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ABSTRACT 

Author: Craig R. Czlapinski 

Title: Thermal Modeling Of Lithium-Ion Energy Storage Systems For Hybrid Electric 

Vehicles Using Computational Fluid Dynamics With Conjugate Heat Transfer 

Institution: Embry-Riddle Aeronautical University 

Degree: Master's of Science in Mechanical Engineering 

Year: 2009 

The success and performance of a Hybrid Electric Vehicle (HEV) relies largely on its Energy 

Storage System (ESS). High temperatures and thermal variations can significantly affect a 

battery's performance and lifecycle. An effective thermal management system is vital to the 

health and safe operation of the ESS's batteries. A well designed thermal management system 

begins with the accurate prediction of the battery's thermal conditions. In hot climates, HEVs 

may be required to operate within ten degrees Celsius of the maximum safe operating 

temperature of their batteries. This study aims to evaluate the thermal management system of 

a lithium-ion based energy storage system designed for HEV applications. The analysis uses 

estimated current values from powertrain simulation software, fundamental heat transfer 

principles, finite element analysis (FEA), and computational fluid dynamics (CFD) tools to predict 

the temperature distributions in battery modules. 
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CHAPTER 1: INTRODUCTION 

This chapter provides background information on the research that was conducted throughout 

the course of this study. Information on prior research of batteries for Hybrid Electric Vehicles 

(HEVs) and Electric Vehicles (EVs) is also presented. An introduction is given on the objectives of 

this research and its importance. Additionally, an overview of the study that was conducted and 

its presentation are provided. 

Background 

The performance of HEVs relies heavily on their Energy Storage System (ESS). Unlike EV 

batteries, which are intended for high capacity, relatively constant low to moderate discharge 

rates, HEV batteries are designed for many high power charge cycles (1). The battery 

performance requirements of HEVs are as follows (2)(3): 

1. High specific energy density 

2. High volumetric energy density 

3. High power density 

4. Easy charging management 

5. High cycle life 

6. Long calendar life 

7. Stable performance at low temperatures 

There are two classes of batteries for HEVs: power assist and dual mode. Power assist are small 

in size and capacity compared to dual mode batteries which are used for hybrid drive or electric 

drive (4). Both of these classes tend to have high discharge rates relative to their energy storage 

capacity. The high power charges and discharges cause the battery's temperature to rise due to 

ohmic heating. Temperature gradients caused by uneven cooling present problems in most 

battery types. These gradients can affect the utilization of active material in the cell, with the 
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warmer regions being more active than the cooler regions (5). Also, batteries generally have a 

higher degradation rate at high temperatures which can significantly reduce the life of the 

batteries (6). 

There are several types of batteries available for HEVs. The three most common types are lead, 

nickel, and lithium systems. The following table lists several of the properties of each 

aforementioned type. 

Table 1: Battery Systems (7) 

Properties 
Cell Voltage 
Energy density 
Energy efficiency 
without heating/cooling 
Power density 
Service life in cycles 
Operating temperature 
Maintenance free 

Lead-Acid System 
open/sealed 

2V 
25...30 Wh/kg 

75...80% 

100.200 w/kg 
600...900 
10...55 °C 

Depending on design 

Nickel Systems 
Nickel-cadmium 
Nickel-metal hydride 

1.2 V 
35...80 Wh/kg 

60...85% 

100...1,000 W/kg 
> 2,000 

-20...55 °C 
Depending on design 

Lithium Systems 
Lithium-ion 
Lithium-polymer 

3..AV 
60...150 Wh/kg 

85...90% 

300...1,500 W/kg 
> 1,000 projected 
-10...50or60°C 

Yes 

Lithium-ion batteries offer advantages in energy density, power density, and cost over other 

available technologies (8). However, lithium-ion batteries are sensitive to overheating and for 

this reason, lithium-ion batteries have yet to replace NiMH as the battery of choice in the HEV 

market (9). Even though each battery type's reaction to high temperatures varies, maintaining 

optimum, uniform temperature or some method of thermal management is essential to obtain 

peak battery performance for all types (10). Liquid or air cooling is commonly used to control 

the temperature of the batteries. Cooling systems are not the only method for regulating 

battery temperatures. A battery controller can prevent excessive temperatures in the batteries 

by limiting the allowable current as the temperature of the batteries rise (6). 
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Nickel metal-hydride batteries, although the current battery of choice in industry, aren't without 

a notable thermal disadvantage. The charge efficiency of NiMH batteries declines at 

temperatures above 35 °C. This effect creates a "vicious circle" where the temperature of the 

battery climbs further due to the reduced efficiency. Lithium-ion batteries do not display such a 

characteristic because they have a coulomb efficiency of nearly 100%. Also, the newest versions 

of Li-Ion batteries have lower internal resistance than most batteries. Their low resistance 

combined with nearly 100% coulomb efficiency causes Li-ion batteries to produce less heat for a 

given power than other battery types (11). 

Apart from the catastrophic effects of temperature on energy storage systems, maintaining 

uniform temperatures within the individual cells affects both the battery life and performance 

of the HEV. Variations in battery temperature may be due to inconsistent impedance, non­

uniform thermal characteristics, and the effects of high ambient temperature (10). Variations in 

temperature also affect the charge termination voltage of the cells. The use of a temperature 

compensated charging system is necessary to fully utilize the batteries (12). 

For lithium-ion batteries, charging is an endothermic reaction. When charging under 0.5C, the 

heat absorbed is greater than the ohmic heat produced from the battery's internal resistance. 

This leads to drops in battery temperature during low current charging. Therefore, regulating 

the charge cycle could absorb a portion of the heat produced due to vehicle operation (6). 

The successful implementation and commercialization of HEVs rely largely on energy storage 

systems. Lithium-ion batteries are considered the only viable energy storage device for HEV 

applications. Although lithium-ion batteries have been widely used in electronics devices, they 
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are not yet ready for commercial use in HEVs due to the thermal limitations (13). A successful 

thermal management system starts with accurate prediction of the thermal conditions of the 

battery. This study is aimed to evaluate the thermal management system of a lithium-ion 

battery pack designed for HEV applications. 

EcoCAR The NeXt Challenge 

The EcoCAR challenge is an effort by the US Department of Energy (DOE), General Motors, and 

National Resources Canada to promote the development of cleaner, more efficient vehicles as 

part of a comprehensive educational program. The EcoEagles team represents Embry-Riddle 

Aeronautical University in this three year competition. The design goals for this competition are 

to reduce petroleum energy consumption and reduce well-to-wheel (WTW) emissions, while 

maintaining consumer acceptability. Due to the availability and efficiency of electricity and 

electric power systems, vehicle electrification was identified as a key technology for this project 

(14). 

