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Transpiration cooling is a process that could reduce the overall weight of the 

cooling system of an actively cooled thrust chamber wall of a liquid rocket engine by up 

to 50% when compared to other active cooling techniques, increasing the thrust to weight 

ratio of the rocket engine. In this thesis, mathematical models and computer codes were 

developed for simulating the flow of a coolant and the transport phenomena in a 

transpiration cooled thrust chamber wall of a liquid rocket engine by treating the coolant 

in two ways: as an incompressible fluid and as a compressible fluid in local thermal 

equilibrium with the porous structures that make up the thrust chamber wall. The 

programs were run with similar conditions and the results show that the incompressible 

flow model is a useful tool for accurately determining the temperature distribution inside 

the thrust chamber wall. The incompressible flow model was also used to perform 

parametric studies involving varying the thickness and porosity of the porous liner 

section of the wall. The results of these parametric studies show that varying the 

thickness and/or porosity of the porous liner can be utilized as a means for controlling the 

flow of the coolant inside the wall as well as its general function as a structural support 

for the thrust chamber wall. 
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Chapter 1 Introduction 

1.1 Thesis Statement 

The purpose of this thesis is to develop a program to theoretically analyze the behavior of 

a coolant fluid as well as the temperature distribution inside the thrust chamber wall of a 

transpiration cooled liquid rocket engine. 

1.2 Background 

When designing the thrust chamber of a rocket engine, it is important to implement a 

proper cooling technique for the thrust chamber wall. Cooling the thrust chamber wall 

prevents the wall from becoming too hot, keeping the wall within the load and stress 

limits its materials allow. With increased temperature, the chamber wall loses strength 

and faces the possibility of failing or melting. The cooling process also helps to reduce 

the oxidation of the wall material and the rate at which the waifs material degrades. 

The different cooling techniques that are commonly found in liquid rocket engines fall 

into two main categories, the steady state method and transient heat transfer method. 

(Sutton 2001) The main cooling techniques that fall in the category of the steady state 

method are regenerative cooling and radiation cooling. Regenerative cooling involves 

building a cooling jacket around the thrust chamber wall. Liquid coolant is then fed 

through this cooling jacket before it is fed into the injector. Regenerative cooling is 

currently used in the Space Shuttle Main Engines (SSME) and is used in applications 

with high chamber pressures and high heat transfer rates. Radiation cooling involves the 

use of high temperature materials for the thrust chamber wall. When the wall reaches 
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thermal equilibrium it radiates the heat from the thrust propellants to the surrounding 

area. This technique is effective for engines with low chamber pressures and moderate 

heat transfer rates. As its name suggests, the transient heat transfer method does not 

involve the chamber wall reaching a steady state temperature. The chamber wall in this 

case is used as a heat sink. The temperature of the wall continues to rise throughout the 

duration of operation and the heat is absorbed in an inner liner of ablative material. Since 

thermal equilibrium at the wall is not reached, there is a finite amount of time that the 

engine can operate before the wall reaches its material limits. 

Transpiration cooling, or film cooling, is a technique that can fall into either category. 

Transpiration cooling involves the use of a liner similar to that in the transient heat 

transfer method as well as the injection of a coolant as in the case of regenerative cooling. 

A porous material or a combination of porous materials is imbedded inside of the thrust 

chamber wall. A coolant fluid, typically the propellant, is then pushed through the 

porous material until it ultimately reaches the thrust chamber wall. The thermal 

properties, most notably the effective thermal conductivity, of the coolant and porous 

matrix provide an efficient cooling mechanism for the thrust chamber wall. 

1.3 Objectives and Scope of the Thesis 

The idea for this research is based on the work done at the German Aerospace Center 

(DLR) and the work done by the Air Force Research Lab (AFRL) at Wright Air Force 

Base. The concepts being researched at AFRL are a part of the Integrated High-Payoff 

Rocket Propulsion Technology Program (IHPRPT) and involve the use of transpiration 
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Figure 1.1: Transpiration Cooling Model Developed at AFRL (Steel 2004) 

cooling as a way to improve current, actively cooled thrust chambers. (Steel 2004) The 

AFRL concept involves the use of a two porous matrix system, a porous inner liner and 

an intermediate lightweight porous foam coolant plenum as shown in Figure 1.1. The 

researchers believe that the use of this transpiration cooled system can reduce the weight 

of current cooling systems up to 50% while also reducing the system cost, part count, and 

coolant volume. 

Currently, AFRL is partnering with a private company called Ultramet to develop a 

transpiration system using metallic porous matrices and ceramic porous matrices. At the 

German Aerospace Center (DLR) research has been performed on the benefits of using 

ceramic liners in transpiration cooled cryogenic liquid rocket engine. The researchers at 

DLR claim that improvement in ceramic-matrix-composite (CMC) technologies would 

allow for a larger growth potential than current active cooling technology. (Greuel 2004) 

The researchers at DLR also make the same claims as the researchers at AFRL in that 

transpiration cooling has the potential to decrease the weight of the thrust chamber, 

improving the thrust to weight ratio of a liquid rocket that requires active cooling. 
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This thesis is a theoretical extension of the work of the researchers at DLR and AFRL. A 

geometrically simplified transpiration cooled thrust chamber wall is modeled using both a 

two-layered system consisting of porous foam coupled with a porous interior liner as 

shown in Figure 1, and as a system containing only one porous matrix. The addition of a 

porous liner, thus making the model a two-layered system, can be used to control the 

flow of the coolant in addition to providing structural integrity to the wall. The porous 

liner can be made up of the same material with different properties as the porous foam, or 

be comprised of a different material. One of the objectives of this thesis is to determine if 

there is any general behavior pattern when the thickness and porosity of the porous liner 

section is varied. The material used for both porous matrices will be Si-C, a ceramic 

being developed by Ultramet for the research to be done at AFRL. The thermal and 

physical properties that are used in this study have been obtained from the Ultramet 

website, www.ultramet.com, as well as Ultramet publications (Brockmeyer 1998). The 

fluid being used as the coolant in the system is supercritical hydrogen. The thermal 

properties for the hydrogen have been obtained from the National Institute of Standards 

and Technology (NIST) and can be found at www.nist.gov. The values for all of the 

properties of supercritical hydrogen were not available for the full range of temperatures 

that were expected. In these cases, an average value for each of the specific properties 

was used in the model. 

The flow of supercritical hydrogen through the porous thrust chamber wall along with the 

transport phenomena were modeled in two ways. The first model, the compressible flow 

4 

http://www.ultramet.com
http://www.nist.gov


model accounts for the compressibility effects of the fluid as it flows radially from the 

coolant reservoir to the thrust chamber. The second model, the incompressible fluid flow 

model, ignores the compressibility effects of the fluid and assumes that the density of the 

fluid remains constant at all points inside the thrust chamber wall. The equations that 

form the mathematical model were solved numerically using finite difference methods. 

A sensitivity analysis was performed to determine how the chosen grid size affects the 

results of the simulation. To determine the effectiveness of the results using the 

incompressible model, a test case was set to compare the results for the two models. In 

the test case, a single porous matrix was used and the properties of the Si-C foam were 

used for the study. Two major parametric studies were carried out. The first case 

involves varying the thickness of the porous liner section and comparing those results to a 

single porous matrix system. The thickness of the porous liner section varies from 10% 

of the total thrust chamber wall thickness to 30% of the total thickness. The second case 

explores the behavior of the fluid when the porosity of the porous liner section is varied. 

By changing the porosity of the liner, the effective thermal conductivity of the coolant 

and porous matrix system and the flow of the fluid in the liner section were varied. The 

porosities studied range from 20% to 30% for the porous liner section compared to the 

porous foam section, which has a porosity of 50%. Due to CPU run-time constraints, the 

parametric studies were performed using the incompressible flow model. 
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Chapter 2: Development of the Mathematical Model 

2.1 Description of the Mathematical Model 

In this chapter the equations that define the behaviors of the coolant fluid and the porous 

wall of the thrust chamber used for transpiration cooling are established. The model 

involves the usual conservation principles used in the analysis of transport phenomena as 

they apply in porous media. These are the conservation of mass, momentum, and energy. 

Figure 2.1: Schematic of the Two Layered Simplified Geometric Model 

The behavior of the coolant fluid and the porous media inside the thrust chamber wall are 

determined from the geometrical parameters of the porous matrices, the operational 

boundary conditions, and the thermophysical properties of the coolant and the porous 

matrices. The mathematical model is a one-dimensional model for a simplified 

cylindrical geometry used to replace the actual geometry as shown in Figure 1.1. Figure 

2.1 shows the schematic diagram for the thrust chamber wall using the simplified 

geometry. For the simulations that were performed in this thesis, the thrust chamber was 

assumed to have a radius of 15.0 cm and the thrust chamber wall was assumed to have a 

thickness of 6.0 cm. The length of the thrust chamber was specified to be 1.0 m. The 
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thrust chamber wall as shown in this figure consists of two layered porous structures, a 

porous liner and a porous foam. The porous liner and porous foam are both made of the 

same material but have different physical properties due to different porosities. The inner 

wall of the thrust chamber represents the hot gas boundary. The interior interface 

boundary is the point where the porous liner intersects the porous foam. At the point 

where the porous foam intersects with the coolant reservoir is the cold gas boundary. In 

each of the two models, compressible and incompressible fluid flow, the conservation of 

mass, momentum, and energy equations are required to model the coolant behavior. In 

the case of compressible fluid flow, a fourth equation, the equation of state, is introduced 

to account for the compressibility effects. The coolant is supercritical hydrogen and is 

modeled as an ideal gas. In what follows, these equations are presented in detail. 

The Continuity Equation 

The conservation of mass equation for a one-dimensional radial flow through a porous 

medium is 

e4-tt + - — (rpfUj) = 0 (1) 

The quantity £ A is the porosity of the porous matrix, which is assumed to be an isotropic 

medium, and uf refers to the Darcy velocity of the coolant fluid. The subscript. A, is 

used to generalize the equations used to describe the flow through the porous matrices. 

In the cases where both a porous liner and a porous foam are used, subscript 1 will be 

used in reference to the porous foam: whereas subscript 2 will be used in reference to the 

porous liner. The porosity of the material, also referred to as the void fraction, is the 
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proportion of the non-solid volume to the total volume of a porous medium. The Darcy 

velocity is a volume-averaged velocity as opposed to the mean pore velocity. The 

relation between the Darcy velocity and the mean pore velocity, vr is uf = sAvf. Even 

though the steady state solution is desired, the unsteady state governing equation is used 

in the compressible flow case because this provides a convenient solution method 

through the use of an explicit scheme using finite difference methods. Choosing small 

time steps ensures the stability of the solution. The continuity equation is used to solve 

for the fluid density in the compressible flow model. By definition, the density of a fluid 

in an incompressible flow case is constant. Therefore, in the incompressible flow case, 

the transient term is identically zero and the continuity equation becomes 

|K)-o <2> 

In the incompressible flow model, the continuity equation is used to solve for the Darcy 

velocity of the fluid. 

The Conservation of Momentum Equation 

The conservation of momentum equation for a one-dimensional radial flow through a 

porous matrix in cylindrical coordinates is 

-+-J-II/ 
i a , A dpf (fi, P 

— — (pfuf) = — + -
sA dt ' • Or \aA pA 

This momentum equation is an adaptation of the equation. 

\ 

f\ u, (3) 

/ 

or a 
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originally developed by Henry Darcy in 1856 (Greuel 2004) known as Darcy flow. The 

coefficients a and /? are permeability coefficients. These coefficients depend on the 

properties of the porous matrix. Assuming that the porous matrix is comprised of a 

packed bed of spheres, the permeability coefficients can be approximated as (Sozen 

1994) 

aA = f^-r, (5) 
150(1-*,)-

A, £ ,3 

PA = . 'A v , (6) 
\J5[\-£4) 

where the quantity D refers to the mean pore diameter of the porous matrices. The 

momentum equation is used to solve for the Darcy velocity in the compressible flow 

model. In the incompressible flow case, the transient term is not used to determine the 

steady state solution and the conservation of momentum equation used in this case 

reduces to 

dP_ 

dr 
-J- + —L\a, 

K<*A / V 

uf (7) 

The first term in the parenthesis on the right hand side of this equation represents the 

viscous drag with the term juf representing the viscosity of the coolant while the second 

term in parenthesis represents the form drag. In the incompressible flow model, the fluid 

pressure is determined from the momentum equation. 
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The Conservation of Energy Equation 

Unlike the conservation of momentum and mass equations, the transient energy equation 

is used for both the incompressible and compressible fluid flow models. For the energy 

equation, an assumption of local thermal equilibrium between the solid porous matrices 

and the coolant fluid is used. This assumption results in a simple, one-dimensional 

energy equation written as 

/ x dT 8T 1 d (1 8T) 

The first term on the left hand side of the equation is the transient term where (pcp) is 

approximated as 

(PCP)A=^~SA)PSC
P^ +£iPfc

Pl (9) 

The second term on the left hand side of equation (8) is the convective term which 

represents the transport of thermal energy by the bulk motion of the fluid, advection. The 

term on the right hand side of the equation is the conduction term, representing the 

transport of thermal energy by diffusion. The term k4 is the effective thermal 

conductivity of the solid and fluid phases in local thermal equilibrium and the term cp 

represents the specific heat capacity. There are several empirical models for the effective 

thermal conductivity of a fluid saturated porous medium. The approximation for the 

effective thermal conductivity of the system used in this thesis is the same approximation 

used by Landis (Landis 1995) based on the model derived by Chi (Chi, 1976) in his book 

on heat pipe theory. Accordingly, the effective thermal conductivity is approximated as 

KA "(2*,+*J-20-^)(*/-O" 
2kf+Ki+(\-sA){kt-kS)) 

(10) 
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where kf is the thermal conductivity of the supercritical hydrogen, and ks is the thermal 

conductivity of the porous matrix. The energy equation is used to solve for the 

temperature distribution in each of the two models. 

The State Equation 

Although it is necessary to only solve equations (2), (7), and (8) to determine the coolant 

behavior and the temperature distribution across the thickness of the thrust chamber wall 

using the incompressible flow model, a fourth equation must be introduced for closure of 

the mathematical model for the compressible flow case. The final governing equation is 

the equation of state. Assuming that the coolant behaves as a supercritical fluid, the ideal 

gas law is used as the final governing equation and is written as 

P,=PfRjTf (11) 

The termi?; is the coolant gas constant. The compressibility factor of a gas is a function 

of its reduced temperature and reduced pressure. The range of temperatures used in the 

current work is 290-1500 K, while the range of pressure used is 1.31-1.35 MPa. These 

yield reduced temperatures in the range of 8.71-45.0 and reduced pressures in the range 

of 1.008-1.038. These reduced temperatures and pressures result in compressibility 

factor ranging between 1.00191 -1.00841. Therefore the assumption of ideal gas behavior 

for the coolant is very well justified. 

