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ABSTRACT 

The purpose of this study was to evaluate the effect of crosswind and 

turbulence on mental workload and pilot tracking performance. Based on previous 

research, it was believed that as the amount of crosswind and turbulence is increased, 

mental workload would increase and tracking performance would decrease. The objective 

was to estimate the impact that crosswind and turbulence, of varying degrees, had on 

performance and workload. Fifteen full time college student volunteers served as 

experimental participants in a simulated horizontal and vertical tracking task. Each 

participant flew twelve instrument approaches, experiencing a different crosswind and 

turbulence combination during each approach. Flight performance and workload were 

measured using time within standard (TWS) and NASA Task Load Index (TLX) scores, 

respectively. The most detrimental effect on tracking performance was expected when 

participants were exposed to both crosswind and turbulence as the pilot had to divert 

attention between maintaining control of the airplane, establishing and maintaining a crab 

angle, and correcting for the aircraft being displaced off course in a continuous basis. The 

results of this study suggest that the impact of crosswind on tracking performance is 

small and probably not of practical concern. Similarly, the results did not find that 

crosswind statistically increased mental workload. However, as the turbulence level was 

increased, observed tracking performance decreased and workload scores increased. The 

results of the study failed to find a statistically significant interaction between the 

crosswind and turbulence factors for either the performance or workload data. 
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INTRODUCTION 

Through the review of human factors, aircraft accidents, and aviation literature, it 

is clear that pilot performance is critically affected by many variables. Some of these 

variables are well-defined, easy to study, and manipulate, while others are not and to date 

have yet to be fully understood. 

A study conducted by Boeing in 1996 indicated that 62% of the accidents occur in 

the arrival phase and 31% in the departure phase of flight. It is in these phases where 

pilots are bombarded with an overload of information and are required to work as an 

efficient team to reach a desired goal. What factors influence their performance and 

challenge their ability to safely and efficiently execute their mission? And if these factors 

are identified, how and why do they influence performance and what can we do to 

minimize their risks? These are difficult questions that the scientific community has been 

working on for years. 

The biggest challenge seems to be the enormous amount of information pilots has 

to process before making a decision and acting during certain segments of flight. Tsang 

and Wilson (1997) proposed that human operators have limited processing capabilities 

and once this limit is reached, performance will decrease. This can increase the chances 

for error and jeopardize flight safety. 

Flying an instrument approach is a challenging task and the presence of a 

crosswind and turbulence does not make the task any easier. Instrument approaches are 

required when the weather conditions are below three statue miles and/or the ceiling 

(lowest broken, overcast or obscured layer of clouds) is below 1000 feet. The instrument 

landing system (ILS) allows pilots to fly aircraft into airports when they are "blind" to the 
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outside world due to marginal weather conditions. Instrument approaches rely on 

instrumentation in the cockpit that informs the pilot about the position of the aircraft 

relative to the ideal approach flight path. The instrumentation will indicate if the aircraft 

is high or low on the glide slope (vertical component) and if the aircraft is to the left or to 

the right of the localizer (lateral component). This information allows the pilot to make 

corrections for any off course deviations. If the course deviations go beyond a certain 

limit (10 degrees) the aircraft strays away from the desired path and loses positive course 

guidance. In the presence of a crosswind and turbulence it becomes harder for the pilot to 

maintain the aircraft on course and/or within the acceptable needle deviations. After the 

needle displays a full-scale deflection there no longer is guaranteed obstacle clearance 

and the aircraft can strike terrain, protruding obstacles, or other aircraft. This is obviously 

a hazardous situation where no pilot likes to be. This is likely to increase the pilots stress, 

mental demand, and frustration as he attempts to return the aircraft on course or executes 

an immediate missed approach. In other words, the pilot's mental workload is expected to 

increase. This study was interested in evaluating the effect of crosswind and turbulence 

on mental workload and tracking performance. 

The problem at hand does not relate to physical work; instead, the major concern 

is information processing and decision-making. Some experts have agreed to call this 

"mental workload" and they believe this is the key to understanding human performance. 

Hart and Staveland (1988, p. 14) saw workload as "a hypothetical construct that 

represents the cost incurred by a human operator to achieve a particular level of 

performance". O'Donnell and Eggemeier (1986) viewed workload as that portion of the 
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operator's limited capacity actually required to perform a particular task. Both these 

definitions assume that human operators have limited processing capability. 

Previous studies have used crosswinds and turbulence as factors to increase 

mental workload (Hahn, Heintsch, Kaufmann, Schanzer & Swolinsky, 1990; Oman, 

Rasmussen, Robinson, Huntley, et al., 1995; Oman, Kendra, Hayashi, Stearns & 

CoheBurki-Cohen, 2001; Ragsdale, Osborne & Seaman, 1974), but to date no published 

studies have evaluated if these variables really affect mental workload and if so, to what 

extent. 

This study will attempt to answer the question, "how does crosswind and 

turbulence affect mental workload and pilot tracking performance?" The results of this 

study will allow for the impact of turbulence and crosswind on performance and 

workload to be estimated so that future research can alter workload through the 

systematic alteration of crosswind and turbulence. 

Human Performance and Workload 

Human performance can be affected by many factors including fatigue (due to 

sleep debt, time awake, time of day, circadian factors, etc.), alcohol, noise and vibration, 

temperature and humidity, mood, individual differences and training. Observed levels of 

performance are also impacted by perceived and real levels of workload. What is mental 

workload? How and why does mental workload affect performance? And how do we 

accurately measure workload? These questions have opened up a myriad of ideas and 

theories which have been scrutinized by many researchers, who over the years have 

strived to find the answers to these questions. As piloting tasks have become less routine, 

and especially more recently as the computer has become a cooperative party in decision-
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making and control, the appropriate basis for defining mental workload has become more 

difficult. Sheridian and Simpson (1979) noted this is particularly true when talking about 

large transient workload demands that occur sometimes unexpectedly in flight. 

There is not good agreement in the scientific community as to the cognitive 

mechanisms associated with mental workload or on which measures can best quantify the 

level of workload experienced, but most researchers agree that mental workload is an 

important factor that needs to be evaluated. As an example, Parasuraman and Mouloua 

(1996) proposed that workload is an important factor in the aviation domain for safety, 

performance, and efficiency reasons. 

When we speak about mental workload, we normally mean something to do with 

a sense of mental effort or how hard one feels one is working. Mental workload appears 

to be a subjective state and therefore would vary depending on the individual. Cognitive 

workload is a transitory, subjective state that has no obvious direct manifestations 

(Charlton, 1996). This presents a problem when trying to measure mental workload. 

It is important to talk about mental workload and is its relation to task 

performance and task demand. Mental workload is not task performance and is not task 

demand. Sheridian and Simpson (1979) proposed that mental workload seems to be a 

combination of mental effort, information processing, and emotion in response to task 

demand. We would therefore expect different persons to have different responses to the 

same task demands and task performance. In addition, Wickens resource theory proposed 

that humans have a finite capacity to do certain things. Humans are able to multi task and 

some tasks can be performed concurrently in harmony, while other tasks will interfere 

with one another. The main idea is that there is a limited capacity to the human brain. 
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Hart (1986) showed that task performance and workload are not monotonically 

related. That is, an increase in workload will not necessarily result in a decrease in 

performance. For easy tasks (and maybe long, boring, and seldom changing vigilance 

tasks), increased workload will lead to an increase in performance (Gopher & Donchin, 

1986; Lysaght, et al. 1989). Over a range of moderate workload levels, people are able to 

adjust their level of effort and maintain acceptable levels of performance. For moderately 

difficult tasks, participants may not be able to increase their effort enough to meet the 

task demands and thus increased workload is associated with poorer performance. 

Charlton (1991) observed that for very difficult tasks, participants were not able to 

continue expending the extra effort in face of what was perceived as unreasonable task 

demands; instead, they reduced their efforts and allowed task performance to deteriorate 

in order to return to normal levels of workload. 

As mentioned earlier, another factor that can play an important role in 

understanding and measuring pilot mental workload is individual differences in 

motivation to perform and responsiveness to task demands. An individual's effort, and 

thus their cognitive workload, might not be consistent throughout a task. Different people 

use different strategies to get the job done. Because of these differences across 

individuals and tasks, many researchers have come to the conclusion that the subjective 

experience of workload is the collective result of several independent components such as 

task-related inputs loads, operator effort and motivation, and operator performance 

(Jahns, 1973). The good news is that extreme levels of workload will degrade 

performance and is therefore easily and reliably identified. These extreme levels are of 
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interest to most human factors testers when designing cockpits, cockpit displays, or 

anything else that would influence pilot performance by varying workload. 

With the introduction of autopilot and flight management systems, the role of the 

pilot has changed from a physical function (flying) to that of a program and monitor 

function, thus increasing mental workload. Pilots have reported these increases in mental 

workload since the introduction of glass cockpits (Mouloua, Deaton, & Hitt, 2001). For 

many years, researchers have been seeking the balance between technology and the 

amount of mental workload the pilots can safely endure. 

Traditionally the measurement of pilot workload is carried out through the use of 

simulators. Missions are performed in order to determine what amount of workload can 

be handled without a performance decrement. The key question is whether or not 

workload encountered in a simulator accurately reflects the workload encountered in 

actual flying conditions. Because there is no clear consensus to this question and because 

it is outside the scope of this study to examine this issue, it will be assumed that to a 

certain degree, workload in a simulated environment will reflect that experienced in 

actual flying conditions. 

Flight Performance Measurement 

Measuring flight performance is a difficult task. It is a topic that has been argued 

for decades and no single well-established method has been adopted to date. There are 

several methods to measure performance, each having advantages and disadvantages. The 

method chosen to measure flight performance should be the one that most accurately 

measures what it is supposed to measure. In other words, having a very precise method to 

measure performance might not be the best method to use if we have no interest in what 
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it is measuring. There are two very different ways to measure performance: expert 

performance ratings and objective performance measures. 

