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Institution: Embry-Riddle Aeronautical University 
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Year: 2003 

Low energy impact damage to a composite structure is difficult to detect and can 

have profound effects on compressive strengths. Low energy impact damage is 

sometimes termed as barely visible impact damage (BVID). Detecting BVID is only 

possible by implementing nondestructive testing (NDT) techniques. Depending upon the 

support conditions, material system, laminate thickness, lay-up orientation, and impactor 

geometry, velocity, and hardness, the types of damage associated with BVID include 

delaminations, longitudinal and transverse matrix cracks, and in some cases, fiber breaks. 

Material properties such as the strengths of the matrix, fibers, fiber/matrix interface, and 

more important for BVID, ply interface properties in a multi-ply laminate, are all 

parameters that determine impact resistance. After the composite structure experiences 

BVID, the depletion of the structural strength is determined as result of compression after 

impact (CAI) material testing. 

The primary emphasis of this research is to predict structural compressive 

strength after low energy/low velocity impact using neural networks. After the 

composite structure absorbs BVID, it is common to determine structural strength 

depletion based on impact energy. Because impact energy is seldom known in real 

world applications, it is more reasonable to determine ultimate strength based on amount 

of damage present. The technique used in this research to assess the damage and predict 

ultimate strength includes ultrasonic testing (UT), to generate an image representing the 

damage, and neural networks to predict future performance. 

Using the pixel data from the ultrasonic C-scan image of the impact damage, in 

conjunction with CAI testing, and analyzing it with a backpropagation neural network, 
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correlations on ultimate compressive strength can be made. This analysis demonstrates 

the ability of a neural network to predict the ultimate compressive strengths of impact 

damaged composite structures using UT data. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

In the aircraft industry today the use of composite materials is increasingly 

desirable due to their high strength to weight ratio. One restrictive design criteria, 

however, for a composite structure is impact tolerance. Of the types of damage a 

composite structure may experience, low energy impact damage can be dangerous 

because the damage oftentimes goes undetected and can subsequently grow under load. 

This barely visible impact damage (BVID) can have adverse effects on the material's 

structural strength. The results of the compression tests show BVID caused strength 

reductions of 60 percent in graphite composite structures [2]. 

When exploring material properties that result from impact damage, there are 

many parameters of the test that affect the material reaction. The failure modes 

associated with BVID consist primarily of matrix cracks, delaminations, and occasionally 

fiber breaks. Delaminations are the most critical failure mode of BVID when a structure 

is loaded in compression. Delaminations are susceptible to occur at interfacing plies that 

are orientated in different fiber directions. This is generally true for material systems that 

have a brittle matrix supporting the ply interface stresses, such as carbon/epoxy materials. 

The size of the delamination area depends on many parameters that are described later, 

while the orientation of the delamination can be correlated to the fiber orientation of the 

lamina. Shown in Figure 1.1.1 (a) is a schematic of the delamination orientation within 

the laminate, and an actual image of the delaminations within an E-glass laminate is 

shown in Figure 1.1.1 (b). It should be noted that delamination shapes often are quite 

irregular and difficult to ascertain [1]. Delamination initiates after a certain damage 

threshold has been reached and then propagates linearly with impact energy [1]. In 

addition to material properties, i.e., elastic constants and strengths, the delamination area 

in an impacted composite plate is also dependent on external effects such as the type of 

loading, shape of the impactor, impacting velocity, and boundary conditions of the 

specimen [4]. 
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Delaminations 

(a) (b) 

Figure 1.1.1 (a) Delaminations and orientations throughout a laminate and (b) actual 
delaminations in E-glass 

1.2 TESTING PARAMETERS 

Below is a list of testing parameters that must be considered when researching 

impact resistance. Following the list is a short explanation of each parameter. Keep in 

mind that these impact constraints are intended to simulate conditions that the material 

might experience in use. 

• Impact support boundary conditions 

• Material system 

• Impact velocity 

• Laminate thickness 

• Laminate lay-up orientation 

• Impactor shape 

• Impactor stiffness 



1.2.1 Impact Support Conditions 

The three most common types of support conditions are clamped edges, simply 

supported edges, and back-face supports. The last condition is representative of a sub

structure or stiffener supporting and preventing deformation of a laminate that is 

absorbing impact damage. Here, the failure mode is primarily matrix shattering as a 

result of the highly localized contact stresses. 

1.2.2 Material System 

This research focuses on continuous fiber/epoxy systems. Due to the complexity 

of the dynamic impact, previous research has many theories correlating damage 

phenomenon with failure modes. This is mainly due to the various types of materials 

available. However, during low velocity impact on continuous fiber/epoxy systems, 

damage initiation is started from small matrix cracks that develop as a result of excessive 

transverse shear stress or bending stress. It is postulated that when the matrix cracks 

propagate through the material normal to the surface and reach an interface between 

lamina of different fiber orientation, delaminations develop. Material properties Ej, E2, 

Gj2, and vJ2f along with the laminate scheme, define the overall rigidities of the impacted 

plate. These properties greatly influence the contact force history, thus having a distinct 

effect on impact resistance. Since a majority of the low velocity impact damage 

resistance is defined by the matrix properties, new matrix materials have been developed 

such as PEEK thermoplastics and rubber modified epoxy resins. Compression tests have 

shown that PEEK laminates are superior to epoxy laminates [1] in impact resistance. 

1.2.3 Impact Velocity 

The energy associated with impact testing comes primarily from kinetic energy. 

To determine precisely the amount of energy the structure absorbs becomes increasingly 

complicated with precision; however, the generic equation for kinetic energy is given in 

Equation 1. 

E = -mV2 (1) 
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If energy is held constant during impact, but velocity and mass are altered respectively, 

the amount of damage a material absorbs could change. For example, if mass is 

increased and velocity decreased during impact, the actual impact energy is the same as a 

high velocity low mass impact, but the amount of damage could be considerably 

different. Moreover, materials are strain rate sensitive. That is, if a material absorbs the 

same energy but within a shorter impulse, there could possibly be more damage. NASA 

CP 2321 [3] postulates that the compression wave associated with a high velocity/low 

mass projectile impact, causes the plate to translate much faster than that required for the 

overall response of the plate structure. This highly localized deformation gradient 

cause's large transverse shear and normal stresses which can cause failure within the 

laminate. In the NASA CP 2321 research, many material systems were used to compare 

high velocity/low mass and low velocity/high mass impact conditions, of which the high 

velocity/low mass conditions had greater damage size and decreased compression after 

impact strength. 

1.2.4 Laminate Thickness 

When an impact event occurs, the material response can be significantly different 

depending upon the thickness. In thick laminates, the response to a certain impact energy 

results in matrix cracking at the first layer because of the highly localized contact stresses 

associated with the impacting projectile. The damage progresses downward through the 

laminate layers creating delaminations and transverse shear cracks and resulting in a 

"pine tree" pattern as shown in Figure 1.1.2(a). Thin laminates respond to impact energy 

just the opposite of thick laminates, as shown in Figure 1.1.2(b). Due to the high bending 

stresses on the back face of the thin laminates, matrix cracks are introduced in the lowest 

layer and propagate upward creating delaminations and shear cracks in a reverse pine tree 

pattern. 
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Figure 1.1.2 Crack propagation in (a) thick laminates and (b) thin laminates 

1.2.5 Laminate Lay-Up Orientation 

In industry, many continuous fiber system laminates are made of layers oriented 

in multiple directions. This allows the structure to be stiffer in many directions and thus 

capable of supporting multi-directional loads. As a result of anisotropy in composites, 

many new, complicated, and different failure modes can develop when compared to 

homogeneous materials such as metals. It is difficult to determine which failure mode 

will predominate as a composite structurally fails. However, previous research has 

shown that as a result of impact damage, delaminations and matrix cracks are the most 

prevalent failure mechanisms. 

There are many models that have been proposed to explain why delaminations 

occur as a result of highly localized stresses. Most models are built around the fact that a 

laminate is made up of many lamina oriented in different directions. If two adjacent plies 

have the same fiber orientation, no delamination will occur at the interface between them 

[1]. These material property mismatches cause nonuniform stress distributions in the 

composite laminate when it is subjected to load [4]. Thus, each layer will respond and 

deform in a particular way, while the laminate is experiencing a global load. As these 

layers deform and respond differently to a global load, interlaminar stresses are 

introduced. These interlaminar stresses are mainly supported by the fiber/matrix 
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interface between each lamina. If these stresses become too great under a concentrated 

load, delaminations will develop. 

1.2.6 Impactor Shape 

Impactor shape can define the extent of the localized damage. When mass and 

impact velocity are held constant, sharper projectiles will create more localized damage 

than blunt projectiles. Also, impactor stiffness is a consideration to be included. 

Impactors that are less stiff will deform along with the structure during impact; thus, the 

amount of damage introduced is less. Because not all real world impacts are made with 

extremely stiff impactors, this constraint should not be ignored. 

1.3 PREVIOUS RESEARCH 

Presently, there are two common methods of impact testing in the industry. The 

compression after impact (CAI) standards come from Boeing (BSS-7260) and NASA 

(ST-1) [15]. Both standards require the specimens to be relatively large, ranging from 

0.15 to 0.25 inches thick with a planar size of 6 x 4 inches (Boeing) and 12.5 x 7 inches 

(NASA) during impact and then trimmed to 5 x 3 inches (Boeing) and 5 x 5 inches 

(NASA) prior to compression testing. The quantity and cost required for the materials 

alone, if this research were to utilize either of these two standards, is too great. Also, the 

machinery required to load the specimen for compression testing after impact for these 

standards is between 35-50 kips for the Boeing standard and even more for the NASA 

standard. Currently Embry-Riddle Aeronautical University's capability is limited to a 

hydraulic 10 kip MTS machine or a mechanical screw-type Tinuis Olsen machine 

capable of 30 kips. Therefore, specimen design was constrained by these limitations. 

1.4 PRESENT RESEARCH 

This research is effectively pursing ultimate compressive strength prediction as a 

function of impact damage using a neural network to correlate ultrasonic test data. The 

ideal solution would be to predict ultimate strengths to a 5% error using UT data alone. 
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If this is not possible, the acoustic emission (AE) data gathered during compression after 

impact loading may offer more information for a more accurate neural network 

prediction. 

The materials used in this research differed in lay-up orientation and thickness 

only. The laminates are much thinner than those called for in the Boeing or NASA CAI 

testing standard, with a maximum thickness of approximately 0.10 inches. The impact 

support conditions included clamped edges. The impact tup itself was extremely stiff and 

had a 5/8 inch hemispherical head. The impact energy used herein ranged from 0-20.0 ft-

lbf. All testing is done at room temperature without specimen preload during impact. 

After impacting the specimen, an ultrasonic image of the damaged region is taken and 

subsequently quantified using an algorithm in MATLAB. The compressed ultrasonic C-

scan image data is then inputted into a backpropagation neural network to make 

predictions on ultimate compressive strength. 
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CHAPTER 2 

BACKGROUND 

2.1 MATERIAL SYSTEM 

The material used in this research was Hexcel AS4/3501-5A, a carbon/epoxy system. 

