

Figure 2.7: Lidar simulator reference frame setting

dx, dy, dz = Projections of the unit vector along the ray on RFi

6E = Elevation angle

OA - Elevation angle

The coordinates thereby computed are stored in a 3D array.

In some cases it is desirable to have higher resolution on parts of a model to see

details . This is done by introducing High Resolut ion (HR) windows. A high resolution

window is an area of the FOV where the density of rays is higher. Deal ing with HR

windows is slightly more complicated than regular uniform resolution. For each HR

window, the resolution is defined as a multiplier coefficient. If this coefficient is 2, the

window will contain twice as much rays as in the rest of the FOV. The window itself is

defined by a starting point and a span (both in azimuth and elevation). The code adjusts

the input starting point so it matches an existing direction and from this direction, the

span is swept in the same way the FOV is in the situation of basic resolution. When

there is various H R windows, each window is stored in separated arrays grouped in a

structure.

2.2. LIDAR SIMULATOR 25

To illustrate this section, an example with the following characteristics was studied:

FOV = 50 x 50

Resolution in azimuth = 5

Resolution in elevation = 10

Number of high resolution windows = 2

Multiplier coefficient = 2

El

Az

Start
Span
Start
Span

Window 1
20
14
25
5

Window 2
5
8
1
6

Table 2.1: High resolution windows parameters.

Figure 2.8: Ray generator results without (top) and with two high resolution win-
dows(bottom).

2.2. LIDAR SIMULATOR 26

2.2.4 Ray tracer

The output of a real lidar is the distance between points of an object and the laser source

for each beam. In ray casting the visible surfaces of objects (parts of a scene that are

visible to the camera) are found by casting rays of light from the light source to the scene

and finding the closest intersecting objects. Ray tracing is an extension of ray casting in

that it also describes what the visible surface looks like. Ray casting was used in the first

version of the study presented in this thesis. However a variable named Intensity was

added to the output distances for future improvement of the algorithm. The simulator

hereby designed outputs the coordinates of the intersection between rays and the model

triangular facets. Those coordinates are expressed in the lidar reference frame.

Choices and assumptions

As a reminder, the surfaces of the models are meshed with triangles when output from

CATIA software as STL files. Those triangles are called primitives. A primitive is a

basic shape easily defined and interpreted by computer.

Choice 1: The ray tracer will operate with only one type of primitive (triangle). Since

most of the meshing software offer the possibility to mesh with triangle, this choice is

not restrictive.

Choice 2: Only simple operations on primitive such as read specification of primitive

(three points and a normal) and compute the intersection of the primitive with a ray are

performed in the ray tracing code. The translation and rotation of the model are made at

the model level in order to gain modularity, and computation time.

Choice 3: No shadow, reflection, texture mapping, color, and diffusion have been

considered because it was not necessary at this stage of the project. Shadow and re

flection are not relevant since the objective is to track one object at the time in space.

2.2. LIDAR SIMULATOR 27

The simulated lidar is supposed to work in space where diffusion is not too much of a

problem.

Principles

Time wise, ray tracing is a very heavy process. If n is the number of facets of the model,

each ray has to be cast n times. For instance, if we have 200 facets, and 40 rays (which is

not much for a real system), it means there is 40*200 = 8000 intersections to compute.

Since many of those intersections do not exist or are not valid, tests are performed to

eliminate them instead of wasting time in determining their inexistent intersection.

The tests implemented in this ray tracer are the following:

1. Is the ray intersecting the plane to which belongs the facet? If the ray is parallel

to the facet then there is no need to continue.

2. Is the ray intersecting the plane behind the origin? If the spacecraft is behind the

lidar, the lidar will not see the spacecraft. The simulator should not compute an

intersection that is behind the origin.

3. Does the ray intersect various facets? In the case of a volume, the ray will intersect

the front and the back of the model. In the case of a spacecraft, the body of the

spacecraft might hide part of a solar panel, which is therefore not seen. In those

cases it is desired to keep only the closest intersection.

The two main steps in ray tracing are:

1. Find intersection between plane containing facet and ray

2. Determine if this intersection point falls inside the current facet

2.2. LIDAR SIMULATOR

Ray-plane intersection [6], [8]

28

Front
Side

X
Figure 2.9: Intersection of a ray and a plane in 3D [6]

Expressing the ray with parametric description gives::

Ray : r(t) = O + D t (2.2)

where:

Plane : P • N + d = 0 (2.3)

r(t) = Any point on the ray

O = Origin of the ray

N = Normal of the plane

d = A parameter defining the plane such that d = -Vo • N

Vo = Coordinates of a point belonging to the facet

D = Direction of the ray

The parameter d is calculated by doing the dot product between a point (Vo) and its

normal. It was chosen to take the center of mass of each facet for V0 . The evaluation of

the parameter t corresponding to the intersection point can be obtained by substituting

2.2. LIDAR SIMULATOR 29

equation 2.2 into P (equation 2.3):

If the denominator is equal to zero, the ray and the plane are parallel. If it is positive,

the ray and the normal are in the same direction; since the normal points outward, the

ray intersects the surface through its back. This happens in the case of a volume, the ray

enters the volume with a valid intersection but exits it with an invalid one. If t < 0, the

intersection is behind the plane, and it is rejected as well.

Ray-triangle intersection

If a ray-plane intersection is found, the ray tracer proceed to step two: the intersection

with the primitive. It determines if the point of intersection between the ray and plane

falls inside the current facet or not. The dominant axis method was used. Assume three

vertices V\, V2 and V3 from a triangle. In the barycentric space, a point P is given by:

V^P = aV^V2 + £ V1V3 (2-5)

Any point in the plane of a triangle can be expressed as the weighted average of the

vertices of the triangle. The weights (a and J3) are known as barycentric coordinates.

The barycentric coordinates of a point inside a triangle will be in the range [0, 1]. Any

point outside the triangle will have at least one negative coordinate. P is in the triangle

if and only if: a > 0,/? > 0 and a +fi< 1

The following analysis is explained for one triangle, note that the process is repeated

for each facet of the model.

Equation 2.5 has three components. To reduce the system, it is desired to project the tri

angle onto one of the primary plane (OXLYL), (OYLZL) or (OZLXL) as 2D treatments are

cheaper and faster. If the triangle is perpendicular to one of these planes, its projection

2.2. LIDAR SIMULATOR 30

Figure 2.10: Barycentric coordinates of a point in a triangle. [8]

will be a single line. To avoid this problem, and make sure the projections are as large

as possible, the dominant axis of the normal vector is found. The plane perpendicular to

that axis is used for the projection. For example if the normal to a plane is (0, -5, 3) then

y is the largest coordinate and the triangle is projected onto the XZ plane, X and Z being

the dominant axis. By using the dominant axis method the projection with the greatest

projected area is obtained, resulting in the best precision for the rest of the calculations.

A separate function was written to find those axes.

For greater detail on the theory behind this method and how it is implemented, refer

to the code of reference [8].

Algorithm: pseudo code

This pseudo code summarizes the ray tracing ideas described earlier.

For each elevation

For each azimuth

For each facet

Compute Vd

If Vd < 0 : there exists a valid intersection

Compute the plane parameter d

Compute parameter t (distance origin - intersection)

2.2. LIDAR SIMULATOR 31

If t > S (the intersection is on the front side)

Compute the coordinates of the intersection point

Find dominant axis

Compute alpha

If alpha > or = Q

Compute beta

If beta > or = 0 and alpha + beta < OR = 1

If no closer intersection has been found

Store intersection in 'lidar_out' array

Endlf

Endlf

Endlf

Endlf

Endlf

EndFor

EndFor

EndFor

Noise

The ray tracing code allows to introduce errors in measurement of the range (t) and the

direction of the rays (elevation and azimuth). A Gaussian noise based on Jena-Optronik

RVS Lidar specifications was implemented (Figure 2.11).

2.2. LIDAR SIMULATOR 32

Dimensions [mm]

Optical Head

Electronic Box

Mass [g]

Optical Head

E-Box

Temperature Range [#CJ

Operational

Non-operational

Measurement Accuracy

LOS noise

LOS bias

Range noise

Range bias

Power Consumption [W]

Field of View

2 7 0 x 2 7 8 x 1 9 6

3 1 5 x 2 2 4 x 1 7 6

<6100

< 7700

-3S...+65

-55...+70

t 0.1° [la] [maximal]

±o.r
± 0.1 m [3o] [long range]

± 0.5 m [long range]

< 35 [nominal]

40°x40°

Azimuth ± O.Or [3o] [typical]

± 0.01 m [3o] [short range]

± 0.01 m [short range]

< 70 [maximal]

Elevation ± 0.02' [3a] [typical]

Figure 2.11: Jena-Optronik RVS specifications. [14]

The MATLAB function randn was used to generate this noise, randn generates

normally distributed random numbers.

0.1
RN = Rj + — x k (2.6)

where:

RN

RI

k

= Range with noise

= Ideal range

= Random number

The output of randn is multiplied by the standard deviation (0.1), and added to the

desired mean (range with no error). Since the variance was given at three sigma in the

specifications, the standard deviation is divided by three. In addition to the range noise,

the ray directions in azimuth and elevation are not perfect. Noise was added in the same

fashion in the ray generator.