Figure 1: EcoCAR Saturn® Vue® (15) 

4 



"The Embry-Riddle HyREV system is an innovative combination of power split Hybrid and 

extended-Range Electric Vehicle technologies, designed to reduce petroleum energy 

consumption and improve vehicle efficiency across a range of operating conditions. The HyREV 

system was developed for the EcoCAR Challenge and is capable of full function electric 

operation for approximately 32 km (20 miles). The HyREV design incorporates an efficient 1.3-

liter diesel engine, using B20 biodiesel fuel, with the electric motors in the General Motors (GM) 

Two-Mode Transmission and Magna eRDM to create a propulsion system capable of a combined 

fuel economy of approximately 40 mpgge on the Saturn® Vue® platform" (14). 

Figure 2: EcoCAR Boston Workshop (16) 

The thermal management system that is the focus of this study will be implemented on 

EcoEagles vehicle entry for the EcoCAR Challenge. As part of the competition, the vehicle will be 

tested in extreme conditions to evaluate the design. Therefore, the analysis in this study is 

aimed to simulate these conditions. Because the results of this study will be applied to the 

design of the EcoEagles vehicle there will be an opportunity to compare the results of this study 

to the performance of the actual design. 
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ESS Design Requirements and Procedure 

The following describes the requirements of the thermal management system as well as the 

procedure used to ensure the requirements are met (17): 

Step 1: Perform drive cycle analysis. This step examines the current requirements for the 

battery. The results of this step will be used to estimate the heat production of the 

batteries in a worst case scenario. 

a. It is necessary to consider the most strenuous drive cycle. 

b. The analysis must consider the basic characteristics of the vehicle that 

determine energy flow from the batteries: 

i. Loaded weight of vehicle 

ii. Drivetrain efficiency 

iii. Rolling resistance 

iv. Aerodynamics 

c. Use a Root Mean Square (RMS) method to determine the average effective 

current. 

Step 2: Estimate the heat generation rate. This step determines the power that the thermal 

management system must be designed to dissipate. 

a. Using an l2R ohmic heating relationship with the RMS current from step 1, the 

heat generation will be determined. 

Step 3: Analyze the cold plate design. The cold plate must be able to prevent the hottest point 

of the batteries from reaching 50 °C when the vehicle is subjected to an ambient air 

temperature of 40 °C. The result of this step is the selection of a cold plate design. 

a. Select a design that will conform to the spatial requirements of the vehicle. 

b. Find necessary coolant flow rate that provides acceptable temperature rise. 

i. Select a coolant composition that suits the operating conditions. 

ii. Consider additional thermal resistances imposed by the design. 

c. Attempt to minimize hot spots created by uneven cooling. 

d. Find the coolant pressure drop in the cold plate. 
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Step 4: Analyze the heat exchanger design. The result of this step should be the selection of a 

specific heat exchanger model. The analysis must consider high ambient conditions 

(40 °C). 

a. Select a heat exchanger that can accommodate the flow from step 3. 

b. Determine necessary airflow over the heat exchanger. 

c. Verify the inlet and outlet temperatures match the requirements of the cold 

plate from step 3. 

d. Find coolant pressure drop in the heat exchanger. 

e. Select an pump using the pressure drop across the entire fluid circuit. 

f. Find the air pressure drop over the heat exchanger. 

g. Select a fan to provide adequate airflow over the heat exchanger. 

Research Objectives 

The primary goals of this research are to: 

1. Select a preliminary cooling system configuration for the EcoEagles ESS based on a 

towing simulation in a desert environment. 

2. Analyze the performance of the cooling system using CFD and thermal finite element 

software. 

3. Perform subsequent design/analysis iterations until a satisfactory design has been 

achieved. 

4. Establish performance limitations of the cooling system configuration. 

Outline 

Chapter 2 gives an explanation of the characteristics of the batteries used, estimation methods 

for determining the heat produced within the battery modules, the software used for analysis, 

and the assumptions made when performing the analysis. Chapter 3 describes the design and 

the results of the thermal analysis of the ESS for the cold plate and fluid path. Chapter 4 

presents the conclusion and explains the significance of the results as they apply to the 

EcoEagles Vue. Chapter 5 discusses the recommendations for future research and analysis. 
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CHAPTER 2: METHOD 

This chapter describes the Li-Ion cells used in the EcoEagles ESS. Background information will be 

provided on the battery cell properties as well as the combined properties of the A123® 25S2P 

pack. Simulations that were used to estimate the heat production of the packs are presented. 

Also included in this chapter is a description of the software used to perform the analysis. 

Finally, the assumptions made in the analysis are discussed. 

A123® Li-Ion Batteries 

For this application, A123Systems® was selected as the supplier of Li-Ion batteries. Figure 3 

shows a single A123® 20Ah prismatic cell that are stacked to produce prismatic modules for the 

EcoEagles ESS. 

SYSTEMS 

20Ah 
KtJHD Prismatic Cell 

WIIIIUM ffl 
A*: 

Figure 3: A123* 20/4/7 Lithium-Ion Prismatic Cell (18) 

The prismatic cell offers a significant packaging advantage over cylindrical cells. However, the 

prismatic cells cannot be air-cooled since they are too closely packed with other cells for 

sufficient airflow to pass between. For this reason it is necessary to implement a liquid cooling 

system to manage the temperature of the batteries. Reference Table 2 for a list of the relevant 

thermal properties of the A123® 20Ah prismatic cell for analysis. 
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Table 2: A123® Prismatic Cell Properties (19) 

Capacity 
Nominal Voltage 
Nominal Energy 
Energy Density 
Mass 
Power (@ 25°C, 10 sec, 50% SOC) 
Dimensions 
DC Resistance «5> 25°C) 
Heat Capacity 

R-Value (From Cell to Side Surface) 

19.6 Ah 
3.3 V 

64 Wh 
135 Wh/kg, 245 Wh/L 

0.48 kg 
650 W | 

165 x 227 x 7.05 mm | 
2.4 md | 
480 J/K 

Side: 2.9 °C/W 
Bottom: 4.8 °C/W 

A123® provides a thermal resistance (R-value) for heat extracted from the bottom or side 

surfaces of the cells. The overall thermal resistance is characterized by (20): 

L 

Where: 

L = Length of material 

k = Thermal conductivity 

A = Contact area 

Due to the limited space in the rear of the Saturn® Vue®, each of the four A123® batteries is 

located so that the bottom surface is in contact with the cold plate. Converting the R-value of 

the bottom surface to thermal conductivity is necessary for simulating the temperature 

distribution in the battery module. The thermal conductivity of each battery is found using the 

R-value of the cell's bottom as follows: 

(0.243 mXSO Cells) _onccW/ 

= ( 4 . 8 ° % ) (0.064 rf)- • 'mK 

The DC resistance of the cells is another important property because it is used to estimate the 

heat produced from charging and discharging. Figure 4 illustrates the temperature dependence 

of the cell's resistance. 



