

Theses - Daytona Beach

**Dissertations and Theses** 

11-1996

# Analysis of Small Airports within a One Hundred and Twenty Mile Radius of Medium and/or Large Airports

Cheryl Mitchell Cunningham Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/db-theses

Part of the Management and Operations Commons

#### Scholarly Commons Citation

Cunningham, Cheryl Mitchell, "Analysis of Small Airports within a One Hundred and Twenty Mile Radius of Medium and/or Large Airports" (1996). *Theses - Daytona Beach*. 102. https://commons.erau.edu/db-theses/102

This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu.

## ANALYSIS OF SMALL AIRPORTS WITHIN A ONE HUNDRED AND TWENTY MILE RADIUS OF MEDIUM AND/OR LARGE AIRPORTS

by

Cheryl Mitchell Cunningham

A Thesis Submitted to the Office of Graduate Programs in Partial Fulfillment of the Requirements of the Degree of Master of Business Administration/Aviation

> Embry-Riddle Aeronautical University Daytona Beach, Florida November 1996

#### UMI Number: EP31958

#### **INFORMATION TO USERS**

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

# UMI®

UMI Microform EP31958 Copyright 2011 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

© Copyright by Cheryl Mitchell Cunningham 1996

All Rights Reserved

## ANALYSIS OF SMALL AIRPORTS WITHIN A ONE HUNDRED AND TWENTY MILE RADIUS OF MEDIUM AND/OR LARGE AIRPORTS

by

Cheryl Mitchell Cunningham

This thesis was prepared under the direction of the candidate's thesis committee chairman, Dr. Abe Harraf, Department of Aviation Business Administration, and has been approved by the members of her thesis committee. It was submitted to the Department of Aviation Business Administration and was accepted in partial fulfillment of the requirements for the degree of Master of Business Administration in Aviation.

THESIS COMMITTEE: Dr. Abe Harraf, \Chhair Dr. Bijar gh, Member Mr. Craig Jac ón, Member ABA Graduate Program Chain Department Chair, Aviation Business Administration iii

#### ACKNOWLEDGMENTS

The author wishes to express special thanks to the Thesis Chairman, Dr. Abe Harraf, whose advice, counsel and guidance were appreciated and contributed to the successful completion of this thesis. Appreciation is also extended to Thesis Committee Members Dr. Bijan Vasigh and Craig Jackson, Daytona Beach International Airport. Special thanks is also extended to Dr. Bijan Vasigh for his statistical knowledge and use of his computing resources.

Also, I must thank my husband, Dr. James Cunningham, mostly for his loving support throughout my masters education. His wisdom and encouragement have been crucial in this educational endeavor. Finally, I thank my son, Shamus, for his patience and understanding.

#### ABSTRACT

| Author:      | Cheryl Mitchell Cunningham                                                                                |  |
|--------------|-----------------------------------------------------------------------------------------------------------|--|
| Title:       | Analysis of Small Airports within a One Hundred and Twenty<br>Mile Radius of Medium and/or Large Airports |  |
| Institution: | Embry-Riddle Aeronautical University                                                                      |  |
| Degree:      | Master of Business Administration/Aviation                                                                |  |
| Year:        | 1996                                                                                                      |  |

The purpose of this research is to investigate how income, population age, scheduled air carrier services, and distance between competing airports impact annual scheduled passenger enplanements for airports in smaller communities. Small airports located within a 120 miles radius of larger sized (medium or large) airports are considered to be within the "shadow" of larger airports with which they must compete for passenger enplanements.

Two methods were employed to evaluate shadow airports within a 120 mile radius of larger airports. First, an historical view, analyzing each of the airports with regard to schedule passenger enplanements, median disposable incomes, median ages, and distances between competing air passenger cities was completed. Comparisons were done over a 13 year period from 1980 to 1993 and an average annual growth rate was computed for all the airports' dependent and independent variables. The next step was to pinpoint those small airports experiencing declining enplanements. Following this process, eight airports were singled out with declining trends. Six of the eight airports were found to be within an hour's driving time of a

v

larger airport. The remaining two were nearer to a two hour drive. Notably, the southeastern region of the United States accounted for half of the shadow airports experiencing declines.

Also of significance, when comparing all other shadow airports to these declining airports revealed that the overall group grew 2 1/2 times faster than the eight cited. Additionally, their competing large airport counterparts when compared to their larger airport overall peer group grew twice as fast, suggesting that market share is being transferred from the shadow airports to their nearby competing airports.

Second, a double log multiple regression model was developed. The final results suggest that this model's independent variables account for 12.45% of the enplanements at the small/shadow airports. The outcome indicated that these independent variables--median disposable income, median age, and distance between air passenger cities were statistically significant at 95% and support the null hypothesis which states that there is a relationship between small air passenger city's median disposable income, median population age, competing airports scheduled passenger enplanements, and distance from small air passenger city to the larger air passenger city. The independent variable, enplanements at the larger airport, was not as strong statistically and fell within a confidence level of 88%. Enplanements at the large hub were included in an attempt to measure the impact of increasing growth at the large airports on its smaller competitors.

vi

# TABLE OF CONTENTS

| ACKNOWLEDGMENTS i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | v                          |
| LIST OF TABLES i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ix                         |
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | xi                         |
| CHAPTER 1<br>INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>4<br>4                |
| CHAPTER 2       IITERATURE REVIEW.       II         Socioeconomic Characteristics of Air Travel Passengers       III         Business       III         Leisure       IIII         Analysis of How Passengers Choose a Departure Airport.       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                | 3<br>3<br>9<br>0           |
| CHAPTER 3       2         DATA COLLECTION AND MODEL DEVELOPMEN.T       2         Selection of Air Passenger Cities for the Study Group       2         Data Collected for Multiple Regression Analysis Model.       2         Highway Mileage between the Competing Air Passenger Cities       2         Scheduled Passenger Enplanements (1980-1993)       2         Demographical Information.       2         Multiple Regression Model Development       2         Double-Log Multiple Regression Model       2 | 5<br>7<br>7<br>7<br>8<br>8 |

# TABLE OF CONTENTS (CONTINUED)

| CHAPTER 4                                                                                         |    |
|---------------------------------------------------------------------------------------------------|----|
| ANALYSIS OF COMPETING AIRPORTS                                                                    | 31 |
| Distance Between Competing Airports.                                                              |    |
| Comparison of Independent and Dependent Variables by Region                                       |    |
| Region 1 (Northeast)                                                                              |    |
| Region 2 (Southeast)                                                                              |    |
| Region 3 (North & South Central)                                                                  |    |
| Region 4 (Western)                                                                                |    |
| Summary                                                                                           |    |
|                                                                                                   |    |
| CHAPTER 5                                                                                         |    |
| ANALYSIS OF MULTIPLE REGRESSION MODEL                                                             | 67 |
| Double-Log Multiple Regression Model                                                              | 67 |
| <u>Model</u>                                                                                      | 67 |
| <u>Coefficients</u>                                                                               | 68 |
| R-Squared.                                                                                        | 69 |
| F-Statistic                                                                                       | 69 |
| Correlation Matrix.                                                                               | 71 |
| Durbin-Watson Statistic.                                                                          | 72 |
| CHAPTER 6                                                                                         |    |
| SUMMARY AND CONCLUSION                                                                            | 73 |
| Review of Findings.                                                                               |    |
| Summary                                                                                           |    |
| Improvements to the Model                                                                         |    |
|                                                                                                   | ,, |
| WORKS CITED                                                                                       | 80 |
| APPENDICES                                                                                        |    |
| A. SCHEDULED PASSENGER ENPLANEMENTS (1980 to 1993)                                                | 83 |
| B. MEDIAN AGE FOR MSAs (1980 to 1993)                                                             | 88 |
| C. MEDIAN DISPOSABLE INCOME FOR MSAs (1980 to 1993)                                               | 91 |
| D. CHARTS COMPARING ENPLANEMENTS, MEDIAN, AGE, AND<br>MEDIAN DISPOSABLE INCOME FOR COMPETING MSAs | 94 |

# LIST OF TABLES

| Table 1.  | FAA's Classification of Air Traffic Hubs     | 2  |
|-----------|----------------------------------------------|----|
| Table 2.  | Ranking of Airpor Services by Travel Purpose | 14 |
| Table 3.  | U. S. Cities within a Traffic Shadow         | 26 |
| Table 4.  | Distance Between Competing Hubs.             | 34 |
| Table 5.  | Scheduled Passenger EnplanementsRegion 1     | 37 |
| Table 6.  | Median Disposable IncomeRegion 1             | 38 |
| Table 7.  | Median AgeRegion 1                           | 39 |
| Table 8.  | Top Ranked MSAs for Median Age1994.          | 45 |
| Table 9.  | Scheduled Passenger EnplanementsRegion 2     | 46 |
| Table 10  | Median Disposable IncomeRegion 2             | 47 |
| Table 11  | Median AgeRegion 2.                          | 48 |
| Table 12. | Scheduled Passenger EnplanementsRegion 3     | 52 |
| Table 13. | Median Disposable IncomeRegion 3             | 53 |
| Table 14. | Median AgeRegion 3                           | 54 |
| Table 15. | Scheduled Passenger EnplanementsRegion 4     | 56 |
| Table 16  | . Median Disposable IncomeRegion 4           | 56 |
| Table 17. | Median AgeRegion 4.                          | 57 |

# LIST OF TABLES (CONTINUED)

| Table 18. | Comparison of Scheduled Passenger<br>Enplanements of Large/Median Airports |    |
|-----------|----------------------------------------------------------------------------|----|
|           | and Shadow Airports.                                                       | 59 |
| Table 19. | Top Ranked MSAs for Scheduled Passenger<br>Enplanements                    | 61 |
|           |                                                                            | 01 |
| Table 20. | Top Ranked MSAs for Median Disposable                                      |    |
|           | Income                                                                     | 63 |
| Table 21. | Top Ranked MSAs for Median Income                                          | 65 |
| Table 22. | T-Statistics for Regression Equation                                       | 70 |
| Table 23. | Probability                                                                | 70 |
| Table 24. | Correlation Matrix                                                         | 72 |

# LIST OF FIGURES

| Figure 1.  | Structure of Air Travel Choices                                                                                     | 12 |
|------------|---------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.  | Airport Access Mode Choice for Business and<br>Nonbusiness Travelers.                                               | 18 |
| Figure 3.  | Cost Coefficient of Ground Access to Airport<br>by Income Level and Study Group                                     | 20 |
| Figure 4.  | Length of Flight and Cost Coefficients                                                                              | 21 |
| Figure 5.  | United States Map of Airport Sites                                                                                  | 32 |
| Figure 6.  | Scheduled Passenger Enplanements from<br>19801993 for Portland Maine, and<br>Boston, Massachusetts                  | 36 |
| Figure 7.  | Scheduled Passenger Enplanements from<br>19801993 for Daytona Beach, and<br>Orlando, Florida                        | 40 |
| Figure 8.  | Scheduled Passenger Enplanements from<br>19801993 for Melbourne and<br>Orlando, Florida.                            | 40 |
| Figure 9.  | Scheduled Passenger Enplanements from<br>19801993 for Sarasota and<br>Tampa, Florida                                | 41 |
| Figure 10  | Scheduled Passenger Enplanements from<br>19801993 for Columbia,<br>South Carolina and Charlotte,<br>North Carolina. | 43 |
| Figure 11. | Scheduled Passenger Enplanements from<br>19801993 for Dayton and<br>Cinncinati, Ohio                                | 51 |

# LIST OF FIGURES (CONTINUED)

| Figure 12. | Scheduled Passenger Enplanements from<br>19801993 for Toledo, Ohio, and<br>Detroit, Michigan          | 51 |
|------------|-------------------------------------------------------------------------------------------------------|----|
| Figure 13. | Schedule Passenger Enplanements from<br>19801993 for Indio/Palm Springs and<br>Riverside, California. | 54 |

#### **CHAPTER 1**

#### INTRODUCTION

According to some forecasters and other aviation experts, the potential for growth at U.S. small airports, whether within a two-hour drive of a larger competing airport or not is very strong. Airlines are redirecting some air traffic away from the larger airports because of airport capacity constraints. Also, airlines are moving away from hub build up to increase growth and transition to line flights, modeling themselves after the Southwest Airline configuration. Demographic shifts in the decade ahead could mean dramatic changes for both small and medium-sized airports.<sup>1</sup>

Many large airports such as LaGuardia, Kennedy, and Boston Logan have limited expansion capability. This, combined with continued demographic and business shifts away from central cities and into suburban and ex-urban areas, suggest strong traffic demand at the country's smaller airports. However, a shift in how airlines do business occurred in the early 1990 which counters these projections, and it is unclear whether some small airports within a short distance of a larger airport will regain their previous status or fulfill forecasted growth projections.<sup>2</sup>

America's Airport Capacity Needs: A Futurist Approach to Traffic Forecasting for the 21st Century, Aviation Research Corporation (Golden, Colorado, August 1990), 100.
 (Aviation Research Corporation 1990, 100)

The early 1990s saw increased competition from start-up airlines and the Gulf War which resulted in increased fuel costs and air travel interruptions. In addition, most major airlines were suffering from several years of unprofittability and were forced to reevaluate their corporate strategies and their market viability. Later, the Gulf War left the U. S. in a slump and recession causing further economic losses for the major airlines.

#### **Research Objective**

The purpose of this research will be to investigate how smaller airport which are within a short drive of a larger airport have faired over a 13 year period and to assess their potential for future growth. This research will investigate how income, population age, scheduled air carrier services, and distance between competing airports impact annual scheduled passenger enplanements for airports in smaller communities. Small airports located within a 120 miles radius of larger sized (medium or large) airports are considered to be within the "shadow" of larger airports with which they must compete for passenger enplanements. The size classification of air passenger cities which offer scheduled passenger air services is determined through the Federal Aviation Administration's (FAA) definition of an "air traffic hub." This definition of "hub" is limited to airports and differs from the better known definition of hub meaning an airline's location for commercial air service connections and route structure. This is commonly known as the "hub and spoke" system.

The FAA defines air traffic hubs as those geographical areas composed of cities and Metropolitan Statistical Areas (MSAs) requiring aviation services; each city/MSA must enplane at least .05% of all U. S. domestic passengers in a given year to be classified as a hub.

2

An air traffic hub may include more than one airport and falls into one of four classifications. Hub classification is determined by the total annual enplaned passengers of air carriers in the 50 United States, the District of Columbia, and other areas designated by the FAA.<sup>3</sup> The following table provides a breakdown of air traffic hub classifications by total scheduled passenger enplanements. For purposes of clarity, an air traffic hub will be referred to as an air passenger city throughout this paper.

| Table 1 FAA's Classification of             |                                                  |
|---------------------------------------------|--------------------------------------------------|
| <u>Air Traffic Hubs</u>                     |                                                  |
| Hub Size (air passenger city)               | Annual Enplanements (based on 10% ticket sample) |
| Large Air Traffic Hub (air passenger city)  | 1% passenger enplanements                        |
| Medium Air Traffic Hub (air passenger city) | .25 to .999% enplanements                        |
| Small Air Traffic Hub (air passenger city)  | .05 to .249% enplanements                        |
| Nonhub Air Traffic Hub (air passenger city) | < .05% enplanements                              |

Source: U.S. Department of Transportation, Federal Aviation Administration, Airport Statistics of Certified Route Air Carriers, 1992.

•.

# Hypothesis

Small airports within 120 miles of one or more large/medium airports compete for

scheduled passenger enplanements. Scheduled passenger enplanements of those small air

passenger cities served by small airports are influenced by their communities' fluctuation in

<sup>&</sup>lt;sup>3</sup> U. S. Department of Transportation, Federal Aviation Administration, Airport Statistics of Certified Route Air Carriers, (1992): v.

disposable income, the age distribution of the population, air carrier services of the competing airport, and the distance in highway mileage between the small air passenger city and the medium or large air passenger city. Air carrier services of the competing airport are an important consideration because these larger airports provide residents of the "shadow" city alternatives to their local airport services. The larger airport affords greater economies of scale, more competitive air fares, and generally more choices (direct flights, jet service, and more arrival/departures times) for air passengers. Small air passenger cities closest in highway miles (43-79 miles) to larger air passenger cities suffer the greatest adverse impact.

#### **Research Hypothesis**

Based on these concerns, the following hypothesis was formulated.