23. OUTPUT: POINT CLOUD 33

2.3 Output: Point Cloud

This section shows examples of point clouds. The spacecraft is shown in two different

positions and for different resolutions. The divers options of the software are illustrated

on a simple cube for ease of reading and understanding. The first table summarizes the

inputs used for obtaining the figures.

2.3.1 Input table

Figure

2.12
2.13
2.14
2.15
2.17
2.16

FOV
Degree
4 x 4
4 x 4

4 0 x 4 0
4 0 x 4 0
4 0 x 4 0
4 0 x 4 0

Az. Res.
Degree

301
501
70
70
70
70

El. Res.
Degree

301
501
70
70
70
70

HR Window

No
No
No
Yes
No
No

Rotation
Degree

(6, 10, 0)
(45, 20, 0)
(45, 20, 0)
(45, 20, 0)
(45, 20, 0)
(45, 20, 0)

Translation
Meter

(500, 0, 0)
(500, 0, 0)

(3, 0, 0)
(3, 0, 0)
(3, 0, 0)
(3, 0, 0)

Noise

No
No
No
No

Yes (Az/El)
Yes (Range)

Table 2.2: Ray tracer inputs used to obtain the next figures.

2.3. OUTPUT: POINT CLOUD 34

2.3.2 Figures

Lidar point of vie'
500

Figure 2.12: Rendering of the spacecraft at low resolution.

x 10
Lidar point of view

1000

Figure 2.13: Rendering of the spacecraft oriented (45, 20, 0).

2.3. OUTPUT: POINT CLOUD

800 N

600 N

400 N

200 N

N 0s

-200 N

-400 N

-600 N

-800 N

2000

2500

3000

3500
500

0

y

-500

Figure 2.14: Rendering of the reference cube.

2.3. OUTPUT: POINT CLOUD 36

High resolution window: The high resolution window starts at 5.5 degrees in az

imuth and 9 degrees in elevation. The span in azimuth is 12.5 degrees, the span in

elevation is 16 degrees.

-500

Figure 2.15: Cube with one high resolution window.

2.3. OUTPUT: POINT CLOUD 37

Error in range measurement: The error in the range measurement is added in the

ray tracing part when the parameter t is calculated. Referring to the RVS specifications

(Figure 2.11), a (3<x) 0.01 meter noise was added to the computed t. As seen on Figure

Figure 2.16: Cube with noise in range measurement.

2.16, adding an error in the measurement of the range does not produce visible change in

the results. The parameter t corresponds to the distance between the origin and the facet-

ray intersection point. This distance is in the order of the distance lidar-spacecraft. An

error of 0.01 m is very small relatively to t. This error is not of great concern especially

when operating in long range. If the project was to be continued, further investigation

should determine the impact of such error in short range operations.

2.3. OUTPUT: POINT CLOUD 38

Errors on azimuth and elevation Errors in azimuth and elevation are introduced in

the ray generator. The error value at 3<x is +/ - 0.01° for azimuth and +/ - 0.02° for

elevation (Refer to Figure 2.11).

Figure 2.17: Cube with noise in azimuth and elevation measurement.

These errors have more impact on the point cloud but the overall shape of the object

is still clear.

2.3. OUTPUT: POINT CLOUD 39

Errors and high resolution window: The following figure is obtained with noisy

range measurement as well as noisy azimuth and elevation. A high resolution is added.The

high resolution window has the same characteristics as previously.

Figure 2.18: Noise in range, azimuth, elevation and high resolution window.

2.3.3 Conclusion

The different concepts behind the model creation and its processing to obtain a point

cloud have been described in details, some more information can be found in the pseudo

codes in Appendix C. The processing steps tackled in this chapter can be summarized

in the following sequence:

1. Read model

2.3. OUTPUT: POINT CLOUD 40

2. Rotate and translate the model

3. Generate ray directions for a defined FOV and resolution

4. Ray tracing

The ray tracer has been thoroughly tested, on different shapes, at different distances, for

different orientations and resolutions... The whole sequence described above was put

into a loop so that simulations for different orientations of the same object could be run

automatically. The output point clouds are saved into a folder.

Next chapters describes how features can be retrieved from 3D point clouds.

Chapter 3

Point Cloud Processing

This part has been implemented commonly by the author and Dr. Bodgan Udrea, her

advisor.

The output of the ray tracer gives a 3D point cloud with valid and invalid points. Each

ray has either a valid intersection with the model, or no/invalid intersection. The valid

points are labeled with a flag equal to 1, the invalid ones have a 0 flag. The first step

in processing the point cloud is to retrieve only valid points. Then it is necessary to

simplify the data set. This Chapter starts with the description of a very useful MATLAB

function called Nearestneighbor widely used throughout the study, follows an explana

tion of features detection such as edges, boundaries and surfaces.

It is important to define two terms: edges are at the intersection of two visible/detected

surfaces. Boundaries are the points at the extremity of the scanned object that are the

intersection of one visible and one hidden surfaces. Each step of the process is illustrated

with the cube model for simplicity. An example of the spacecraft point cloud processing

is given at the end of the chapter.

41

3.1. NEAREST NEIGHBOR ROUTINE 42

3.1 Nearest Neighbor Routine

Figure 3.1: Nearest neighbor illustration.

The nearest neighbor function used in the present study was written by Richard

Brown (Copyright 2006) and downloaded from the Mathwork File Exchange. It finds

the nearest neighbors by Euclidean distance to a set of points of interest from a set of

candidate points as illustrated in Figure 3.1. The points of interest are specified as a

matrix of points. The nearestneighbour function can be used to search for k nearest

neighbors, or neighbors within some distance (or both). A more detailed description of

the function can be found in appendix D.l.

3.2 Edge Detection Routine

The edges are found using the surface variation method described by Pauly in "Efficient

Simplification of Point Sampled Surfaces". The method will be explained in this section,

for more details refer to [12] and [4]. An eigenvalue analysis of the covariance matrix

of a local neighborhood is performed. Covariance analysis is often a starting point in

classification of point clouds. It is performed by determining the covariance matrix for

a local neighborhood surrounding the point of interest referred to as index point.

3.2.1 Covariance matrix

Covariance is a measure of how much two variables change together:

3.2. EDGE DETECTION ROUTINE 43

cov(x, y) = E((x - /u)(y - v))

where // and v are the expected values for the random variables x and y, noted respec

tively E(x) = ji and E(y) = v.

The covariance matrix is a matrix of covariances between elements of a vector. It is the

natural generalization to higher dimensions of the concept of the covariance of a scalar-

valued random variable.

are random variables, each with finite variance, If entries in the column vector X =

then the covariance matrix is:
Xn

I = COV(X) =

' xy

o-xy o-y cryz

crxz o-yz crz

The diagonal terms are the variance whereas the other terms are covariance.

CTl} = COV(X„X;) = (X, - frXXj - ft)

where fit - E(Xt) is the expected value of the ith entry in the vector X.

This is equivalent to: I = E [(X - E[X]) (X - E[X])T]

In our case, the covariance matrix is defined for a sample point P and its neighborhood

N (in the sense described in previous section 3.1) is given by:

C =

^ . i - ^

P«-P\ \P«-P

Pii-P

(3.1)

3 xk kx3

where P is the centroid of the neighbors Ptj of point Pt.

3.2. EDGE DETECTION ROUTINE 44

Since C is a 3x3 symmetric, positive semi-definite matrix, all eigenvalues Aj are real-

valued and the eigenvectors Vj form an orthogonal frame, corresponding to the principal

components of the point set defined by N. The Aj measure the variation of the Pl% i e N,

along the direction of the corresponding eigenvectors. The total variation, i.e. the sum

of squared distances of the P{ from their center of gravity is given by:

I | P , - P | 2 = A0 + A] + ,l2, ieN (3.2)

•b

Figure 3.2: (a) Local neighborhood, (b) Covariance analysis. [12]

Assuming AQ < A\ < ,K it follows that the plane (T(x) : (x - P) • VQ) through P

minimizes the sum of squared distances to the neighbors of P. Thus vo approximates the

surface normal np at P, or in other words, Vi and \T2 span the tangent plane at P. The

smallest eigenvalues AQ describes the variation along the surface normal (associated to

the eigenvector vo). AQ estimates how much the points deviate from the tangent plane.

The surface deviation at point P in a neighborhood of size N is defined as:

(TN(P) = -—r—r (3 3)

, l 0 + A] + A2

Note that if crN(P) - 0 then all the points lie in the plane

3.2. EDGE DETECTION ROUTINE 45

3.2.2 Implementation

The function find jedge.points processes the valid points of the lidar simulator data and

output for each point, the surface variance and the normal to the surface, plus a label.

The default label is set at default (-1) and becomes 0 if the point is on a smooth surface,

1 if it is on an edge. It starts by calculating the surface variation of a neighborhood of a

certain size. The neighborhood is then grown with a certain increment until the change in

the surface variation is larger than a threshold. The routine then decreases the size of the

neighborhood by the increment and starts incrementing it by one point at a time. It stops

at the point where the surface variation threshold is exceeded and it labels the point as

an edge point. The pseudo code can be found in appendix D.2. The covariance matrice

computation and the eigenvalue analysis are done in a separate function for modularity.

It computes the matrix (MATLABcov), find the eigenvalues (MATLAB eig), find the

smallest eigenvalue, calculate the surface variance and the normal to the surface (the

eigenvector associated with the smallest eigenvalue).