Expert performance ratings come from instructors and examiners who over the 

years have gained invaluable, hands-on experience as to what constitutes satisfactory or 

unsatisfactory performance for a given task. This is a highly subjective method that 

places a lot of emphasis on the instructor and/or the examiner. The Federal Aviation 

Administration (FAA) designed the Practical Test Standards (PTS) for each certificate 

and rating as a book value, a standard, for all examiners to follow and evaluate pilot 

performance against. This book describes the minimum performance that should be 

observed during an evaluation in order for the maneuver/knowledge area to be considered 

satisfactory or unsatisfactory. However, given the nature of the flying task and the 

innumerable variables that affect an aircraft in flight (wind, turbulence, visibility, etc.) the 

PTS allows the examiner the authority to "adjust" the standards for less than favorable 

flying conditions. It clearly states that the PTS is based on an aircraft flying in a clear, 

VFR day with no wind/turbulence. Therefore, for less than perfect days (most of the 

time) the examiners "grey area" is expanded and greater deviations are allowed when 

performing maneuvers. The PTS also clearly states how the book should be used, and 

what constitutes satisfactory and unsatisfactory performance. It indicates that deviating 

from the standards is not necessarily an automatic unsatisfactory for that maneuver. The 

applicant is expected to establish prompt corrective action from the deviation. This 

would be considered satisfactory performance. However, constantly exceeding the 

standards is considered unsatisfactory. The problem is that there is no clear guideline as 
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to what constantly exceeding the minimums means. This is what makes expert ratings a 

highly subjective method of measuring flight performance. 

A partially subjective metric is time to completion. This metric implies that in 

order for an individual to reach a certain point in his or her training (first supervised solo, 

certification check ride) he or she needs to have achieved a minimum level of 

performance. This metric is objective because it represents the number of flight hours 

needed to reach this milestone but it is influenced by the subjective evaluation of the 

instructor. Several things can influence the time it takes an individual to reach a certain 

milestone (e.g. solo) such as location of training (how busy the airport he or she operates 

in), weather patterns in the area, student confidence and commitment, instructor 

commitment, availability of aircraft, etc. This metric is often used to when comparing 

different training strategies or assessing the impact of training tools like simulators. 

Objective methods are usually based on raw deviations from actual flight path to 

measure flight performance. These are called Flight Technical Error (FTE) measures. 

One example is the Root Mean Square Error (RMSE), in which deviations from standard 

are squared in order to eliminate polarity and exaggerate gross deviations, and then 

averaged across the sample data. The square root of the average is then computed in order 

to return the metric to its original unit. The advantage with using RMSE is that it is very 

sensitive to flight path management. On the other hand, it cannot be interpreted as a 

single average deviation because of square root transformations giving more weight to 

gross deviations. Therefore, RMSE cannot be compared to performance standards in 

order to determine if a level of performance was met. The biggest problem associated 

with using RMSE as a performance measure is that effect sizes expressed in RMSE units 
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are difficult to interpret in terms of performance differences. This means that a person not 

familiar with RMSE would have a hard time understanding the data and drawing 

meaningful conclusions from them. 

Other deviation based performance metrics include the number of deviations 

(ND) outside of tolerance. This metric must be used carefully as an aircraft may stray off 

course only once but stay there for the duration of the instrument approach. Therefore, 

ND values must be interpreted taking into consideration the amount of time (TD) spent 

outside the tolerance. 

A similar metric to time spent outside tolerance (TD) is the time within standard 

metric (TWS). The main difference is that TWS focuses on the amount of time within 

standard and TD focuses on the amount of time spent outside the standard. The goal of 

the TWS metric is to quantify performance relative to known standards (PTS). TWS data 

can be compartmentalized across various flight parameters such as glide slope tracking, 

localizer tracking, airspeed, etc. This makes this metric easy to use and interpret. Its 

drawback is it is prone to ceiling effects and it is not as sensitive a measure of 

performance as RMSE, meaning that small changes in performance are not likely to be 

detected. This is especially true for a very easy task where a more sensitive measure such 

as RMSE needs to be used to detect small flight performance changes. The sensitivity of 

TWS is primarily a function of the standards employed. If tighter tolerances are used (i.e. 

the ATP PTS over the Instrument PTS), the measure will become more sensitive to a 

point. The key is to use standards that are appropriate given the population under study so 

that variability in performance scores is observed. The advantage of TWS over RMSE is 

that the participant and end users can examine the TWS numbers and determine whether 
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or not the impact of the treatment is substantial and meaningful. Even though TWS is less 

sensitive than RMSE, one can argue that differences in performance that cannot be 

detected by TWS are of little practical consequence. Another advantage of the TWS 

metric is that multiple standards can be summarized in a single outcome metric. For 

example, airspeed, altitude, and heading standards can be simultaneously employed and a 

single TWS number can be used to summarize pilot performance if desired. In contrast, 

doing something similar with RMSE would require the application a series of 

mathematical transformations to the data in order to generate some standardized 

performance score. 

Because the flight task in this study is not expected to be easy and due to its 

simplicity and interpretability, TWS will be the metric used to determine the impact of 

crosswind and turbulence on pilot performance. Also based on flight and simulator 

experience, participants are not considered experts and are therefore not expected to 

perform as such. This should allow for variations in performance and the ability for the 

experimenter to determine whether or not the impact of outside forces (winds and 

turbulence) is substantial and meaningful. 

Workload Measures 

Charlton (1991) described two functionally different types of workload measures: 

projective techniques and empirical techniques. Projective techniques are used before 

performing the experiment and attempt to predict the levels of workload that will result 

under specific conditions. Empirical techniques measure workload during or after the 

completion of the task. The empirical techniques are the most frequently used in test and 

evaluation applications. 
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Projective techniques 

These are not a substitute for assessing workload but they can provide valuable 

indications of potential workload problems. Examples of these techniques include: Time­

line analysis, scheduling theory, and pro-SWAT. A brief description of each one of these 

techniques is described below. 

Time-line analysis is used to identify how long tasks and task components will 

take and if they can be accomplished in the allotted time. It is assumed that if the sum of 

all of the task times is less than the time available then there will be some operator "slack 

time" and therefore less potential for operator overload. This procedure is straightforward 

and fairly simple to perform. 

Scheduling theory is based on the belief that time pressure is the major source of 

cognitive workload. In a manner similar to time line analysis, scheduling theory 

compares task times to the time available for completion. The primary advantage is the 

identification of optimal task sequences. 

Pro-SWAT (projective application of the subjective workload assessment 

technique) is essentially a role-playing exercise where the subjects "project" themselves 

into the system tasks one at a time and complete SWAT ratings. The procedure usually 

involves a detailed briefing on each task function, some level of equipment mockup, as 

well as an extensive debriefing in which tasks receiving high workload ratings are 

discussed in detail. Pro-SWAT offers a relatively low cost method for assessing the 

workload of developmental systems. 
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Empirical measures 

These measures of workload involve a collection of data from one or more 

subjects actually performing the task(s). There are a variety of empirical measures 

available. Examples of these include workload questionnaires, task performance data, and 

physiological responses. 

Task performance. This technique is widely used in workload assessment. Two 

measures have traditionally been used: primary task performance and secondary task 

performance. The noted decrement in performance on a primary task is said to be 

indicative of mental workload. However, Sheridian and Simpson (1979) pointed out 

several criticisms, mostly directed towards factors such as realism, the test subjects used, 

the methodology, the equipment variables, simulator fidelity and so on. Therefore use of 

performance on a primary task as a method of measuring mental workload has many 

problems. In addition to those already mentioned, one important problem is the lack of 

generalizability of methods and results. According to Lysaght et al. (1989), because tasks 

are usually unique to each system, nearly every situation requires its own measure of task 

performance. Another disadvantage with this method is that when analyzing the 

performance results, they cannot be generalized to different populations, only the specific 

group age and experience that was used to generate those results. As an example we 

might be interested in studying the effect of individuals' mood in short and long-term 

memory. If we use a sample group of people with ages 18 to 25, we could not draw 

conclusions based on those results about the effect of mood on memory for people 

between ages 40-45. Therefore, this method lacks global sensitivity and transferability. 

Another disadvantage is that workload levels might rise without any degradation in task 
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performance. This is called dissociation or insensitivity. In addition, workload and 

performance are not necessarily linearly related. Conversely, high workload levels cannot 

be inferred from poor task performance. Factors such as training, motivation, 

communications, user interface problems, and others could be the reason why the subject 

is not performing successfully and have nothing to do with excessive workload levels. In 

order to minimize these problems, participants must be trained appropriately and feel 

completely comfortable with the equipment used for the study. Proper communication 

between the researcher and the participant should also help minimize any erroneous data. 

This can be achieved with a thorough briefing about the objective of the study and the 

methods and procedures to be used throughout the trial runs. 

The other performance approach to workload assessment is to measure subject 

performance on a secondary task as an indication of spare mental capacity. The idea 

behind using a secondary task is that if the subject is only partially loaded while 

performing the primary task, performance on a secondary task should remain efficient. 

As the requirements of the primary task increase, it is expected that the secondary task 

performance decrease. There are many problems associated with the use of a secondary 

task. Some researchers have argued that the introduction of a secondary task changes the 

nature of the primary task and therefore contaminates any measure of workload obtained 

(O'Donnell & Eggemeier, 1993). An alternative to introducing a secondary task would be 

to find an embedded task, a concurrent operator task that already exists in the operations 

procedures (Weirwille & Eggemeier, 1993). 

Psychophysical approaches of workload measurement. This technique offers the 

potential for objective measurement of some physiological correlate of mental workload 
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and release the researcher from reliance on self-reports and questionnaires. Some of the 

psychophysical measures used are: heart rate variability, respiration rate, galvanic skin 

response, pupillary diameter, biochemical changes in blood and urine, 

electroencephalogram changes, changes in frequency spectrum of voice, and eye 

movement recording. The problem with these measures it that they can all be affected by 

stress, diet and other factors. Sheridian and Simpson (1979) proposed that these 

physiological indices measure something in a very scientific way, the question is whether 

what they measure is correlated with what we think as mental workload. 

