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ABSTRACT 

Author: Javier Fuentes 

Title: Structural Design of a Crashworthy Energy Absorbing Passenger 
Seat For a Large Transport Aircraft Using Large Displacement, 
Nonlinear Material Finite Element Analysis 
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Federal Aviation Regulations certification criteria for transport aircraft seats require 

performing dynamic tests using anthropomorphic test dummies. Floor decelerations of 

the tests are 16g forward with the seat tracks misaligned by up to 10 degrees and 14g 

downward at a pitch angle of 30 degrees. In this project the dynamic response of the 

passenger/seat/restraint system is modeled using nonlinear finite element analysis. The 

interference between a dummy model and the seat is modeled using a contact interaction 

algorithm. This algorithm did not converge and multiple-point constraints were used to 

transfer the dummy's inertia load. This approach was validated with the software SOM-

TA and then used to predict the response of a high energy absorption seat design 

subjected to the floor deceleration as stated in the FAR. The seat withstood the dynamic 

loading in both cases. The seat showed poor energy absorption characteristics when 

subjected to the 14g downward floor deceleration. 
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1. INTRODUCTION 

1.1. Overview 

Analyses of transport aircraft accidents that occurred between 1970 and 1985 

showed that failure of seats and other cabin furnishings occurred frequently in survivable 

accidents1. A survivable accident is "an accident in which the forces transmitted to the 

occupant through his seat and restraint system do not exceed the limits of human 

tolerance to abrupt accelerations and in which the structure in the occupant's immediate 

environment remains substantially intact to the extent that a livable volume is provided 

for the occupant throughout the crash event." The failure of the seat/restraint system was 

determined as the cause of a great number of fatalities. Most of the failures occurred in 

the seat legs and their attachment points at the tracks. This proved that seat/restraint 

systems did not provide adequate protection to the passenger in survivable accidents and 

minimum design criteria established by the Federal Aviation Regulations did not 

adequately reflect survivable crash events . At the time, the structural loads the seat had 

to withstand for certification were 9g forward, 3g sideward, 2g upward and 6g 

downward. These static requirements were revised in 1988 and dynamic test standards 

were introduced as part of the certification requirement in part 25.562 of the Federal 

Aviation Regulations. Dynamic tests require the demonstration of both occupant 

response and seat/restraint system structural performance3 One test condition consists of 

a forward seat test with 10 degrees of yaw and a minimum deceleration of 16g. The seat 

tracks must be misaligned in the roll and pitch axes prior to testing to simulate floor 
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warping effects. The second test is performed with a forward pitch angle of 30 degrees 

and a minimum deceleration of 14g. These tests try to simulate the seats ability to 

withstand dynamic loading under typical crash scenario while preventing or minimizing 

serious injuries to the occupant. Head acceleration, pelvis and vertebral column loads are 

parameters used to evaluate passenger injuries. 

The seat/restraint system serves as the link between the passenger and the aircraft 

floor. Its function is to support and restrain the passengers. During a crash, the 

seat/restraint system is the structural component that has one of the most direct effects on 

the passenger's survivability4 It represents the interface between the passenger and the 

airframe through which the crash inertia loads are transmitted. In survivable crash 

environments, the seat/restraint system must keep the passenger restrained, reduce 

injuries and provide sufficient opportunity to egress after the crash4 To accomplish this, 

the seat must carry the inertia loads of the passenger while remaining attached to the 

floor tracks, reduce the hazards of impact with other cabin furnishing (especially the seat 

in front) and leave enough volume to allow a successful evacuation. 

When 'semi-rigid', nonyielding seats are subjected to the dynamic tests described 

above the loads induced in the seat structure and tracks exceed their failure limit loads5 

Seats must be designed to absorb some of the crash energy. Energy-absorbing 

mechanisms can efficiently limit loads within the seat structure to levels below failure. 

Energy-absorbing seats use structural members that can undergo large plastic 

deformations before failure. These members are called energy-absorbers and are usually 
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placed in the seat legs. Energy absorbing seats help reduce accelerations transmitted to 

the passenger, which translates directly into greater chance of survivability. 

Current regulations require seats to undergo dynamic tests to achieve 

certification. Seats need to be manufactured without knowing a priori whether they will 

pass these tests and how well they will perform under dynamic conditions. Although 

analytical methods are contemplated in the regulation, they can only be considered as a 

means of certification when they can accurately predict failure mechanisms of the 

seat/restraint system and performance of the passenger for a variety of seat designs 

This study uses analytical tools to predict seat/restraint system performance when 

subjected to dynamic loading, as established in the emergency landing conditions section 

of the Federal Aviation Regulations. A Finite Element Analysis program (ABAQUS) is 

used to model this problem. The response of the passenger and seat/restraint system 

requires that both material and geometric nonlinear effects are included in the solution. 

Output from a computer program developed by the FAA is used to compare and validate 

the seat dynamic response predicted by a model built in ABAQUS. 

The objective of this thesis is to design an energy-absorbing seat that can 

withstand the dynamic tests prescribed by the regulations and in the process assess 

ABAQUS capabilities as a finite element analytical tool to model nonlinear dynamic 

problems of this nature as compared to the program developed by the FAA. 

Energy-absorbing seats have been developed by commercial seat manufacturers. 

Information on these seats is not available due to the fact that it is proprietary and 

confidential. Although there have been previous energy absorption seat designs the 
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purpose of this thesis is to develop a particular design that can successfully protect the 

passenger in the event of a survivable crash. 

1.2. Background 

Several mathematical models have been developed to analyze the response of 

human bodies to severe acceleration loads experienced during vehicle crashes. The 

complexity of these models range from a one degree of freedom system to predict injury 

in the vertebral column to three dimensional 40 degree of freedom models of a 

passenger. Most of the research in this area has been conducted by the automotive 

industry. Complex mathematical models of passengers have been developed to analyze 

their response to impact conditions. They are used as design tools to evaluate automobile 

interior designs and to predict the effects of restraint systems on their occupants. These 

models do not analyze the response of the seat because, in an automobile crash, the 

design of the seat has minimal effect on the occupant survivability. 

SOM-TA (Seat/Occupant Model-Transport Aircraft) is a computer program 

created to aid the design and analysis of crashworthy transport aircraft seats and restraint 

systems. It was developed in 1986 by Simula, Inc., under a multi-million dollar contract 

with the FAA. It simulates the performance of three-dimensional passenger/seat models 

under crash conditions. Several computer programs were developed prior to this one to 

analyze occupant responses but are much more simplistic than SOM-TA. For this reason 

the discussion is limited to SOM-TA. 
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SOM-TA is based on a similar program developed by Simula for use with general 

aviation aircraft seats, called SOM-LA (Seat/Occupant Model Light Aircraft). This 

program was modified to model up to three passengers and define more complex 

transport aircraft seat structures. The purpose of this program was to provide seat 

manufacturers with an analytical tool to predict passenger and seat/restraint systems 

response under any given set of aircraft impact conditions. 

The program uses finite element methods to model the aircraft seat structure and 

passenger responses. SOM-TA has the capability to model large displacements, nonlinear 

material behavior and local buckling Three dimensional beam elements are the only 

elements available to define the seat structure. SOM-TA was designed to minimize the 

volume of input data, particularly, passenger model characteristics. It has a built-in 

database of passenger models. 

The passenger can be modeled in two or three dimensions. The three-dimensional 

mathematical model is made up of twelve rigid elements. For cases where symmetrical 

response is expected the option of a two-dimensional model is provided to achieve an 

economical program solution This model consists of 9 rigid elements and two beam 

elements to model the vertebral column and neck. These beam elements provide a 

measure of vertebral and neck loading to compare against an injury criteria. Interface 

between the seat and the occupant is provided through seat cushions and the restraint 

system. External forces are applied to the occupant by the seat cushions, floor and 

restraint systems. SOM-TA has the capability of modeling contact forces between the 

passenger and the seat cushion and floor. 
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SOM-TA provides time-history output of passenger 'segment' displacements, 

restraint system loads and contact forces at cushions. It also provides output of stresses in 

all the structural elements and loads at attachment points. 

Dynamic tests of transport aircraft seats conducted in the former Civil 

Aeromedical Institute in 1983 helped the validation of the program7 The test of a 

production seat modified by incorporating energy-absorbers was used to validate SOM-

TA. 

1.3. FAR Requirements 

In order for a transport aircraft seat to be certified as flightworthy, it must fulfill 

the FAR requirement set forth in 14 CFR 25.562(b) - Emergency Landing Dynamic 

Conditions: 

"Each seat type design approved for crew or passenger occupancy during 
takeoff and landing must successfully complete dynamic tests or be 
demonstrated by rational analysis based on dynamic tests of a similar type 
seat, in accordance with each of the following emergency landing 
conditions. The test must be conducted with an occupant simulated by a 
170-pound anthropomorphic test dummy, as defined by 49 CFR part 572, 
subpart B, or its equivalent, sitting in the normal upright position. 