3.2.3 Influence of input parameters

Threshold of the surface variance value

If the surface variance calculated exceeds this threshold, there is an edge point in the

neighborhood. If it smaller then all the neighbors belong to a smooth surface. The

threshold must be small enough to have acceptable accuracy. On Figure 3.3 the light

blue dots are the lidar raw data, the dark blue one are the detected edge points.

The simulations are performed with a threshold of 10~5 For bigger values, many

edge points are labeled as unknown (label = -1). Having smaller values does not change

the results as can be seen in Figure 3.3. Generally, this threshold is difficult to obtain

when the density of the neighborhood is not consistent throughout the point cloud. This

3.2. EDGE DETECTION ROUTINE 46

MX

40t '

200 -.

- -f

-•IOC

-too •"

:

: • - :';:::
;
;

•

1

I 0

-400' ::|:

', aTlT|"| i"|')7 PfJTl rrrrr r r

E f l g . pom

""!

400 200 0 -200 -400

M l

400

200

4--
-

: =

: •$:•!

. : ; •

."

>#

.

200

?
| o

-200

j

|

i:::-
:""

; , . • •

u

• ••»»*%;:::: *%

0 -200 -400 -600

Figure 3.3: Edge detection for different thresholds: 10"1, 10~2, 10"5, 10"10.

From left to right and top to bottom

is the case in this study since error in range and angle measurement are present. Work

done in reference [10] allows approximating a theoretical threshold value for each point

based on the scanners origin and attributes. This is out of the scope of this thesis.

Influence of the "maximum size of neighborhood"

The more neighbors, the more time the simulation takes with no obvious gain in accuracy

as observed on Figure 3.4.

Maximum Size of Neighborhood Simulation Time
5
10
16
50

4.5
6.2
7.5

27.8

Table 3.1: Simulation time for different size of neighborhood

In general, the size of the neighborhood should be chosen based on the resolution

of the scan and the level of detail. This way, there is sufficient sample to perform the

calculations but small details are not smoothed over.

3.3. BOUNDARY DETECTION 47

600 400 200 0 -200 -400 -600

600 400 200 0 -200 -400 -600

Figure 3.4: Edge detection for different maximum number of neighbors: 5, 10, 16, 50.

From left to right and top to bottom

3.3 Boundary Detection

Boundary points are those points in the point cloud which have no neighbor, i.e., the

points around which the lidar has detected an invalid return. Those points are initially

labeled as surface points however it is possible to distinguish them because of a different

distribution of the points in the neighborhood. If the index point lies on the boundary,

when the neighborhood is projected onto the the local best fit plane, the distribution of

the neighborhood takes an elliptical shape whereas an interior point has a more circular

distribution. This can also be seen in the difference of the two largest eigenvalues since

they represent the variance in the principal directions on this plane. A small difference

will represent an interior point, and a large difference represents a boundary point [4].

Since the distribution of the point cloud is not consistent, this method was thought to

be too sensitive. A simpler and more robust technique is to examine the position of

the index point relative to the neighborhood centroid. If the difference is large, the

index point is close to a boundary and on one side there is no neighbors. This can be

600 400 200 0 -200 -400 -600

600 400 200 0 -200 -400 -600

3.3. BOUNDARY DETECTION 48

implemented by defining a confidence region around the centroid and test to see if the

projected index point is outside this region. For this, the eigenvalues and a^2- test are

used in the following equation:

2 2

-n + ^ M * (3-4)
A\ A2

Where

A\ and Ai = Two largest eigenvalues

e\t and eix - Project coordinate system described below

e i ^ u i - C P i - P) (3.5)

e 2 i = u 2 - (P i - P) (3.6)

Ui and U2 are the eigenvectors associated with the two largest eigen values. Pj is the

index point, P is the centroid of the neighborhood.

Pearson's^2- test is the original and most widely-used^2- test. It is used to assess

two types of comparison: tests of goodness of fit and tests of independence. In this

study it is used for the first type. A test of goodness of fit establishes whether or not an

observed frequency distribution differs from a theoretical distribution.

3.3.1 Implementation

The^2- test steps requires a threshold and is implemented as follow:

1. Compute ei, and e2l according to Formula 3.5 and 3.6.

2. Compute^ as follow:

3. Compare^ with a threshold.

If x is bigger than the threshold, the index point is a boundary point

Otherwise it is a surface point

3.3. BOUNDARY DETECTION 49

After the boundary points have been identified the functions passes one more time

through the cloud to perform a clean-up. If a boundary point has an edge point as its

nearest neighbor the label of that boundary point is reset to default (-1). This tends

the eliminate the boundary point that show in between the edge points in regions with

low point density. As will be seen in the next chapter, the situation arises for some

orientations of the spacecraft but is not an issue at this stage of the project.

3.3.2 Influence of input parameters

The smaller the threshold the more boundary points are detected. Time is not affected.

The red points are the detected boundary points.

Threshold of the^ parameter

600 400 200 0 -200 -400 -600 eOC 400 200 0 -200 -400 -600

600 400 200 0 -200 -400 -600 600 400 200 0 -200 -40C -600

Figure 3.5: Boundary detection for different^ threshold: 0.1, 0.6, 1, 1.6.

From left to right and top to bottom

3.4. SURFACE DETECTION AND LABELING 50

Influence of the "maximum size of neighborhood"

Figure 3.5 shows boundaries detected with a maximum neighborhood size of 25. This

is the value used throughout the study since bigger value increases the simulation time

and outputs too many boundary points as seen on Figure 3.6. In the other hand, if the

neighborhood is too small, some boundary points are missing and accuracy decreases.

600 400 200 0 -200 -400 -600 600 400 200 0 -200 -400 -600

Figure 3.6: Boundary detection for different maximum neighborhood size: 10, 35.

3.4 Surface Detection and Labeling

So far the points are labeled as follow: the default value is -7, 0 for smooth surfaces

points, 1 for edge points and 2 for boundary points.

This section deals with the identification of the different surfaces. Given the normal

to the faces at each surface point it is possible to determine the points belonging to the

same surface. A tolerance for the direction of normal and a minimum number of points

which can define a surface are defined. If the total number of points with the same

normal is less than this minimum, the points receive a special label meaning it was not

recognized as edge, nor boundary, nor surface point. The segmentation is done in two

steps:

1. Region growing: It starts by selecting an arbitrary points that has been classified

as on a smooth surface. A neighborhood is progressively built around that point

3.4. SURFACE DETECTION AND LABELING 51

until a boundary or edge point is met.

2. Clustering: The purpose of this second loop over the faces defined in step 1 is

to separate surfaces that have the same normal but are not one surface. For ex

ample, for a spacecraft that has two symmetrical solar arrays, the points on the

panels have the same normal but do not belong to the same part. The MATLAB

function Clusterdata groups points into clusters. Since this function is used in the

next chapter as well, a brief description is given here. For further details refer to

appendix D.5.

MATLAB clusterdata function

Clustering is the partitioning of a data set into subsets (clusters), so that the data in each

subset (ideally) share some common trait often proximity according to some defined

distance measure . Data clustering is a common technique for statistical data analysis,

which is used in many fields, including machine learning, data mining, pattern recog

nition, image analysis and bioinformatics [19]. MATLAB Clusterdata(X) command

allows to group points from a point cloud into clusters. The function accepts many

parameters as input:

• In the present study the data clustering algorithm is hierarchical meaning it finds

successive clusters using previously established clusters.

• An important step in any clustering is to select a distance measure, which will

determine how the similarity of two elements is calculated. This will influence

the shape of the clusters, as some elements may be close to one another according

to one distance and further away according to another. The Euclidean distance is

used.

3.4. SURFACE DETECTION AND LABELING 52

• Finally, instead of defining a distance threshold below which two points are con

sidered being part of the same cluster, a maximum number of clusters was used.

This maximum number of cluster must at least be the number of expected surfaces

(3 for the cube, 6 for the spacecraft).

3.4.1 Influence of surface normal tolerance

If the surface normal tolerance is too small many surfaces are detected. If it is too

big surfaces might be merged. This parameter really depends on the type of structure

observed. For the cube a large tolerance is fine because the surfaces have very different

normals. The best results are obtained for variable tolerances between 10"1 to 10~3

depending on the density of the point cloud. The study was performed with a tolerance

of 10~3 which is the best value form most of the orientations of the cube and spacecraft.

i •
: ;-''.";'.-J-:::x":;:

• , ,, ' : :: ;: ;xv :.:ov:

vg$£Z&.

Jsi

>•

.

-200 -4CC -600

Figure 3.7: Surface segmentation for different surface normal tolerances: 10 1,
10"3,10-5.

From left to right and top to bottom

The number of maximum cluster does not have any influence on the results.

3.5. SUMMARY AND RESULTS 53

3.5 Summary and Results

3.5.1 General results

Each step of the point cloud processing was illustrated by the cube model throughout

the chapter. In this section the results on the spacecraft are presented. The choice for

parameters are summarized in table 3.2. A picture illustrates the results.