Boundary Conditions 

The thrust chamber wall used in the incompressible model consists of two, layered 

porous matrices. This results in three sets of boundary conditions that are necessary to 
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define the model. First are the cold gas boundary conditions, which represent the coolant 

reservoir conditions. At the inlet several conditions must be met to ensure that the model 

remains valid. The first condition is that the coolant is assumed to be a supercritical 

fluid; therefore it must have properties of a supercritical fluid. The coolant used in this 

analysis is supercritical hydrogen, which must maintain a pressure of at least 1.30 MPa. 

A constant boundary pressure of 1.35 MPa, as well as a constant boundary temperature of 

290 K is set for both models. The equation of state is used to determine the density at the 

cold gas boundary in the compressible flow model and is written as 

Different methods are used for determining the velocity at the inlet for the two different 

models. For the incompressible model, the velocity will be determined from a predefined 

fluid mass flow rate. The Darcy velocity at the inlet boundary in the incompressible flow 

model was obtained from 

uf=—j—, (13) 
PfAotal 

where mf is the inlet mass flow rate of the coolant coming from the coolant reservoir, pf 

is the density of supercritical hydrogen, and Aj0tal is the area of the thrust chamber wall at 

the cold gas boundary. The inlet mass flow rate plays an integral part in the coolant 

behavior and temperature distribution inside the thrust chamber wall. The structural and 

thermal properties of the porous matrices as well as the thermal properties of the coolant 

fluid will determine how much the mass flow rate can be "throttled down" while still 

providing an effective cooling mechanism. For the compressible flow case, the Darcy 

velocity at the cold gas boundary is determined from the momentum equation using finite 
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difference approximations. By varying the cold gas boundary pressure, there will be a 

variance on how much the pressure gradient "pushes" the coolant through the porous 

matrix. 

At the inner wall, the only boundary condition in the incompressible model is a constant 

heat flux that represents the heat input per unit area from the combustion products to the 

chamber wall and coolant system. For a given heat flux, the boundary condition for the 

energy equation takes the following form 

q" = kA^, (14) 
or 

where the quantity q is the constant hot gas boundary heat flux. The hot gas boundary 

heat flux, along with the inlet coolant mass flow rate, is one of the main parameters of 

study in this thesis. The heat flux varies with different engines and the magnitude of the 

heat flux, as well as the material properties, determine the inlet coolant mass flow rate 

necessary to ensure that the porous wall remains within its thermal and structural limits. 

Forward differencing was used to solve for the density and pressure of the coolant from 

the continuity and momentum equations respectively in the incompressible model at the 

hot gas boundary. For the compressible flow model, the density of the fluid was 

determined from the continuity equation, the velocity was obtained from the momentum 

equation, and the pressure at the hot gas boundary was specified to be 1.31 MPa. 

For the cases where a two-layered porous matrix system was used for modeling the thrust 

chamber wall, a third set of boundary conditions is required. These include the continuity 

of pressure, temperature, and radial flow (Ngo 1998). The temperature of the system at 
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the interior boundary can be determined through an energy balance at the interface 

between the two porous layers and can be written as 

1 dr 
= k, ar, 

Intet jute dr 
(15) 

Interface 

In this equation, kx and k2 represent the effective thermal conductivity in the porous 

foam and porous liner sections respectively. The temperature gradient dTxldr refers to 

the rate of change in the temperature with respect to the porous foam section of the 

chamber wall and is discretized with a forward difference method. The temperature 

gradient dT21 dr refers to the rate of change in temperature with respect to the porous 

liner section and is discretized using a backward difference method. The coolant density 

and velocity can be determined from the following conditions, 

P{=P2 (16) 

ux - u2 
(17) 

where Px and ux are the fluid pressure and Darcy velocity as calculated using the 

properties of the porous foam section, and P, and u2 are the fluid pressure and Darcy 

Interface Bomulaiv 

Poi ous Linei 

K~> 
ir f <r 

PoiousFoam 

^ 
1 & 

Figure 2.2: Schematic of the Interface Boundary Conditions 
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velocity as calculated using the properties of the porous liner section as shown in 

Figure 2.2. In the incompressible flow model, the velocity at each interior node is 

determined from the continuity equation while the pressure is determined from the 

momentum equation. At the interface boundary, the velocity and pressure are determined 

by discritizing these equations using a forward difference method to solve for Px and ux 

using the properties of the porous foam and a backward difference method to solve for P2 

and u2 using the properties of the porous liner. The corresponding finite difference 

expressions are found in Appendix A. The discretized equations are then set equal to 

each other and solved for the values of the variables at the interface boundary. The 

energy balance is used to ensure that the same amount of energy that goes into the 

interface comes out of the interface. Since there is continuity of density at the interface, 

the boundary condition ux - u2 ensures that the mass flow is constant across the interface 

boundary. 

Initial Conditions 

For the compressible flow model the only initial condition used was a uniform 

temperature of 290 K throughout the entire thickness of the thrust chamber wall. For the 

compressible flow model, in addition to a uniform temperature of 290 K throughout the 

entire thickness of the wall, a uniform initial pressure of 1.31 MPa and a uniform Darcy 

velocity of 0.0 m/s were used throughout the entire thickness of the wall. The initial 

condition for the density distribution was determined from the ideal gas law and the pre­

defined temperature and pressure profiles. 
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2.2 Numerical Analysis of the Incompressible Flow Model 

In each of the mathematical models, there is coupling among the variables to be solved. 

A series of finite difference methods were used to solve these equations numerically. 

The development of the discretized equations for the incompressible model equations that 

are described hereafter are provided in Appendix A. Figure 2.3 is a schematic showing 

Node 1 Node NINT Node NTOT 
I I I 

Nodes 2...NINT-1 Nodes NINT+1 ...NTOT-1 

Figure 2.3: Schematic of the Nodes used to describe the System 

how the nodes are labeled starting with node 1, which represents the hot gas boundary 

and ending with node NTOT, which represents the cold gas boundary. Since the density 

of the coolant is constant in the incompressible fluid flow model, the state equation is not 

used to determine the density of the coolant inside the thrust chamber wall. Upwind 

differencing is used to approximate the convective term in the continuity equation for the 

Darcy velocity of the fluid. Upwind differencing is the method that is commonly used to 

approximate the convective terms in order to make the numerical scheme stable. Because 

the flow of the coolant is in the negative r-direction, forward differencing corresponds to 

upwind differencing. For this analysis, all spatial derivates are approximated with second 

order accurate schemes. The second order accurate forward differencing scheme used is 

dx: = -3x:+4x:+i~x:+2 ^ ( i g ) 

dr 2Ar 

where X denotes any property that could be solved for and the superscript m refers to the 

time step. All cold gas boundary conditions are defined and constant. So there is no 
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need to apply any finite differencing techniques here. The second order accurate scheme 

must be modified in two locations in order to accommodate the model. The first such 

instance occurs at the node NTOT-1, which corresponds to the first node in from the cold 

gas boundary. Since this node has only one other available node upwind of it, there 

would be a conflict in trying to use the differencing scheme previously mentioned. The 

approach taken to solve for the velocity and pressure at this node was to perform a second 

order accurate backward differencing approximation on the node NTOT corresponding to 

the cold gas boundary. The second order accurate backward differencing scheme yields 

ex: _3x;:-4x:_x+x:_2 (19) 
dr 2Ar 

In order to solve for the variables at node NTOT-1 and still keep a second order accurate 

scheme, the momentum and continuity equations are solved by taking the backward 

difference approximation for the spatial derivatives at the cold gas boundary and solving 

the equations for X™_x. When this task is performed the approximation for the velocity 

and pressure at the nodes NTOT-1 became 

~>rNTOTUNfOf JtrNIOT-2UNIOI-2 

^rNTOI 

P 
£NIOT-\ 

\-**MOf + ^NTOI-2) Arju f 
\UNfOI + 

Arp 

V 

(20) 

U\!TOI \^NT()r \^*-) 
2fi 

The expressions in equations (20) and (22) are obtained from the continuity equation for 

the Darcy velocity, and equations (21) and (23) are obtained from the momentum 

equation for the fluid pressure. For the rest of the interior nodes in the porous foam, 

forward difference approximations are used for all spatial derivative terms in the 
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continuity and momentum equations. The finite difference approximations for the 

velocity and pressure at the interior nodes of the porous foam are 

it.. = 
4rn+\Un+\-rn+2Un+2 (22) 

3K 

P = 
4P -P 
^1n+\ J n+2 + 

2Aru 2Arp 
—w p+ -

3ax ' 3 ft 
Un\Un (23) 

Implementing the boundary conditions to solve for the pressure and Darcy velocity at the 

interface boundary node requires the use of forward and backward differencing. The 

boundary conditions state that both ux = wn, and P{ = P, 9 as described in the previous 

section, must be satisfied at the interface boundary. To satisfy these conditions, the 

forward differencing scheme is applied at node NINT to approximate the value of ux and 

Px using the information from the porous foam domain. The backward difference 

approximation is used to solve for the values of u2 and P2 using the information from the 

porous liner domain. Then the approximations for ux and u^ are set equal to each other 

yielding the expression 

-XK + 4r„+i^+i - rn+2un+2 = 3rniitl - Arn_xun_x + rn_2un_2, (24) 

which gives the approximation for the Darcy velocity at the interior boundary as, 

"„ = — ( - V 2 V 2 + Arn-Xlin-X + 4 ';+l^+l - rn + 2lin,2 ) (25) 

The same process is used in the momentum equation yielding the expression for the fluid 

pressure at the interface boundary as 

6 

Arju 

3(ax -a2) 
un + 

Arp 

Hft-fr) «»«- (26) 
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The second point where the modified finite difference approximations need to be used 

occurs at the node NINT-1. If the standard forward difference approximation were to be 

used here, then the solution would call for the approximations of the velocity and 

pressure in the porous liner, at the interface boundary, as well as the porous foam. In 

order to eliminate the need for the values at the porous foam, the same method used to 

solve for the velocity and pressure at node NTOT-1 will be applied to the node NINT-1. 

The velocity and pressure approximations at node NINT-1 are 

_ ^rNINTllNlNT ~rNINl-2U\'I\'i-2 (11\ 
UNINT-\ ~~ ^ V - ' ) 

*NINT-\ ~~ * y^^NINT + *NlNT-2 ) + 

Arju, Arp J 

2fc 
UNINT\UNINT V ~ ° ) 

The variables for the remaining interior nodes in the porous liner, as well as the variables 

at the hot gas boundaries are obtained using the same forward difference approximations 

used in the porous foam section and are very similar to the approximations used for the 

interior nodes of the porous foam section. The only difference is that the thermal and 

physical properties of the foam have been replaced by the properties of the liner. The 

finite difference approximations for the Darcy velocity and pressure are 

u _ ^rn + \Un + \ ~rn + 2Un + 2 p m 

3r 

P = 
4P - P 

\ 

2Aru 2Arp\ , ,_.x 

+—~un + — - k k (3°) 
3a2 ' 3(32 ' w| n 

A different approach is used to solve the energy equation to obtain the porous matrix 

temperature distribution. The first and most apparent difference is the use of the transient 
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energy equation to solve for the coolant and porous matrix temperature. This approach 

provides a convenient solution procedure for the energy equation. This method has a 

drawback in that in order to maintain stability in the solution, there is a limitation on the 

time step that can be used in the temporal derivative term. The temporal derivatives are 

approximated using first order forward differencing and appear as 

dTm T, m + \ rrin 

dt At 
(31) 

Here the superscript m represents the value at the current known time step and the 

superscript m+1 represents the value at the time step to be solved. Second order centered 

differencing approximations are used to approximate the spatial derivates. The first 

spatial derivative is approximated using the formula 

ex;: _x;:+]-x;i] 
dr 2Ar 

(32) 

The approximation for the second spatial derivative required a more complex technique. 

The approximation uses not only the neighbors of any interior node, n, but also the 

midpoints between the nodes. The term 

i d (1 dT^ 
k4r — 

, dr dr 

is approximated as 

1 d ( 7 dT^ 
rk4 — 

r dry dr 

rn+\/2^A^n+\ Vn+\/2 + ^7-1/2 )*A*n + ^7-1/2^A^n-\ 

(Arf 
(33) 

When all of the finite difference approximations are put together, the expression for the 

system temperature at a typical interior node yields 
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The method used to apply the energy balance at the interior boundary is similar to that 

used for the continuity and momentum equation. At the interface boundary, the condition 

that is implemented is an energy balance across the boundary, which is given as 

k ^ 
1 dr 

= K 
dT, 

Interface dr Interfax 

Second order accurate forward and backward difference approximations are used to 

implement the energy balance a the interior interface yielding 

1 
T. m+\ 

; (* i + k>) 
-kj™;] +4kX-? +4-kx:? -kx:?] (35) 

Note that all temperature values used are those that are evaluated at the m+1 time step. 

In order to correctly approximate the temperature at the interior boundary node, the 

temperatures of the interior nodes in both the liner and foam sections must be calculated 

before the temperature of the porous matrix at the interface boundary can be 

approximated. 

Second order accurate forward difference approximation is used to implement the hot gas 

boundary condition 

q' = k2 
dT_ 

dr 
(36) 

HO. 

21 



where the constant hot gas boundary heat flux is specified, giving the solution for the 

temperature of the system at the hot gas boundary as 

1 4 (?.Ar^ 
i =~^T3 + ~T2 ~ T — " \q W) 

3 :> ^ i - k2 J 

These equations, coupled with the already defined variables at the cold gas boundary, 

allow for the approximation of each of the three variables at all nodes throughout the 

rocket engine wall. The finite difference approximations presented for the velocity and 

pressure are only valid for the incompressible fluid model while the finite difference 

approximations presented for the temperature are also valid in the compressible model for 

all nodes. The approximations for the compressible fluid flow model are described in the 

next section. 

2.3 Numerical Analysis of the Compressible Flow Model 

There are several differences between the incompressible and compressible flow models. 

The major difference is that the density is not held constant in the compressible model 

and is allowed to vary as a function of pressure and temperature. The other major 

difference between the two models is that in the compressible flow case, the thrust 

chamber wall is modeled only as a single porous matrix system. Due to severe CPU run­

time constraints, the compressible case was modeled as simple as possible. Therefore the 

porous liner section was not considered. Because the computational resources were 

limited to a PC, the run times for the compressible model were upwards of over one week 

to complete a single case study. This was due in large part to the very small time steps 

that were required to maintain the stability of the solution required in the explicit finite 



difference scheme used. The requirement for the smaller time step in the compressible 

model as compared to the incompressible model is due to the inclusion of the transient 

terms in both the continuity and momentum equations used to solve for the fluid density 

and Darcy velocity respectively. In addition, the compressible model also uses the 

equation of state to determine the fluid pressure at the interior nodes. 