(1) A change in downward vertical velocity of not less than 35 feet 
per second, with the airplane's longitudinal axis canted downward 30 
degrees with respect to the horizontal plane and with the wings level. Peak 
floor deceleration must occur in not more than 0.08 seconds after impact 
and must reach a minimum of 14g. 

(2) A change in forward longitudinal velocity of not less than 44 
feet per second, with the airplane's longitudinal axis horizontal and yawed 
10 degrees either right or left, whichever would cause the greatest 
likelihood of the upper torso restraint system (where installed) moving off 
the occupant's shoulder, and with the wings level. Peak floor deceleration 
must occur in not more than 0.09 seconds after impact and must reach a 
minimum of 16g. Where floor rails or floor fittings are used to attach the 
seating devices to the test fixture, the rails or fittings must be misaligned 
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with respect to the adjacent set of rails or fittings by at least 10 degrees 
vertically (i.e., out of parallel) with one rolled 10 degrees" 
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2. FINITE ELEMENT METHOD 

2.1. Static Analysis 

Structural finite element analysis is a numerical technique used to solve complex 

structural problems that would otherwise be unsolvable using classical, closed-form, 

analytical methods. The behavior of a structure or continua is described by the stress-

o 

strain, equilibrium and compatibility (partial differential) equations The finite element 

method provides an approximate solution to these equations by discretizing or dividing 

the structure into subregions, i.e., elements, and expressing each element's state variables 

(displacement or stress) in terms of assumed shape functions. These functions are usually 

chosen so that the state variables or their derivatives are continuous and single valued 

across adjoining element boundaries Generally, polynomials have proven to provide the 

best and easiest representation. The shape functions, also called interpolating functions, 

provide approximate solutions and are defined in terms of the values of the state 

variables at specific points called nodes. Degrees of freedom (dof) are the nodal variables 

(unknowns) or parameters assigned to an element. Nodes are usually defined at the 

boundaries of the element and describe the shape of the element. Adjacent elements share 

common nodes. The finite element method solves for the values of the state variables at 

the nodes for a given set of initial conditions and loading. Using these values and the 

interpolation functions the state variable can be defined throughout the whole structure. 

Most commercial Finite Element programs are displacement based, i.e., they 

express each elements behavior in terms of a piecewise continuous displacement field. 
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Each displacement field is defined in terms of the nodal dof associated with that element. 

The dof associated with each element are translation and rotation with respect to the X, Y 

and Z coordinate system. Using the Principle of Minimum Potential Energy, they provide 

the solution to the equations at the nodal dof. The stresses and strains in each element are 

computed from the displacements of the nodes, which are interpolated over the element. 

The degree of approximation of the solution depends on the number of dof of the model, 

which is set by the number of nodes and elements used. The higher the number of dof, 

the higher the degree of approximation at the expense of increased computer time and 

storage requirements. Excessive dof may introduce round-off errors due to the extreme 

number of calculations required for the solution. 

The generalized Hooke's Law states that the stress at a point is expressed as a 

linear function of the strain within the linear range, as follows: 

{°} = [£]{e} [1] 

where {a} is the stress vector, {s} is the strain vector and [E] is a 6x6 matrix that 

represents the material dependent elastic constants. For an homogeneous and isotropic 

material, [E] can be expressed in terms of two variables9, Young's Modulus E and 

Poisson's ratio v. For a three dimensional state of stress, the isotropic stress-strain 

relationship can be expressed as: 
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where v = Poisson's ratio and 

c = 
(l + v)( l -2v) 

E 
G = 

2(1+v) 

The equilibrium equations of a continuum are three partial differential equations. 

Every infinitesimal element in a structure must satisfy these equations. For a three 

dimensional state of stress, the equations are: 

do ck„, dx 
"• + — 2 - + ^ = - + ft = 0 dx dy 

do „ dx, 
dz 

dx. 
•y. + n»L + il^ + b=o 

dy dx dz 

da, dx„ dx 

[3] 

2 +^-+~—^- + h =0 
& dx: dy 

where the b's are the body force densities. 
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The compatibility equations assert that the displacement field is continuous and 

single valued9 These equations are relations among the strains if the displacement field 

is compatible. Physically, the compatibility equations enforce the continuity of the 

structure; no voids, cracks, or overlaps are created in the deformed body if these were not 

existent prior to deformation8 The compatibility equations, written in terms of the state 

of strain, are: 

p J-c _ p _ p = 0 
xxtyz yz,xx ** xz,xy ^*xy,xz 

8 +8 - 8 - 8 = 0 
yy,xz xz,yy xy,yz yz,xy 

8 +8 - 8 - 8 = 0 
zz,xy xytZ2 yz,x2 xz,y2 r . , 

[4] 
2s - s - s = 0 

xy,xy xx,yy yy,xx 

28 - 8 - 8 = 0 
y2ty2 yy,22 ^Z2,yy 

28 - 8 - 8 = 0 
XZtX2 2Z,XX XX,22 

The compatibility condition is automatically satisfied by the displacement based finite 

element method. 

The static problem of elastic solids is governed by 15 equations: 3 equilibrium, 6 

strain-displacements and 6 stress-strain equations. The finite element method provides a 

piecewise continuous solution to the partial differential equations. The solution is 

continuous only within each elements boundaries partially satisfying the equilibrium 

equations The equilibrium equations are only satisfied at the nodes. The method solves 

for the values of the dof at the nodes. As the number of nodes increase the solution 

becomes more exact. In theory, if the number of nodes approaches infinity the 

equilibrium equations are completely satisfied and the solution becomes exact. 
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Realistically, however, too many nodes may reduce the accuracy due to the accumulated 

round-off errors. 

For an elastic structure subjected to static loading, the applied forces are related to 

the resulting displacement field by 

[K]{D] = {R} [5] 

where [K] is the global stiffness matrix, {D} is the column displacement vector, and {R} 

is the applied loads column vector. The stiffness matrix is an NxN symmetric matrix, 

where N is the number of dof. If A is the number of nodes and B is the number of dof per 

node, N=AxB. Vectors {D} and {R} have N columns. Each row in {D} and {R} 

corresponds to a possible displacement or force in the particular dof. Each dof has an 

associated term in the stiffness matrix. 

The global stiffness matrix [K] is the summation of the local stiffness matrices [k] 

of all the elements that form the structure, i.e., [K]=Z[k]. Each element contributes to the 

stiffness of the structure in one or several specific dof. Each term Kij of the global 

stiffness matrix [K] relates dof i in the global displacement column vector to dof j in the 

global load vector. A load applied to the ith dof will affect the deformation at the jth dof 

and viceversa. 

To solve equation [5], applied forces and some displacements must be known. 

The known displacements are those of the supports of the structure (constrained dof), 

required to prevent rigid body motion. Equation [5] can be rearranged as: 
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Ku Kn 

_A21 K22 

where {Dx} is the column vector of unknown displacements, {Dc} is the column vector 

of known displacements, {Rx} is the column vector of applied loads and {R^} is the 

column vector of unknown loads. Equation [6] can be rearranged as: 

[Ku]{Dx} + [Kn]{Dc} = {Rx} [7a] 

[K2l]{Dx} + [K22]{Dc}={Rc] [7b] 

Solving for {Dx} in equation [7a] yields 

{Dx} = [Ku]-\{Rc}-[Kn]{Dc}) [8] 

Unknown loads can be found from equation [7b] after substitution of {Dx}. The strain of 

each element can be found using the element strain-displacement relationship. Using 

these strains and the stress-strain relationship the stresses at the nodes are determined. 

2.1.1. Displacement-Based Finite Element Formulation 

The Rayleigh-Ritz method in its classical form defines an approximate 

displacement field over the entire region of interest An elastic solid has infinite dof. 

[6] 
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These dof are the displacements of every material point The behavior of an elastic 

solid or continuum is described by partial differential equations. For complex and 

sometimes even simple structures, it is almost impossible to find the displacement field 

analytically that completely satisfies the partial differential equations The Rayleigh-Ritz 

method, as applied to finite element methods, discretizes the region of interest (structure) 

and defines a piecewise approximate displacement field for each element. This results in 

a problem that has a finite number of dof. The solution is not exact but the accuracy 

increases as the number of elements and hence the number of dof is increased. The 

Rayleigh-Ritz method uses the principle of stationary potential energy to formulate the 

problem, resulting in algebraic equations rather than differential equations10 

Displacement-based elements are derived based on an approximate displacement 

field that are admissible. Admissible functions must satisfy compatibility conditions and 

essential boundary conditions (prescribed values for nodal dof)10 These conditions are 

best satisfied using polynomial functions. 