Subjective Measures of Workload. By far the most frequently used measures of 

workload are subjective methods. There are a number of different subjective measures 

available, ranging from simple, unidimensional scales that provide a single measure of 

overall workload to multidimensional scales that measure various components of 

workload. Four of the most commonly used workload scales include: The Cooper-Harper 

and its derivatives, the Subjective Workload Assessment Technique (SWAT), the NASA 

Task-Load Index (NASA TLX), and the Crew Status Survey. Charlton (1996) pointed out 

that each of these measures have shown to be sensitive to changes in workload levels, 

minimally intrusive, diagnostic, convenient, relevant to a wide variety of tasks, and 

possess a high degree of operator acceptance. Below is a brief description of the above 

mentioned subjective measures of workload. 

The Cooper-Harper Scale is one of the earliest standardized scales used for 

measuring workload. The scale is a decision tree that leads the pilot to one of ten ordinal 

ratings. The primary advantages of the scale is that it is well known in the testing 

community, easy to use, and the resulting ratings correlate highly with other, more 
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sophisticated workload scales. Originally developed to evaluate aircraft handling 

characteristics, the Cooper Harper Scale has been modified to situations outside the 

aircraft piloting domain. The resultant Modified Cooper Harper Scale provides a sensitive 

measure of overall mental workload for a wide variety of tasks. This test is typically 

administered to subjects at the end of the test. The disadvantage with this scale is that the 

quality of the workload measure will depend on the subject's recollection of the event of 

interest. 

The Subjective Workload Assessment Technique (SWAT) was developed by the 

U.S Air Force Armstrong Aeromedical Research Laboratory. SWAT is a 

multidimensional view of workload comprised of mental effort, time load, and 

psychological stress. Before this technique can be used, the scale must be normalized for 

each subject. During this first phase called scale development, subjects rank 27 

combinations of three different levels of time load, mental effort, and stress by means of 

a card sorting technique. Then a rule is established for combining the three dimensions 

for each subject. Once the rule has been established, conjoint scaling is applied to 

develop an appropriate unidimensional workload scale that ranges from 0 (no workload) 

to 100 (highest workload). During the data collection phase, subjects provide time load, 

mental effort, and stress levels at predetermined times during the activity. SWAT is 

considered to be a reliable, well-developed, and valid measure of workload. However, 

SWAT requires significant amounts of preparation of materials and pretraining of 

subject's prior to use. 

Crew Status Surveys (CSS) were designed at the U.S Air Force School of 

Aerospace Medicine to be easily understood by the subjects, easy to administer, and 
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readily understood by the tester. It has shown to be a sensitive measure across a variety of 

tasks and to correlate well with other workload measures (Charlton, 1991). The survey 

involves three ratings: subjective fatigue, maximum workload, and average workload. It 

is administered throughout the participant's flight mission. The survey's main advantage 

is that it can be completed very quickly, it is simple, and it has shown agreement with the 

other workload measures. 

The NASA Task Load Index (NASA TLX) is also based on a multidimensional 

approach to workload and uses an adjustment to normalize ratings for each subject. TLX 

divides the workload experience into six components: mental demand, physical demand, 

temporal demand, performance, effort, and frustration. TLX also divides each component 

subscale into twenty levels. TLX uses a simpler weighing procedure for combining 

information from the six subscales. Subjects are asked to make pair wise comparisons of 

each subscale as to which is more relevant to workload for a particular task. The number 

of times a subscale is chosen over another is used as the weighting for that subscale. 

Workload scores are computed by multiplying the rating obtained for each subscale by its 

task weighting, then adding up all of the subscale scores and dividing by the total number 

of paired comparisons used to obtain the weights. The use of weighted scores over the 

unweighted averages serves to reduce between subject variability (Hart & Staveland, 

1988). The factor structure of the NASA-TLX has recently been questioned by Bailey 

and Thompson (2001) and Hall, Landa, Hart, and Karkman (2003); specifically, these 

authors have proposed that the TLX is really only assessing one or two separate factors 

and not the six as claimed by the authors of the TLX. On the other hand, Hall et al. 

(2003) and Hall, Doherty, French, and Landa (2004) noted that scores on the TLX did 
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vary as expected with changes in flight task difficulty providing some evidence for 

construct validity. Accettullo (2004) used the Total TLX scores as produced by the TLX, 

arguing that high intercorrelation among the sub-scale scores make using the Total TLX 

scores the best choice since they represent the combination of all sub-scale scores. 

Because of its simplicity, high degree of operator acceptance, and its sensitivity in 

detecting changes in workload levels in a variety of tasks, the NASA TLX was selected 

as the measure of workload for this study. 

Data Analysis 

Traditionally, hypothesis testing has been used to determine whether or not a 

treatment produces significant results beyond chance deviation. While this might sound 

useful, it actually provides very little information about the impact of the treatment in 

question. The focus of this study is to estimate the extent to which crosswind and 

turbulence impact performance and workload. Therefore, several layers of data will be 

presented for each analysis. First descriptive statistics such as sample size, mean, and 

standard deviation will be provided. Second, inferential analysis will be presented. Third, 

when group scores are discussed, confidence intervals will be created around those mean 

scores. Fourth, confidence intervals for observed mean differences will be presented. And 

fifth, standardized effect size estimates will be provided to help the reader and interpret 

the magnitude of group mean differences. 

The Instrument Approach Procedure 

As previously stated, most accidents occur during the approach and landing phase 

of flight where pilots become bombarded with an overload of information. Adverse 

weather conditions, low ceilings (lowest layer of broken or overcast clouds), and/or low 
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visibilities force pilots to have to "shoot" an instrument approach procedure (LAP) into 

the airport. There have been many accidents that have occurred as a result of poor 

execution of these IAPs by a flight crew. Understanding task demand during the IAP and 

analyzing the different elements that pilots complete during the IAP will help us predict 

where workload levels might be too high especially if variables such as wind and 

turbulence are present. A review of the causes, types, and effects of crosswinds and 

turbulence is also provided. Understanding the nature of crosswinds and turbulence will 

help develop a better understanding of the impact these variables have in a tracking task 

and the demands imposed on pilots. 

The standard instrument approach procedure allows the pilot to descend safely by 

reference to instruments from the enroute altitude to a point near the runway at the 

destination from which a landing can be made visually. A precision approach procedure 

provides vertical guidance through means of an electronic glide slope, as well as 

horizontal course guidance. A non-precision approach provides horizontal course 

guidance with no glide slope information. Although there are many different types of 

approaches in use, most incorporate common procedures and chart symbology. An 

instrument approach may be divided into as many as four approach segments: initial, 

intermediate, final, and missed approach. The purpose of the initial approach segment is 

to provide a method for aligning the aircraft with the approach course. This is 

accomplished by using an arc procedure, a course reversal, or by following a route which 

intersects the final approach course. The initial approach segment begins at the initial 

approach fix (IAF) and usually ends where it joins the intermediate approach segment. 

The pilots have spent time preparing for the IAP by setting the aircraft navigation and 
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communication radios, as well as loading up the approach into the GPS (where 

applicable), and performing oral briefings of the altitudes, procedures, and airspeeds to be 

flown. In turbulent conditions this is often difficult as the aircraft experiences changes in 

flight attitude and forces the crew to divert their attention between flying the airplane and 

preparing for the approach procedure. The intermediate segment is designed to position 

the aircraft for the final descent to the airport. On this segment, the crew typically reduces 

the aircraft's airspeed to the approach speed, set the aircraft configuration for the 

approach (flaps), complete the before landing checklist, and make a final review of the 

approach procedure and applicable minimums. The intermediate segment begins at the 

intermediate fix (IF) or at a point where the pilots are proceeding inbound to the final 

approach fix. Winds and turbulence often make this task difficult as the pilots are now 

attempting to track the approach course and prevent the aircraft from getting off course. 

The division of attention between maintaining aircraft control in turbulence, tracking the 

final approach course inbound with a crosswind, and performing the pre-landing 

checklists, make this segment a very busy time for the pilots. It is here where it is easy to 

"fall behind the airplane" and become overloaded by all the different variables affecting 

the aircraft in flight. The final approach segment begins at the final approach fix (FAF) or 

at a point where the aircraft is established on the final approach course. The purpose of 

the final approach segment is to allow the pilot to navigate safely to a point at which if 

the required visual references are available, the pilot can continue the approach to a 

landing. As the aircraft approaches the runway the navigation signals becomes more 

sensitive and therefore it is easier for the flight crew to get off course and overcorrect for 

these deviations. Being close to the ground, talking to the control tower for a landing 
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clearance, making any final configuration changes (landing gear) and dealing with a very 

sensitive navigation signal makes this segment of the approach a critical one. Winds and 

turbulence during this segment can be expected to add to the approach difficulty and in 

some cases push the pilot's capabilities to safely cope with the situation. If the required 

cues are not seen at the missed approach point the pilots are forced to execute a missed 

approach procedure (MAP). The purpose of the missed approach segment is to allow the 

pilot to safely navigate from the missed approach point to a point where another approach 

can be attempted, a holding pattern can be entered, or a diversion to another airport can 

be commenced. Figure 1 shows a visual representation of the approach segments. 

Figure 1. Instrument approach segments. (Source: Willits, 1998) 
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Wind 

The motion of air is important in many weather-producing processes. Moving air 

carries heat and moisture from one place to another. Air movements can create favorable 

conditions for the formation and dissipation of clouds and precipitation; in some cases 

those motions can cause the visibility to decrease to zero; in others they sweep the skies 

clear. 

In flight, winds can have a significant effect on navigation. Erratic air motions 

cause turbulence which at worst can be catastrophic. Without a question the pilot must 

understand air motions for efficient and safe flight. 

The following is a description of the causes and characteristics of horizontal 

motions of the atmosphere. Having a deep understanding of the subject will help in the 

predicting the effect that these horizontal winds will have on the pilot's mental workload 

and performance while on a tracking task. 

Wind Terminology and Measurements 

When air moves from one location to another, it can simultaneously move both 

horizontally and vertically. Horizontal motions are much stronger than vertical motions 

with the exceptions of a few turbulent phenomena described later in the turbulence 

section. Also, horizontal motions are easier to measure. During the experimental portion 

of this study we will be dealing with both vertical and horizontal motions. 

