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ABSTRACT 

Author: Camille Decoust 

Title: Attitude Determination Using Imaging Lidar 

Institution: Embry Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2008 

The purpose of this study is to determine the attitude of an out of control object using 

a new technology called lidar (Light Ranging and Detection). As the number of space

craft continues to grow, it is paramount to introduce a new type of autonomous on-orbit 

satellite inspection and repair involving docking. Traditional space vision technology is 

based on video systems. This method is limited by the necessity of operating when the 

target is illuminated by the sunlight or using its own source of illumination. The use of 

laser imaging technology offers an elegant solution to these challenges. This approach 

allows the collection of range data, while scanning the lidar field-of-view together with 

the transmitted laser beam across the required solid angle. A lidar simulator was im

plemented to generate point clouds of digital 3D models. This thesis describes methods 

that can be used to detect features such as edges, boundaries, surfaces and corners in the 

point cloud. From those features it was possible to define a reference frame and associate 

it to the object. Observing the evolution of this body frame, the changes in orientation 

can be deduced in the direction cosine matrix form. It was desired to retrieve angular 

rates in Euler angle form but since the conversion from rotation matrix to Euler is not 

a bijection, no satisfying results were obtained. The results are therefore expressed in 

terms of rotation matrix. It was found that depending on the orientation of the space

craft the accuracy of the results varied. The results indicate that filtering of the direction 

cosine matrices might yield good data for determining attitude rates. 
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Introduction 

Hundreds of orbiting spacecraft provide a broad variety of services, including global 

communication and meteorological monitoring. Among these satellites are the Interna

tional Space Station, Hubble Telescope as well as large number of military satellites. As 

their number will certainly continue to grow, it will be paramount to introduce a new 

type of autonomous on-orbit satellite inspection and repair including rendezvous and 

docking. Precise autonomous performance of space maneuvers, especially within close 

proximity to a target satellite, requires a novel type of robotic vision system. Such a sys

tem will provide reliability and high accuracy of all data required to navigate the seeker 

spacecraft towards the target satellite. Traditional space vision technology is based on 

using various types of video systems. This methodology is limited by the necessity 

of operating when the target is illuminated by the sunlight or using its own source of 

illumination. Both of these approaches have serious shortcomings: 

1. The sunlight limits the operation only to those periods, when the sunlight is present, 

2. The use of the hand-made illuminator, even a well collimated source, limits the 

range to the target spacecraft 

3. Finally, both of theses techniques quite often lead to image distortions that prohibit 

or make the navigation extremely difficult and risky. 

1 



2 

Compared with passive optical and active radar/microwave instruments, lidar systems 

produce substantially more accurate and precise data without reliance on natural light 

sources and with much greater spatial resolution. It is quite common to use a laser 

ranging device along with the imaging video system. Laser radar technology has been 

demonstrated for about four decades, since the laser source was invented. This technique 

is based on the use of a pulsed laser beam aligned with the optical receiver-telescope, 

which collects the laser photons reflected back from the target on the system's detec

tor. By using time-of-flight calculations, the range between the laser source and the 

target could be accurately derived. However, the image distortions will still make the 

required close proximity maneuvering quite risky. The use of laser imaging technol

ogy offers quite elegant solution to these challenges and ESA identified it as "the most 

sustainable technology for future exploration mission" This approach allows the collec

tion of range data, while scanning the lidar field-of-view together with the transmitted 

laser beam across the required solid angle. Each individual laser pulse provides accu

rate range information, while an extremely accurate knowledge of the scanning optics 

position provides with accurate position information. In addition, each point of the point 

cloud contains the return signal intensity data. Point cloud is the term use to define a 

set of vertices in a three-dimensional coordinate system. So far imaging lidar (Light De

tection and Ranging) has been widely used and tested for earth atmosphere studies and 

terrain mapping. The key earth missions in lidar development are described in Chapter 

1. The impressive accuracy of this technology makes it a relevant candidate for guidance 

navigation and control (GNC) applications. The European Automated Transfer Vehicle 

(ATV) and many studies use lidar for tracking, rendezvous and docking but all of them 

use targets (retro-reflectors) on the tracked spacecraft or assume its shape known. A 

literature survey describes those studies in the background section (1). 
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In this thesis, it is desired to find the orientation of an unknown spacecraft with no 

retro-reflector (or marker) using lidar technology only. Since old spacecraft or space 

debris might not have such markers, and may be spinning out of control this study is 

essential for on-orbit maintenance and debris recovery/removal. The scenario is the fol

lowing: a chaser equipped with an imaging lidar follows a target at a certain constant 

distance "taking pictures" or "snapshots" of the target at different instant, close to each 

other in time. Each snapshot results in a point cloud that is processed in order to retrieve 

features from the object (edge, boundaries, surfaces, corners). Those features, especially 

the corners, are then used to define a frame attached to the object. Comparing the frames 

from each point cloud allows retrieving the orientation as a function of time. The whole 

algorithm is implemented in MATLAB. The first step, described in Chapter 2, was to 

implement a lidar simulator with a model as an input and a point cloud as an output. 

Chapter 3 explains the processing of the point cloud. Finally, the definition of the refer

ence frame as well as the overall results are presented in Chapter 4. The concept of this 

thesis being so new, little attention was paid to computation efficiency except in the lidar 

simulator part for which an extensive optimization of processing time was conducted. 

The focus was set on finding creative simple concepts. In the eventuality of the pursuing 

of the research, an optimization of the functions could would have to be performed. 





Chapter 1 

Background: Literature Survey 

Until now lidar has been mostly used for geophysical observations. NASA has been 

a major investigator in lidar technology and applications from the 1960s starting with 

the development of ground-based satellite laser ranging systems for studying crustal 

dynamics and plate tectonics [1]. The first part of the section describes key steps in 

lidar development and testing over different Earth observation missions. The second 

part presents the current studies aiming at introducing lidar as an integral part of the 

GNC system for tracking, docking, safe landing and collision avoidance. 

1.1 Earth Observation Experiences with Lidars 

In the 1970s NASA put together groups to study the capabilities of lidar on satellite 

platforms. Because of the heavy-weight and high-power requirements for these early 

lidars, the obvious platforms for demonstrating lidar's capabilities were Spacelab and 

the Shuttle. 

5 
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1.1.1 Lidar In-space Technology Experiment (LITE) 

After some delays in its development, primarily due to the Shuttle Challenger mishap, 

the Shuttle Discovery flight of LITE took place for 11 days in September 1994 [16]. 

LITE is a three-wavelength backscatter lidar developed by NASA Langley Research 

Center. The goals of the LITE mission were to validate key lidar technologies for space-

borne applications, to explore the applications of space lidar, and to gain operational 

experience which will benefit the development of future systems on free-flying satellite 

platforms. This flight was truly a pathfinder mission for future space lidars, and ushered 

in a new era of remote sensing from planetary orbit. It showed the science community 

the exceedingly important data that a space born lidar can provide [13]. LITE operated 

for 53 hours demonstrating the ability of lidar to probe between clouds and penetrate 

through optically thin clouds with high horizontal resolution, high sensitivity to aerosol 

measurements, and an excellent discrimination against noise because of laser spectral 

purity. 

However until then, technology did not allow long duration mission. Long-lifetime, 

laser power efficiency, cooling and weight issues had to be solved if lidars were to fly for 

long-duration on Earth-orbiting spacecraft. In the late 1980s and 1990s diode-pumped 

and long-lived ND-YAG lasers, light-weight optics and structures, changed significantly 

the feasibility for lidar flights. 

1.1.2 Mars Orbiter Laser Altimeter (MOLA) 

In November 1996, the Mars Global Surveyor (MGS) mission was launched with MOLA 

aboard. This time of flight laser scanner was designed to map the Martian global topog

raphy and measure the height of water and carbon dioxide clouds [20]. MOLA was built 

by NASA Goddard Space Flight Center. 
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1.1.3 Geoscience Laser Altimeter System (GLAS) 

GLAS is the first lidar instrument for continuous global observations of Earth [21]. 

From aboard the Ice Cloud and Elevation Satellite (ICESat) spacecraft, it makes atmo

spheric observations, including measuring ice-sheet topography, cloud and atmospheric 

properties. GLAS was successfully launched aboard the ICESat in 2003. 

1.1.4 Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observa

tion (CALIPSO) 

CALIPSO combines an active lidar instrument with passive infrared and visible im

agers to probe the vertical structure and properties of thin clouds and aerosols over the 

globe. CALIPSO was built by Ball Aerospace and launched in 2006 on the CloudSat 

satellite. CALIPSO is a joint U.S. (NASA) and French (Centre National d'Etudes Spa-

tiales/CNES) satellite mission with an expected 3 year lifetime. The lidar is designed 

to scan the atmosphere with green and infrared laser light and detect backscatter from 

clouds and aerosols. 

1.1.5 Phoenix 

The Mars mission Phoenix launched in August 2007 carried a meteorological station 

built by the Canadian Space Agency based on lidar technology. Together, Optech and 

MD Robotics (Canada) designed and built the meteorological lidar system for the 2007 

NASA Phoenix Mars mission. Optech is the world leader in the development, manufac

ture and marketing of advanced laser-based survey instruments. 
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1.2 Future Projects 

ESA planned various missions of Earth observation based on lidar technology for the 

coming years. 

1.2.1 Atmospheric Dynamics Mission (ADM-Aeolus, 2009 

As part as its Living Planet program, ADM-Aeolus will make novel advances in global 

wind-profile observation and will provide much-needed information to improve weather 

forecasting. It will carry a highly sophisticated instrument called ALADIN (Atmo

spheric Laser Doppler Instrument) to measure wind velocity with unequaled accuracy. 

The instrument emits short and high-energy pulses towards the atmosphere and analyses 

the Doppler shift of the backscattered signal for different altitudes. Recently the laser 

diodes, which are the core components of the mission's instrument, have successfully 

passed their long-lifetime test. 

1.2.2 Water vApour Lidar Experiment in Space (WALES), 2010 

The WALES mission will provide accurate profiles of water vapor contents. It consists of 

a single satellite in Sun-synchronous dawn-dusk orbit carrying a Differential Absorption 

Lidar (DIAL). 

1.2.3 EarthCARE, 2013 

EarthCARE is a joint European-Japanese mission addressing the need for a better un

derstanding of the interactions between cloud, radiative and aerosol processes that play 

a role in climate regulation. It will use a high spectral resolution ATmopsheric LEDar 

(ATLID). 

The lidars used for those three missions were developed by LIDAR Technologies 
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Ltd. which specializes in the design, manufacture and testing of lidar instrumentation. 