The potential energy for a linearly elastic structure is the sum of the strain energy 

and the work performed by the external loads on the structure, 

np = j(^Y[E]{e}-{B}T[E]{e0}+{s}T{o0})dV 
V 

-J {u)T {F}dV - J {uf mdS - {DY {P} [9] 
V s 

where, 
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{u}=|_u v wJT , the displacement field in the respective X, Y and Z directions 

{e}= Lsx sy 8Z Yxy yyz yzxJ
T, the strain field 

[E] = the material property matrix 

{go}3{
Go} = initial strains and initial stresses 

{F} = L Fx Fy FZJT, body forces 

{0}=LOx Oy OzJ
T, surface tractions 

{D} = nodal dof of the structure 

{P} = loads applied to dof by external agencies 

S,V surface area and volume of the structure 

Displacements within an element can be interpolated from elemental nodal dof {d}, 

{u} = [N]{d} [10] 

where [N] is the shape function matrix. Terms in [N] are the interpolation functions that 

define how displacements vary throughout the element. 

Strains are obtained by multiplying the differential operator matrix [d] and the 

displacement vector {u}, 
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which, with equation [10], yields , 

{8} = [*]{<*} 

where [B] = [d][N] is the strain-displacement matrix. 

Substituting expressions [10] and [11] into [9] yields, 

numel numel 

Tlp = ±1ZWTnlkUd}.-IlW
T{r.}l.-{D}T{P} [12] 

where summations indicate that the contributions of all elements of the structure are 

included. The element stiffness matrix and the element load vector are defined as 

in ] 
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[k]= j[B]T[E][B]dV [13] 
Ve 

{re}=\[B)T[E]{B0}dV-\[B]T{o0}dV + ̂ [N]T{F}dV + l[N}TmdS [14] 
Ve Ve Ve Se 

where Ve and Se denote the volume and surface of an element, respectively. Every dof in 

an element vector {d} also appears in the vector of global dof {D}. Therefore {D} can 

replace {d} in equations as long as the summation of all [k] and {re} is performed tQ 

obtain [K] and {R}, respectively. [K] is assembled by adding each element stiffness 

matrix [k] such that it affects only its own same dof in the global matrix [K]. The global 

load vector can be formed in the same way. Now the potential energy can be expressed as 

UP = \{DY[K]{D}-{DY{R} [15] 

numel numel 

where [*]=£[*]„ and W M ^ + I W , 
n=\ n=\ 

The principle of minimum potential energy states that the admissible 

configurations of a conservative system that satisfies the equations of equilibrium make 

the potential energy stationary with respect to small admissible variations of 

displacements. lip is a function of {D}, so applying the principle 



yields [K]{D}={R} 

This matrix equation is a set of algebraic equations to be solved for {D}. 

2.2. Nonlinear Analysis 

In linear analysis the displacements are directly proportional to the loads. In such 

analysis it is assumed that the displacements and rotations are small and that the loads 

maintain their original directions as the structure deforms. In a linear analysis [K] and 

{R} from equation [5] are independent of the displacements {D}, whereas in nonlinear 

analysis [K] and/or {R} are functions of the displacements {D}10 Nonlinear analysis is 

more difficult because the principle of superposition does not apply; results cannot be 

scaled in proportion to load or combined to obtain different load cases. 

Nonlinearities can be classified as material and geometric nonlinearities. Material 

nonlinearity is associated with changes in material properties, e.g., plasticity. Geometric 

nonlinearity is associated with large displacement and rotation. Other nonlinearities can 

be introduced when changing the boundary conditions and modeling contact problems. 

Nonlinear problems cannot be solved in a single step. Algorithms are used to 

solve the problem by taking a series of linear 'small' steps. Each step linearly 

approximates a portion of the nonlinear solution. The tentative solution after each step is 

updated and iterated again until a convergence criteria is satisfied, when the next step's 

Q 

solution is attempted and so on 



19 

A single-dof system is used to discuss the various algorithms available. The 

discussion of this algorithm is independent of the type of nonlinearity and also applies to 

multi-dof nonlinear systems. The system is represented by a nonlinear spring subjected to 

a force P at one of the ends. As the spring is stretched - u is increased — the stiffness of 

the spring, represented by k, changes in a nonlinear fashion. The purpose of the analysis 

is to solve for the stretch u as a function of the load P The spring stiffness k is a function 

of u and can be calculated for any value of u. To resemble the multi-dof equations 

[K]{D}={R}5 the assumption that the equation ku=P cannot be solved explicitly for u as 

a function of P has to be made. 

2.2.1. Newton-Raphson Method 

Figure 1 illustrates the Newton-Raphson solution method. The first step is to 

assume u=0 and obtain the initial tangent stiffness kt0. Applying a load increment 

APi=Pr0 and solving the linear equation kt0Aui=APi, 

£,0AWl = ^ - 0 

un - 0 + Aw, 
a 1 

Point a is found in figure 1. Displacements at points A and a are equal. There is a force 

imbalance between the force Pi at point A and the spring's resisting force at point a. Pi is 

greater than the spring's resisting force ra=kua for a stretch of ua. This difference, 
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Pa-ra=ePA , is used to drive the displacement to the correct value Ui through iterations. 

These iterations are performed while holding Pi constant. 

For the first iteration, tangent stiffness ku is used to solve for Au in equation 

ktaAu=ePA Adding Au to ua the point A' is found. A new force imbalance exists between 

points A' and a'. At point a' tangent stiffness k^ starts the second iteration, yielding point 

A", which is so close to point 1 that it is not discernible on the plot. Each iteration 

reduces the force imbalance. Iterations are performed until the value of the force 

imbalance satisfies a convergence criteria. The convergence criteria must be set such that 

the allowable tolerance produces a * close enough' solution at reasonable cost of 

computation. Then, the force is increased to P2 and point C is found. Following the same 

iteration process point 2 is approached. This method establishes several points on the P 

vs. u curve, that can be connected to approximate the actual curve. The Newton-Raphson 

method can be computationally expensive in multi-dof problems because the tangent 

stiffness matrix [Kt] must be constructed and reduced for equation solving in every 

iteration. 

2.2.2. Modified Newton-Raphson Method 

This method uses the tangent stiffness matrix [Kt] calculated at the outset of the 

load level step throughout all iterations in that load level The tangent stiffness matrix 

[Kt] needs to be constructed and reduced only once for each load level. However, the 

number of iterations for each load level can increase significantly as can be seen in figure 



21 

2. The rest of the process is carried out in the same manner as in the Newton-Raphson 

method10 

Figure 1. Newton-Raphson Incremental Solution 
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Figure 2. Modified Newton-Raphson incremental solution 
10 
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2.2.3. Contact Problem Overview 

Modeling the contact interaction between structures requires information on the 

location of contact, areas of contacting surfaces and the solution for the surface tractions 

between structures in those areas. The analysis of a contact problem has to consider 

possible interference, sliding and loss of contact between structures in every event. The 

contact problem is by nature geometrically nonlinear11. Figure 3 illustrates the contact 

interaction between two meshes. Parts 1 and 2 in figure 3a may make contact but it may 

not be known a priori, where on parts 1 and 2 contact will occur. An algorithm must 

Parti 
Parti 

Figure 3. Two Meshes of a FE Model that (a) May come into contact, (b) Slide with 

respect to each other 10 



discover the contact location, prevent parts from penetrating each other and calculate 

their normal stresses In figure 3b, parts 1 and 2 are already in contact, but it is not 

known how they will slide relative to one another An algorithm must prevent sliding 

until friction is overcome, then calculate the shear force, at the same time allowing no 

tensile contact forces to develop 

Contact problems are problems of constraints Algorithms have to constrain a 

node's dof against motion when it enters into contact with a fixed support, or they have 

to constrain a node's dof to have the same motion as an adjacent node when it comes into 

contact There are two ways of imposing constrained conditions Lagrange multipliers or 

the penalty method 

One way of approaching contact problems is by using gap-elements These types 

of elements are defined at specific points (nodes) between contact surfaces, presetting the 

location of contact Gap elements are formed by a bilinear spring and damping elements 

that act in the normal and tangential directions of contact surfaces, respectively12 This 

element behaves differently in tension and compression In tension, the surfaces are 

pulling away from each other, thus there is no stiffness In compression the stiffness is 

set to an arbitrarily high number and is represented in the stress-strain curve by a straight 

line The normal stress-strain relationship for gap elements is shown in figure 4a The 

stiffness value K, must be selected such that closure of the gap can occur without 

allowing penetration 

The shear forces transmitted by the gap element correspond to the friction 

between the surfaces The gap element allows the surfaces to slip only as long as the 
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shear stress is above a level determined by the analyst. The shear stress-strain 

relationship of a gap element is shown in figure 4b. Not choosing adequate stiffness 

values for the gap element in both the normal and tangential directions can create 

convergence problems in the solution10 

Multiple-Point Constraint (MPC) can also be used to solve the load transfer 

problem between contacting surfaces in structural members. This method models contact 

Stress (+) 

( a ) 

Strain (+) 

Shear Stress(+) 

Shear Strain(+) 

[b ) 

Figure 4. Stress-strain relationships for a gap element in the (a) normal direction, (b) 

tangential direction 12 

by coupling dof of adjacent nodes . It requires that the points (nodes) of contact are 

known from the outset. The dof at these points are coupled so that the resultant force due 

to contact is normal to contacting surfaces. This means that the contact locations and 

contact directions must be predetermined, which in most problems is hard to do. Other 
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problems involving this approach is that the areas of contact must be assumed and 

friction cannot be modeled. 