Wind is measured at the surface by several different methods. The most common 

include anemometers and wind vanes. These will provide information about the wind 

speed (usually expressed in knots) and wind direction (relative to true north). For winds 
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aloft measurement techniques include free balloons, Doppler radar, aircraft navigation 

systems, and satellite. 

Causes of Wind 

In order to understand what makes the wind blow we must ask ourselves two 

questions: What are the forces that affect air parcels (and therefore make them move), 

and what are the causes of these forces? The most important forces that affect air motions 

are: Pressure gradient force, Coriolis force, and Frictional force. A brief discussion of 

these forces and their causes is provided below. 

Pressure Gradient Force 

The concept of pressure gradient is better understood when you deal with gases 

under pressure. For example, if you inflate a tire you establish a pressure gradient across 

the thickness of the tire. If you puncture it, the air accelerates from the inside to the 

outside, that is, toward lower pressure. The larger the pressure difference, the greater the 

acceleration. The force involved here is known as the pressure gradient force. When a 

horizontal pressure gradient force exists, the atmosphere causes air parcels to be 

accelerated across the surface towards low pressure. This is the root cause of what we 

most commonly know as "wind". But what causes the pressure gradient? In simple terms: 

uneven heating of the earth's surface. For example, when the temperature of the land and 

sea are equal there is no horizontal pressure gradient and therefore no movement across 

the coastline. As the sun continues to heat the earth's surface, the land temperature will 

exceed the water temperature (differential heating). The warmer land heats the overlying 

air causing it to expand and commence to rise. Because pressure decreases more rapidly 

with height in cold air than in warm air, the warm air aloft will have a higher pressure 



than that one over the water. This causes a horizontal pressure gradient aloft and a 

movement of warm air toward the lower pressure over the sea. Interestingly, as soon as 

the mass leaves the upper part of the heated column, the weight of that column decreases 

and the surface pressure goes down over the land. This creates a second horizontal 

pressure gradient and air will start to move across the coastline from the sea toward the 

land. By simply creating a temperature difference between the two locations the air has 

been caused to move in one direction aloft and in the opposite direction at the surface. 

Coriolis Force 

Since we observe all motions from a rotating frame of reference (due to the 

earth's rotation) the effect of that rotation must be taken into account when explaining 

these observed motions. Coriolis force is a force created as a result of the earth's rotation. 

It affects all objects moving across the face of the earth. It influences such things as 

currents, airplanes, and even moving airmasses. Even though a deep analysis of Coriolis 

force is beyond the scope of this study, it is worth mentioning a few interesting points. 

This force affects only wind direction, not wind speed. It requires air to be moving and as 

wind speed increases so does the Coriolis force. It also depends on the latitude, Coriolis 

varies from zero at the equator to a maximum at the poles. Although this force affects air 

motion in all scales, in comparison to other forces its effect is minimal for small-scale 

circulations and very important for large-scale wind systems. Therefore, Coriolis force 

should not play an important role in this study and is not worth simulating given its small 

effect on local winds. 



Geostrophic Balance 

A useful characteristic of the atmosphere is that the pressure gradient force 

and the Coriolis force tend to balance each other. Coriolis and pressure gradient forces 

tend to be equal in magnitude but opposite in direction. This is known as the geostrophic 

balance. It is helpful understanding the characteristics of wind and it provides a good 

approximation to the actual wind. However, geostrophic balance does not occur in small-

scale circulations such as sea breezes (described earlier) and therefore should not be 

considered as an important factor affecting this study. 

Friction 

Friction is the force that resists the motion of two bodies in contact. Surface 

friction is the term used to describe the resistive force that arises from a combination of 

skin friction and turbulence near the earth's surface. The primary effects of surface 

friction are experienced through the lowest 2000 feet of the atmosphere. This is called the 

boundary layer. Surface friction will slow down the wind speed and change it's direction 

anywhere from 10 degrees to 45 degrees. 

Wind Review 

There are a few important points about wind worth reviewing. In the Northern 

Hemisphere, wind speed increases with altitude and changes direction clockwise due to 

Coriolis force. When the winds near the surface are strong the boundary layer is turbulent 

and the winds are gusty (changing direction and/or speed rapidly). The boundary layer is 

deeper during the day and in the warmer months of the year. Wind is caused by pressure 

differences and modified by the earth's rotation and surface friction. This study will 

model wind so as to simulate a constant wind speed and direction. Even though in real 



life there are factors such as surface friction, Coriolis force, and even low-level 

turbulence in the boundary layer, these factors are not considered significant for this 

study and will be disregarded. Other factors that will be disregarded are winds produced 

by vertical motions (thunderstorms), winds around mountainous terrain, and extreme 

weather phenomenon's such as tornados. 

Vertical Motions 

As discussed earlier, when an air parcel moves from one location to another, it 

typically has a horizontal component (wind) and a vertical component, which is called 

vertical motion. Vertical motions are usually much smaller then horizontal motions, 

except on some extreme cases. Air may move upward due to a number of causes. The 

most frequent ones are convergence, orography, fronts, and convection. In the Northern 

Hemisphere, around large low pressure areas at the surface, the winds will spiral into the 

center (convergence) and therefore tend to rise. This will cause the upward motion of air. 

Another simple way to make air rise is by putting an obstacle on its way, such as a 

mountain. This is called orographic lifting. When the atmosphere itself creates an 

obstacle to the wind, a similar barrier effect can be produced. For example, when a cold 

air mass is next to a warm air mass, a sloping boundary is created between the two. This 

is called a front. If either air mass moves towards the other, the warm air moves upward 

in a process called frontal lifting. Also, if at a particular level in the atmosphere the air in 

the atmosphere is warmer than its surroundings, it will rise. This process is a form of 

convection and can cause vertical motions that can disturb an aircraft in flight. Usually 

we also find turbulence associated with the convection process and this can add another 

variable for the pilot to control. 
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Turbulence 

Aviation turbulence is best defined as "bumpiness in flight". It is important to 

note that this definition is based on the response of the aircraft rather than the state of the 

atmosphere. The magnitude on the bumpiness not only has to do with the outside factors 

but also depends on aircraft design and pilot reactions. Lester (1997) observed that in 

general, vertical gusts are more likely to have a larger impact on flight than horizontal 

gusts because they change the angle of attack and lift. However, in some situations 

(takeoff and landing), horizontal gusts may be as important as vertical gusts. With strong 

horizontal gusts the airplane has a tendency to weathervane into the wind. With the 

airplane not lined up with the runway, the pilot must correct by applying the appropriate 

rudder and aileron inputs to straighten the nose of aircraft while tracking the runway 

centerline to prevent a sideload on landing. With variable horizontal gusts, the rudder 

pressures required to maintain proper runway alignment would also vary, adding an 

additional challenge to that of landing the airplane without a crosswind. 

An important issue to consider when talking about aviation turbulence is pilot 

fatigue. A pilot exposed to turbulent conditions for long periods to time will experience 

greater fatigue. Also, when the frequency of shaking is very large (4-5 cycles per 

second), the pilot cannot read the instruments. If the frequency is near one cycle per four 

seconds, airsickness may result. All of these effects, together with experience and ability, 

affect the pilot's response to the turbulence. 

Turbulence Metrics 

By far the most important property about turbulence is intensity. The most 

commonly used turbulence criteria are shown in table 1. This turbulence scale has been 



used for many years and is the basis for most pilot weather reports. The criteria are highly 

subjective and are dependent on aircraft type, airspeed, and pilot experience. Quantitative 

indications of turbulence can be determined from the on-board measurements of g-load 

(force that arises due to gravity), airspeed fluctuations, and rate-of-climb (see table 2). 

Normal gravity corresponds to a g-load of l.Og. A change in g-load above or below the 

normal value is a rough measure of the intensity of the turbulence. Airspeed fluctuations 

refer to the largest positive and negative airspeed deviations from the average during a 

turbulent event. For example, if your average airspeed is 140 knots with variations 

between 130 and 150 knots, you are experiencing fluctuations of+/- 10 knots. Rate of 

climb simply refers to the largest positive or negative values during a turbulent event. 

This can only be used as a rough estimate of the vertical gust speed because it includes 

both the effect of the vertical gust and the motion of the aircraft. 
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Table 1. Turbulence Reporting Criteria Table (Source: Lester, 1995) 

Intensity Aircraft Reaction Reaction Inside Aircraft 

Light 

Moderate 

Turbulence that momentarily 
causes slight, erratic changes 
in altitude and/or attitude 
(pitch, roll, yaw). 

Turbulence that is similar to 
light turbulence but of greater 
intensity. Changes in altitude 
and/or attitude occur but the 
aircraft remains in positive 
control at all times. It usually 
causes variations in indicated 
airspeed. 

Occupants may feel a slight 
strain against seat belts. 
Unsecured objects may be 
displaced slightly. Food 
service may be conducted and 
no difficulty is encountered 
when walking. 

Occupants feel definite strains 
against seat belts. Unsecured 
objects are dislodged. Food 
service and walking are 
difficult. 

Severe 

Turbulence that causes large 
abrupt changes in altitude 
and/or attitude. It usually 
causes large variations in 
indicated airspeed. Aircraft 
may be momentarily out of 
control. 

Occupants are forced violently 
against seat belts. Unsecured 
objects are tossed about. Food 
service and walking are 
impossible. 

Extreme 

Turbulence in which the 
aircraft is violently tossed 
about and is practically 
impossible to control. It may 
cause structural damage. 

Table 2. Quantitative measures of turbulence intensity. Values 
negative. (Source: Lester, 1995). 