Ho = There are economic relationships between the small air passenger city's median disposable income, median population age, competing airports' scheduled passenger enplanements, and its distance from the larger air passenger city.

 $H_A$  = There are no economic relationships between the small air passenger city's median disposable income, median population age, competing airports' scheduled passenger enplanements, and its distance from the larger air passenger city.

#### Scope of the Research

The scope of this research is to assess the trend of U. S. scheduled passenger enplanements at small airports, which must compete in multiple airport regions against one or more medium and/or large airports located within a 120 highway mile radius of the small

4

airport. The 120 mile radius is based on previous research conducted by Andrew Goetz and will be discussed in detail in Chapter 3 of this paper.<sup>4</sup> To accomplish this, the following demographic data, economic data, and airport statistical data were gathered for each MSA or air passenger city within the defined study group for the time period of 1980 to 1993. The study group of airports in this research can be found in Chapter 3, Table 3. These four variables are examined:

- A. Median disposable income for the small and medium/large air passenger cities
- B. Median age of population for the small and medium/large air passenger cities
- C. Highway mileage between each of the small air passenger cities and medium/large air passenger cities
- D. Scheduled passenger enplanements for small airports and medium/large air passenger cities

#### Structure of Research

This research is developed based on a double log multiple regression equation which will attempt to explain the historical trends of scheduled passenger enplanements for small airports within driving distance of medium and/or large airports. Other factors which also will be compared within these competing markets are the age of the population in each air passenger city and the income level of the resident populations for both the small air passenger cities and the larger air passenger cities. In addition, the scheduled passenger enplanement statistics of the small or shadow airport with be analyzed as well as those of its competitor(s)

<sup>&</sup>lt;sup>4</sup> Andrew R. Goetz, "Geographic Patterns of Air Service Frequencies and Pricing at U. S. Cities," *Journal of the Transportation Research Forum*, 33 (1993): 70.

Chapter 2, Review of Literature, examines pertinent research in relation to social and economic characteristics of business and nonbusiness air passengers and those factors which influence air passengers' airport selections.

Chapter 3 formulates a set of competing airports for the study group and identifies the necessary data resources for the dependent and independent variables. The development of the double log multiple regression model concludes this section.

Chapter 4 analyzes the study group of competing airports, and Chapter 5 discusses the results and findings of the multiple regression model.

Finally, Chapter 6 summarizes the findings of both Chapters 4 and 5. In addition, recommendations are provided for conducting further research.

6

# CHAPTER 2 LITERATURE REVIEW

There are two primary categories of air travel passengers--those traveling for business and those traveling for nonbusiness activity. The largest portion of the nonbusiness category includes leisure travelers. Other air travel classified as nonbusiness travel include: emergency trips, traveling for a job interview, military leaves, and travel to and from school.<sup>3</sup>

When evaluating how air passengers choose an airport in a region which supports more than one airport, it is important to understand the variety and hierarchical level of decisions which affect the traveler's choice of departure airport. Those influencing factors-- flight frequency, price, quality of air service, and ground access to airports--that are important to the business traveler may differ or play a lesser role for the leisure traveler. Also, the rationale used by each of these market segments in selecting which airport to depart/arrive from may be very similar but the priority and the weighting of each variable may differ between the business and nonbusiness air passenger.

<sup>&</sup>lt;sup>3</sup> Rigas Doganis, *Flying Off Course: The Economics of International Airlines* (New York: Harper Collins Academics, 1991), 208.

#### Socioeconomic Characteristics of Air Travel Passengers

Business. Of the two groups, business travelers are generally less price sensitive than leisure or nonbusiness. However, with the rise of small businesses, entrepreneurs can be more price sensitive than established large firms since entrepreneurs typically are closer to their organization's accounts payables, and they often act more like a price sensitive leisure traveler than the traditional business traveler from a medium or large sized firm. However, for typical business travelers, availability of seating on demand, high frequency of service, the ability to change travel plans quickly, and number of stop overs enroute are considered very important.<sup>4</sup>

Leisure. The general characteristics of the leisure traveler are more diverse than those of the business traveler. Because of this diversity, their travel preferences reflect different priorities. Price, however, is by far the leading factor in choosing which airline to fly or which airport to depart/arrive from, even though both age and income elasticity of the leisure segment vary greatly. Current estimates suggest that leisure air travel may have an income elasticity as high as 2.0, meaning that in a developed economy, like the United States, if real income rises by 5%, a 10% growth in expenditures on leisure air travel is expected.<sup>5</sup> Another study conducted by Kenneth Kaemmerle echoes a similar result but with a lower ratio. Kaemmerle's model measured the dependence of enplanements to income (defined as total community personal income). The model yielded an elastic parameter of 1.197 supporting the

<sup>&</sup>lt;sup>4</sup> (Doganis 1991, 210)

<sup>&</sup>lt;sup>5</sup> Stephen Shaw, Airline Marketing and Management (Malabar, FL: Krieger Publishing Company, 1993), 50.

concept that as community income increases, passenger enplanements will increase at a greater rate.<sup>6</sup>

An example of a specific population segment among leisure travelers is adults in their early twenties to mid thirties. Prior to taking on responsibilities, such as families and/or home mortgages, this segment as a whole, tends to fly more because they have higher disposable incomes. In addition, the evolutionary changes of the family structure are also impacting leisure travel. People are waiting longer to marry and to have children. They are also choosing to have fewer children. These factors have a positive impact on leisure travel since waiting means a longer initial period of higher disposable income and smaller families increase the likelihood of air travel. Additionally, people are living longer, healthier lives allowing seniors to travel more in their twilight years.<sup>7</sup>

In an economic environment in which retired persons rely heavily on fixed incomes, a community's growth in disposable income increases at a slower rate than a among a working population; consequently, the opportunity cost of traveling to a distance airport to reap ticket savings is often seen as a viable alternative. The cost of travel time for retired persons is lower than that of the working population which is estimated by one researcher to be at least the same dollar rate as their earned income rate. The seniors market, the fastest growing population segment, can prove to be disappointing for small air passenger cities as they are forced by virtue of their fixed incomes (which often do not keep pace with inflation) to be cost conscious shoppers. This group also has the time to

<sup>&</sup>lt;sup>6</sup> Kenneth C. Kaemmerle, "Estimating the Demand for Small Community Air Service," *Transportation Research*, Part A, 25A (15 May 1990): 107.

<sup>(</sup>Shaw 1993, 48)

price shop and the opportunity cost for this group is lower than for persons currently in the work force.<sup>8</sup>

In general, however, consumers have become much smarter shoppers and will only indulge in goods and services perceived as good values. In addition, leisure travelers are accustomed to the cycle of air fare wars and air fare sales and plan in advance to take advantage of discounted tickets. Passengers are willing to wait for low prices and recognize that deciding early when and where to travel can result in substantial savings. Moreover, there has been a slowing trend of the one- to three-week vacation/holiday, partially as the result of uncertainties in the job market and also in response to the rise in entrepreneurs. Instead, leisure travelers are opting for three to four day mini-vacations, and as a result, are traveling shorter distances.<sup>9</sup>

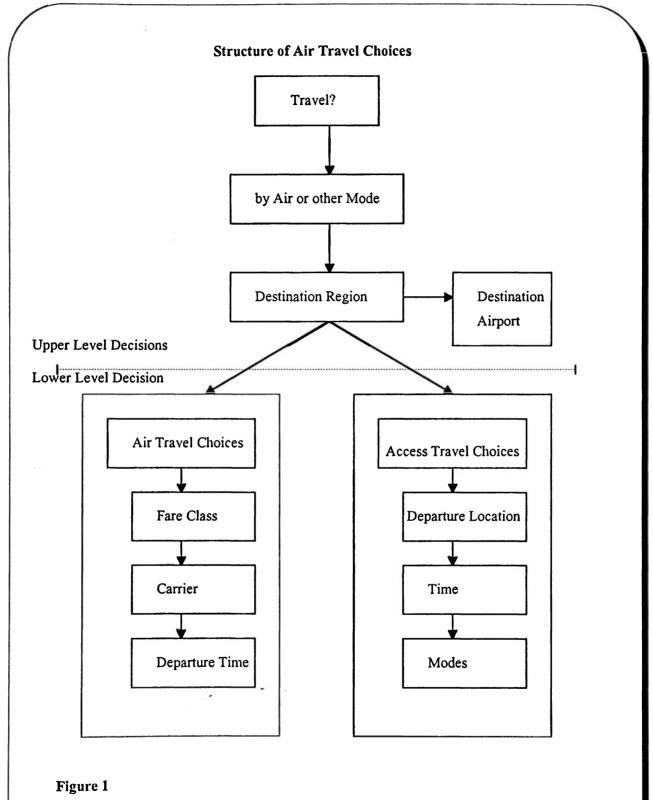
Research has for some time shown that flight frequency, airport access, and service (pricing) greatly influence airport choice. There has also been a shift from business-dominated travel to more leisure driven travel. Business travelers no longer account for the majority of air travel. In 1979 business travel accounted for approximately 55% of air travel but has since declined to approximately 46% in 1991. It is expected to decline to approximately 39% by 2005. <sup>10</sup> With this shift, the economic factors which influence airport choice will play a greater role. These factors--ticket price, travel time or distance to the airport, and flight frequency--are seen as the crucial variables in predicting

<sup>&</sup>lt;sup>8</sup> The Avmark Aviation Economist, (May, 1993): 14, "Are the US Titans Running out of Jet Fuel?"

<sup>&</sup>lt;sup>9</sup> (Avmark, May 1993, 14)

<sup>&</sup>lt;sup>10</sup> John M. Rodgers, "FAA Forecasts," in Restructuring for Growth and Profitability: 20th Annual FAA Commercial Aviation Forecast Conference Held in Washington, D.C., March 3, 1995 (Washington, D.C.: U. S. Department of Transportation), 42-48.

how both business and nonbusiness passengers choose airports when alternatives are presented.


#### Analysis of How Passengers Choose a Departure Airport

Multiple airport regions compete against each other in terms of: 1) the types of ground access and access time to airport, 2) the level of service available at the airport, and 3) the airport terminal characteristics. Airport market shares are the result of air travelers choosing among alternative airports to maximize their travel options based on these three criteria.<sup>11</sup> There are several influencing characteristics that air travelers consider before choosing a departure airport and/or trip destination. They are categorized as follows:

- Individual characteristics: travel purpose, occupation, income, and family structure
- Access transportation service characteristics: surface access travel time and cost to alternative airports
- <u>Air transportation service characteristics</u>: ticket price and flight frequency for all combinations of departure airport and destination
- Destination attractions

Whether or not to travel by air results from a set of choices made by the traveling party and are influenced by the above four categories. The traveler's choices include: whether or not to make an air trip; destination of the air trip; time-of-day to travel; which airline to fly; destination airport; location of departure for airport; airfare category; ground mode of

<sup>&</sup>lt;sup>11</sup> Masahiko Furuichi and Frank S. Koppelman, "An Analysis of Air Travelers' Departure Airport and Destination Choice Behavior," *Transportation Research Record*, 28A (May 1994): 187.



Source: Furuichi and Koppelman 1994, 188.

access to airport; and parking option. (See Figure 1)<sup>12</sup>

The choice of a departure airport often rests on the decision to travel to a specific destination on a particular date and time; those are considered to be high-level decisions. Most likely the decision about which departure airport to select has already been made based upon destination and travel dates and times. Essentially, the choice of which departure airport to fly from is a lower-level decision and is dependent upon on the traveling party and the level of service offered at the airport.<sup>13</sup>

Prior to research conducted by Norman Ashford's and Messaoud Benechemam's (1987), there was a general belief that passengers typically chose to depart/arrive from the closest airport from their departure/arrival locations. However, Ashford and Benechemam theorized that air travelers make choices between airports in multiple airport regions and that airports were not guaranteed patrons based on their location and existence. Given a choice of airports, the air passenger will most likely select a departure airport based on the perception of the airport's overall level of service. Their research employed a multinomial logit model (MNL) with separate models calibrated for specific passenger groups:

- domestic
- international business
- international leisure
- and international inclusive tours.

<sup>&</sup>lt;sup>12</sup> (Furuichi and Koppelman 1994, 187-188)

<sup>&</sup>lt;sup>13</sup> Greig Harvey, "Airport Choice in a Multiple Airport Region," *Transportation Research Record*, 21A (March 1987): 440.

The model included travel time to the airport, number of flights per day, and air fare rates. The data were retrieved from origin-destination surveys distributed by the Civil Aviation Authority in the United Kingdom.<sup>14</sup>

The study revealed that for business and inclusive tour travel, the most important variables were access time to the airport and number of daily flights to the chosen destination. For domestic and leisure trips there were primary three factors: air fare, access time, and frequency of available flights, in that order of importance.<sup>15</sup> Table 2 is a ranking of airport service by travel purpose.

# Table 2

## Ranking of Airport Services by Travel Purpose

|              | <b>Business-Inclusive Tour</b> | Domestic-Leisure          |
|--------------|--------------------------------|---------------------------|
| Ist Dominant | Travel time to airport         | Air Fare                  |
| 2nd Dominant | Number of flights per day      | Travel time to airport    |
| 3rd Dominant |                                | Number of flights per day |

Source: Norman Ashford and Messaoud Benchemam, "Passenger's Choice of Airport: An Application of the Multinomial Logit Model. *Transportation Research Record*, n. s. 1147 (1987): 1.

# Airport Access and Time and Costs Factors

As discussed, the choice of a departure airport and, more specifically, how to

access the airport, is considered a "lower-level" decision for the traveling party.

<sup>&</sup>lt;sup>14</sup> Norman Ashford and Messaoud Benchemam, "Passengers' Choice of Airport: An Application of the Multinomial Logit Model, *Transportation Research Record*, n.s. 1147 (1987): 1.

<sup>(</sup>Ashford and Benchemam 1987, 4)

However, similar to the air travel decision, time, cost, and convenience of surface travel to the departure airport are considerations which influence the passenger's airport selection within a multiple airport region.

Access time to the departure airport can be a critical factor for both business and nonbusiness travelers. Researchers have evaluated the value of the passengers' time and the cost of ground transportation for these different market segments. Research indicates that both business and nonbusiness travelers are highly sensitive to travel time to the airport. Generally speaking, as flight time increases so does the passenger's sensitivity toward access time to and from airports. Subsequently, value of time placed on airport access appears higher than estimated by many field experts who study transportation problems and some researchers suggest that improving the infrastructure that supports airport access might be justified. As a result, because travelers perceive ground access to airports as an integral part of the total trip, the quality of ground access can greatly influence an airport's market share.<sup>16</sup>

Only a few researchers have studied the value of time and cost sensitivities of ground access and have formally published their results. Some unpublished studies have been discussed by the researchers cited in this document and support much of what Greig Harvey; Masahiko Furuichi and Frank Koppelman; and Norman Ashford and Messaoud Bencheman have discovered. These studies all used passenger survey data and have developed multinomial logit choice models to evaluate the collected data.

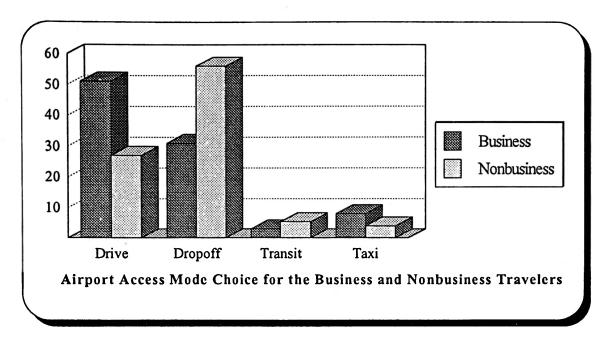
<sup>&</sup>lt;sup>16</sup> Greig Harvey, "Study of Airport Access Mode Choice," *Journal of Transportation Engineering*, 112 (September 1986): 525.

An unpublished study conducted by the Massachusetts Port Authority (Massport) employed a multinomial logit model of airport access behavior for residents and nonresidents traveling for business or nonbusiness purposes. Both time and cost variables were used as well as:

- auto ownership,
- income,
- number of pieces of luggage,
- size of traveling party,
- and number of children of the traveling party.