Originally, this material was developed by Hercules, but Hexcel purchased the company 

in 1996. The cure cycle and material properties provided in Appendix A of this report 

come from Hercules. It should be concluded that this is an accurate, but outdated product 

information sheet. AS4/3501-5A is a carbon/epoxy prepreg tape that has unidirectional 

fibers and an amine-cured epoxy resin. The resin is virtually identical to the very 

common AS4/3501-6 system, differing only in cure cycle and certain material properties. 

Selection of this material was due to the following reasons. First, this carbon/epoxy is a 

very commonly used composite system in industry. Second, the imaging capabilities of 

carbon prepreg are easily ascertainable using the UltraPAC II ultrasonic C-scan imaging 

system. Finally, carbon/epoxy materials are very susceptible to delamination during low 

velocity impact due to large elastic moduli mismatch between the fibers and the matrix, 

which is of particular interest in this research. 

2.2 ULTRASONIC TESTING 

Ultrasonic testing (UT) is a nondestructive testing (NDT) technique that sends 

high frequency sound waves through a material to detect imperfections, discontinuities, 

and changes in material properties. Applications range from subterranean analysis to the 

detection of minute flaws in structural materials. A popular form of UT uses a pulse-

echo transducer that pulses a sound wave through a material and receives an echo 

representing any discontinuities and/or the back face. Discontinuities or defects cause 

reflection of the sound waves, and the detection of the reflected or transmitted waves 

permits the defects to be located [5]. 

The echoes can be analyzed in a number of ways. One form of analysis is the 

pulse echo A-scan. This is accomplished using a single transducer capable of 
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transmitting and receiving a signal. The A-scan will visually show the input pulse and 

back wall echoes along with any inconsistencies or defect echoes within the material on 

an amplitude versus range (time) graph as shown in Figure 2.2.1. 
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Figure 2.2.1 A-trace display of the pulse echo technique 

An ultrasonic C-scan will give a 2-D planar image illustrating where and how 

large an inconsistency is by simply storing the data over a series of A-traces as shown in 

Figure 2.2.2(a). The C-scan uses gated A-scan information to create a 2-D image of the 

material and thus the dimensions of the flaw. The image that develops is a measure of 

amplitude changes of the defect in the A-trace over a fixed time interval or gate as shown 

in Figure 2.2.2(b). The amplitude of the defect echo provides a measure of the damage 

present: the greater the damage, the higher the amplitude (relative to the surrounding 

material) and the brighter the image, shown on Figure 2.2.2(b). 
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(a) (b) 
Figure 2.2.2 C-scan travel path (a) and C-scan image of a discontinuity (b) 

Ultrasonic waves are generated by suitable transducers in which a single electrical 

"spike" of short rise time (< 10ns) is converted into high frequency mechanical vibrations 

of the solid [5]. The principal modern sources of ultrasound are created by specially cut 

crystals of materials such as quartz or ceramics such as barium titanate and lead 

zirconate. The application of an alternating electrical voltage across the opposite faces of 

a disc made of such materials produces an alternating expansion and contraction of the 

disc at the impressed frequency. This phenomenon is known as piezoelectricity. The 

transducers used in high frequency ultrasonic testing are usually made of an active 

element of piezoelectric crystal. In the case of pulse echo, a transducer will have two 

piezoelectric crystals, one for pulsing and one for receiving. Depending on the crystal 

material type, there will also be a backing material to help dampen and absorb the 

received ultrasonic energy. Finally, there is a wear plate or "shoe" that protects the 

piezoelectric crystal. Figure 2.2.3 shows a transducer made of a single piezoelectric 

crystal. 
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Figure 2.2.3 Ultrasonic transducer cutaway 

The pulse echo method is used extensively for flaw characterization and 

assessment. When the ultrasonic transducer is coupled to the surface by an appropriate 

couplant, it sends high frequency sound waves through the medium. The pulse is 

reflected either by a discontinuity or the back face and is detected by the same transducer, 

The pulses are emitted at a constant rate, and an oscilloscope can determine which pulse 

is outgoing and which is reflected or incoming. The time required for the pulse wave to 

travel through the medium and echo back to the same transducer can easily be displayed 

on an oscilloscope. A typical ultrasonic pulse echo system is shown in Figure 2.2.4. 
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Figure 2.2.4 Typical pulse echo UT system 
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Unless a low frequency ultrasonic transmission system is used, couplants must be 

applied between the inspection material surface and the transducer surface. The couplant 

provides a suitable sound path for the ultrasonic energy to transmit through. Without the 

couplant, the amount of transmitting energy would be very low due to the very low 

specific acoustical impedance of air. The amount of transmitted energy at the boundary 

of the material is proportional to the specific acoustical impedances of the couplant and 

the material given in accordance with Equation 2: 

TE=\-RE= 4 Z , Z 2
 2 (2) 

where TE = transmitted energy 
RE = reflected energy 
Z = specific acoustic impedance = pV 
p = material density 
V = wave velocity. 

For example, the percentage of reflected energy between steel and air is 100% and 

between steel and water is 88% [5]. Generally, couplants come in some form of liquid, 

gel, or oil. Important properties are to fill all surface irregularities, allow free movement 

of the transducer probe, prevent air pockets, and be easily applied and removed from the 

surface. 

As the transducer generates pulses, the sound waves propagate through a medium 

at different frequencies. The pulse shape distorts with time and distance in any medium. 

The sound wave thus weakens as a result of scattering, dispersion, and by the frictional 

motion of the particles within the solid. This wave attenuation is more pronounced in 

composites due to their anisotropic condition. Depending on the conditions being tested 

or the flaw resolution that an NDT operator requires, attenuation can be a concern. The 

attenuation of sound waves increases with increases in frequency. Ultrasonic waves are 

dampened far more rapidly than those of audible sound. The frequency used by the 

operator dictates the level of resolution achieved during the test. The lower the frequency 

used, the more penetration achieved. The drawback is that the resolution is extremely 

low. Low frequency waves because of their large periods, cannot navigate cracks like 
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high frequency waves do. High frequency waves, on the other hand, attenuate much 

faster than low frequency waves and thus have less penetration power, but high frequency 

waves generate better resolution of the flaw site. 

The ultrasonic sound beam is not uniform in intensity in length or cross section 

and is susceptible to diffraction effects as a result of the finite size of the source. There 

are extensive beam intensity fluctuations near the source, which is known as the near 

field or Fresnel zone. These high and low pressure areas are generated because the 

crystal is not a point source of sound pressure. The high and low pressure waves are 

joined into a uniform front at the end of the Fresnel zone that is a certain distance (N) 

from the piezoelectric crystal. Because of acoustic variations within the near field, it can 

be extremely difficult to accurately evaluate flaws in materials near the surface when 

using a surface contact transducer. The UltraPAC II system used in this research has a 

three axis motor system; thus, the distance between the surface of the specimen and the 

transducer can be adjusted so that near field effects can be avoided. The couplant in this 

system is simply water. The ultrasonic beam is more uniform in the far field, or 

Fraunhofer zone, where the beam spreads out in a pattern originating from the center of 

the transducer. The transition between the Fresnel and Fraunhofer zones occurs at a 

distance, N, and is sometimes referred to as the ''natural focus" of a flat or unfocused 

transducer. The near/far distance, N, is significant because amplitude variations that 

characterize the near field can make flaw evaluation difficult (see Figures 2.2.5(a) and 

2.2.5(b)). 
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N - r»arftefcd length 

heer field 

far field 

MAXIMUM 

(a) (b) 
Figure 2.2.5 Illustration of transducer in (a) 2-D and (b) 3-D showing near field along the 

acoustic axis 

The approximation of the location of the focal point (N) is a reasonably simple 

calculation for flat unfocused transducers. Given below in Equation 3 is a common 

relation used in ultrasonic testing. 

N = Djf 
Ac (3) 

where Deff = 0.97 of the crystal diameter 
f = frequency 
c = material wave velocity. 

A sample calculation using equation 3 is provided using parameters from this research. 

Diameter of transducer crystal diameter = 0.25 inches 
Frequency of transducer = 5 MHz 
Average in plane wave velocity of AS4/3501-5A = 112,200 in/s 

(0.25/rc*0.97)2 (5,000 ,000 
cycles 

N = = 0.655 inches 
4*112,200 in 
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2.3 ACOUSTIC EMISSION 

Acoustic emission (AE) can be defined as a transient elastic wave generated by a 

rapid release of energy as a result of a redistribution of stress in a material. AE studies 

have been incorporated from seismic monitoring of the earth to dislocation movements in 

stressed metals. When structures are stimulated by an external change in load, pressure, 

strain, or perhaps temperature, this induces AE activity. AE is different from any other 

form of NDT for two reasons. First, the signal has its origin in the material itself, not 

from any external sources [6]. Second, acoustic emission detects movement while most 

other methods detect existing geometrical discontinuities [6]. AE systems are often 

incorporated to monitor larger structures nonintrusively while in service. In addition, AE 

is further complicated in comparison to ultrasonic testing by the fact that the 

characteristics of the "input" or emitted signals are relatively unknown [7]. The 

characteristics of the received waveforms can be vastly different from one another 

throughout the AE test. This is because the AE source mechanism within the material 

produces considerably different waveform parameters. For example, in composites, the 

waveform associated with delaminations is quite different from the waveform 

corresponding to transverse matrix cracking. Also, due to the attenuation of the wave as 

it propagates through the material and specimen resonances, the received signal is 

significantly different from the emitted signal of the source. Typically, the global AE 

inspection is used to locate areas with structural problems, and other NDT methods are 

then used to identify more precisely the nature of the emitting defects [6]. Recent efforts 

and techniques have been implemented to estimate the residual strength or life of the 

structure, using AE amplitude distribution data. The present research effort will 

incorporate these techniques for material strength prediction using AE, and are discussed 

in greater detail later. 
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2.3.1 Acoustic Emission Theory 

Since acoustic emission is a dynamic event that exists as a point source which 

emits energy in spherical wavefronts (Figure 2.3.1), wave propagation in a semi-infinite 

medium is extremely complicated. The width and height of the wave will vary greatly 

depending on the source mechanism. AE sources generate both longitudinal and shear 

waves. When these waves contact a surface or reflect they undergo mode conversions, 

which gives rise to surface waves that are detected as AE signals. Rayleigh (surface) 

waves can be filtered out of the data acquisition system. The timing parameters within 

the data acquisition system omit these waveforms because they propagate at much slower 

wave velocities when compared to longitudinal waves. Other wave types such as Lamb 

(plate) waves are dispersive or dependant on frequency. In a solid material, wave 

velocity depends on the density and the elastic properties. Additionally, the velocity is a 

function of propagation direction in anisotropic materials such as composites, because of 

the dependence of elastic properties on direction [7]. Another problem that may be 

encountered is receiving a signal a second time as a result of reflection. However, due to 

the material used in this research, the edge support conditions during testing, and the very 

high threshold setting, reflections should not be a problem. 

AE sensor m 
Reflection/mode 
conversions/propagation 
paths-spherical wavefronts 

AE source, 
longitudinal and ^" 
shear wavefronts 

s\\ 

Figure 2.3.1 Acoustic emission stress wave 
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Wave attenuation can also have detrimental effects on AE monitoring. Previously 

discussed in the ultrasonic testing section, wave attenuation is the loss of acoustic wave 

amplitude with propagation distance. In AE, attenuation is typically frequency 

dependant, the higher the frequency, the faster the amplitude decay. When dealing with 

composites, the attenuation can be much faster due to anisotropy. When the wave 

propagates, the frictional motion of the particles will also cause the wave amplitude to 

degrade. As with ultrasonic testing, AE transducers must incorporate a couplant to 

transmit the AE signal from the material to the sensor. The couplant used in this research 

was hot-melt glue. 