Turbulence 

Light 

Moderate 

Severe 

Airspeed Fluctuation 
(kts) 

5-14.9 

15-24.9 

>25 

G-Load(g) 

0.20-0.49 

0.50-0.99 

1.0-1.99 

may be positive or 

Derived Gust (fpm) 

300-1199 

1200-2099 

2100-2999 

Extreme >2.00 >3000 



Turbulence Causes and Types 

Aviation turbulence can be divided into four categories, depending on where the 

turbulence occurs, what large-scale circulations are present, and what is producing the 

turbulence. They are: 

1. Low-level turbulence (LLT) 

2. Turbulence in and near thunderstorms (TNT) 

3. Clear-air turbulence (CAT) 

4. Mountain wave turbulence (MWT) 

To better understand turbulence and its effect in flight a description of each of the 

above is provided below. However, the main emphasis of this study concentrates on an 

aircraft shooting an instrument approach at low altitude with varying levels of crosswind 

and turbulence. Therefore low-level turbulence is the factor that will have the greatest 

impact in this study and is described in greater detail. 

Low-Level Turbulence (LLT) 

Low-level turbulence is defined simply as turbulence below 15,000 feet MSL. It 

can also be defined as that turbulence which occurs primarily within the atmospheric 

boundary layer (lowest few thousand feet of the atmosphere, that is, where surface 

heating and friction influences are significant). LLT includes mechanical turbulence, 

thermal turbulence, and turbulence in fronts. Although wake turbulence may be 

encountered at any altitude, it is particularly hazardous near the ground, so it is also 

considered with LLT. However, this study is not interested in turbulence created by other 

aircraft, so wake turbulence will be disregarded. 



Mechanical Turbulence 

Over flat ground and with strong winds, surface friction will slow the wind in the 

lowest layers causing the air above to turn over in turbulent eddies. The turbulent eddies 

cause fluctuations (gusts) in winds and vertical velocities. The turbulent eddies are then 

swept along by the sustained wind and cause wind shear near the ground. As the wind 

becomes stronger the mechanical turbulence extends to greater heights. The presence of 

obstaictions such as buildings and trees increase the effect of surface roughness and 

strengthen LLT. During strong wind conditions, a trail of turbulent eddies is produced 

downwind of an obstacle, so hangars and large building near airports can cause control 

problems during takeoff and landing. Hills can produce very strong turbulent wakes with 

strong winds. Turbulent eddies downwind of hills are larger because the obstructions that 

cause them are larger. Steep hillsides encourage the flow to separate from the surface, 

producing eddies, LLT, and sheared regions. Even though mechanical turbulence caused 

by high terrain is extremely important to understand, this study will be conducted under a 

simulated flat ground where this will not be a factor. Similar effects are produced near 

canyons and valleys and these will not be taken into consideration for this study. 

Thermal Turbulence 

Thermal turbulence is LLT produced by convection in the boundary layer. It is 

usually a daytime phenomenon that occurs over land over fair weather conditions. Solar 

radiation heats the ground generating convection at the bottom of the boundary layer. 

During the afternoon the convection intensifies and gradually dies out as the earth's 

surface cools. When cool air moves over land or water, thermal turbulence can occur 

during any time of day or night. This convection will create thermals, which are simply 



warm rising "bubbles" of air. As they move away from the ground they gain speed, grow 

in size, and become more organized. Glider pilots have taken advantage of the upward 

motions in thermals to gain altitude and fly long cross-country distances. However, 

thermal sources of lift for glider pilots are often sources of LLT for powered aircraft. 

Thermals create upward gusts that can range from 200 to 400 foot per minute (f.p.m). 

Flight through the boundary layer at midday in the summer will expose you to frequent 

LLT due to thermals. 

Turbulence in Fronts 

Fronts are not only sources of wind shear but they can also produce moderate or 

greater turbulence. Mesoscale fronts such as sea breezes and the thunderstorm gust front 

will create LLT by creating a source of rising air that will disrupt the motion of the 

aircraft. Macroscale frontal zones found in the middle and upper troposphere are also 

sources of turbulence. These are in connection with jet streams and clear-air turbulence, 

none of which will be considered in this study. 

Turbulence in and near Thunderstorms (TNT) 

Turbulence within the thunderstorm is caused by strong updrafts and downdrafts. 

The most frequent and the most intense TNT is found within the cloud (although 

turbulence below the cloud can have more disastrous consequences, with powerful 

downdrafts, downbursts, and microbursts). Furthermore it is made worse because it 

occurs in instrument meteorological conditions with heavy rain, lightning, and possible 

hail and icing. The combination of these hazards increases the chances for disorientation 

and loss of control. The weather phenomenon around thunderstorms is complex and 

beyond the scope of this study, however it is important to mention them as a severe to 

31 



extreme source of turbulence. The turbulence simulated in this study will be LLT but not 

that associated with a thunderstorm in order to eliminate all the other variables (icing, 

rain, etc.) that would be present with and around the thunderstorm. 

Clear Air Turbulence (CAT) 

Clear air turbulence is that turbulence that occurs in the free atmosphere away 

from any convective activity. It occurs in sudden bursts at high altitudes and is the result 

of high-level frontal passages and the jet-stream (a band of high speed wind). More 

specifically, CAT is found near high level stable layers that have vertical wind shear. 

When the air parcel in the stable layer is displaced vertically, atmospheric gravity waves 

develop. If the vertical wind shear is strong this can create wave crests to overrun the 

wave troughs, creating a very unstable situation. The reason we are concerned about CAT 

is that severe and extreme incidents have occurred, causing injuries and occasionally 

damage to the aircraft. CAT occurs more frequently within a few thousand feet of the 

tropopause, over mountains than elsewhere, and in winter than in summer. 

Mountain Wave Turbulence (MWT) 

Mountain wave turbulence is turbulence produced in connection with mountain 

lee waves. It is responsible for some of the most violent turbulence that is encountered 

away from thunderstorms. It occurs mainly in two well-defined regions of the lee wave 

system: near the tropopause and near the ground in the lower turbulent zone (the lower 

downwind side of the mountain). The intensity of MWT depends on the wind speed near 

the mountain peaks. The details as to how MWT is formed, how to avoid it, and its 

hazards are not relevant to the scope of this study and will not be described. 



The reader can find more weather information related to crosswinds and 

turbulence in the following sources: Aviation weather (Lester, 1995), Aviation weather 

services (Gleim, 2004), Severe weather flying (Newton, 1983). 

The Present Study 

The purpose of this study is to evaluate the effect of crosswind and turbulence in 

mental workload and pilot tracking performance. The objective is to estimate the impact 

of crosswind and turbulence, of varying degrees, on performance and workload. This 

information should help researchers design studies in which workload needs to be 

systematically altered. Tsang and Wilson (1997) argued that human operators have 

limited processing capabilities, and once that limit is reached we find a decrease in 

performance. This can be very dangerous when applied to certain aviation scenarios, such 

as tracking an instrument approach in marginal weather conditions, low to the ground, 

with heavy crosswinds and fatiguing turbulence. 

Eggemeir (1980) and Chiles (1979) observed that workload is multidimensional 

and hard to define. They pointed out that we must tailor the definition to the research 

situation. Although numerous studies have used crosswinds and turbulence as factors to 

increase workload and affect tracking performance, the literature does not address if these 

factors are good variables to be used in order to manipulate mental workload and tracking 

performance. In addition, they do not provide insights as to the extent that these variables 

have an impact on mental workload and tracking performance. In other words, the 

differences in tracking performance could be the result of an increase in mental workload, 

the factors themselves, or error. 
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The three questions being examined in this study are as follows: 

1- What effect does crosswind have on mental workload and tracking 

performance? 

2- What effect does turbulence have on mental workload and tracking 

performance? 

3- Do crosswind and turbulence interact to produce a larger impact on 

performance than either one alone? 

Based on previous research, it is believed that as the level of crosswind and 

turbulence is increased, mental workload will increase and tracking performance will 

decrease. The study will use crosswind and turbulence as variables to evaluate their effect 

on mental workload and tracking performance. 

Anticipated Outcomes 

The presence of a crosswind makes an instrument approach more difficult 

because the aircraft will drift to one side of the localizer when the aircraft is pointed 

directly at the runway. This presents a hazard as the aircraft can drift off course into 

terrain or other aircraft. However, it is anticipated that participants exposed to a 

crosswind will be able to establish a wind correction angle (crab angle) and track the 

course without large deviations from the centerline. Establishing the proper wind 

correction angle requires a trial and error process called bracketing, in which the pilot 

tries several wind correction angles (from large to small) until he or she figures out the 

wind correction angle needed. Therefore, deviations from centerline are expected until 

the wind correction angle is found. Given the nature of the instrument approach task and 

the fact that data will not be collected until the aircraft reaches the outer marker, it is 



likely that the correct crab angle will be employed by the time that data collection begins. 

If crosswind does have a significant impact on performance, such an impact should be 

clear by comparing the maximum (20 knots) to the minimum crosswind condition (0 

knots). Participants are trained during their instrument rating to compensate for 

crosswinds. With practice this becomes second nature and as a result an individual can 

perform this task without exerting much mental effort. Therefore, the mental workload is 

expected to stay low when correcting for a crosswind. 

It is anticipated that moderate and severe levels of turbulence will have produce 

large deviations from the centerline during the approaches. This is due to the fact that as 

an aircraft is affected by turbulence it gets displaced from its original position, making a 

perfect tracking task impossible. In addition to this, there is no correction the pilot can 

establish to anticipate for the effect of turbulence. Continuously scanning the attitude 

indicator and simultaneously attempting to track the course is expected to increase mental 

workload to high levels (Oman, Rasmussen, Robinson, & Huntley, 1995). This expected 

increase in mental workload is a concern as Smith (1979) noted problems in relation to 

communication, decision-making, planning, leadership, and stress in conditions with 

increased workload. 

The most detrimental effect on tracking performance is expected when 

participants are exposed to both crosswind and turbulence as the pilot will have to divert 

attention between maintaining control of the airplane, establishing and maintaining a crab 

angle, and correcting for the aircraft being displaced off course in a continuous basis. We 

also expect to see an interaction between crosswind and turbulence on performance and 

mental workload. 
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The data will be analyzed using trend analysis computations and confidence 

intervals as opposed to null-hypothesis significance testing. The trend analysis results 

will provide insight into the functional relationships between the crosswind and 

turbulence levels and the performance and workload outcomes. Confidence intervals 

allow one to determine whether or not significant differences exist while simultaneously 

estimating the size of those differences. 