Now that lidar is a well known and established technology for Earth atmosphere ob

servation and terrain mapping, researchers and agencies are trying to integrate it as part 

as the navigation system on spacecraft. It is thought to be an efficient instrument for ren

dezvous and docking maneuvers, planetary and small body mapping, hazard avoidance 

and precision landing. 

1.3 Lidar for Navigation Instrumentation 

Lidars have many desirable characteristics and advantages: high spatial resolution, inde

pendence from lighting conditions, it avoids problems of scaling by measuring directly 

the range. A lidar sensor acquires thousands of range measurements of the target in 

its field of view and generates three-dimensional maps of the scanned object in sensor 

reference frame (RF). The lidar hardware has to be coupled with on-board autonomous 

software that can extract "intelligent" data from the raw data so that higher-level forms 

of observables can be used at lower bandwidth and data rates in the on-board GNC 

system. 

1.3.1 Neptec Design Group Ltd. 

Neptec Design Group Ltd. is actively researching on imaging sensors. The development 

of the Laser Camera System (LCS), was Neptec's first entry into the world of 3D data 

acquisition. Focused on the development of a 3D tracking capability, the LCS was devel

oped with a flexible two-axis steering that allows standard raster scanning for imaging 

and custom scan patterns for tracking targets. This capability has since become one of 

the significant advantages of the basic LCS design and is a fundamental feature of the 
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new generation of Neptec scanners [11]. LCS flew on board Space Shuttle Discovery 

in 2001 on STS - 105. After the Columbia accident, LCS was chosen to be part of the 

Orbiter Boom Sensor System (OBSS) that will perform inspection of the Space Shut

tle Thermal Protection System before re-entry. In 2005, Neptec revealed an interesting 

application of their Laser Camera Systems (LCS) called LASSO (LCS Algorithms for 

Spacecraft Servicing On-orbit) [17]. The project was funded by the Canadian Space 

Agency (CSA) under the Space Technologies Development Program (STDP). The 3D 

LASSO system is designed to perform real-time tracking and 6 degree of freedom pose 

estimation of target spacecraft from sparse and noisy 3D data and the shape of the space

craft . The approach is compatible with any sensor capable of providing 3D data. The 

algorithms have been successfully tested with Neptec's LCS in a variety of test scenarios. 

Still under development, Tridar is Neptec's newest promising lidar based sensor [5]. 

The TriDAR is a hybrid scanner combining the best features of the space qualified, 

near field LCS (based on triangulation) with a long range lidar system. Unlike pure 

lidar systems the TriDAR operates at distances ranging from 0.5 meters to over 2000 

meters without sacrificing speed or precision at either end of the range. Neptec's 3D 

Automated Rendezvous and Docking Sensor system is based on two Neptec innovations: 

the TriDAR 3D sensor and Neptec's Intelligent 3D (3Di) software toolkit. 

1.3.2 Jena-Optronik GmBH 

Jena-Optronik developed the Rendezvous and Docking Sensor (RVS) for ESA's ATV 

and JAXA's HTV for docking with the ISS. An RVS prototype had already been suc

cessfully demonstrated in orbit during two campaigns of the Space Shuttles STS-84 and 

STS-86 docking to the MIR space station in 1997. 

This year, the first ATV named "Jules Verne" has approached the International Space 

Station with a successful docking maneuver based on RVS. RVS uses the time of flight 
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(TOF) principle, operates at ranges from 1 to 1000 m and estimates the pose by tracking 

retro-reflectors on the ISS during the approach. Using targets imposes restrictions on the 

rendezvous and docking operations, and approach trajectories, and may require control 

over the target spacecraft. In some cases it is necessary to approach the target spacecraft 

from any direction or perform a fly around operation using visual feedback. The use 

of optical targets also introduces a failure mode when one or more targets may not be 

detectable due to damage. Jena-Optronik also designed a Lunar Landing 3D lidar [3]. 

1.3.3 Lidar based navigation algorithm 

Researchers in Canada managed to remove the need of target but their algorithm requires 

the model of the spacecraft for pose estimation. Piotr Jasiobedzki et Al. have set a model 

and algorithm for autonomous rendezvous and docking using lidar. They developed a 

system that uses scanning lidar to estimate the pose of a spacecraft from which the shape 

is known. The main purpose of such study is servicing failed spacecraft. The fact that 

the spacecraft to be serviced has to be known is a big limit to the algorithm [15]. Canada 

through The National Research Council Canada, universities and Optech Inc. is very 

active in the field of lidar. 

1.3.4 LIDAR Technologies Ltd. 

In addition to atmospheric lidar, Technologies Ltd. is developing an imaging lidar for 

Landing on Mars. This is part of the Aurora program [7] for the Mars Sample Return 

(MSR) mission. Lidar has been identified as one of the most sustainable technologies 

for exploration [2]. Sample Return Mission is a complex mission which calls for five 

spacecraft: an Earth/Mars transfer stage, a Mars orbiter, a descent module, an ascent 

module and an Earth re-entry vehicle. Lidar is considered for hazard mapping, to im

prove landing accuracy and rendezvous maneuvers. 
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1.3.5 NASA 

The future crew exploration vehicle, which is to replace the space shuttle and be used for 

a crewed mission to the moon, will most likely rely on a lidar sensor for its rendezvous 

and docking maneuvers. The lidar technique is being considered for providing critical 

distance, approach velocity, and relative orientation of the docking port during the ren

dezvous and docking maneuver. The precision and frequent update rate offered by the 

lidar could be key for mating the vehicle with the International Space Station and, in the 

case of the human mission to the moon, for mating the lunar crew module with the Earth 

re-entry vehicle that will be awaiting it in the moon orbit. 

Currently, NASA is actively advancing the lidar technology for future lunar landing mis

sions through its Autonomous Landing and Hazard Avoidance Technology (ALHAT) 

project. This program is developing three-dimensional imaging and Doppler velocity 

lidar technologies as part of the landing GNC system. The lidar sensors being developed 

under ALHAT will enable safe soft-landing of large robotic, cargo and crewed vehicles 

with a high degree of precision at the designated landing site under any lighting condi

tions. 



Chapter 2 

Lidar Simulator 

2.1 Lidar Architecture 

This section describes an imaging Light Detection and Ranging (lidar) system and its 

functional simulator. The lidar architecture section presents the basic principles of the li

dar, together with a notional architecture. The simulation section presents the functional 

simulator of the lidar and the results of the simulated tests. Note that in equations, bold 

variables are vectors. 

2.1.1 Principles 

An imaging lidar is an electro-optical instrument employed to obtain 3D data from an 

object placed in its field of view. It usually consists of a laser source, a scanning mech

anism, a detector and its associated focusing optics. Like the similar radar technology, 

which uses radio waves instead of light, the range to an object is determined by measur

ing the time delay or time of flight (TOF) between transmission of a pulse and detection 

of the reflected signal: 

TOF = td-te = — (2.1) 
c 

13 
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Where: 

D = Distance traveled 

td = Detection time 

te = Emission time 

c = Speed of light in medium 

Lidar can be classified by the relative position between the emitter and the receiver. 

A monostatic lidar is a system in which its transmitter and detector are in the almost same 

location. A near-monostatic lidar is defined as a system which is close to a monostatic 

system and the assumption of remter « rreceiver is valid [10]. To derive spatial data 

from the target object the direction of the pulse is modulated in two directions with the 

help of a scan mechanism, as illustrated in Figure 2.1. This scan mechanism consists 

of an azimuth scan mirror, an elevation scan mirror, and their associated electronics. 

Each scan mirror oscillates about its longitudinal axis a certain number of degrees. The 

projection of the path of the pulses on a plane perpendicular to the longitudinal axis of 

the laser source (XL) describes a scan pattern. The pattern shown in Figure 2.1 is the so 

called "TV scan pattern" where the spot travels from left to right and top to bottom. The 

angular position of each mirror at the time of the firing of the laser pulse is measured by 

a shaft encoder and thus the direction of the pulse can be determined. For each of the 

firings of the laser pulse the direction and the distance to the target object are employed 

to generate a point cloud. The point cloud represents the three dimensional position 

vector (JC, y, z) of each of the reflected pulses in a coordinate frame attached to the lidar. 
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Figure 2.1: Lidar architecture. Example of hardware. 

In addition to the range the lidar can also determine the intensity of the reflected 

pulse. In this study a variable has been included in the code for the intensity but not 

used. It is recommended that it is used later should someone continue the work. 

2.1.2 Quality of measurement 

The following parameters do NOT affect measurements: 

• Day or night: laser radar is an "active illumination" technique that, unlike pho

tography, does not depend on ambient illumination. It works during the day or at 

night. 

• Target's angle of repose: laser measurements can be made to targets at any angle. 
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• Background noise and radiation: the laser is not affected by background noise. 

• Temperature variations: laser measurements are based on the speed of light and 

are unaffected by temperature variations. However the electronic might operate 

only in a certain range. 

• Vessel pressure and off-Gas layers: the laser is unaffected by pressure or vacuum 

variations, or off-gas layers. 

The following parameters can affect measurements: 

• Dust and vapor: laser measurements can be weakened by interacting with dust 

and vapor particles, which scatter the laser beam and the signal returning from the 

target. This principle is used for Earth atmosphere study presented in section 1. 

• Sunlight and reflections and angle of measurement: a strong sunlight reflection 

off a highly reflective target may "saturate" a receiver, producing an invalid or less 

accurate reading. However, laser measurements are not usually affected by other 

reflections. 

• Reflectivity of the object: highly reflective objects may saturate some laser detec

tors, while the return signal from low-reflectivity objects may occasionally be too 

weak to register as valid. 

2.2 Lidar Simulator 

Input Output 
— > n n I > 
Model Point Cloud 

Figure 2.2: Block diagram of the lidar simulator. 
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The first step in creating a lidar simulator was to have a model of a spacecraft so the 

simulator could be tested. The model constitute the input of the system, its creation and 

manipulation are explained in the first section. 

The two primary functions of a lidar are: 

1. Produce and emit laser rays in defined directions to scan a field of view, 

2. Compute TOF for each ray and deduce the distance to the scanned object. 

The simulator must produce rays and find the distance between the origin of the ray 

and its intersection with the model. Those two functions are described in the two next 

sections. A ray generator was implement to create rays and store their directions. The in

tersection computation are performed by a simple ray tracer. The output of the simulator 

is a 3D point cloud. 

2.2.1 General overview of the simulator 

The diagram in Figure 2.3 shows the general organization of the lidar simulator. Each 

function is described in detail in the next sections. 



2.2. LIDAR SIMULATOR 18 
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Figure 2.3: General structure of the lidar simulator. 

2.2.2 Model 

CATIA modeling 

The models used for this study were made with CATIA V5. It is widely and internation

ally used, reliable, and relatively easy. For simplicity purpose the models were centered 

at (0, 0, 0) and later moved and rotated in a separate file. A simple cube as well as 

simplified spacecraft were designed (Figure 2.4). 
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Figure 2.4: CATIA model of a simplified spacecraft. 