The model yielded extremely high values on an individual's time (\$30--\$100/hr). As expected, elasticity of time for traveling to the airport was substantially higher than travel time dedicated to work or shopping. Because of the prevalence of high-income travelers using air travel, the value of time for airport access is expected to be higher than that of the general population.<sup>17</sup> Another unpublished study analyzed airport access in the Baltimore-Washington region using survey data collected from air travelers in 1966 for the three major airports and represented 78 regional zones. Again, the results indicated that both business and nonbusiness travelers were equally sensitive to cost and time related to airport access. The study also indicated that both time and cost sensitivities were substantially higher for trips to the airport in comparison to return trips. This could be equated to a higher anxiety level at departure and the passenger's concern for making certain he/she arrives on time to make the scheduled flight.<sup>18</sup>

<sup>&</sup>lt;sup>17</sup> (Harvey 1987, 528)


<sup>&</sup>lt;sup>18</sup> (Harvey 1987, 528)

In 1980, a survey of outbound air passengers in departure lounges of three major competing airports--San Francisco International (SFO); Oakland International (OAK); and San Jose Municipal (SJC)--was conducted of residents (business and nonbusiness) to survey ground transportation choices. Three categories were included in the survey: automobile, taxi service, and public transit. Results revealed that business travelers drove to the airport more frequently than nonbusiness travelers (51% vs 27%) and took a taxi more often (8% vs 4%). Nonbusiness travelers were more likely to be dropped off at the airport (56% vs 31%) or to take public transit (5.4% vs 3%) than the business traveler. (See Figure 2)<sup>19</sup>

Auto access, as indicated, was the primary choice, among business travelers, reflecting this segment's affluence. Income levels of this study's business sample were found to be high. Nearly 85% of the business travelers reported household incomes above the area's median income. Busy schedules, multiple car households, and above average household income explain the higher expenditures on airport access.<sup>20</sup> Also, for those traveling on business, corporate travel reimbursement transfers the higher travel cost related to accessing the airport to the employer.

<sup>&</sup>lt;sup>19</sup> (Harvey 1987, 528)

<sup>&</sup>lt;sup>20</sup> (Harvey 1987, 528-529)

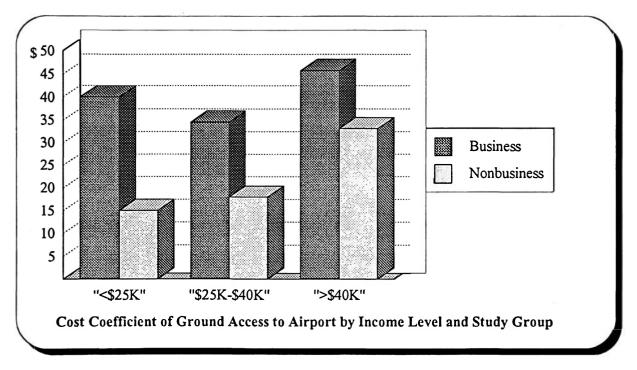


#### Figure 2

Source: Greig Harvey, "Study of Airport Access Mode Choice," Journal of Transportation Engineering, 112 (September 1986): 529.

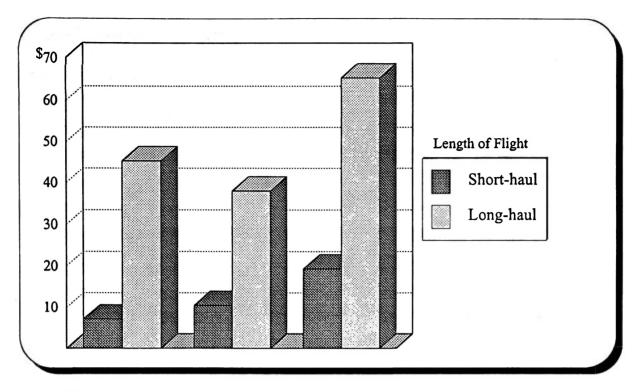
Nonbusiness travelers, as expected, were less affluent than business travelers with 60% of this segment reporting income above the median, a distribution resembling the resident population and also explaining the reduction in nonbusiness travelers using personal vehicles or taxis. A greater percentage of nonbusiness travelers chose less expensive access modes such as drop off by friends, family or public transportation.<sup>21</sup>

Trip duration, the number of days away from home, is another contributing factor to airport access choice for both business and nonbusiness travelers. Long-term parking for the air traveler's personal vehicle is the largest single cost associated with driving to the airport. Importantly, the cost conscious or price sensitive nonbusiness travelers, on average, take longer trips which supports why they elect to be dropped off at an airport.

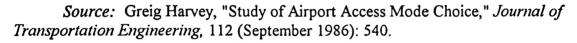

<sup>21</sup> (Harvey 1987, 529)

Dropping off a family member not only helps in trimming travel costs, but also has a social value. Wishing the traveler a safe trip and greeting the traveler upon return is an established tradition. On the other hand, business travelers generally make shorter trips and are very often reimbursed for expenses such as long-term parking.<sup>22</sup>

As a result of the information gathered at the three San Francisco area airports, Harvey hypothesized that cost sensitivity for nonbusiness travelers should decrease as income rises. As the nonbusiness traveler's higher disposable income rises, some will be expended on travel. His results also showed that the low and medium income ranges were not well distinguished as the current sample size. Harvey's model did reveal that differences in access time sensitivity for all travelers existed and cost sensitivity for low income travelers were surprisingly strong. However, the difference in cost sensitivity for medium and high incomes did not appear to exist. As anticipated, the cost sensitivity of the nonbusiness traveler decreased with increasing income. One exception was the category of long-haul, low income travelers. Lack of sensitivity to cost may be impacted by travel subsidies by relatives or by a high ratio of assets to income which is characteristic of retirees. For example, those with low income may have travel expenses paid by family members. Also, some retirees may have a below average incomes but have fewer large payments such as on cars and houses, and therefore, their sensitivities to costs and their actual disposable incomes may be misrepresented. Generally, business travelers are less ticket price sensitive than nonbusiness travelers, and income does not appears to be an important factor to their cost sensitivity since the corporation absorbs the expense. In


<sup>22</sup> (Harvey 1987, 529-533)

summary, Harvey's research indicated that for most air travelers, the value of time is at least as high as the average wage, or salary; in many cases, it appears to be much higher. Business travelers are considerably more sensitive to airport access time than to other types of travel time. Nonbusiness travelers also exhibit high time sensitivity, but not as high as business travelers.<sup>23</sup>




## Figure 3

Source: Greig Harvey, "Study of Airport Access Mode Choice," Journal of Transportation Engineering, 112 (September 1986): 536--539.



#### Figure 4



Other researchers as well have studied the value of time in air travel and found it to be high. Mohring argued that the value of time for the business traveler is equal to the traveler's wage rate.<sup>24</sup> Another researcher, Winston (1985) estimated the value of time for inter-city travel to be 50% higher than one's hourly wage. He suggests that because salaried employees are measured by their employer more by the tasks accomplished, rather than time on the job, he argues that professionals often have a secondary earning potential (such as bonuses and stock options) that are much higher than their hourly rate. Also, professionals tend to be familiar with air travel and understand the physical and psychological stresses associated with air travel which contribute to fatigue and anxiety (jet lag, seating discomfort, terminal waits, ozone exposure, safety concerns). These factors

24

H. Mohring, Transportation Economics, Ballinger, Cambridge, Mass., (1976): 58.

are seen as reducing one's performance, and, therefore, carry a higher cost than the average hourly wage.<sup>25</sup>

When both business and nonbusiness travelers were asked to list their primary reasons for choosing an airport, the responses by both business and nonbusiness travelers were "near home," "near work," and "airport access" as the major influencing factors. The second category, flight frequency, also played an important role in deciding which airport to choose. These supported Harvey's theory that given an adequate number of flights (9 or more) to a traveler's destination, the traveler will chose the airport closest to either home or work. However, small airports with limited or no direct air service will be bypassed in favor of better service offered at a competing airport even though additional ground travel time is required.<sup>26</sup> Another decision which affected the traveling party's airport choice was whether direct service was available. Passengers will choose to travel over two hours to a competing airport in order to fly direct rather than endure connecting flights. Harvey concluded that access distance to an airport affects both airport attractiveness and demand for air travel especially in short-haul markets. However, the type and level of services offered at a distant competing airport (flight frequency, direct flights, and jet service) are often attractive enough to outweigh the cost and time factors associated with a lengthy ground commute.<sup>27</sup>

<sup>&</sup>lt;sup>25</sup> C. Winston, "Conceptual Developments in Economics of Transportation," *Journal of Economic Literature* 23 (1985): 57-94.

David J. Innes and Donla H. Doucet, "Effects of Access Distance and Level of Service on Airport Choice," *Journal of Transportation Engineering*, n.s. 116 (July/August 1990): 509-516.

<sup>&</sup>lt;sup>26</sup> (Harvey 1987, 442)

<sup>&</sup>lt;sup>27</sup> (Harvey 1987, 442)

Using a disaggregate model, researchers David Innes and Donald Doucet also attained similar results during their examination of the effects of airport proximity, level-of-airport service, and types of airport service on airport choice. Those factor affecting the choice of alternate airports for their area of study (northern New Brunswick, Canada) were:

- number of flights offered at each airport
- availability of direct air services
- availability of jet service

Results revealed that air travelers strongly preferred jet service and would travel a significant distance to depart from an airport offering jet service rather than depart from a much closer airport offering commuter service. Jet service was determine to be the most important variable in deciding airport choice. Other variables included flying time difference and availability of direct flights. Shortly after the completion of Innes' and Doucet's research, commuter service was discontinued within the New Brunswick region. In this case commuter services versus jet services and direct flights were discovered to have high value to air travelers.<sup>28</sup>

<sup>&</sup>lt;sup>28</sup> David J. Innes and Donla H. Doucet, "Effects of Access Distance and Level of Service on Airport Choice," *Journal of Transportation Engineering*, n.s. 116 (July/August 1990): 509-516.

# CHAPTER 3

# DATA COLLECTION AND MODEL DEVELOPMENT

As hypothesized, the disposable income and age of the population, as well as the enplanements of the competing airports, impact scheduled passenger enplanements at shadow airports which must compete against larger airports within driving distance of the small airport. Additionally, the closer the large airport is to the shadow city the greater the impact on the shadow airport's scheduled passenger enplanements. Based on this hypothesis, the following criteria were established for data collection and measurement:

Small, medium, and/or large airports are considered to be competitors if within
 120 radius miles. A group of such airports were identified by Andrew Goetz (1993). The
 small air passenger cities are referred to as "shadow cities."

2. Scheduled passenger enplanements were collected for both shadow airports and the larger airports within the study group for the time period 1980 to 1993.

3. The socioeconomic indicators collected for this study were median disposable income and median population age. These data were collected for each air passenger city/MSA.

The following sections detail each data source and the collection process.

# Selection of Air Passenger Cities for the Study Group

A listing of small, medium, and large air traffic hubs was taken from FAA Statistical Handbook of Aviation, 1992, and was combined with Cities within a Traffic Shadow identified by Andrew Goetz. Goetz considers a small or medium-sized city to be a "traffic shadow city" when located within 120 highway miles of a larger air passenger city. Goetz cites research completed by Taaffe (1956) as having identified a 120-mile radius as the most appropriate for the range of a traffic shadow.<sup>29</sup> However, this research is limited to small airports as shadow cities and does not include medium sized air passenger cities as does Goetz's study. The FAA Statistical Handbook of Aviation for the year ending 1992 was consulted to compile a selected list of "U.S. Traffic Shadow Cities" appropriate for this thesis. In Goetz's study the same source was used to compile his table of competing airports. However, the FAA classification of small, medium, and large air traffic hubs changes yearly and is dependent upon each individual airport's reported annual scheduled passenger enplanements. Those small air passenger cities not included in Goetz's research, dated 1990, but met the FAA's criterion (definition of small traffic hub city) for 1992, were added to this study group. (Refer to Table 3)

<sup>&</sup>lt;sup>29</sup> (Goetz 1993, 70)

### TABLE 3

#### U. S. CITIES WITHIN A TRAFFIC SHADOW <sup>30</sup>

Small Airport Shadow Air Passenger City Medium/Large Airport Nearby Larger Air Passenger City

Allentown, PA Baton Rouge, LA Colorado Spring, CO Columbia, SC Dayton, OH Daytona Beach, FL Eugene, OR Greenbay, WI Greensboro, NC Greenville, SC Harrisburg, PA Huntsville, AL Lansing, MI Lexington, KY Louisville, KY Madison, WI Melbourne, FL Palm Springs, CA Portland, ME Providence, RI Richmond, VA Rochester, NY Saginaw/Bay City, MI Sarasota/Bradenton, FL South Bend, IN Toledo, OH

Philadelphia, PA; New York, NY; Newark, NJ New Orleans, LA Denver, CO Charlotte, NC Cincinnati, OH Orlando, FL; Jacksonville, FL Portland, OR Milwaukee, WI Charlotte, NC; Raleigh-Durham, NC Charlotte, NC Baltimore, MD; Philadelphia, PA Nashville, TN Detroit, MI Cincinnati, OH Cincinnati, OH Milwaukee, WI Orlando, FL Ontario/Riverside Boston, MA Boston, MA; Hartford, CT Washington, DC Buffalo, NY Detroit, MI Tampa, FL, Ft. Myers, FL Chicago, IL Detroit, MI; Cleveland, OH

<sup>30</sup> (Goetz 1993, 72)

# Data Collected for Multiple Regression Analysis Model

Highway Mileage between the Competing Air Passenger Cities. The highway mileage of the major metropolitan cities for each set of competing airports was gathered from the *Rand McNally Standard Highway Mileage Guide.*<sup>31</sup> (See Table 4). An assumption made in the development of the multiple regression model was that if a shadow city had more than one competing airport within the 120 mile radius offering scheduled air service, the competing city/MSA with the shortest distance from the shadow city/MSA was used in the model and was considered to be the primary competitor.

Scheduled Passenger Enplanements (1980-1993). After identifying the sets of competing airports, scheduled passengers enplanements were gathered for each airport within the study group. Data collected for this portion of the methodology were obtained from the FAA's *Airport Activity Statistics of Certified Route Air Carriers* (Tables 3, 4, 5, and 6) for the years 1980 through 1993. Data were collected on absolute enplaned passenger counts at small, medium, and large air traffic hubs in competition with one another. (See Appendix A) An enplaned passenger may be defined as any person receiving air transportation from a scheduled air carrier for which renumeration is received by the air carrier. Enplaned passenger traffic statistics are collected annually and are based on 10 percent samples of the number of revenue passengers boarding aircraft, including originating, stop-over, and transfer passengers.<sup>32</sup>

<sup>&</sup>lt;sup>31</sup> Standard Highway Mileage Guide, Skokie, IL: Rand McNally, 1987.

<sup>&</sup>lt;sup>32</sup> Airport Activity Statistics of Certified Route Air Carriers, U. S. Department of Transportation, Federal Aviation Administration, Washington: Superintendent of Documents: (1980-1993).

Demographical Information. The median age of a population and the median disposable income, known as Effective Buying Income (EBI) for each city/MSA, were gathered from *Sales and Marketing Management, Survey of Buying Power (1981-1994)*. Both the EBI and the median population were based on U.S. Census data and from annual survey samplings of each Metropolitan Statistical Area taken by the journal's staff of *"Buying Power."* Each issue summarizes the previous year's statistics.<sup>33</sup> Data collected for the cities/MSAs selected for this study are outlined in Table 3, "U. S. Cities within a Traffic Shadow." Appendix B provides the data collected regarding median population ages for shadow cities/MSAs, and Appendix C provides the data collected for median Effective Buying Incomes for shadow cities/MSAs.

Effective Buying Income (EBI) is a bulk measurement of a specific city/MSA's market potential and reflects the population's general disposable income and its purchasing power. In order to estimate EBI, *Market Statistics* excludes the tax from the census income data, while taking into account the variation of tax rates by income level and by local taxes.<sup>34</sup>

# Multiple Regression Model Development

The next step of this research was to test the hypothesis to measure what impact the independent variables (disposable income, population age, competing airport's scheduled passenger enplanements, and distance to competing air passenger cities) had on the dependent

<sup>&</sup>lt;sup>33</sup> Sales and Marketing Management, 1981-1994 Survey of Buying Power, A Bill Publication, (July/August 1981-1994).