3.1 

3 

2.9 

2.8 

2.7 

2.6 

2.5 

2.4 

2.3 

2.2 

2.1 

DC Resistance (60 A, 10 sec) of Prismatic Cell 208059 at Various 
Soak Temperatures 

3.03 

L37 

2.17 

18 19 20 21 22 23 24 25 26 
Temperature (°C) 

27 28 29 30 

Figure 4: DC Resistance Temperature Dependence (19) 

Below, Figure 5 shows an A123® prismatic module that consists of 25 pairs of 20Ah cells wired in 

series. The result is a module with a nominal voltage of 82.5 V and 3200 Wh of energy. 

Figure 5: A123® 25S2P Prismatic Module (19) 

Table 3 lists the collective properties of the A123® 20Ah cells in the form of a 25S2P module. 
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Table 3: 25S2P Module Properties (19) 

Weight 
Internal Resistance (DC) 
Internal Resistance (AC) 
Heat Capacity 

30.4 kg 
30 mO (@ 25 °C) 
16 mO (@ 25 °C) 

25,400 J/K 

Illustrated in Figure 6 is an exploded view of the A123® 25S2P module. For the purpose of 

simulation, the cells were modeled as a lumped thermal mass. The pressure plates, 

compression straps, bolts, circuit boards, and covers would only increase the complexity of the 

model. These Items are not in the path of conduction between the cells and the cold plate, 

therefore they are not considered necessary for the analysis 

Figure 6: A123® 25S2P Prismatic Module Exploded View (19) 

The simplified thermal mass (blue) model can be seen in Figure 7 with the components to be 

excluded from the simulation. Figure 8 shows the simplified thermal mass as it appears in the 

analysis. 
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Figure 7: Sol idWorks" Model of 25S2P Module Figure 8: Sol idWorks" Model of Thermal Mass 

To assist with heat dissipation, foil heat sinks are interleaved between every other cell. Figure 9 

and Figure 10 show the heat sink foil (in blue) attached the A123® 20Ah cells. The R-values 

given in Table 2 include the interleaved foil. 

Figure 9: Prismatic Cell w i t h 

Heat Sink Foil (19) 

Figure 10: Prismatic Cells w i t h Heat Sink Foil Interleaved Between Every 

Other Cell (19) 
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Energy Storage System 

The ESS design for the EcoEagles vehicle integrates four of the A123® 22S2P modules in series to 

yield a 12.9 kWh energy storage capacity at 330\/ nominal. The ESS will be positioned in the rear 

of the vehicle, under a removable floor, where the vehicles spare tire would normally be 

located. The battery modules are positioned as far forward as possible to maintain a safe 

distance from the vehicle's rear crush zone. Figure 11 shows a model of the ESS installed in the 

rear of the EcoEagles Vue. 

Figure 11: ESS Installed In Saturn® Vue® (21) 

A side view of the ESS is illustrated in Figure 12. 

Figure 12: Side View of ESS Installed In Saturn® Vue® (22) 
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The liquid cooled structural cold plate that will be used to manage the temperatures of the ESS 

needs to be comprised of a material that is strong, lightweight, and has a high thermal 

conductivity. Aluminum 6061 was chosen because it satisfies the aforementioned conditions 

plus it is a widely available and economical alloy of aluminum. The relevant thermal properties 

of Aluminum 6061 can be found below in Table 4. 

Table 4: Thermal Properties of Aluminum 6061 (23)(24) 

Density (kg/mA3) 
Specific Heat Capacity (J/kg-K) 
Thermal Conductivity (W/m-K) 

2700 
900 
180 



Electrical Modeling and Simulation 

In order to estimate the heat production of the modules in the ESS, simulations were performed 

using Argonne National Laboratory's Powertrain Simulation Analysis Toolkit (PSAT) (25). The 

simulated vehicle architecture is based on a Saturn® Vue® chassis with a 1.3Z. diesel engine, 

coupled to a two-mode transmission to drive the front wheels, while a 55kW electric motor 

drives the rear wheels. All of the electrical components including all the electric motors, are 

powered by an energy storage system model based on the A123® 25S2P battery pack design 

with four modules in series for a nominal ESS voltage of 330 V (26). 

Figure 13: EcoEagles Powertrain Configuration (14) 

Simulations were performed for three different drive cycles, including: city (UDDS Figure 14), 

highway (HWFET Figure 15), and a towing cycle that simulates towing 680 kg at a constant 

speed of 72 km/h for 20 minutes up a 3.5% grade. These simulations do not optimize energy 

use from the ESS and, consequently, represent worst-case conditions. Specifically, while the 

eventual control algorithms will distribute load unequally among the electric motors for higher 

efficiency, the PSAT models distribute loads equally (26). 
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60.0 

200 400 600 800 1000 1200 

Time, s 
Figure 14: FTP-72 Urban Dynamometer Driving Schedule (27) 

1400 

100 200 300 400 500 600 700 800 

Time, s 
Figure 15: EPA Highway Fuel Economy Cycle (28) 

The PSAT simulation data were output at 0.1 second intervals then analyzed using MATLAB® and 

Excel. The data consisted of current in amperes, and ESS potential in volts. The data was 

smoothed using boxcar averaging to obtain 0.5 second, 10 second, and 60 second data 

smoothing intervals. The RMS values were calculated for the smoothed data set and the 

maximum charge and discharge currents were found (26). 
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Table 5: PSAT ESS - Load Simulation Data (26) 

Time Intervals 0.5 Seconds 10 Seconds 60 Seconds 

City (UDDS) 
Current (A) 

RMS 
Max (discharge) 

Min (charge) 

Highway 
(HWFET) 

Current (A) 

RMS 

Max (discharge) 
Min (charge) 

Towing 
Current (A) 

RMS 
Max (discharge) 

Min (charge) 

41.5 
278 
-105 

38.9 

358 
-112 

65.6 
190 

-2.53 

33.0 
159 
-102 

32.2 

118 
-81.0 

65.8 
178 

-0.015 

20.8 
102 

-90.0 

24.0 

78.9 
-31.9 

66.7 
143 

-0.03 

The 60 sec towing current is the highest RMS current value. Therefore, the thermal 

management system will be evaluated on its ability to dissipate the heat produced from a 

continuous 66.7A discharge. 
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Heat Production in Battery Modules 

Heat is generated in a battery cell by entropy change from electrochemical reactions and Joule's 

effect (ohmic heating) caused by current transfer across internal resistances and over-potential. 