METHOD 

Participants 

Fifteen full-time college students from Embry-Riddle Aeronautical University in 

Daytona Beach, Florida served as experimental participants. Students were told that they 

were volunteering to assist in an experiment using crosswind and turbulence to 

manipulate mental workload and measure flight tracking performance. All participants 

held at least an instrument rating and either a first, second, or third class airman's medical 

certificate. All participants indicated that they were instrument current (six instrument 

approaches within the last six months, holding procedures and intercepting and tracking 

radials and courses using navigational equipment) and had a total flight time between 

150-300 hours. All of the participants were male and their average age was 21.2 years 

(SD= 1.7). A screening procedure was used to gather information regarding the 

participant's total flight time, simulator experience, and instrument currency. The 

reported average total flight time was 227.2 hours (SD= 64.3) and the average reported 

flight time in a C172 was 193.8 hours (SD= 57.5). All of the participants had experience 

flying a more advanced Frasca flight simulator as part of their flight training with an 
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average of 25.8 hours (SD= 8.2) being reported. The experiment took approximately one 

and a half hours per participant. Participants were paid $10 for participating in the study. 

Materials and Apparatus 

An Elite iGATE Personal Computer Aviation Training Device (PCATD) was 

used for the experiment and the standard Cessna 172 flight model and instrument panel 

configuration was used. The experimenter station had dual monitors and an electronic 

data switch that allowed the researcher to view and control any of the computers without 

disturbing the experiment. It also allowed the researcher to set up the flight scenario as 

well as to monitor in real-time the participant's flight and scenario progress. An Elite 

iGATE flight control console was used to provide all of the physical flight controls 

necessary for the experiment (yoke, rudder pedals & power quadrant). 

The Elite PCATD was set up to model a standard Cessna 172 (including a 

localizer and glide slope). All aircraft systems were preset for the participant and wing 

flaps were preset at 10 degrees for the approach. During the experiment the researcher 

was able to view and control the Elite PCATD as well as monitor the flight instruments. 

The flight parameter data was recorded using an add-on Elite software module. 

The standard out-the-window view imbedded into the instrument display was 

used during the practice sessions in order to facilitate accommodation to the simulator. 

The display of out-the-window information was disabled during the data collection trials. 

Other Equipment Used 

A FAA U.S. Terminal Procedures Chart (approach plate) published by the FAA 

National Aeronautical Charting Office for the ILS runway 7L at Daytona Beach 

International Airport (KDAB) was provided to the participants to conduct the approaches. 
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A computerized version of the NASA TLX was used to collect subjective 

workload data from the participants. Directions on how to use the NASA TLX was 

explained during the pre-briefing and was administered after each approach condition. 

Design 

The study utilized a completely crossed repeated measures design with two 

independent variables: crosswind (0, 10, and 20 kts) and turbulence (no turbulence, light, 

moderate, and severe). The dependent variables were flight performance and workload. 

This resulted in each participant completing approaches under twelve unique conditions. 

Treatment presentation order was counterbalanced using a computer-generated random 

order sequence of conditions. Crosswinds were presented at a 90 degree right angle to 

the approach path. Turbulence and crosswind were set to the desired setting using the 

Elite software before every trial run. Elite offered turbulence settings that ranged from 0 

to 12. These represented the turbulence intensities, 0 being no turbulence and 12 being 

extreme turbulence. In order to map Elite's turbulence setting (scale) to the present study, 

an evaluation was conducted. The aircraft was set to fly in a trimmed condition, straight 

and level at 100 kts. The turbulence level was then increased to a setting of 3 and several 

data parameters were collected for 45 seconds. Similar data were collected for the 6, 9, 

and 12 settings. Airspeed and g-load data where examined and the minimum and 

maximum points were compared with the FAA guidelines (see Table 2). The data 

showed that the Elite turbulence levels of 0, 3, 6, and 9 would generally represent the 

settings of no turbulence, light, moderate, and severe used by the present study. 

The FAA ATP practical test standards (PTS) were applied (V4 scale deflection, +/-

5 kts.) on both localizer and glide slope from the outer marker to decision height. The 



ATP practical test standards were selected instead of the Instrument practical test 

standards in order to compensate for any ceiling effects associated with the easier and 

broader Instrument practical test standard (3/4 scale deflection, +/- 10 kts.). Participant 

scores could range between 0 and 1, indicating the proportion of the approach within 

standard on all three parameters, simultaneously. 

Procedure 

Upon arrival, the researcher welcomed the participant, provided a quick 

overview the study, briefly explain how this study fitted into other workload programs 

and went over the informed consent sheet. The participant then signed the informed 

consent sheet and was instructed to fill out a demographics form that included basic 

participant information as well as flight ratings held and flight/simulator experience. 

Once this was completed, the participant was given more detailed information about how 

the session was to be conducted. The participant was instructed on the controls of the 

PCATD and was instructed to make climbs, turns, and descents to get a feel for how the 

PCATD flew. The participant was then given five minutes of free flight practice. After 

the practice session, the participant was given an approach plate for the Daytona Beach 

International Airport (ILS 7L). He was told that when the simulation began, the aircraft 

would be located outside the outer marker at 1600 feet, on course to intercept the 

localizer. The participant was instructed to intercept the localizer, maintain altitude until 

intercepting the glide slope, and to maintain 100 knots for the entire approach. The 

participant was then given a chance to ask questions. 

The twelve data collection trials then began. The out-the-window graphics were 

disabled and wind speed and turbulence were set to the required level. The data collection 



was started at the outer marker (OM) and stopped at decision height. The PCATD was 

then reset, wind turbulence and speed were changed as required, and the next approach 

was started. This sequence was repeated until each participant flew an approach at each 

wind speed and turbulence level. 

Data Collection 

Flight parameter data were collected at 10 Hz and started when the aircraft 

crossed the OM inbound and ended when the aircraft arrived at the published decision 

height (DH) for the approach (which the participant was asked to verbally "call out"). 

The Elite data collection module collected data on a total of 65 different simulator 

parameters, of which, airspeed, localizer, and glide slope needle deflection data was used 

to compute TWS. The data collection system coded the needle deflection data in terms of 

full-scale deflection. In other words, a Vz scale deflection on one of the needles was 

represented with a value of .500. Each localizer, glide slope, and airspeed datum was 

compared to the ATP standards. If the datum was within the relevant standard, a 

corresponding variable was assigned a value of 1 for that time sample. TWS was 

computed by averaging each binary variable and this average represented the proportion 

of time spent within that standard. This process occurred for each flight parameter (i.e. 

airspeed, localizer, and glide slope) at each time stamp and if all three parameters were 

within standard, a total TWS score of 1 was allocated for that time stamp. 

After each instrument approach was accomplished, the participant completed the 

NASA TLX workload survey. Once all twelve approaches were finished, the researcher 

debriefed the participant by asking if they have any questions about anything they did. 

The participants were provided with a contact sheet that had the email address and phone 



numbers of the principal investigator for the project. They were encouraged to contact the 

researcher should they have any questions or concerns after the study. Participants were 

then paid, thanked and dismissed. In summary, each participant flew twelve approaches 

and experienced a different crosswind and turbulence combination during each approach. 

Counterbalancing was accomplished via randomization of presentation order. Flight 

performance and workload was measured using TWS and TLX scores, respectively. 

RESULTS 

Fifteen participants completed the study and flew 12 separate instrument 

approaches. Each approach presented a unique level of crosswind and turbulence. A 

number of participants did not perform well during the trials resulting in several ATP-

TWS scores with a value of zero. Overall, performance as measured by ATP-TWS was 

fairly low, especially when compared with the performance levels recorded by Hall, 

Doherty, and Mion (2004) and Accettullo (2003). Thus, the ATP-TWS metric was 

abandoned because analysis on the data would have been suspect given the observed 

floor effect. As a result, the RMSE for aircraft position data were used to evaluate 

performance instead of TWS scores. RMSE values were transformed using the natural 

log (In) function in order to normalize the RMSE distributions so that the mean and 

standard deviation could be used for descriptive purposes and to satisfy the assumption of 

normality for ANOVA analysis. 

The results of the data analysis are presented in separate sub-sections for the 

performance and workload data. All analyses, unless otherwise noted, were performed 

using an a level of .05 and confidence intervals of 95%. 
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Results for the Performance Data 

Descriptive statistics for the performance data are presented in Table 3. A (4x3) 

repeated measures ANOVA was conducted on the performance data. A number of 

assumptions underlie the use of a repeated measures ANOVA including homogeneity of 

variance, normality of data, and sphericity. Of these, violations of sphericity are the most 

serious with regard to the accuracy of reported p values (Keppel, 1991). Analysis of 

Mauchly's test of sphericity for the performance data (Table 4) shows a violation of 

sphericity for the turbulence and interaction factors (using a = .25). The implication of 

non-sphericity in the data is that Type I error rates will inflate unless controlled using 

epsilon correction coefficients. Keppel (1991) suggested that the Greenhouse-Geisser 

epsilon correction coefficient tends to overcorrect for non-sphericity; thus, the Huynh-

Feldt correction factors will be used during the ANOVA process. 

Table 3. Descriptive statistics for the performance data. 

Turbulence 

No turbulence 
Light 
Moderate 
Severe 

0 
M 

4.79 
5.18 
5.76 
5.60 

SD 
.61 
.74 
.79 
.60 

Crosswind 
(n 

M 
4.88 
5.33 
5.45 
5.76 

= 15) 
10 

SD 
.54 
.57 
.53 
1.03 

20 
M SD 

5.03 .64 
5.31 .73 
5.62 .75 
5.77 .74 

Table 4. Mauchly's test of sphericity for the performance data. 