When a stress wave is emitted, it will propagate through the medium and be 

received by an acoustic emission transducer. Similar to an ultrasonic transducer, an AE 

transducer has a piezoelectric crystal which converts the mechanical energy of the 

waveform into an electrical signal. The piezoelectric crystal generates a very small 

voltage, and depending on the type of AE transducer, there is either an internal or 

external amplifier that magnifies the electrical signal by 40dB or 100 times. Later, the 

signal will be amplified again, usually by 20dB, within the data acquisition system. 

Since waveforms come in a wide variety of shapes and forms (as a result of attenuation or 

different source mechanisms) the amplitude scale is logarithmic. Shown below in 

Equation 4 is an expression for the amplitude of an AE signal: 

V. 
Amplitude(dB) = 201og^- (4) 

*ref 

HereVref=l.(HiV. 

The transducers used in this research are a narrow band resonating type. These 

transducers have a high sensitivity, resonating at 150 kHz. The preamplifiers include a 

band-pass filter of 100kHz-300 kHz which filters out any low frequency or high 

frequency noise. This frequency bandwidth is considerably higher than that of noise 

associated with structural vibrations; however, it is low enough to minimize 

electromagnetic interference (EMI) [7]. A majority of all usable AE data exist within 

these frequency ranges. If an AE operator wanted to study high fidelity signal analysis 

then a broadband transducer would be used. A drawback of this technique is that all 
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noise sources must be identified. A cutaway of a broadband transducer is shown in 

Figure 2.3.2. A broadband transducer will have the damping material as backing whereas 

a narrowband or resonant transducer does not. A typical AE data acquisition system is 

shown in Figure 2.3.3. Once the signal is received, it is amplified one more time, 

processed, and saved for future reference and analysis. 

CASE 

DAMPING 
MATERIAL 

WEAR PLATE COUPLANT LAYER 

Figure 2.3.2 Acoustic emission broadband transducer cutaway 

AE 
Transducer 

Load Load 

Propagated 
Waves 

AE Source 

Amplifier Filter 

Data 
Acquisition 
Computer 

Detection 

Measurement 

Recording 

Evaluation 

Interpretation 

i i i 
Keyboard Monitor Printer 

Figure 2.3.3 Acoustic emission system 
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The parameters commonly used in AE time based data analysis are given in 

Figure 2.3.4. The amplitude is the maximum peak of the waveform signal, and it is 

calculated according to Equation 4. The threshold is a setting within the data acquisition 

system that determines the minimum signal voltage recorded. Any signals that are 

received by the transducer that are below the tlireshold are disregarded. This parameter is 

used to omit system noise. The duration of the signal is the amount of time it takes for 

the signal waveform to drop below the threshold. The rise time is the amount of time 

required for the signal to reach the maximum amplitude after crossing the threshold. 

Counts are the number of times the signal crosses the threshold. MARSE is the mean 

area under the rectified signal envelope and is more commonly called AE energy. This is 

essentially the area of the absolute value of the signal. 

Voltsf 

Amplitude 

Rise 

Threshold 

Time 

Threshold 
Crossing 

Time 

Figure 2.3.4 Acoustic emission time based waveform parameters 

One difficult task in acoustic emission is to analyze a particular waveform signal 

and correlate it to a particular source mechanism. The difficulty in source identification 

arises from the significant changes that occur in the AE signals as they propagate [7]. 

The signals are further altered by the sensors and measurement instrumentation [7]. If 

the signals can be correlated to the source mechanisms, the value of AE data can be 

significant. However, when an AE test is performed, there are often thousands of 
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recorded AE signals, and it would be extremely difficult to sort this data and categorize it 

into the various source mechanisms. For example, a composite structure might have a 

five possible source mechanisms ranging from delaminations, fiber breaks, fiber pullouts, 

to transverse and longitudinal matrix cracking. 

2.3.2 Previous Acoustic Emission Research 

At Embry-Riddle Aeronautical University there have been numerous graduate 

theses topics that have attempted to either identify certain AE parameter ranges 

associated with a particular source mechanism or correlate AE parameters to a source 

mechanism without determining what that source mechanism is. These data have also 

been used to make ultimate strength predictions through multiple linear regression 

analysis or by inputting the data to a backpropagation neural network. 

Fisher [8] used statistical analysis to group the failure mechanisms in a 

fiberglass/epoxy filament wound pressure vessel (FWPV) according to certain AE 

parameters, listed in Table 2.3.1. Ely [9] created special graphite/epoxy tensile test 

specimens to ensure that there was only one type of source mechanism emitted during 

tensile testing. After testing multiple specialized specimens, Ely generated AE 

parametric ranges to describe the three types of failure mechanisms presented in Table 

2.3.2. 

Table 2.3.1 AE parameters describing failure mechanisms of fiberglass/epoxy FWPV [8] 

AE Parameters 

Counts 

Amplitude 

Energy 

Duration 

Failure Mechanisms 

Matrix Cracking 

Low 

Low 

Low 

Short 

Delaminations 

High 

High 

High 

Long 

Fiber Breaks 

Low-Medium 

Very High 

Medium-High 

Short-Medium 
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Table 2.3.2 AE Parameters describing failure mechanisms of graphite/epoxy tensile test 

specimens [9] 

Matrix Cracking 

Longitudinal 
Splitting 

Fiber Breakage 

Amplitude (dB) 

37-49 
[42] 

40-59 
[49] 

60-84 
[66] 

Duration 
(MS) 

0-60 
[2] 

3-813 
[124] 

11-714 
[297] 

Risetime 
(us) 

0-60 
[4] 

1-74 
[30] 

25-75 
[40] 

Counts 

0-10 
[1] 

1-62 
[16] 

18-113 
[46] 

Energy 

1-6 
[2] 

1-13 
[4] 

5-186 
[27] 

As previously stated, some graduate research work has incorporated neural 

networks to classify the AE data and predict residual strength. Generally, the only AE 

data that has been applied to a neural network is the acoustic emission amplitude 

distribution histogram. Fatzinger [10] applied the acoustic emission amplitude 

distribution from 10 fiberglass/epoxy I-beams and was able to predict failure load on the 

remaining 4 beams with a worst case error of 9.5%. Fisher [8] used the AE amplitude 

distribution from fiberglass/epoxy pressure vessels that failed at varying temperatures, 

and was able to predict the burst pressure with a worst case error of 1.9%. Hill, Walker, 

and Rowell [11] used the AE amplitude distribution from 17 different graphite/epoxy 

pressure vessels made of three different resin types and were able to predict burst 

pressure with a worst case error of 3.89%. Lansing, Walker, and Russell [12] predicted 

burst pressures in 17 impact damaged graphite/epoxy and aramide/epoxy filament wound 

pressure vessels made from three different resins and produced an average 5% error 

between the predicted output and actual output. 

The AE amplitude distribution curve contains a lot of data representing failure 

mechanisms. It is has been determined that the "humps" that make up the distribution 

represent different failure mechanisms, as shown in the amplitude category in Tables 

2.3.1-2.3.2. Shown in Figure 2.3.5 is the AE distribution with multiple "humps". 

Defining what failure mechanism is represented by which hump is arguable; however, it 

appears that the neural network can predict ultimate strengths without this information. 
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40 50 60 
Amplitude [dB] 

Figure 2.3.5 Acoustic emission amplitude distribution 

2.4 NEURAL NETWORKS 

A neural network is a mathematical processing tool that consists of a set of 

algorithms that can classify or predict on complex, highly nonlinear data. These 

networks are composed of interconnected parallel processing elements (PEs) or neurons 

that calculate a simple function. Each PE in a network has input vectors which are 

converted to a weighted output that feeds to other PEs. These interconnections allow for 

the exchange of data or information. On a global scale, neural networks are able to 

converge on imprecise or noisy data, of which the physical parameters are not understood 

or extremely complex. Artificial neural networks were inspired by the massively parallel 

computational process of the human brain. Parallel computation and error adjustment 

calculations are similar to multi-neuron processing and synaptic correction that occur 

within the brain. 

A popular form of neural network is an unconstrained optimization 

backpropagation algorithm. This type of neural network consists of a feedforward 

network where each individual PE passes information onto the next PE in one direction. 

The PE first sums the weighted inputs then applies it to a transfer function and finally 

outputs a new weighted vector to the next layer of neurons as seen in Figure 2.4.1. This 
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type of network also has an architecture that exists in multiple layers, shown in Figure 

2.4.2. The first layer in a backpropagation neural network (BPNN) is the input layer and 

the final layer is the output layer. Any layers in between are called hidden layers. Each 

layer can consist of any number of PEs, and there could be multiple hidden layers. The 

limits to the network are determined by computer processing speed. The network 

architecture depends upon the complexity of the problem that the network is applied to 

solving. A BPNN is a supervised network which requires the desired output to be 

known; thus the network can learn by example. The learning capability of the network is 

a result of weight adjustments between processing elements. Initially the weights are 

arbitrary, but once the network iterates, the solution of the network is compared with the 

known output and a mean-squared error is backpropagated into certain locations in the 

network to adjust the weights, and the cycle then repeats. This error adjustment 

calculation is repeated many times until the network converges to an acceptable error 

level. 

WOO) Transfer Function 

i £ — • 

W(jn) 

Figure 2.4.1 Neuron processing element 
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2.5 MATLAB 

MATLAB is a mathematical tool that was used to analyze the ultrasonic C-scan 

data. Within MATLAB, an M-file was created with an algorithm to assess the data. The 

M-file is shown in Appendix B of this report. Initially, the image files are stored in the 

UltraPac II C-scan system and retrieved in PCX format. Later, the images are 

transformed into 16 color bitmap image files. Each pixel in an image has a color and 

each color hue is represented by a number from 0-16 (in the 16 color format). In the 

color-number format, black is represented by the numerical value of 0, while white is 15; 

the lighter the color, the higher the numerical pixel value. MATLAB opens these image 

files as a matrix array, with the pixel location and color number representing the actual 

image. Shown in Figure 2.5.1 is and example of how MATLAB represents an image. 
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Figure 2.5.1 Sixteen color C-scan image (top) and image matrix represented by 

MATLAB (bottom) 
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The image shown at the top of Figure 2.5.1 is very small, hence the distortion as seen. 

The matrix size is 23 rows by 25 columns representing a total of 575 data points. The C-

scan images used for this research were approximately a 400 by 200 matrix for a total of 

80,000 data points. To assess this much data is impractical; hence, by manipulating the 

matrix and calculating certain parameters, the image is simplified prior to inputting it to a 

neural network. The MATLAB M-file algorithm is relatively simple, in that it sums the 

rows or columns of the image matrix and then normalizes these values. Because the 

flaws or discontinuities appear as high echo amplitudes in the ultrasonic C-scan image 

file, these pixels are light colored and have a high pixel numerical value. The columns or 

rows that have more light colored pixels have a higher summation and can be represented 

as peaks in a distribution. Shown in Figure 2.5.2 is an actual C-scan image file after 

MATLAB manipulation. 