In some cases, heat generation occurs from overcharging a fully charged cell. The heat 

generation rate of a cell is calculated as follows (29): 

/ dE\ 
Q = -I(T—) + I(E-V) 

Where: 

Q = Heat generation rate (W) 

I = Current (A) 

T = Temperature (K) 

dE/dT = Temperature coefficient (V/K) 

E = Equilibrium cell voltage or open-circuit potential (V) 

V = Cell voltage or cell potential (V) 

At practical HEV charge/discharge rates, the first term is small compared to the second (ohmic 

heating) (29). Therefore, for this analysis only the ohmic heating is considered. The heat 

produced by each A123® battery pack is calculated using the 60 sec towing current from Table 5. 

Q = /2 f f = (66.7 A)2(27A mil) = 121 W 

The resistance used is the DC resistance of a 25S2P battery module at 28 °C because this is the 

highest temperature value available (Figure 4). At the time of the analysis, the estimation of the 

60 sec towing heat generation rate was 123 W. Since it is the goal of the cooling system to 

prevent the battery packs from overheating, the 2 W difference will only increase the margin of 

safety in the design and was not considered to be a significant enough change to re-run the 

analysis. 
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Software: SolidWorks® 2009 Flow Simulation 

SolidWorks® Flow Simulation was selected as the analysis software because of its simulation 

capabilities in addition to its 3-D CAD platform. The following physical capabilities of Flow 

Simulation make it possible to perform the thermal analysis of the ESS (30): 

External and internal fluid flows 

Steady-state and time-dependent fluid flows 

Compressible gas and incompressible fluid flows 

Subsonic, transonic, and supersonic gas flows 

Free, forced, and mixed convection 

Fluid flows with boundary layers, including wall roughness effects 

Laminar and turbulent fluid flows 

Heat conduction in fluid, solid with/without conjugate heat transfer and/or contact heat 

resistance between solids and/or radiation heat transfer between opaque solids, and/or 

volume (or surface) heat sources 

• Various types of thermal conductivity in solid medium 

• Real gases 

• Relative humidity in gases and mixtures of gases 

Flow Simulation is capable of predicting both laminar and turbulent flows (31). Laminar flows 

occur at low values of the Reynolds number, which is defined as the product of representative 

scales of velocity and length divided by the kinematic viscosity. When the Reynolds number 

exceeds a certain critical value, the flow becomes turbulent, i.e. the flow parameters start to 

fluctuate randomly (30). 

Flow Simulation, like other CFD software, solves the Navier-Stokes equations (32), which are 

formulations of mass, momentum and energy conservation laws for fluid flows (30). The 

equations are supplemented by fluid state equations defining the nature of the fluid, and by 
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enabling the user to use temperature dependent properties when available (33). Figure 16 and 

Figure 17 show the values for the specific heat of water and aluminum used in the analysis. 

Other material properties used in the thermal analysis, such as thermal conductivity, and 

density, do not vary adequately over the temperature range to warrant temperature dependent 

values. The thermal properties of the battery modules were specified by A123® as constant 

values. Therefore, temperature dependent values for its properties were not considered. 
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98335 

786.70 

590.05 

393.41 

196 76 

' on r 
2 ( 

J/{kQ*K) Specific heat 

K 
50 312.47 62293 933.40 

157.23 467.70 778.17 

Temperature 

Figure 16: Specific Heat of Aluminum (34) 
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Figure 17: Specific Heat of Water (35) 
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Flow Simulation allows one to predict simultaneous heat transfer in solids and fluids with energy 

exchange between them, also known as conjugate heat transfer. Heat transfer in fluids is 

described by the energy conservation equation (30): 

dpH dputH d p dp Qdu{ 

u2 

H = h + Y 

Where: 

p= Fluid density 

St= Mass distributed external force per unit mass 

QH= Heat source per unit volume 

Ty = Viscous shear stress tensor 

qt- Diffusive heat flux 

where the heat flux is defined by: 

(Ii ut\dh . 

^ = fe + ^fel = 1 ' 2 ' 3 -

Here the constant^ = 0.9, Pr is the Prandtl number, and h is the thermal enthalpy. The 

phenomenon of anisotropic heat conductivity in solid media is described by the following 

equation (30): 

dpe d / 3T\ 

IF=''dZA^teJ + QH 

where e is the specific internal energy, e = cT, c is specific heat, QH is specific heat release (or 

absorption) per unit volume, and X{ are the eigenvalues of the thermal conductivity tensor. It is 

supposed that the thermal conductivity tensor is diagonal in the considered coordinate system. 

For an isotropic medium Xi = A,2 = ^3 = ^ (30)-
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If a solid consists of several different materials attached to each other, then the thermal contact 

resistances between them (on their contact surfaces), specified in the SolidWorks® engineering 

database in the form of contact conductance (as mA2-K/W), can be taken into account when 

calculating the heat conduction in solids. As a result, a solid temperature step appears on the 

contact surfaces. In the same manner, i.e. as a thermal contact resistance, a very thin layer of 

another material between solids or on a solid in contact with fluid can be taken into account 

when calculating the heat conduction in solids, but it is specified by the material of this layer 

and thickness (30). 
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Assumptions 

The following assumptions were made for the thermal analysis of the ESS. The average high 

temperature in Yuma, Arizona in June is approximately 40 °C (36). It is assumed that the vehicle 

will not be stored in an air conditioned garage prior to testing. As a result, the ambient 

temperature and initial ESS temperature is assumed to be 40 °C (313.15 K). Also, the rate of 

heat transfer from the battery modules to the coolant is assumed to occur much faster than the 

rate of convection from the battery modules to the cabin air. While the goal is to minimize the 

operating temperature of the ESS, the system should support a heat transfer rate of at least 

492W when the ESS temperature reaches 50 °C (323.15 K). 

Analysis Assumptions: 

1. 492 W of heat distributed equally throughout the modules of the ESS (towing drive 

cycle). 

2. Each module is modeled as a homogeneous mass (thermal characteristics and heat 

production). 