Ray tracing

Point cloud processing

Parameter Value

FOV 2 x 2
Resolution 551 in El. and 551 in Az.
HR windows No
Translation of model (500, 0, 0) meter
Rotation Variable
Error Variable

Threshold surface 10"5

variance
Threshold^2 test 0.8
Surface normal tolerance 10"3

Maximum neighborhood 16
for edge detection

Maximum neighborhood 25
for^2 - test

Maximum number of 10
clusters

Table 3.2: Summary of optimal parameters

3.5. SUMMARY AND RESULTS 54

As seen on Figure 3.8 the model of the antenna which is a thin cylinder has points

recognized as boundary and some recognized as edge points. Further work could be done

for improving detection of shapes without edge. It took about five minutes to perform

the ray tracing. The higher the resolution the most accurate the results. Depending on

the model used, the various parameters described in previous section can be adapted.

Their initialization at the beginning of each command file is easy.

3.5.2 Influence of the resolution

For readability the influence of the resolution is illustrated on the cube. The point cloud

processing results does depends slightly on the resolution as can be seen on next figures.

For orientation with big visible surfaces both resolutions are fine and give very accurate

results. For the case where some of the surfaces are barely visible the processing of the

point cloud does not give very good results. That could be improved by having more

robust code or by filtering the snapshot used for attitude determination purpose. The

higher resolution on the figures is 1001 x 1001 and the lower one is 501 x 501.

3.5. SUMMARY AND RESULTS 55

CZ>
CD

(LUUU) Z

Figure 3.8: Spacecraft point cloud processing

The magenta triangles are the boundary points, the blue squares are the edge points, the
empty circles are surface points.

3.5. SUMMARY AND RESULTS 56

600

400

200

E
E 0

-200

-400

-600

' a o c : • • • • • •
: iooooDooooci
. lOOOOOOC • • • • • •
• • • • • « • • • -
• • ; o o o o o o o o o o o : ••

• I O O O O O O O O O O O O O O O O O C : •
• : •OOOODOOOOOOOOOOOOOC •
• •)OOOC •

•OOOOOOOOG •
. •.QOOO.O.QOOO.O.QQOC. •
• lOOOOOOOOOOC •

• OODOOOO •
. l O O O O O O O O O O O O O O O C •
•oooooc •
• DOOOOOOC- •
• 'OOOOOOOOOOOOOOOOOOOOOC •
• "ODOOOOagOOOOTOOOOODOODOOOOOl

; looc.. "doc •
•oooo •
• O l
• o •

' BOOOOOO' IOOOOOI
• i OOOOGOOOOGOOOOQOOOOOO:GCOOGOP
• O B
•••OOOO OOl
o • o c • • • •

• • • • • • • • • • •
• • 0«»00"« •••• • • •
• • O O O O O Q O O O * • o o » • «•••• • •
•• O O O O O O O O O O O O O i i O i O i • • • • • •

• • • o * • • • o » » « «
•• O i •
•• o

• • Q O i •
• O i
* O i i

r • • O i
i•• O i
*• • O i •
j " 0 •

O i
• •• • o * •

• • • " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •
• •• • O O O O O O O Q O O O O *

• • • • O O O O O i •

600 400 200 0 -200 -400 -600
y (mm)

600

400

200

E
£

-200

-400

-600

600 400 200 0 -200 -400 -600
y (mm)

Figure 3.9: Low resolution versus hieh resolution when all the surfaces are well visible

qqisiA
Aforeq 9.re sssejjns sqi jo om usq/w uonn[os3J q§iq snsĵ A uonnjosoi MOT :Q\'£ ainSy

(UJLU) A

009- 0 009

(LULU) A

009- 0 009
— i — • • • • • • • • • • " " " • • " " " • " • " " " • • • •

• " O "
• • O O O O O O O O O O O O O O O O O O O c

" • " O
• O • •

O c •

O O O O O O n i o o o o o o o o o o o o
• o c •
• 'boo o 6 b 6 o oo o 6 o 6 b 6 o b o b'b o b o b b b b c •
• O o c •
• o c •
• doc ' :o oo oooo'b oo oo o o o o o oo »: : •
• o c •
• 0 O O O O O O O O O O O O O O O O O O O c •
• - • o o o o o o o o •• •
• . O c •
• ' O O O O O O O O O O O Q O O O O O O O O O O O O O i
• GO-1" lO-O O O O O O O O O G ••
• O C •
• • 0 * 0
• O O - Q O Q O O O O O O O O O - - • 0 0 0 0 0 0 0 0 0 0 « Q
• O o « o
• O i O
• .. .'O. O O O O o o o.oo.o.o. O.Q O O O.O O.OO.OO O O C ." -
mOOOOOOOOOOOOOC , ' O O O O O O O O C •
l O l O
• o p . o p o o p p p o o o o p o o 0 o o o o o o o o o o o c •
• ; oo 6 6 6 o b o o o o bo •' •
• o o o o o o c o o o o o o o o o o n
" . ' O O O O O O O O O O O O O i i
• 00 00 O'O 0 0 O bO 0 O'• •
• O C
• :' O O O O O O O O O C O O O O O O O O O O O O O O I O I
• • b O O O O O O O O O o o o c O c
• " • : O O C O O O O O O '_ • 0

• I

009-

0017-

ooe-

$003-

001-

• 0

loot

003

iooe

i!oot7

009

LS SlinSSX QNV AXYWWIIS '£'£

Chapter 4

Attitude Determination

The previous chapter describes the process of finding edges, boundaries and surfaces

from the point cloud. This chapter explains how from these features it is possible to

attach a pertinent reference frame (RF) and recover the attitude of the spacecraft. This

reference frame must be defined from special features that are common to each snapshot

in other words, feature that are fixed on the body.

A first attempt was made by enclosing each detected surface in a minimum volume

bounding ellipsoid and define a RF based on the centers of the biggest ellipsoids. The

projections of the ellipsoids were also study without convincing results. It was deduced

that bounding ellipsoids were not accurate enough and some secondary features had to be

retrieved. This process being complex, the study was performed on a cube instead of the

whole spacecraft. However, the algorithm is readily applicable to parallelepiped, that are

widely used as bounding boxes. A bounding box is a cuboid, or in 2-D, a parallelogram,

fully containing an object.

It was finally found that a RF based on comers gives acceptable results. Two types

of comers are detected for each snapshot: (1) A 'comer' located at the intersection of

three surfaces, (2) Three 'boundary comers' at the extremity of the edges. From those

59

4.1. SECOND LEVEL FEATURE DETECTION 60

second level features, and using a best fitting sphere, the center of rotation of the object

can be found. Based on the center of rotation, the comer and one boundary comer,

a RF is defined. Recall that a snapshot is a lidar picture taken at a certain time for a

certain orientation. It is assumed that the lidar is fast enough so that the object does not

move during the scanning. Comparing the RF of the different snapshots, the attitude is

retrieved.

4.1 Second Level Feature Detection

Definitions: Edges are at the intersection of two visible/detected surfaces. Boundaries

are the points at the extremity of the scanned object that are the intersection of one visible

and one hidden surfaces.

o
—

•

Boundary

Boundary Corner

Edge

Corner

Figure 4.1: Definition comer and boundary comers

Figure 4.1 clarifies the terms corner and boundary1 corners that will be used through

out the chapter.

4.1.1 Corner detection

The function find-corner finds a comer defined by the intersection of three surfaces.

Because the studied object is a cube, the case where the intersection of the three planes

is a point is the only possibility. The body of the spacecraft are usually closed box

4.1. SECOND LEVEL FEATURE DETECTION 61

therefore it is always possible to find comers at intersection of planes.

Figure 4.2: Different cases of intersection between three planes.

Principle

Each plane is described by an equation of the following type:

ni-Pi = d, , i€{l9 2 3} (4.1)

If X = (xi, X2> xy) then the intersection point can be obtained by solving the system:

ni • X — d\

n2-X = d2 (4-2)

n3 • X = d3

Note that ni • (n2 x n3) = 0 ensures a unique intersection point.

The system of three equations can be solved by using the Cramer rule, a Gaussian

elimination algorithm or as suggested by Goldman [9]:

di(n2 x n3) + d2(n3 x ni) + rf3(m x n2)
X —

ni • (n2 x n3)

This last solution is the easiest to implement and works well.

(4.3)

Implementation

The algorithm is implemented in a separate function and starts by counting the number

of surfaces detected, then sorts them according to their number of points. The three

4.1. SECOND LEVEL FEATURE DETECTION 62

largest faces are kept. From each of the three remaining surfaces, an arbitrary point is

picked, its normal is retrieved in order to define the planes whose intersection is sought.

Recall that the normal was computed during the edge search and stored along with the

variance in a structure. The dl parameter is computed according to the equation 4.1

with the selected point and its associated normal. The intersection is calculated using

equation 4.3.

Results

The error between the expected value and the computed comer was calculated for differ

ent orientations. Without noise, the error is very small, of the order of 10"10. Including

noise in the measurements (refer to paragraph on noise 2.2.4) the error is slightly bigger

but remains below 10"7. Figure 4.3 shows that the algorithm works well even in the case

where two of the surfaces are not well defined. The calculated comer appears in green.

600

.400

200

0

-200

-400

-600

. : j :"" ••

• :

4i^

" :.

§§§§§:'

500 . :

400}

300|

20o|

TOO*

°f
-1001

-200!

-3001

-40011

-500J

. ,,

Figure 4.3: Comer detection results.