0 100 200 300 400 

Columns 

Figure 2.5.2 C-scan image (top) and MATLAB assessment (bottom) 
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CHAPTER 3 

PROCEDURE 

3.1 CARBON/EPOXY LAMINATES 

The material used in this research was AS4/3501-5A. There were two lay-up 

configurations as follows: 

[0, +/-90, 0]2S 

[0, +/-90, 0]s 

The reason for these laminate orientations is that there is a maximum propensity for 

delamination creation during impact as a result of lamina oriented at 90° angles. As 

previously stated, the interlaminar stresses associated with lamina mismatch angles are 

greatest at 90°. The laminates were cured according to the specification attached in 

Appendix A. They were created as 12 x 12 inch tiles and then cut to size using a wet-

diamond-blade cutting tool. Using a wet-diamond-blade cutting tool prevents the 

laminate from growing artificial delaminations that can develop as a result of cutting 

stresses. The impact specimens for the duration of testing were cut from the tiles into 3.5 

x 6 inch rectangles. 

3.2 IMPACT TESTING 

Once the laminates were manufactured and cut to size, they were impacted at a 

low energy level ranging from 2.5-20.0 ft-lbf. The equipment used for impact testing was 

the Instron Dynatup 9250 shown in Figure 3.2.1. The data acquisition system was 

capable of recording up to four channels. Two channels were occupied, one for the 

impulse data coming from the tup, and a second channel for measuring the dynamic load 

of the impulse by connecting an accelerometer to the drop sled. However, for this 

research, only the data from the tup were analyzed. The remaining two channels were 

not used at this time. 



Data acquisition 
system 

Impact tower 

Drop sled 
and impact 
tup 

chamber 

Figure 3.2.1 Instron Dynatup 9250 

During impact, the Instron drop tower has pneumatic rebound stoppers. These 

stoppers deflect upward after impact to catch the drop sled and prevent it from impacting 

the specimen a second time. Thus all the data presented in the results section are from a 

single impact. 

The clamping fixture for the Instron drop tower is pneumatic. Presently, this 

fixture is located in the environmental chamber. The clamping device creates a fixed 

support condition along the edges of the specimen as shown in Figure 3.2.2. Before 

actual impact, the top clamping plate pulls down as a result of the pneumatic cylinders 

and secures the specimen. It should be noted that prior to releasing the drop sled the 

pressure gauge for the pneumatic clamping device must be reading a desired pressure for 

the clamping fixture to be active. In this research, the pneumatic clamping pressure 

gauge read approximately 60-70 psi. If there is an error in the clamping fixture (thus no 

pressure and no clamped support condition), the system will impact the specimen 

regardless. Also before testing, it is recommended that the drop tower's frictional 
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coefficients and velocity measurement capability be tested and reconfigured. These tasks 

are easily completed within the software properties. 

Figure 3.2.2 Pneumatic clamping fixture 

One parameter that was used and stored within the system method was the 25 

millisecond recording range. Recording impulse information over a 25ms range is 

arbitrary. It was determined that, depending on the velocity at impact, the start gate 

might be initiated prematurely; consequently, impulse data may stop recording in 

advance if this parameter is set too low. The actual impulses last approximately 5-10ms. 

However, the resolution was not compromised because within that 25ms there are 

approximately 8,000 data points. The data recorded during impact within this 25ms 

parameter are load, impact energy, velocity, and deflection versus time. This research 

utilized the peak load during the impulse and the maximum impact energy as seen in the 

results. 
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3.3 ULTRASONIC C-SCAN TESTING 

After the laminates were impacted, they were ultrasonically C-scanned. The 

ultrasonic C-scan was accomplished using a Physical Acoustics Corporation UltraPAC II 

water immersion system. The ultrasonic transducer used for this research had an 

unfocused 0.25 inch diameter piezoelectric crystal that pulsed at 5 MHz. Shown in 

Figure 3.3.1 is the system used for damage assessment. 

Figure 3.3.1 UltraPAC II C-scan imaging system 

All scanning was done in the far field which is approximately 0.65 inches from 

the specimen surface (Equation 3). Shown in Figure 3.3.2 are the Hardware setup screen 

and the associated parameters that were used in this research. All of the images that were 

generated from the ultrasonic C-scan were to assess amplitude changes. The other 

options such as Time-of-Flight images were not used in this research. The gates shown 

in Figure 3.3.2 are represented by the small horizontal lines that are in the A-trace 

display. These gates record only information that passes through them along the 

horizontal range. The gates shown are essentially recording information at various 

depths within the laminate. The sample rate within the Sweep/Digitizer option was set 
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relatively low at 32MHz. This was due to the extraneous noise that often accompanies 

the higher sampling rate. All of the options shown will change considerably for different 

materials. It was found as a result of this research, that the parameters shown in Figure 

3.3.2 produced the best results. 

Hardi Scanner Options Report Dos File Go Zero TestInfo Quit 
up the Sueep/Di g i t izer , Pu1ser/Recei uer , Dua1 Gate Parameters < CSCAN. SE T > 
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Figure 3.3.2 Hardware setup parameters 
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3.4 ACOUSTIC EMISSION AND COMPRESSION TESTING 

After scanning the laminates ultrasonically, the test specimens were prepared for 

compression testing. Acoustic emission data were acquired during compression testing to 

determine the onset of failure. The acoustic emission data acquisition system used for 

this research was the Physical Acoustics Corporation AEwin software along with the 

DiSP data acquisition board that is capable of capturing up to 4 channels of data. The 

entire system is portable within a laptop computer. Important parameters configured 

within the AEwin software are as follows: 

• Preamp Gain = 40 dB 

• Threshold = 60 dB 

• Peak detection time (PDT) = 50 JLLS 

• Hit definition Time (HDT) = 100 |LLs 

• Hit lockout time (HLT) = 300 (is 

The values for PDT, HDT, and HLT are those recommended in the DiSP user's 

manual for composite structures. The preamp gain is the amplification within the 

transducer. The threshold was set high because of the tendency of this material to be 

"noisy". When this value was set lower, there were too many AE hits recorded, thus 

making the data images blurred due to the overlap. The peak detection time (PDT) is the 

maximum amount of time allotted to determine the true peak of the waveform signal. 

Correct PDT ensures that the true risetime and peak are recorded. If set incorrectly, the 

peak maximum and the risetime recorded, could possibly be a local maximum of a 

waveform instead of a global maximum. Hit definition time (HDT) defines when one 

waveform signal is separated from another. HDT is the allotted time span spent after the 

waveform signal drops below the threshold, thus determining the end of a hit and closing 

out the measurement process. Hit lockout time (HLT) is set to inhibit reflected signals, 

from being measured and stored. The HLT starts precisely when the HDT ends. During 

this time, the system moves the measured waveform data into its buffers. The minimum 

time setting for the DiSP system is 300 (is for this function. 
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Compression testing was accomplished using a Tinuis Olsen machine. The 

compression jig was a Boeing BSS-7260 compression after impact (CAI) fixture. Shown 

in Figure 3.4.1 is the fixture with a compression specimen and acoustic emission 

transducers installed. The fixture has adjustable channels or grooves along the sides that 

allowed the specimen to slide into it. These channels or grooves prevent the specimen 

from buckling during loading. The AE hardware consisted of two PAC R15 transducers 

and one PAC R15I transducer from Physical Acoustics Corporation. The reason for the 

using the smaller R15 transducers was due to the limited space that was available to hot 

melt glue them to the surface of the laminate. The PAC 1220A external preamplifiers 

and filters for the R15 transducers along with the complete data acquisition system are 

shown in Figure 3.4.2. The larger R15I transducer was attached to the compression jig to 

monitor the AE data that propagated into the fixture. 

Figure 3.4.1 Compression after impact (CAI) fixture with AE transducers 

Initially an attempt was made to locate the source of the failure mechanism by 

means of linear location between the two R15 transducers. However, due to the sides of 

the specimen in contact with the compression jig, much of the waveform energy 

attenuated out of the specimen, thus never reaching both transducers. It is important to 
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tape the Microdot-BNC cables down in order to prevent the transducers from popping off 

as a result of the large amount of energy released when the specimens failed. 

Figure 3.4.2 Data acquisition setup for compression testing 

3.5 NEURAL NETWORKS 

The neural network software used in this research was Neural Works Professional 

II/Plus by Neural Ware. When applying neural computing, sometimes it is difficult to 

determine what the network is converging on. This is because optimization techniques 

such as backpropagation algorithms are difficult to comprehend, especially after 

thousands of iterations. The Neural Works Professional II/Plus allows more user 

interface to adjust certain parameters, thus it helps the user understand some advantages 

to neural computing. A drawback to this software is the need to adjust all the parameters 

correctly to minimize error, which is typically a trial-and-error process. 
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CHAPTER 4 

RESULTS 

4.1 IMPACT AND COMPRESSION TESTING 

As previously stated, the test samples includes 8 ply and 16 ply laminates. Shown 

in Table 4.1 are the specimens and their corresponding impact energies, compression 

after impact (CAI) failure loads, and boundary conditions. 

Table 4.1.1 Specimen laminates and corresponding impact and compression loads 

Ply# 

8 Ply 

16 Ply 

Specimen 
# 

CDHl 
CDH2 
CDH3 
CDH4 
CDH5 
CDH6 
Bl 
B2 
B3 
B4 
B5 
B6 
CHI 
CH2 
CH3* 
CH4 
CH5 
CH6 
CI 
C2 
C3 
C4 
C5 
C6 
Al 
A2 
A3 
A4 
A5 
A6 
Dl* 
D2 
D3 
D4 
D5 
D6 

Impact Energy 
[ft-lbf] 

4.97 
5.34 
8.24 
7.15 
3.15 
3.16 

0 
0 

5.27 
5.3 

6.65 
6.67 
8.76 
8.82 
8.47 
15.54 
15.23 
15.25 
3.26 
3.4 

10.59 
10.3 

16.42 
16.35 

0 
0 

2.23 
20.2 

21.43 
20.75 

0 
0 

1.7 
1.52 
7.24 
7.23 

CAI Load 
[Ibf] 

1322.9 
1714.8 
1423.1 
1373.4 
964.46 
1025.3 
2402.5 
2295.1 
1750.0 
3057.1 
2502.0 
2997.2 
2969.7 
2974.1 

2974.1 
2941.6 
2984.4 
1298.2 
2732.0 
2398.2 
2007.2 
3317.1 
2132.7 
4936.5 
2865.6 
6531.9 
3042.2 
3910.1 
4174.8 

8367.5 
5324.7 
5987.2 
6023.5 
6292.0 

Boundary 
Conditions 

Clamped 1 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 1 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 
Clamped 

Unsupported 
Unsupported 
Unsupported 
Unsupported 
Unsupported 
Unsupported 

failure to record compression after impact load 
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Shown in Figure 4.1.1 and Figure 4.1.2 are the results from the actual impact 

testing. Overall, there were 36 samples, 12 eight ply laminates and 24 sixteen ply 

laminates. The Instron Dynatup data acquisition system gives a wide variety of 

information concerning the impulse. Peak impact load, total impact energy, plate 

deflection, impact velocity, and impact time are determined for each impact test. Figure 