3. Constant DC internal resistance of modules (no temperature dependence). 

4. Ambient air temperature is 40 °CwithO% humidity at 1 atm. 

5. The ESS is soaked to the ambient temperature at initialization. 

6. Heat is only transferred out of the system at the heat exchanger by convection. 

By assuming no heat is lost through radiation or through contact with ambient air ensures that 

the analysis provides a conservative estimate of the cooling system's performance. 

23 



CHAPTER 3: ANALYSIS 

This chapter covers the evaluation of the thermal management system's performance. A 

description of the design is also presented in this section. The implications of the results are 

addressed as they relate to design of ESS components. 

Cold Plate Design and Analysis 

The ESS cooling system is designed to allow the vehicle to operate normally up to an ambient 

temperature of 40 °C. From the towing drive cycle, the EcoEagles vehicle yields a PRMS of 123 W 

per pack. Therefore, the cooling system must dissipate 492 W total at temperatures as high as 

40 °C (313.15 K) without allowing the packs to reach 50 °C (313.15 K) at the hottest point. 

The cooling plate design includes an aluminum structural cooling plate with integrated coolant 

channels to support forced liquid cooling. The plate is fabricated with machined waterways 

which are then covered with an aluminum contact plate attached at the peripheral joints. 

Coolant is distributed in parallel to four U-shaped channels to minimize thermal differential 

between modules and from end to end along the modules. Other, more intricate, channel 

geometries were not used because of the difficulty associated with creating a satisfactory seal 

with the aluminum top plate. 

Figure 18 shows a simplified model of the battery module and cold plate assembly. Features on 

the periphery of the cold plate that negligibly affect the heat transfer to the coolant were 

removed from the model to reduce the memory requirements of the simulation. Such features 

are the mounting locations and stiffening ribs. Also, the four cooling channel are normally 

separated from the batteries by a 2.5 mm aluminum plate. In this simplified model, the cold 

plate is modeled as a single plate rather than two plates with a thermal contact surface. 
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Figure 18: Simplified CAD Model of Cold Plate and Battery Modules 

Basic properties of the cooling system can be found below in Table 6. Distilled water was 

selected for the coolant in extreme heat conditions because of its high specific heat compared 

to mixtures of glycol and water (37). Since thermal failure of the batteries is unlikely to occur at 

temperatures below the freezing point of water, an antifreeze mixture can be added to the 

coolant when freezing is a concern. 

Table 6: Cooling System Properties 

Coolant Specific Heat (Distilled Water) 
Desired Coolant Flow Rate 

PRMS 
A Coolant Temperature 

4.19 kl/kgK 
0.4 kg/s 
492 W 
0.29 K 

The coolant flow rate was selected based on the availability of flow rates for automotive coolant 

pumps as well as the desire to minimize the AT of the coolant. In order to absorb the heat from 

the ESS at the desired flow rate, the coolant temperature must increase by the amount 

calculated below: 
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492 Vc 
ATcooiant =-, r ~ = 0.29K 

M0*»/ f 1 (4 .19%, ) 

A confirmation of the 0.29 K temperature rise in the coolant as is passes through the cold plate 

can be seen in Figure 19. More specifically, Figure 19 shows flow traces of the coolant in the 

cold plate where the colors correspond to temperature. 

Figure 19: Flow Trace of Coolant through Cold Plate Showing Coolant Temperature 

Due to the thermal conductivity of the battery packs the maximum allowable average surface 

temperature of the cold plate is 44.5 °C (317.6 K) to ensure the battery packs are just below 

50 °C (323.15 K) in desert conditions. The following two illustrations (Figure 20 and Figure 21) 

show the temperature distribution of the cold plate's top surface. The difference between the 

hottest and coldest point is only 0.7 K. 
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Figure 20: Surface Temperature of Cold Plate (Top View) 

The black rectangles in Figure 20 represent the locations of the battery modules on the surface 

of the cold plate. Figure 21 illustrates the coolant temperature relative to the surface of the 

cold plate. 
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Figure 21: Surface Temperature of Cold Plate with Coolant Flow Traces (Bottom View) 
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Figure 22 depicts the temperature distribution in the center of the battery packs as seen from 

the front of the ESS. The top of the modules just reach 50 °C (323.15 K) at a PRMS of 492 W. 

Figure 22: Center Temperature of ESS (Front View) 

As can be seen in Figure 22 and Figure 23 the variations in the surface temperature of the cold 

plate have minimal effect on the uniformity of the temperature at the top of the battery 

modules. 

Figure 23: Surface Temperature of ESS 

Figure 24 illustrates the changes in pressure (AP) of the coolant throughout the cold plate. The 

change in pressure is used later to determine the total AP for the system. 
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Figure 24: Flow Trace Through Cold Plate Showing Coolant Pressure 
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Cold Plate Analysis Summary 

The analysis of the ESS was performed using SolidWorks® Flow Simulation. The model was 

simplified into five parts: four battery modules and the aluminum cold plate. The boundary 

conditions and heat sources are listed below and shown in Figure 25. 

Boundary Conditions and Heat Sources: 

1. Inlet mass flow of 0.4 kg/s at 43.15 °C (316.4 K) distributed to the four channels 

2. Outlet at environmental pressure (101,325 Po) 

3. Real wall condition on upper surface of cooling channels (50 micrometer roughness) 

4. 492 W of heat produced evenly among the four modules 

5. Adiabatic wall conditions on outer surfaces of the ESS 

Heat Generation Rate 

492W 

0.4 kg/s 

Environment Pressure 

101325 Pa 

Inlet Mass Flow 

Real Wall 

50 micrometer 

Figure 25: Cold Plate Boundary Conditions and Heat Sources 

Since the simulation's goal is to find the steady-state solution, the initial conditions are not vital 

to the accuracy of the simulation. Even so, the values were still considered and all materials in 

the model started at 40 °C. 
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The intricacy of the model can be estimated from the solver parameters in Table 7. To give the 

CPU time more relevance, the analysis was performed on a 64-bit platform with an Intel® Core™ 

2 Duo P8600 CPU at 2.40 GHz with 6 GB of RAM (38). 

Table 7: Cold Plate Solver Parameters 

Fluid Cells 
Solid Cells 
Partial Cells 
Iterations 
CPU Time (sec) 

139,553 
1,356,308 
307,509 

275 
12,231 

For steady-state problems solved by an iterative approach it is necessary to properly select the 

termination moment for the calculation. Termination of the calculation before initial condition 

induced transients have damped down sufficiently can result in errors in the results while using 

an excessive number of iterations can waste computational resources. To optimize the 

termination point for the calculation and to determine more accurately the physical parameters 

of interest which oscillate in iterations (average temperature of a surface or static pressure) the 

user may specify physical parameters of interest as the calculation goals (39). The selected 

parameters of interest can be found in Table 8. 