Some algorithms provide the flexibility of defining several potential contact 

conditions in terms of pairs of contacting surfaces. The analyst can define two sets of 

nodes or surfaces that may make contact13 One of the surfaces has to be defined as the 

fc master' surface and the other has to be defined as the 'slave' surface. The nodes on the 

'slave' surface are constrained not to penetrate the master surface and the contact 

direction is always normal to the master surface The pressure-clearance relationship 

has to be defined so that the algorithm can determine when and where contact occurs and 

apply the required kinematic constraints to the respective set of nodes. Figure 5a shows a 

'hard' contact pressure-clearance relationship. When the surfaces are in contact, any 

pressure stress can be transmitted between the surfaces. If the pressure reduces to zero, 

the surfaces separate. When the clearance becomes zero, the surfaces come into contact 

again. Another model of the pressure-clearance relationship is shown in figure 5b. It is 

called "softened" contact because, as the surfaces become in contact, the pressure 

increases exponentially. Contact between the surfaces occur when the clearance goes 

below the value of C. 
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Figure 5. Pressure-Clearance relationship for (a) 'hard ' contact, (b) 'softened' contact13 

2.3. Dynamic Analysis 

A structural problem is "quasistatic" if the frequency of the loading applied to a 

structure is approximately less than one-third of the structure's lowest natural frequency9 

This means that if the loads are applied sufficiently slow, the problem can be treated as 

static and the [K]{D}={R} equation provides an adequate solution10 If the frequency of 

excitation is greater than one-third of the lowest natural frequency, inertia and damping 

effects cannot be neglected and a dynamic analysis is required. 

Structural dynamics problems can be classified into two categories: modal 

analysis and time-history analysis. Modal analysis estimates the structure's natural 

frequencies of vibration and its mode shapes. The calculation of the natural frequencies is 

of major importance in the study of structural vibrations. If the frequency of excitation 

coincides with one of the natural frequencies of the system, a condition of resonance is 
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encountered and large oscillations result, leading to the catastrophic failure of the 

structure9 The time-history analysis provides the time varying response of the structure 

for a given loading The goal of this analysis is to solve for displacements, velocities and 

accelerations as a function of time 

In structural dynamics problems the virtual work done by external forces has to 

be equal to the virtual work done by internal, inertial and viscous forces The expression 

for this virtual work principle for a single element is 

j {8uY {F)dV + J {duY mdS + ± {SuY {P}, = 
Ve Se *=1 

J({5s}r{c}+{5M}rp{«} + {5W}rM*/})rfF [16] 
Ve 

where {5u} and {5s} are, respectively, small arbitrary displacements and their 

corresponding strains, {F} is the body force, {O} is prescribed surface traction, {P}1 are 

concentrated loads that act at a total of n points (nodes) on the element, {8u}? is the 

virtual displacement of the point at which load {P}1 is applied, p is the mass density of 

the material, and kd is a material damping parameter analogous to viscosity 

For a given displacement field {u}, the velocity and acceleration vectors are 

{u} = [N]{d} , {u} = [N]{d} , {ii} = [N]{d} [17] 



The shape functions [N] are functions of space and the nodal dof {d} are functions of 

time. Inserting equation [17] into equation [16] yields 

{5d}T\ \[Bf {c}dV + \p[N]T[N]dV{d} + jkd[Nf[NW{d) 
\Ve Ve Ve 

-j[N]T{F}dV-\[N]T{^}dS-fd{P}i =0 [18] 
Ve Se »'=! 

Since {5d} is arbitrary, equation [18] can be written as 

[m]{d} + [c]{d}+{ri} = {rex'} [19] 

where the element's mass and damping matrices are defined as 

[m] = \p[N)T[N]dV 
Ve 

[c] = \kd[N]T[N]dV 
Ve 

and the element's internal force and external load vector are defined as 

{rmt} = j[B]T{o}dV = [k]{d} 
Ve 
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{rex'} = j[N]T{F}dV + \[N]TmdS + fd{P}1 
Ve Se ; = 1 

Equation [19] is the governing equation for structural dynamics for a single element. It 

states that externally applied loads {rext} are resisted by the sum of the three internal 

forces: stiffness forces {rmt}=[k]{d}, damping forces [c]{d} and inertia forces [/w]{J} 

This equation is a system of coupled second order ordinary differential equations, and it 

represents a finite element "semidiscretization" because, although displacements {d} are 

discrete functions of space, they are still continuous functions of time It is discretized in 

time by the use of direct integration methods, which provide a sequence of simultaneous 

algebraic equations. 

The governing structural dynamic equation for the assembled structure is given 

by 

[M]{D] + [C]{D} + [K]{D} = {R^} [20] 

The structure matrices [M], [C] and [K] are constructed by expanding the element 

matrices [m], [c] and [k] to "structure size" as explained in previous sections. {Rext}, in 

general, contains the external loads applied as a function of time. This equation 

represents the dynamic response of the whole structure. 
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2.3.1. Damping 

"Internal friction" in the material and slip in the connections of structures are 

mechanisms of dissipation of energy or damping9 They cause the amplitude of free 

vibration to decay in time. Sources of damping are not viscous and are difficult to 

represent mathematically. Damping forces [C]{Z)} are less than roughly 10% of forces 

[K]{D}, [M\{D), and {R} in equation [20]. These forces are small enough that they can 

be idealized as viscous, by the use the damping scheme called Rayleigh or proportional 

damping 

The damping matrix [C] is formed as a linear combination of the stiffness and mass 

matrices, 

[C] = a[X] + P[Arf] [21] 

where a and p are called the stiffness and mass proportional damping constants. The 

relationship between a, P and the damping ratio £ at frequency co is given by 

^=l (aa>+i l [22] 

Values of cox, Q 2 , £i> £2 a r e chosen by the analyst. ©x is the lowest natural frequency 

and CD2 is chosen as the highest frequency of interest. Typical values for £ range from 

0.02 for piping systems to about 0.07 for bolted structures10 Once the two sets of values 

for co and £ are chosen, they are substituted into equation [22] and the resulting two 

equations are solved to obtain a and p. 
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2.3.2. Direct Integration Methods 

Direct integration methods are used to solve the governing structural dynamics 

equation [20]. These methods replace the time derivatives in equation [20] by making a 

finite difference approximation of the displacement {D} at time increments 

The dynamic response equation is written in the form 

[M]0}„ +[C]0}„ HK]{D}„ = {*"'}„ [23] 

where subscript n represents time nAt, At is the size of the time increment and {Re }n is 

the known time dependent forcing function at instant n. For nonlinear problems, the 

matrix [K] in equation [23] is a function of displacement as well as time. The goal is to 

solve for {D}n , 0}n and 0}n at particular instants of time. 

Difference methods can be categorized as explicit or implicit. Explicit methods 

have the form 

{D)n+x=f{{D)n,{b}n,{D}n,{D}n_x, ) 

{D}n+1 is determined based on information on displacement and time derivatives of 

displacements at time nAt and before. Implicit methods have the form 

{D}n+l = f({D}n+„{D}n+l,{D}n, ) 



33 

{D}n+1 is determined based on the time derivatives of {D}n+1, which are unknown. Direct 

integration methods produce an equation of the form 

[A]{D}n+l = {F(t)} or {D}„+, = [AT1 {F(t)} 

in which [A] is nonsingular and independent of time in linear problems, while {F} is a 

function of time. The specific form of [A] and {F} depend on each particular algorithm. 