The boundary conditions used at the coolant inlet boundary are constant temperature, 

pressure, and density. The Darcy velocity is determined from the momentum equation 

with the pressure gradient term being the driving force of the fluid. At this node, because 

the flow is in the negative r-direction, backward differencing is used in the pressure 

gradient term and the expression for the velocity is obtained as 

The density, pressure, and temperature at the cold gas boundary come from the properties 

of the coolant as it enters the wall from the coolant reservoir and are implemented as 

boundary conditions. The development of the discretized equations for the compressible 

flow model described hereafter is provided in Appendix B. 

The values for the variables in the interior nodes come from discretizing the governing 

equations. The solutions for the density, velocity, and pressure come from the continuity 

equation, momentum equation, and equation of state respectively. As is in the 

incompressible fluid flow model, the solution for the temperature comes from the energy 

equation, and since the energy equation in the incompressible model already incorporates 
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the transient term, the finite difference approximation of the temperature in the 

compressible flow model is exactly the same as it is for the incompressible flow model, 

or equation (34) 

TH/J/ + 1 to Vl/2*, ^ £AP"'U»C 
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For the density, the continuity equation was discretized using upwind differencing in the 

convective term. In this case, the flow is in the negative r-direction, so upwind 

differencing would involve the use of forward differencing. The fluid density for a 

typical interior node is 

Pn = 1 + 
sAAr Pn ~ 

to rny^x 

£A
r,Ar 

Pn+\ (39) 

For the Darcy velocity, the momentum equation was approximated using a backward 

difference method in the pressure gradient term because the flow is in the negative r-

direction. The expression for the fluid velocity at any typical interior node takes the form 

w„ = • jn+\ 
Pn 

I _ £AAt 

PA 

ni m 
Pn Un 

eAtop, sAto, ] 

a, Ar 
(40) 

The final variable needed to be solved for is the pressure, which comes from the solution 

of the equation of state. With the density and temperature already known, the pressure at 

a typical interior node is 

->w+l w+1 r> T'm + l 

pr%T: (41) 
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The solution for the temperature at the hot gas boundary comes from the same energy 

balance used in the incompressible flow model and the equation to describe this relation 

is the same as equation (37) 

1 4 ( 1 • I\r\ 
7V77 + 1 X rj~<m + \ , ~ rrim + ] ~ *-*' ft 

J j [^ J • k2 ) 

Another difference between the incompressible flow model and the compressible flow 

model with respect to the hot gas boundary is that in the compressible flow model a 

constant pressure is assumed. Using this pressure boundary condition together with the 

boundary temperature calculated from the energy balance, the equation of state can be 

arranged to solve for the fluid density at the hot gas boundary. As with the interior nodes 

and the cold gas boundary node, the momentum equation is used to solve for the Darcy 

velocity of the fluid at the hot gas boundary, however with a slight alteration. It is not 

possible to use backward differencing at the hot gas boundary node, so the pressure 

gradient is approximated using forward differencing at the hot gas boundary as shown in 

Appendix B. 

2.4 Developing the Codes 

To perform the calculations that are necessary to determine the behavior of the fluid and 

the temperature distribution throughout the thrust chamber wall, two FORTRAN 

programs were developed for the incompressible fluid flow and compressible fluid flow 

models. A flowchart that shows the method for writing the incompressible flow program 

and the compressible flow program are included in Appendix C and Appendix D 

respectively. The entire programs titled, INCOMP and COMP are included in Appendix 

E and Appendix F respectively. The programs for the different models are similar in 
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structure. Both programs consist of a main program followed by a series of function 

subroutines. The functions correspond to the equations needed to be solved for each of 

the parameters throughout the thrust chamber wall. For instance, the calculation for the 

temperature inside the porous foam in the incompressible model is defined inside the 

function called TFOAM. The main program for each model starts out very similar. First 

each of the parameters are initialized and then defined. The thermal properties of the 

coolant and porous matrices as well as the material properties of the porous matrices are 

input by the user. Three arrays are initialized and defined that represent the radial 

distance of each node. The first array represents the distance from the center of the 

chamber for each node in the array. The other two arrays correspond to the mid-point 

between the radial nodes that are used in the energy equation to solve for the temperature 

and are labeled RPLUS and RMINUS. At this point, the programs for the incompressible 

flow model and compressible flow model begin to differ. 

In the incompressible flow model, the density is constant and defined, and the velocity 

and pressure are independent of the temperature. Therefore, the velocity and pressure 

arrays are set up and calculated first. The fluid travels in the negative r-direction 

beginning with the last node of the array, which corresponds to the cold gas boundary and 

is labeled as NTOT. The cold gas boundary pressure is kept constant. The velocity is 

determined from the specified inlet mass flow rate. After the cold gas boundary, the 

properties are calculated by calling the appropriate functions in the porous foam, 

followed by the interior interface boundary, porous liner, and hot gas boundary, in that 

order. After the pressure and velocity are calculated at each node an absolute tolerance 
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check is performed. The values at each node are compared to their corresponding values 

from the previous iteration. During the tolerance check, the value of the node with the 

greatest difference in value from the previous iteration is stored in a parameter called 

PEPS and UEPS corresponding to the pressure and velocity differences respectively. 

These maximum variations are then compared to the maximum allowable variations, 

MAXDP and MAXDU, which were specified to be 10"7 after a series of trials to 

determine how small the absolute differences could be without compromising the run 

time of the program. Once both PEPS and UEPS have a value less than their respective 

tolerance levels, the pressure and velocity distributions are stored and the iterations end 

and the calculation for the temperature begin. The set-up for the temperature at each 

node throughout the wall is very similar to the set-up for the calculation of the pressure 

and velocity. The only difference in the temperature calculations is the order in which 

the functions are called. The values in the porous foam and the porous liner are 

calculated before the temperature at the interior interface boundary is calculated. The 

same procedure previously described to check if the user defined tolerance is met for the 

pressure and velocity is used for the temperature array. Once the temperature array has 

met the tolerance levels, the values at each node for the pressure, velocity, and 

temperature are written into data files for importation into a spreadsheet for analysis. 

In the compressible flow model, the density, pressure, velocity, and temperature must all 

be calculated at each node before they can be calculated at the next node. As in the 

incompressible model, the first calculations come at the cold gas boundary. Next are the 

calculations in the porous matrix, followed by the hot gas boundary. As previously stated 
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there is only one porous matrix in the compressible flow model. For the interior nodes 

however, the density must be calculated first because the derivation of the momentum 

equation calls for the use of the value of the density at both the current and previous time 

step. After the density is calculated, the velocity function is called, followed by the 

temperature function, then the equation of state is used to calculate the pressure. As in 

the incompressible model, a tolerance check is performed after the parameters at each 

node are calculated at each time step. Similar to the incompressible flow code there are 

tolerance checks implemented into the compressible flow code to determine whether the 

solution satisfies a user defined tolerance. In the code for the compressible code, all four 

variables have their own separate tolerance check. Once the tolerance conditions for all 

four variables are met, the values for the density, pressure, velocity, and temperature are 

written into data files for importation into a spreadsheet for analysis. 
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Chapter 3: Model Comparison and General Results 

In this chapter, the results of the compressible and incompressible flow models for a 

single porous matrix are presented and compared. Before those results are presented, a 

study on how the grid sizing affects the numerical results is presented. Also presented 

are some general results that show how a transpiration cooled liquid rocket engine 

thermally responds to different coolant mass flow rates across the thrust chamber wall. 

3.1 Grid Size Sensitivity Analysis 

Before performing parametric studies on the transpiration cooled thrust chamber wall, it 

is necessary to determine how the grid size will affect the results. Due to CPU run time 

constraints, the incompressible model was used to perform this analysis. For this study 

the thrust chamber wall was given an inner radius of 15 cm and a thickness of 6 cm. The 

porosity of the material was chosen to be s - 0.50 corresponding to the porosity of the 

porous foam, which is discussed in the next chapter. The pressure at the cold gas 

boundary was set at a constant value of 1.35 MPa. The inlet mass flow rate was set at 

7.22 kg/s resulting in a hot gas boundary pressure of approximately 1.31 MPa. The 

simulation was run five times with a different number of nodes being used in each case. 

The number of grid points used was 31, 51, 71, 101, and 151. As the number of grid 

points increases, the results should become more accurate. Hence it can be assumed that 

the results for the test case using 151 grid points were the most accurate. Even though 

these numerical results are not being compared to actual data, it will be assumed that the 

results for the test case using 151 nodes are the most accurate. The purpose of this study 

is to determine how large the grid size can be before there is a significant difference in 
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the results. The results of the nodal analysis show that there is not a significant 

difference in the results obtained with a different number of nodes. Figure 3.1 shows the 

temperature distribution inside the chamber wall for the analysis run with varying grid 
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Figure 3.1: Temperature Distribution Results Using 5 Different Numbers of Nodes 

sizes. It should be noted that the plots in Figure 3.1 do not represent the entire thickness 

of the thrust chamber wall. When the radial distance is larger than 16.8 cm, the 

temperature remains practically at a constant 290 K, equal to the inlet temperature at the 

cold gas boundary, in all cases. This data is omitted to allow for a closer look at the 

# of Nodes 

31 
51 
71 
101 

HGB 
Temperature 

(K) 
682.991 
677.683 
675.986 
674.190 

Relative 
Difference 

1.26% 
0.47% 
0.22% 
0.05% 

Table 3.1: Relative Temperature Difference at the Hot Gas Boundary for Varying 
Grid Spaces Compared to the HGB Temperature Using 151 Nodes 
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Figure 3.2: Velocity Distribution Results Using 5 Different Numbers of Nodes 

points where there is a detectable temperature difference. It is difficult to determine if 

there is any difference in temperature between the cases from the plots just through 

observation. The value of the temperature at the hot gas boundary in the case where 151 

grid points are used is 674.496 K. Table 3.1 shows the hot gas boundary temperatures of 

the other four cases as well as their relative differences with respect to the 151 node case. 

For further analysis, Figure 3.2 and Figure 3.3 show the velocity and pressure 

distributions respectively for varying grid sizes. Similar to the temperature distribution, it 

is difficult to determine the differences in pressures and velocities from their respective 

# of Nodes 

j 31 
51 
71 
101 
151 

HGB 
Velocity 

(m/s) 

-6.4840 
-6.4835 
-6.4842 
-6.4841 
-6.4841 

Relative 
Difference 

0.0014% 
0.0096% 
0 .0011% 
0.0004% 
0.0000% 

Table 3.2: Relative Velocity Difference at the Hot Gas Boundary for Varying Grid 
Spaces 
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Figure 3.3: Pressure Distribution Results Using 5 Different Numbers of Nodes 

plots. As is in the case with the temperature distributions, the greatest difference in 

velocity and pressure occurs at the hot gas boundary. Table 3.2 and Table 3.3 show the 

hot gas boundary pressures and velocities and compare them to their respective values 

when using the 151 node simulation. The results for the pressure and velocity 

comparisons show that the grid size has an insignificant effect on the values of these two 

variables. In general, the number of grid points has only minimal effects on the accuracy 

#of 
Nodes 

31 
51 
71 
101 
151 

HGB Pressure 
(Pa) 

1310744 
1310896 
1310953 
1310998 
1311035 

Relative 
Difference 

0.0222% 
0.0106% 
0.0063% 
0.0028% 
0.0000% 

Table 3.3: Relative Pressure Difference at the Hot Gas Boundary for Varying 
Grid Spaces 
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of the final results when compared to the case where 151 nodes were used. This was 

verified from the maximum relative differences that resulted for each of the three variable 

profiles. When a grid size of 51 nodes or larger was used, the maximum relative 

temperature difference did not exceed 0.50% and the maximum relative pressure or 

Darcy velocity difference did not exceed 0.01%. When performing the parametric 

studies, it is best to use the smallest number of grid points that is acceptable in order to 

minimize the CPU time for each analysis. The results of this nodal analysis show that it 

would be acceptable to use 51 grid points to perform the parametric studies. In the 

parametric studies the thickness of the porous liner section was a fraction of the thickness 

of the porous foam section. Therefore if 31 total grid points were used; there would not 

be a sufficient number of grid points to represent the porous liner section to produce 

sufficiently accurate results for this section. For this reason, it was also necessary to 

increase the overall number of grid points when looking at a porous liner section that 

represents only 10% of the thrust chamber wall thickness. 

3.2 General Results 

Transpiration cooling uses a portion of a rocket's propellant as a means of cooling the 

thrust chamber wall. As the propellant flow increases inside the wall the temperature of 

the wall decreases. The following results were obtained when using a liner that has a 

thickness that represents 20% of the total thrust chamber wall thickness and has a 

porosity of 0.25. A hot gas boundary heat flux of 30,000 W/m" was applied in each of 

the cases. The porosity of the foam section was 0.50. The results in Figure 3.4 confirm 

that as the inlet coolant mass flow rate increases, the temperature throughout the wall 

JO 



decreases. The inlet mass flow rate also affects the velocity of the fluid inside the wall as 

well as the pressure drop across the wall. Figure 3.5 shows how varying the inlet mass 

flow rate affects the pressure distribution and the overall pressure drop across the wall. 
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Figure 3.4: The Effects of Different Inlet Mass Flow Rates on the Temperature 
Distribution Across the Thickness of the Wall 

There is a much larger pressure drop in the porous liner section compared to the porous 

foam section. This is due to a lower permeability because of lower porosity of the liner, 

which requires a larger pressure drop. The results show that as the pressure drop across 

the entire thickness of the wall increases, the inlet mass flow rate increases. The pressure 

drop must remain below a certain threshold in order for the hydrogen to remain in 

supercritical state. This constraint limits the amount of propellant that can be used as 

coolant. The effect of the inlet mass flow rate on the Darcy velocity of the fluid is shown 

in Figure 3.6. As the mass flow rate increases the Darcy velocity increases naturally 

The results of Figure 3.6 also show that as the mass flow rate increases, the difference in 



velocity from the cold gas boundary to the hot gas boundary increases. The increase in 

mass flow rate produces an increase in the Darcy velocity of the fluid throughout the 

wall. The pressure drop of the coolant across the wall has the greatest effect on the 

temperature distribution of the coolant and the thrust chamber wall. The porosity of the 
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Figure 3.5: The Effects of Different Inlet Mass Flow Rates on the Pressure Distribution 
Across the Thickness of the Wall 

porous liner is smaller than in the porous foam causing a lower permeability in the porous 

liner section, which requires a larger pressure drop in this section. An increase in the 

mass flow rate comes with the penalty of a larger required pressure differential across the 

entire thickness of the thrust chamber wall. The increase in the inlet mass flow rate 

increases the speed of the fluid flow inside the thrust chamber wall, which increases the 

mass flow rate of the coolant inside the wall. The increase in mass flow rate also 

corresponds to an increase in the mass of coolant that is inside the thrust chamber wall. 