A drawing of the model with all the dimensions can be found in Appendix A. The 

models are saved as .STL files. The format is described in next section. 
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STL format 

STL is a file format native to the stereo lithography CAD software created by 3D Sys

tems. An STL file is a triangular representation of a 3D surface geometry. The surface 

is tessellated logically into a set of oriented triangles (facets). Each facet is described by 

the unit outward normal and three points listed in counterclockwise order representing 

the vertices of the triangle. While the aspect ratio and orientation of individual facets 

is governed by the surface curvature, the size of the facets is driven by the tolerance 

controlling the quality of the surface representation in terms of the distance of the facets 

from the surface. The format of an STL file is given in Appendix C. 

The next section describes the MATLAB routine that reads the model STL files. 

STL reader 

The STL reader function opens the STL file, counts the number of lines, deduces the 

number of facets and vertices, read each facet, stores its vertices and normal and closes 

the STL file. 

Figure 2.5 shows the facets the spacecraft modeled in CATIA. This file is read by the 

STL reader and plotted using the command patch which allows to plot polygons given 

N vertices (three vertices give a triangle). 
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Figure 2.5: MATLAB rendering of the STL file of the spacecraft mode. 

A reference frame is attached to the lidar (RFL), the lidar being its origin. The 

models from CATIA are centered at zero meaning they are centered at origin of RFi. 

In order for the object to appear in the lidar FOV, the model must be translated. Also 

since the goal is to retrieve attitude of the model it must be rotate. A separate function 

translates and rotates the target. 

Orientation of the model 

After the STL file is read, each facet is defined by three points and a normal stored in 

two different arrays (3D for the vertices, 2D for the normals). In the f Jar get sot Jrarts 

function, the vertices of each facet are first rotated using a rotation matrix, and then 

translated. The user chooses the desired rotation and translation in the main command 
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file. The input rotation is input in terms of Euler angle (a, /?, y) according to the (3, 2, 

1) convention for simplicity. It is immediately converted to rotation matrix to perform 

the rotation of the object. The conversion Euler-Rotation matrix (inertial to object frame 

convention) is done as follow: 

R7 = 

cos(a) -sin(a) 0 

sin(a) cos(a) 0 

0 0 1 

, Ry -

cos(J3) 0 sin(J3) 

0 1 0 

-sin(P) 0 cos{f3) 

,RX = 

1 0 0 

0 cos(y) -sin(y) 

0 siniy) cos(y) 

Then, each point of the model is multiplied by the following rotation matrix: 

Protated = Rx * [Ry * (Rz * ^initial)] 

The translation parameter is fed as an input to the function under the form of a 

vector with three components: translation in x-direction, translation in y-direction and 

finally translation in z-direction. As an example, let's consider a cube with a side of 1 

m initially centered at (0, 0, 0). It desired to translate it 1.5 m along the x-axis and 1 m 

along y-axis (translation = [1500 1000 0] (mm)) and rotate it 45 degrees about z-axis 

(rotation = [45 0 0]). 

In Figure 2.6, the green cube is the original model centered at (0, 0, 0). The yellow 

cube is the result of the translation and rotation. The new center is [1500 1000 0] due to 

the translation. The new orientation is [45 0 0] due to the rotation. 
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y(mm) o u u x (mm) 

Figure 2.6: Illustration of translation and rotation for a cube. 

2.2.3 Ray generator 

Simulating a lidar means generating rays. A ray is a thin, straight line used to model a 

beam of light. It can be seen as a long thread that starts at an origin and is extended in a 

direction. The point (0, 0, 0) is taken as the origin, in this study the lidar beam. The rays 

are expressed in RFi. Ray directions are generated by sweeping a field of view (FOV) 

through a double loop. The index i represents the elevation, the index j represents the 

azimuth. 

As can be seen on Figure 2.7, the elevation is the angle in the (YL, Zi) plane, the 

azimuth is the angle in the (Xi, Zi) plane. The projections of the directions are given 

by: 

dx = COS(OE) COS(#A) 

dy = s'm(6E) 

dz - COS(6E) sin(^) 

where: 
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Figure 2.7: Lidar simulator reference frame setting 

dx, dy, dz = Projections of the unit vector along the ray on RFi 

6E = Elevation angle 

OA - Elevation angle 

The coordinates thereby computed are stored in a 3D array. 

In some cases it is desirable to have higher resolution on parts of a model to see 

details . This is done by introducing High Resolut ion (HR) windows. A high resolution 

window is an area of the FOV where the density of rays is higher. Deal ing with HR 

windows is slightly more complicated than regular uniform resolution. For each HR 

window, the resolution is defined as a multiplier coefficient. If this coefficient is 2, the 

window will contain twice as much rays as in the rest of the FOV. The window itself is 

defined by a starting point and a span (both in azimuth and elevation). The code adjusts 

the input starting point so it matches an existing direction and from this direction, the 

span is swept in the same way the FOV is in the situation of basic resolution. When 

there is various H R windows, each window is stored in separated arrays grouped in a 

structure. 
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To illustrate this section, an example with the following characteristics was studied: 

FOV = 50 x 50 

Resolution in azimuth = 5 

Resolution in elevation = 10 

Number of high resolution windows = 2 

Multiplier coefficient = 2 

El 

Az 

Start 
Span 
Start 
Span 

Window 1 
20 
14 
25 
5 

Window 2 
5 
8 
1 
6 

Table 2.1: High resolution windows parameters. 

Figure 2.8: Ray generator results without (top) and with two high resolution win-
dows(bottom). 
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2.2.4 Ray tracer 

The output of a real lidar is the distance between points of an object and the laser source 

for each beam. In ray casting the visible surfaces of objects (parts of a scene that are 

visible to the camera) are found by casting rays of light from the light source to the scene 

and finding the closest intersecting objects. Ray tracing is an extension of ray casting in 

that it also describes what the visible surface looks like. Ray casting was used in the first 

version of the study presented in this thesis. However a variable named Intensity was 

added to the output distances for future improvement of the algorithm. The simulator 

hereby designed outputs the coordinates of the intersection between rays and the model 

triangular facets. Those coordinates are expressed in the lidar reference frame. 

Choices and assumptions 

As a reminder, the surfaces of the models are meshed with triangles when output from 

CATIA software as STL files. Those triangles are called primitives. A primitive is a 

basic shape easily defined and interpreted by computer. 

Choice 1: The ray tracer will operate with only one type of primitive (triangle). Since 

most of the meshing software offer the possibility to mesh with triangle, this choice is 

not restrictive. 

Choice 2: Only simple operations on primitive such as read specification of primitive 

(three points and a normal) and compute the intersection of the primitive with a ray are 

performed in the ray tracing code. The translation and rotation of the model are made at 

the model level in order to gain modularity, and computation time. 

Choice 3: No shadow, reflection, texture mapping, color, and diffusion have been 

considered because it was not necessary at this stage of the project. Shadow and re

flection are not relevant since the objective is to track one object at the time in space. 
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The simulated lidar is supposed to work in space where diffusion is not too much of a 

problem. 

Principles 

Time wise, ray tracing is a very heavy process. If n is the number of facets of the model, 

each ray has to be cast n times. For instance, if we have 200 facets, and 40 rays (which is 

not much for a real system), it means there is 40*200 = 8000 intersections to compute. 

Since many of those intersections do not exist or are not valid, tests are performed to 

eliminate them instead of wasting time in determining their inexistent intersection. 

The tests implemented in this ray tracer are the following: 

1. Is the ray intersecting the plane to which belongs the facet? If the ray is parallel 

to the facet then there is no need to continue. 

2. Is the ray intersecting the plane behind the origin? If the spacecraft is behind the 

lidar, the lidar will not see the spacecraft. The simulator should not compute an 

intersection that is behind the origin. 

3. Does the ray intersect various facets? In the case of a volume, the ray will intersect 

the front and the back of the model. In the case of a spacecraft, the body of the 

spacecraft might hide part of a solar panel, which is therefore not seen. In those 

cases it is desired to keep only the closest intersection. 

The two main steps in ray tracing are: 

1. Find intersection between plane containing facet and ray 

2. Determine if this intersection point falls inside the current facet 
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Ray-plane intersection [6], [8] 

28 

Front 
Side 

X 
Figure 2.9: Intersection of a ray and a plane in 3D [6] 

Expressing the ray with parametric description gives:: 

Ray : r(t) = O + D t (2.2) 

where: 

Plane : P • N + d = 0 (2.3) 

r(t) = Any point on the ray 

O = Origin of the ray 

N = Normal of the plane 

d = A parameter defining the plane such that d = -Vo • N 

Vo = Coordinates of a point belonging to the facet 

D = Direction of the ray 

The parameter d is calculated by doing the dot product between a point (Vo) and its 

normal. It was chosen to take the center of mass of each facet for V0 . The evaluation of 

the parameter t corresponding to the intersection point can be obtained by substituting 
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equation 2.2 into P (equation 2.3): 

If the denominator is equal to zero, the ray and the plane are parallel. If it is positive, 

the ray and the normal are in the same direction; since the normal points outward, the 

ray intersects the surface through its back. This happens in the case of a volume, the ray 

enters the volume with a valid intersection but exits it with an invalid one. If t < 0, the 

intersection is behind the plane, and it is rejected as well. 

Ray-triangle intersection 

If a ray-plane intersection is found, the ray tracer proceed to step two: the intersection 

with the primitive. It determines if the point of intersection between the ray and plane 

falls inside the current facet or not. The dominant axis method was used. Assume three 

vertices V\, V2 and V3 from a triangle. In the barycentric space, a point P is given by: 

V^P = aV^V2 + £ V1V3 (2-5) 

Any point in the plane of a triangle can be expressed as the weighted average of the 

vertices of the triangle. The weights (a and J3) are known as barycentric coordinates. 

The barycentric coordinates of a point inside a triangle will be in the range [0, 1]. Any 

point outside the triangle will have at least one negative coordinate. P is in the triangle 

if and only if: a > 0,/? > 0 and a +fi< 1 

The following analysis is explained for one triangle, note that the process is repeated 

for each facet of the model. 

Equation 2.5 has three components. To reduce the system, it is desired to project the tri

angle onto one of the primary plane (OXLYL), (OYLZL) or (OZLXL) as 2D treatments are 

cheaper and faster. If the triangle is perpendicular to one of these planes, its projection 
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Figure 2.10: Barycentric coordinates of a point in a triangle. [8] 

will be a single line. To avoid this problem, and make sure the projections are as large 

as possible, the dominant axis of the normal vector is found. The plane perpendicular to 

that axis is used for the projection. For example if the normal to a plane is (0, -5, 3) then 

y is the largest coordinate and the triangle is projected onto the XZ plane, X and Z being 

the dominant axis. By using the dominant axis method the projection with the greatest 

projected area is obtained, resulting in the best precision for the rest of the calculations. 