Factor 

Turbulence 
Crosswind 
Turbulence*Crosswind 

Mauchly's 
W 

.42 

.83 

.11 

Approx d f 

Chi-square 

10.95 5 
2.27 2 

25.95 20 

P 

.05 

.32 

.18 

Greenhouse-
Geisser 

.65 

.86 

.53 

Epsilon 

Huynh-
Feldt 

.75 

.97 

.71 

Lower-
bound 

.33 

.50 

.16 
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The results of the ANOVA analysis indicate that the turbulence main effect was 

the only statistically significant effect, F (2.26, 31.69) = 14.28, p < .001 (see Table 5 for 

complete results). Even without epsilon correction, the remaining factors were not 

statistically significant. The statistically significant results for the Turbulence factor were 

furthered examined via a trend analysis on the data. Trend analysis was performed in 

order to establish the form of the relationship between turbulence level settings and pilot 

performance. As described by Keppel (1991), any factor (given enough manipulated 

levels) may produce a linear, quadratic, and/or cubic trend in the output variable of 

interest. These trends are separate from one another and can simultaneously be present in 

the data. In this case, a positive linear trend is present (see Table 6) in the data, indicating 

that as turbulence settings in the simulator are increased, performance tends to decrease 

(In rmse values tend to increase) in a linear fashion (see Figure 2). 

Table 5. ANOVA source table for the performance data. 

Source 
Turbulence 
Error (turbulence) 
Crosswind 
Error (crosswind) 
Turbulence*crosswind 
Error 
(turbulence*crosswind) 

SS 
18.13 
17.77 
.33 

9.34 
1.29 
18.32 

df 
2.26 
31.69 
1.94 

27.19 
4.25 
59.62 

MS 
8.00 
(.56) 
.17 

(.34) 
.30 

(.30) 

F 
14.28 

.50 

.99 

P 
<.01 

.60 

.42 

Eta 
squared 

.50 

.03 

.06 

Power 
.99 

.12 

.30 

Note. All reported p values are based on the Huynh-Feldt epsilon correction. Values enclosed in 
parentheses represent mean square errors. 

Table 6. Test of within subjects contrasts for the performance data. 

Source 
Turbulence 

Turbulence 
Linear 

Quadratic 
Cubic 

SS 
17.19 
.84 
.10 

df 
1 
1 
1 

MS 
17.19 
.84 
.10 

F 
20.78 
4.315 
.395 

P 
<.01 
.057 
.540 

Eta 
squared 

.59 
.236 
.027 

Power 
.98 
.490 
.090 

43 



None 
i r 

Light Moderate 
Turbulence Level 

Severe 

NOTES: Error bars are based on the mean In RMSE position data +/- 2.145 standard error of the mean 
units. 
Figure 2. Average performance across turbulence level settings. 

Results for the Workload Data 

After completing each instrument approach, participants completed a 

computerized version of the NASA TLX survey. Descriptive statistics for the TLX data 

are presented in Table 7. A (4x3) repeated measures ANOVA was conducted on the data. 

Analysis of Mauchly's test of sphericity for the workload data (Table 8) shows a 

violation of sphericity for the turbulence and crosswind factors (using a = .25). As with 

the performance data, Huynh-Feldt correction factors were used during the ANOVA 

process to control Type I error inflation. 



Table 7. Descriptive statistics for the workload data. 

Turbulence 

No turbulence 
Light 
Moderate 
Severe 

0 
M 

29.53 
38.26 
65.86 
63.46 

SD 
15.08 
19.13 
17.19 
16.05 

Crosswind 
(n 

M 
26.80 
40.13 
64.53 
63.53 

= 15) 
10 

SD 
15.46 
16.24 
14.40 
17.26 

20 
M 

33.53 
42.86 
61.26 
68.86 

SD 
17.28 
14.17 
16.26 
13.68 

Table 8. Mauchly's test of sphericity for the workload data. 

Factor 

Turbulence 
Crosswind 
Turbulence*Crosswind 

Mauchly's 
W 

.47 

.79 

.23 

Approx d f 

Chi-square 

9.40 5 
2.91 2 
17.12 20 

P 

.09 

.23 

.66 

Greenhouse-
Geisser 

.67 

.83 

.68 

Epsilon 

Huynh-
Feldt 

.78 

.93 

.99 

Lower-
bound 

.33 

.50 

.16 

The results of the ANOVA analysis indicate that the turbulence main effect was 

the only statistically significant effect, F (2.35, 33) = 48.69, p < .001 (see Table 9 for 

complete results).Even without epsilon correction, the remaining factors were not 

statistically significant. The statistically significant results for the Turbulence factor were 

furthered examined via a trend analysis on the data. As with the performance data, trend 

analysis was performed in order to establish the form of the relationship between 

turbulence level settings and workload. In this case, linear, quadratic, and cubic trends are 

simultaneously present (see Table 10) in the data (see Figure 3). 
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Table 9. ANOVA source table for the workload data. 

Eta 
squared 

.77 

.03 

.05 

Table 10. Test of within subjects contrasts for the workload data. 

Power 

1.00 

.13 

Source SS df MS F p 

Turbulence 41405.20 235 17565.70 48.69 <.001 
Error (turbulence) 11905.13 33.00 (360.75) 
Crosswind 282.41 1.86 151.60 .56 .56 
Error (crosswind) 7050.25 26.08 (270.33) 
Turbulence*crosswind 678.30 5.98 113.42 .77 .59 
Error(turbulence*crosswind) 12270.36 83.72 (146.56) 

Note. All reported p values are based on the Huynh-Feldt epsilon correction. Values 
enclosed in parentheses represent mean square errors. 

.29 

Source Turbulence 

Turbulence Linear 
Quadratic 
Cubic 

SS 

37713.64 
924.80 
2766.76 

df 

1 
1 
1 

MS 

37713.64 
924.80 
2766.76 

F 

67.86 
6.55 
18.01 

P 

.00 

.02 

.00 

Eta 
squared 

.82 

.31 

.56 

Power 

1.00 
.66 
.97 
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1 
None 

T r 
Light Moderate 

Turbulence Setting 

Severe 

NOTES: Error bars are based on the mean workload score data +/- 2.145 standard error of the mean units. 

Figure 3. Average workload scores for turbulence. 

Regression Equations 

The data for each of the trend analyses and for each trend component were used to 

generate lines of best fit. These equations represent the trends mathematically such that 

the sum of the squared residuals between the line and the four turbulence level means are 

minimized. All of the equations are presented in Table 11. These equations can be used to 

roughly estimate the expected performance or workload value given a specific value for 

the Elite turbulence setting. These equations are not equivalent to regression equations, 

which allow for the computation of a confidence interval around each estimate. 
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Table 11. Regression equations for each trend component. 

Variable Trend Component Equation 

Performance Linear y = .10r + 5.02 

Linear y = 4.32 T + 30 .47 

Work Load Quadratic f = 6.58r- .25r2 + 28.20 

Cubic f = -2.57T - 2.67T2 - .22373 + 29.96 

DISCUSSION 

Three issues were addressed in this study. The first was to evaluate the effect of 

crosswind on mental workload and pilot tracking performance. Tracking performance 

was measured by computing RMSE values which is an indication of deviations of the 

actual flight path to the ideal approach path. The RMSE data suggest that the impact of 

crosswind on tracking performance is small and probably not of practical concern. This is 

not to say that performance measures across the crosswind conditions were statistically 

equivalent, only that there is no conclusive evidence of a relationship between crosswind 

and performance. It is possible that an impact on performance could be found if higher 

crosswind components were simulated. 

Similarly, the results did not find that crosswind statistically increased mental 

workload. These results are consistent with previous research conducted by Hall et al. 

(2003). The lack of statistical differences in workload across crosswind conditions may 

be partly attributable to less than perfect reliability of the TLX scale or other sources of 

error variance that may be obfuscating the true impact of crosswind on workload. As with 

the tracking performance results, it may also be the case that crosswind does not 
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practically increase perceived workload, at least at the levels of crosswind that were 

simulated. Another practical concern is that on the manner in which crosswind is 

simulated. Simulator programs tend to provide a rather static source of "crosswind", 

meaning the aircraft track is shifted relative to the heading of the aircraft. The amount of 

shift is a function of wind speed and direction relative to the heading of the aircraft, but it 

tends to be consistent as opposed to variable. Real-world crosswinds tend to vary in 

relatively short cycles; simulated crosswinds tend to be steady. 

The second issue involves the effect of turbulence on mental workload and pilot 

tracking performance. The study results show that as the turbulence level was increased, 

observed tracking performance decreased (e.g. RMSE values increased; see Table 3). To 

some extent, part of the decrease in tracking performance is an artifact of how simulators 

model turbulence. That is, the simulator is displacing the aircraft's position by some 

amount and at some frequency that is commensurate with the turbulence setting. This 

constant shifting makes it impossible for the aircraft to stay perfectly on course and 

produce an RMSE score of zero. Part of the decrease in performance is also likely due to 

the fact that it is more difficult to keep the aircraft on a prescribed pathway when 

turbulence is present. The fact that performance scores varied across pilots demonstrates 

this point perfectly; if the decrease in performance were due solely to measurement 

artifact, there would be no variance in performance across pilots. The fact that turbulence 

was random and could not be predicted (as in real life) added to the difficulty of the 

approach. An extremely difficult task can become less challenging when one is able to 

predict what's coming next, anticipate its effect, and set a corrective action to prevent 

unwanted results (i.e. as with crosswind). With the randomness and unpredictability of 



turbulence, this was not possible. Once the aircraft was off course and the pilot 

recognized it, he could then set a correction to get back on course. 

Another challenge that was presented to the participants while flying in turbulent 

conditions was the fact that in many occasions the aircraft yawed and rolled in opposite 

directions. This required great amount of effort and concentration by the pilot to maintain 

that aircraft coordinated and in its desired flight path. The scanning of the instruments 

needed to be changed as a result of the turn coordinator becoming unreliable, showing 

erratic left and right bank attitudes in moderate and severe levels of turbulence. Most 

participants placed more emphasis on the attitude indicator in an attempt to maintain the 

wings level and prevent the aircraft from rolling into a steep bank and an unusual attitude 

developing into an unsafe situation. This "non-standard" way of scanning the instruments 

left the participants with less time to concentrate on the tracking task and as a result 

achieved higher RMSE values. There was also a noticeable increase in the frustration and 

overall fatigue as the participants attempted to constantly "fight" the turbulence while 

flying the instrument approach. This observation is supported by an increase in the 

NASA-TLX workload scores. 