4.1.1 plots two of the impulse data parameters, peak impact energy versus peak impact 

load for each batch. The peak impact load is the maximum load absorbed during the 

impulse. During impact, the variation in peak impact load can help determine material 

quality and stiffness. Figure 4.1.2 organizes the same data as in Figure 4.1.1 according 

to ply thickness. Trendlines were added to show not only the trend but also to show the 

variability in the data. As can be seen in Figures 4.1.1 and 4.1.2, the 8 ply laminates had 

very little variation in the trend when compared to the 16 ply laminates. Prior to impact 

testing, it was determined that the specimens in batch A and C were made of poor quality, 

i.e. many manufacturing discontinuities. Shown in Figure 4.1.1, the best fit coefficient of 

determination (R2) is lower for batch A and C when compared to the other 16 ply 

laminates. The trends shown in Figure 4.1.2 are a better representation of the data, 

because the curves do not enter an impossible region located below the peak impact load 

axis as shown in the trends in Figure 4.1.1. 
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All the higher energy impacts (-20 ft-lbf) on the 16 ply laminates sustained 

damage that was readily visible. The front surface had an obvious indentation that was 

identical in shape to the tup's hemispherical head, while the back surface had subtle 

separation of fibers, as shown in Figure 4.1.3(a) and Figure 4.1.3(b), respectively. The 

specimens that were impacted at energies less than 14 ft-lbf sustained damage that was 

extremely difficult to detect visually. On these specimens the only visual damage 

detectable is on the back face where there was ply separation similar but not as obvious to 

that shown in Figure 4.1.3(b). For the laminates in batch D, with the unsupported impact 

boundary conditions, the laminates with impact energies of ~7 ft-lbf sustained damage 

similar to that shown in Figures 4.1.3(a) and 4.1.3(b). 

(a) (b) 

Figure 4.1.3 Front surface (a) and back surface (b) impact damage 

During compression testing, the specimens failed by crushing inward due to the 

interply shear stresses; the resulting failure is shown in Figure 4.1.4. The guides on the 

compression fixture prevented buckling of the laminates, as previously stated. 

Figure 4.1.4 Specimen failure as a result of compression loading 
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The results from compression testing of all 36 samples, as shown in Figure 4.1.5, 

illustrate a wide variance in the data. It should be noted that the specimens in batch D are 

not included in Figure 4.1.5 due to the difference in impact boundary conditions. 

Polynomial trendlines were determined for the 8 ply and 16 ply samples. The 16 ply 

polynomial's best fit coefficient of determination, R2, is quite low correlating -24% of 

the data and the 8 ply is only 5% of the data. 
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Figure 4.1.5 Compressive load vs. impact energy 

The concave upward polynomial is the best fit trend for the data generated as a 

result of this research (shown in Figures 4.1.5 and 4.1.7). At impact energies greater than 

22 ft-lbf, it is reasonable to assume that the compressive load would drop considerably as 

a result of more impact energy; however, more research is required to justify this 

analysis. It would not be feasible to use the current trend for higher impact energies, to 

do so would result in evaluating a higher compressive load as result of a higher impact 

energy which is physically impossible. It is possible that the data points which were 

impacted at greater energy and maintained a higher CAI load is a reaction to a smaller 

damage size in the fiber and matrix interface. The damage associated with greater impact 

energies resulted in more surface damage (Figure 4.1.3); however the interply 

delaminations are smaller in area when compared to the laminates with lower impact 
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energies. Delaminations and delamination size can directly affect CAI. It is likely that 

the damage as a result of impact energies greater than 22 ft-lbf will have large interply 

delaminations and obvious surface damage or possibly penetrating damage, all of which 

would severely reduce the CAI load. 

Previous experimental research has also shown a concave upward polynomial 

trend similar to that shown in Figures 4.1.5 and 4.1.7. Prichard and Hogg [14] studied 

the role of compression after impact (CAI) testing in 16 ply thermosets and 

thermoplastics with laminate orientation of [-45, 0, +45, 90]2s, which produced a concave 

upward parabolic trend when compressive stress versus impact energy data is plotted for 

the thermoset. Dost et al. [13] conducted studies on a wide variety of laminate stacking 

sequences consisting of 24-32 plies made of IM7/8551-7 material. While the best fit 

curve was not generated, the same concave upward trend was evident from the data plot. 

As a result of CAI, it is noted that almost all of the 8 ply laminates and few of the 

16 ply laminates failed at locations other than the impact damaged region. The locations 

for failure were most often in the corners of the laminate. At these positions, there are no 

guides on the compression jig to prevent buckling. Shown in Figure 4.1.6(a) is one of 

four possible locations for this type of free-edge buckling failure to occur. The buckling 

is an interply failure in which the plies separate in a delamination type fashion as shown 

in Figure 4.1.6(b). Also, because the specimens were cut by hand using a wet-diamond-

blade cutting tool, the edges are not perfectly straight. Therefore, the edges that are 

facing the bottom or top of the fixture did not fit exactly flush. Stress concentrations 

developed at these regions where only part of the edge face supported the applied 

compressive load. Because of this type of failure occurred in almost the entire 8 ply 

laminates, the difficulty associated with C-scanning these thin specimens, and the poor 

coefficient of determination (R2) shown in Figure 4.1.5, the rest of the analysis and 

results herein will concentrate on the 16 ply laminates only. 
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Ply Separation 

(a) (b) 

Figure 4.1.6 (a) Free-edge compression failure location (b) ply separation failure 

Shown in Figure 4.1.7 is a plot of compressive load versus impact energy that 

includes the unsupported batch D specimens. A trendline was also added to the entire 16 

ply sample set. Although the batch D decreases the variability of the polynomial 

trendline when compared to Figure 4.1.5, it should be noted that the impact support 

conditions of this batch are different than the rest of the 16 ply specimens. Performing a 

statistical analysis of the data, the confidence interval and prediction interval at the 95% 

confidence level are included in Figure 4.1.7. It can be concluded that 95% of all the 

given data will fall between the confident intervals, and 95% of all future data will fall 

between the prediction intervals. As a result of the high variance in the data, the 

confidence intervals and prediction intervals are extremely broad around the best fit data 

trend, as can be seen in Figure 4.1.7. For example at an impact energy of 20 ft-lbf, the 

difference between the confidence interval and the trend is +/- 40%, and the difference 

between the trend and the prediction interval is +/-121% at an impact energy of 15 ft-lbf. 
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Figure 4.1.7 Compressive load versus impact energy (including batch D) 

It is a commonplace, to define data points outside the confidence interval as 

outliers. Thus, for this analysis, there would be eight outliers in the data shown in Figure 

4.1.7. As demonstrated in this research, there is a lot of variability in the data, especially 

on the lower end of the impact energy realm. In the analysis previously demonstrated in 

Figure 4.1.7, the 8 data points are not accounted for when plotted on a simple 

compressive load vs. impact energy plot, thus they are suspected to be outliers. However, 

as evidenced by the low R2 value, it is more reasonable to conclude that there are more 

variables than impact energy that affect compressive load. 

Upon reviewing the concave upward polynomial trend shown in Figures 4.1.5 and 

4.1.7 and examining the impact specimens, it should be noted that the specimens located 

to the left of the apex of the trendline (Figure 4.1.7) had barely visible impact damage. 

The specimens to the right of this apex showed visible damage but without through 
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penetration. Thus the apex of the parabola indicates approximately where transition 

between BVID and visible damage occurs for the 16 ply AS4/3501-5A [0, +/-90, 0]2S 

laminates. 

4.2 NEURAL NETWORK APPLICATIONS 

As previously stated, the software used for creating and assessing the neural 

network is Neural Works Professional II/Plus. The network type used was a 

backpropagation algorithm. Many different network architectures with various 

parameters were constructed and tested; plus it was concluded that the data from acoustic 

emission offered no additional information for the network to converge on. 

Complications arose during compression testing due to data acquisition and the 

compression test fixture. The laminate sits in the CAI fixture and all four sides are 

touching the fixture. The rubbing noise associated with loading and the mode 

conversions and energy loss of the AE signal due to the laminate in contact with the 

fixture at all times presented a problem. Also, due to the laminate material quality being 

different for the various batches, the acoustic response was also very different. As can be 

seen in Appendix C, some laminates were extremely "noisy" while others were "quiet" 

with less AE hits. The data used herein as the input to the neural networks are strictly 

limited to UT data only. The output of the neural network is the residual compressive 

load. The actual data used for the neural networks for batches A, C, CH, and D is given 

in Appendix E. From every UT image, 50 to 100 data points (depending on network 

architecture) are taken as the summation of columns or rows. MATLAB performed these 

summations and transferred the results as a text (.txt) file. These 50 data points surround 

the damage zone and are associated with peaks in the image plots shown in Appendix B. 

Discrete values that range from 0 to 1 from the UT image serve as input vectors for each 

neural network. Some of the more complicated networks also contained binary 

categorical variables that exist as Is or 0s. The UT data is followed by the corresponding 

compressive after impact load. Generally, the training data consisted of the highest, the 

lowest, and medium values of the CAI loads. The data in the testing set consisted of in-

between CAI loads. Neural networks have difficulty predicting on a loads beyond what 
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they have been trained for. The impact energy associated with each specimen is not 

included in the input data. Thus these networks were designed to make compressive 

strength predictions on the information from the UT images alone. 

One parameter that was consistently used in every neural network is the 

SAVEBEST command within the Neuralworks Professional II/Plus software. This 

feature trains and tests the network alternately, and continues to do so until the network 

performance begins to degrade. The SAVEBEST command trains the network to the 

lowest error available for the particular network and prevents the network from 

overtraining. The neural networks that were designed for each batch, the SAVEBEST 

options trained down to within 0% error, indicated in Tables 4.2.1-4. However, for the 

networks that contained all the data, the SAVEBEST command did not train quite as 

close (Table 4.2.5). Depending on the type of input data, SAVEBEST determines the 

optimized training and testing network without overtraining. Networks with smaller sets 

of training data train closer to the actual output as seen in Tables 4.2.1-4. 

The first networks constructed were trained and tested for each specimen batch. 

Listed in Table 4.2.1 are the neural network predictions for the batch CH. Shown in 

Figure 4.2.1 are the optimized neural network parameters used to generate the results for 

batch CH. The network consisted of 51 input processing elements (PE) with two hidden 

layers consisting of 20 PEs apiece. The learning coefficient ratio of 0.002 was set as low 

as possible to allow the network to iteratively converge on the absolute minimal error. 

The momentum was set a 0.4 to prevent the network from converging on a point that is a 

local minima instead of the global minima. The learning rule that produced the most 

accurate results in all testing in this research was the Delta Rule. This rule calculates the 

error between the network output and the actual output and is later altered by the 

derivative of the transfer function and backpropagated into the network layers. This 

learning rule has an epoch of 1, which means that it calculates weight changes after each 

iteration. Fast learning was applied and this helped the network converge much faster 

with less error in the prediction results. This function is only applicable to the Delta rule. 