A separate function was written to find those axes. 

For greater detail on the theory behind this method and how it is implemented, refer 

to the code of reference [8]. 

Algorithm: pseudo code 

This pseudo code summarizes the ray tracing ideas described earlier. 

For each elevation 

For each azimuth 

For each facet 

Compute Vd 

If Vd < 0 : there exists a valid intersection 

Compute the plane parameter d 

Compute parameter t (distance origin - intersection) 
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If t > S (the intersection is on the front side) 

Compute the coordinates of the intersection point 

Find dominant axis 

Compute alpha 

If alpha > or = Q 

Compute beta 

If beta > or = 0 and alpha + beta < OR = 1 

If no closer intersection has been found 

Store intersection in 'lidar_out' array 

Endlf 

Endlf 

Endlf 

Endlf 

Endlf 

EndFor 

EndFor 

EndFor 

Noise 

The ray tracing code allows to introduce errors in measurement of the range (t) and the 

direction of the rays (elevation and azimuth). A Gaussian noise based on Jena-Optronik 

RVS Lidar specifications was implemented (Figure 2.11). 
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Dimensions [mm] 

Optical Head 

Electronic Box 

Mass [g] 

Optical Head 

E-Box 

Temperature Range [#CJ 

Operational 

Non-operational 

Measurement Accuracy 

LOS noise 

LOS bias 

Range noise 

Range bias 

Power Consumption [W] 

Field of View 

2 7 0 x 2 7 8 x 1 9 6 

3 1 5 x 2 2 4 x 1 7 6 

<6100 

< 7700 

-3S...+65 

-55...+70 

t 0.1° [la] [maximal] 

±o.r 
± 0.1 m [3o] [long range] 

± 0.5 m [long range] 

< 35 [nominal] 

40°x40° 

Azimuth ± O.Or [3o] [typical] 

± 0.01 m [3o] [short range] 

± 0.01 m [short range] 

< 70 [maximal] 

Elevation ± 0.02' [3a] [typical] 

Figure 2.11: Jena-Optronik RVS specifications. [14] 

The MATLAB function randn was used to generate this noise, randn generates 

normally distributed random numbers. 

0.1 
RN = Rj + — x k (2.6) 

where: 

RN 

RI 

k 

= Range with noise 

= Ideal range 

= Random number 

The output of randn is multiplied by the standard deviation (0.1), and added to the 

desired mean (range with no error). Since the variance was given at three sigma in the 

specifications, the standard deviation is divided by three. In addition to the range noise, 

the ray directions in azimuth and elevation are not perfect. Noise was added in the same 

fashion in the ray generator. 
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2.3 Output: Point Cloud 

This section shows examples of point clouds. The spacecraft is shown in two different 

positions and for different resolutions. The divers options of the software are illustrated 

on a simple cube for ease of reading and understanding. The first table summarizes the 

inputs used for obtaining the figures. 

2.3.1 Input table 

Figure 

2.12 
2.13 
2.14 
2.15 
2.17 
2.16 

FOV 
Degree 
4 x 4 
4 x 4 

4 0 x 4 0 
4 0 x 4 0 
4 0 x 4 0 
4 0 x 4 0 

Az. Res. 
Degree 

301 
501 
70 
70 
70 
70 

El. Res. 
Degree 

301 
501 
70 
70 
70 
70 

HR Window 

No 
No 
No 
Yes 
No 
No 

Rotation 
Degree 

(6, 10, 0) 
(45, 20, 0) 
(45, 20, 0) 
(45, 20, 0) 
(45, 20, 0) 
(45, 20, 0) 

Translation 
Meter 

(500, 0, 0) 
(500, 0, 0) 

(3, 0, 0) 
(3, 0, 0) 
(3, 0, 0) 
(3, 0, 0) 

Noise 

No 
No 
No 
No 

Yes (Az/El) 
Yes (Range) 

Table 2.2: Ray tracer inputs used to obtain the next figures. 
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2.3.2 Figures 

Lidar point of vie' 
500 

Figure 2.12: Rendering of the spacecraft at low resolution. 

x 10 
Lidar point of view 

1000 

Figure 2.13: Rendering of the spacecraft oriented (45, 20, 0). 
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Figure 2.14: Rendering of the reference cube. 
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High resolution window: The high resolution window starts at 5.5 degrees in az

imuth and 9 degrees in elevation. The span in azimuth is 12.5 degrees, the span in 

elevation is 16 degrees. 

-500 

Figure 2.15: Cube with one high resolution window. 
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Error in range measurement: The error in the range measurement is added in the 

ray tracing part when the parameter t is calculated. Referring to the RVS specifications 

(Figure 2.11), a (3<x) 0.01 meter noise was added to the computed t. As seen on Figure 

Figure 2.16: Cube with noise in range measurement. 

2.16, adding an error in the measurement of the range does not produce visible change in 

the results. The parameter t corresponds to the distance between the origin and the facet-

ray intersection point. This distance is in the order of the distance lidar-spacecraft. An 

error of 0.01 m is very small relatively to t. This error is not of great concern especially 

when operating in long range. If the project was to be continued, further investigation 

should determine the impact of such error in short range operations. 
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Errors on azimuth and elevation Errors in azimuth and elevation are introduced in 

the ray generator. The error value at 3<x is +/ - 0.01° for azimuth and +/ - 0.02° for 

elevation (Refer to Figure 2.11). 

Figure 2.17: Cube with noise in azimuth and elevation measurement. 

These errors have more impact on the point cloud but the overall shape of the object 

is still clear. 
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Errors and high resolution window: The following figure is obtained with noisy 

range measurement as well as noisy azimuth and elevation. A high resolution is added.The 

high resolution window has the same characteristics as previously. 

Figure 2.18: Noise in range, azimuth, elevation and high resolution window. 

2.3.3 Conclusion 

The different concepts behind the model creation and its processing to obtain a point 

cloud have been described in details, some more information can be found in the pseudo 

codes in Appendix C. The processing steps tackled in this chapter can be summarized 

in the following sequence: 

1. Read model 
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2. Rotate and translate the model 

3. Generate ray directions for a defined FOV and resolution 

4. Ray tracing 

The ray tracer has been thoroughly tested, on different shapes, at different distances, for 

different orientations and resolutions... The whole sequence described above was put 

into a loop so that simulations for different orientations of the same object could be run 

automatically. The output point clouds are saved into a folder. 

Next chapters describes how features can be retrieved from 3D point clouds. 



Chapter 3 

Point Cloud Processing 

This part has been implemented commonly by the author and Dr. Bodgan Udrea, her 

advisor. 

The output of the ray tracer gives a 3D point cloud with valid and invalid points. Each 

ray has either a valid intersection with the model, or no/invalid intersection. The valid 

points are labeled with a flag equal to 1, the invalid ones have a 0 flag. The first step 

in processing the point cloud is to retrieve only valid points. Then it is necessary to 

simplify the data set. This Chapter starts with the description of a very useful MATLAB 

function called Nearestneighbor widely used throughout the study, follows an explana

tion of features detection such as edges, boundaries and surfaces. 

It is important to define two terms: edges are at the intersection of two visible/detected 

surfaces. Boundaries are the points at the extremity of the scanned object that are the 

intersection of one visible and one hidden surfaces. Each step of the process is illustrated 

with the cube model for simplicity. An example of the spacecraft point cloud processing 

is given at the end of the chapter. 

41 
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3.1 Nearest Neighbor Routine 

Figure 3.1: Nearest neighbor illustration. 

The nearest neighbor function used in the present study was written by Richard 

Brown (Copyright 2006) and downloaded from the Mathwork File Exchange. It finds 

the nearest neighbors by Euclidean distance to a set of points of interest from a set of 

candidate points as illustrated in Figure 3.1. The points of interest are specified as a 

matrix of points. The nearestneighbour function can be used to search for k nearest 

neighbors, or neighbors within some distance (or both). A more detailed description of 

the function can be found in appendix D.l. 

3.2 Edge Detection Routine 

The edges are found using the surface variation method described by Pauly in "Efficient 

Simplification of Point Sampled Surfaces". The method will be explained in this section, 

for more details refer to [12] and [4]. An eigenvalue analysis of the covariance matrix 

of a local neighborhood is performed. Covariance analysis is often a starting point in 

classification of point clouds. It is performed by determining the covariance matrix for 

a local neighborhood surrounding the point of interest referred to as index point. 

3.2.1 Covariance matrix 

Covariance is a measure of how much two variables change together: 
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cov(x, y) = E((x - /u)(y - v)) 

where // and v are the expected values for the random variables x and y, noted respec

tively E(x) = ji and E(y) = v. 

The covariance matrix is a matrix of covariances between elements of a vector. It is the 

natural generalization to higher dimensions of the concept of the covariance of a scalar-

valued random variable. 

are random variables, each with finite variance, If entries in the column vector X = 

then the covariance matrix is: 
Xn 

I = COV(X) = 

' xy 

o-xy o-y cryz 

crxz o-yz crz 

The diagonal terms are the variance whereas the other terms are covariance. 

CTl} = COV(X„X;) = (X, - frXXj - ft) 

where fit - E(Xt) is the expected value of the ith entry in the vector X. 

This is equivalent to: I = E [(X - E[X]) (X - E[X])T] 

In our case, the covariance matrix is defined for a sample point P and its neighborhood 

N (in the sense described in previous section 3.1) is given by: 

C = 

^ . i - ^ 

P«-P\ \P«-P 

Pii-P 

(3.1) 

3 xk kx3 

where P is the centroid of the neighbors Ptj of point Pt. 
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Since C is a 3x3 symmetric, positive semi-definite matrix, all eigenvalues Aj are real-

valued and the eigenvectors Vj form an orthogonal frame, corresponding to the principal 

components of the point set defined by N. The Aj measure the variation of the Pl% i e N, 

along the direction of the corresponding eigenvectors. The total variation, i.e. the sum 

of squared distances of the P{ from their center of gravity is given by: 

I | P , - P | 2 = A0 + A] + ,l2, ieN (3.2) 

•b 

Figure 3.2: (a) Local neighborhood, (b) Covariance analysis. [12] 

Assuming AQ < A\ < ,K it follows that the plane (T(x) : (x - P) • VQ) through P 

minimizes the sum of squared distances to the neighbors of P. Thus vo approximates the 

surface normal np at P, or in other words, Vi and \T2 span the tangent plane at P. The 

smallest eigenvalues AQ describes the variation along the surface normal (associated to 

the eigenvector vo). AQ estimates how much the points deviate from the tangent plane. 