Table 8: Cold Plate Solver Goal Parameters 

Goal Name 

Average Exit Temperature of Coolant 
Bulk Average Exit Temperature of Coolant 
Heat Flux Through Cold Plate Surface 
Static Pressure of Coolant at Entrance 
Average Temperature of A123® Module Tops 
Average Surface Temperature of Cold Plate 

Value 

316.704 K 
316.695 K 

1070.24 W/mA2 
105,205 Po 
323.116 K 
317.575 K 

Delta 

0.0011217 
0.0011241 
0.0048107 

76.1714 
0.0029756 
0.0033657 

Achieved at 
Iteration # 

244 
244 
244 
275 
244 
244 
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Fluid Path Design and Analysis 

The acceptable temperature range of the ESS is much lower than all of the other liquid cooled 

systems on the EcoEagles Vue. Consequently, the ESS coolant loop must me isolated from all 

other cooling systems on the vehicle. Figure 26 shows the coolant paths on the EcoEagles 

vehicle. One option for the placement of the ESS heat exchanger would be to position it in front 

of the Internal Combustion Engine (ICE) heat exchanger and the Transmission Power Inverter 

Module (TPIM) heat exchanger. However, not enough information was known about the air 

flow rates over the TPIM and ICE heat exchangers to validate the design. Space limitations as 

well as high ambient heat in the front of the vehicle also make such a design decision 

unattractive. 
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Figure 26: Coolant Paths (40) 
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Instead, a design that could operate independently of the other heat exchangers is more 

desirable. More specifically, a design that can adequately cool the ESS at all vehicle speeds is 

one which the required airflow rate is low enough so that fans can supply it. The heat 

exchanger must also be able to transfer the 492W produced by the ESS to the ambient air at a 

very low temperature differential. Figure 27 shows the selected heat exchanger for the ESS 

thermal management system. 

Figure 27: Fluidyne'5 DB-30618 Heat Exchanger (533 x 150 x 76 mm) (41) 

Due to large memory requirements associated with meshing intricate structures, a simplified 

version of the heat exchanger was modeled to reduce the computational burden. It is assumed 

that if the simplified heat exchanger satisfies the design requirements that the actual heat 

exchanger (with a larger surface area to volume ratio) will exceed the performance of the 

simplified model. The simplified model consists of a single aluminum tube with 100 vertical fins 

attached to it. 

Figure 28: Fluidyne0 Heat Exchanger Simplified CAD Model 
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More detailed properties of the heat exchanger model can be found in Table 9. 

Table 9: Fluidyne® Heat Exchanger Model Properties 

Material 
Tube Outside Dimension 
Wall Thickness 
Tube Spacing 
Fin Thickness 
Number of Fins 

Aluminum 6061 
3.2 x 76.2 x445 mm 

0.5 mm 
9.9 mm 
0.4 mm 

100 

To ensure sufficient airflow is present across the heat exchanger regardless of vehicle speed, 

electric fans were selected to force the airflow. SPAL produces a fan that fits the height of the 

heat exchanger core. Three of these fans will be used across the width of the heat exchanger. 

Figure 29 illustrates the major dimensions of the SPAL VA67-A101-83A fans selected. 

Figure 29: SPAL VA67-A101-83A Fan (42) 

To determine the flow rate across the heat exchanger, it is necessary to determine the pressure 

loss as air flows over the exchanger. Table 10 compares the fan's flow rate to the static 

pressure. 
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Table 10: SPAL Fan Airflow at 13V (42) 

Static Pressure 
(Pa) 

0 
49 
74 
98 
123 
147 
17.5 
172 
245 
294 
343 

Airflow 
(mA3/h) 

550 
500 
470 
440 
410 
380 
350 
300 
190 
100 
0 

Current 
Input(A) 

3.9 
4.2 
4.4 
4.4 
4.6 
4.6 
4.9 
4.9 
5.6 
5.8 
6.2 

The SPAL fans are rated at 500 m3/h at 49 Pa. As can be seen in Figure 30, the pressure 

change across the heat exchanger is no more than 20 Pa. 

Figure 30: Fluid Pressure along Heat Exchanger Core Centerline 

For the analysis, 6 m/s of air flow across the heat exchanger was selected to dissipate the heat 

from the ESS because this value is less than 1500 m3/h. The following calculation verifies that 

three SPAL fans provide the desired air flow over the heat exchanger. 

Volumetric Flow Rateair = (0.064 m2)(6m/s)(36005/ / i r) = 1392m7/ i r 

The corresponding mass flow rate is as follows. 

Mass Flow Rateair = (0.064 m2)(6m / s)( 1.185kg/ 3 = 0A6kg/s 
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With 0.46 kg/s of air flowing over the heat exchanger, the required temperature rise to 

dissipate 492 W is calculated as follows. 

&Tair = 
492 Vc 

0.46 ^ / s ) ( 1 . 0 1 % , ) 

= 1.06 K 

The results shown in Figure 31 confirms the 1.06 K temperature rise as the air passes over the 

heat exchanger. 

Figure 31: Flow Trace over Heat Exchanger Core Showing Air Temperature 

The temperature distribution on the surface of the heat exchanger is shown in Figure 32. The 

colder blue region is the downstream side of the heat exchanger whereas the yellow region is 

the upstream side. 
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Figure 32: Surface Temperature of Heat Exchanger Core 

A section view along the centerline of the heat exchanger tube as seen from the top illustrates 

the temperature of both the air and coolant (Figure 33). The coolant flows from right to left in 

the illustration and the top of the illustration is the upstream side of the heat exchanger. 

Figure 33: Fluid Temperature along Heat Exchanger Core Centerline 
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Heat Exchanger Analysis Summary 

SolidWorks® Flow Simulation was used for the analysis of the heat exchanger similarly to the 

analysis of the cold plate. Unlike the cold plate model, the heat exchanger model was able to be 

simplified into a single part. The boundary conditions of the model are shown below. 

Boundary Conditions: 

1. Inlet mass flow rate of 0.033 kg/s at 42.5 °C (316.65 K) 

2. Outlet at environmental pressure (101,325 Pa) 

3. Ambient airflow of 6 m/s at 101,325 Pa and 40 °C (313.15 K) 

The inlet mass flow rate is l/12th of the system's total flow rate because the modeled heat 

exchanger is l/12th (one row) of the actual heat exchanger. Also, all materials in the model had 

an initial temperature of 40 °C (313.15 K). Details of the analysis can be found in Table 11. 