In the backpropagation networks generated by Neural Works Professional II/Plus, all 

layers are connected with a full bias which serves as an offset to the network's output. 
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Table 4.2.1 Neural network prediction results for batch CH 

Data 
Set 

Training 

Testing 

Specimen 

CH2 
CH5 
CH6 
CH1 
CH4 

Impact Energy 
(ft-lbf) 
8.82 
15.23 
15.25 
8.76 
15.54 

Compressive 
Load (lbf) 

2974.1 
2941.6 
2984.4 
2969.7 
2974.1 

Predicted 
Compressive Load 

2974.10 
2941.60 
2984.40 
2968.08 
2969.95 

Abs%Diff. 

0.00 
0.00 
0.00 
0.05 
0.14 

Average error = 0.04 

ttPEs 

Input 151 
Hid 1 |20 

Hid 2 (20 

Hid 3 JO 

Output J1 

LCoef 

0.002 

0.002 

0.002 

0.002 

Learn Rule Transfer 

Momentum 

Trans. Pt. 

LCoef Ratio 

P Offset 

0.400 ! f ' K H s i S I W [Linear 
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Figure 4.2.1 Network input parameters for batch CH 

Listed in Table 4.2.2 are best results for the batch A specimens. It should be 

noted that the batch A laminates were made of very poor quality, yet the network was 

able to make relatively good predictions. Figure 4.2.2 shows some different parameters 

incorporated to help the network converge better. Similar to the batch CH specimens, the 

batch A specimens required a double hidden layer of PEs or neurons to obtain the desired 

results. Two parameters that were different in this network are the Gaussian initiation 

and the linear output. Gaussian initiation creates a Gaussian distribution rather than a 

uniform distribution for noise generation. Neural networks respond very well to "noisy" 

data. The Gaussian function helps to create artificial noise for the inputs. As a result of 

this research, it has been determined that this function produces good results when data is 

somewhat linear. The linear output parameter forces the final output PE to have a linear 
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transfer function. In this network, all hidden layers had a hyperbolic tangent transfer 

function with the final layer containing a linear transfer function. It appears that the 

when a network is predicting similar results using a linear transfer function (TF) or 

nonlinear TF the linear output option will take advantage of both TF types and produce 

the best results. A network was also trained using 3 training sets instead of the 4 shown 

in Table 4.2.2. Here the results were similar with an average data set error of 5.37% with 

a worst case of 14.7%. 

Table 4.2.2 Neural network prediction results for batch A 

Data 
Set 

Training 

Testing 

Specimen 

A2 
A3 
A5 
A4 
A6 
A1 

Impact Energy 
(ft-lbf) 

0 
2.23 
21.43 
20.2 

20.75 
0 

Compressive 
Load (lb,) 

2865.6 
6531.9 
3910.1 
3042.4 
4174.8 
4936.5 

Predicted 
Compressive Load 

2865.60 
6531.90 
3910.10 
3042.40 
4492.73 
4338.07 

Abs%Diff 

0.00 
0.00 
0.00 
0.00 
7.62 
12.12 

Average error 3.29 

Input 

Hid 1 

Hid 2 

Hid 3 

Output 

ttPEs 
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11 

11 
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Figure 4.2.2 Network input parameters for batch A 

The batch C specimens are similar to the batch A, in that the material construction 

quality was extremely poor. According to the confidence interval shown in Figure 4.7, 

there could be 3 outliers in this batch along with 2 outliers in the batch A. Given in Table 
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4.2.3 are the network results, and shown in Figure 4.2.3 are the input parameters and 

network architecture. As indicated in Figure 4.2.3, this network consisted of 3 hidden 

layers with 20 PEs apiece. As can be seen, this network was extremely complicated and 

was only feasible due to the high clock speed in present day computers. 

Table 4.2.3 Neural network prediction results for batch C 

Data 
Set 

Training 

Testing 

Specimen 

C1 
C3 
C5 
C6 
C2 
C4 

Impact Energy 
(ft-lbf) 
3.26 
10.59 
16.42 
16.35 
3.4 
10.3 

Compressive 
Load (lbf) 

1298.2 
2398.2 
3317.1 
2132.7 
2732 

2007.2 

Predicted 
Compressive Load 

1298.20 
2398.20 
3317.10 
2132.70 
2812.41 
2340.77 

Abs%Diff 

0.00 
0.00 
0.00 
0.00 
2.94 
16.62 

Average error: 3.26 
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Figure 4.2.3 Network input parameters for batch C 

The batch D specimens were the final 16 ply batch created and these laminates 

had excellent material quality. However, during impact testing, the pneumatic clamped 

failed; thus, the laminate was simply resting on the clamp head during impact. The 

damage was much greater as a result of this impact boundary condition. Presented in 

Table 4.2.4 are the results of the network prediction. Figure 4.2.4 displays the network 

architecture and the network parameters. The batch D was difficult to train and test with 

47 



any great accuracy. Hence the training data consisted of four data sets with testing done 

on only one. 

Table 4.2.4 Neural network prediction results for batch D 

Data 
Set 

Training 

Testing 

Specimen 

D2 

D3 

D5 

D4 

D6 

Impact Energy 
<ft-lbf) 

0 

1.7 

7.24 

1.52 

7.23 

Compressive 
Load (lbf) 

8367.5 

5324.7 

6023.5 

5987.2 

6292 

Predicted 
Compressive Load 

8367.50 

5324.70 

6023.50 

5987.20 

5547.66 

Abs %Diff 

0.00 

0.00 

0.00 

0.00 

11.83 

Average error : 2.37 
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Figure 4.2.4 Network input parameters for batch D 

For real world applications, it is be more reasonable to make predictions on 

composites that are created from multiple material batches; therefore the following 

networks were trained on all the data from all four batches. Given in Table 4.2.5 are the 

results from three different networks with variations in input data type and network 

architecture. The highlighted values are the worst case percent differences. Each of 

these models used thirteen training sets and tested on nine. 



Table 4.2.5 Neural network output from three different networks for all 16 ply data 

Data 
Set 

c 

CO 
1 -

H 

c 
w 
H 

c „ ^ l m a n Compressive Specimen , r Load 
D2 8367.5 
D3 5324.7 
D5 6023.5 

CH2 2974.1 
CH5 2941.6 
C1 1298.2 
C3 2398.2 
A4 3042.4 
C4 2007.2 
C5 3317.1 
A2 2865.6 
A3 6531.9 
A5 3910.1 

CH1 2969.7 
CH4 2974.1 
C2 2732 

CH6 2984.4 
C6 2132.7 
A1 4936.5 
A6 4174.8 
D4 5987.2 
D6 6292 

Prediction A U „,_..„ 
Model 1 Abs%Diff 

8147.97 1.91 
5354.31 0.10 
6126.12 9.05 
2971.88 0.16 
2950.92 1.33 
1474.13 2.09 
2354.86 1.88 
3038.96 0.68 
2010.24 0.04 
3329.10 0.98 
2873.97 0.17 
6582.78 0.23 
3906.68 1.59 
2554.67 7.46 
2800.28 27.69 
2802.67 166.88 
1761.55 56.01 
2408.62 49.03 
5322.09 16.79 
2864.08 37.37 
6373.27 55.22 
6442.77 44.98 

AVE ERR = 21.89 

Pir!ic?;n Abs%Djff 

Model 2 8207.63 2.62 
5330.21 0.56 
5478.65 1.70 
2969.48 0.07 
2980.78 0.32 
1325.35 13.55 
2353.13 1.81 
3021.86 0.11 
2006.50 0.15 
3284.46 0.36 
2870.49 0.29 
6517.12 0.78 
3972.15 0.09 
3191.22 13.98 
3797.77 5.84 
7291.26 2.59 
1312.96 40.97 
3178.42 12.94 
5765.50 7.81 
2614.78 31.40 
2681.20 6.45 
9122.00 2.40 

AVE ERR= 6.67 

P ' e d i C t ; ° n AbsVoDiff 
Model 3 
8392.17 0.29 
5401.99 1.45 
6335.95 5.19 
2988.89 0.50 
2998.41 1.93 
1604.40 23.59 
2270.40 5.33 
3042.52 0.00 
2104.19 4.83 
3234.11 2.50 
2893.17 0.96 ' 
6553.96 0.34 
4049.04 3.55 
3045.20 2.54 
3085.72 3.75 
3302.53 20.88 
3123.53 4.66 J 
2084.57 2.26 
5187.63 5.09 
3930.74 5.85 
7842.18 30.98 
6989.55 11.09 

AVE ERR= 6.25 | 

Prediction Model 1 

This neural network consisted of 50 PEs from the columns and 50 PEs from the 

rows. It was intended to take the data from the UT image and find the normalized sums 

of rows and columns in an attempt to better represent the input data. The network input 

parameters are shown in Figure 4.2.5. As indicated in Figure 4.2.5, the architecture for 

this network is large with three hidden layers consisting of 60, 50, and 40 PEs 

respectively. This network trained well with low error; however, its prediction capability 

was less accurate with a worse case of 167% error. 
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Figure 4.2.5 Network parameters for the prediction model 1 

Prediction Model 2 

This neural network consisted of the summation of rows and columns with 50 PEs apiece 

and 4 categorical variables resulting in 106 input PEs. The four categorical type 

variables included in the input data set are binary numbers existing as Is or Os. The first 

variables discriminate the different support conditions, i.e. unsupported boundary 

conditions are represented by 0 and clamped conditions are represented by 1. The second 

categorical variables are for the failure types. Those laminates that failed by crushing 

within the damage region are represented by 1 while laminates failing at areas other than 

the damage region are represented by 0. The final categorical is shown below as 

variables that discriminate the different batches. This neural network architecture 

consists of three hidden layers with 10 PEs apiece. Other network parameters are the 

same as shown in Figure 4.2.5. 

• A:0 0 

• C:0 1 

• D: 1 1 

• CH: 1 0 



Prediction Model 3 

This model included only the summation of columns and the same categorical 

type variables as previously stated for a total of 55 input PEs. The architecture was the 

same as model 2 with three hidden layers containing 10 PEs apiece. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

Neural Network Analysis 

• Through the use of neural computing, it appears that a backpropagation algorithm 

is capable of predicting ultimate compressive strength using the data from an 

ultrasonic image of a carbon/epoxy laminate subjected to low velocity impact 

damage. This analysis is applicable to real world situations where the impact 

energy is unknown and an image of the damage region is easily attainable. 

• Some batches had artificial discontinuities accidentally created during 

manufacturing, the UT data picks up these flaws while the AE signal is distorted. 

When the neural network is looking at the UT image and it sees the flaws, it is 

able to make an accurate prediction. Determining if the flaw is artificial or a 

result of impact damage is irrelevant; the AE data cannot make the distinction 

thus causing the networks using this data to make false predictions. 

• The data that could possibly be outliers in the statistical analysis are accurately 

predicted on as a result of neural computing. Thus, from this research, neural 

computing offered more accurate prediction capability than statistical analysis. 

Statistical Analysis 

• In the compressive load versus impact energy plot, there is a wide variance in the 

data, especially in the lower impact energy realm. As a result, the prediction 

intervals are very broad around the best fit polynomial trend. Future data point 

prediction is therefore not accurate. 