The surface deviation at point P in a neighborhood of size N is defined as: 

(TN(P) = -—r—r ( 3 3 ) 

, l 0 + A] + A2 

Note that if crN(P) - 0 then all the points lie in the plane 
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3.2.2 Implementation 

The function find jedge.points processes the valid points of the lidar simulator data and 

output for each point, the surface variance and the normal to the surface, plus a label. 

The default label is set at default (-1) and becomes 0 if the point is on a smooth surface, 

1 if it is on an edge. It starts by calculating the surface variation of a neighborhood of a 

certain size. The neighborhood is then grown with a certain increment until the change in 

the surface variation is larger than a threshold. The routine then decreases the size of the 

neighborhood by the increment and starts incrementing it by one point at a time. It stops 

at the point where the surface variation threshold is exceeded and it labels the point as 

an edge point. The pseudo code can be found in appendix D.2. The covariance matrice 

computation and the eigenvalue analysis are done in a separate function for modularity. 

It computes the matrix (MATLABcov), find the eigenvalues (MATLAB eig), find the 

smallest eigenvalue, calculate the surface variance and the normal to the surface (the 

eigenvector associated with the smallest eigenvalue). 

3.2.3 Influence of input parameters 

Threshold of the surface variance value 

If the surface variance calculated exceeds this threshold, there is an edge point in the 

neighborhood. If it smaller then all the neighbors belong to a smooth surface. The 

threshold must be small enough to have acceptable accuracy. On Figure 3.3 the light 

blue dots are the lidar raw data, the dark blue one are the detected edge points. 

The simulations are performed with a threshold of 10~5 For bigger values, many 

edge points are labeled as unknown (label = -1). Having smaller values does not change 

the results as can be seen in Figure 3.3. Generally, this threshold is difficult to obtain 

when the density of the neighborhood is not consistent throughout the point cloud. This 
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Figure 3.3: Edge detection for different thresholds: 10"1, 10~2, 10"5, 10"10. 

From left to right and top to bottom 

is the case in this study since error in range and angle measurement are present. Work 

done in reference [10] allows approximating a theoretical threshold value for each point 

based on the scanners origin and attributes. This is out of the scope of this thesis. 

Influence of the "maximum size of neighborhood" 

The more neighbors, the more time the simulation takes with no obvious gain in accuracy 

as observed on Figure 3.4. 

Maximum Size of Neighborhood Simulation Time 
5 
10 
16 
50 

4.5 
6.2 
7.5 

27.8 

Table 3.1: Simulation time for different size of neighborhood 

In general, the size of the neighborhood should be chosen based on the resolution 

of the scan and the level of detail. This way, there is sufficient sample to perform the 

calculations but small details are not smoothed over. 
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600 400 200 0 -200 -400 -600 

600 400 200 0 -200 -400 -600 

Figure 3.4: Edge detection for different maximum number of neighbors: 5, 10, 16, 50. 

From left to right and top to bottom 

3.3 Boundary Detection 

Boundary points are those points in the point cloud which have no neighbor, i.e., the 

points around which the lidar has detected an invalid return. Those points are initially 

labeled as surface points however it is possible to distinguish them because of a different 

distribution of the points in the neighborhood. If the index point lies on the boundary, 

when the neighborhood is projected onto the the local best fit plane, the distribution of 

the neighborhood takes an elliptical shape whereas an interior point has a more circular 

distribution. This can also be seen in the difference of the two largest eigenvalues since 

they represent the variance in the principal directions on this plane. A small difference 

will represent an interior point, and a large difference represents a boundary point [4]. 

Since the distribution of the point cloud is not consistent, this method was thought to 

be too sensitive. A simpler and more robust technique is to examine the position of 

the index point relative to the neighborhood centroid. If the difference is large, the 

index point is close to a boundary and on one side there is no neighbors. This can be 

600 400 200 0 -200 -400 -600 

600 400 200 0 -200 -400 -600 
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implemented by defining a confidence region around the centroid and test to see if the 

projected index point is outside this region. For this, the eigenvalues and a^2- test are 

used in the following equation: 

2 2 

-n + ^ M * (3-4) 
A\ A2 

Where 

A\ and Ai = Two largest eigenvalues 

e\t and eix - Project coordinate system described below 

e i ^ u i - C P i - P ) (3.5) 

e 2 i = u 2 - ( P i - P ) (3.6) 

Ui and U2 are the eigenvectors associated with the two largest eigen values. Pj is the 

index point, P is the centroid of the neighborhood. 

Pearson's^2- test is the original and most widely-used^2- test. It is used to assess 

two types of comparison: tests of goodness of fit and tests of independence. In this 

study it is used for the first type. A test of goodness of fit establishes whether or not an 

observed frequency distribution differs from a theoretical distribution. 

3.3.1 Implementation 

The^2- test steps requires a threshold and is implemented as follow: 

1. Compute ei, and e2l according to Formula 3.5 and 3.6. 

2. Compute^ as follow: 

3. Compare^ with a threshold. 

If x is bigger than the threshold, the index point is a boundary point 

Otherwise it is a surface point 
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After the boundary points have been identified the functions passes one more time 

through the cloud to perform a clean-up. If a boundary point has an edge point as its 

nearest neighbor the label of that boundary point is reset to default (-1). This tends 

the eliminate the boundary point that show in between the edge points in regions with 

low point density. As will be seen in the next chapter, the situation arises for some 

orientations of the spacecraft but is not an issue at this stage of the project. 

3.3.2 Influence of input parameters 

The smaller the threshold the more boundary points are detected. Time is not affected. 

The red points are the detected boundary points. 

Threshold of the^ parameter 

600 400 200 0 -200 -400 -600 eOC 400 200 0 -200 -400 -600 

600 400 200 0 -200 -400 -600 600 400 200 0 -200 -40C -600 

Figure 3.5: Boundary detection for different^ threshold: 0.1, 0.6, 1, 1.6. 

From left to right and top to bottom 
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Influence of the "maximum size of neighborhood" 

Figure 3.5 shows boundaries detected with a maximum neighborhood size of 25. This 

is the value used throughout the study since bigger value increases the simulation time 

and outputs too many boundary points as seen on Figure 3.6. In the other hand, if the 

neighborhood is too small, some boundary points are missing and accuracy decreases. 

600 400 200 0 -200 -400 -600 600 400 200 0 -200 -400 -600 

Figure 3.6: Boundary detection for different maximum neighborhood size: 10, 35. 

3.4 Surface Detection and Labeling 

So far the points are labeled as follow: the default value is -7, 0 for smooth surfaces 

points, 1 for edge points and 2 for boundary points. 

This section deals with the identification of the different surfaces. Given the normal 

to the faces at each surface point it is possible to determine the points belonging to the 

same surface. A tolerance for the direction of normal and a minimum number of points 

which can define a surface are defined. If the total number of points with the same 

normal is less than this minimum, the points receive a special label meaning it was not 

recognized as edge, nor boundary, nor surface point. The segmentation is done in two 

steps: 

1. Region growing: It starts by selecting an arbitrary points that has been classified 

as on a smooth surface. A neighborhood is progressively built around that point 
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until a boundary or edge point is met. 

2. Clustering: The purpose of this second loop over the faces defined in step 1 is 

to separate surfaces that have the same normal but are not one surface. For ex

ample, for a spacecraft that has two symmetrical solar arrays, the points on the 

panels have the same normal but do not belong to the same part. The MATLAB 

function Clusterdata groups points into clusters. Since this function is used in the 

next chapter as well, a brief description is given here. For further details refer to 

appendix D.5. 

MATLAB clusterdata function 

Clustering is the partitioning of a data set into subsets (clusters), so that the data in each 

subset (ideally) share some common trait often proximity according to some defined 

distance measure . Data clustering is a common technique for statistical data analysis, 

which is used in many fields, including machine learning, data mining, pattern recog

nition, image analysis and bioinformatics [19]. MATLAB Clusterdata(X) command 

allows to group points from a point cloud into clusters. The function accepts many 

parameters as input: 

• In the present study the data clustering algorithm is hierarchical meaning it finds 

successive clusters using previously established clusters. 

• An important step in any clustering is to select a distance measure, which will 

determine how the similarity of two elements is calculated. This will influence 

the shape of the clusters, as some elements may be close to one another according 

to one distance and further away according to another. The Euclidean distance is 

used. 



3.4. SURFACE DETECTION AND LABELING 52 

• Finally, instead of defining a distance threshold below which two points are con

sidered being part of the same cluster, a maximum number of clusters was used. 

This maximum number of cluster must at least be the number of expected surfaces 

(3 for the cube, 6 for the spacecraft). 

3.4.1 Influence of surface normal tolerance 

If the surface normal tolerance is too small many surfaces are detected. If it is too 

big surfaces might be merged. This parameter really depends on the type of structure 

observed. For the cube a large tolerance is fine because the surfaces have very different 

normals. The best results are obtained for variable tolerances between 10"1 to 10~3 

depending on the density of the point cloud. The study was performed with a tolerance 

of 10~3 which is the best value form most of the orientations of the cube and spacecraft. 

i • 
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Figure 3.7: Surface segmentation for different surface normal tolerances: 10 1, 
10"3,10-5. 

From left to right and top to bottom 

The number of maximum cluster does not have any influence on the results. 
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3.5 Summary and Results 

3.5.1 General results 

Each step of the point cloud processing was illustrated by the cube model throughout 

the chapter. In this section the results on the spacecraft are presented. The choice for 

parameters are summarized in table 3.2. A picture illustrates the results. 

Ray tracing 

Point cloud processing 

Parameter Value 

FOV 2 x 2 
Resolution 551 in El. and 551 in Az. 
HR windows No 
Translation of model (500, 0, 0) meter 
Rotation Variable 
Error Variable 

Threshold surface 10"5 

variance 
Threshold^2 test 0.8 
Surface normal tolerance 10"3 

Maximum neighborhood 16 
for edge detection 

Maximum neighborhood 25 
for^2 - test 

Maximum number of 10 
clusters 

Table 3.2: Summary of optimal parameters 
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As seen on Figure 3.8 the model of the antenna which is a thin cylinder has points 

recognized as boundary and some recognized as edge points. Further work could be done 

for improving detection of shapes without edge. It took about five minutes to perform 

the ray tracing. The higher the resolution the most accurate the results. Depending on 

the model used, the various parameters described in previous section can be adapted. 

Their initialization at the beginning of each command file is easy. 

3.5.2 Influence of the resolution 

For readability the influence of the resolution is illustrated on the cube. The point cloud 

processing results does depends slightly on the resolution as can be seen on next figures. 