The workload scores reflected the difficulty imposed by the turbulence, with 

scores increasing as turbulence settings increased and markedly increasing between the 

turbulence settings of 3 and 6. The "step" function exhibited in the workload scores 

suggests that pilots are well equipped to handle turbulence up to some point without 

experiencing a large increase in workload, but beyond some threshold, most pilots 

suddenly found themselves overburdened by the turbulence settings. It is interesting to 

note that this same pattern was not seen in the performance data, where a precipitous fall 



in performance is associated with a small range of turbulence settings. In any event, the 

sudden change in experienced workload might be explained by non-linearity in the 

turbulence settings. As discussed earlier in the paper, efforts were made to map the 

Elite's turbulence settings with accepted rating scales for turbulence. These efforts were 

somewhat successful showing that g-load measures did increase with increases in the 

turbulence settings. It may be the case, though, that these increases in turbulence are not 

linear relative to the associated changes in the psychological experience of workload. For 

example, demarcations in the turbulence scale may not correspond in a one-to-one 

fashion with the amount of experienced workload. Thus, moving the turbulence setting 

from 3 to 4 may produce a five-unit change in workload scores (for example), but moving 

from a 6 to 7 on the turbulence scale may produce a ten-unit change in workload scores. 

The third issue was to evaluate if crosswind and turbulence interacted to produce 

a larger effect than either one alone. The results of the study failed to find a statistically 

significant interaction between these two factors for either the performance or workload 

data. This is probably due the non-impact of the crosswind factor under any 

circumstances. The presence of a crosswind is countered by using a constant crab angle 

during the approach, which essentially renders the crosswind irrelevant during the 

remainder of the approach. 

The use of simulators in aviation research extends back many years. The need for 

tight controls on environmental conditions, safety concerns, and the cost associated with 

performing research with real aircraft have made simulators a standard fixture in aviation 

research. To be sure, the generalizability of aviation research findings using simulators is 
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a concern, but the volume of research in the area of pilot performance would be 

drastically reduced if all research had to be conducted using real aircraft. 

Much of the pilot performance research conducted to date has been performed in 

simulated environments. The results of this study should help future researchers 

attempting to manipulate workload in a simulated environment to do so effectively. 

Specifically, the results of this study provide insight on how to best manipulate workload 

and performance (e.g. via manipulation of turbulence settings), but also on the degree to 

which specific environmental manipulations will impact performance and workload. 

The fact that only one out of the fifteen pilots was able to perform on two trials to 

the ATP standard was not surprising. The FAA ATP practical test standards are very 

strict and require lots of practice, dedication, and experience to be achieved. The low 

level of performance might also be explained by a lack of experience flying the particular 

simulator setup. Some of the participants expressed that under the moderate and severe 

levels of turbulence and as a result of the over-controlling required to maintain the 

aircraft flying the required course, the yoke would hit their knees, creating a distraction 

during the instrument approach procedure. 

Study Limitations and Recommendations 

As with any study, there are several limitations inherent in this study that tempers 

the results. The generalizability of the results to various groups of pilots is restricted by 

the fact that the participants in the study were fairly homogenous in terms of age and 

were all trained to perform instrument approaches using the same methodology. 

Therefore, estimates of performance at the population level are technically limited to 

other flight students in the program. Replicating the study with pilots from different 

52 



populations (i.e. commercial pilots, more experienced pilots, etc.) would address this 

issue. 

Another limiting factor is that a constant crosswind component was used in this 

study. A consistent crosswind is relatively easy to compensate for, especially when the 

goal is to keep the aircraft on a specific ground track. Also the crosswind was always 

presented from the same direction. Some participants appeared to be aware of this fact 

and automatically corrected when they detected that the crosswind speed was significant. 

Part of the challenge of dealing with a crosswind is to estimate its direction. This was not 

accurately simulated during this study and should be addressed in future crosswind 

studies. 

Some of the examples of poor performance in this study may have been due to a 

lack of instrument flight proficiency. The participants varied markedly in terms of their 

instrument flight skills, even though the participants were required to be instrument 

current. The FAA defines instrument currency as performing 6 instrument approaches 

within the last 6 months, but this standard does not address the concept of proficiency per 

se. A pilot's instrument scan, situational awareness, and comfort have a lot to do with 

how proficient (not necessarily current) he is at flying only with reference to the flight 

instruments. Using a group of participants who has flown a set number of instrument 

approaches within a smaller time period might reduce the variability in their performance 

when performing a simulated instrument-tracking task. 

The primary goal of this study was to evaluate the extent to which crosswind and 

turbulence would influence pilot performance and workload during a simulated 

instrument-tracking task. Turbulence affected both mental workload and tracking 
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performance while crosswind did not affect either. Both crosswind and turbulence 

combined were expected to have a greater impact on the pilot's ability to track the final 

approach course inbound than either one alone, but this result was not found. Aviation 

researchers should perhaps reconsider the use of crosswind in performance and workload 

studies as a way to increase the difficulty of approach tasks as such manipulations are not 

likely to impact performance or workload. Instead, turbulence manipulations should be 

considered and are very likely to increase the difficulty of the task. 
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APPENDIX A 

Department of Human Factors and Systems 
Embry-Riddle Aeronautical University 

CONSENT FORM 

Prospective Research Participants: Read this consent form carefully; ask as many 
questions as you like before deciding whether or not you wish to participate in the 
research study. Feel free to ask questions at any time before, during, or after your 
participation in the research. 

I consent to participating in the research project entitled: 
The Effect of Crosswind and Turbulence on Mental Workload and Pilot Tracking 
Performance. The principle investigator of the study is: Bruno Vivaldi 

The purpose of this study is to investigate the effect of crosswind and turbulence on 
mental workload and pilot tracking performance during an instrument approach (ILS). 
You will begin by taking the first five minutes of the session to become familiar with the 
Elite flight simulator and it's various controls. You will also practice some basic attitude 
instrument flying, including climbs, descents, turns, and straight and level. 

After completing the familiarization session, you will be asked to fly a total of 12 
instrument approaches (each lasting approximately 3 minutes), experiencing in each a 
different level of crosswind and turbulence. When the aircraft reaches the decision height, 
the Elite simulator will be paused and you will be asked to complete a form that will 
address your mental workload during the simulation. At the completion of this task the 
researcher will reset the simulator and the next trial run will be flown. This process will 
continue until all 12 trial runs are completed. 

The results of this experiment may be used for other ongoing research, but your name 
will not be used in the reporting of the results. Only group data will be used, as all 
personal information will be kept completely confidential. If you wish to withdraw from 
the experiment, you may do so at any time without penalty. 

I acknowledge that I have had the opportunity to obtain additional information regarding 
the study and that any questions I have raised have been answered to my full satisfaction. 

Finally, I acknowledge that I have read and fully understand the consent form. 

Date: Name (please print): 

Signed (participant): Researcher: 



Participant Information 

Please complete the following survey as it will be used in conjunction with your flight 
performance data. Please note that your responses will not be traced back to you! 

Full Name (please print): 

(Last) (First) (MI) 

E-mail address: Phone Number: 

Last 4 digits of ERAU colleague number: 

Age: Sex (circle one): M F 

Year in School (circle one): Freshman Sophomore Junior Senior 

Total Flight Hours: Cessna 172 Hours: 

Simulation Time (Frasca): Instrument Time: 

Are you instrument current per CFR part 91? (circle one): YES NO 

Ratings (check all that apply): Private Instrument Multi 

Commercial CFI CFII 
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APPENDIX B 

NASA-TLX Rating Scale Definitions 

title 

Mental Demand 

Physical Demand 

Temporal Demand 

Effort 

Performance 

Frustration Level 

Endpoints 

Low/High 

Low/High 

Low/High 

Low/High 

Good/Poor 

Low/High 

Descriptions 
How much mental and perceptual 
activity was required (e.g. thinking, 
calculating, remembering, and 
searching)? Was the task easy or 
demanding, simple or complex? 
How much physical activity was 
required (e.g. pushing, pulling, 
turning, controlling, activating)? 
Was the task easy or demanding, 
slow or brisk? 
How much time pressure did you feel 
due to the rate or pace at which the 
tasks or task elements occurred? Was 
the pace slow and leisurely or rapid 
and frantic? 
How hard did you have to work 
(mentally and physically) to 
accomplish your level of 
performance? 
How successful do you think you 
were in accomplishing the goals of 
the task set by the experimenter (or 
yourself)? How satisfied were you 
with your performance in 
accomplishing these goals? 
How insecure, discouraged, irritated, 
stressed and annoyed versus secure, 
gratified, content and relaxed did you 
feel during the task? 



NASA TLX Rating Sheet 
Instructions: On each scale, place a mark that represents the magnitude of that 
factor in the task(s) you just performed. 

LOW 
MENTAL DEMAND 

HIGH 

LOW 
PHYSICAL DEMAND 

HIGH 

LOW 
TEMPORAL DEMAND 

HIGH 

EXCELLENT 
PERFORMANCE 

POOR 

LOW 
EFFORT 

HIGH 

LOW 
FRUSTRATION 

HIGH 



NASA-TLX 
Pairwise Comparison of Factors 

Instructions: Circle the member of each pair that provided the most significant 
source of variation in the task(s) that you just performed. 

PHYSICAL DEMAND / MENTAL DEMAND 

TEMPORAL DEMAND / MENTAL DEMAND 

PERFORMANCE / MENTAL DEMAND 

FRUSTRATION / MENTAL DEMAND 

EFFORT / MENTAL DEMAND 

TEMPORAL DEMAND / PHYSICAL DEMAND 

PERFORMANCE / PHYSICAL DEMAND 

FRUSTRATION / PHYSICAL DEMAND 

EFFORT / PHYSICAL DEMAND 

TEMPORAL DEMAND / PERFORMANCE 

TEMPORAL DEMAND / FRUSTRATION 

TEMPORAL DEMAND / EFFORT 

PERFORMANCE / FRUSTRATION 

PERFORMANCE / EFFORT 

EFFORT / FRUSTRATION 
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