<sup>&</sup>lt;sup>34</sup> (Sales and Marketing Management July 1981, A-14).

variable (shadow airports' scheduled passenger enplanements). A double log multiple regression model was formulated.

### **Double-Log Multiple Regression Model**

# <u>Model</u>

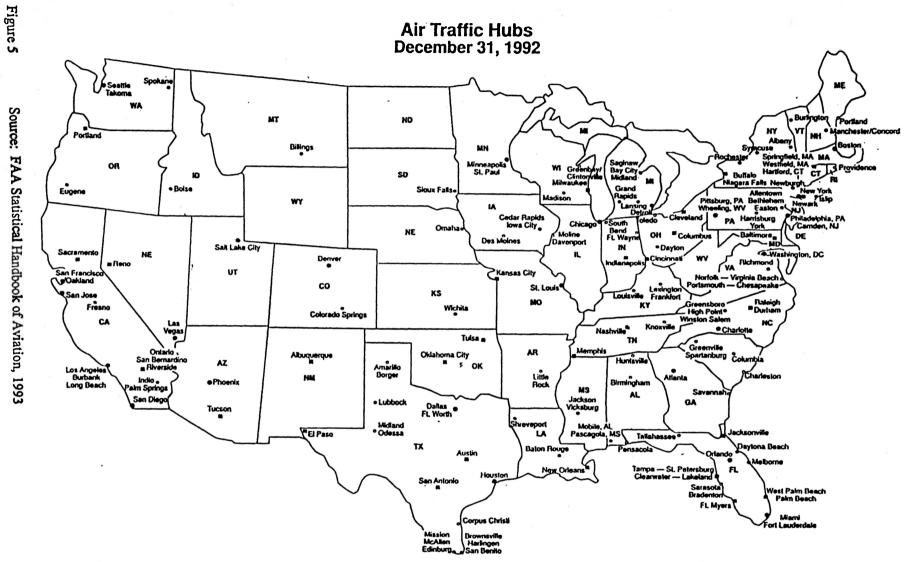
 $\ln enp-sm = c + \ln enp-lg + \ln ag + \ln ebi + dum1 (distance)$ 

| ln enp-sm         | represents the natural log of the dependent variable of scheduled passenger enplanement at small airport         |
|-------------------|------------------------------------------------------------------------------------------------------------------|
| c                 | constant                                                                                                         |
| In enp-lg         | represents the natural log of the independent variable of scheduled passenger enplanements at the larger airport |
| In age            | represents the natural log of the median population age at the small air passenger city                          |
| ln ebi<br>dum 0/1 | represents the natural log of effective buying income at the small air passenger city                            |
| (distance)        | represents the highway mileage between the cities/MSAs competing for scheduled passenger enplanements            |

First, the researcher hypothesized that the small airport's scheduled passenger enplanements will rise as disposable income rises. Traveling to the distant airport would be less attractive since the passenger's opportunity cost of traveling to the distant airport would rise. Also, more disposable income is available for travel and cost concerns are lessened.

Secondly, it is hypothesized that as the age of the population increases, enplanements at the small airport will also rise. Seniors would find it tiresome to travel by car and then fly; the return trip would also end in a drive following what might have been a long day. Conversely, younger travelers would opt to drive to a distant airport to decrease total travel costs. Those in the prime of their careers are less willing to travel to distant airports because of the time factor. In addition, this middle aged segment has reached its financial peak and can expend more for convenience. At the same time, this business segment's value on time has also reached a peak discouraging lengthy travel time to more distant airports.

Thirdly, as the distance between competing airports increases, the passenger enplanements will increase at the small airport making connections with the larger airport less attractive and a more expensive, time consuming option.


Finally, the economies of scale of a larger airport can negatively impact enplanements at a small airport. Larger airports which services a major metropolitan statistical area have more airlines creating a more competitive environment favorable to the traveling public. Also, larger airports can offer more services such as increased flight frequency, nonstop flights, and jet service. Because of the population size of the small air passenger city, these services can be nonexistent or limited. This, in return, fosters an environment which makes it attractive to travel to the larger, more distant airport.

# **CHAPTER 4**

#### ANALYSIS OF COMPETING AIRPORTS

The study group consisting of small airports within a 120 mile radius of one or more larger airports was divided into four regional areas. Regions 1 (northeast) and 2 (southeast) contain the greatest proportion of large airport reflecting the population density within the United States. Region 3 generally covers the north and south central sections of the U.S. and is comprised of 18 airports, mostly small and medium sized airports. Region 4, the smallest grouping of airports consists of 6 airports and covers the western region of the United States. Figure 5 includes a U. S. map depicting the regional divisions. Tables showing how each airport ranks in comparison to its regional peers is included in the Regional sections of this chapter. These tables compare average annual growth rates and annual growth rates with respect to scheduled passenger enplanements, median disposable income, and median age.

Graphs were also prepared for each set of competing airports comparing annual scheduled enplanements, median population ages, and median disposable incomes from 1980 to 1993. Enplanements between the small airports and larger airports were logarithmetically equated in order to draw a clearer and more meaningful comparison. The left-hand Y-axis provides the scale for small or shadow airport and the right-hand Y-axis provides the scale for the larger airport. Those shadow airports which exhibit a downward trend in scheduled



- LEGEND
- e Lorge Hubs 26
- a Medium Hubs 31 60
- Small Hubs

passenger enplanements are further analyzed and included within the Regional sections. Appendix D provides a complete listing of graphs.

Lastly, four ordinal tables were compiled of all airports within the study group ranking each airport and its air passenger city on growth. A table ranking all shadow cities and their respective airports in relation to distances to their competitors introduces this chapter and the remaining summary tables rank all airports with regard to growth in enplanements, median age, and median disposable income.

# **Distance Between Competing Airports**

Twenty-seven shadow airports and their larger competitors are ranked from shortest to farthest distance in Table 4. The average distance between competing airports is 78.3 highway miles. Providence, Rhode Island, and Boston, Massachusetts, record the shortest distance of 43 miles. The competing airports of Greenbay and Milwaukee, Wisconsin, are ranked 24th, a distance of 112 highway miles. Throughout each section of this chapter, this table will be referred to for comparisons between competing airports and trends in scheduled passenger enplanements from 1980 through 1993.

|          | Table 4                           | Distance Between<br>Competing Hubs |                                  |         |
|----------|-----------------------------------|------------------------------------|----------------------------------|---------|
| Region   | Small/Shadow Airport              | Larger Airport                     | Distance<br>(Highway<br>Mileage) | Ranking |
| Region 1 | Providence, Rhode Island          | Boston, Massachusetts              | 43.00                            | 1.00    |
| Region 2 | Sarasota, Florida                 | Tampa Florida                      | 52.00                            | 2.00    |
| Region 3 | Dayton, Ohio                      | Cincinnati, Ohio                   | 54.00                            | 3.00    |
| Region 2 | Daytona Beach, Florida            | Orlando, Florida                   | 54.00                            | 3.00    |
| Region 1 | Allentown, Pennsylvania           | Philadelphia, Pennsylvania         | 55.00                            | 4.00    |
| Region 1 | Manchester, New Hampshire         | Boston, Massachusetts              | 55.00                            | 4.00    |
| Region 3 | Toledo, Ohio                      | Detroit, Michigan                  | 56.00                            | 5.00    |
| Region 4 | Colorado Springs, Colorado        | Denver, Colorado                   | 67.00                            | 6.00    |
| Region 2 | Melbourne, Florida                | Orlando, Florida                   | 68.00                            | 7.00    |
| Region 2 | Greensboro, North Carolina        | Charlotte, North Carolina          | 71.00                            | 8.00    |
| Region 1 | Rochester, New York               | Buffalo, New York                  | 74.00                            | 9.00    |
| Region 4 | Indio/Palm Springs,<br>California | Riverside, California              | 75.00                            | 10.00   |
| Region 1 | Harrisburg/York,<br>Pennsylvania  | Baltimore, Maryland                | 77.00                            | 11.00   |
| Region 3 | Madison, Wisconsin                | Milwaukee, Wisconsin               | 77.00                            | 11.00   |
| Region 3 | Lexington, Kentucky               | Cincinnati, Ohio                   | 78.00                            | 12.00   |
| Region 3 | Baton Rouge, Louisiana            | New Orleans, Louisiana             | 80.00                            | 13.00   |
| Region 3 | Lansing, Michigan                 | Detroit Michigan                   | 84.00                            | 14.00   |
| Region 3 | South Bend, Indiana               | Chicago, Illinois                  | 85.00                            | 15.00   |
| Region 2 | Columbia, South Carolina          | Charlotte, North Carolina          | 88.00                            | 16.00   |
| Region 2 | Greenville, South Carolina        | Charlotte, North Carolina          | 89.00                            | 17.00   |
| Region 3 | Saginaw/Bay City, Michigan        | Detroit, Michigan                  | 93.00                            | 18.00   |
| Region 3 | Louisville, Kentucky              | Cincinnati, Ohio                   | 101.00                           | 19.00   |
| Region 1 | Richmond, Virginia                | Washington, D.C.                   | 103.00                           | 20.00   |
| Region 1 | Portland, Maine                   | Boston, Massachusett               | 106.00                           | 21.00   |
| Region 3 | Huntsville, Alabama               | Nashville, Tennessee               | 108.00                           | 22.00   |
| Region 4 | Eugene, Oregon                    | Portland, Oregon                   | 109.00                           | 23.00   |
| Region 3 | Greenbay, Wisconsin               | Milwaukee, Wisconsin               | 112.00                           | 24.00   |
|          |                                   | Average                            | 78.30                            |         |

# Comparison of Independent and Dependent Variables by Region

<u>Region 1 (Northeast)</u>. Of the 13 competing airports within this region, 6 are small or shadow airports and 7 are large and medium sized airports. Only a single small airport experienced steady declines in enplanements. The Portland, Maine, airport experienced a sharp decline in enplanements in 1989 from a previous high of 612,800 which is also a high for the study period (1980-1993). (See Figure 6) During 1989, the Portland airport suffered a 29.39% loss in scheduled passenger enplanements while its rival airport, Boston, experienced only a 4.73% decline in enplanements from 1988 to 1989. In comparison to the other 13 airports within Region 1, Portland, ranked 5th in average annual growth in enplanements. (See Table 5) It is very possible, however, that another small airport located in Manchester, New Hampshire, with strong growth during this study period and located within 88 miles of the Portland, attracted passengers from the Portland area. The Manchester airport ranks first in growth in annual scheduled enplanements and experienced an annual growth rate of 181.89%. Manchester's growth began excelerating in 1987 and peaked in 1991 with only slight declines in 1992 and 1993. (Refer to Appendix A for scheduled passenger enplanement figures.) The distance between Portland and Boston is 106 highway miles, ranking 21st among 27 air passenger cities.

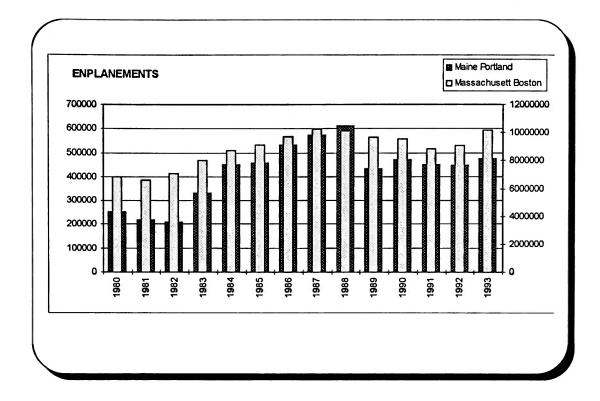



Figure 6: Scheduled Passenger Enplanements from 1980-1993 for Portland, Maine, and Boston, Massachusetts

It should be noted that the Manchester airport was removed from the data tallied for the double log regression model because of its irregular growth, but remains in this chapter as a possible explanation for declines in enplanements at the Portland airport. In addition, two averages for enplanements were calculated for Region 1--one average with Manchester and a second removing Manchester. Removing Manchester is more reflective of the region's overall growth performance. Portland has posted some gains in passenger enplanements from its low in 1989 and seems to have stabilized. Portland ended 1993 with an increase of 5.76% over the previous year for a year-end total of 472,996 enplanements. Its average annual growth rate is 6.77%, which is above average when Manchester is removed from the regional grouping. The average annual growth rate was 5.09% for the 13 years.

With respect to growth in median income, again, the Portland area ranked high among its regional peers. Ranking 4th, Portland experienced an annual growth rate of 8.11%, just behind its competitor, Boston. Boston experienced an annual average growth rate of 8.20%. Table 6 provides a comparison of all air passenger cities within Region 1 and their placement regarding growth in median disposable income.

Regarding median age, Portland ranked 4th highest (.92%) in growth in average annual median age from 1980 to 1993. Boston ranked 9th posting a .76% average annual growth rate. (See Table 7)

| Table 5            | Scheduled Passenger<br>EnplanementsRegion 1 |                           |                                   |                     |
|--------------------|---------------------------------------------|---------------------------|-----------------------------------|---------------------|
| Type of<br>Airport | Air Passenger City                          | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Regional<br>Ranking |
| Shadow             | Manchester, New Hampshire                   | 2,364.59                  | 181.89                            | 1.00                |
| Large              | Newark, New Jersey                          | 160.71                    | 12.36                             | 2.00                |
| Medium             | Baltimore, Maryland                         | 139.06                    | 10.70                             | 3.00                |
| Shadow             | Providence, Rhode Island                    | 111.22                    | 8.56                              | 4.00                |
| Shadow             | Portland, Maine                             | 88.03                     | 6.77                              | 5.00                |
| Shadow             | Harrisburg/York,Pennsylvania                | 82.17                     | 6.32                              | 6.00                |
| Large              | Philadelphia, Pennsylvania                  | 79.70                     | 6.13                              | 7.00                |
| Medium             | Hartford, Connecticut                       | 54.66                     | 4.20                              | 8.00                |
| Large              | Boston, Massachusetts                       | 49.05                     | 3.77                              | 9.00                |
| Shadow             | Allentown, Pennsylvania                     | 18.78                     | 1.44                              | 10.00               |
| Shadow             | Rochester, New York                         | 15.79                     | 1.21                              | 11.00               |
| Large              | New York, New York                          | 0.43                      | 0.03                              | 12.00               |
| Medium             | Buffalo, New York                           | -5.01                     | -0.38                             | 13.00               |
|                    | Averages                                    | 243.01                    | 18.69                             |                     |
|                    | Averages without Manchester                 | 66.22                     | 5.09                              |                     |

| Table 6            | Median Disposable<br>IncomeRegion 1 |                           |                                   |                     |
|--------------------|-------------------------------------|---------------------------|-----------------------------------|---------------------|
| Гуре of<br>Airport | Air Passenger City                  | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Regional<br>Ranking |
| Shadow             | Manchester, New Hampshire           | 131.55                    | 10.12                             | 1.00                |
| Large              | Newark, New Jersey                  | 107.42                    | 8.26                              | 2.00                |
| Medium             | Boston, Massachusetts               | 106.61                    | 8.20                              | 3.00                |
| Shadow             | Portland, Maine                     | 105.42                    | 8.11                              | 4.00                |
| Shadow             | Baltimore, Maryland                 | 104.31                    | 8.02                              | 5.00                |
| Shadow             | New York, New York                  | 99.20                     | 7.63                              | 6.00                |
| Medium             | Hartford, Connecticut               | 98.73                     | 7.59                              | 7.00                |
| Large              | Philadelphia, Pennsylvania          | 93.40                     | 7.18                              | 8.00                |
| Shadow             | Harrisburg/York, Pennsylvania       | 83.73                     | 6.44                              | 9.00                |
| Shadow             | Allentown, Pennsylvania             | 79.57                     | 6.12                              | 10.00               |
| Shadow             | Providence, Rhode Island            | 75.94                     | 5.84                              | 11.00               |
| Medium             | Buffalo, New York                   | 71.26                     | 5.48                              | 12.00               |
| Shadow             | Rochester, New York                 | 65.30                     | 5.02                              | 13.00               |
|                    | Averages                            | 94.03                     | 7.23                              |                     |

| Table 7            | Median AgeRegion 1            |                           |                                   |                     |
|--------------------|-------------------------------|---------------------------|-----------------------------------|---------------------|
| Гуре of<br>Airport | Air Passenger City            | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Regional<br>Ranking |
| Shadow             | Allentown, Pennsylvania       | 22.00                     | 1.69                              | 1.00                |
| Shadow             | Harrisburg/York, Pennsylvania | 12.97                     | 1.00                              | 2.00                |
| Medium             | Buffalo, New York             | 12.26                     | 0.94                              | 3.00                |
| Shadow             | Portland, Maine               | 11.97                     | 0.92                              | 4.00                |
| Shadow             | Rochester, New York           | 11.88                     | 0.91                              | 5.00                |
| Medium             | Hartford, Connecticut         | 11.75                     | 0.90                              | 6.00                |
| Large              | Philadelphia, Pennsylvania    | 10.19                     | 0.78                              | 7.00                |
| Shadow             | Manchester, New Hampshire     | 10.00                     | 0.77                              | 8.00                |
| Large              | Boston, Massachusetts         | 9.94                      | 0.76                              | 9.00                |
| Medium             | Baltimore, Maryland           | 9.62                      | 0.74                              | 10.00               |
| Large              | Newark, New Jersey            | 8.26                      | 0.64                              | 11.00               |
| Shadow             | Providence, Rhode Island      | 7.69                      | 0.59                              | 12.00               |
| Large              | New York, New York            | 4.50                      | 0.35                              | 13.00               |
|                    | Averages                      | 94.03                     | 0.85                              |                     |

Region 2 (Southeast). Region 2, which encompasses the southeastern section of the U. S., has experienced the most shadow airports with declining passenger enplanements. Of these four shadow airports within this region, three are located in the state of Florida and include Daytona Beach, Melbourne, and Sarasota. The other small airport which has experienced a downturn in enplanements outside of Florida is located in Columbia, South Carolina.