2.3.2.1. Central Difference Method 

This is a popular explicit direct integration method. It uses a set of finite 

difference formulas to define velocity and acceleration at an instant n. {D}n+1 and {D}n_! 

are expanded using Taylor series about time nAt: 

{Z>}„+1 = {D}„+At{D}n+^-{D}n + ~{D}n+ [24] 
Z o 

{£}„_, = {D}„- At{D}n+^{D}n-^-{D}„+ [25] 
Z o 

Terms containing At and higher powers are discarded. The velocity is approximated by 

subtracting equations [24] and [25] and the acceleration is approximated by adding 

equations [24] and [25], 
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0}n = ^({D}n+}-{D}n_}) 

0}n=-^({D}n+l-2{D}n + {D}n_]) 

[26] 

[27] 

combining equations [26], [27] and [23] provides 

J_ ,„, 1 
2A?U J A/" 

[i4] = ^ 7 [ C ] + - F M 

F ( 0 = [/?]- [*]_ [M] 
At 

{D}„- -Xr[M] —[C] 
A/2 2A* 

{£},,-, 

At any instant n, {D}n+1 is calculated from known values of {D}n and {D}n-1. Velocities 

and accelerations are calculated from equations [26] and [27]. Initial displacements {D}0 

and velocities {D}0 are known. To estimate {D}l5 {D}.x needs to be known. {D}.x is 

determined using the following equation 

AD)0 {D}_}={D}0-At{D}0 + (At) 
Z 

where {D}0 can be determined from equation [23]. 

The central difference method is conditionally stable: for a At too large, the 

solution tends to diverge The stability limit is closely related to the time required for a 

stress wave to cross the smallest element in the model, so the time increment can be very 

short if the mesh contains small elements or if the stress wave speed in the material is 

very high13 To guarantee numerical stability 
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At < A/ where Ar = = ^ ^ 

^ m a x * 

where comax is the largest undamped natural frequency of the system. 

2.3.2.2. Newmark Method 

The Newmark method provides the necessary numerical damping to high 

frequency oscillations. The basis of the method is the following set of equations 

{Z)}„+1 * {Z)}„+A/{Z)}„+^{(l-2p)0}n + 2p0}n+1} [28] 

0} n + 1 * {£>}„ + Af{(l-Y){Z)}„+Y{Z)}„+1} [29] 

where P and y are numbers that can be chosen by the analyst to provide the desired 

stability and accuracy of the solution. A popular choice, called the "trapezoidal rule," is 

y=H and $=H. Substitution of equations [28] and [29] into equation [23] yields 

4 2 
—[M] + —, 
At2 At 

[A] = —[M] + — [C] + [K] [30] 

(F(0) = {/TU +[M][-^{D}„ +±0}H + 0}n j + [C]{̂ {D}„ + {!)}„ | [31] 



{D}n+1 is calculated from known values of {D}n, 0}n, and {D}n by substituting 

equations [30] and [31] into {D}n+l = [A]'l{F(t)}. Equations [28] and [29] are used to 

calculate 0}n+l and 0}n+l9 respectively. 

The Newmark method is unconditionally stable when 2P > y > H is satisfied. No 

matter how large At is, the solution converges10 This does not mean that the results are 

guaranteed to be accurate. 

2.4. ABAQUS 

ABAQUS is a commercially available general purpose finite element program 

designed for use in a wide variety of applications. The principal advantages of this 

program are its large library of capabilities, including a large element library and a wide 

range of nonlinear features. It also provides extensive output capabilities by the use of an 

interactive post-processor. 

ABAQUS is capable of performing a wide variety of analyses, such as static 

analysis, eigenvalue buckling estimation, dynamic response analysis, eigenvalue 

extraction to calculate natural frequencies, heat transfer analysis, modal dynamic 

analysis, random response analysis, steady state dynamics and contact interaction 

analysis. 

Designed for advanced applications, specifically in the nonlinear range, 

ABAQUS can also efficiently solve linear application problems. It is capable of dealing 

with three sources of nonlinearities: geometric nonlinearity, material nonlinearity and 

boundary nonlinearity. In nonlinear problems it is often difficult to obtain a convergent 



solution at a low computational cost. ABAQUS uses the modified Newton-Raphson 

algorithm and offers an automatic convergence control approach, in which the user 

defines the step and the convergence criteria and ABAQUS automatically selects the 

increment size as it develops the response in the step. This approach allows nonlinear 

problems to be analyzed without extensive experience in the particular problem solution. 

Direct user control of the increment size is also available. This approach is good if the 

user has extensive knowledge about the solution response. 

Nonlinear dynamic response problems are solved using direct integration 

methods. These methods are significantly more expensive than the modal methods used 

to solve linear problems. ABAQUS uses the Hilber-Hughes-Taylor operator, which is 

nothing but a slight modification of the Newmark method. This operator adds a 

parameter a to the Newmark equation that is used to introduce artificial damping in the 

system to allow the automatic time stepping procedure to work smoothly13 Structural 

damping is available by defining the stiffness and mass proportional damping constants 

in the Rayleigh damping equation. ABAQUS also provides an automatic incrementation 

scheme for use in dynamic analysis. 

The user can analyze contact interaction problems using ABAQUS5 "contact 

pair" approach, in which pairs of potential contact surfaces need to be defined as well as 

the pressure-clearance relationship between them. The algorithms automatically 

determine locations of contact and stress transmitted (normal and shear). 
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3. VALIDATION OF PASSENGER-SEAT INTERFERENCE 

3.1. General 

When subjected to decelerations, a seated passenger transmits inertia loads to the 

seat-restraint system. The interaction between the passenger and the seat-restraint system 

determines how the magnitude and direction of the inertia loads vary as a function of 

time. To accurately analyze the structural behavior of the seat in a crash scenario, it is 

required to model the dynamic response of the passenger and the means of transferring 

the inertia loads to the seat-restraint system. 

The purpose of this chapter is to describe and validate the approach used to 

simulate the passenger-seat interaction under decelerative forces, using finite element 

modeling capabilities. 

Output from the program SOM-TA is used for the validation. The output for a 

sample case run provides the time-history response of the passenger and the seat. The 

same case is modeled in ABAQUS and the results are compared. The models of the 

passenger (dummy), seat-restraint system and their interaction are discussed in the 

following sections. 

3.2. Dummy Model Description 

The aircraft passenger model used in this research is based on information 

obtained from the Anthropomorphic Test Dummy (ATD) defined in 49 CFR part 572 

and the Hybrid III crash test dummy. The Hybrid III is a 50th percentile adult male crash 



test dummy developed by General Motors Corporation in the 1970s. In 1986, The 

National Highway Traffic Safety Administration incorporated the Hybrid III into part 

572 of the Federal Motor Vehicle standards14 The Hybrid III is now been used by all 

domestic and most foreign car manufacturers in vehicle development programs. 

The purpose of this model is to simulate the mechanics and kinematics of the 

passenger throughout a crash event. It is not meant to represent any particular dummy, 

but a dummy that would approximately simulate the response of a passenger. 

The three-dimensional dummy model is made up of twelve rigid links as shown 

in figure 6, which is a schematic representation of the model, identifying segments, 

centers of gravity and joints. The number of segments is the minimum that will permit 

accurate, meaningful simulation of a three dimensional response Hands and feet are 

included as part of the forearm and lower leg segments, respectively. 

3.2.1. Model Segment Definition 

The characteristics required to define each segment of the model are length, mass, 

center of mass location and moment of inertia. Model segment dimensions and 

characteristics were obtained from reference 6. This reference provides tables of the 

segment's characteristics for the part 572 ATD. The segments of the model are broken 

down as follows: lower legs (2), upper legs (2), lower torso, upper torso, upper arm (2), 

forearm (2), neck and head. The dummy segments are defined as rigid body elements. 

Each of these elements has a reference node that carries the element's kinematic 
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Figure 6. Three-Dimensional Representation of The Dummy Model.6 
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Figure 7. Rigid Elements Local Coordinate Systems. 



variables. The reference node is defined at the center of gravity of each segment. The 

length of the segment is defined as the distance between joint centers, rather than 

standard anthropometric dimensions based on external measurements. The line 

connecting the joints of each segment is assumed to be a principal axis of inertia. Thus, 

the moments of inertia are all principal. The mass of each element is defined as a lumped 

mass element at the center of gravity. A local rectangular coordinate system is defined at 

the center of gravity of each segment as shown in figure 7. These local coordinate 

systems are the principal axes of inertia of the elements and are used to define the 

principal moments of inertia. They rotate with the segments with respect to the global 

coordinate system. 

3.2.2. Model Joint Characteristics 

The model consists of 11 joints as shown in figure 6. The joints allow relative 

rotation of the segments with respect to each other. The allowed relative rotation (dof) in 

each joint depends upon the joint type. Resistive torque as a function of angle of rotation 

for the different joints of the Hybrid III dummy are provided in reference 15. The model 

contained herein uses the same joint characteristics as the Hybrid III. 

A typical curve of joint resistance vs. angle of rotation is shown in figure 8. The 

free range motion is the interval where no resistance to rotation is exerted by the joint. 