On the left, the three surfaces are well defined, on the right is shown the case where two
of the surfaces are barely visible

4.1.2 Edge labeling

This section describes the function that segments the edges in order to label them. The

three surfaces of the object containing the greater number of points are found in the

4.1. SECOND LEVEL FEATURE DETECTION 63

same fashion as in the comer detection function. The function in this case however is

extremely sensitive to the selection of the arbitrary point. For some orientations a point

would work perfect, for some others, the picked point was not defining the surfaces

correctly. As a result, one edge would not be labeled. To remedy to this problem quickly

but efficiently, a small test at the end of the function was implemented. It checks how

many edges are labeled, if there is only two, the non labeled point are labeled with the

missing label. It also counts how many points belong to each labeled edge. If it is below

three, it is assumed that some points were missed and they are labeled with the label

counting less than three points. The three largest surfaces are arranged in pairs ((1, 2),

(2, 3), (3, 1)). The intersection between each set of two surfaces is found. The resulting

line is described in a parametric form by a point and a direction:

P(r) = P0 + D t (4.4)

where:

P(0 = Any point on the line

Po = Known point belonging to the line

D = Direction of the line

t = Variable

For each of the line of intersection a loop over all the edge points is performed to deter

mine the distance between a current edge point and the current line.

Assuming that Pp is the base of the perpendicular dropped from P to L, then the

vector P\Pp is the projection of the vector P\P onto A as shown in Figure 4.4. The

distance d(P, L) from an arbitrary point P to a line L given by a parametric equation is:

Distance = | w - (w D) D | (4.5)

where:

4.1. SECOND LEVEL FEATURE DETECTION 64

Figure 4.4: Notation for the line-point distance computation.

w = Vector P^P

D = Direction of the line

t = Variable

For details on the derivation refer to [18]. This calculated distance is compared with

a threshold. If the distance is below that threshold then the edge point belong to the

studied edge. A threshold too low implies missed edge points and edges becoming in

complete. If it is too high, points from other boundaries are picked up. The pseudo code

can be found in appendix D.7. Note that the exact same process was applied to boundary

points since they sometimes appear near the edges as can be seen on Figure 4.3.

Results

Results appear on Figure 4.5, the green dot is the comer. Note that the labeling is not

done in the same order from orientation to next orientation (the colors of the edges are

not consistent from snapshot to snapshot). This makes difficult the tracking of an edge.

It is necessary to know which boundary comer is used when fixing a reference frame on

the object. This is done by clustering the boundary corners (explained in next section).

4.1. SECOND LEVEL FEATURE DETECTION 65

£
£

-500
0 -500

(mm)

£
£

-500

500 0 -500
Y (mm)

£

-500 •

500 0 -500
y (mm)

£

-500

£
£

500 0 -500
Y (mm)

£
E

500 0 -500
y (mm)

£
£

500

0

500 î X /̂
500 0 -500

Y (mm)

E
E

500 0 -500
Y (mm)

500 h h

-500 '-r

500 0 -500
y (mm)

Figure 4.5: Results of the edge labeling.

4.1.3 Boundary corner

For each labeled edge point, the distance between the comer and the current point is

computed. The furthest point from the comer is the boundary comer.

4.1.4 Errors in corner and boundary corner detection

Figure 4.6 shows the theoretical position of the comers and boundary comers as well as

their measured positions for the range of orientation expressed in Euler form: (3 to 45,

5 to 75, 0) in degrees. The orientation (0, 0 ,0) is not considered since there is only one

faces visible (no comer).

4.1 SECOND LEVEL FEATURE DETECTION 66

800

600

400

200

S

E 0

-200

-400

-600
-800

0 0 ^

• • 0

•

•
• '

•
•

A ••••

Comers

* • • • • %

o
•0
0

« .

Boundary corners 0

4.99 4.995
x (mm)

x10

5.005
5

Figure 4.6: Comers: theoretical and measured positions.

The filled circles are the theoretical positions (magenta for comer, blue for boundary
comers). The empty diamonds are the measured positions (same color code).

The error computations described in this section were done using the pose (6, 10, 0).

It is one of the less accurate since only one face is well visible. It shows that even in

the worst case, the error is very tolerable. Table 4.1 expresses the absolute value of error

between the measured comer and the theoretical position of that comer in different way.

The first column shows the difference in coordinates in cm:

where:

Error = rth - rn

r?h = Theoretical position of comers

r^ = Measured position of comers

(4.6)

The second column expresses this error as a percentage error (the computation is per-

4.L SECOND LEVEL FEATURE DETECTION 67

formed component by component):

rl -x1

Error % = — x 100, i € {1,2,3} (4.7)

The third column is the distance between the position of the measured comer and the

position of the theoretical point. It is expressed in cm.

0 = 11^-^11 (4.8)

Equation to refer to

Corner

Boundary corner 1

Boundary corner 2

Boundary corner 3

X

y
z
X

y
z
X

y
z
X

y
z

Difference of coordinates
(cm)
4.6

1.10-5

-8.KT5

-1.10-6

-0.05
3.28
1.71
8.35
0.98

-6.17
-0.50
-1.06
-3.47

% Error
%

4.7
10"«

-2.10"4

4.10-6

-1.10"4

7.40
2.91
0.02
1.78
10.8

-uo-J

1.93
8.37

Distance
(cm)
4.8

8.10-6

0.37

1.04

0.37

Table 4.1: Error in comer measurement for orientation (6, 10, 0).

4.2. DETERMINATION OF THE CENTER OF ROTATION 68

t

1

2

3

. 4
5

6

7

8

9

10

11

12

13

14

15

Orientation

Z
3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

Y

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

X

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

c

4

3.5

3

2.5

2

1.5

1

0.5

0

-0.5

C

-BC1

BC2

-BC3

A

0 1 2 3 4 5 6 7 8 9 10 11 1 2 1 3 14 15

Index of orientation (t)

Figure 4.7: Distances between theoretical and measured comers as a function of the
orientation

C = Comer, BC = Boundary Comer. Computations were done for 15 different attitudes.

Figure 4.7 shows the evolution of the error as a function of the orientation. The

dashed line represents the orientation used to compute the errors described in table 4.1.

The comer stabilizes at zero indicating a very accurate restitution of the position. BC1

and BC3 do not suffer from the changes in orientation. It is easily understood while

looking at Figure 4.5. BC1 and BC3 are the extremities of the dark blue and pink edges

appearing on the three last snapshots (bottom ones). BC2 is the extremity of the light

blue edge on the same last three snapshots, as it disappears from the field of view, the

error increases. BC2 is the less accurate boundary comer.

4.2 Determination of the Center of Rotation

The center of rotation is determined by fitting a sphere to the comers found for different

poses. The center of the sphere is the center of rotation. The study is performed for

the orientations showed in Figure 4.7 given in Euler (3,2,1) convention. The comers are

used because their measurements are more accurate than boundary comers.

4.2. DETERMINATION OF THE CENTER OF ROTATION 69

4.2.1 Principle of best fitting sphere

From a set of N points, it desired to find a sphere defined by its radius and center that go

through as much point as possible. The equation of a sphere in 3D is given by:

r2 = (x - xcf + (y - ycf + (z - zcf (4.9)

where

x,y,z = Coordinates of points on the surface of the sphere

Xc,yc,Zc = Coordinates of the center of the sphere

r = Radius of the sphere

The best fitting sphere can be found from a minimum set of four points since there

are four unknowns, the three components of the center as well as the radius. The non

linear system 4.10 has to be solved:

r2 = (xt - xc)
2 + & -yc)

2 + (Zl - ZC)\ i €{1,2,3,4} (4.10)

where pt = (JC„ yt zt) is the ith point used for the fitting process. The system can be gen

eralized to N points with N equations. It becomes overdetermined and an optimization

is required. The Least Squares (LS) method is used. LS is a common method for fitting

data. The best fit in the LS sense is that instance of the model for which the sum of

squared residuals has its least value, a residual being the difference between an observed

value and the value given by the model.

In order to do so, the system is re-written in terms of norm:

r2 = (x- xc)
2 + (y -yc)

2 + (z - z c) 2

(4.11)

r2 = \\P-C\\2

Recalling the Euclidean definition of the norm:

\\x\\2 = \J]\xl\
2 (4.12)

Vi=l /

4.2. DETERMINATION OF THE CENTER OF ROTATION 70

We can write:
n

IIP-cn2 = 2 IP, - C|2

1=1

Which can be expanded and rearranged:

r2 = 2 P,2 - 2 2 / ^ , + E C , 2 , i £ {1, 2 3}

r2 - 2 C,2 + 2 2P, C, = 2 P,2 = ||P,2 | |

For N points, the last equation can be expressed as a matrix equality:

2;q

2X2

2xN

2yi

2^2

2yyv

2zi

2z2

2ZN

1

1

1

*

yc

Zc

R

-

^ i 2 + y i 2 + zi 2

x2
2 + yi2 + Z22

XN2 + yN2 + ZN2

(4.13)

(4.14)

(4.15)

A X

Since the goal is to solve for X, matrix A must be full rank to ensure the existence

of the inverse.

4.2.2 Results of best fitting sphere

Table 4.2 shows the coordinates of the center of the fitted sphere for 4, 8 and 12 comer

points (corresponding to different orientations). The theoretical center is at [500000 0

0] in mm. The radius is the half diagonal of the cube, corresponding to V3 x ^ =

V3 x 500 = 866.025 mm.