Daytona Beach maintained a positive growth in enplanements through 1990 with a peak of 490,336 enplanements. However, in 1991 the airport experienced a 20.19% decline losing nearly 100,000 enplanements from the previous year. It was followed by a slight increased in 1992 (414,790) and then fell once again in 1993 (384,516). Its competitor, the

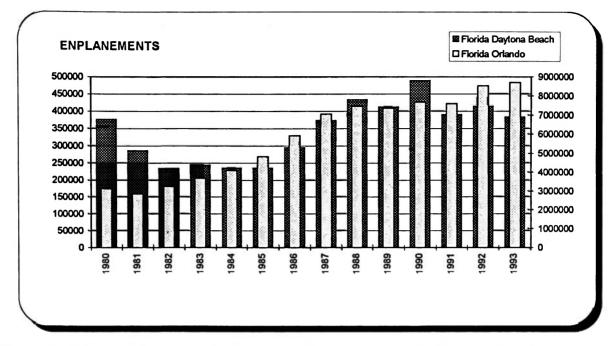



Figure 7: Scheduled Passenger Enplanements from 1980-1993 for Daytona Beach and Orlando, Florida




Figure 8: Scheduled Passenger Enplanements from 1980-1993 for Melbourne and Orlando, Florida



Figure 9: Scheduled Passenger Enplanements from 1980-1993 for Sarasota and Tampa, Florida

Orlando airport, however, has made steady gains in scheduled passenger enplanements. (See Figure 7) Regionally, Orlando ranks 4th in average annual growth (13.76%) while Daytona Beach ranked second from the bottom (13th) with an average annual growth over 13 years of .13% (See Table 9).

Another small airport within driving distance to Orlando is Melbourne. Although Melbourne ranked 5th, just behind Orlando in scheduled passenger enplanements, its average annual growth is well below Orlando's. Melbourne posted a growth rate of 4.14%. (See Table 9) Like Daytona Beach, Melbourne also had capstone growth in 1990 with enplanements reaching 360,126. The Melbourne airport, however, ended the study period with further declines in 1993 with enplanements dropping to 283,008. A comparison of Figures 7 and 8 show both Daytona Beach and Melbourne airports with similar growth patterns in comparison to their primary competitor, Orlando.

The last of the Florida small or shadow airports to experience declining passenger traffic is Sarasota. Again, similar to Daytona Beach and Melbourne airports, Sarasota began its declines following a strong growth trend ending in 1990. At year end, Sarasota had gained 24.61% from the previous year's enplanements. Sarasota peaked in 1990 with 989,935 scheduled passenger enplanements followed by three successive years of declines. (See Figure 9) Enplanements in 1993 had declined to 805,613. Although its competitor, Tampa airport, grew along side Sarasota in 1990, it only claimed a 7.94% growth from 1989 to 1990, compared with Sarasota's 24.61% average annual growth rate. Regionally, Sarasota ranked ahead of Tampa in average annual growth in enplanements with a rate of 3.08%. Tampa airport ranked 12th out of 14. However, in 1992 and 1993 Sarasota reported declines of -4.85% and -4.11%, respectively while its rival realized a slight growth of 1.61% and a stronger growth of 7.86% in 1993. Refer to Table 9.

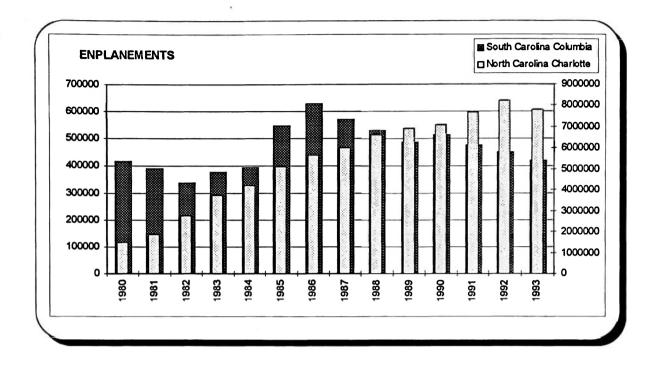



Figure 10: Scheduled Passenger Enplanements from 1980-1993 for Columbia, South Carolina and Charlotte, North Carolina

The small airport of Columbia, South Carolina, which competes against the Charlotte airport, began experiencing declines in scheduled passenger enplanements in 1987. Except for a 5.27% increase in enplanements in 1990 from the previous year, the Columbia airport has suffered from steady declines. In 1986 Columbia reported a peak of 627,480 enplanements and at the end of the study period had reported a fall in enplanements to 420,075. (See Figure 10). Conversely, its large competitor, Charlotte, has had consistent increases in passenger traffic. As shown in Table 9, while the Charlotte airport ranked 1st regionally with an average annual growth rate of 32.85%, the small airport of Columbia ranked last at 14th with an minuscule average growth rate of .06% for the 13 year period.

Notably, the shadow airports of Daytona Beach, Melbourne, and Sarasota ranked in the top 8 of 27 in shortest distance to its competing air passenger city. (Refer to Table 3 to review mileage rankings.) Sarasota ranked 2nd in shortest distance to its competing air passenger city and is located 52 highway miles from Tampa. Daytona Beach ranked 3rd with a distance of 54 miles from its competing air passenger city, Orlando. Lastly, Melbourne ranked 7th with a distance of 68 highway miles from Orlando. Columbia is a longer drive and is 88 highway miles from Charlotte and ranked 16th.

A contradictory point within this section is the theory that as disposable income rises, so will passenger enplanements at the small airport; however, the Florida small air passenger cities of Daytona Beach and Sarasota showed superior average annual growth rates in median income from 1980 to 1993 but ranked below average with respect to growth in passenger enplanements. Sarasota and Daytona Beach ranked first (10.98%) and second (10.49%) regionally with respect to growth in median disposable income. Melbourne had a slightly higher than average growth in median disposable income of 7.46%. (See Tables 9 and 10)

Median income within the Carolinas lagged behind most others. Nearer to the bottom (ranking 10th), Columbia reported a 7.03% growth rate; Charlotte reported a 6.19% growth rate. Charlotte ranked 12th out of 14th. See Table 10.

Although Florida is known as home for many retirees, its average growth rate for the 13 year study period in median age is slowing in comparison to other U.S. air passenger cities. The Carolinas, however, are experiencing a strong growth trend in aging population. Within Region 2 Columbia, Greenville, Raleigh-Durham, and Greensboro were ranked 2 through 4. Charlotte ranked 7th with a average annual growth rate of .92% compared with Columbia's 1.42% growth rate. With the exception of Melbourne, which ranked first regionally in average annual growth, Sarasota and Daytona Beach ranked near the bottom at 12th and

14th, respectively. Other Florida air passenger cities also ranked below average. (See Table 11) Nationally, however, Florida dominates in Metropolitan Statistical Areas with the highest concentration of retirees. Daytona Beach, Melbourne, and Sarasota ranked in the top 10 in median age for 1994. Table 8 ranks the top 10 Metropolitan Statistical Areas with the highest median age for 1994.<sup>35</sup>

| Table 8<br>Top Ranked MSAs for<br>Median Age1994 |                    | - 254- |                     |
|--------------------------------------------------|--------------------|--------|---------------------|
| Metropolitan Statistical Area                    | State              |        | National<br>Ranking |
| Punta Gorda                                      | Florida            | 53.10  | 1.00                |
| Sarasota/Bradenton                               | Florida            | 47.00  | 2.00                |
| Ft. Myers/Cape Coral                             | Florida            | 43.10  | 3.00                |
| Naples                                           | Florida            | 42.00  | 4.00                |
| Ft. Pierce-Port St. Lucie                        | Florida            | 41.60  | 5.00                |
| Daytona Beach                                    | Florida            | 41.30  | 6.00                |
| Ocala                                            | Florida            | 41.20  | 7.00                |
| West Palm Beach/Boca Raton                       | Florida            | 41.20  | 7.00                |
| Barnstable/Yarmouth                              | Massachusetts      | 40.60  | 8.00                |
| Tampa-St. Pete-Clearwater                        | Florida            | 40.00  | 9.00                |
| Ft. Lauderdale                                   | Florida            | 39.10  | 10.00               |
|                                                  | U.S. Median<br>Age | 34.10  |                     |

Source: Sales and Marketing Management, 1995 Survey of Buying Power, a Bill Publication, (August 1995)

<sup>&</sup>lt;sup>35</sup> Chart on Median Age, Sales and Marketing Management 1995 Survey of Buying Power, August 1995, B-17.

| Table 9        | Scheduled Passenger<br>EnplanementsRegion 2 |                           |                                   |         |
|----------------|---------------------------------------------|---------------------------|-----------------------------------|---------|
| Type of<br>Hub | MSA                                         | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Ranking |
| Large          | Charlotte, North Carolina                   | 427.01                    | 32.85                             | 1.00    |
| Medium         | Raleigh/Durham, North<br>Carolina           | 383.38                    | 29.64                             | 2.00    |
| Medium         | Fort Myers, Florida                         | 211.28                    | 16.25                             | 3.00    |
| Large          | Orlando, Florida                            | 178.90                    | 13.76                             | 4.00    |
| Shadow         | Melbourne, Florida                          | 53.76                     | 4.14                              | 5.00    |
| Shadow         | Richmond, Virginia                          | 49.86                     | 3.84                              | 6.00    |
| Small          | Greenville/Spartanburg, South<br>Carolina   | 44.70                     | 3.44                              | 7.00    |
| Large          | Washington, DC                              | 44.61                     | 3.43                              | 8.00    |
| Medium         | Jacksonville, Florida                       | 41.39                     | 3.18                              | 9.00    |
| Shadow         | Sarasota/Bradenton, Florida                 | 40.06                     | 3.08                              | 10.00   |
| Shadow         | Greensboro/High Point, North<br>Carolina    | 35.84                     | 2.76                              | 11.00   |
| Large          | Tampa, Florida                              | 32.51                     | 2.50                              | 12.00   |
| Shadow         | Daytona Beach, Florida                      | 1.74                      | 0.13                              | 13.00   |
| Shadow         | Columbia, South Carolina                    | 0.81                      | 0.06                              | 14.00   |
|                | Averages                                    | 110.42                    | 8.50                              |         |

· . •

| Table 10       | Median Disposable<br>Income-Region 2      |                           |                                   |         |
|----------------|-------------------------------------------|---------------------------|-----------------------------------|---------|
| Гуре of<br>Hub | MSA                                       | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Ranking |
| Shadow         | Sarasota/Bradenton, Florida               | 142.73                    | 10.98                             | 1.00    |
| Shadow         | Daytona Beach, Florida                    | 135.50                    | 10.42                             | 2.00    |
| Medium         | Fort Myers, Florida                       | 121.07                    | 9.31                              | 3.00    |
| Large          | Tampa, Florida                            | 114.42                    | 8.80                              | 4.00    |
| Medium         | Jacksonville, Florida                     | 110.21                    | 8.48                              | 5.00    |
| Medium         | Raleigh Durham, North<br>Carolina         | 102.31                    | 7.87                              | 6.00    |
| Large          | Orlando, Florida                          | 99.82                     | 7.68                              | 7.00    |
| Shadow         | Melbourne, Florida                        | 96.96                     | 7.46                              | 8.00    |
| Large          | Washington, DC                            | 94.19                     | 7.25                              | 9.00    |
| Shadow         | Columbia, South Carolina                  | 91.45                     | 7.03                              | 10.00   |
| Shadow         | Richmond, Virginia                        | 83.27                     | 6.41                              | 11.00   |
| Large          | Charlotte, North Carolina                 | 80.50                     | 6.19                              | 12.00   |
| Shadow         | Greenville/Spartanburg, South<br>Carolina | 79.94                     | 6.15                              | 13.00   |
| Shadow         | Greensboro/High Point, North<br>Carolina  | 76.68                     | 5.90                              | 14.00   |
|                | Averages                                  | 102.08                    | 7.85                              |         |

| Table 11       | Median Age-Region 2               |                           |                                   |         |
|----------------|-----------------------------------|---------------------------|-----------------------------------|---------|
| Type of<br>Hub | MSA                               | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Ranking |
| Shadow         | Melbourne, Florida                | 23.03                     | 1.77                              | 1.00    |
| Shadow         | Columbia, South Carolina          | 18.52                     | 1.42                              | 2.00    |
| Shadow         | Greenville, South Carolina        | 15.00                     | 1.15                              | 3.00    |
| Medium         | Raleigh-Durham, North<br>Carolina | 14.79                     | 1.14                              | 4.00    |
| Shadow         | Greensboro, North Carolina        | 13.55                     | 1.04                              | 5.00    |
| Large          | Washington, DC                    | 12.84                     | 0.99                              | 6.00    |
| Large          | Charlotte, North Carolina         | 12.00                     | 0.92                              | 7.00    |
| Medium         | Jacksonville, Florida             | 11.53                     | 0.89                              | 8.00    |
| Shadow         | Richmond, Virginia                | 10.36                     | 0.80                              | 9.00    |
| Large          | Orlando, Florida                  | 9.32                      | 0.72                              | 10.00   |
| Medium         | Ft. Myers, Florida                | 4.39                      | 0.34                              | 11.00   |
| Shadow         | Daytona Beach, Florida            | -3.76                     | -0.29                             | 12.00   |
| Large          | Tampa, Florida                    | -4.58                     | -0.35                             | 13.00   |
| Shadow         | Sarasota, Florida                 | -10.17                    | -0.78                             | 14.00   |
|                | Averages                          | 9.06                      | 0.70                              |         |

Region 3 (North & South Central). Within Region 3 there are 2 shadow airports experiencing declining enplanements. Of the 18 airports (11 are categorized as small airports), Toledo and Dayton were ranked at the bottom. Conversely, their larger competitors, Cincinnati and Detroit ranked at the top. Cincinnati which competes with Dayton for passenger traffic ranked 1st in passenger growth while Dayton ranked last at 14th. Detroit ranked 3rd regionally and the shadow airport of Toledo ranked 13th. Both Dayton and Toledo suffered negative growth over the 13 year study period. Dayton's average annual growth rate is a -4.37% and Toledo's is -1.91%. (See Table 12)

Dayton's growth in enplanements peaked and stabilized from 1986 until 1989. In 1986 Dayton's scheduled passenger enplanements were 2,140,242 and in 1989 had begun to decline slightly to 2,082,123. The following 4 years (1990-1993) resulted in dramatic declines. Dayton's airport enplanements over the 13 years period had shrunk by a -56.75% while its rival airport, Cincinnati, had grown steadily through the 13 years study period resulting in an average annual growth rate of 20.65%.