Once the rotation of the joint exceeds the joint stop angle (9S) the resistive torque 

increases in a nonlinear manner with increasing angle of rotation15 The maximum 
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Figure 8. Illustration of typical joint test curve 15 
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Figure 9. Joint torque approximation curve 15 
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rotation of the joint is 0m The mechanical behavior of the joint is modeled using two 

curves as shown in figure 9. The linear part models the free range of motion. Some joints 

provide small muscular resistance in which case Cx takes a non-zero value, otherwise, it 

takes the value of zero, as in, knee and elbow joints. C2 and C3 define the nonlinear 

resistive range of the joint. 

Flexible joint elements in the ABAQUS element library are used to model the 

mechanics of the joints. These elements have 6 dof, allowing relative displacement (3 

directions) and rotation (3 directions) of the segments attached to them. Internal stiffness 

and damping are created with the use of linear/nonlinear springs and dashpots. The 

behavior of the flexible joint element is defined in terms of a local rectangular coordinate 

system that rotates with one of the segments that connect to the joint. Segments of the 

dummy cannot translate with respect to each other. Therefore high stiffness linear springs 

are defined in the local x,y and z directions for all joints. Table 1 shows the different 

joints and their respective active degrees of freedom. Nonlinear torsional springs are used 

to define the resistive torque of all the joints using the approximation shown in figure 9. 

Damping in the joint is defined as constant and slightly below the critical damping 

coefficient14 Resistive torques of flexion-extension and adduction-abduction motions for 

the shoulder joint are coupled. This is not possible to model using the flexible joint 

element, so these two types of motion are modeled independently of each other. 

The range of motion of the joints cannot be limited by just defining 0m with the 

use of flexible joint elements. In ABAQUS, torsional spring stiffnesses are set to high 

enough values to prevent joints from rotating past the angle of maximum deformation. 
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Table 1. Degrees of freedom in joints of the dummy model. 

Joint 

Knee 

Elbow 

Hips 

Spine 

Neck 

Head 

Shoulder 

degrees of freedom 

1 

1 

2 

2 

3 

3 

2 

type of motion 

flexion-extension 

flexion-extension 

flexion-extension, adduction-abduction 

bending (forward and lateral) 

bending (forward and lateral), torsion 

bending (forward and lateral), tprsion 

flexion-extension, adduction-abduction 

3.3. Seat Model Description 

Detailed information on this seat was obtained from a SOM-TA sample run. This 

seat represents a conventional airline coach-class passenger seat. An illustration of the 

model of this seat is shown in figure 10. 

The two sets of legs are modeled using 4130 steel. Each set of legs consists of a 

rear, diagonal and front beam. The cross section of these beams are square and hollow 

with a wall thickness of 0.065 in. and width of 1.25 in. The attachment of both front and 

rear legs to the tracks prevents vertical, forward and transverse movement as well as 

rotation with respect to a vertical axis. The front legs are attached to the seat's front spar, 

and the rear and diagonal legs are attached to the seat's rear spar. These connections 

transfer all combinations of loads and moments. 
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Figure 10. Three-Dimensional Sketch of the seat used for the validation 



The two spars, front and rear, have a hollow circular cross-section of 1.75 in. 

outside diameter and 0.083 in. wall thickness. They are made of 2024-T4 aluminum 

alloy. Front and rear spars are connected by four cross-beams, which have the same 

cross-section as the legs, but are made of 2024-T4 aluminum. Spars, legs and cross

beams are modeled using beam elements. The seat back rests, although modeled, have no 

structural importance because they carry no load on forward-facing seats during a crash. 

The back rest is modeled using 0.1 in. thick aluminum plate elements. Seat belts are 

modeled using 0.1 in. cross-sectional truss elements. The seat model consists of 229 

elements, 204 nodes and 1224 degrees of freedom 

3.4. Dummy-Seat Interaction 

As the passenger model flails forward during a crash, it transmits inertia loads to 

the seat through the cushion and the seat belt. Buttocks and upper legs interact with the 

seat throughout the deceleration process. This interaction was modeled to take advantage 

of ABAQUS capabilities to model contact interference. 

The seat cushion is not modeled due to lack of available information about its 

mechanical behavior. Moreover, it would significantly increase the number of dof and 

make the analysis computationally more expensive. Contact effects need to be modeled 

between the dummy upper legs (rigid line elements) and the pan of the seat (plate 

elements). ABAQUS does not support three dimensional contact interaction for one-

dimensional element, i.e., the dummy's legs. The lower section of a cylinder is used to 

model the surface of the dummy's legs that enter into contact with the pan of the seat. 
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This surface is modeled using rigid plate elements and is constrained to translate and 

rotate with the rigid line elements that represent the upper legs of the dummy. 

The approach used to solve the contact problem is the finite-sliding formulation. 

This algorithm allows separation and sliding of finite amplitude as well as arbitrary 

rotation between the contacting surfaces. The surface of the dummy's legs (rigid plate 

elements) are chosen as the w master' surface and the pan of the seat is chosen as the 

'slave' surface. The pressure-clearance relationship is defined as 'hard' and friction 

forces are taken into account in the analysis. 

This type of analysis presented convergence problems. Overclosure (penetration) 

of the contacting surfaces at several points - after a few increments into the solution 

caused the solution to diverge. When interpenetration occurs beyond a certain 

overclosure limit, ABAQUS reduces the time increment size and re-iterates. Subsequent 

cutbacks in the time increment size made it go below the minimum time increment 

allowable for stability of the numerical time integration scheme. Both contacting surfaces 

were refined to no avail. The algorithm went a few increments further into the solution 

but the same problem occurred. The pressure-clearance relationship was changed to 'soft 

contact' It was thought that the 'hard' contact relationship was inducing excessively high 

stress gradients between the contacting surfaces, and this was contributing to the 

convergence problem. This change did not improve the outcome of the analysis. 

Another contact formulation was tried to obtain a solution to the contact problem. 

The small-sliding contact algorithm allows the surfaces to undergo small sliding relative 

to each other, but they may undergo arbitrary rotation. 
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Sample auxiliary problems were used to get a better understanding of ABAQUS 

contact formulation. The problem of a sphere making contact with a plate was modeled. 

Convergence of the solution improved as the meshes were refined, but at a very slow 

rate. The time increments used by the algorithms were on the order of 10'7 seconds. This 

was computationally expensive and it had to be discarded. It is believed that the meshes 

of the contacting surfaces need to be extremely fine. However, that does not guarantee 

the convergence of the solution. It increases the number of dof and dramatically increases 

running time and storage requirements. The highly nonlinear nature of the solution and 

lack of experience dealing with this type of problem contributed to the modeling 

problems discussed here. Technical support from ABAQUS is not available under 

academic license. 

A simpler and more computationally effective approach to modeling contact 

effects is to use Multiple-Point Constraints (MPC). Vertical beam elements are fixed to 

the legs of the dummy at two different points, as shown in figure 11. The lower ends of 

these beams are constrained to have the same vertical displacement as the seat pan. They 

are also constrained to have the same rotations as the seat pan with respect to vertical axis 

3 in figure 11. The passenger is constrained to slide forward by the seat pan and belt. The 

stiffness of the beam elements is chosen to be an arbitrary large number, such that the 

stress in the element is negligible compared to the stress in the seat belt. This type of 

approach does not provide a thorough analysis of the interaction between the seat and the 

dummy, but it provides a solution to the load transfer problem. 



Figure 11. Passenger/Seat Model Representation 



51 

The entire model is shown in figure 11 It consist of 360 elements, 390 nodes and 

the stiffness matrix has 1734 dof Dummy models are drawn in blue, the seat is drawn in 

black, seat belts are shown in green and the "interference-beam elements" are drawn in 

red 

Two nonlinear analyses were performed with the model In a static nonlinear 

analysis, the left front leg of the seat was subjected to a downward displacement of 0 5 

in Then, a nonlinear dynamic analysis was used to subject the entire model to a forward 

inertia load The load varies in a trapezoidal fashion It increases linearly from 0 to 6g in 

0 01 seconds, remains at 6g until 0 155 seconds have passed and, then decreases linearly 

to 0 in a matter of 0 01 seconds ABAQUS was used to perform these analyses 

3.4. Analysis of Results 

To establish structural damping coefficients, an eigenvalue estimation of the 

natural frequencies was performed on the seat model The first natural frequency was 

thereby estimated as 27 27 rad/s The frequency range of interest was set between the 

first natural frequency Q b and the forcing frequency o2 Damping ratios £i and £2 were 

set to 0 02 and 0 029, respectively9 Having these parameters set, Rayleigh damping is 

introduced in the seat model by calculating the values for the proportional damping 

constants, a and P Using equation [20b], a=0 047 and (3=0 0014 

The seat belt force varied in the same oscillatory fashion as SOM-TA's, but the 

amplitude was considerably higher With this initial estimation of structural damping 
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Figure 12. Lap Belt Force Comparison between ABAQUS and SOM-TA Model 

Response. 

effects, the maximum force was 2400 lb, which is 3 times higher than that predicted by 

SOM-TA. This is attributed to the approach used to model the interaction between the 

dummy and the seat. Friction cannot be modeled when using multiple-point constraint. 