The coolant, along with the porous matrices absorbs the energy produced from the 
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combustion products. The temperature increase inside the thrust chamber wall gets 

smaller as more coolant is introduced into the wall. 
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Figure 3.6: The Effects of Different Inlet Mass Flow Rates on the Velocity Distribution 
Across the Thickness of the Wall 

3.3 Comparing the Results from the Two Models 

Due to stability issues with the explicit finite difference scheme, a very small time step is 

required to obtain results using the compressible flow model. This has rendered the 

computational time prohibitively extensive for the compressible flow model with the 

available computational resources. For this reason, the incompressible model is the only 

model used for performing the parametric studies desired for this research. In order for 

the incompressible model to be used as a reliable tool for the parametric studies an 

investigation was performed comparing the incompressible model results to the 

compressible model results for a test case. This section compares the results for the 

incompressible model to the results for the compressible model for a case of similar 
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conditions. For the test case, each model is given a cold gas boundary pressure of 1.35 

MPa with a temperature of 290 K. As described in Chapter 2, the equation of state was 

used to calculate the density at the cold gas boundary in the compressible flow model. 

To ensure that the models have as similar conditions as possible, the value for the density 

of the incompressible model will be the same as the cold gas boundary density calculated 

in the incompressible model for all of the nodes in the incompressible model. The 

compressible model was given a hot gas boundary pressure of 1.31 MPa. In the 

incompressible fluid flow model the pressure at the hot gas boundary is determined from 

numerical analysis and is not user specified. Through a process of trial and error, a hot 

gas boundary pressure of approximately 1310 kPa is achieved when the mass flow rate at 

the inlet is 7.22 kg/s in this model. These values make up all of the given conditions 

necessary to make a comparison of the two models. For the models, a total of 51 grid 

points are used. 
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Figure 3.7: Pressure Comparison between the Two Models 
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Since the pressures at the boundaries in each model are the same, the first comparison 

between the two models will be between the pressure distributions throughout the wall 

thickness. It should be noted, that even though the pressures at the boundaries are the 

same, there is no guarantee that the mass flow rates will be similar. For the 

incompressible model to be considered an acceptable model for the parametric studies, it 

has to produce a similar temperature profile as the compressible model for a similar mass 

flow rate. The results for the pressure distribution for the two models are shown in 

Figure 3.7. The pressure distribution resulting from the incompressible flow model is 

slightly more linear than the pressure distribution resulting from the compressible flow 

model. The density and Darcy velocity distributions for the two models show significant 

differences however. By definition, the density is assumed constant in the 

incompressible flow model. For this reason, it would not be beneficial to look at the 

density comparison alone, which is shown in Figure 3.8. The density multiplied by the 
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Figure 3.8: Density Comparison between the Two Models 
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Darcy velocity and cross-sectional area will produce the mass flow rate of the coolant at 

each node and therefore through each cross-section. It is the mass flow rate that will give 

an indication of whether the temperature distributions can be expected to be similar. 

Near the cold gas side, the density remains fairly constant, showing only minor decreases 

as the fluid flows toward the hot gas side. This initial small decrease corresponds to the 

nodes in the wall where the temperature is constant as shown later in Figure 3.11. When 

the temperature begins to rise, the density sharply decreases. With the pressures nearly 

similar, the continuity equation should counter the sharp decrease in density with an 

increase in the magnitude of the velocity. While the magnitude of the Darcy velocity 

does increase from the cold gas boundary to the hot gas boundary in the incompressible 

model, there is a significantly greater change in the velocity distribution in the 

compressible flow model as shown in Figure 3.9. As the fluid nears the hot gas 

I "10 

-15 

-20 

-25 

0.21 

• COMPRESSIBLE 
• INCOMPRESSIBLE 

RADIAL DISTANCE (m) 

Figure 3.9: Velocity Comparison between the Two Models 
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boundary, the Darcy velocity increases in the negative r-direction The Darcy velocity 

increases in magnitude linearly at the nodes where the temperatures remain constant as 

the cross-sectional area decreases linearly in the negative r-direction. Before the 

temperature increases, the velocity distribution for the incompressible model shows 

similar behavior to the compressible flow model. When the temperature increase, 

however, the speed of the fluid in the compressible flow model begins to significantly 

increase while the incompressible model speeds continue to increase at their previous 
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Figure 3.10: Comparison of the Mass Flow Rate for the Two Models 

rate. At first glance, the results of Figures 3.8 and 3.9 would make it seem that the 

incompressible flow model would not make a realistic model for the fluid flow behavior. 

However, when the results of these two comparisons are combined, they provide 

evidence that the incompressible flow model is useful. When the fluid density is 

multiplied by the magnitude of the Darcy velocity and the area, the result is the mass 

flow rate of the fluid at each nodal cross-section. If the mass flow rates of the two 

models are similar, then it is expected that the temperature distributions of the two 
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models will also be similar. This can be followed from the energy equation. In the 

energy equation the convective term involves the product of the fluid density and the 

Darcy velocity. The mass flow rates of each model are displayed in Figure 3.10. The 

mass flow rates for the two models are constant which signifies that the solution has 

reached steady state. The compressible flow model has a mass flow rate of 7.34 kg/s 

while the incompressible model has a mass flow rate of 7.22 kg/s. There is a 1.6% 
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Figure 3.11: Temperature Comparison for the Two Models 

difference in the mass flow rates with the compressible flow model having the slightly 

larger mass flow rate at each node. The similar mass flow rates were obtained through a 

trial and error process involving adjusting the boundary conditions, specifically the mass 

flow rate from the coolant reservoir. The relatively small difference along with the 

similar distribution of the mass flow rates of the two models should provide a similar 

temperature distribution between the models. The comparison of the temperature 
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distribution is shown in Figure 3.11. As expected, the temperature distribution between 

the models is similar. The magnitude of the temperature difference increases as the flow 

approaches the hot gas boundary with the maximum temperature occurring at the hot gas 

boundary. Since the mass flow rate of the compressible flow model was slightly larger, it 

is not surprising that the maximum temperature in the compressible model is slightly 

smaller than that of the incompressible model. This can be explained by slightly more 

coolant being present in the porous matrix yielding a slightly higher effective thermal 

conductivity as well as slightly increased magnitude of the advection term in the energy 

equation. The temperature at the boundary for the compressible model is 683.1 K while 

the incompressible model temperature is 686.9 K, a difference of only 0.5%. The first 

temperature difference between the two models occurs at node 16 with the difference 

being only 0.08%. 

Because the density is held constant in the incompressible model it was expected that the 

density and velocity distributions for the two models would have significant differences. 

However the similarities in the mass flow rate and temperature distributions show that the 

incompressible model can be used as an acceptable tool for determining the temperature 

distribution and the maximum temperature inside the thrust chamber wall to a very good 

accuracy level. 
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Chapter 4: Parametric Studies 

In Chapter 3 it was shown that the computer programs numerically simulated the steady-

state effects for the profiles of the variables defined by the governing equations and 

boundary conditions for a transpiration cooled liquid rocket engine. In this chapter, the 

previously defined governing equations and boundary conditions used to define the 

incompressible flow model will be used to perform parametric studies on the porous liner 

section. Two different test cases were analyzed. The first study looks at how the change 

in the porosity of the liner section affects the fluid flow and the second study looks at 

how varying the thickness of the liner section affects the fluid flow and temperature 

distribution across the thickness of the thrust chamber wall. 

4.1 Basic Test Parameters 

Some of the parameters remain constant for all of the test cases that are performed. The 

radius of the thrust chamber was chosen to be 15.0 cm with the thrust chamber wall 

having a thickness of 6.0 cm. The material used for both of the porous matrices is Silicon 

Carbide, Si-C, a ceramic-matrix-composite (CMC) being developed by Ultramet in 

conjunction with research at the Air Force Research Laboratory (AFRL). The properties 

used in this analysis come from the Ultramet website, www.ultramet.com, as well as a 

publication of Ultramet researchers (Brockemeyer 1998). The density, thermal 

conductivity and specific heat of Si-C are common throughout each case and are used for 

both the porous foam and the porous liner. The density is 3200 kg/m~\ the thermal 

conductivity is 1.0 W/(mK) and the specific heat is 1422.6 J/( kg K). The porosity, or 
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void fraction, and the mean pore diameter of the porous foam section are also constant for 

all test cases with the porosity being set at 0.50 and the mean pore diameter is 0.635 mm. 

The porosity and mean pore diameter are used to determine the permeability coefficients 

found in the momentum equation. 

All of the thermophysical properties for the coolant fluid remain constant for each of the 

cases tested. The coolant is supercritical hydrogen and the parameters used come from 

the NIST website, www.nist.gov, mentioned in Chapter 1. Since the properties of 

hydrogen were not available for the complete range of temperatures that occur in this 

study, the properties are assumed to remain constant throughout these investigations. The 

properties for hydrogen used in this study are shown in Table 4.1. Since the 

incompressible flow model is being used, the density remains constant for all nodes 

throughout the wall. 

Property 

Thermal 
Conductivity 

Viscosity 

Specific Heat 

Density 

Value 

0.20 

8.60 xlO"6 

14.70 

1.20 

Units 

W/(m.K) 

kg/(m.s) 

J/(kg.K) 

kg/m3 

Table 4.1: Hydrogen Properties 
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4.2 Effects of Varying Porous Liner Thickness 

One of the objectives of this thesis was to analyze how the addition of a porous liner to 

the porous foam affects the temperature distribution as well as the flow rate of the coolant 

throughout the thrust chamber wall. The first of the two main cases is to study how the 

coolant behavior changes when the thickness of the porous liner is varied. In this study 

the wall is modeled with porous liner section comprising 10%, 20%, and 30% of the total 

thrust chamber wall thickness. The results of these studies are also compared to the 

single layer case where no porous liner is used. For these studies the physical and 

thermal properties of both the porous foam and porous liner remain constant and are 

listed in Table 4.2. For each of the cases, the inlet mass flow rate and hot gas boundary 

heat flux are the varying parameters. For these studies, a mass flow rate is specified and 

then simulations are run varying the hot gas boundary heat flux. The heat flux is varied 

until the maximum allowable heat flux is reached. The maximum heat flux is determined 

by the maximum temperature that the porous matrices can withstand. The porous Si-C 

used in this study has a maximum allowable temperature of 1500 K. For a given inlet 

mass flow rate, simulations were run with different hot gas side heat fluxes until it was 

Property 
Porosity 

Pore Diameter 

Thermal 
Conductivity 

Specific Heat 

Density 

Foam Value 
0.5 

6.35 xlO"4 

0.1 

1422.6 

3200.0 

Liner Value 
0.25 

3.54 xlO"4 

0.45 

1422.6 

3200.0 

Units 

m 

W/(m.K) 

J/(kg.K) 

kg/m3 

Table 4.2: Properties of the Porous Foam and Liner for the Varying Thickness 
Analysis 
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determined which heat flux would provide a maximum temperature inside the thrust 

chamber wall of 1500 K. The maximum temperatures occur at the hot gas boundary in 

every case. Since the system is being modeled assuming local thermal equilibrium, the 

temperature of the coolant fluid also represents the temperature of the porous matrix. 

Each case begins with a specified mass flow rate of 0.048 kg/s with the mass flow rate 

increasing until the maximum allowable heat flux is found. The inlet mass flow rate is 

bounded by the pressure drop across the thrust chamber wall. Each of the test cases has a 

different maximum inlet mass flow rate. A total of 51 nodes are used for the cases where 

the liner is 20% and 30% of the total thickness as well as the case where no liner is used. 

For the case where the liner is 10% of the total wall thickness, using 51 nodes leaves only 

5 nodes to represent the porous liner. Therefore a total of 101 nodes are used for the 

uniform grid size leaving 10 nodes for the porous liner section. 
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Figure 4.1: Typical Pressure Distribution for Varying Liner Thickness 
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One of the previously mentioned constraints is that the pressure remains above 1.30 MPa 

at all points inside the thrust chamber wall. The typical pressure distributions inside the 

wall for the four different cases are shown in Figure 4.1, where a heat flux of 30,000 

W/nr and an inlet mass flow rate of 0.095 kg/s are constant throughout the 4 cases. The 

results of Figure 4.1 show that as the thickness of the liner increases, a larger pressure 

drop is required for a specified inlet mass flow rate. Since there is a difference in 

pressure drop under the same conditions for the various liner thickness cases, there is a 

difference in the range of inlet mass flow rates that can be used without causing the 

pressure drop to become too large. The maximum inlet mass flow rates for each case are 

shown in Table 4.3. The maximum inlet mass flow rates in Table 4.3 are the inlet mass 

flow rates for each of the test cases that are required when there is a total pressure drop of 

50 kPa across the thrust chamber wall. Simulations for each case were performed with 

Liner 
Thickness 

10% 
20% 
30% 

No Liner 

Maximum Mass 
Flow Rate (k^s) 

4.00 
2.66 
2.09 
8.17 

Table 4.3: Maximum Mass Flow Rate for Varying Liner Thickness 

the inlet mass flow rate ranging from a minimum value of 0.095 kg/s up to 1.9 kg/s for a 

comparison of the coolant behavior at the various liner thicknesses. Figure 4.2 shows 

how the pressure drop varies as the inlet mass flow rate increases for each of the test 

cases. The greatest pressure drops occur when the liner section has a thickness of 30% of 

the total thickness of the thrust chamber wall, while the smallest pressure drops occur 

when no liner is used over the given range of inlet mass flow rates. These results were 
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expected. One of the purposes of the liner might be to control the flow of the fluid inside 

the wall. Of course, the liner also provides structural integrity to the thrust chamber wall. 

The porous liner has a lower porosity than the porous foam. Therefore it has different 

permeability coefficients and a different effective thermal conductivity. As the thickness 

of the liner increases, there should be a greater effect on the behavior of the coolant flow 

and the temperature of the system. The pressure drop distribution for the three test cases 

where a liner was used is very similar as far as their rate of increase as the inlet mass flow 

rate increases. The difference between the cases is the magnitude of the pressure drop. 