• The polynomial trend is the best fit trend for the data in this research. Using the 

current trend for determining compressive loads at higher impact energies is not 

advisable. Due to the concave upward parabola representing the trend in the data, 

specimens impacted at energies greater than 22 ft-lbf would result in higher 

compressive loads; this is physically impossible. 
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• The specimens in batches A and C were constructed poorly containing 

manufacturing defects. All of the specimens in batch D were impacted with 

unsupported boundary conditions resulting in greater damage. Many of the 

specimens that are made from batches A, C and D were determined as outliers in 

the statistical analysis yet the neural network is able to make predictions on these 

same data points 

Addendum 

• The initial goal was to make predictions to within a +/-5% error. For batch CH 

this was possible. Other batches and associated neural networks had some 

promising results, while overcoming the differences in material quality between 

each batch and in some cases different support conditions during impact, the best 

network that was trained using all the batches made predictions with an average 

error of 6.25% and a worse case error of 30%. 

• Added categorical type variables helped the neural networks converge with more 

prediction accuracy. However, this may not be required if the different batches 

had been constructed with similar material properties. Also, the network built 

using data from the rows, columns, and categorical variables did not predict quite 

as well as the network built with just columns and categorical variables. The 

added data from the rows may present a problem causing the network to converge 

on a false minima from the added variables. More neural network testing is 

required to validate this hypothesis. 

• Acoustic emission data gathered during compression loading was determined to 

not be used as inputs to the neural network. This research was more concerned 

with making predictions using the UT image alone. 

5.2 RECOMMENDATIONS 

• The 8 ply laminates were too thin for this type of compression testing. The 

Boeing BSS-7260 CAI fixture was designed for much thicker laminates. The 8 

ply laminates failed at regions other than the damage zone. Also, the UT 
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capabilities for the 8 ply were difficult to establish due to the defect echo being 

very close to the front or back wall of the A-trace in a C-scan. The 16 ply 

laminates were close to being too thin as well. Some laminates failed during 

loading at areas other than the damage region. For future testing, it is 

recommended that thicker laminates be used. 

• Even though, there was a large data set of 16 ply laminates, each batch was 

different. The larger networks trained on the thirteen samples and tested on nine, 

but the batches that were trained and tested on had very different material 

qualities. It is recommended that for future testing, during material creation, 

special attention should be given to creating all laminate batches exactly the same. 

• When building the neural networks, it was found that the network architecture and 

the organization of the input data had the largest effect on the prediction results. 

Finding the optimal network is a trial and error process using the Neural Works 

Professional II/Plus software. It was attempted to use the software Predict by 

NeuralWare which builds the most optimized network architecture based on the 

data inputted. Presently, the prediction results from this software are worst than 

those posed by the Professional II/Plus software. It could be possible to find a 

more accurate prediction network than the architectures presented in this research 

using the same data. Future research could use the same data and concentrate on 

finding optimal network architectures. 

• The MATLAB algorithm used in this research is very simple in that is sums the 

rows or columns and normalizes the data. There are likely better ways of 

quantifying the UT image. Future research could stress this point and find a 

better measure of the image for the network to make predictions on. 
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APPENDIX A 

AS4/3501-5A PRODUCT DATA SHEET 
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HERCULES CARBON PREPREG TAPE 
AS4/3501-5A 

HERCULES@ AS4/3501-5A carbon prepreg tape is an amine-cured epoxy resin 
reinforced with unidirectional carbon fibers. The reinforcements are Hercules continuous 
Type AS4 carbon filaments, surface-treated to increase the composite shear and 
transverse tensile strength. Hercules 3501-5A resin was developed to operate in 
temperature environments of 350°F (177°C). AS4/3501-5A prepreg is recommended for 
general-purpose structural applications. 

Typical Composite Properties 
0° Tensile strength at 77° F (25° 
0° Tensile modulus at 77°F 
0° Compression strength at 77°F 
0° Flexural strength 

At 77° F 
At 350° F (177° C) 

0° Flexural modulus 
At 77°F 
At 350°F 

Short-beam shear strength 
At 77°F 
At 350° F 

Fiber volume 
Cured-ply thickness 

C) 
U.S. Units 
310,000 psi 
21.5 xlO6 psi 
240,000 psi 

250,000 psi 
175,000 psi 

19.5xl06psi 
18.5xl06psi 

18,500 psi 
9,500 psi 
62% 
5.2 mils 

SI Units 
2, 139 MPa 
169 GPa 
1,656 MPa 

1,725 MPa 
1,208 MPa 

135 GPa 
128 GPa 

128 MPa 
66 MPa 
62% 
0.13 mm 

Typical Prepreg Characteristics 
Fiber area weight 
Standard width 
Approximate yield 

At 42% resin content 
At 35% resin content 

Geltimeat350°F(177°C) 
Volatile content, % by weight 
Out time at room temperature 
Shelf life at 0°F(-18°C) 

4.4 oz/yd 
12 in. 

18.8 ft/lb 
21.2 ft/lb 
3-7 minutes 
l%max 
10 days min 
12 months 

150 g/nT 
30.5 cm 

12.6 m/kg 
14.2 m/kg 
3-7 minutes 
l%max 
10 days min 
12 months 
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Suggested Cure Cycle 

1. Pull 20-in. (508-mm) minimum vacuum on the part. . 
2. Place the part in the autoclave 
3. Raise the temperature to 225°F (107.2°C) in 45 to 75 min. 
4. Pressurize the autoclave to 85 +/- 5 psi (59.8 +/- 3.5 g/mm2). 
5. Hold at 225°F (107.2°C), 85 psi, and vacuum on the part for 50 to 60 min 
6. Raise the temperature to 350°F (176.7°C) in 45 to 75 min. Hold for 60 min. 
7. Cool the part to 150°F (65.5°C) in not less than 45 min. Maintain the pressure and 

vacuum. 
8. Remove the part from the autoclave 
9. Post cure it at 370°F (187.8°C) for 3 hrs. (This is recommended to develop optimum 

properties at 350°F) 

Handling and Storage 

Composite properties may be degraded if the prepreg is contaminated by incompatible 
materials such as grease, dust, and dirt. Prepreg tape can be held at room temperature for 
short periods of time. Before placing the prepreg in low-temperature storage, put it in a 
clean polyethylene bag and heat-seal the edges. When removing it from low temperature 
storage, do not bend or twist it. Allow the bag and prepreg to warm to room temperature 
before opening them; this prevents fiber breakage and moisture contamination. 



APPENDIX B 

MATLAB IMAGE ASSESSING M-FILE 
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% 

% To run this file type: readlmage filename.type % 
% Currently, this file has only been tested on bitmap files h 

^Revision Date: March 7, 2003 % 
^Revised by: Levavie Indieka 
^Revision 2 Date: April 15, 2003 
^Revised by: Christopher Hess (added the row summation variable) 
% 

function readlmage(aa) 

% This reads the image file into the matrix 'B' and stores the associated 
% colormap in the matrix 'map^1 

[B,map_b] = imread(aa); 

h This sums up the columnar or row elements of the array and then takes the 
% transpose 
cr = sum(B); VTake away or add (%) to sum the rows or columns accordingly 
ccrr = cr •; 
%cr = sum(B,2); VTake away or add (%) to sum the rows or columns accordingly 
%ccrr = cr; 
k Gets the number of rows 'm1 and columns 'n' 
[m,n]=size(ccrr); 
% Finds the maximum value in the matrix 
g = max(ccrr); 
h Normalizes the matrix 
gg = ccrr/g; 
% Plotting data 
% Format 
% - first image is the image file 
h - second image is a scatter graph of sum of the columns 
subplot(2,1,1); image(B) 
title('Image of the Test Specimen') 
subplot(2,l,2); plot(gg) 
title('Scatter Plot of the Sum of Colours in each Column') 
xlabel('Columns') 
ylabel('Summed and Normalized Columns') 

H Writes to a text file 
dlmwrite('imageOut.txt', gg , ' ' ) ; 
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MATLAB IMAGE ASSESSMENT 
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APPENDIX D 

ACOUSTIC EMISSION AMPLITUDE DISTRIBUTION 
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APPENDEX E 

NEURAL NETWORK INPUT DATA FOR BATCHES A, C, CH, AND D 
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c 
'5 
2 

.5 
CO 

A2 

A3 

A5 

A4 

A6 

Al 

0.61202 0.73333 0.67213 0.77814 0.67541 0.75847 0.7082 0.79235 0.71585 0.65355 0.55082 

0.58798 0.4765 0.76284 0.66667 0.78907 0.72568 0.66776 0.5825) 0.7235 0.66448 0.83279 

0.75683 0.84098 0.77923 0.84153 0.80437 0.77486 0.72842 0.82787 0.78033 0.79399 0.74863 

0.75082 0.70164 0.69945 0.64317 0.65683 0.57486 0.83934 0.75847 0.86557 0.80984 0.81967 

0.71585 0.76284 0.6612 0.6623 0.57596 0.79563 0.70929 2865.6 

0.8527 0.86361 0.91162 0.89525 0.91926 0.90616 0.8898 0.8838 0.91053 0.89798 0.91217 

0.90398 0.88925 0.88707 0.8958 0.89034 0.89416 0.89198 0.8227 0.83361 0.87343 0.85543 

0.93726 0.91326 0.99564 0.98091 0.95254 0.9449 0.90398 0.89416 0.86579 0.86961 0.85597 

0.85597 0.91544 0.90726 0.87834 0.89634 0.88762 0.88816 0.9018 0.88052 0.86907 0.86361 

0.87725 0.87834 0.86743 0.8647 0.84888 0.85106 0.85925 6531.9 

0.94865 0.90929 0.89174 0.96662 0.94994 0.91528 0.91314 0.96021 0.9448 0.9003 0.8973 1 

0.91699 0.90757 0.93154 0.93496 0.94138 0.93924 0.90458 0.89816 0.92597 0.93068 0.93282 

0.93282 0.97261 0.95721 0.95208 0.94138 0.94994 0.93881 0.96448 0.94566 0.90372 0.90543 

0.91955 0.91271 0.9341 0.92041 0.95721 0.96277 0.95978 0.93753 0.97518 0.9709 0.94223 

0.91399 0.90929 0.89816 0.94865 0.94737 0.95935 0.94608 3910.1 

0.89506 0.90292 0.84343 0.90123 0.83109 0.92088 0.83446 0.94837 0.9119 0.93098 0.89226 

0.91302 0.85859 0.93266 0.87991 0.97363 0.95118 0.94557 0.90909 0.96914 0.95118 0.94388 

0.91077 0.9798 0.95791 0.97475 0.9147 0.90965 0.8743 0.92031 0.88608 0.9596 0.92031 

0.92705 0.89562 0.96857 0.94052 0.95567 0.88833 0.96745 0.90685 0.94837 0.9046 0.92144 

0.85073 0.87991 0.83333 0.90348 0.84624 0.96352 0.92649 3042.4 

0.94138 0.94397 0.93664 0.94741 0.93879 0.96767 0.94612 0.97241 0.95388 0.93664 0.92457 

0.95517 0.94655 0.97414 0.97284 0.98534 0.97931 0.97241 0.95862 0.94957 0.94353 0.98664 

0.97672 0.99871 0.98664 0.99957 0.98922 0.9806 0.96293 0.97931 0.96164 0.97457 0.97198 

0.94526 0.94569 0.93922 0.93491 0.9875 0.98405 0.98147 0.96422 0.91509 0.92284 0.91466 