Table 11: Heat Exchanger Solver Parameters 

Fluid Cells 
Solid Cells 
Partial Cells 
Iterations 
CPU Time (sec) 

327,893 
428 

227,035 
318 

30,299 

The goals of the heat exchanger analysis are shown in Table 12. The outlet temperature and 

inlet pressure were the primary parameters of interest. 

Table 12: Heat Exchanger Solver Goal Parameters 

Goal Name 

Average Exit Temperature of Coolant 
Average Entrance Static Pressure of Coolant 

Value 

316.408 K 
101,356 Pa 

Delta 

0.0041289 
2.40878 

Achieved at 
Iteration # 

318 
165 
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Coolant Pressure Calculations 

The determination of the pressure losses in the coolant path is necessary to ensure a given 

pump can produce the desired coolant flow rate. The following equations were used to 

determine the pressure drop across the cooling system (43). 

Internal forces VavgD pVavgD 

Viscous forces v p 

For flow through non circular pipes, the Reynolds number is based on the hydraulic diameter Dh 

defined as 

AA 
Hydraulic diameter: Dh = — -

V 

Where Ac is the cross-sectional area of the pipe andp is its wetted perimeter. The hydraulic 

diameter is defined such that it reduces to ordinary diameter D for circular pipes, 

4AC A{nD2/A) 

Circular pipes: Dh - — - = = D 

p nD 

For rectangular ducts, 

\AC lab 
Rectangular duct: Dh = • 

p a + b 

Where a and b are the height and width of the duct respectively. 

Pressure Loss: &p, = f— avg 

1 J D 2 

Where pVavg / 2 is the dynamic pressure and / is the Darcy friction factor, 

f_ 8 ^ _64 
Darcy friction factor: / — 2

 — D~ 
PVavg Ke 

The pressure and flow properties of the cooling system can be found in Table 13. 
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Table 13: Coolant Path Properties 

Cold Plate Channel Cross-section 
Cold Plate Channel Length 
Channel Average Velocity 
Channel Hydraulic Diameter 
Channel Re 
Channel AP 
Connective Tubing Diameter 
Connective Tubing Length 
Average Velocity in Tubing 
Tubing Re 
Tubing AP 

1 in x 0.15 in (0.0254 m x 0.0038 m) 
32 in (0.81 m) 

1.08 m/s 
0.0066 m 

10866 
421 Pa (0.061 psi) 
0.75 in (0.019 m) 

25 ft (7.62 m) 
1.45 m/s 
42229 

645 Pa (0.094 psi) 

Figure 34 indicates a 6.90 kPa (1 psi) pressure drop across the Fluidyne® DB-30618 heat 

exchanger. This pressure drop is using oil (higher viscosity than water) and a flow rate of 

0.88 l/s (14 GPM) which is greater than twice the flow rate required. Therefore, it is assumed 

that the change in pressure across the heat exchanger is less than 6.90 kPa. 

FLUIDYNE ThemvHx Oil Coolers 
Al 14 gpm, Toflirt = 225"F, Air Tamp = 1O0T 

12CO00 
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1OCOO0 

90OO0 
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20OD0 
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Air Speed (mph) 

Figure 34: Fluidyne® Heat Exchanger Performance (44) 
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In order to give the design flexibility in terms of rerouting tubing and changing flow rates, a 

Dedenbear pump was selected that can provide the required flow rate at pressure much higher 

than actually seen by the system (Figure 35). 

Figure 35: Dedenbear WP3 Water Pump (45) 

The performance specifications of the Dedenbear WP3 water pump can be seen below in Table 

14. 

Table 14: Dedenbear WP3 Water Pump Specifications (45) 

Voltage 
Current 
Flow Rate 
Inlet/Outlet Diameter 

12 V 
3A 

0.4 kg/s @ 51.7 kPa 
0.75 in 

The pressure drop across the heat exchanger is at most 6.90 kPa when flowing motor oil at 

0.88 l/s so it is assumed that the pressure drop is less than 6.90 kPa, but for pump sizing 

purposes, 6.9 kPa will be used in the estimates. Therefore the total pressure drop in the cooling 

system is 6.90 kPa + 0.65 kPa + 0.44 kPa = 7.99 kPa. The pump selected is capable of producing 

a flow rate of 0.4 kg/s at pressures as high as 51.7 kPa. 
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Sensitivity Analysis 

Of the parameters affecting the performance of the thermal management system, the flow 

rates of the coolant and air have the greatest impact on the design (46). As can be seen in 

Figure 36, the water flow rate was intentionally selected so that is was greater than the point of 

diminishing return with respect to change in temperature for a given power. The flow rate of 

0.4 kg/s (6.3 GPM) was selected in order to reduce the temperature variations in the cold plate 

surface by minimizing the temperature changes in the coolant. This flow rate is also justified by 

the availability of automotive grade coolant pumps that exceed the desired flow rate. 

Table 15: Fluid Flow Rates vs. AT 

Parameter 
Air Flow Rate 

Water Flow Rate 
50% EGW 

Diminishing Return Above 
1000 m3/s 

0.13 l/s 
0.14 l/s 

The air flow rate over the heat exchanger was selected to allow the system to operated close to 

the thermal limit of the batteries. This also caused the air flow rate to be higher than point of 

diminishing return. The air flow rate required in extreme temperatures, approximately 

1400 m3/s (820 CFM), is much greater than that required for a few degrees cooler. Figure 38 

illustrates the effectiveness of a flow rate at a given heat production rate. Even though the flow 

rate is higher than the most effective rate, it is not difficult to produce with fans. 

It is due to the packaging requirements and operating temperature range of the ESS that the 

system's flow rates must be greater than optimal for the system to function. If the battery 

modules were cooled from the sides (lower R-value than from the bottom) or the temperature 

margin was increased, then the flow rates could be reduced so that the heat transfer occurs at a 

more efficient temperature differential. 
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Figure 36: Water Temperature Change Chart (47) 
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Figure 37: 50% Ethylene Glycol and Water Temperature Change Chart (47) 
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CHAPTER 4: CONCLUSION 

This chapter provides a summary of the research presented in the previous chapters. It also 

provides a description of the results as well as their relation to the design of the EcoEagles Vue. 

Summary of Analysis 

The thermal management of batteries is a vital aspect of safe and efficient operation of HEVs. 