Thus, the dummy can slide freely with respect to seat pan, thereby exerting a larger force 

on the seat belt. The proportional damping constants of the seat belt were varied in an 

effort to reduce the amplitude of the response and fit SOM-TA's seat belt curve. Changes 

in the mass proportional damping constant P did not affect the response. As the stiffness 

proportional damping constant a, was increased, the amplitude decreased, but the curve 

'flattened' out. The value of a was increased to find the best approximation to SOM-

TA's seat belt response. The best approximation was found for a=0.08. The seat belt 

force curve is shown in figure 12. After 0.07s ABAQUS approximation is consistently 
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higher than SOM-TA's but within the same order of magnitude. The biggest discrepancy 

between both curves is 500 lb and occurs at 0.176 s. 

The overall reaction of the dummy to decelerative forces can be seen in figures 13 

and 14. The X axis is horizontal and the Z axis is vertical. As expected, the C.G. of the 

dummy displaces forward (increase in X direction) and down (decrease in Z direction) 

when subjected to forward deceleration. The displacement of the dummy's C.G in the X-

direction (figure 13) is always higher than the one predicted by SOM-TA, with the 

greatest difference being 1.5 inches at 0.176 s. In the Z-direction (figure 14) the greatest 

difference is 1.25 inches, also at 0.176 s. However, the trend of the response in the Z-

direction does not match SOM-TA's as well as it does in the X-direction. The C.G. of the 

ABAQUS dummy moves up in the first 0.09 s. SOM-TAs dummy C.G. does the 

opposite, moving downward. It is believed that this is because the SOM-TA model 

included the seat cushion. As the passenger flails forward, the legs apply pressure on the 

cushion and compress it, further lowering the location of the passenger's C.G. in the 

vertical axis. The ABAQUS dummy model estimates the location of the C.G. of the 

dummy to within 1.5 inches compared to SOM-TA. Lateral displacement (Y-direction) 

of the dummy due to forward deceleration is negligible. 
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A comparison of ABAQUS seat model response against SOM-TA's predicted 

seat deformation is presented in tables 2 and 3. These tables show the displacements of 

characteristic nodes of the seat in the X, Y and Z axes at two different time intervals. 

Figure 15 shows the location of the nodes in the seat structure. Most of the displacements 

predicted by ABAQUS are within 20 to 25 percent difference compared to SOM-TA. 

The biggest percent difference, 64% ,is present at t=0.025 sec. in node 38 in the Z 

Table 2. Seat model displacement comparison in the X,Y and Z axis at t=0.025 sec. 

NODE 
7 
19 
26 
38 
39 
61 
62 
84 

X-Direction 
SOM-TA 

0.351 
0.4125 
0.0047 

0.007 
0.6355 

-0.1037 
0.5627 

-0.1011 

Abaqus 
0.3556 
0.4085 
0.0035 
0.0060 
0.5878 

-0.1222 
0.5231 

-0.1074 

%Diff 
1 
1 

25 
15 
8 
18 
7 
6 

Y-Direction 
SOM-TA 

-0.1808 
-0.1343 
-0.1806 
-0.1348 
-0.1339 
-0.1344 
-0.1811 
-0.1806 

Abaqus 
-0.1474 
-0.1055 
-0.1508 
-0.1163 
-0.1032 
-0.1182 
-0.1464 
-0.1518 

%Diff 
18 
21 
17 
14 
23 
12 
19 
16 

Z-Direction 
SOM-TA 

-0.0595 
-0.4992 

0 
-0.0009 
-0.7619 

0.244 
-0.2722 
0.2309 

Abaqus 
-0.0672 
-0.5054 
0.0001 

-0.0015 
-0.7111 
0.2361 

-0.1830 
0.1348 

%Diff 
13 
1 
0 

64 
7 
3 
33 
42 

Table 3. Seat model displacement comparison in the X,Y and Z axis at t=0.175 sec. 

NODE 
7 
19 
26 
38 
39 
61 
62 
84 

X-Direction 
SOM-TA 

0.3573 
0.4222 
0.0112 
0.0166 
0.9195 
0.1937 
0.7935 
0.1576 

Abaqus 
0.3605 
0.4161 
0.0085 
0.0137 
0.8384 
0.1229 
0.7495 
0.1048 

%Diff 
1 
1 

25 
18 
9 

37 
6 
34 

Y-Direction 
SOM-TA 

-0.1733 
-0.1296 
-0.1714 
-0.1321 
-0.1276 
-0.1346 
-0.1744 
-0.1677 

Abaqus 
-0.1396 
-0.0961 
-0.1431 
-0.1091 
-0.0860 
-0.1112 
-0.1353 
-0.1451 

%Diff 
19 
26 
17 
17 
33 
17 
22 
13 

Z-Direction 
SOM-TA 

-0.0576 
-0.5005 

0.002 
-0.0023 
-0.9336 
0.0204 

-0.1285 
0.3191 

Abaqus 
-0.0655 
-0.5069 
0.0020 

-0.0029 
-0.8796 
0.0259 

-0.1268 
0.1695 

%Diff 
14 
1 
3 

25 
6 

27 
1 

47 
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direction. All the nodes of the seat modeled in ABAQUS deform in the same direction as 

the seat modeled in SOM-TA. All displacements predicted by ABAQUS in Y-direction 

are smaller than those predicted by SOM-TA. Therefore, the ABAQUS seat model is 

more rigid in the lateral direction. 

The seat stress response is linear throughout the dynamic step. Failure by material 

yielding did not occur. The member that was exposed to the highest stress was the left 

front leg, as can be seen in figure 16, which shows contours of the Von-Mises Failure 

criteria throughout the seat structure at t=0.223 sec. The maximum Von-Mises stress of 

63,044 psi occurred at the connection between the left front leg and the front spar. This 

stress level is below the yielding stress with a margin of safety of 1.53. The asymmetrical 

response of the seat is due to the 0.5 in. downward displacement initially applied to the 

left front leg. 
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Figure 15. Illustration of Particular Nodes in the Seat Structure 
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4. ENERGY-ABSORPTION SEAT DESIGN 

4.1. Design Considerations 

The proposed seat design must be able not only to withstand the dynamic tests as 

stated by the certification criteria but also to absorb some of the impact energy. The seat 

must move forward to reduce the inertia forces experienced by the passenger However, 

it must deform in a controlled manner. Total deformation on the seat must be enough to 

absorb impact energy, but not to the extent of impeding evacuation of passengers. The 

seat must be designed to be fairly rigid in the lateral direction . Large deformation in this 

direction would block the aircraft's aisle. 

Geometric and material information on energy-absorbing seats available in the 

market was not possible to obtain. This type of information is considered proprietary by 

seat manufacturers. There is no established procedure for designing a passenger seat to 

varying loading conditions. For this project, several seats were designed and subjected to 

simulated dynamic tests in order to predict their performance and to determine if they 

could withstand the dynamic loading. They were tested using ABAQUS as a simulation 

tool. Changes from one seat to another were predominantly made in the seat legs. 

Member cross-sections, geometry, joint characteristics and support at the seat tracks were 

the parameters changed. Trial and error was used until a particular seat was able to pass 

the simulated dynamic tests. 

The most severe dynamic test is the misaligned 16g forward test. The 

deformations imposed on the seat tracks prior to dynamic loading expose the seat legs to 
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high levels of deformation and therefore high stresses. Attachment points at the seat 

tracks and beam connections in the seat allow some play and relieve some of the stresses. 

This is very complicated to model using finite element analysis. Some of the seat designs 

withstood the downward 14g loading and showed good energy-absorption capabilities, 

but failed to pass the 16g forward test. Stresses in the legs were far into the plastic range 

after the tracks were misaligned. The highest stresses were present in the legs attached to 

the track with 10 degrees of roll deformation. 

In short, seats must be flexible enough to allow large deformations, yet must be 

rigid enough to withstand the prescribed dynamic loading and leave enough volume to 

permit passenger egress. 