• 10% Liner 
• 20% Liner 
* 30% Liner 
x No Liner 

0 8 1 12 

MASS FLOW RATE (kg/s) 

Figure 4.2: Pressure Drop Comparison for the Varying Liner Thickness 

Similar to the case presented with the pressure distributions for each of the test cases, 

Figure 4.3 shows the temperature distribution of each of the four cases with an inlet mass 

flow rate of 0.095 kg/s and a hot gas boundary heat flux of 30,000 W/m". For this case, 

using a liner that represents 30% of the overall wall thickness provides the lowest 

temperatures at each of the nodes inside the wall, with a 20% liner providing the next 

lowest temperatures, followed by the case where no liner is used then a 10% liner. This 

48 



S 1C 

* • 

A - X * 

• 10% Liner 
• 20% Liner 
• 3 0 % Liner 
x No Liner 

: ^ ^ _ 
0.165 0 175 0.185 0.195 

R A D I A L D I S T A N C E (m) 

Figure 4.3: Temperature Distributions for the four cases with a 0.095 kg/s Inlet Mass 
Flow Rate and a 30,000 W/m2 Heat Flux 

does not hold true for all cases though. Figure 4.4 shows the temperature distributions 

for an inlet mass flow rate of 0.76 kg/s and hot gas heat flux of 30,000 W/m2. In this case 

the 30% liner thickness case still provides the most efficient cooling method, however the 

case where a single porous matrix is used is now more efficient than the 20% liner 
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Figure 4.4: Temperature Distributions for the four cases with a 0.76 kg/s Inlet Mass 
Flow Rate and a 30,000 W/m2 Heat Flux 
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thickness case. As the inlet mass flow rate increases the single porous matrix case 

becomes the most cooling efficient option as shown in Figure 4.5. In this case an inlet 

mass flow rate of 1.52 kg/s is used along with the 30,000 W/m2 hot gas boundary heat 

flux. These temperature distributions show that there is no general behavior for the cases 

that were studied as the pressure drop and inlet mass flow rate are varied when 

comparing the temperature distribution between a thrust chamber wall with a liner and a 

thrust chamber wall without a liner. However in all of the simulations that were 

performed, the 30% liner thickness case provided the lowest hot gas boundary 

temperature compared to the other cases where a porous liner was used given the same 
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Figure 4.5: Temperature Distributions for the four cases with a 1.52 kg/s Inlet Mass 
Flow Rate and a 30,000 W/m2 Heat Flux 

inlet mass flow rate and hot gas boundary heat flux. It seems that there is no general 

trend in these three cases other than the fact that as the thickness of the porous liner 
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increases, the lower the temperatures become throughout the entire thickness of the wall 

when a porous liner is used. This is due in part to the effective thermal conductivity of 

the porous liner/coolant system. The porous liner has a lower porosity than the porous 

foam. Therefore there is a larger effective thermal conductivity of the porous matrix and 

coolant system when calculated using equation (10). This difference in the effective 

thermal conductivity between the porous foam section and the porous liner section is the 

reason that there is a difference in the temperature distribution between the cases where a 

porous liner was used and when just the porous foam was used. The larger effective 

thermal conductivity allows the liner to conduct the heat towards the porous foam at a 

better rate. The results in Figures 4.3, 4.4, and 4.5, show that the temperature remains at 
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Figure 4.6: Maximum Heat Flux for the Different Liner Thickness Cases for Varying 
Mass Flow Rates 

the cold gas boundary temperature of 290 K at radial distances greater than 0.185 m. The 

heat flux for a rocket engine will be determined by several factors including the type and 
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mixture of propellants and will not necessarily be 30,000 W/m2. In order to try to obtain 

more general results, simulations were run for each of the test cases to see what the 

maximum allowable heat flux would be for various inlet mass flow rates. Again, the 

maximum allowable heat flux in this case is defined as the largest heat flux that does not 

cause the temperature at any point inside the thrust chamber wall to rise above the 

material failure limit, which in this case is 1500 K. As expected, the maximum allowable 

heat flux increases for each of the cases as the inlet mass flow rate increases. Figure 4.6 

shows the distribution of the maximum allowable heat fluxes for the different test cases 

with varying inlet mass flow rates. Using the properties of Si-C provided by Ultramet, a 

30% liner thickness system allows a larger maximum heat flux at mass flow rates of 0.76 

kg/s or smaller. The single porous matrix case allows a larger maximum heat flux at inlet 

mass flow rates of greater than 0.76 kg/s. There was not a single case that was studied in 

which a liner that represents 10% of the total wall thickness provided a lower temperature 

distribution than the single porous matrix case. This study shows that there are cases 

where a thrust chamber wall consisting of two porous matrices can provide an overall 

lower temperature distribution across the thrust chamber wall when compared to a case 

where only a refractory porous foam is used. 

4.3 Effects of Varying the Porosity of the Porous Liner 

The researchers at Ultramet state that they are able to fabricate the Si-C used in their 

transpiration cooling tests at different porosities. This information allows for a second 

study to go along with the liner thickness study. In this section, the effects of varying the 

porosity of the porous liner section only are studied. For this study, the material 



properties of the porous matrices as well as the hydrogen are the same as they were in the 

previous studies. For consistency, the porous liner section was chosen to represent 20% 

of the total thickness of the thrust chamber wall for each of the three porosity test cases. 

Simulations were run with the porous liner section having a porosity of 0.20, 0.25, and 

0.30. By varying the porosity, the effective thermal conductivity as well as the 

permeability coefficients for the porous liner section were affected. The pressure and 

temperature constraints discussed in section 4.2 remain in effect. The pressure of the 

hydrogen is not allowed to fall below 1.30 MPa at any point throughout the thrust 

chamber wall. Figure 4.7 shows the typical pressure distributions of the three cases 

throughout the chamber wall. These results were obtained using an inlet mass flow rate 

of 0.095 kg/s and a hot gas boundary heat flux of 30,000 W/m2. The results show that for 

the same mass flow rate, there is a larger pressure drop in the wall as the porosity 
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Figure 4.7: Pressure Distribution for the Varying Porosity Cases 
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Porosity 

0.20 
0.25 
0.30 

Maximum Mass Flow Rate (kg/s) 

1.43 
2.66 
5.00 

Table 4.4: Maximum Mass Flow Rates for Varying Liner Porosities 

decreases. For any given inlet mass flow rate, a liner with a porosity of 0.30 provides the 

smallest pressure drop of the three cases that were tested. Table 4.4 shows the maximum 

inlet mass flow rates that can be used with a cold gas boundary of 1.35 MPa without 

requiring the pressure to drop below 1.30 MPa. As with the varying liner thickness cases, 

simulations were performed for the varying liner porosity cases with the same hot gas 

boundary heat flux and inlet mass flow rates. The hot gas boundary heat flux used was 

30,000 W/m" and the inlet mass flow rates ranged from 0.095 kg/s to 1.14 kg/s. Figure 

4.8 shows the pressure drop distributions for the three cases at the various inlet mass flow 

rates. The results for this analysis show similar behavior to the previous study where the 
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Figure 4.8: Pressure Drop Comparison for the Varying Liner Porosity Cases 

54 



liner thicknesses were varied. As the mass flow rate increases, the increase in the 

pressure drop is accelerated. There is a much more rapid increase in the pressure drop in 

the 20% porous liner than there is in the other two cases. The results show that a liner 

with a porosity of 0.30 has the smallest pressure drop and a liner with a porosity of 0.20 

has the largest pressure drop for any given inlet mass flow rate. As mentioned in the 

previous section, when the porosity of the liner is altered, the permeability coefficients 

and effective thermal conductivity are altered. As the porosity increases, the permeability 

increases which decreases the resistance to flow of the fluid leading to a decrease in the 

pressure drop throughout the wall. 
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Figure 4.9: Typical Temperature Distribution for the Varying Liner Porosity Cases 

The same tests that were performed in the previous study are now performed with the 

liner porosities being varied. Figure 4.9 shows the typical temperature distribution for 

the three cases. The inlet mass flow rate was set at 0.095 kg/s and the hot gas boundary 
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heat flux was set at 30,000 W/m2. The results shown in Figure 4.9 remain consistent 

throughout the study. In every case studied, a liner with a porosity of 0.20 provides the 

lowest temperature distribution in the wall while a liner with a porosity of 0.30 provides 

the highest temperature distribution. More specifically, a liner with a lower porosity 

results in the smallest maximum temperature inside the wall for any given inlet mass flow 

rate with the same hot gas boundary heat flux. This is due to the difference in the 

effective thermal conductivity. As mentioned in the previous section, the effective 

thermal conductivity of the porous liner section and coolant increases as the porosity of 

the porous material decreases. In this study, the case where the liner has a porosity of 

0.20 provides the largest effective thermal conductivity. Therefore it is able to conduct 
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Figure 4.10: Maximum Heat Flux for the Different Liner Porosity Cases for Varying 
Porosity 

heat away better from the hot gas boundary heat flux at various inlet mass flow rates for 

the different cases. For a given inlet mass flow rate a liner with a porosity of 0.20 will 

allow the maximum heat flux while a liner with a porosity of 0.30 will allow the smallest 
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maximum heat flux. The heat flux of the combustion products of a rocket engine can not 

be varied, but the magnitude of the heat flux will play a part on the parameters of the 

porous matrices. It was shown in Table 4.4 that a liner with a porosity of 0.30 can 

achieve the greatest inlet mass flow rates while maintaining a pressure drop of 50 kPa. 

The results of Table 4.5 show that it can also withstand the greatest hot gas boundary heat 

fluxes. The increased mass flow rate provides more supercritical hydrogen to the wall, 

which increases the magnitude of the advection term in the energy equation. Although a 

liner with a porosity of 0.20 provides the best temperature distribution throughout the 

wall among the porosity ranges studied, it can not be used under all circumstances. 

Ultimately, the thickness and porosity of the liner section will be determined by the 

overall design and performance requirements of the rocket. 

Porosity 

| 0.20 
0.25 
0.30 

Maximum Heat 

Flux (W/m2) 

38950 
42040 
45855 

Table 4.5: Maximum Allowable Heat Flux for the Various Liner Porosity Cases 
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Chapter 5: Conclusions and Recommendations 

5.1 Conclusions 

In this thesis the mathematical models and computer codes were developed for simulating 

the flow of a coolant and the transport phenomena in a transpiration cooled thrust 

chamber wall of a liquid rocket engine. This was done in two ways: by treating the 

coolant as an incompressible fluid and a compressible fluid in local thermal equilibrium 

with the porous structures that make up the thrust chamber wall. Finite difference 

method was used for solving the governing equations and predicting the steady-state 

behavior of the coolant fluid and the temperature distribution inside the thrust chamber 

wall. As expected, the simulations showed that as the mass flow rate of the coolant 

increases inside the wall, the overall temperature distribution decreases, allowing for a 

larger heat flux at the hot gas boundary. An increase in the mass flow rate also requires a 

larger pressure differential across the entire thickness of the thrust chamber wall and 

increases the overall magnitude of the Darcy velocity of the coolant inside the wall. 

The incompressible flow model was run as a single porous layered system and given the 

same boundary conditions as the compressible flow model in an effort to determine if the 

incompressible flow model could be used to accurately predict the behavior of the fluid 

and the temperature of the system. With pressures of 1.35 MPa at the cold gas boundary 

and 1.31 MPa at the hot gas boundary, the mass flow rate of the incompressible model 

differed from the compressible flow model by a relative margin of 1.6% and the 

maximum difference in the system temperature at any node between the two models was 

a relative margin of 0.5%. The results of these simulations showed that the 
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incompressible flow model can be a very useful tool for determining the effects of 

transpiration cooling. The fact that the incompressible model produces results at a much 

faster rate than the compressible flow model makes the incompressible model a more 

practical and cheaper tool for future studies of transpiration cooling inside the thrust 

chamber wall of a liquid rocket engine. 

Using the incompressible model, parametric studies were performed on a thrust chamber 

wall consisting of two layered porous matrices. The second layer that was used in the 

parametric studies was a porous liner also made of Si-C that is used to control the flow of 

the fluid inside the wall. The two main parametric analyses performed investigated the 

effects of varying the thickness and porosity of the porous liner section on the coolant 

behavior and temperature distribution inside the chamber wall. 

The first case study involved varying the thickness of the porous liner section. The liner 

was modeled having a thickness that represented 10%, 20% and 30% of the total thrust 

chamber wall thickness. The results from these cases were also compared to results 

obtained when no porous liner was used. While the porous liner is primarily intended to 

provide structural support for the thrust chamber wall, the results show that there are 

cases where the use of the porous liner will provide a more efficient cooling technique 

than a thrust chamber wall consisting only of a single porous matrix. The results also 

show for a given mass flow rate that the pressure differential across the chamber wall 

increases as the thickness of the porous liner increases. This is a result of the porous liner 

section having a lower porosity, therefore having a lower permeability, than the porous 
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foam section which causes a larger pressure differential in the porous liner section. 

Naturally, as the thickness of the liner increases, the overall pressure differential in that 

region would increase. 

The second case study involved varying the porosity of the porous liner section. The 

system was modeled with a porous liner having a porosity of 0.20, 0.25, and 0.30. As the 

porosity of the liner is increased, the permeability also increases causing a decrease in the 

resistance to the flow of the fluid. This resulted in a smaller pressure drop across the 

thrust chamber wall. The pressure difference applied across the thickness of the wall 

determines how large the inlet mass flow rate and ultimately the mass flow rate inside the 

thrust chamber wall will be. As the pressure differential increases, the mass flow rate 

increases. As more coolant is introduced into the thrust chamber wall, the temperature 

distribution is lowered due the increased volumetric heat capacity and effective thermal 

conductivity that comes with a larger amount of coolant. The results of this case show 

that the liner with a porosity of 0.20 provides the most efficient cooling option of the 

three cases that were studied. These results are consistent over the entire range of inlet 

mass flow rates for all three liner porosities investigated for conditions in which the 

coolant remained in supercritical state. The drawback is that the case where the liner has 

a porosity of 0.20 (lowest porosity considered) also requires a larger pressure differential 

than the other cases (higher porosities considered) for a specified inlet mass flow rate. As 

the porosity of the liner increases, the range of inlet mass flow rates that are possible also 

increases. 
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5.2 Recommendations 

The incompressible flow model was used to perform the parametric studies due to large 

computer run-times that occurred when running the compressible flow model. With the 

use of more powerful computational resources, such as a Beowulf Cluster or CRAY 

supercomputers, the compressible flow model could be adapted to perform the parametric 

studies. This would also involve applying the more complex boundary conditions at the 

interface between the two porous layers. The models that were developed in this research 

assumed local thermal equilibrium between the porous matrix and coolant fluid. It is 

recommended that this constraint is relaxed and two energy equations for the fluid phase 

and the porous matrices are used to determine if that would have any significant effect. 

The parametric studies that were performed in this research used the same material for 

both the porous foam and porous liner. It is recommended that the parametric studies be 

enhanced to include different materials for either or both of the porous matrices as more 

materials are developed for different liquid rocket engine applications. 
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Appendix A: Discretization of the Governing Equations and Boundary Condition 
by Finite Difference Approximations for the Incompressible Flow Model 

A.l Continuity Equation for the Node NTOT-1 

The simplified continuity equation is discretized at the point NTOT using backward 

differencing and then solved for the Darcy velocity of the fluid at point NTOT-1. The 

same process is used to determine the velocity at the node NINT-1. 

= 0 ~>rNI()rllNTQl ^rWTOT-\UNI()f-l + rNIQI -2UNT()I -2 

2Ar 

_ ^rNTOTUNIOT JrrNI()I-2UNIOI-2 
UNT0I -1 ~~ A 

^} MOI 

A.l Momentum Equation for the Node NTOT-1 

The simplified momentum equation is discretized at the point NTOT using backward 

differencing in the pressure gradient term and then solved for the fluid pressure at the 

node NTOT-1. The same process is used to determine the pressure at the node NINT-1. 

dP juf£ s~p\ I 
— = —u \u\u 
dr a J3 

^^NTOI ~^*h>TOr-\ + *NTOT-2 _ W S P L L 
UNI()r n \UMOT\UhT()I 

2Ar a ™" (3 

p 
1 NfOT-l 

\^*N10I + *N1Q1 -2/ 
( A r / / ^ Arp 

V 2 a J 
Uhtl01 + 

torp, 

20 
U\rOT\U\IOT 

63 



A.3 Continuity Equation for the Interior Nodes 

This is the derivation for the Darcy velocity at a typical interior node starting with the 

simplified continuity equation and using upwind differencing. 