Assuming that the ESS is electrically isolated properly, thermal failure of the batteries poses the 

greatest risk. Reducing the hazards associated with Li-Ion batteries is crucial to their commercial 

implementation in HEVs. Considering the effects of temperature on batteries, one can realize 

the need for establishing more accurate relationships between current and battery temperature 

distribution. 

Several design/analysis iterations were performed before an appropriately sized thermal 

management system was achieved. The analysis started with the modeling of the cold plate and 

battery modules. Once temperature distribution was verified to be uniform, the inlet coolant 

temperature was increased until the tops of the battery modules were slightly below 50 °C. 

Holding the temperature of the batteries slightly below their limit enables the heat exchanger to 

operate at a larger temperature differential. 

The next step was to use the data from the cold plate analysis to size a heat exchanger for the 

system. The analysis of the heat exchanger proved to be the most difficult because it must 

operate at very constricted temperature margins. Many iterations were undertaken to balance 

performance and packagability. The initial designs were found to be undersized after analysis. 

The difficulty in sizing the heat exchanger can be attributed to the lack of information available 
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from the manufacturers. However, the data gained from the analysis of the undersized heat 

exchangers was useful in the selection of the current heat exchanger. 

Finally, the pressure losses seen in the cold plate and heat exchanger were used to select a 

coolant pump. The greatest challenge with the analysis was the latency in determining whether 

a simulation would produce a good result once it had been initialized. This can cause serious 

time delays when some of the failed analyses ran for over 32 hours. Fortunately, the delays did 

not cause the analysis to fall behind schedule. 

Variations in Ambient Temperature 

The results of the analysis can approximated as linear with respect to the ambient air 

temperature. Since radiation is assumed not to contribute significantly to the heat transfer from 

the system, the remaining heat transfer mechanisms (conduction and convection) are 

dependent on the relative temperature, not absolute. Therefore, if the ambient temperature 

were to drop, the peak battery temperature will drop by approximately the same amount. 

There are, however, temperature dependent properties, such as DC resistance of the cells, that 

affect the results of the analysis at different temperatures. These changes are relatively small 

over the operating range of the vehicle and are safe to neglect as long as this approximation is 

not used to validate ambient temperatures over 40 °C. 
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ESS Assembly 

The final ESS design consists of an arrangement of four A123® 25S2P modules attached to a 

structural aluminum cooling plate shown in Figure 39. In the event that a battery cell overheats, 

the ESS in sealed and vented to the outside in order to prevent the gasses from being released 

in the cabin. In the assembly there are several modules that control the flow of current through 

the batteries. These modules can also be used to regulate the current as the temperature of the 

batteries rise to prevent overheating. 

Figure 39: Exploded ESS Component Assembly (26) 
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The finished structural cold plate can be seen below in Figure 40 post machining. The top plate 

will be attached to the structural cold plate to seal the coolant path. 

Figure 40: Finished Structural Cold Plate 

Plastic mock-ups of the A123® 25S2P modules have been created (Figure 41) to allow the 

EcoEagles to pre-assemble all other components of the ESS without the danger of electric shock. 

Figure 4 1 : Finished Structural Cold Plate w i th A123 25S2P Modu le Mock Ups 
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A CAD rendering of the final ESS assembly can be seen in Figure 42 

Figure 42: ESS Assembly (26) 

Figure 43 shows the location of the battery pack in relation to the rear crush zone. The pack is 

bolted to the rear frame rails of the Vue through elastomeric vibration isolators. 

Disconnect 
Enclosure 

Crush Zone 
Figure 43: Battery Pack Location Outside of Rear Crush Zone (26) 
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The major dimension of the ESS can be seen in Figure 44. 

854 .4 
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985.4 
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Figure 44: Major Dimensions of ESS in mm (26) 

System Limitations 

The system is capable of maintaining safe and uniform battery temperature at ambient 

temperatures up to 40 °C and 66.7 ARMS. If the ambient temperature and/or current rises 

above the previously noted values there is a potential for the batteries to reach an unsafe 

temperature. Since either of these two events are likely to occur, it becomes necessary to 

implement a control strategy in vehicle's control system that regulates the available current as a 

function of ESS temperature. Such a control strategy would prevent a catastrophic battery 

failure in extreme operating conditions. 
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CHAPTER 5: RECOMMENDATIONS 

Throughout the course of this study, several observations were made that could be extremely 

beneficial to the future study of this subject. This chapter discusses these observations as well 

as suggestions for a more in-depth analysis. 

Analysis Limitations 

The analysis in this research was limited by several factors relating to computational capabilities 

and available information. The computations were limited by the amount of Random Access 

Memory available (RAM). The computer used for the analysis had 6 GB of RAM available. The 

operating system and background tasks left 5 GB of the 6 GB for use by the Flow Simulation 

software. For intricate analyses', the computational time increased exponentially once the RAM 

reached 100% usage. Therefore, the models were simplified, in terms of both geometry and 

mesh refinement, so that the simulation did not utilize all of the available RAM. Currently there 

are computers available with >16 GB of ram, however, the budget of this study does not permit 

such a platform to be acquired (48). 

The lack of data available from manufactures of heat exchangers also presented a problem 

when selecting a heat exchanger for the thermal management system. A large majority of the 

suppliers of heat exchangers target automotive enthusiasts. These enthusiasts tend to put forth 

very little engineering analysis in the selection of a heat exchanger for their application. 

Therefore, the market is saturated with qualitative descriptions of products rather than useful 

quantitative data. This forces one to perform additional analysis to determine the performance 

of the heat exchanger. The thin walls and intricate geometry make such an analysis difficult and 

force the designer to make significant assumptions and simplifications to reach a feasible 

analysis. 
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Future Research: Time Dependent Analysis 

The analysis presented in the previous chapters represents a steady state case at a constant 

ambient temperature and a constant current. It may be beneficial to perform an analysis where 

the current and therefore ohmic heat production is time dependent. This could be done using 

data from the PSAT simulation mentioned in chapter 2. The results of the simulation would 

yield information on duty cycle durations for which the ESS can operate above the RMS towing 

current without overheating. 

Future Research: Heat Soaked ESS 

The ESS is located in the rear of the vehicle compartment underneath a removable floor. Since 

the battery is in a closed space, the lack of air circulation may present heating problems on 

hot/sunny days if the vehicle is parked outside. Some solutions to this potential problem may 

be tinting the windows of the vehicle to prevent a greenhouse effect, running the thermal 

management system before drawing current from the ESS, or providing ventilation to the ESS 

compartment. 
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