For orientation with big visible surfaces both resolutions are fine and give very accurate 

results. For the case where some of the surfaces are barely visible the processing of the 

point cloud does not give very good results. That could be improved by having more 

robust code or by filtering the snapshot used for attitude determination purpose. The 

higher resolution on the figures is 1001 x 1001 and the lower one is 501 x 501. 
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CZ> 
CD 

(LUUU) Z 

Figure 3.8: Spacecraft point cloud processing 

The magenta triangles are the boundary points, the blue squares are the edge points, the 
empty circles are surface points. 
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Figure 3.9: Low resolution versus hieh resolution when all the surfaces are well visible 
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Chapter 4 

Attitude Determination 

The previous chapter describes the process of finding edges, boundaries and surfaces 

from the point cloud. This chapter explains how from these features it is possible to 

attach a pertinent reference frame (RF) and recover the attitude of the spacecraft. This 

reference frame must be defined from special features that are common to each snapshot 

in other words, feature that are fixed on the body. 

A first attempt was made by enclosing each detected surface in a minimum volume 

bounding ellipsoid and define a RF based on the centers of the biggest ellipsoids. The 

projections of the ellipsoids were also study without convincing results. It was deduced 

that bounding ellipsoids were not accurate enough and some secondary features had to be 

retrieved. This process being complex, the study was performed on a cube instead of the 

whole spacecraft. However, the algorithm is readily applicable to parallelepiped, that are 

widely used as bounding boxes. A bounding box is a cuboid, or in 2-D, a parallelogram, 

fully containing an object. 

It was finally found that a RF based on comers gives acceptable results. Two types 

of comers are detected for each snapshot: (1) A 'comer' located at the intersection of 

three surfaces, (2) Three 'boundary comers' at the extremity of the edges. From those 

59 



4.1. SECOND LEVEL FEATURE DETECTION 60 

second level features, and using a best fitting sphere, the center of rotation of the object 

can be found. Based on the center of rotation, the comer and one boundary comer, 

a RF is defined. Recall that a snapshot is a lidar picture taken at a certain time for a 

certain orientation. It is assumed that the lidar is fast enough so that the object does not 

move during the scanning. Comparing the RF of the different snapshots, the attitude is 

retrieved. 

4.1 Second Level Feature Detection 

Definitions: Edges are at the intersection of two visible/detected surfaces. Boundaries 

are the points at the extremity of the scanned object that are the intersection of one visible 

and one hidden surfaces. 

o 
— 

• 

Boundary 

Boundary Corner 

Edge 

Corner 

Figure 4.1: Definition comer and boundary comers 

Figure 4.1 clarifies the terms corner and boundary1 corners that will be used through

out the chapter. 

4.1.1 Corner detection 

The function find-corner finds a comer defined by the intersection of three surfaces. 

Because the studied object is a cube, the case where the intersection of the three planes 

is a point is the only possibility. The body of the spacecraft are usually closed box 
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therefore it is always possible to find comers at intersection of planes. 

Figure 4.2: Different cases of intersection between three planes. 

Principle 

Each plane is described by an equation of the following type: 

ni-Pi = d, , i€{l9 2 3} (4.1) 

If X = (xi, X2> xy) then the intersection point can be obtained by solving the system: 

ni • X — d\ 

n2-X = d2 (4-2) 

n3 • X = d3 

Note that ni • (n2 x n3) = 0 ensures a unique intersection point. 

The system of three equations can be solved by using the Cramer rule, a Gaussian 

elimination algorithm or as suggested by Goldman [9]: 

di(n2 x n3) + d2(n3 x ni) + rf3(m x n2) 
X — 

ni • (n2 x n3) 

This last solution is the easiest to implement and works well. 

(4.3) 

Implementation 

The algorithm is implemented in a separate function and starts by counting the number 

of surfaces detected, then sorts them according to their number of points. The three 



4.1. SECOND LEVEL FEATURE DETECTION 62 

largest faces are kept. From each of the three remaining surfaces, an arbitrary point is 

picked, its normal is retrieved in order to define the planes whose intersection is sought. 

Recall that the normal was computed during the edge search and stored along with the 

variance in a structure. The dl parameter is computed according to the equation 4.1 

with the selected point and its associated normal. The intersection is calculated using 

equation 4.3. 

Results 

The error between the expected value and the computed comer was calculated for differ

ent orientations. Without noise, the error is very small, of the order of 10"10. Including 

noise in the measurements (refer to paragraph on noise 2.2.4) the error is slightly bigger 

but remains below 10"7. Figure 4.3 shows that the algorithm works well even in the case 

where two of the surfaces are not well defined. The calculated comer appears in green. 
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Figure 4.3: Comer detection results. 

On the left, the three surfaces are well defined, on the right is shown the case where two 
of the surfaces are barely visible 

4.1.2 Edge labeling 

This section describes the function that segments the edges in order to label them. The 

three surfaces of the object containing the greater number of points are found in the 
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same fashion as in the comer detection function. The function in this case however is 

extremely sensitive to the selection of the arbitrary point. For some orientations a point 

would work perfect, for some others, the picked point was not defining the surfaces 

correctly. As a result, one edge would not be labeled. To remedy to this problem quickly 

but efficiently, a small test at the end of the function was implemented. It checks how 

many edges are labeled, if there is only two, the non labeled point are labeled with the 

missing label. It also counts how many points belong to each labeled edge. If it is below 

three, it is assumed that some points were missed and they are labeled with the label 

counting less than three points. The three largest surfaces are arranged in pairs ((1, 2), 

(2, 3), (3, 1)). The intersection between each set of two surfaces is found. The resulting 

line is described in a parametric form by a point and a direction: 

P(r) = P0 + D t (4.4) 

where: 

P(0 = Any point on the line 

Po = Known point belonging to the line 

D = Direction of the line 

t = Variable 

For each of the line of intersection a loop over all the edge points is performed to deter

mine the distance between a current edge point and the current line. 

Assuming that Pp is the base of the perpendicular dropped from P to L, then the 

vector P\Pp is the projection of the vector P\P onto A as shown in Figure 4.4. The 

distance d(P, L) from an arbitrary point P to a line L given by a parametric equation is: 

Distance = | w - ( w D) D | (4.5) 

where: 
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Figure 4.4: Notation for the line-point distance computation. 

w = Vector P^P 

D = Direction of the line 

t = Variable 

For details on the derivation refer to [18]. This calculated distance is compared with 

a threshold. If the distance is below that threshold then the edge point belong to the 

studied edge. A threshold too low implies missed edge points and edges becoming in

complete. If it is too high, points from other boundaries are picked up. The pseudo code 

can be found in appendix D.7. Note that the exact same process was applied to boundary 

points since they sometimes appear near the edges as can be seen on Figure 4.3. 

Results 

Results appear on Figure 4.5, the green dot is the comer. Note that the labeling is not 

done in the same order from orientation to next orientation (the colors of the edges are 

not consistent from snapshot to snapshot). This makes difficult the tracking of an edge. 

It is necessary to know which boundary comer is used when fixing a reference frame on 

the object. This is done by clustering the boundary corners (explained in next section). 
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500 î X /̂ 
500 0 -500 

Y (mm) 

E 
E 

500 0 -500 
Y (mm) 

500 h h 

-500 '-r 

500 0 -500 
y (mm) 

Figure 4.5: Results of the edge labeling. 

4.1.3 Boundary corner 

For each labeled edge point, the distance between the comer and the current point is 

computed. The furthest point from the comer is the boundary comer. 

4.1.4 Errors in corner and boundary corner detection 

Figure 4.6 shows the theoretical position of the comers and boundary comers as well as 

their measured positions for the range of orientation expressed in Euler form: (3 to 45, 

5 to 75, 0) in degrees. The orientation (0, 0 ,0) is not considered since there is only one 

faces visible (no comer). 
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Figure 4.6: Comers: theoretical and measured positions. 

The filled circles are the theoretical positions (magenta for comer, blue for boundary 
comers). The empty diamonds are the measured positions (same color code). 

The error computations described in this section were done using the pose (6, 10, 0). 

It is one of the less accurate since only one face is well visible. It shows that even in 

the worst case, the error is very tolerable. Table 4.1 expresses the absolute value of error 

between the measured comer and the theoretical position of that comer in different way. 

The first column shows the difference in coordinates in cm: 

where: 

Error = rth - rn 

r?h = Theoretical position of comers 

r^ = Measured position of comers 

(4.6) 

The second column expresses this error as a percentage error (the computation is per-
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formed component by component): 

rl -x1 

Error % = — x 100, i € {1,2,3} (4.7) 

The third column is the distance between the position of the measured comer and the 

position of the theoretical point. It is expressed in cm. 

0 = 11^-^11 (4.8) 

Equation to refer to 

Corner 

Boundary corner 1 

Boundary corner 2 

Boundary corner 3 

X 

y 
z 
X 

y 
z 
X 

y 
z 
X 

y 
z 

Difference of coordinates 
(cm) 
4.6 

1.10-5 

-8.KT5 

-1.10-6 

-0.05 
3.28 
1.71 
8.35 
0.98 

-6.17 
-0.50 
-1.06 
-3.47 

% Error 
% 

4.7 
10"« 

-2.10"4 

4.10-6 

-1.10"4 

7.40 
2.91 
0.02 
1.78 
10.8 

-uo-J 

1.93 
8.37 

Distance 
(cm) 
4.8 

8.10-6 

0.37 

1.04 

0.37 

Table 4.1: Error in comer measurement for orientation (6, 10, 0). 
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Figure 4.7: Distances between theoretical and measured comers as a function of the 
orientation 

C = Comer, BC = Boundary Comer. Computations were done for 15 different attitudes. 

Figure 4.7 shows the evolution of the error as a function of the orientation. The 

dashed line represents the orientation used to compute the errors described in table 4.1. 

The comer stabilizes at zero indicating a very accurate restitution of the position. BC1 

and BC3 do not suffer from the changes in orientation. It is easily understood while 

looking at Figure 4.5. BC1 and BC3 are the extremities of the dark blue and pink edges 

appearing on the three last snapshots (bottom ones). BC2 is the extremity of the light 

blue edge on the same last three snapshots, as it disappears from the field of view, the 

error increases. BC2 is the less accurate boundary comer. 