J:M-o 
-3rnun+4rn+xun+]-rn+2un+2 

2Ar 

^rn+\lln+\ ~rn+2Un+2 

= 0 

w„ = 

$rn 

A.4 Momentum Equation for the Interior Nodes 

This is the derivation for the fluid pressure at a typical interior node starting with the 

simplified momentum equation 

dP Pfs s2p, , 
— = —u \u\u 
dr a (3 

— >2±=- = u„ —\un\an 

P = 

2Ar a J3 

4 ^ - ^ 2Ar// / g^ 2Ars2p 

3 3a n 3J3 

A.5 Velocity at the Interface Boundary 

At the interface boundary between the two porous media, the velocity is determined 

through a mass balance across the boundary. Since the density is constant, there must be 

continuity in the Darcy velocity across the boundary. 
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A.6 Pressure at the Interface Boundary 

The momentum equation is used to implement the interface boundary condition that the 

fluid pressure must be continuous across the interface boundary. 
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A.7 Energy Equation for Interior Nodes 

The following is the derivation of the system temperature at a typical interior node. 

These expressions are valid for both the incompressible flow model and the compressible 

flow model. The derivation begins with the energy equation. 
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A.8 Energy Balance at the Interface Boundary 

This derivation solves for the temperature of the system at the interface boundary using 

an energy balance across the boundary. 
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A.9 Energy Balance at the Hot Gas Boundary 

This derivation determines the temperature of the system at the hot gas boundary using an 

energy balance at the boundary. A heat flux is specified at the hot gas boundary. These 

expressions are valid for both the incompressible and compressible flow models. 
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Appendix B: Discretization of the Governing Equations and Boundary Condition 
by Finite Difference Approximations for the Compressible Flow Model 

B.l Continuity Equation for the Interior Nodes 

The unsteady continuity equation is used to solve for the fluid density at any typical 

interior node in the wall in the compressible flow model. 
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B.2 Momentum Equation for the Interior Nodes 

The unsteady momentum equation is used to solve for the Darcy velocity at any typical 

interior node in the wall in the compressible flow model. 
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Appendix C: Incompressible Flow Model FORTRAN Flowchart 

Define Numerical Properties and Constants 

Initialize and Define Radial Distance Arrays 

Initialize Pressure. Darcy Velocity, and Temperature Aiiays 

CalculaSe the Darcy Velocity from tie Ckrarinuity Equation 
Calculate Pressure from the Momentum Equation 

Calculate Temperature from Energy Equation 

Write Final Temperature. Pressure. and Darcy 
Velocity Distributions to .DAT File? 
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Appendix D: Compressible Flow Model FORTRAN Flowchart 

Define Numerical Properties and Constants 

Initialize and Define Radial Distance Arrays 

Initialize Pressure, Darcy Velocity. Density and Temperature 
Anays and Apply Cold Gas Boundary Conditions 

Calculate Temperature from die Energy Equation 
Calculate Density from the Continuity Equation 

Calculate Darcy Velocity from tbe Momentum Equation 
Calculate Pressure from die Ideal Gas Law 

Write Final Temperature, Pressure, and Darcy 
Velocity Distributions to DAT Files 
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Appendix E: Incompressible Flow Model FORTRAN Program 

PROGRAM INCOMP 
C 
C THIS PROGRAM WILL ANALYZE THE FLUID BEHAVIOR THROUGHOUT 
C THE WALL ASSUMINGAN INCOMPRESSIBLE FLUID 
C 
C FIRST I AM GOING TO DECLARE THE CONSTANTS THAT WILL BE 
C USED THROUGHOUT THE PROGRAM. THESE VALUES WILL GENERALLY 
C BE MATERIAL PROPERITES. ALL VALUES WILL BE DOUBLE 
C PRECISION. 
C 
C KF IS THE THERMAL CONDUCTIVITY OF THE COOLANT 
C KS1 IS THE THERMAL CONDUCTIVITY OF THE POROUS FOAM 
C KS2 IS THE THERMAL CONDUCTIVITY OF THE POROUS LINER 
C EPS1 IS THE POROSITY OF THE POROUS FOAM 
C EPS2 IS THE POROSITY OF THE POROUS LINER 
C DPORE1 IS THE MEAN PORE DIAMETER OF THE POROUS FOAM 
C DPORE2 IS THE MEAN PORE DIAMETER OF THE POROUS LINER 
C ALPHA AND BETA ARE PERMEABILITY CONSTANTS 
C MUF IS THE ISCOSITY OF THE COOLANT 
C CPF IS THE SPECIFIC HEAT CAPACITY OF THE COOLANT 
C CI IS THE HEAT CAPACITY OF THE POROUS FOAM 
C C2 IS THE HEAT CAPACTIY OF THE POROUS LINER 
C RHOS IS THE DENSITY OF THE POROUS MATRIX 
C RF IS THE GAS CONSTANT USED IN STATE EQUATION 
C Kl IS THE EFFECTIVE THERMAL CONDUCTIVITY IN THE FOAM 
C K2 IS THE EFFECTIVE THERMAL CONDUCTIVITY IN THE LINER 
C QHOT IS THE HEAT FLUX ON THE HOT GAS SIDE BOUNDARY 
C RHOF IS THE DENSITY OF THE COOLANT FLUID 
C 

DOUBLE PRECISION KF,KS1,KS2,EPS1,EPS2,ALPHA 1,ALPHA2 
DOUBLE PRECISION DP0RE1,DP0RE2,BETA1,BETA2,MUF,CPF 
DOUBLE PRECISION CSl,CS2,RHOSl,RHOS2,RF.SIZE,QHOT 
DOUBLE PRECISION DR,R,RPLUS,RMINUS,TOLD,TNEW,DP 
DOUBLE PRECISION DT,RHOF,PCOLD,P,U, POLD.UOLD. 
DOUBLE PRECISION TIME,K1,K2,C1,C2,TDIFF 
DOUBLE PRECISION MAXEPS,EPS,R0,RTOT,MDOT,ATOT,PI 
DOUBLE PRECISION MAXDU,MAXDP.UEPS,PEPS,UDIFF,PDIFF 
REAL TSTART,TEND,PROC 

C 
C R IS THE RADIUS ARRAY 
C RPLUS IS THE R+l/2 ARRAY 
C RMINUS IS THE R-l/2 ARRAY 
C 

DIMENSION R(51) 
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DIMENSION RPLUS(51) 
DIMENSION RMINUS(51) 

C 
C TNEW AND TOLD ARE THE TEMPERATURE ARRAYS 
C PNEW AND POLD ARE THE PRESSURE ARRAYS 
C UNEW AND UOLD ARE THE VELOCITY ARRAYS 
C RHONEW AND RHOOLD ARE THE DENSITY ARRAYS 
C 

DIMENSION TNEW(51 ),TOLD(51) 
DIMENSION P(51),U(51) 
DIMENSION POLD(51),UOLD(51) 

C 
C TDIFF IS THE DIFFERENCE BETWEEN THE OLD AND NEW 
C TEMPERATURES AT EACH NODE 
C DIFSQ IS THE SQUARE OF THE TEMPERATURE DIFFERENCE AT EACH 
C NODE 
C 

DIMENSION TDIFF(51 ),PDIFF(51 ),UDIFF(51) 
C 

CALL CPU_TIME(TSTART) 
C 

PI=3.1416 
KF=200 
KS1=1.0 
KS2=1.0 
EPS1=.50 
EPS2=.50 
DPORE1=000635 
DPORE2=.000635 
MUF=8.6E-6 
RF=4125 
CPF=14.7 
Cl=1422.6 
C2=1422.6 
RHOS 1-3200.00 
RHOS2=3200.00 
QHOT=30200.00 

C 
ALPHA1=(DPORE1**2*EPS1**3)/(150*(1-EPS1)**2) 
ALPHA2=(DPORE2**2*EPS2**3)/(150*(1-EPS2)**2) 
BETA1=(DP0RE1*EPS1**3)/(1.75*(1-EPS1)) 
BETA2=(DPORE2*EPS2**3)/(1.75*(l-EPS2)) 

C 
Kl=(KF*((2.0*KF+KSl)-2.0;i:(l-EPSl)!ic(KF-KSl))/(2.0*KF+KSl + 

+((1-EPS1)*(KF-KS1)))) 
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K2=(KF*((2.0*KF+KS2)-2.0*(1-EPS2)*(KF-KS2))/(2.0*KF+KS2+ 
+((1-EPS2)*(KF-KS2)))) 

C 
C 
C INITIALIZING THE ARRAYS 
C 
C RO IS THE RADIUS OF THE THRUST CHAMBER 
C 

R0=0.15 
C 
C SIZE IS THE TOTAL LENGTH OF THE WALL IN METERS 
C 

SIZE=.06 
C 
C RTOT IS THE TOTAL RADIUS 
C 

RTOT=R0+SIZE 
C 
C NTOT REFERS TO THE TOTAL NUMBER OF POINTS 
C 

NTOT=51 
C 
C DR IS THE CHANGE IN RADIUS 
C 

DR=SIZE/(NTOT-l) 
C 
C NINT REFERS TO THE POINT WHICH REPRESENTS THE INTERIOR 
C BOUNDARY 
C 

NINT=11 
C 
C PCOLD IS THE COLD GAS BOUNDARY PRESSURE 
C 

PCOLD=1350E3 
C 
C MDOT IS THE MASS FLOW RATE AT THE COLD GAS BOUNDARY WHICH 
C WILL DETERMINE THE VELOCITY AT THE COLD GAS BOUNDARY 
C 

MDOT=0.3775 
C 
C ATOT IS THE TOTAL SURFACE AREA OF THE ENGINE 
C 

ATOT=PI*RTOT*2.0 
C 
C RHOF IS THE FLUID DENSITY 
C 
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RHOF=1.20 
C 
C R IS THE RADIUS ARRAY 
C 

R(1)=R0 
DO10N=2,NTOT 
R(N)=R(N-1)+DR 

10 CONTINUE 
C 
C RPLUS IS THE R+l/2 RADIUS ARRAY 
C 

DO20N=2,(NTOT),l 
RPLUS(1)=R0 
RPLUS(N)=R(N)+(DR/2.0) 

20 CONTINUE 
C 
C RMINUS IS THE R-l/2 RADIUS ARRAY 
C 

DO30N=2,(NTOT),l 
RMINUS(1)=R0 
RMINUS(N)=R(N)-(DR/2.0) 

30 CONTINUE 
C 
C INPUTING INITIAL GUESS 
C 
C TOLD IS THE INITIAL TEMPERATURE GUESS 
C 

DO40N=l,NTOT 
TOLD(N)=290.00 

40 CONTINUE 
C 
C FIRST I AM GOING TO LOOP TO CALCULATHE THE VELOCITY AND 
C PRESSURE AND RUN THE LOOPS UNTIL A TOLERANCE IS MET NOTE 
C THAT THESE VALUES ARE INDEPENDANT OF TEMPERATURE SO THEY 
C ARE CALCULATED BY THEMSELVES 
C 
C NOW THE VALUES AT THE COLD GAS BOUNDARY WILL BE 
C CALCULATED. THESE VALUES ARE ALWAYS CONSTANT 
C 

45 N=NTOT 
P(N)=PCOLD 
U(N)=-MDOT/( RHOF*ATOT) 

C 
C NOW I WILL CALCULATE THE VALUES AT THE NODE JUST BEFORE THE 
C COLD GAS BOUNDARY 

74 



N=NT0T-1 
U(N)=(3*R(N+1)*U(N+1)+R(N-1)*U(N-1))/(4*R(N)) 
P(N)=PC0LDA(N,DR,MUF,ALPHA1,BETA1,RH0F,U,P) 

C 
C THE NEXT LOOP CALCULATES THE NEW PROPERTIES INSIDE THE 
C POROUS FOAM USING THE FOAM FUNCTIONS 
C 

DO50N=l,NTOT-2 
U(N)=(4*R(N+l)*U(N+l)-R(N+2)*U(N+2))/(3*R(N)) 
P(N)=PFOAM(N,DR,MUF,ALPHAl .BETA1 ,RHOF,U,P) 

C 
50 CONTINUE 

C 
c 
C THE NEXT LOOP CALCULATES THE DIFFERENCE BETWEEN THE OLD 
C VALUES AND THE NEW VALUES 
C UDIFF IS THE DIFFERENCE BETWEEN THE OLD AND NEW VELOCITY 
C PDIFF IS THE DIFFERENCE BETWEEN THE NOE AND OLD PRESSURE 
C UEPS IS THE CURRENT MAXIMUM UDIFF 
C PEPS IS THE CURRENT MAXIMUM PDIFF 
C MAXDU IS THE MAXIMUM ALLOWABLE UDIFF 
C MAXDP IS THE MAXIMUM ALLOWABLE PDIFF 
C 

PEPSO.O 
UEPS=0.0 
MAXDP=lE-7 
MAXDU=lE-7 
M=M+1 

C 
DO70N=l,NTOT 

C 
PDIFF(N)=P(N)-POLD(N) 
IF (PDIFF(N).GT.PEPS) PEPS=PDIFF(N) 

C 
UDIFF(N)=U(N)-UOLD(N) 
IF (UDIFF(N).GT.UEPS) UEPS=UDIFF(N) 

70 CONTINUE 
C 

c 
C THE NEXT IF STATEMENT WILL TEST IF THE TOLERANCE IS MET 
C 

IF (PEPS-MAXDP) 75,75,80 
75 IF (UEPS-MAXDU) 90,90,80 

C 

c 
80 DO 85 N=l,NTOT 
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c 
UOLD(N)=U(N) 
POLD(N)=P(N) 

C 
85 CONTINUE 

GOTO 45 
C 

90 CONTINUE 
C 
C NOW THE VELOCITY AND PRESSURE DISTRIBUTIONS ARE COMPLETED. 
C SINCE NEITHER OF THESE PROPERTIES ARE BASED ON TEMPERATURE 
C OR TIME, THIS METHOD OF CALCULATION IS ALLOWED. NEXT COME 
C THE TEMPERATURE LOOPS 
C 
C DT IS THE CHANGE IN TIME 
C TIME IS THE TOTAL TIME TAKEN 
C 