Although Toledo's declines in enplanements are not as dramatic as Dayton's, it too posted a downward average annual growth rate of -1.91%. Its enplanements had dropped by a total of -24.78% for the study period. Toledo recorded a peak of 283,654 enplanements in 1984 and had enjoyed relatively consistent air traffic from 1983 to 1986. In 1987 Toledo underwent its first major decline of 10.48%. With the exception of 1992, Toledo has experienced successive years of declines with 1993's enplanements total at 206,221. Detroit, however, experienced a healthy growth rate with enplanement expanding by an average of 9.48% annually and for a total of 123.28% over the study period.

Similar to the three small airports in Florida identified has having declining passenger enplanements, both Toledo and Dayton are located relatively close to their larger competing airports. Toledo is located 54 highway miles from Detroit and Dayton is 56 from the Cincinnati airport ranking 3rd and 5th in shortest distance. (Refer to Table 3).

Table 13 Ranks Region 3's air passenger cities with respect to average annual growth in median income. Dayton ranked 11th, regionally--near average at 5.4%. Toledo ranked near the bottom at 16th and averaged 3.75% annually. Cincinnati faired the best ranking 7th regionally with an average annual growth in median income of 6.08%. Detroit followed Dayton in 13th placed with an average of 4.69% annually.

Dayton had the highest average annual growth in median age at 1.35% and ranked 5th regionally. Finally, Toledo ranked at the bottom with median age growth rate of .77% tied for the slowest growth with Chicago. Cincinnati was 16th with .79% growth and Detroit was near average at 1.06% annual growth. The average for the region was 1.09%. (See Table 14)

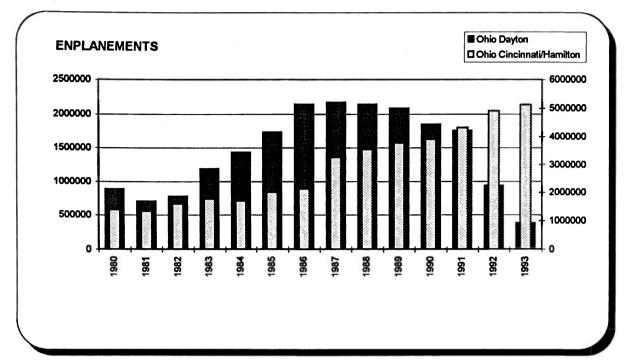



Figure 11: Scheduled Passenger Enplanements from 1980-1993 for Dayton and Cincinnati, Ohio

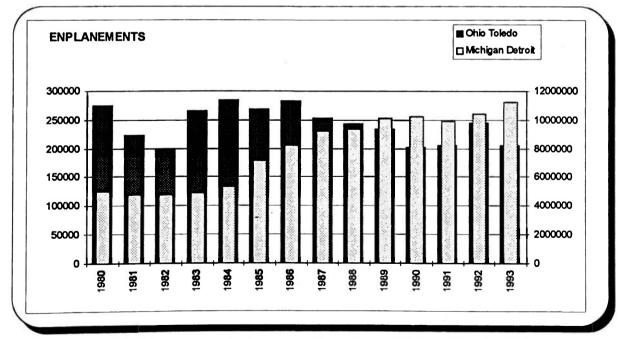



Figure 12: Scheduled Passenger Enplanements from 1980-1993 for Toledo, Ohio and Detroit, Michigan

| Table 12       | Scheduled Passenger<br>EnplanementsRegion 3 |                           |                                   |         |
|----------------|---------------------------------------------|---------------------------|-----------------------------------|---------|
| Гуре of<br>Hub | MSA                                         | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Ranking |
| Medium         | Cincinnati/Hamilton, Ohio                   | 268.44                    | 20.65                             | 1.00    |
| Medium         | Nashville, Tennessee                        | 239.89                    | 18.45                             | 2.00    |
| Large          | Detroit, Michigan                           | 123.28                    | 9.48                              | 3.00    |
| Shadow         | South Bend, Indiana                         | 117.11                    | 9.01                              | 4.00    |
| Large          | Chicago, Illinois                           | 65.41                     | 5.03                              | 5.00    |
| Shadow         | Huntsville, Alabama                         | 64.31                     | 4.95                              | 6.00    |
| Shadow         | Madison, Wisconsin                          | 50.05                     | 3.85                              | 7.00    |
| Medium         | Cleveland, Ohio                             | 30.27                     | 2.33                              | 8.00    |
| Shadow         | Baton Rouge, Louisiana                      | 29.68                     | 2.28                              | 9.00    |
| Medium         | Milwaukee, Wisconsin                        | 28.45                     | 2.19                              | 10.00   |
| Shadow         | Saginaw/Bay City, Michigan                  | 17.38                     | 1.34                              | 11.00   |
| Shadow         | Louisville, Kentucky                        | 12.45                     | 0.96                              | 12.00   |
| Shadow         | Lexington, Kentucky                         | 6.75                      | 0.52                              | 13.00   |
| Shadow         | Lansing, Michigan                           | 6.34                      | 0.49                              | 14.00   |
| Medium         | New Orleans, Louisiana                      | 5.63                      | 0.43                              | 15.00   |
| Shadow         | Greenbay, Wisconsin                         | -13.76                    | -1.06                             | 16.00   |
| Shadow         | Toledo, Ohio                                | -24.78                    | -1.91                             | 17.00   |
| Shadow         | Dayton, Ohio                                | -56.75                    | -4.37                             | 18.00   |
|                | Averages                                    | 53.90                     | 4.15                              |         |

| Table 13       | Income-Region 3            |                           |                                   |         |
|----------------|----------------------------|---------------------------|-----------------------------------|---------|
| Гуре of<br>Hub | MSA                        | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Ranking |
| Shadow         | Huntsville, Alabama        | 111.07                    | 8.54                              | 1.00    |
| Medium         | Nashville, Tennessee       | 95.11                     | 7.32                              | 2.00    |
| Shadow         | Madison, Wisconsin         | 89.77                     | 6.91                              | 3.00    |
| Large          | Chicago, Illinois          | 84.53                     | 6.50                              | 4.00    |
| Shadow         | Lexington, Kentucky        | 84.44                     | 6.50                              | 5.00    |
| Medium         | Milwaukee, Wisconsin       | 80.24                     | 6.17                              | 6.00    |
| Medium         | Cincinnati/Hamilton, Ohio  | 79.09                     | 6.08                              | 7.00    |
| Shadow         | Lansing, Michigan          | 74.12                     | 5.70                              | 8.00    |
| Shadow         | South Bend, Indiana        | 72.36                     | 5.57                              | 9.00    |
| Shadow         | Louisville, Kentucky       | 71.52                     | 5.50                              | 10.00   |
| Shadow         | Dayton, Ohio               | 70.15                     | 5.40                              | 11.00   |
| Shadow         | Baton Rouge, Louisiana     | 65.10                     | 5.01                              | 12.00   |
| Large          | Detroit, Michigan          | 61.00                     | 4.69                              | 13.00   |
| Medium         | New Orleans, Louisiana     | 59.97                     | 4.61                              | 14.00   |
| Medium         | Cleveland, Ohio            | 56.50                     | 4.35                              | 15.00   |
| Shadow         | Toledo, Ohio               | 48.80                     | 3.75                              | 16.00   |
| Shadow         | Saginaw/Bay City, Michigan | 42.87                     | 3.30                              | 17.00   |
| Shadow         | Greenbay, Wisconsin        | 35.65                     | 2.74                              | 18.00   |
|                | Averages                   | 71.24                     | 5.48                              |         |

| Table 14       | Median Age-Region 3        |                           |                                   |         |
|----------------|----------------------------|---------------------------|-----------------------------------|---------|
| Гуре of<br>Hub | MSA                        | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Ranking |
| Shadow         | Saginaw/Bay City, Michigan | 19.72                     | 1.52                              | 1.00    |
| Shadow         | Madison, Wisconsin         | 19.70                     | 1.52                              | 2.00    |
| Shadow         | Louisville, Kentucky       | 18.37                     | 1.41                              | 3.00    |
| Shadow         | Greenbay, Wisconsin        | 17.52                     | 1.35                              | 4.00    |
| Shadow         | Dayton, Ohio               | 16.95                     | 1.30                              | 5.00    |
| Medium         | Baton Rouge, Louisiana     | 15.97                     | 1.23                              | 6.00    |
| Shadow         | Lansing, Michigan          | 15.47                     | 1.19                              | 7.00    |
| Shadow         | Lexington, Kentucky        | 15.41                     | 1.19                              | 8.00    |
| Shadow         | Huntsville, Alabama        | 13.84                     | 1.06                              | 9.00    |
| Large          | Detroit, Michigan          | 13.76                     | 1.06                              | 10.00   |
| Medium         | New Orleans, Louisiana     | 13.68                     | 1.05                              | 11.00   |
| Medium         | Cleveland, Ohio            | 12.34                     | 0.95                              | 12.00   |
| Medium         | Milwaukee, Wisconsin       | 11.63                     | 0.89                              | 13.00   |
| Medium         | Nashville, Tennessee       | 11.00                     | 0.85                              | 14.00   |
| Shadow         | South Bend, Indiana        | 10.49                     | 0.81                              | 15.00   |
| Medium         | Cincinnati, Ohio           | 10.30                     | 0.79                              | 16.00   |
| Shadow         | Toledo, Ohio               | 10.07                     | 0.77                              | 17.00   |
| Large          | Chicago, Illinois          | 9.97                      | 0.77                              | 18.00   |
|                | Averages                   | 14.23                     | 1.10                              |         |

<u>Region 4 (Western)</u>. Region 4 is the smallest of the regions and includes 6 airports. Only one shadow airport was identified as experiencing declining enplanements. The small airport of Indio/Palm Springs, California, ranked last in average annual growth in passenger enplanements ( 2.08%), while its competing airport located in Riverside, California, ranked 1st in growth with an average annual growth rate of 16.02% and throughout this study period had prospered from steady growth. As shown in Figure 13, Palm Springs reached its peak in air passengers in 1990 with enplanements topping at 353,294. The successive 3 years (1991-1993) recorded declines. Enplanements for 1993 were 274,724.

In addition, Indio/Palm Spring also ranked last in average annual growth in median income with a growth of 4.20% annually. It's competitor, Riverside, ranked second highest with a annual growth rate of 7.46%. The distance between these two air passenger cities is 75 highway miles.

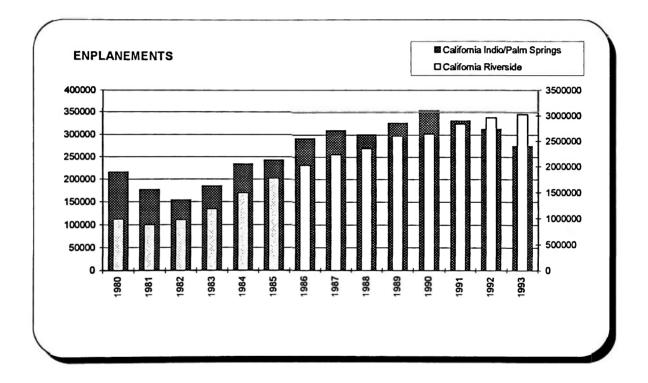



Figure 13: Scheduled Passenger Enplanements from 1980-1993 for Indio/Palm Springs and Riverside, California

| Table 15       | Scheduled Passenger<br>EnplanementsRegion 4 |                           |                                   |         |
|----------------|---------------------------------------------|---------------------------|-----------------------------------|---------|
| Гуре of<br>Hub | MSA                                         | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Ranking |
| Medium         | Riverside, California                       | 208.24                    | 16.02                             | 1.00    |
| Shadow         | Colorado Springs, Colorado                  | 165.26                    | 12.71                             | 2.00    |
| Medium         | Portland, Oregon                            | 132.10                    | 10.16                             | 3.00    |
| Shadow         | Eugene, Oregon                              | 52.55                     | 4.04                              | 4.00    |
| Large          | Denver, Colorado                            | 49.01                     | 3.77                              | 5.00    |
| Shadow         | Indio/Palm Spring, California               | 27.06                     | 2.08                              | 6.00    |
|                | Averages                                    | 105.70                    | 8.13                              |         |

| Table 16       | Median Disposable<br>Income-Region 4 |                           |                                   |         |
|----------------|--------------------------------------|---------------------------|-----------------------------------|---------|
| Type of<br>Hub | MSA                                  | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Ranking |
| Shadow         | Colorado Spring, Colorado            | 102.08                    | 7.85                              | 1.00    |
| Medium         | Riverside, California                | 97.02                     | 7.46                              | 2.00    |
| Medium         | Portland, Oregon                     | 77.33                     | 5.95                              | 3.00    |
| Large          | Denver, Colorado                     | 76.74                     | 5.90                              | 4.00    |
| Shadow         | Eugene, Oregon                       | 64.09                     | 4.93                              | 5.00    |
| Shadow         | Indio/Palm Springs, California       | 46.22                     | 4.20                              | 6.00    |
|                | Averages                             | 77.25                     | 6.05                              |         |

| Гуре of<br>Hub | MSA                            | 13-Yr. Growth<br>Rate (%) | Avg. Annual<br>Growth Rate<br>(%) | Ranking |
|----------------|--------------------------------|---------------------------|-----------------------------------|---------|
| Shadow         | Eugene, Oregon                 | 22.38                     | 1.72                              | 1.00    |
| Shadow         | Colorado Springs, Colorado     | 20.23                     | 1.56                              | 2.00    |
| Large          | Denver, Colorado               | 15.12                     | 1.16                              | 3.00    |
| Medium         | Portland, Oregon               | 13.40                     | 1.03                              | 4.00    |
| Medium         | Riverside, California          | 0.98                      | 0.08                              | 5.00    |
| Shadow         | Indio/Palm Springs, California | -6.00                     | -0.55                             | 6.00    |
|                | Averages                       | 11.02                     | 0.83                              |         |

# Table 17 Median Age-Region 4

# Summary

The average distance among the study group is 78.3 miles between the shadow MSAs/cities and the larger air passenger cities. Among the 8 small or shadow airports identified with slow or declining growth, 6 were above average in shortest distance between cities. Notably, Portland, Maine, shows possible signs of recovery in growth in scheduled passenger enplanements and is ranked near the bottom with respect to distance between its competing air passenger city, Boston (106 highway miles). Enplanements had increased by 5.76% over the previous year and are slightly above its 1990 year-end total. Refer to Figure 6.

Columbia, South Carolina, the other shadow airport with declining enplanements, however, is farther from its competitor than those listed below. It is located 88 highway miles from Charlotte and at the conclusion of this study did not show any signs of recovery. In fact, enplanements at the beginning of this study in 1980 and at the conclusion of this study in 1993 were comparable. From 1990, Columbia reported losses in air traffic for 4 consecutive years.