0.90431 0.95474 0.93017 0.92845 0.92414 0.89957 0.89828 4174.8 

0.19363 0.12995 0.59725 0.51291 0.7926 0.74225 0.90361 0.8821 0.92814 0.9247 0.94664 

0.94062 0.93718 0.95095 0.89974 0.91394 0.9148 0.9062 0.9531 0.9475 0.93718 0.9475 

0.9389 0.93373 0.99828 1 0.92126 0.94191 0.92298 0.9148 0.95869 0.95525 0.94148 0.93503 

0.93503 0.94578 0.929 0.92556 0.93589 0.9247 0.9191 0.9191 0.93847 0.93718 0.95697 

0.95998 0.95095 0.93976 0.93589 0.94234 0.92599 4936.5 
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C3 
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C2 

C4 

0.90034 0.93113 0.91825 0.91321 0.91097 0.91825 0.91153 0.97256 0.96697 0.95017 0.95073 

0.93225 0.91825 0.91041 0.88578 0.88746 0.86786 0.91265 0.89026 0.96081 0.93785 0.98488 

0.97088 0.96305 0.96025 1 0.99664 0.97032 0.96529 0.97368 0.95801 0.94513 0.94121 0.9037 

0.90482 0.91041 0.91769 0.94513 0.95017 0.97984 0.9692 0.96081 0.94793 0.86954 0.86842 

0.89978 0.90538 0.90705 0.90146 0.9009 0.90538 1298.2 

0.97448 0.9637 0.9308 0.94214 0.95973 0.95349 0.92286 0.91889 0.93647 0.93704 0.9325 

0.9342 0.92853 0.93647 0.91492 0.91548 0.89166 0.88088 0.88145 0.8962 0.95973 0.95292 

0.96143 0.97277 0.96427 0.96256 0.93137 0.91889 0.95179 0.95292 0.9359 0.92456 0.88486 

0.87181 0.8667 0.87011 0.90868 0.8928 0.91662 0.91889 0.91548 0.91548 0.93193 0.92683 1 

0.90244 0.90698 0.9013 0.90017 0.92002 0.91548 0.88372 2398.2 

0.92363 0.86734 0.86343 0.88907 0.88462 0.93311 0.91304 0.91193 0.90134 0.9175 0.91137 

0.9214 0.90412 0.89409 0.90357 0.90245 0.88462 0.91137 0.88239 0.93032 0.90468 0.95318 

0.93757 0.9777 0.95931 1 0.98829 0.99275 0.98941 0.94705 0.94593 0.94537 0.93757 0.96656 

0.98161 0.98551 0.99387 0.95318 0.9476 0.89855 0.90078 0.91193 0.92085 0.94649 0.9359 

0.94816 0.94147 0.91249 0.9214 0.91583 0.91862 3317.1 

0.93363 0.90942 0.91076 0.89372 0.90314 0.90538 0.9148 0.89731 0.91031 0.90135 0.90942 

0.91659 0.92063 0.89013 0.88969 0.89462 0.88475 0.9278 0.9278 0.93408 0.9278 0.93991 

0.93498 0.96009 0.95695 0.99058 0.98565 0.95964 0.96188 0.93901 0.93049 0.94126 0.95112 

0.88969 0.90269 0.88117 0.90045 0.92063 0.9148 0.90135 0.90314 0.90987 0.91256 0.93363 

0.93857 0.93184 0.93587 0.92063 0.913 0.9296 0.93543 2132.7 

0.71879 0.75591 0.70416 0.82621 0.75028 0.85602 0.79753 0.86614 0.82677 0.84364 0.78853 

0.8144 0.7694 0.82902 0.75703 0.83352 0.76997 0.85714 0.80427 0.80427 0.77334 0.84814 

0.81215 0.93982 0.92407 1 0.97525 0.92688 0.9207 0.88695 0.86839 0.91114 0.9072 0.88808 

0.88583 0.95332 0.95894 0.96569 0.95388 0.96007 0.95163 0.94826 0.97075 0.95163 0.95276 

0.94151 0.91732 0.90157 0.89089 0.88358 0.85489 2732 

0.93018 0.91498 0.91892 0.9116 0.92736 0.92455 0.92849 0.93412 0.93975 0.91498 0.90541 

0.88345 0.88682 0.94369 0.94369 0.92849 0.9268 0.93131 0.95327 0.93863 0.94257 0.9482 

0.95158 0.96791 0.96622 1 0.99662 0.93919 0.94707 0.92173 0.93356 0.90259 0.92005 0.9589 

0.96509 0.93187 0.93694 0.95045 0.96622 0.91836 0.92736 0.89245 0.90484 0.91047 0.90597 

0.90428 0.90822 0.9482 0.9375 0.93018 0.92568 2007.2 
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cD 

CH2 

CH5 

CH6 

CHI 

CH4 

0.83962 0.87433 0.89252 0.86119 0.87702 0.85748 0.84838 0.86557 0.89252 0.87399 

0.8969 0.87163 0.8777 0.88949 0.90937 0.97473 0.97305 0.96867 0.97372 0.97642 0.95586 

0.9316 0.93464 0.95216 0.98956 1 0.95384 0.91375 0.92655 0.9407 0.91611 0.88848 

0.86961 0.90229 0.87197 0.85546 0.84299 0.83794 0.86186 0.8723 0.86489 0.82817 

0.83457 0.84164 0.83726 0.84569 0.85883 0.8467 0.83187 0.85647 0.84097 2974.1 

0.95904 0.94954 0.97837 0.97608 0.93775 0.93873 0.95839 0.9479 0.93742 0.91678 

0.91907 0.95937 0.93807 0.9597 0.95511 0.94135 0.93775 0.94463 0.93709 0.94299 

0.92955 0.92169 0.93447 0.94397 0.96887 1 0.97444 0.9597 0.92169 0.89581 0.92169 

0.90498 0.90301 0.91841 0.90695 0.91612 0.90891 0.93054 0.923 0.89515 0.92923 0.90564 

0.90531 0.91022 0.92824 0.94856 0.94364 0.94168 0.94233 0.94266 0.96265 2941.6 

0.90561 0.93243 0.92024 0.92337 0.89586 0.90456 0.87043 0.89794 0.87739 0.89133 

0.90317 0.92651 0.95089 0.94009 0.93173 0.94601 0.93591 0.95158 0.94671 0.99303 

0.9683 0.96447 0.98433 0.96865 0.98537 1 0.99408 0.92128 0.90038 0.9063 0.90317 

0.88854 0.89202 0.92511 0.92268 0.9373 0.92581 0.94044 0.92616 0.92825 0.90456 

0.89969 0.89899 0.92198 0.91501 0.89063 0.90282 0.88784 0.86729 0.89342 0.90456 

2984.4 

0.89492 0.89979 0.90953 0.91058 0.89388 0.89736 0.91023 0.93981 0.93633 0.91023 

0.89179 0.8991 0.90779 0.92554 0.91788 0.90745 0.93459 0.95894 0.94433 0.93981 

0.93633 0.94468 0.96207 0.96103 0.95164 1 0.99408 0.97251 0.97042 0.95964 0.97495 

0.96381 0.93737 0.97356 0.96903 0.95303 0.95616 0.94259 0.95442 0.92067 0.9245 

0.91232 0.91823 0.91475 0.92797 0.93076 0.94259 0.93111 0.93424 0.93111 0.91997 

2969.7 

0.91803 0.90196 0.86789 0.88557 0.901 0.87625 0.88846 0.90807 0.91418 0.92832 0.93635 

0.94021 0.93989 0.94278 0.91225 0.92639 0.92382 0.928 0.92446 0.91546 0.93282 0.93989 

0.94953 0.96496 0.96432 1 0.964 0.92318 0.93796 0.94857 0.97364 0.94825 0.93507 

0.97171 0.95886 0.94793 0.95821 0.93668 0.91418 0.89682 0.91257 0.9325 0.91771 

0.92478 0.92285 0.89232 0.89489 0.883 0.86178 0.85953 0.84957 2974.1 
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CD 

g 
'£ 
'3 

CD 

#g 

D2 

D3 

D5 

D4 

D6 

0.82815 0.83384 0.83823 0.84305 0.84042 0.88163 0.87155 0.82288 0.81105 0.83209 

0.81938 0.84349 0.82464 0.86804 0.8584 0.90925 0.88558 0.86409 0.85883 0.84349 

0.79965 0.91363 0.89347 0.95309 0.94651 1 0.97983 0.911 0.89917 0.88996 0.88207 

0.87681 0.86015 0.87462 0.86234 0.86322 0.83998 0.88207 0.84217 0.85708 0.84831 

0.89259 0.8505 0.90925 0.88295 0.84524 0.81499 0.81806 0.78431 0.84349 0.81017 8367.5 

0.89469 0.87049 0.8667 0.87998 0.87097 0.87049 0.86717 0.8814 0.92979 0.91888 0.90607 

0.88425 0.89896 0.90987 0.91509 0.91176 0.9037 0.91841 0.89469 0.8871 0.90275 0.91224 

0.91698 0.9241 0.95256 0.95398 0.91129 0.90275 0.88994 0.91271 0.91271 0.91746 

0.94972 0.963 0.93264 0.93928 0.86765 0.89611 0.87381 0.89421 0.90607 0.91366 0.92362 

0.94213 0.91034 0.93359 0.89469 0.91034 0.9018 0.91509 0.86433 5324.7 

0.1991 0.22443 0.22624 0.22172 0.22172 0.19729 0.2009 0.11946 0.11946 0.1086 0.1086 

0.1448 0.17376 0.22443 0.1991 0.21719 0.21719 0.14661 0.14661 0.10769 0.1086 0.31946 

0.32127 0.62805 0.62715 1 0.99367 0.66787 0.66878 0.63348 0.62805 0.67783 0.68235 

0.65339 0.6552 0.56199 0.56199 0.17557 0.17466 0.085068 0.085068 0.13032 0.13575 

0.19729 0.1991 0.2552 0.2552 0 0 0.28054 0.28235 6023.5 

0.89098 0.86063 0.85695 0.85649 0.85005 0.8965 0.90754 0.88132 0.88822 0.88638 

0.88408 0.88408 0.87029 0.9218 0.9057 0.88868 0.90616 0.84867 0.85649 0.86523 0.86385 

0.9678 0.96872 0.99448 0.99034 1 0.99908 0.98942 0.98344 0.96688 0.954 0.91996 0.92502 

0.8988 0.90018 0.86109 0.85419 0.86201 0.85833 0.87672 0.87259 0.86661 0.85741 

0.85925 0.85649 0.86017 0.85925 0.9264 0.91812 0.83257 0.83855 5987.2 

0.16576 0.32605 0.32969 0.20947 0.20947 0.17304 0.17304 0.33333 0.33698 0.19217 

0.21585 0.17486 0.15483 0.087432 0.091075 0.10929 0.10929 0.15027 0.1694 0.46448 

0.44536 0.9918 0.99454 0.98179 0.98179 1 0.99818 0.6867 0.6867 0.78233 0.77322 0.70674 

0.70674 0.71311 0.71129 0.54007 0.52823 0.29599 0.29326 0.20765 0.20947 0.13661 

0.13661 0.19308 0.1949 0.24226 0.2459 0.15574 0.15938 0.28051 0.28233 6292 
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