DT=lE-4 
TIME=0.0 

C 
C FIRST WILL COME THE TEMPERATURE AT THE HOT GAS BOUNDARY 
C WHICH IS CONSTANT THROUGHOUT 
C 

95 TNEW(NTOT)=TOLD(NTOT) 
C 
C NEXT THE TEMPERATURE IN THE POROUS FOAM 
C 

DO 100N=2,NTOT-1 
TNEW(N)=TFOAM(N,DT,DR,R,RMINUS,RPLUS,EPS 1 ,CPF,RHOF,U,C 1 ,K 1, 

&RHOSLTOLD) 
100 CONTINUE 

C 
C NOW THE TEMPERATURE IN THE POROUS LINER 
C 

DO110N=2,NINT-l 
TNEW(N)=TLINER(N,DT,DR,R,RMINUS,RPLUS,EPS2,CPF,RHOF, 

&U,C2,K2,RHOS2,C 1 ,TOLD) 
110 CONTINUE 

C 
C NOW THE TEMPERATURE AT THE INTERIOR BOUNDARY 
C 

N=NINT 
TNEW(N)=TINT(N,K1 .K2.TNEW) 

C 
C NEXT THE HOT GAS BOUNDARY TEMPERATURE 
C 
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N=l 
TNEW(N)=TH0T(N,TNEW,DR,K2,QH0T) 

C 
TIME=TIME+DT 

C 
C NOW I WILL CALCULATE THE DIFFERENCES FOR THE TOLERANCE 
C TDIFF IS THE DIFFERENCE BETWEEN THE NEW AND OLD 
C TEMPERATURES 
C EPS IS THE CURRENT MAXIMUM TDIFF 
C MAXEPS IS THE MAXIMUM ALLOWABLE TDIFF, OR THE TOLERANCE 
C LEVEL 
C 

EPS=0.0 
MAXEPS=lE-7 
M=M+1 

C 
DO120N=l,NTOT 
TDIFF(N)=TNEW(N)-TOLD(N) 
IF (TDIFF(N).GT.EPS) EPS=TDIFF(N) 

120 CONTINUE 
C 

c 
C THE NEXT IF STATEMENT WILL TEST IF THE TOLERANCE IS MET 
C 

IF (EPS-MAXEPS) 140,140,130 
C 

130 DO 135 N=l,NTOT 
C 

TOLD(N)=TNEW(N) 
C 

135 CONTINUE 
GOTO 95 

C 
140 CONTINUE 

C 

c 
WRITE(*,*) TIME 

C 
OPEN(6,FILE='VELOCITY.DAT') 
OPEN(7,FILE='TEMP.DAT') 
OPEN(8,FILE='PRESSURE.DAT') 

C 
DO 150 N=l,NTOT 
WRITE(6,*) U(N) 
WRITE(7,*) TNEW(N) 
WRITE(8,*) P(N) 
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150 CONTINUE 
C 

CALL CPU_TIME(TEND) 
PROC=TEND-TSTART 
WRITE(*,*) PROC 
END 

C 
C THAT IS THE END OF THE MAIN PROGRAM 
C NEXT ARE THE FUNCTIONS THAT ARE CALLED 
C 
C PCOLD CALCULATES THE PRESSURE AT THE NODE JUST BEFORE THE 
C COLD GAS BOUNDARY 
C 

FUNCTION PCOLDA(N,DR,MUF,ALPHA1 ,BETA1 ,RHOF,U,P) 
C 

DOUBLE PRECISION DR,MUF,ALPHA1,BETA1,RH0F,U,P,A,B,C 
DIMENSION P(51),U(51) 

C 
A=DR*MUF/ALPHA1 
B=DR*RHOF/BETAl 
C=(3*P(N+l)+P(N-l))/4 

C 
PCOLDA=C+A*U(N+l)+B*U(N+l)*ABS(U(N+l)) 

C 
RETURN 
END 

C 
C PFOAM CALCULATES THE PRESSURE INSIDE THE POROUS FOAM 
C 

FUNCTION PFOAM(N,DR,MUF,ALPHAl,BETAl,RHOF,U,P) 
C 

DOUBLE PRECISION DR,MUF,ALPHA1,BETA1,RH0F,U,P,A,B,C 
DIMENSION P(51),U(51) 

C 
A=DR*MUF/ALPHA1 
B=DR*RHOF/BETAl 
C=(4*P(N+l)-P(N+2))/3 

C 
PFOAM=C+A*U(N)+B*U(N)*ABS(U(N)) 

C 
RETURN 
END 

C 
C PFOAMA CALCULATES THE PRESSURE AT THE NODE NINT-1 
C 

FUNCTION PFOAMA(N,DR,MUF,ALPHA2,BETA2,RHOF,U,P) 
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DOUBLE PRECISION DR,MUF,ALPHA2,BETA2,RHOF,U,P,A,B,C 
DIMENSION P(51),U(51) 

C 
A=DR*MUF/ALPHA2 
B=DR*RHOF/BETA2 
C=(3*P(N+l)+P(N-l))/4 

C 
PFOAMA=C+A*U(N+l)+B*U(N+l)*ABS(U(N+l)) 

C 
RETURN 
END 

C 
C PLINER CALCULATES THE PRESSURE INSIDE THE POROUS LINER 
C 

FUNCTION PLINER(N,DR,MUF,ALPHA2,BETA2,RHOF,U,P) 
C 

DOUBLE PRECISION DR,MUF,ALPHA2,BETA2,RHOF,U,P,A,B,C 
DIMENSION P(51),U(51) 

C 
A=DR*MUF/ALPHA2 
B=DR*RHOF/BETA2 
C=(4*P(N+l)-P(N+2))/3 

C 
PLINER=C+A*U(N)+B*U(N)*ABS(U(N)) 

C 
RETURN 
END 

C 
C UINT CALCULATES THE VELOCITY AT THE INTERIOR BOUNDARY 
C 

FUNCTION UINT(N,R,U) 
C 

DOUBLE PRECISION R,U,A,B,C 
DIMENSION R(51),U(51) 

C 
A=4*R(N+1)*U(N+1)+4*R(N-1)*U(N-1) 
B=-R(N-2)*U(N-2)-R(N+2)*U(N+2) 
C=6*R(N) 

C 
UINT=(A+B)/C 

C 
RETURN 
END 

C 
C PINT CALCULATES THE PRESSURE AT THE INTERIOR BOUNDARY 
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c 
FUNCTION PINT(N,DR,MUF,BETA1,BETA2,ALPHA1,ALPHA2,P,U, 

&RHOF) 
C 

DOUBLE PRECISION DR,MUF,BETA1,BETA2 
DOUBLE PRECISION ALPHAl,ALPHA2,P,U,RHOF,A,B,C 
DIMENSION P(51),U(51) 

C 
A=(-P(N+2)+4*P(N+l)+4*P(N-l)-P(N-2))/6 
B=(DR*MUF/3)*(1/ALPHA1-1/ALPHA2) 
C=(DR*RHOF/3 )* (1 /BETA 1 -1 /BETA2) 

C 
PINT=A+B*U(N)+C*U(N)*ABS(U(N)) 

C 
RETURN 
END 

c 
C THIS FUNCTION CALCULATES THE TEMPERATURE AT THE INTERIOR 
POROUS 
C FOAM NODES. 
C 

FUNCTION TFOAM(N,DT,DR,R,RMINUS,RPLUS,EPS 1 ,CPF,RHOF,U,C 1, 
&Kl,RHOSl,TOLD) 

C 
DOUBLE PRECISION DT,DR,R,RMINUS,RPLUS,EPS1,CPF,RH0F,U,CLK1 
DOUBLE PRECISION RHOSl,TOLD,A,B,C,RHOC 
DIMENSION R(51 ),RMINUS(51 ),RPLUS(51) 
DIMENSION U(51 ),TOLD(51) 

C 
RHOC=(RHOSl*Cl*(l-EPSl))+(EPSl*RHOF*CPF) 

C 
A=((DT*RMrNUS(N)*Kl)/(RHOC*R(N)*DR*DR))+((DT*EPSl*RHOF* 

+U(N)*CPF)/(2.0*RHOC*DR)) 
C 

B=l-(DT*((RMrNUS(N)+RPLUS(N))*Kl)/(RHOC*R(N)*DR*DR)) 
C 

C=((DT*RPLUS(N)*Kl)/(RHOC*R(N)*DR*DR))-((DT*EPSl*RHOF* 
+U(N)*CPF)/(2.0*RHOC*DR)) 

C 
TFOAM=(A*TOLD(N-l))+(B*TOLD(N))+(C*TOLD(N+l)) 

C 
RETURN 
END 

C 
C THIS FUNCTION CALCULATES THE TEMPERATURE IN THE LINER 
C 
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FUNCTION TLINER(N,DT,DR,R,RMINUS,RPLUS,EPS2,CPF, 
& RHOF,U,C2,K2,RHOS2,Cl,TOLD) 

C 

DOUBLE PRECISION DT,DR,R,RMINUS,RPLUS,EPS2,CPF,RHOF,U,C2,K2 
DOUBLE PRECISION RHOS2,Cl,TOLD,A,B,C,RHOC 
DIMENSION R(51 ),RMINUS(51 ),RPLUS(51) 
DIMENSION U(51),TOLD(51) 

C 
RHOC=(RHOS2*C2*(l-EPS2))+(EPS2*RHOF*CPF) 

C 
A=((DT*RMINUS(N)*K2)/(RHOC*R(N)*DR*DR))+((DT*EPS2*RHOF* 

+U(N)*CPF)/(2.0*RHOC*DR)) 
C 

B=l-(DT*((RMINUS(N)+RPLUS(N))*K2)/(RHOC*R(N)*DR*DR)) 
C 

C=((DT*RPLUS(N)*K2)/(RHOC*R(N)*DR*DR))-((DT*EPS2*RHOF* 
+U(N)*CPF)/(2.0*RHOC*DR)) 

C 
TLINER=(A*TOLD(N-l))+(B*TOLD(N))+(C*TOLD(N+l)) 

C 
RETURN 
END 

C 
C THIS FUNCTION CALCULATES THE TEMPERATURE AT THE BOUNDARY 
C BETWEEN THE 2 POROUS MATRICEWS 
C 

FUNCTION TINT(N,K1,K2,TNEW) 
C 

DOUBLE PRECISION K1,K2,TNEW 
DIMENSION TNEW(51) 

C 
TINT=(l/(3*(Kl+K2)))*(-Kl*TNEW(N-2)+4*Kl*TNEW(N-

+l)+4*K2*TNEW(N+l)-K2*TNEW(N+2)) 
C 

RETURN 
END 

C 
C THIS FUNCTION CALCULATES THE TEMPERATURE AT THE HOT GAS SIDE 
BOUNDARY 
C 

FUNCTION THOT(N,TNEW,DR,K2,QHOT) 
DOUBLE PRECISION TNEW,DR,K2,QHOT 
DIMENSION TNEW(51) 

C 
THOT=-(TOEW(N+2)/3)+(4*TNEW(N+l)/3)+(2*DR*QHOT/(3*K2)) 

C 
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RETURN 
END 



Appendix F: Compressible Flow Model FORTRAN Program 

PROGRAM COMP 
C 
C 
C THIS IS THE PROGRAM THAT DETERMINES THE FLOW OF THE FLUID 
USING THE 
C COMPRESSIBLE FLOW MODEL 
C 
C FIRST I AM GOING TO DECLARE THE CONSTANTS THAT WILL BE 
C USED THROUGHOUT THE PROGRAM. THESE VALUES WILL GENERALLY 
C BE MATERIAL PROPERITES. ALL VALUES WILL BE DOUBLE 
C PRECISION. 
C 
C KF IS THE THERMAL CONDUCTIVITY OF THE COOLANT 
C KS1 IS THE THERMAL CONDUCTIVITY OF THE POROUS FOAM 
C EPS1 IS THE POROSITY OF THE POROUS FOAM 
C DPORE1 IS THE MEAN PORE DIAMETER OF THE POROUS FOAM 
C ALPHA AND BETA ARE PERMEABILITY CONSTANTS 
C MUF IS THE ISCOSITY OF THE COOLANT 
C CPF IS THE SPECIFIC HEAT CAPACITY OF THE COOLANT 
C CI IS THE HEAT CAPACITY OF THE POROUS FOAM 
C RHOS IS THE DENSITY OF THE POROUS MATRIX 
C RF IS THE GAS CONSTANT USED IN STATE EQUATION 
C Kl IS THE EFFECTIVE THERMAL CONDUCTIVITY IN THE FOAM 
C QHOT IS THE HEAT FLUX ON THE HOT GAS SIDE BOUNDARY 
C 

DOUBLE PRECISION KF,KS1,EPS 1,ALPHA 1 
DOUBLE PRECISION DP0RE1,BETA1,MUF,CPF 

DOUBLE PRECISION CSl,RHOSl,RF,SIZE,QHOT 
DOUBLE PRECISION DR,R,RPLUS,RMINUS,TOLD,TNEW,POLD 
DOUBLE PRECISION PNEW,UOLD,UNEW,RHOOLD,RHONEW,DT 
DOUBLE PRECISION TIME,K1,C1,TDIFF,PEPS,UEPS,RH0EPS 
DOUBLE PRECISION MAXDP,MAXDU,MAXRHO,PDIFF,UDIFF,RHODIF 
DOUBLE PRECISION MAXEPS,EPS,RO,NPLUS,NMINUS,B 
REAL TSTART,TEND,PROC 

C 
C R IS THE RADIUS ARRAY 
C RPLUS IS THE R+1/2 ARRAY 
C RMINUS IS THE R-l/2 ARRAY 
C 

DIMENSION R(51) 
DIMENSION RPLUS(51) 

DIMENSION RMINUS(51) 
C 
C TNEW AND TOLD ARE THE TEMPERATURE ARRAYS 

83 



C PNEW AND POLD ARE THE PRESSURE ARRAYS 
C UNEW AND UOLD ARE THE VELOCITY ARRAYS 
C RHONEW AND RHOOLD ARE THE DENSITY ARRAYS 
C 

DIMENSION TNEW(51),TOLD(51) 
DIMENSION PNEW(51 ),POLD(51) 
DIMENSION UOLD(51),UNEW(51) 
DIMENSION RHOOLD(51),RHONEW(51) 

C 
C TDIFF IS THE DIFFERENCE BETWEEN THE OLD AND NEW 
C TEMPERATURES AT EACH NODE 
C DIFSQ IS THE SQUARE OF THE TEMPERATURE DIFFERENCE AT EACH 
NODE 
C 

DIMENSION TDIFF(51) 
C 

CALL CPU_TIME(TSTART) 
C 

KF=0.1683 
KS1=1.00 
EPS1=50 
DPORE1=.000635 
MUF=.0000086 
RF=4124 
CPF-29.00/2.00 
Cl=1422.6 
RHOS1=3200.00 
QHOT=30000.00 
M=l 

C 

c 

c 

ALPHA1=(DPORE1**2*EPS1**3)/(150*(1-EPS1)**2) 

BETA1=(DP0RE1*EPS1**3)/(1.75*(1-EPS1)) 

K1=KF*(2*KF+KS1-2*((1-EPS1)*(KF-KS1)))/(2*KF+KS1+(1-EPS1)* 
+(KF-KS1)) 