Other small airports which rank high in shortest distances between competing hub sites include:

| Sarasota, Florida      | 52 highway miles |
|------------------------|------------------|
| Daytona Beach, Florida | 54 highway miles |
| Dayton, Ohio           | 54 highway miles |
| Toledo, Ohio           | 56 highway miles |
| Melbourne, Florida     | 68 highway miles |
| Indio/Palm Springs     | 75 highway miles |

Each of the 8 shadow airports (including Columbia and Portland) has suffered from slow or declining growth in scheduled passenger enplanements while their competitors have steadily gained air passengers. In reviewing Table 18, Charlotte, Cincinnati, Riverside, Orlando, and Detroit made significant enplanement gains in comparison to their small competitors. Also, in comparison to all larger airports within this study, this specific group of 8 medium/large competing airports grew at twice the pace. These larger airports averaged 14.10%; the average of all large/medium airports for this study produced a growth rate of 7.50%. Comparing all shadow airports to the 8 declining shadow airports in this study revealed that the overall group grew 2 1/2 times faster. Scheduled passenger enplanements of 8 shadow airports average annual rate of 1.24 in comparison to the overall shadow airports average annual rate of 3.11%. (Manchester, New Hampshire, was not included in this average.)

| Table 18Comparison ofEnplanements                    |          |                                                |                              |         |                                                |
|------------------------------------------------------|----------|------------------------------------------------|------------------------------|---------|------------------------------------------------|
| Shadow Airports<br>with declining<br>enplanements    | Ranking  | Average<br>Annual<br>growth in<br>Enplanements | Larger Competing<br>Airports | Ranking | Average<br>Annual<br>growth in<br>Enplanements |
| Portland, ME                                         | 16.00    | 6.77                                           | Boston, MA                   | 26.00   | 3.77                                           |
| Melbourne, FL                                        | 22.00    | 4.14                                           | Orlando, FL                  | 8.00    | 13.76                                          |
| Sarasota, FL                                         | 31.00    | 3.08                                           | Tampa, FL                    | 33.00   | 2.50                                           |
| Indio/Palm Springs,<br>CA                            | 37.00    | 2.08                                           | Riverside, CA                | 7.00    | 16.02                                          |
| Columbia, SC                                         | 46.00    | 0.81                                           | Charlotte, NC                | 2.00    | 32.85                                          |
| Daytona Beach, FL                                    | 45.00    | 0.13                                           | Orlando, FL                  | 8.00    | 13.76                                          |
| Toledo, OH                                           | 50.00    | -1.91                                          | Detroit, MI                  | 13.00   | 9.48                                           |
| Dayton, OH                                           | 51.00    | -4.37                                          | Cincinnati, OH               | 4.00    | 20.65                                          |
| Averages for<br>Selected Airports                    |          | 1.43%                                          |                              |         | 14.10%                                         |
| Group Average for                                    | Growth i | n Passenger E                                  | nplanements                  |         |                                                |
| All Other Small Airports (Excluding, Manchester, NH) |          |                                                |                              |         | 3.70%                                          |
| All Other Larger Ai                                  | rports   |                                                |                              |         | 7.5%                                           |

With respect to median disposable income, Sarasota ranked 1st and Daytona Beach ranked 2nd among all airports in average annual growth in median disposable income. This growth, however, did not translate into growth in passenger enplanements for their community airports. In fact, 5 of the 8 shadow air passenger cities experienced above average annual growth in median disposable income. The average for all airports is 6.52%. Only Dayton, Toledo, and Indio/Palm Springs fell into the bottom 20% of all airports. (Refer to Table 19) With the exception of Melbourne, Florida, which ranked number 1 in growth in median age, most of the Florida sites ranked below average in average annual growth. (See Table 20) Within the time period of this study, those air passenger cities with the lowest ranking growth rates are the traditional retirement communities. They include Indio/Palm Springs, California; Daytona Beach, Florida; Tampa, Florida, and Sarasota Florida. All had suffered either negative or flat growth in enplanement. In reviewing Table 20, the small/shadow air passenger cities generally dominated the top of the chart reflecting the choice of retirees to live in smaller, less crowded communities.

| Table 19       |          | Top Ranked MSAs for<br>Enplanements |                              |                                      |         |
|----------------|----------|-------------------------------------|------------------------------|--------------------------------------|---------|
| Type of<br>Hub | Region   | MSA                                 | 13-Yr.<br>Growth<br>Rate (%) | Avg.<br>Annual<br>Growth<br>Rate (%) | Ranking |
| Shadow         | Region 1 | Manchester, New Hampshire           | 2,364.59                     | 181.89                               | 1.00    |
| Large          | Region 2 | Charlotte, North Carolina           | 427.01                       | 32.85                                | 2.00    |
| Medium         | Region 2 | Raleigh-Durham, North<br>Carolina   | 383.38                       | 29.64                                | 3.00    |
| Medium         | Region 3 | Cincinnati, Ohio                    | 268.44                       | 20.65                                | 4.00    |
| Medium         | Region 3 | Nashville, Tennessee                | 239.89                       | 18.45                                | 5.00    |
| Medium         | Region 2 | Ft. Myers, Florida                  | 211.28                       | 16.25                                | 6.00    |
| Medium         | Region 4 | Riverside, California               | 208.24                       | 16.02                                | 7.00    |
| Large          | Region 2 | Orlando, Florida                    | 178.90                       | 13.76                                | 8.00    |
| Shadow         | Region 4 | Colorado Springs, Colorado          | 165.26                       | 12.71                                | 9.00    |
| Large          | Region 1 | Newark, New Jersey                  | 160.71                       | 12.36                                | 10.00   |
| Medium         | Region 1 | Baltimore, Maryland                 | 139.06                       | 10.70                                | 11.00   |
| Medium         | Region 4 | Portland, Oregon                    | 132.10                       | 10.16                                | 12.00   |
| Large          | Region 3 | Detroit, Michigan                   | 123.28                       | 9.48                                 | 13.00   |
| Shadow         | Region 3 | South Bend, Indiana                 | 117.11                       | 9.01                                 | 14.00   |
| Shadow         | Region 1 | Providence, Rhode Island            | 111.22                       | 8.56                                 | 15.00   |
| Shadow         | Region 1 | Portland, Maine                     | 88.03                        | 6.77                                 | 16.00   |
| Shadow         | Region 1 | Harrisburg/York, Pennsylvania       | 82.17                        | 6.32                                 | 17.00   |
| Large          | Region 1 | Philadelphia, Pennsylvania          | 79.70                        | 6.13                                 | 18.00   |
| Large          | Region 3 | Chicago, Illinois                   | 65.41                        | 5.03                                 | 19.00   |
| Shadow         | Region 3 | Huntsville, Alabama                 | 64.31                        | 4.95                                 | 20.00   |
| Medium         | Region 1 | Hartford, Connecticut               | 54.66                        | 4.20                                 | 21.00   |
| Shadow         | Region 2 | Melbourne, Florida                  | 53.76                        | 4.14                                 | 22.00   |
| Shadow         | Region 4 | Eugene, Oregon                      | 52.55                        | 4.04                                 | 23.00   |
| Shadow         | Region 3 | Madison, Wisconsin                  | 50.05                        | 3.85                                 | 24.00   |
| Shadow         | Region 1 | Richmond, Virginia                  | 49.86                        | 3.84                                 | 25.00   |
| Large          | Region 1 | Boston, Massachusetts               | 49.05                        | 3.77                                 | 26.00   |
| Large          | Region 4 | Denver, Colorado                    | 49.01                        | 3.77                                 | 27.00   |
| Shadow         | Region 2 | Greenville, South Carolina          | 44.70                        | 3.44                                 | 28.00   |

| Table 19<br>(Cont.) |          | Top Ranked MSAs for<br>Enplanements |                              |                                      |         |
|---------------------|----------|-------------------------------------|------------------------------|--------------------------------------|---------|
| Type of<br>Hub      | Region   | MSA                                 | 13-Yr.<br>Growth<br>Rate (%) | Avg.<br>Annual<br>Growth<br>Rate (%) | Ranking |
| Shadow              | Region 2 | Sarasota, Florida                   | 40.06                        | 3.08                                 | 31.00   |
| Shadow              | Region 2 | Greensboro, North Carolina          | 35.84                        | 2.76                                 | 32.00   |
| Large               | Region 2 | Tampa, Florida                      | 32.51                        | 2.50                                 | 33.00   |
| Medium              | Region 3 | Cleveland, Ohio                     | 30.27                        | 2.33                                 | 34.00   |
| Shadow              | Region 3 | Baton Rouge, Louisiana              | 29.68                        | 2.28                                 | 35.00   |
| Medium              | Region 3 | Milwaukee, Wisconsin                | 28.45                        | 2.19                                 | 36.00   |
| Shadow              | Region 4 | Indio/Palm Springs, California      | 27.06                        | 2.08                                 | 37.00   |
| Shadow              | Region 1 | Allentown, Pennsylvania             | 18.78                        | 1.44                                 | 38.00   |
| Shadow              | Region 3 | Saginaw/Bay City, Michigan          | 17.38                        | 1.34                                 | 39.00   |
| Shadow              | Region 1 | Rochester, New York                 | 15.79                        | 1.21                                 | 40.00   |
| Shadow              | Region 3 | Louisville, Kentucky                | 12.45                        | 0.96                                 | 41.00   |
| Shadow              | Region 3 | Lexington, Kentucky                 | 6.75                         | 0.52                                 | 42.00   |
| Shadow              | Region 3 | Lansing, Michigan                   | 6.34                         | 0.49                                 | 43.00   |
| Medium              | Region 3 | New Orleans, Louisiana              | 5.63                         | 0.43                                 | 44.00   |
| Shadow              | Region 2 | Daytona Beach, Florida              | 1.74                         | 0.13                                 | 45.00   |
| Shadow              | Region 2 | Columbia, South Carolina            | 0.81                         | 0.06                                 | 46.00   |
| Large               | Region 1 | New York, New York                  | 0.43                         | 0.03                                 | 47.00   |
| Medium              | Region 1 | Buffalo, New York                   | -5.01                        | -0.38                                | 48.00   |
| Medium              | Region 3 | Greenbay, Wisconsin                 | -13.76                       | -1.06                                | 49.00   |
| Shadow              | Region 3 | Toledo, Ohio                        | -24.78                       | -1.91                                | 50.00   |
| Shadow              | Region 3 | Dayton, Ohio                        | -56.75                       | -4.37                                | 51.00   |
|                     |          | Averages                            | 75.86                        | 9.34                                 |         |
|                     |          | Averages without Manchester         | 68.98                        | 5.31                                 |         |

| Table 20              |          | Top Ranked MSAsMedian<br>Disposable Income |                              |                                      |         |
|-----------------------|----------|--------------------------------------------|------------------------------|--------------------------------------|---------|
| <b>Type of</b><br>Hub | Region   | MSA                                        | 13-Yr.<br>Growth<br>Rate (%) | Avg.<br>Annual<br>Growth<br>Rate (%) | Ranking |
| Shadow                | Region 2 | Sarasota, Florida                          | 142.73                       | 10.98                                | 1.00    |
| Shadow                | Region 2 | Daytona Beach, Florida                     | 135.50                       | 10.42                                | 2.00    |
| Shadow                | Region 1 | Manchester, New Hampshire                  | 131.55                       | 10.12                                | 3.00    |
| Medium                | Region 2 | Ft. Myers, Florida                         | 121.07                       | 9.31                                 | 4.00    |
| Large                 | Region 2 | Tampa, Florida                             | 114.42                       | 8.80                                 | 5.00    |
| Shadow                | Region 3 | Huntsville, Alabama                        | 111.07                       | 8.45                                 | 6.00    |
| Medium                | Region 2 | Jacksonville, Florida                      | 121.07                       | 9.31                                 | 7.00    |
| Large                 | Region 1 | Newark, New Jersey                         | 107.42                       | 8.26                                 | 8.00    |
| Medium                | Region 1 | Boston, Massachusetts                      | 106.61                       | 8.20                                 | 9.00    |
| Shadow                | Region 1 | Portland, Maine                            | 105.42                       | 8.11                                 | 10.00   |
| Shadow                | Region 1 | Baltimore, Maryland                        | 104.31                       | 8.02                                 | 11.00   |
| Medium                | Region 2 | Raleigh-Durham, North<br>Carolina          | 102.31                       | 7.87                                 | 12.00   |
| Shadow                | Region 4 | Colorado Springs, Colorado                 | 102.80                       | 7.85                                 | 13.00   |
| Large                 | Region 2 | Orlando, Florida                           | 99.82                        | 7.68                                 | 14.00   |
| Large                 | Region 1 | New York, New York                         | 99.20                        | 7.63                                 | 15.00   |
| Medium                | Region 1 | Hartford, Connecticut                      | 98.73                        | 7.59                                 | 16.00   |
| Medium                | Region 4 | Riverside, California                      | 97.02                        | 7.46                                 | 17.00   |
| Shadow                | Region 2 | Melbourne, Florida                         | 96.96                        | 7.46                                 | 18.00   |
| Medium                | Region 3 | Nashville, Tennessee                       | 95.11                        | 7.32                                 | 19.00   |
| Large                 | Region 1 | Washington, D.C.                           | 94.19                        | 7.25                                 | 20.00   |
| Large                 | Region 1 | Philadelphia, Pennsylvania                 | 93.40                        | 7.18                                 | 21.00   |
| Shadow                | Region 2 | Columbia, South Carolina                   | 91.45                        | 7.03                                 | 22.00   |
| Shadow                | Region 3 | Madison, Wisconsin                         | 89.77                        | 6.91                                 | 23.00   |
| Large                 | Region 3 | Chicago, Illinois                          | 84.53                        | 6.50                                 | 24.00   |
| Shadow                | Region 3 | Lexington, Kentucky                        | 84.44                        | 6.50                                 | 25.00   |
| Shadow                | Region 1 | Harrisburg, Pennsylvania                   | 83.73                        | 6.44                                 | 26.00   |
| Shadow                | Region 1 | Richmond, Virginia                         | 83.27                        | 6.41                                 | 27.00   |
| Large                 | Region 2 | Charlotte, North Carolina                  | 80.50                        | 6.19                                 | 28.00   |

| Table 20<br>(Cont) |          | Top Ranked MSAsMedian<br>Disposable Income |                              |                                      |         |
|--------------------|----------|--------------------------------------------|------------------------------|--------------------------------------|---------|
| Type of<br>Hub     | Region   | MSA                                        | 13-Yr.<br>Growth<br>Rate (%) | Avg.<br>Annual<br>Growth<br>Rate (%) | Ranking |
| Shadow             | Region 1 | Allentown, Pennsylvania                    | 79.57                        | 6.12                                 | 31.00   |
| Medium             | Region 3 | Cincinnati, Ohio                           | 79.09                        | 6.08                                 | 32.00   |
| Medium             | Region 4 | Portland, Oregon                           | 77.33                        | 5.95                                 | 33.00   |
| Large              | Region 4 | Denver, Colorado                           | 76.74                        | 5.90                                 | 34.00   |
| Shadow             | Region 2 | Greensboro, North Carolina                 | 76.68                        | 5.90                                 | 35.00   |
| Shadow             | Region 1 | Providence, Rhode Island                   | 75.94                        | 5.84                                 | 36.00   |
| Shadow             | Region 3 | Lansing, Michigan                          | 74.12                        | 5.70                                 | 37.00   |
| Shadow             | Region 3 | South Bend, Indiana                        | 72.36                        | 5.57                                 | 38.00   |
| Shadow             | Region 3 | Louisville, Kentucky                       | 71.52                        | 5.50                                 | 39.00   |
| Medium             | Region 1 | Buffalo, New York                          | 65.30                        | 5.02                                 | 40.00   |
| Shadow             | Region 3 | Dayton, Ohio                               | 70.15                        | 5.40                                 | 41.00   |
| Shadow             | Region 1 | Rochester, New York                        | 65.30                        | 5.02                                 | 42.00   |
| Shadow             | Region 3 | Baton Rouge, Louisiana                     | 65.10                        | 5.01                                 | 43.00   |
| Shadow             | Region 4 | Eugene, Oregon                             | 64.09                        | 4.93                                 | 44.00   |
| Medium             | Region 3 | New Orleans, Louisiana                     | 59.97                        | 4.61                                 | 45.00   |
| Large              | Region 3 | Detroit, Michigan                          | 61.00                        | 4.69                                 | 46.0    |
| Medium             | Region 3 | Cleveland, Ohio                            | 56.50                        | 4.35                                 | 47.0    |
| Shadow             | Region 3 | Toledo, Ohio                               | 48.80                        | 3.75                                 | 48.00   |
| Shadow             | Region 4 | Indio/Palm Springs, California             | 46.22                        | 4.20                                 | 49.0    |
| Shadow             | Region 3 | Saginaw/Bay City, Michigan                 | 42.87                        | 3.30                                 | 50.00   |
| Shadow             | Region 3 | Greenbay, Wisconsin                        | 35.65                        | 2.74                                 | 51.0    |
|                    |          | Averages                                   | 84.67                        | 6.52                                 |         |