4.2 Determination of the Center of Rotation 

The center of rotation is determined by fitting a sphere to the comers found for different 

poses. The center of the sphere is the center of rotation. The study is performed for 

the orientations showed in Figure 4.7 given in Euler (3,2,1) convention. The comers are 

used because their measurements are more accurate than boundary comers. 
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4.2.1 Principle of best fitting sphere 

From a set of N points, it desired to find a sphere defined by its radius and center that go 

through as much point as possible. The equation of a sphere in 3D is given by: 

r2 = (x - xcf + (y - ycf + (z - zcf (4.9) 

where 

x,y,z = Coordinates of points on the surface of the sphere 

Xc,yc,Zc = Coordinates of the center of the sphere 

r = Radius of the sphere 

The best fitting sphere can be found from a minimum set of four points since there 

are four unknowns, the three components of the center as well as the radius. The non 

linear system 4.10 has to be solved: 

r2 = (xt - xc)
2 + & -yc)

2 + (Zl - ZC)\ i €{1,2,3,4} (4.10) 

where pt = (JC„ yt zt) is the ith point used for the fitting process. The system can be gen

eralized to N points with N equations. It becomes overdetermined and an optimization 

is required. The Least Squares (LS) method is used. LS is a common method for fitting 

data. The best fit in the LS sense is that instance of the model for which the sum of 

squared residuals has its least value, a residual being the difference between an observed 

value and the value given by the model. 

In order to do so, the system is re-written in terms of norm: 

r2 = (x- xc)
2 + (y -yc)

2 + ( z - z c ) 2 

(4.11) 

r2 = \\P-C\\2 

Recalling the Euclidean definition of the norm: 

\\x\\2 = \J]\xl\
2 (4.12) 

Vi=l / 
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We can write: 
n 

IIP-cn2 = 2 IP, - C|2 

1=1 

Which can be expanded and rearranged: 

r2 = 2 P,2 - 2 2 / ^ , + E C , 2 , i £ {1, 2 3} 

r2 - 2 C,2 + 2 2P, C, = 2 P,2 = ||P,2 | | 

For N points, the last equation can be expressed as a matrix equality: 

2;q 

2X2 

2xN 

2yi 

2^2 

2yyv 

2zi 

2z2 

2ZN 

1 

1 

1 

* 

yc 

Zc 

R 

-

^ i 2 + y i 2 + zi 2 

x2
2 + yi2 + Z22 

XN2 + yN2 + ZN2 

(4.13) 

(4.14) 

(4.15) 

A X 

Since the goal is to solve for X, matrix A must be full rank to ensure the existence 

of the inverse. 

4.2.2 Results of best fitting sphere 

Table 4.2 shows the coordinates of the center of the fitted sphere for 4, 8 and 12 comer 

points (corresponding to different orientations). The theoretical center is at [500000 0 

0] in mm. The radius is the half diagonal of the cube, corresponding to V3 x ^ = 

V3 x 500 = 866.025 mm. 

A comparison between a sphere fitting only comers and a sphere fitting the comers 

plus the boundary comers is presented in table 4.3. 

The more points, the more accurate the center of rotation, and radius. The radius 

is given for information purpose because it is never used in the following development. 
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Figure 4.8: Sphere fitting the comers. 

The magenta dots (comers) are the fitted comers, the other dots are the different 
boundary comers. 

Number of points considered 

Center 

Radius 

N 
X 

y 
z 
r 

4 
499999.898 

1.08 
0.41 

865.59 

8 
499999.999 

0.11 
0.05 

865.00 

12 
500000.002 

0.03 
0.01 

866.02 

Table 4.2: Center of rotation coordinates (mm). Sphere fitting comers ONLY 

The important data is the center of rotation. The figures are given in mm. The biggest 

error is on y and has a magnitude of 1 mm in the 'only corners' case and 34 mm on z in 

the 'comers plus boundary comers' case. 

This method is therefore very accurate as long as no 'bad comer' is taken into ac

count. 'Bad comers' are corners computed for orientation of the spacecraft where the 

visibility of certain faces is limited. In this case the position of the comer is less accurate 

leading to bad fitting. For instance, the orientation (3, 5, 0) was not taken into account in 

the simulation because the error on the comer location was important. If this orientation 
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Number of point considered 

Center 

Radius 

N 
X 

y 
z 
r 

4 8 12 
499944.746 499954.445 499964,481 

12.48 7.81 1.92 
-34.32 -20.71 -8.09 
806.16 818.81 827.27 

Table 4.3: Center of rotation coordinates (mm). Sphere fitting comers AND boundary 
comers. 

was taken into account in addition to 12 other comers, the error is of the order of the 

cube size itself! If boundary comers are added to this set of points then the result be

comes acceptable since the error is 46 mm on x, 3 mm on y, and 52 mm on z. In practise 

a filter can be designed to remove the views of the spacecraft that do not show enough 

of certain surfaces. 

In conclusion, the center of rotation is determined by fitting a sphere to the comers 

only since it gives better results. This center is used to define an object attached reference 

frame as described in the next section. 

4.3 Choice of a Reference Frame 

The objective of this section is to describe a way to retrieve the orientation of the scanned 

object without any assumption on the shape except for the features that have been de

tected. The steps taken so far are: 

1. Built a model 

2. Given a (3, 2, 1) Euler angle sequence converted to \ Modeling part 

a rotation matrix, rotate the model. 

3. Scan the model with ray tracer 

4. Process the point cloud obtained from ray tracing 
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From the information gathered through this process, it is desired to retrieve the ori

entation. It was hoped to find the Euler angle so error was readily available and under

standable. However since the transformation from rotation matrix to Euler angle is not 

bijective, it was not possible. The angular displacement between two consecutive ori

entations (described by rotation matrices) are calculated and compared with the rotation 

used in modeling part to rotate the model. 

4.3.1 Advantages and drawbacks of rotation matrices 

Advantages 

Matrix form is a very explicit form of representing orientation. This explicit nature 

provides some benefits. 

• Rotation of vectors is immediately available 

• Standard format used by graphics APIs 

• Concatenation of multiple angular displacements 

• Matrix inversion. When an angular displacement is represented in matrix form, 

it is possible to compute the opposite angular displacement using matrix inver

sion. Note that since rotation matrices are orthogonal, this computation is a trivial 

matter of transposing the matrix. 

Drawbacks 

• Matrices take more memory than other techniques because nine components have 

to be stored instead of three for Euler Angle and four for quaternions 

• Difficult for humans to use, they are not intuitive 

As a reminder, Figure 4.9 shows the direction cosines of the x0 axis. 
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Figure 4.9: Recall on direction cosine matrix 

4.3.2 Definition of the reference frame (RF) 

The comers and the center of rotation are determined very accurately, therefore those 

points are the first candidates for defining a RF A third point is needed. It has to be 

a boundary comer. The definition of the RF attached to the object is thus defined with 

the center of rotation (A), the comer (B) and one boundary comer (C). The origin of 

the frame is the center of rotation. The x axis is the unit vector of AB. The z axis 

is perpendicular to the (ABC) plane. Y axis simply complete the right handed frame. 

Refer to Figure 4.10. Note that since the studied object is a cube, the boundary comer 

falls on the y axis but it is not necessarily the case. The third point, here the boundary 

comer is used to define a plane. 

VL 

Lidar 

O Center of rotation 

Comer 

Boundary Comer 

Figure 4.10: Reference frames of the lidar and the object 
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The computation of the axis of the RF is done in terms of component of unit vectors 

which actually gives the direction cosines. 

4.4 Results 

For each snapshot, a RF is defined and stored as a direction cosine matrix. Since the 

rotation matrix used to rotate the initial model and the direction cosine matrix (DCM) 

defined from comers are not built the same way, it is not possible to compare them 

directly. The comparison is done on the change in orientation. For each two consecutive 

snapshots a transition matrix MT is calculated: 

MT = DCMt+AtxDCMT
t 

where DCM t is the DCM at orientation t and DCM t+&t is the new DCM for the orien

tation in the sequence. The transition matrices are calculated for the theoretical case and 

for the measured case and compared. Note that the computed transition matrices are also 

normalized DCMs. DCMs can be represented as rotations of RFs as shown on Figure 

4.11. 

Figure 4.11: Theoretical and experimental reference frames to be compared 
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Figure 4.11 shows the expected transition matrix (0, Xojh, YOJh, Zojh) and the 

experimental one (O, Xom, Y<)Jtl, ZUJU). Since the transition matrices are normalized, 

the projection ot one axis onto another gives the angle between them. This is how the 

error of the whole process is expressed. 

In the tollowing sections, two different sequences of orientations are studied. For 

each case, a figure shows the comers and the fitting sphere as well as the different ori

entations ot the sequence. Then a table summarizes the angle of error between the 

theoretical and measured RF shown on Figure 4.1 1. Since the object reference frame 

is defined using only one boundary corner, results are presented for each of the three 

boundary comers. 

First sequence of snapshots 

t 

i 
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8 
9 
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13 
14 

Figure 4.12: Orientation used for simulation (left) and plot of the comers (right) 

Figure 4.12 shows the correspondence between the shot number parameter (t) and 

the orientation of the object as well as a plot of the boundary comers BC1 is in yellow, 

BC2 in green and BC3 in cyan. Figure 4.14 shows the error angle between the expected 

direction cosine matrix and the measured one. The values are summarized in Figure 
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4.13. The biggest errors are encountered when the object RF is defined based on BC2. 

In this case the results are off by 10.75 °. When the RF is based on BC1 or BC3 the error 

decreases to 3 °. An error of 3 ° is significant since the rotation of the model around z 

axis is done with a step of 3. However, if this step is doubled (6°) the error does not 

increase but remains with a maximum of 3°. These results indicate that a filtering of 

the rotation matrices based on a simple 'goodness' of orientation can be performed. The 

filtering criterion can be a threshold on the variation of the rotation angle between two 

consecutive shots. Another filtering method can consist in averaging the angles between 

all the shots and rejecting the values larger than the average. 
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Figure 4.13: Angle error for BC1, BC2 and BC3 for each orientation 

Another way to visualize results is done in Figure 4.14. They show that the error on 

the x axis is smaller than for on the two other axis. 
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Second sequence of snapshots 
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Figure 4.16: Angle error for BC1, BC2 and BC3 
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Conclusion 

In quest of using lidar for navigation, this thesis has showed a procedure to retrieve el

ements of the attitude of a tumbling, out of control object from a lidar point cloud. The 

high cost of lidar devices made impossible the acquisition of one. To overcome this 

difficulty, a lidar simulator was written. Its main components are (1) a ray direction gen

erator and (2) an algorithm that computes range data based on ray tracing techniques. 