C 
C INITIALIZING THE ARRAYS 
C 
C RO IS THE RADIUS OF THE THRUST CHAMBER 
C 

R0=0.15 
C 
C SIZE IS THE TOTAL LENGTH OF THE WALL IN METERS 
C 
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SIZE=06 
C 
C NTOT REFERS TO THE TOTAL NUMBER OF POINTS 
C 

NTOT=51 
C 
C DR IS THE CHANGE IN RADIUS 
C 

DR=SIZE/(NTOT-l) 
C 
C R IS THE RADIUS ARRAY 
C 

R(1)=R0 
DO 10N=2,NTOT 
R(N)=R(N-1)+DR 

10 CONTINUE 
C 
C RPLUS IS THE R+l/2 RADIUS ARRAY 
C 

DO20N=l,(NTOT),l 
RPLUS(N)=R(N)+(DR/2.0) 

20 CONTINUE 
C 
C RMINUS IS THE R-l/2 RADIUS ARRAY 
C 

DO30N=l,(NTOT),l 
RMINUS(N)=R(N)-(DR/2.0) 

30 CONTINUE 
C 
C INPUTING INITIAL GUESS 
C 
C TOLD, POLD, UOLD, AND RHOOLD NEED INITIAL VALUES IN ORDER 
C TO CALCULATE NEW VALUES AND RUN THE ANALYSIS. 
C 
C INITIAL TEMPERATURE DISTRIBUTION GUESS 
C 

DO40N=l,NTOT 
TOLD(N)=290.00 

40 CONTINUE 
C 
C INITIAL PRESSURE GUESS 
C 

DO50N=l,NTOT 
POLD(N)=1300E3 

50 CONTINUE 
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C PNITIAL DENSITY GUESS 
C 

DO60N=l,NTOT 
RHOOLD(N)=POLD(N)/(RF*TOLD(N)) 

60 CONTINUE 
C 
C INITIAL VELOCITY GUESS 
C 

DO70N=l,NTOT 
UOLD(N)=0.0 

70 CONTINUE 
C 
C NOW TO RUN THE LOOPS TO CALCULATE THE NEW PROPERTIES 
C 
C DT IS THE CHANGE IN TIME 
C TIME IS THE TOTAL TIME TAKEN 
C 

DT=lE-7 
TIME=0.0 

C 
C NEXT I WILL CALL THE DIFFERENT FUNCTIONS CORRESPONDING TO 
C WHICH PART OF THE WALL I AM ANALYZING 
C 
C THE COLD GAS SIDE BOUNDARY CONDITIONS ARE FIRST 
C 

75 N=NTOT 
C 

TNEW(NTOT)=TOLD(NTOT) 
PNEW(N)=1350E3 
RHONEW(N)=PNEW(N)/(RF*TOLD(N)) 
UNEW(N)=UCOLD(N,POLD,DT,DR,UOLD,RHONEW,ALPHAl,BETAl, 

&RHOOLD,EPSl,MUF) 
C 
C THE NEXT LOOP CALCULATES THE NEW PROPERTIES INSIDE THE 
C POROUS FOAM USING THE FOAM FUNCTIONS 
C 

DO80N=2,NTOT-l 
C 

TNEW(N)=TFOAM(N,DT,DR,R,RMINUS,RPLUS,EPS 1 ,CPF,RHOOLD,UOLD 
&RHOSl,TOLD,Cl,Kl,) 

C 

C 

RHONEW(N)=RHOFOA(N,DT,R,UOLD,EPS 1 ,DR,RHOOLD) 
UNEW(N)=UFOAM(N.DT.EPS 1 ,RHONEW,DR,POLD,RHOOLD,ALPHA 1. 

&MUF,BETAl,UOLD) 

PNEW(N)=RHONEW(N)*RF*TNEW(N) 
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c 
80 CONTINUE 

C 
C NEXT IS THE HOT GAS BOUNDARY PROPERTIES 
C THE PRESSURE AT THIS BOUNDARY IS HELD CONSTANT THROUGHOUT 
C THE ENTIRE ANALYSIS 
C 

N=l 
C 

TNEW(N)=THOT(N,TNEW,DR,K 1 ,QHOT) 
PNEW(N)=1310E3 
RHONEW(N)=PNEW(N)/(RF*TNEW(N)) 
UNEW(N)=UHOT(N,POLD,DT,DR,UOLD,RHONEW,ALPHAl,BETA 1,EPS 1, 

&RHOOLD,MUF) 
C 
C 
C THE NEXT LOOP CALCULATES THE DIFFERENCE BETWEEN THE OLD 
C AND THE NEW PROPERTY VALUES AND DETERMINE THE MAXIMUM 
C DIFFERENCES FOR EACH OF THE PROPERTIES. THE PROPERTIES ARE 
C INITIALLY SET TO 0.0 
C 

EPSO.O 
PEPS=0.0 
UEPS=0.0 
RHOEPS=0.0 

C 
DO90N=l,NTOT 

C 
TDIFF(N)=ABS((TNEW(N)-TOLD(N))/TOLD(N)) 
IF(TDIFF(N).GT.EPS) EPS=TDIFF(N) 

C 
PDIFF(N)=ABS((PNEW(N)-POLD(N))/POLD(N)) 
IF(PDIFF(N).GT.PEPS) PEPS=PDIFF(N) 

C 
UDIFF(N)=ABS((UNEW(N)-UOLD(N))/UOLD(N)) 
IF(UDIFF(N).GT.UEPS) UEPS=UDIFF(N) 

C 
RHODIF(N)=ABS((RHONEW(N)-RHOOLD(N))/RHOOLD(N)) 
IF(RHODIF(N).GT.RHOEPS)RHOEPS=RHODIF(N) 

90 CONTINUE 
C 
C MAXEPS IS THE MAXIMUM VALUE FOR THE DIFFERENCE. OR THE MAX 
C TOLERANCE 
C 

MAXEPS=lE-4 
MAXDP=lE-4 
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MAXDU=lE-4 
MAXRH0=lE-4 

C 
C NEXT I WILL CHECK EACH VALUE TO SEE IF THEIR TOLERANCE IS MET 
C 

IF(EPS-MAXEPS) 100,100,130 
100 IF(PEPS-MAXDP) 110,110,130 
110 IF(UEPS-MAXDU) 120,120,130 
120 IF(RHOEPS-MAXRHO) 180,180,130 
130 CONTINUE 

C 
c 
C THE NEXT IF STATEMENT IS A CREATED COUNTER. AFTER EACH 1 
C MILLION TIME STEPS,THERE WILL BE A COUNTER PRINTED ON THE 
C SCREEN STARTING AT 1 AND INCREASING BY IFOR EACH MILLION TIME 
C STEPS THAT ARE PERFORMED THIS STEP WAS ADDED SO I CAN 
C VISUALLY SEE THAT THE COMPILER IS STILL RUNNING AND HAS NOT 
C STALLED 
C 

IF(A*1E6-M) 140,140,150 
140 WRITE (*,*)M/(1E6) 

A=A+1 
150 CONTINUE 

C 
C THE NEXT DO LOOP WILL TAKE THE NEW PARAMETERS AND WILL SET 
C THEM AS OLD VALUES FOR THE NEW CALCULATIONS 
C 

160 DO 170 N=l,NTOT 
TOLD(N)=TNEW(N) 
POLD(N)=PNEW(N) 
RHOOLD(N)=RHONEW(N) 
UOLD(N)=UNEW(N) 

170 CONTINUE 
C 

c 
GOTO 75 

180 CONTINUE 
C 
C 
C NEXT I AM CREATING TEXT FILES TO WRITE THE PROPERTIES TO 
C 

OPEN(6,FILE='VELOCITY.DAT') 
OPEN(7,FILE='TEMP.DAT') 
OPEN(8,FILE='DENSITY.DAT') 
OPEN(9,FILE='PRESSURE.DAT) 

C 
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C THE NEXT DO LOOP WRITES THE PROPERTIES IN THEIR RESPECTIVE 
FILES AND IS SET UP 
C TO WRITE THE VALUE FOR EACH RESPECTIVE NODE ON ITS OWN LINE 
C IN THE TEXT FILE IN ORDER STARTING FROM NODE 1 CORRESPONDING 
C TO THE HOT GAS BOUNDARY 
C 

DO 190 N=l,NTOT 
C 

WRITE(6,*) UNEW(N) 
WRITE(7,*) TNEW(N) 
WRITE(8,*) RHONEW(N) 
WRJTE(9,*) PNEW(N) 

C 
190 CONTINUE 

C 
C 
C FINALLY I FINISH THE RUN TIME FUNCTION AND PRINT THE TOTAL CPU 
C RUN TIME TO THE SCREEN AS WELL AS THE SIMULATION TIME 
C 

CALL CPU_TIME(TEND) 
PROC=TEND-TSTART 
WRITE(*,*) PROC 
WRITE(*,*)TIME 
END 

C 
C THAT IS THE END OF THE MAIN PROGRAM. BELOW ARE THE FUNCTIONS 
C THAT ARE CALLED THROUGHOUT THE PROGRAM IN THE LOOPS 
C 
C THIS FUNCTION CALCULATES THE TEMPERATURE IN THE INTERIOR 
C NODES 
C 

FUNCTION TFOAM(N,DT,DR,R,RMINUS,RPLUS,EPS 1 ,CPF,RHOOLD, 
&U0LD,C1.K1RH0S1,T0LD) 

C 
DOUBLE PRECISION DT,RPLUS,EPSl,CPF,RHOOLD,UOLD,Cl.Kl 
DOUBLE PRECISION RHOSl.TOLD,A,B,C,RHOC,DR,R,RMINUS 
DIMENSION R(51 ),RMINUS(51 ),RPLUS(51) 
DIMENSION RHOOLD(51),UOLD (51),TOLD(51) 

C 
RHOC=(RH(3S p e l *(1 -EPS 1 ))+(EPS 1 *RHOOLD(N)*CPF) 

C 
A=((DT*RMINUS(N)*K1)/(RH0C*R(N)*DR*DR))+((DT*EPS1* 

+RHOOLD(N)*UOLD(N)*CPF)/(2.0*RHOC*DR)) 
C 

B=l-(DT*((RMINUS(N)+RPLUS(N))*Kl)/(RHOC*R(N)*DR*DR)) 
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C=((DT*RPLUS(N)*K1)/(RH0C*R(N)*DR*DR))-((DT*EPS1*RH00LD(N)* 
+UOLD(N)*CPF)/(2.0*RHOC*DR)) 

C 

TF0AM=(A*T0LD(N-1))+(B*T0LD(N))+(C*T0LD(N+1)) 

RETURN 
END 

C 
C THIS FUNCTION CALCULATES THE FLUID DENSITY IN THE INTERIOR 
C NODES 
C 

FUNCTION RHOFOA(N,DT,R,UOLD,EPS 1 .DR.RHOOLD) 
C 

DOUBLE PRECISION DT,R,UOLD,EPSl,DR,RHOOLD,A,B 
DIMENSION R(51 ),UOLD(51 ),RHOOLD(51) 

C 
A=l+(DT*UOLD(N)/(EPSl*DR)) 

C 
B-(R(N+l)*UOLD(N+l)*DT)/(EPSl*R(N)*DR) 

C 
RHOFOA=A*RHOOLD(N)-B*RHOOLD(N+l) 

C 
RETURN 
END 

C 
C THIS FUNCTION CALCULATES THE DARCY VELOCITY IN THE INTERIOR 
C NODES 
C 

FUNCTION UFOAM(N,DT,EPS 1 ,RHONEW,DR,POLD,RHOOLD, 
& ALPHA 1 ,BETA 1 ,UOLD,MUF) 

C 
DOUBLE PRECISION DT,EPSl,RHONEW,DR,POLD,RHOOLD 
DOUBLE PRECISION MUF,A,B,C,ALPHA1,BETA1,U0LD 
DIMENSION RHONEW(51),POLD(51) 
DIMENSION UOLD(51 ),RHOOLD(51) 

C 
A=(l-EPSl*DT*ABS(U0LD(N))/BETAl)*P3d00LD(N)*U0LD(N) 
B=(EPS 1 *DT*MUF/ALPHA1 )*UOLD(N) 
C=(EPSl*DT/DR)*(POLD(N)-POLD(N-l)) 

C 
UFOAM=(A-B-C)/(RHONEW(N)) 

C 
RETURN 

END 
C 
C NOW FOR THE FUNCTIONS AT THE BOUNDARIES 
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c 
C THIS NEXT FUNCTION CALCULATES THE DARCY VELOCITY AT 
C THECOLD GAS BOUNDARY VELOCITY 
C 

FUNCTION UCOLD(N,POLD,DT,DR,UOLD.RHONEW,ALPHAl, 
&BETA 1,EPS 1 .MUF.RHOOLD) 

C 

DOUBLE PRECISION MUF,DT,DR,UOLD,RHONEW,ALPHAl 
DOUBLE PRECISION RHOOLD,A,B,C,BETA1,EPS 1,POLD 
DIMENSION RHOOLD(51),POLD(51) 
DIMENSION RHONEW(51),UOLD(51) 

C 
A=(l-EPSl*DT*ABS(UOLD(N))/BETAl)*RHOOLD(N)*UOLD(N) 
B=(EPS1*DT*MUF/ALPHA1)*U0LD(N) 
C=(EPSl*DT/DR)*(POLD(N)-POLD(N-l)) 

C 
UCOLD=(A-B-C)/RHONEW(N) 

C 
RETURN 
END 

C 
C THIS FUNCTION CALCULATES THE TEMPERATURE AT THE HOT GAS SIDE 
C BOUNDARY 
C 

FUNCTION THOT(N,TNEW,DR,Kl,QHOT) 
C 

DOUBLE PRECISION TNEW,DR,Kl,QHOT 
DIMENSION TNEW(51) 

C 
THOT=-(TNEW(N+2)/3)+(4*TNEW(N+l)/3)+(2*DR*QHOT/(3*Kl)) 

C 
RETURN 
END 

C 
C THIS FUNCTION CALCULATES THE DARCY VELOCITY AT THE HOT GAS 
C BOUNDARY 
C 

FUNCTION UHOT(N,POLD,DT,DR,UOLD,RHONEW,ALPHAl. 
&BETA1 ,EPS 1 ,MUF,RHOOLD) 

C 
DOUBLE PRECISION MUF.DT,DR,UOLD,RHONEW.ALPHAl 
DOUBLE PRECISION RH00LD,A,B,C.BETA1,EPS 1,POLD 
DIMENSION RHOOLD(51 ),POLD(51) 
DIMENSION RHONEW(51),UOLD(51) 

C 
A=(l-EPSl*DT*ABS(UOLD(N))/BETAl)*PvHOOLD(N)*UOLD(N) 
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B=(EPS1*DT*MUF/ALPHA1)*U0LD(N) 
C=(EPS1*DT/DR)*(P0LD(N+1)-P0LD(N)) 

C 
UHOT=(A-B-C)/RHONEW(N) 

C 
RETURN 
END 
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