A comparison between a sphere fitting only comers and a sphere fitting the comers

plus the boundary comers is presented in table 4.3.

The more points, the more accurate the center of rotation, and radius. The radius

is given for information purpose because it is never used in the following development.

4.2. DETERMINATION OF THE CENTER OF ROTATION 71

800

600

400

200

0

-200

-400

-600

-800

r

' ;

X

• < >

• • •

uorners

BC1

/ 1
i

\
BC3

\

\
BC2

4.99 4.995 5
x(mm)

5.005 5.01

x10

Figure 4.8: Sphere fitting the comers.

The magenta dots (comers) are the fitted comers, the other dots are the different
boundary comers.

Number of points considered

Center

Radius

N
X

y
z
r

4
499999.898

1.08
0.41

865.59

8
499999.999

0.11
0.05

865.00

12
500000.002

0.03
0.01

866.02

Table 4.2: Center of rotation coordinates (mm). Sphere fitting comers ONLY

The important data is the center of rotation. The figures are given in mm. The biggest

error is on y and has a magnitude of 1 mm in the 'only corners' case and 34 mm on z in

the 'comers plus boundary comers' case.

This method is therefore very accurate as long as no 'bad comer' is taken into ac

count. 'Bad comers' are corners computed for orientation of the spacecraft where the

visibility of certain faces is limited. In this case the position of the comer is less accurate

leading to bad fitting. For instance, the orientation (3, 5, 0) was not taken into account in

the simulation because the error on the comer location was important. If this orientation

4.3. CHOICE OF A REFERENCE FRAME 72

Number of point considered

Center

Radius

N
X

y
z
r

4 8 12
499944.746 499954.445 499964,481

12.48 7.81 1.92
-34.32 -20.71 -8.09
806.16 818.81 827.27

Table 4.3: Center of rotation coordinates (mm). Sphere fitting comers AND boundary
comers.

was taken into account in addition to 12 other comers, the error is of the order of the

cube size itself! If boundary comers are added to this set of points then the result be

comes acceptable since the error is 46 mm on x, 3 mm on y, and 52 mm on z. In practise

a filter can be designed to remove the views of the spacecraft that do not show enough

of certain surfaces.

In conclusion, the center of rotation is determined by fitting a sphere to the comers

only since it gives better results. This center is used to define an object attached reference

frame as described in the next section.

4.3 Choice of a Reference Frame

The objective of this section is to describe a way to retrieve the orientation of the scanned

object without any assumption on the shape except for the features that have been de

tected. The steps taken so far are:

1. Built a model

2. Given a (3, 2, 1) Euler angle sequence converted to \ Modeling part

a rotation matrix, rotate the model.

3. Scan the model with ray tracer

4. Process the point cloud obtained from ray tracing

43. CHOICE OF A REFERENCE FRAME 73

From the information gathered through this process, it is desired to retrieve the ori

entation. It was hoped to find the Euler angle so error was readily available and under

standable. However since the transformation from rotation matrix to Euler angle is not

bijective, it was not possible. The angular displacement between two consecutive ori

entations (described by rotation matrices) are calculated and compared with the rotation

used in modeling part to rotate the model.

4.3.1 Advantages and drawbacks of rotation matrices

Advantages

Matrix form is a very explicit form of representing orientation. This explicit nature

provides some benefits.

• Rotation of vectors is immediately available

• Standard format used by graphics APIs

• Concatenation of multiple angular displacements

• Matrix inversion. When an angular displacement is represented in matrix form,

it is possible to compute the opposite angular displacement using matrix inver

sion. Note that since rotation matrices are orthogonal, this computation is a trivial

matter of transposing the matrix.

Drawbacks

• Matrices take more memory than other techniques because nine components have

to be stored instead of three for Euler Angle and four for quaternions

• Difficult for humans to use, they are not intuitive

As a reminder, Figure 4.9 shows the direction cosines of the x0 axis.

4.3. CHOICE OF A REFERENCE FRAME 74

Figure 4.9: Recall on direction cosine matrix

4.3.2 Definition of the reference frame (RF)

The comers and the center of rotation are determined very accurately, therefore those

points are the first candidates for defining a RF A third point is needed. It has to be

a boundary comer. The definition of the RF attached to the object is thus defined with

the center of rotation (A), the comer (B) and one boundary comer (C). The origin of

the frame is the center of rotation. The x axis is the unit vector of AB. The z axis

is perpendicular to the (ABC) plane. Y axis simply complete the right handed frame.

Refer to Figure 4.10. Note that since the studied object is a cube, the boundary comer

falls on the y axis but it is not necessarily the case. The third point, here the boundary

comer is used to define a plane.

VL

Lidar

O Center of rotation

Comer

Boundary Comer

Figure 4.10: Reference frames of the lidar and the object

4.4. RESULTS 75

The computation of the axis of the RF is done in terms of component of unit vectors

which actually gives the direction cosines.

4.4 Results

For each snapshot, a RF is defined and stored as a direction cosine matrix. Since the

rotation matrix used to rotate the initial model and the direction cosine matrix (DCM)

defined from comers are not built the same way, it is not possible to compare them

directly. The comparison is done on the change in orientation. For each two consecutive

snapshots a transition matrix MT is calculated:

MT = DCMt+AtxDCMT
t

where DCM t is the DCM at orientation t and DCM t+&t is the new DCM for the orien

tation in the sequence. The transition matrices are calculated for the theoretical case and

for the measured case and compared. Note that the computed transition matrices are also

normalized DCMs. DCMs can be represented as rotations of RFs as shown on Figure

4.11.

Figure 4.11: Theoretical and experimental reference frames to be compared

4.4. RESULTS 76

Figure 4.11 shows the expected transition matrix (0, Xojh, YOJh, Zojh) and the

experimental one (O, Xom, Y<)Jtl, ZUJU). Since the transition matrices are normalized,

the projection ot one axis onto another gives the angle between them. This is how the

error of the whole process is expressed.

In the tollowing sections, two different sequences of orientations are studied. For

each case, a figure shows the comers and the fitting sphere as well as the different ori

entations ot the sequence. Then a table summarizes the angle of error between the

theoretical and measured RF shown on Figure 4.1 1. Since the object reference frame

is defined using only one boundary corner, results are presented for each of the three

boundary comers.

First sequence of snapshots

t

i

2
3
4
5
6
7
8
9
10
11
12
13
14

Figure 4.12: Orientation used for simulation (left) and plot of the comers (right)

Figure 4.12 shows the correspondence between the shot number parameter (t) and

the orientation of the object as well as a plot of the boundary comers BC1 is in yellow,

BC2 in green and BC3 in cyan. Figure 4.14 shows the error angle between the expected

direction cosine matrix and the measured one. The values are summarized in Figure

Orientation
Z

6

9

12

15

18

21

24

27

30

33

36

39

42

45

Y

10

15

20

25

30

35

40

45

50

55

60

65

70

75

X

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4.4. RESULTS 77

4.13. The biggest errors are encountered when the object RF is defined based on BC2.

In this case the results are off by 10.75 °. When the RF is based on BC1 or BC3 the error

decreases to 3 °. An error of 3 ° is significant since the rotation of the model around z

axis is done with a step of 3. However, if this step is doubled (6°) the error does not

increase but remains with a maximum of 3°. These results indicate that a filtering of

the rotation matrices based on a simple 'goodness' of orientation can be performed. The

filtering criterion can be a threshold on the variation of the rotation angle between two

consecutive shots. Another filtering method can consist in averaging the angles between

all the shots and rejecting the values larger than the average.

Error BC1 (degree)
x-axis

0.03

1.51

0.14
0.07

0.07

0.17

0.21

0.75
0.89

1 3 0

0 3 1
0.71

0.78

Y-axis

0.04

2 3 0

0.28
0.15

0.19

0 3 3
0.70

2 3 2

2.40

3.01

0.62

1.24

1.22

z-axis

0.04

2.66
0 3 0
0.17

0.20

0 3 6
0.71

2 3 1
2 3 1

2.77

0 3 4

1.02

0.94

Error BC2 (degree)

x-axis

7.18

1 3 4

4.21
2.62

0.14

1.79
0.03

0.07
0.63

1.97

1.06
0.19

1 3 5

Y-axis

10.23

2 3 5
8.26
6.18

0 3 9

5.78
0.09

0.21
1.70

4 3 5
2.12

0 3 4

2.11

z-axis

10.75

2.71
8 3 2
6 3 9

0.42

6.04
0.09

0.21
1.64

4.19
1 3 5

0.28

1.63

Error BC3 (degree)

x-axis

0.25

1.72

0.06
0.01

0.25

0.08

0 3 3
0.44
0.23

0 3 8

1 3 9
0.74

0 3 5

Y-axis

0 3 5

2 3 5
0.12
0.03

0.70

0.27
1.09
1 3 7
0.63

0 3 8

2.78
1.29

0 3 5

z-axis

0 3 7

3.03
0.12
0.03

0.74

0.28
1.11
1 3 7

0.61

0 3 1
2.43
1.06

0.43

Figure 4.13: Angle error for BC1, BC2 and BC3 for each orientation

Another way to visualize results is done in Figure 4.14. They show that the error on

the x axis is smaller than for on the two other axis.