4.2. Energy-Absorbing Seat Description 

This seat is designed to be used as a coach-class passenger seat in large transport 

aircraft. Figures 17,18 and 19 show element dimensions and cross-sections of the seat 

model. All seat structural members except the energy-absorber are made of 2024-T4 

aluminum alloy. The rear legs have a square, hollow cross-section that tapers as it 

approaches the seat tracks. Rear leg attachments to the seat tracks provide no resistance 

to rotation about the X and Y axes. Their connections to the rear frame transmits all loads 

and moments. Front legs are modeled as truss elements and their attachments to the 

tracks prevent transverse (Y) and vertical (Z) displacements. Front and rear legs are 

connected 
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by the spreader bars just above the seat track. They are modeled as two-force members 

and prevent movement of the front legs along the seat tracks. Diagonal beams connect 

the energy-absorber with both ends of the rear legs. Both diagonal beams have a T-

shaped cross-section. Their connection to the rear legs transmits all loads and moments. 

The front and rear fcspars' are connected by four I-section cross beams. Cross beam 

attachments to the spars allow rotation with respect to the longitudinal axis of the spars. 

Although the seat backs are modeled, they have no effect in the performance of the seat. 

Both leg assemblies are shifted to the right (toward the aisle of the aircraft) to allow for 

installation in the aircraft. Dimensions of the leg separation and placement with respect 

to the spars were obtained from actual measurements during commercial flights. 

The behavior of the materials used in the seat structure is defined in the linear and 

nonlinear ranges to allow for plastic deformation. Material strain rate dependency is 

neglected. The ultimate strength of aluminum 2024 subjected to dynamic impact of 25 

ft/sec is 68 ksi16 This increase in strength is considered negligible compared to the 

ultimate static strength of 65 ksi. 

The device used to absorb the energy is the inversion tube energy absorber. It 

works under tension and compression loads only. As loads are applied at both ends, a 

length of the inner metal tubing is turned inside-out or outside-in (plastically deforming 

that section) depending on the type of loading17 This process limits the load by 

continuously deforming the new material up to the particular point in the stress-strain 

curve. Figure 20 shows a sketch of the inversion tube energy absorber and its load-



deflection characteristic. The energy absorbers are modeled using truss elements. The 

materials used in the actual inversion tube are 3003-H14 aluminum and mild steel. 
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4.3. Dynamic Test Simulation Results of the Energy-Absorbing Seat 

The first test causes the seat tracks to deform in the pitch (Y) and roll (X) axes 

and induces a forward 16g floor deceleration. A nonlinear static step analysis is 

performed to apply this prescribed initial displacement. The attachment point of the 

seat's right leg assembly is displaced according to the 10 degree vertical track 

deformation. Seat track fittings allow free rotation of the seat legs in the roll direction. 

Therefore, ten degree displacement of the left track does not impose any type of loading 

on those attachment points. 

The deformation of the track induced a Von-Mises stress of 44,008 psi on the 

lower diagonal beam member of the right set of legs of the seat and is shown in figure 

21. This stress is the highest in the structure and has exceeded the 44 ksi yielding stress 

of the material. Plastic deformation occurs in both of the energy absorbers. The stresses 

in these members reach the load limiting value of 41,600 psi. 

The 16g forward (X) floor deceleration is applied as a 16g forward gravitational 

load on the passenger and the seat. Maximum forward deformation of the seat occurs at 

t=0.170 s. Figure 22 shows a contour plot of the forward displacement of the seat at this 

time. The deformation shown in this figure is relative to the initial position. Due to the 

vertical deformation of the track and the asymmetric loading, the seat undergoes a small 

rotation with respect to the vertical axis. Forward displacement of the right section of the 

seat is greater than the left side. This forward deformation is thought to be small enough 

as to not obstruct passenger egress. The seat is relatively rigid in the lateral direction. It 

deforms away from the aircraft's aisle. 
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Figure 23 shows the final seat deformation of 0.8 in. in the lateral direction at the 

end of load application. 

The energy absorbers constantly absorb energy throughout the test. It can be seen 

from figure 24 that the left energy absorber's axial stress remains constant at 41600 psi 

until 0.19 s. into the test. As the energy absorbers undergo plastic deformation, they 

allow the seat to deform in the forward direction, reducing the acceleration transmitted to 

the passenger. Load-deflection characteristics of the left energy absorber for this 

particular test is shown in figure 25. The area under the curve represents the total energy 
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Figure 25. Force-Deflection curve of the Left Energy-Absorber for the 16g forward test 

dissipated by this mechanism due to plastic deformation. It is approximately 720 lb-in. 

The total energy absorbed by the seat is 1,676 lb-in. The maximum deformation 

experienced by this mechanism is 0.6 in. The geometric characteristics of the legs do not 

allow greater axial deformation of these devices. Figure 26 shows a three dimensional 

view of the deformed seat. 

The connection points of the rear and diagonal legs at the rear spar and the seat 

tracks are the structural locations that experience the highest levels of stresses. Members 

attached to these connection points experience very small amounts of plastic 

deformation. The highest Von-Mises stress that the structure experiences is only 4 % 

higher than the yielding stress. 
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When subjected to the 14g downward floor deceleration, the seat experiences 

very little forward deformation. The maximum forward deformation of 0.08 in. occurs at 

t=0.108 s. This translates to negligible amounts of energy absorption compared to those 

obtained in the previous test. Figure 27 shows a stress contour representation of the seat 

forward deformation at t=0.108 s. The seat is able to withstand the dynamic loading 

imposed in this test, but it provides no absorption of the crash energy. Figure 28 shows a 

contour of the Von-Mises stresses. The use of energy-absorption mechanisms that 

plastically deform at smaller loads could improve the performance of this seat. It would 

absorb more energy at the expense of more forward deformation. Too much deformation 

increases the chances of head injury due to impact with the seat in front. 

There was no available information on the response of other energy-absorbing 

seats to compare the performance characteristics. 
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Figure 27. Forward deformation on the seat due to 14g floor deceleration 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

The passenger/seat interaction approach used to model the dynamic response 

analysis of the seat proved to be a good approximation of the load transfer scenario. 

While this approach did not accurately model the contact interference between the 

passenger and the seat, it provided a good enough mechanism of interaction to transmit 

the passenger inertia loads to the seat. Comparison between the results obtained from 

SOM-TA and ABAQUS showed that the predicted deformation of ABAQUS model 

closely followed the results obtained using SOM-TA. 

The energy absorbing seat design is able to withstand the dynamic loading as 

stated in the emergency landing dynamic conditions section of the FAR part 25. The seat 

dissipated energy only when subjected to the 16g forward deceleration test. Plastic 

deformation of the energy absorbers was negligible in the 14g downward floor 

deceleration, since the leg assembly design of the seat does not provide the required 

degree of flexibility necessary to induce it. It was not possible to evaluate the 

performance of the seat due to the lack of information on other energy absorbing seats. 

Nonlinear finite element analysis proved to be useful in the analysis of 

crashworthy passenger/seat systems. ABAQUS provides the necessary elements and 

modeling capabilities to analyze the mechanical behavior of structures under dynamic 

conditions. The ability to model nonlinear response is it greatest strength. ABAQUS 
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provides an automatic incrementation scheme in the solution process that makes it easy 

to use by inexperienced users. 

Contact interference algorithms provided by ABAQUS were not able to model 

the interaction between the passenger and the seat. The algorithms did not converge to a 

solution for the contact problem. 

ABAQUS can be used in a wide variety of applications. It has a large number of 

elements and material definitions as well as procedures library that makes it very 

versatile. It also gives the user the option to design new elements and materials. All of 

these features make ABAQUS a very powerful finite element program to be used for 

research. The unavailability of the pre-processor at Embry-Riddle greatly increased the 

time necessary to create models. The graphical interface provided by the post-processor 

made the analysis of the results significantly easier. It allows the animation of 

deformations of dynamic systems. It was used extensively to monitor the nonlinear 

response of the dummy. 
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5.2. Recommendations 

A thorough analysis of the ABAQUS dummy response under a wide variety of 

dynamic conditions and accelerations is necessary to validate the model. Information on 

the dynamic response and failure modes of aircraft seats is not enough to obtain FAA 

certification. Loads at the pelvis and legs of the dummy as well as head acceleration 

curve are necessary to evaluate the injury criteria established by the regulations. 

Demonstration that this type of analytical method can accurately predict the seat mode of 

failure and the passenger response can allow the FAA to certify the seats as flightworthy. 

Comparison of the response of the seat model against data obtained from a test would 

give the FAA confidence in the response predicted using finite element analysis. This 

area is recommended for further investigation. 

It is also recommended that a supercomputer be used to try to model 

passenger/seat contact effects using contact algorithms. The computer used for this 

research (Sun Sparc 1) is relatively slow. A computer with a greater degree of accuracy 

and higher processing speed may be able to provide the solution to the algorithm. 

ABAQUS nonlinear capabilities can be used to design energy absorption 

mechanisms that can be used to control the loads and deformation of the seat for use in 

the general aviation and airline industry. 
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