The lidar was implemented to be able to reproduce errors in measurements however the 

results presented in the present report were obtained without those errors. The simulator 

outputs a complex point cloud that needs to be simplified. The processing of this set of 

points mainly consists in extracting features. Covariance matrix and eigenvalue analy

sis is performed to retrieve edges. A Chi-squared test in the sense of test of goodness 

of fit allows to detect boundary points (points that do not have neighbors on one side, 

they constitute the limit of what the lidar can see). Finally the surfaces are created using 

a region growing method associated to clustering. Simple geometry was used to find 

corners (at the intersection of three surfaces) and boundary corners (at the extremity of 

edges, one per snapshot). These features, especially the corners (at the intersection of 

three surfaces, three per snapshot) were found accurately, less than 0.0001% error. The 

scenario studied to perform the attitude analysis consists in a chaser equipped with a li

dar following an out of control target while taking pictures (or snapshots) at regular time 

intervals. A sequence of 15 snapshots was considered in the study. Further work would 
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include determining the optimal number of snapshots. The first step in attitude retrieval 

is finding the center of rotation. It is performed fitting a sphere to the 15 corners detected 

for the 15 different orientations. This center of rotation is determined very accurately, 

less than 1% error. Based on the corners, one boundary corner and the center of rotation, 

a reference frame is defined for each orientation of the sequence and expressed as a di

rection cosine matrix. The changes in orientation in the theoretical case (rotation of the 

model) and experimental (body fixed frame based on the features) case are compared. 

A direct comparison is not possible because the rotation matrix used to rotate the model 

and the direction cosine matrix representing the orientation of the object are not built 

the same way. Finding a more direct way to express the result and quantify the error 

is desirable and should be studied in future research on the topic. The accuracy of the 

results depends on the accuracy of the boundary corner position used to build the refer

ence frame. It was noticed that the three boundary corners are alternatively accurately 

determined. The algorithm could be improved by implementing a filter that selects the 

most accurate boundary corner and define the reference frame from it. 

Recommendations This work constitutes a starting point for a robust navigation algo

rithm based on imaging lidar. A few recommendations are now proposed. The errors 

found in the change of orientation are due to the inaccurate determination of the bound

ary corners. The use of high resolution windows would improve edge detection resulting 

in better results for those corners. Also the whole feature detection part could be facil

itated by the use of the intensity parameter implemented in the lidar simulator but not 

used in the present study. The expression of the results needs to be more intuitive, for 

instance it would be desirable to obtain the angular rates in terms of Euler angles.The 

algorithm shall also be tested with various object shapes. 
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Appendix A 

Dimension of the CATIA model of 

the spacecraft 
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Appendix B 

STL Reader 

B.1 STL Format 

STL files describe a facet as follow: 

facet normal Q 6 1 

outer loop 

vertex 5 5 0 

vertex -5 5 0 

vertex Q -5 Q 

endloop 

endfacet 

B.2 Test of the STL Reader 

The STL reader has been stress tested with a complex shape as presented on the figure: 
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Figure B.l: STL reader tested on a complex shape. 



Appendix C 

Ray Tracer Pseudo code 

C.1 STL_reader 

Open Stl file 

Count the number of lines to deduce the number of facet 

Read the data form files 

Look for 'facet\_normal' 

Store the coordinates of the facet normal 

Extract the vertex position from strings 

Close file 

C.2 Ray_gen 

For regular rays 

From the input define a step size for the directions of the rays 

Generate ray direction and store them 

For HR windows 

Find indexes (El. and Az.) of the hires window start at the 
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C.2. RAY.GEN 96 

closest existing ray 

Find indexes (El. and Az.) of the hires window end at the 

closest existing ray 

If the required window corner lies out of the lidar FoV then 

make the hires window corner the lidar FoV corner 

Generate the ray directions 



Appendix D 

Point Cloud Processing Pseudo 

Code 

D.1 Nearestneighbour function Description 

function [idx, tri] = nearestneighbour(varargin) 

NEARESTNEIGHBOUR find nearest neighbors 

IDX = NEARESTNEIGHBOUR(X) finds the nearest neighbor by Euclidean 

distance to each point (column) in X from X. X is a matrix with points 

as columns. IDX is a vector of indices into X, such that X(:, IDX) are 

the nearest neighbors to X. e.g. the nearest neighbor to X(:, 2) is 

X(:, IDX(2)) 

IDX = NEARESTNEIGHBOUR(P, X) finds the nearest neighbor by Euclidean 

distance to each point in P from X. P and X are both matrices with the 

same number of rows, and points are the columns of the matrices. Output 
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D.L NEARESTNEIGHBOUR FUNCTION DESCRIPTION 98 

is a vector of indices into X such that X(:, IDX) are the nearest 

neighbors to P 

IDX = NEARESTNEIGHBOURd, X) where I is a logical vector or vector of 

indices, and X has at least two rows, finds the nearest neighbor in X 

to each of the points X(:, I). 

I must be a row vector to distinguish it from a single point. 

If X has only one row, the first input is treated as a set of ID points 

rather than a vector of indices 

IDX = NEARESTNEIGHBOUR(..., Property, Value) 

Calls NEARESTNEIGHBOUR with the indicated parameters set. Property 

names can be supplied as just the first letters of the property name if 

this is unambiguous, e.g. NEARESTNEIGHBOUR(... , 'num', 5) is equivalent 

to NEARESTNEIGHBOUR(..., 'NumberOfNeighbours', 5). Properties are case 

insensitive, and are as follows: 

Property: Value: 

NumberOfNeighbours natural number, default 1 

NEARESTNEIGHBOUR(..., 'NumberOfNeighbours1, K) finds the closest 

K points in ascending order to each point, rather than the 

closest point. If Radius is specified and there are not 

sufficient numbers, fewer than K neighbors may be returned 

Radius positive, default +inf 
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NEARESTNEIGHBOUR(..., 'Radius7, R) finds neighbors within 

radius R. If NumberOfNeighbours is not set, it will find all 

neighbors within R, otherwise it will find at most 

NumberOfNeighbours. The IDX matrix is padded with zeros if not 

all points have the same number of neighbors returned. Note 

that specifying a radius means that the Delaunay method will 

not be used. 

DelaunayMode {'on', 'off', |'auto'|} 

DelaunayMode being set to 'on' means NEARESTNEIGHBOUR uses the 

a Delaunay triangulation with dsearchn to find the points, if 

possible. Setting it to 7auto' means NEARESTNEIGHBOUR decides 

whether to use the triangulation, based on efficiency. Note 

that the Delaunay triangulation will not be used if a radius 

is specified. 

Triangulation Valid triangulation produced by 

delaunay or delaunayn 

If a triangulation is supplied, NEARESTNEIGHBOUR will attempt 

to use it (in conjunction with dsearchn) to find the 

neighbors. 

[IDX, TRI] = NEARESTNEIGHBOUR( ... ) 

If the Delaunay Triangulation is used, TRI is the triangulation of X'. 

Otherwise, TRI is an empty matrix 



D.2. FINDJEDGEJPOINTS 100 

Copyright 2006 Richard Brown. This code may be freely used and 

distributed, so long as it maintains this copyright line 

D.2 Find_edge_points 

For each point of the point cloud 

Find nearest neighbors of current point 

Compute the surface variance 

If the surface variance is > threshold 

Decrease neighborhood size (16 to 2) 

Decrease increment to 1 

Else 

Set increment to coarse (16) 

While number of neighbors < number of neighbor max 

Find nearest neighbors 

Compute the surface variance 

If surface variance > threshold 

If increment is already fine 

Label the furthest point with 1 as it is an edge point 

Label all the other points with 0 as it is a surface 

Else 

Reset the label of the last increase 

Take one step back (number of neighbor - increment of neighbor number) 

Set increment of neighbor number to 1 

Increment number of neighbor 



D.3. FIND.BNDRYJPOINTS 

If number of neighbors > number of neighbor max 

Labels all the points as surfaces (0) 

D.3 FincLbndry .points 

For each point of the point cloud 

If the current point in not an edge point 

Find nearest neighbor of current point 

Compute centroid of the neighborhood 

Compute covariance matrix of the neighborhood 

Compute Eigenvectors and values of the covariance matrix 

Perform Chi squared test 

If the results of the test > threshold 

Label the point as a boundary 

% Clean up the boundary points 

Get the boundary points 

For each boundary point 

Find nearest neighbor of current point 

If nearest neighbor is an edge point 

Set the boundary point as an edge point 

D.4 Surf.segm 

For each point of the cloud 

If current point is on a smooth surface (label = 0) 

Compute absolute value of the components of the normal 

Find and count the points with similar normal direction 
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(taking into account the tolerance) 

If the number of point found is lower than the minimum allowed 

Give a special label to those points 

Else 

Label point of the surface with a number (surface count) 

Increment surface count 

%Further segment the surface using Matlab Cluster Data 

For each detected/labeled surface 

Find all the points belonging to the surface 

Group the points in x clusters 

Find the smallest cluster 

Discard the cluster whose size is below a defined threshold 

If more than one cluster has been found for one surface 

(as defined in first part of code) then change the label of 

the points 

D.5 Clusterdata function 

T = clusterdata(X, cutoff) uses the pdist, linkage, and cluster functions 

to construct clusters from data X. X is an m-by-n matrix,treated as m 

observations of n variables. 

Cutoff is a threshold for cutting the hierarchical tree generated by linkage 

into clusters. 

When 0 < cutoff < 2, clusterdata forms clusters when inconsistent values 

are greater than cutoff (see the inconsistent function). 

When cutoff is an integer and cutoff > 2, then clusterdata 



D.6. FIND.CORNER 103 

interprets cutoff as the maximum number of clusters to keep 

in the hierarchical tree generated by linkage. 

The output T is a vector of size m containing a cluster 

number for each observation. 

T = clusterdata(X,cutoff) is the same as 

Y = pdist(X,7euclid'); 

Z = linkage(Y,'single'); 

T = cluster(Z,'cutoff',cutoff); 

T = clusterdata(X,'paraml7,vail,7param2',val2,...) 

provides more control over the clustering through a set of 

parameter/value pairs. 

Valid parameters are 

'distance' Any of the distance metric names allowed by pdist 

(follow the 'minkowski' option by the value of the exponent p) 

'linkage' Any of the linkage methods allowed by the linkage 

function 

'cutoff Cutoff for inconsistent or distance measure 

'maxclust7 Maximum number of clusters to form 

'criterion' Either 'inconsistent' or 'distance7 

'depth7 Depth for computing inconsistent values 

D.6 Find.corner 

Find the number of surfaces 

For each surface 



D.7. LABELJEDGE 

Find the number of point belonging to this surface 

Find the three biggest surfaces (with most points) 

Retrieve a point and its normal from each of the three surfaces 

Compute the d parameter for the three planes (surfaces) 

Compute the intersection of the three planes. 

D.7 LabeLedge 

Find the number of surfaces 

For each pair of surfaces 

Find the number of point belonging to this surface 

Find the three biggest surfaces (with most points) 

Retrieve a point and its normal from each of the three surfaces 

For each line of intersection 

For each of the two intersecting surfaces 

Retrieve a point and its normal 

Compute the intersection of the two surfaces 

For each edge point 

Compute distance between current point and current 

intersection line 

If the distance is below threshold, the point belongs 

to the current intersection. New label. 
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