4.4. RESULTS

° 1.5

JLmJU

x axis
y axis
z axis

i
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4.14: Error in angle between axis of RFtk and RFn

Using BCl (top), BC2 (middle) and BC3(bottom)

4.4. RESULTS 7?

Second sequence of snapshots

4.4. RESULTS SO

t

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Orientation
Z

111
114
117
120
123
126
129
132
135
138
141
144
147
150
153
156

Y
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260

X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

600

4 0 0 -

200 I-"

-200

-400 I—

-600 U

-800 U

i •

5 005 5 01

Figure 4.15: Orientation used for simulation and plot of the Corners

Error BO (degree)

x-axis

1.96

1.22
0.83

0.52
0.21

0.04

0.10
0.71

1.43

1.80

0.58

0.59

0.27

1.61

1.95

Y-axis

3.56

2.71

2 3 5
2.05

1.28

0.45

1.09

4.21

5 3 5

5.20

1 3 4

1.15

0.44

2.40

2.62

z-axis

3 3 5

2.62

2 3 1

2.05

1.28

0.45

1.09

4.15
5 3 7

4.92

1.23

1.02

0 3 8

1.98

2.08

Error BC2 (degree)

x-axis

0.07

3 3 4

0.72

0.63

0.05

0.03

0.19

0.45

1.12

0.10

0.14

1 3 4

2.41

2.43

1.20

Y-axis

0.12

7.41
2.04
2.46

0 3 3

0 3 1

2.07
2.66

4 3 4

0.29

0 3 3

2 3 9

4.04

3.61

1.61

z-axis

0.11

7.16

2.01

2.45
0.33

0 3 1
2.06

2.62

4.20

0.27

0 3 0

2 3 1

3.47

2.98

1.28

Error BO (degree)

x-axis

0.70

1.82

1.02
0 3 2
0.24

0.06
0.06

0 3 5
0.67

0.00

1 3 4
1 3 8
2.88

1.64

3.67

Y-axis

1.28

4.02
2.89

1.25
1.46

0.69

0.61
3.23

2 3 9

0.00

3.09

3.06
4.83

2.44

4.92

z-axis

1.21

3.89
2.85

1.24
1.47

0.70
0.61

3.18
2 3 1

0.00

2.84

2.72

4.15

2.02

3.91

Figure 4.16: Angle error for BC1, BC2 and BC3

4.4. RESULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7

6

a) 5

en
<D

I«
o
HI 3

2

II
5

4 5

4

3 5

2 3
a>
I 2.5
o

& 2

1.5

1 h

0 5

0

J

J U L JQ_JL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t

u M
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.17: Error in angle between axis of RFt}2 and RF„

Using BCl (top), BC2 (middle) and BC3(bottom)

Conclusion

In quest of using lidar for navigation, this thesis has showed a procedure to retrieve el

ements of the attitude of a tumbling, out of control object from a lidar point cloud. The

high cost of lidar devices made impossible the acquisition of one. To overcome this

difficulty, a lidar simulator was written. Its main components are (1) a ray direction gen

erator and (2) an algorithm that computes range data based on ray tracing techniques.

The lidar was implemented to be able to reproduce errors in measurements however the

results presented in the present report were obtained without those errors. The simulator

outputs a complex point cloud that needs to be simplified. The processing of this set of

points mainly consists in extracting features. Covariance matrix and eigenvalue analy

sis is performed to retrieve edges. A Chi-squared test in the sense of test of goodness

of fit allows to detect boundary points (points that do not have neighbors on one side,

they constitute the limit of what the lidar can see). Finally the surfaces are created using

a region growing method associated to clustering. Simple geometry was used to find

corners (at the intersection of three surfaces) and boundary corners (at the extremity of

edges, one per snapshot). These features, especially the corners (at the intersection of

three surfaces, three per snapshot) were found accurately, less than 0.0001% error. The

scenario studied to perform the attitude analysis consists in a chaser equipped with a li

dar following an out of control target while taking pictures (or snapshots) at regular time

intervals. A sequence of 15 snapshots was considered in the study. Further work would

83

84

include determining the optimal number of snapshots. The first step in attitude retrieval

is finding the center of rotation. It is performed fitting a sphere to the 15 corners detected

for the 15 different orientations. This center of rotation is determined very accurately,

less than 1% error. Based on the corners, one boundary corner and the center of rotation,

a reference frame is defined for each orientation of the sequence and expressed as a di

rection cosine matrix. The changes in orientation in the theoretical case (rotation of the

model) and experimental (body fixed frame based on the features) case are compared.

A direct comparison is not possible because the rotation matrix used to rotate the model

and the direction cosine matrix representing the orientation of the object are not built

the same way. Finding a more direct way to express the result and quantify the error

is desirable and should be studied in future research on the topic. The accuracy of the

results depends on the accuracy of the boundary corner position used to build the refer

ence frame. It was noticed that the three boundary corners are alternatively accurately

determined. The algorithm could be improved by implementing a filter that selects the

most accurate boundary corner and define the reference frame from it.

Recommendations This work constitutes a starting point for a robust navigation algo

rithm based on imaging lidar. A few recommendations are now proposed. The errors

found in the change of orientation are due to the inaccurate determination of the bound

ary corners. The use of high resolution windows would improve edge detection resulting

in better results for those corners. Also the whole feature detection part could be facil

itated by the use of the intensity parameter implemented in the lidar simulator but not

used in the present study. The expression of the results needs to be more intuitive, for

instance it would be desirable to obtain the angular rates in terms of Euler angles.The

algorithm shall also be tested with various object shapes.

Bibliography

[1] F. Einaudi G. K. Schwemmer B.M. Gentry J.B. Abshire. Lidar past, present, and future in

nasa's earth and space science programs. 2004. [cited at p 5]

[2] A. Allen. Lidar based gnc for automatic rendezvous and safe landing. Technical report,

MDA Space Missions for ESA, Juillet 2005. [cited at p 11]

[3] U. Soppa B. Moebius, M. Pfennigbauer. Miniaturized 3d lidar for lunar landing. June 2008.

[cited at p 11]

[4] D. Belton and D. D. Litchi. Classification and segmentation of terrestnal laser scanner

point clouds using local variance information. International Archives of Photogrammetry,

36:44 to 49, 2006. [cited at p 42,47]

[5] S. Ruel C. English S. Zhu C. Smith and I. Christie. Tridar: A hybrid sensor for exploiting

the complementary nature of triangulation and lidar technologies. In ISAIRAS, September

2005. [cited at p 10]

[6] F. Dunn and I. Parberry. 3D Math Primer for Graphics and Game Development. Wordware,

2 0 0 2 . [cited at p viii,28]

[7] ESA. Aurora exploration programme. Website, 2006.

http://www.esa.int/esaMI/Aurora/SEMlU7A5QCE_0.html. [cited at p 11]

[8] A. S. Glassner. An Introduction to Ray Tracing. Morgan Kaufmann, 1989. [cited at p vm, 28,

30]

85

http://www.esa.int/esaMI/Aurora/SEMlU7A5QCE_0.html

BIBLIOGRAPHY 86

[9] R.Goldman. Intersection of three planes. Graphics gems. Academic Press Professional,

Inc., San Diego, CA, USA, 1990. [cited at P 61]

[10] D. Belton K. Bae and D. D. Lichti. A framework for position uncertainty of unorganized

three dimensional point clouds from near mono static laser scanners using covariance anal

ysis. 2005. [cited at p 14,46]

[11] Neptec Design Group Ltd. Neptec space systems. Neptec Website, 2007.

http://www.neptec.com/NeptecXCS.html. [cited at p 10]

[12] L. P. KobbeltM. Pauly, M. Gross. Efficient simplification of point-sampled surfaces. IEEE

Computer Society, 2002. [cited at p ix, 42,44]

[13] M. P. McCormick. A review of spaceborne lidar and a look to the future. San Antonio,

Texas, January 2007. AMS 3rd Symposium on Lidar Atmospheric Applications, [cited at p 6]

[14] U. Meek. Jena-optronik gnc sensor, http://www.jenaoptronik.com. [cited at p vm, 32]

[15] M. Umasuthan P. Jasiobedzki, S. Se; T. Pan and M. Greenspan. Autonomous satellite

rendezvous and docking using lidar and model based vision. In SPIE, editor, Spaceborne

Sensors II, pages 54-65, 2005. [cited at p 11]

[16] K. A. Powell. Lite. NASA Web site, April 1998. http://www-lite.larc.nasa.gov/. [cited at p 6]

[17] M. Anctil S. Ruel, C. English and P. Church. Lasso: Real time pose estimation from 3d

data for autonomous satellite servicing. ESA, August 2005. [cited at p 10]

[18] D. Sunday. About lines and distance of a point to a line. Web site, 2006.

http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm. [cited atp 64]

[19] Wikipedia. Data clustering. Web site, November 2008.

http://en.wikipedia.org/wiki/Data_clustenng. [citedatp 51]

[20] Dr. D. R. Williams. Mars global surveyor. NASA Web site, December 2004.

http://nssdc.gsfc.nasa.gov/planetary/marsurv.html. [citedatp 6]

http://www.neptec.com/NeptecXCS.html
http://www.jenaoptronik.com
http://www-lite.larc.nasa.gov/
http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm
http://en.wikipedia.org/wiki/Data_clustenng
http://nssdc.gsfc.nasa.gov/planetary/marsurv.html

BIBLIOGRAPHY 87

[21] H. J. Zwally. Glas. NASA Web site, http://icesat.gsfc.nasa.gov/glasinstrument.php.

[cited at p. 7]

http://icesat.gsfc.nasa.gov/glasinstrument.php

Appendices

89

Appendix A

Dimension of the CATIA model of

the spacecraft

91

Top view
Scale: 1:30

h-20

Front view
Scale: 1:30

isometric view
Scale: 1:40

1000

40O

0 600

Right view
Scale: 1:30

EBRY RIMH£ MMMWriAL VMIKEMITY
MYTWK MASH, FLORIDA

2008 1:35
•Ys C. Decoust

TITLEi
spacecraft model 1/1

Appendix B

STL Reader

B.1 STL Format

STL files describe a facet as follow:

facet normal Q 6 1

outer loop

vertex 5 5 0

vertex -5 5 0

vertex Q -5 Q

endloop

endfacet

B.2 Test of the STL Reader

The STL reader has been stress tested with a complex shape as presented on the figure:

93

B.l. TEST OF THE STL READER 94

0.2-

0-

-0.2-

-1

-0.5
1.5

0.5
0.5

-0.5

Figure B.l: STL reader tested on a complex shape.

Appendix C

Ray Tracer Pseudo code

C.1 STL_reader

Open Stl file

Count the number of lines to deduce the number of facet

Read the data form files

Look for 'facet_normal'

Store the coordinates of the facet normal

Extract the vertex position from strings

Close file

C.2 Ray_gen

For regular rays

From the input define a step size for the directions of the rays

Generate ray direction and store them

For HR windows

Find indexes (El. and Az.) of the hires window start at the

95

C.2. RAY.GEN 96

closest existing ray

Find indexes (El. and Az.) of the hires window end at the

closest existing ray

If the required window corner lies out of the lidar FoV then

make the hires window corner the lidar FoV corner

Generate the ray directions

Appendix D

Point Cloud Processing Pseudo

Code

D.1 Nearestneighbour function Description

function [idx, tri] = nearestneighbour(varargin)

NEARESTNEIGHBOUR find nearest neighbors

IDX = NEARESTNEIGHBOUR(X) finds the nearest neighbor by Euclidean

distance to each point (column) in X from X. X is a matrix with points

as columns. IDX is a vector of indices into X, such that X(:, IDX) are

the nearest neighbors to X. e.g. the nearest neighbor to X(:, 2) is

X(:, IDX(2))

IDX = NEARESTNEIGHBOUR(P, X) finds the nearest neighbor by Euclidean

distance to each point in P from X. P and X are both matrices with the

same number of rows, and points are the columns of the matrices. Output

97

D.L NEARESTNEIGHBOUR FUNCTION DESCRIPTION 98

is a vector of indices into X such that X(:, IDX) are the nearest

neighbors to P

IDX = NEARESTNEIGHBOURd, X) where I is a logical vector or vector of

indices, and X has at least two rows, finds the nearest neighbor in X

to each of the points X(:, I).

I must be a row vector to distinguish it from a single point.

If X has only one row, the first input is treated as a set of ID points

rather than a vector of indices

IDX = NEARESTNEIGHBOUR(..., Property, Value)

Calls NEARESTNEIGHBOUR with the indicated parameters set. Property

names can be supplied as just the first letters of the property name if

this is unambiguous, e.g. NEARESTNEIGHBOUR(... , 'num', 5) is equivalent

to NEARESTNEIGHBOUR(..., 'NumberOfNeighbours', 5). Properties are case

insensitive, and are as follows:

Property: Value:

NumberOfNeighbours natural number, default 1

NEARESTNEIGHBOUR(..., 'NumberOfNeighbours1, K) finds the closest

K points in ascending order to each point, rather than the

closest point. If Radius is specified and there are not

sufficient numbers, fewer than K neighbors may be returned

Radius positive, default +inf

D.l. NEARESTNEIGHBOUR FUNCTION DESCRIPTION 99

NEARESTNEIGHBOUR(..., 'Radius7, R) finds neighbors within

radius R. If NumberOfNeighbours is not set, it will find all

neighbors within R, otherwise it will find at most

NumberOfNeighbours. The IDX matrix is padded with zeros if not

all points have the same number of neighbors returned. Note

that specifying a radius means that the Delaunay method will

not be used.

DelaunayMode {'on', 'off', |'auto'|}

DelaunayMode being set to 'on' means NEARESTNEIGHBOUR uses the

a Delaunay triangulation with dsearchn to find the points, if

possible. Setting it to 7auto' means NEARESTNEIGHBOUR decides

whether to use the triangulation, based on efficiency. Note

that the Delaunay triangulation will not be used if a radius

is specified.

Triangulation Valid triangulation produced by

delaunay or delaunayn

If a triangulation is supplied, NEARESTNEIGHBOUR will attempt

to use it (in conjunction with dsearchn) to find the

neighbors.

[IDX, TRI] = NEARESTNEIGHBOUR(...)

If the Delaunay Triangulation is used, TRI is the triangulation of X'.

Otherwise, TRI is an empty matrix

D.2. FINDJEDGEJPOINTS 100

Copyright 2006 Richard Brown. This code may be freely used and

distributed, so long as it maintains this copyright line

D.2 Find_edge_points

For each point of the point cloud

Find nearest neighbors of current point

Compute the surface variance

If the surface variance is > threshold

Decrease neighborhood size (16 to 2)

Decrease increment to 1

Else

Set increment to coarse (16)

While number of neighbors < number of neighbor max

Find nearest neighbors

Compute the surface variance

If surface variance > threshold

If increment is already fine

Label the furthest point with 1 as it is an edge point

Label all the other points with 0 as it is a surface

Else

Reset the label of the last increase

Take one step back (number of neighbor - increment of neighbor number)

Set increment of neighbor number to 1

Increment number of neighbor

D.3. FIND.BNDRYJPOINTS

If number of neighbors > number of neighbor max

Labels all the points as surfaces (0)

D.3 FincLbndry .points

For each point of the point cloud

If the current point in not an edge point

Find nearest neighbor of current point

Compute centroid of the neighborhood

Compute covariance matrix of the neighborhood

Compute Eigenvectors and values of the covariance matrix

Perform Chi squared test

If the results of the test > threshold

Label the point as a boundary

% Clean up the boundary points

Get the boundary points

For each boundary point

Find nearest neighbor of current point

If nearest neighbor is an edge point

Set the boundary point as an edge point

D.4 Surf.segm

For each point of the cloud

If current point is on a smooth surface (label = 0)

Compute absolute value of the components of the normal

Find and count the points with similar normal direction

D.5. CLUSTERDATA FUNCTION 102

(taking into account the tolerance)

If the number of point found is lower than the minimum allowed

Give a special label to those points

Else

Label point of the surface with a number (surface count)

Increment surface count

%Further segment the surface using Matlab Cluster Data

For each detected/labeled surface

Find all the points belonging to the surface

Group the points in x clusters

Find the smallest cluster

Discard the cluster whose size is below a defined threshold

If more than one cluster has been found for one surface

(as defined in first part of code) then change the label of

the points

D.5 Clusterdata function

T = clusterdata(X, cutoff) uses the pdist, linkage, and cluster functions

to construct clusters from data X. X is an m-by-n matrix,treated as m

observations of n variables.

Cutoff is a threshold for cutting the hierarchical tree generated by linkage

into clusters.

When 0 < cutoff < 2, clusterdata forms clusters when inconsistent values

are greater than cutoff (see the inconsistent function).

When cutoff is an integer and cutoff > 2, then clusterdata

D.6. FIND.CORNER 103

interprets cutoff as the maximum number of clusters to keep

in the hierarchical tree generated by linkage.

The output T is a vector of size m containing a cluster

number for each observation.

T = clusterdata(X,cutoff) is the same as

Y = pdist(X,7euclid');

Z = linkage(Y,'single');

T = cluster(Z,'cutoff',cutoff);

T = clusterdata(X,'paraml7,vail,7param2',val2,...)

provides more control over the clustering through a set of

parameter/value pairs.

Valid parameters are

'distance' Any of the distance metric names allowed by pdist

(follow the 'minkowski' option by the value of the exponent p)

'linkage' Any of the linkage methods allowed by the linkage

function

'cutoff Cutoff for inconsistent or distance measure

'maxclust7 Maximum number of clusters to form

'criterion' Either 'inconsistent' or 'distance7

'depth7 Depth for computing inconsistent values

D.6 Find.corner

Find the number of surfaces

For each surface

D.7. LABELJEDGE

Find the number of point belonging to this surface

Find the three biggest surfaces (with most points)

Retrieve a point and its normal from each of the three surfaces

Compute the d parameter for the three planes (surfaces)

Compute the intersection of the three planes.

D.7 LabeLedge

Find the number of surfaces

For each pair of surfaces

Find the number of point belonging to this surface

Find the three biggest surfaces (with most points)

Retrieve a point and its normal from each of the three surfaces

For each line of intersection

For each of the two intersecting surfaces

Retrieve a point and its normal

Compute the intersection of the two surfaces

For each edge point

Compute distance between current point and current

intersection line

If the distance is below threshold, the point belongs

to the current intersection. New label.

	Attitude Determination Using Imaging Lidar
	Scholarly Commons Citation

	ProQuest Dissertations