| Table 21       |          | Top Ranked MSAs Median<br>Age     |                              |                                      |         |
|----------------|----------|-----------------------------------|------------------------------|--------------------------------------|---------|
| Type of<br>Hub | Region   | MSA                               | 13-Yr.<br>Growth<br>Rate (%) | Avg.<br>Annual<br>Growth<br>Rate (%) | Ranking |
| Shadow         | Region 2 | Melbourne, Florida                | 23.03                        | 1.77                                 | 1.00    |
| Shadow         | Region 4 | Eugene, Oregon                    | 22.38                        | 1.72                                 | 2.00    |
| Shadow         | Region 1 | Allentown, Pennsylvania           | 22.00                        | 1.00                                 | 3.00    |
| Shadow         | Region 4 | Colorado Springs, Colorado        | 20.23                        | 1.56                                 | 4.00    |
| Shadow         | Region 3 | Saginaw/Bay City, Michigan        | 19.72                        | 1.52                                 | 5.00    |
| Shadow         | Region 3 | Madison, Wisconsin                | 19.70                        | 1.52                                 | 6.00    |
| Shadow         | Region 2 | Columbia, South Carolina          | 18.52                        | 1.42                                 | 7.00    |
| Shadow         | Region 3 | Louisville, Kentucky              | 18.37                        | 1.41                                 | 8.00    |
| Shadow         | Region 3 | Greenbay, Wisconsin               | 17.52                        | 1.35                                 | 9.00    |
| Shadow         | Region 3 | Dayton, Ohio                      | 16.95                        | 1.30                                 | 10.00   |
| Shadow         | Region 3 | Baton Rouge, Louisiana            | 15.97                        | 1.23                                 | 11.00   |
| Shadow         | Region 3 | Lansing, Michigan                 | 15.47                        | 1.19                                 | 12.00   |
| Shadow         | Region 3 | Lexington, Kentucky               | 15.41                        | 1.19                                 | 13.00   |
| Large          | Region 4 | Denver, Colorado                  | 15.12                        | 1.16                                 | 14.00   |
| Shadow         | Region 2 | Greenville, South Carolina        | 15.00                        | 1.15                                 | 15.00   |
| Medium         | Region 2 | Raleigh-Durham, North<br>Carolina | 14.79                        | 1.14                                 | 16.00   |
| Shadow         | Region 3 | Huntsville, Alabama               | 13.84                        | 1.06                                 | 17.00   |
| Large          | Region 3 | Detroit, Michigan                 | 13.76                        | 1.06                                 | 18.00   |
| Medium         | Region 3 | New Orleans, Louisiana            | 13.68                        | 1.05                                 | 19.00   |
| Shadow         | Region 2 | Greensboro, North Carolina        | 13.55                        | 1.04                                 | 20.00   |
| Medium         | Region 4 | Portland, Oregon                  | 13.40                        | 1.03                                 | 21.00   |
| Shadow         | Region 1 | Harrisburg/York, Pennsylvania     | 12.97                        | 1.00                                 | 22.00   |
| Large          | Region 1 | Washington, D. C.                 | 12.84                        | 0.99                                 | 23.00   |
| Medium         | Region 3 | Cleveland, Ohio                   | 12.34                        | 0.95                                 | 24.00   |
| Medium         | Region 1 | Buffalo, New York                 | 12.26                        | 0.94                                 | 25.00   |
| Large          | Region 3 | Charlotte, North Carolina         | 12.00                        | 0.92                                 | 26.00   |
| Shadow         | Region 1 | Portland, Maine                   | 11.97                        | 0.92                                 | 27.00   |
| Shadow         | Region 1 | Rochester, New York               | 11.88                        | 0.91                                 | 28.00   |

| Table 21<br>(Cont) |          | Top Ranked MSAs Median<br>Age  |                              |                                      |         |
|--------------------|----------|--------------------------------|------------------------------|--------------------------------------|---------|
| Type of<br>Hub     | Region   | MSA                            | 13-Yr,<br>Growth<br>Rate (%) | Avg.<br>Annual<br>Growth<br>Rate (%) | Ranking |
| Medium             | Region 2 | Jacksonville, Florida          | 11.53                        | 0.89                                 | 31.00   |
| Medium             | Region 3 | Nashville, Tennessee           | 11.00                        | 0.85                                 | 32.00   |
| Shadow             | Region 3 | South Bend, Indiana            | 10.49                        | 0.81                                 | 33.00   |
| Shadow             | Region 1 | Richmond, Virginia             | 10.36                        | 0.80                                 | 34.00   |
| Medium             | Region 3 | Cincinnati, Ohio               | 10.30                        | 0.79                                 | 35.00   |
| Large              | Region 1 | Philadelphia, Pennsylvania     | 10.19                        | 0.78                                 | 36.00   |
| Shadow             | Region 3 | Toledo, Ohio                   | 10.07                        | 0.77                                 | 37.00   |
| Shadow             | Region 1 | Manchester, New Hampshire      | 10.00                        | 0.77                                 | 38.00   |
| Large              | Region 3 | Chicago, Illinois              | 9.97                         | 0.77                                 | 39.00   |
| Large              | Region 1 | Boston, Massachusetts          | 9.94                         | 0.76                                 | 40.00   |
| Medium             | Region 1 | Baltimore, Maryland            | 9.62                         | 0.74                                 | 41.00   |
| Large              | Region 2 | Orlando, Florida               | 9.32                         | 0.72                                 | 42.00   |
| Large              | Region 1 | Newark, New Jersey             | 8.26                         | 0.64                                 | 43.00   |
| Shadow             | Region 1 | Providence, Rhode Island       | 7.69                         | 0.59                                 | 44.00   |
| Large              | Region 1 | New York, New York             | 4.50                         | 0.35                                 | 45.00   |
| Medium             | Region 2 | Ft. Myers, Florida             | 4.39                         | 0.34                                 | 46.00   |
| Medium             | Region 4 | Riverside, California          | 0.98                         | 0.08                                 | 47.00   |
| Shadow             | Region 4 | Indio/Palm Springs, California | -6.00                        | -0.55                                | 48.00   |
| Shadow             | Region 2 | Daytona Beach, Florida         | -3.76                        | -0.29                                | 49.00   |
| Large              | Region 2 | Tampa, Florida                 | -4.58                        | -0.35                                | 50.00   |
| Shadow             | Region 2 | Sarasota, Florida              | -10.17                       | -0.78                                | 51.00   |
|                    |          | Average                        | s 11.39                      | 0.80                                 |         |

#### CHAPTER 5

#### ANALYSIS OF MULTIPLE REGRESSION MODEL

A double-log multiple regression formula was developed for this research because of its ability to measure the elasticity of output--in this case, scheduled passenger enplanements of the shadow airports. The logarithm method was applied to the formula to provide information about returns to scale which is the response of output to proportionate changes in inputs. For instance, if the sum is equal to one, then there is a constant return to scale. However, if the sum is less than one, there is a decreasing return to scale. Likewise, if the sum is greater than one, then there are increasing returns to scale. Doubling the inputs will more than double the output.<sup>36</sup>

### **Double-Log Multiple Regression Model**

#### Model

| In enp-   | -sm = $c + \ln enp - lg + \ln ag + \ln ebi + dum1$ (distance)                                             |
|-----------|-----------------------------------------------------------------------------------------------------------|
| ln enp-sm | represents the natural log of the dependent variable of scheduled passenger enplanement at small airports |
| c         | constant                                                                                                  |

Domodar Gujarati, Basic Econometrics (New York: McGraw-Hill Inc., 1978), 36 107-108.

| In enp-lg           | represents the natural log of the independent variable of scheduled passenger enplanements at the larger airports |
|---------------------|-------------------------------------------------------------------------------------------------------------------|
| In age              | represents the natural log of the median population age at the small air passenger cities                         |
| ln ebi              | represents the natural log of effective buying income at the small air passenger cities                           |
| dum 1<br>(distance) | represents the highway mileage between the cities/MSAs competing for scheduled passenger enplanements.            |

#### **Coefficients**

 $\ln \text{enp-sm} = (3.995867) + (-0.065981) \ln \text{enp-lg} + (0.508938) \ln \text{age} +$ 

(.784904) ln income + (.248567) dum1(distance)

The signs of the coefficients are positive for three of the four independent variables supporting positive growth in enplanements at the shadow airport as a result of increases in median disposable income, median population age, and distance between competing airports. Distance between competing air passenger cities was represented as a dummy variable. Those shadow cities within 78 highway miles or less were represented by "1" and those shadow cities greater than 78 highway miles was represented in the formula as "0"

Results indicate that for a one percentage increase of the population's median disposable income at the small passenger city, enplanements will be increased by .78 percent. Likewise, a one percentage increase in the population's median age will increase enplanements at the shadow city by .51 percent. Lastly, for every one percentage increase in the distance between the larger air passenger city and the shadow city, enplanements will increase at the shadow city by .25 percent.

The coefficient for enplanements at the large airport was negative which can be interpreted as follows: a one percentage growth in enplanements at the larger airport will result in a .07 percentage decline in enplanements at the shadow airport.

#### **R-Squared**

The R<sup>2</sup> (coefficient of determination) is used to evaluate the overall significance of the regression model. The purpose of this measurement is to determine the success of the regression in predicting the values of the dependent variable of scheduled passenger enplanements at the shadow/small airport. The results of the R<sup>2</sup> indicate that 12.45 percent of all enplanements at the shadow airport can be attributed to these independent variables (median age and median disposable income of the shadow air passenger city, enplanements at the larger airport, and distance between the two primary cities). This indicates that other factors such as ticket price, an airport's level of service, and flight frequency play a much greater role in determining how enplanements at the shadow airport are affected.

#### **F-Statistic**

The F-Statistic is another test of the hypothesis for overall significance or "goodness of fit." Its purpose is to test the hypothesis and to determine if all of the coefficients in a regression are zero or to determine if there is no relationship between the dependent and independent variables. For the number of observations (13), the degrees of freedom (8), (4,8) and a confidence level of 95 percent, the F-Statistic must be above 3.84. The F-Statistic for this model was 12.44 indicating that it is significant.

| Variables                              | Enplanements at<br>Larger Airports | Median<br>Disposable<br>Income | Median<br>Age | Distance<br>between Air<br>Passenger Cities |
|----------------------------------------|------------------------------------|--------------------------------|---------------|---------------------------------------------|
| <i>T Statistic</i><br>T-value +/- 1.86 | -1.55                              | 4.58                           | 2.08          | 3.54                                        |

Table 22T-Statistics for Regression Equation

For the T statistic values of these four independent variables to be statistically significant at a confidence level of 95 percent their t-value must be +/- 1.86. Again, median disposable income, median age, and distance between air passenger cities are statistically significant. However, enplanements at the larger airport were not as significant and falls within a range of 88 percent confidence level. For a confidence level of 80 percent, the t-statistic for enplanements at the larger airports must fall between +/- 1.397, which it does.

Table 23Probability

| Variables   | Enplanements at<br>Larger Airports | Median<br>Disposable<br>Income | Median Age | Distance between<br>Air Passenger<br>Cities |
|-------------|------------------------------------|--------------------------------|------------|---------------------------------------------|
| Probability | .12                                | 0.0                            | 0.38       | 0.0004                                      |

Three of the four (median income, median age, and distance between hubs) show a probability lower than .05 which supports acceptance of the null hypothesis ( $H_0$ ). However, the probability for the independent variable, enplanements at the competing larger airport is .12 and is not as supportive of the null hypothesis but does carry merit.

### **Correlation Matrix**

A correlation matrix was developed to evaluate the correlation between the dependent and independent variables. Table 25 lists all the variables applied in the double-log regression model.

When comparing the dependent variable (enplanements at small airports) to each of the independent variables, it was found, that based on the hypothesis, all the signs were correct. In addition, all of the independent variables showed some correlation with the dependent variable. A dummy variable (dum 1 = 43-78 miles between air passenger cities) used to measure the impact of those airports, yielded a correlation of .24 in relation to the dependent variable. Also, the matrix generated a correlation of .40 between the independent variables of distance between cities and median age of small air passenger cities. Median disposable income of small air passenger cities correlated with the dependent variable by .19. Median age at the same small cities yielded a .11. Lastly, enplanements at the larger airport yielded a -.11 correlation. In general, the relationship between the dependent variable and the independent variables support the null hypothesis. Median disposable income and median age of small air passenger cities, as well as distances of 43 and 78 miles between competing airports, all evidenced a positive correlation. As suggested, enplanements at larger airports would have an negative impact on enplanements at the small airports. The correlation matrix shows a -. 10 between these two variables.

| Table 24 | Correlation | Matrix |
|----------|-------------|--------|
|          |             |        |

| Variables                                                    | Enplanements at<br>Small Airports<br>(Dependent<br>Variable) | Enplanements at<br>Large Airports | Median<br>Disposable<br>Income | Median<br>Age | Distance |
|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|--------------------------------|---------------|----------|
| Enplanements at<br>Small Airports<br>(Dependent<br>Variable) | 1.00                                                         | -0.10                             | 0.19                           | 0.11          | 0.24     |
| Enplanements at<br>Larger Airports                           | -0.10                                                        | 1.00                              | 0.18                           | -0.05         | -0.18    |
| Median<br>Disposable<br>Income                               | 0.19                                                         | 0.18                              | 1.00                           | -0.04         | 0.01     |
| Median Age                                                   | 0.11                                                         | -0.05                             | -0.04                          | 1.00          | 0.40     |
| Distance<br>between Air<br>Passenger Cities                  | 0.24                                                         | -0.18                             | 0.01                           | 0.40          | 1.00     |

The matrix is also a tool to inspect for multicollinearity among the independent variables. There is no strong relationship among any of the independent variables which would indicate a modeling error within the multiple regression model. Multicollinearity does not appear to be a concern for this regression model.

### **Durbin-Watson Statistic**

The Durbin-Watson statistic measures the association between adjacent residuals and is a test for serial correlation. If there is no problem of association between adjacent residuals, the statistic will be near 2. The results for this research found the Durbin-Watson statistic to be 2.08 indicating that there is no problem associated between adjacent residuals.

#### CHAPTER 6

#### SUMMARY AND CONCLUSIONS

#### **Review of Findings**

Two methods were employed to evaluate shadow airports within a 120 mile radius of larger airports. Chapter 4 took an historical view, reviewing each of the airports with regard to enplanements, median disposable incomes, median ages, and distances between competing air passenger cities. Comparisons were done over a 13 year period and an average annual growth rate was computed for all the airports' dependent and independent variables. The next step was to pinpoint those small airports experiencing declining enplanements. Following this process, 8 airports were singled out with declining trends and further evaluations were done with respect other regional airports of similar backgrounds. Six of the 8 airports were found to be within an hour's driving time of a larger airport. The remaining 2 were nearer to a two hour drive. Notably, Region 2 (southeastern United States) accounted for half of the shadow airports experiencing declines.

Chapter 5 discussed the results and findings of the double log multiple regression model. The final results suggest that this model's independent variables account for 12.45% of the enplanements at the small/shadow airports. The outcome indicated that median disposable income, median age, and distance between air passenger cities were

statistically significant at 95% and support the null hypothesis which states that there is a relationship between small air passenger city's median disposable income, median population age, competing airports scheduled passenger enplanements, and distance from small air passenger city to the larger air passenger city. The independent variable, enplanements at the larger airport, was not as strong statistically and fell within a confidence level of 88 percent. Enplanements at the large airports were included in an attempt to measure the impact of increasing growth and the economies of scale of the large airports on their smaller competitors.

#### Summary

Chapter 4 allowed a closer examination of each individual airports and its respective air passenger city, while Chapter 5 focused on the overall performance of small airports. What Chapter 4 revealed supported much of the regression model employed for this study; however, it also revealed isolated instances which contradicted the regression model. Examples of this included Daytona Beach and Sarasota relative to their exceptional growth in median disposable income and a contradictory decline in enplanements at their respective airports.

Beyond the model, comparisons of scheduled passenger enplanements were possible for the major airport classifications. The average annual growth of enplanements was calculated for the selected 8 small airports suffering from declining enplanements; enplanement growth for their competing large airports were also calculated. These pairings were compared against the average annual growth of enplanements for all small

airports and all large airports within this study. The results confirmed the fact that small airports were growing at a much slower rate than other like airports within this study, but more importantly, their competing large airports within the subgroups, when compared to all other large airports in Chapter 4, were growing twice as fast. This suggests that market share is being transferred from the shadow airports to their nearby competing airports.

The average distance among the study group is 78.3 miles between the shadow MSAs/cities and the larger air passenger cities. Among the 8 small or shadow airports identified with slow or declining growth, 6 were above average in shortest distance between cities. Notably, Portland, Maine, shows possible signs of recovery in growth in scheduled passenger enplanements and is ranked near the bottom with respect to distance between its competing air passenger city, Boston (106 highway miles). Enplanements had increased by 5.76% over the previous year and are slightly above its 1990 year-end total. Refer to Figure 6.

Columbia, South Carolina, the other shadow airport with declining enplanements, however, is farther from its competitor than those listed below. It is located 88 highway miles from Charlotte and at the conclusion of this study did not show any signs of recovery. In fact, enplanements at the beginning of this study in 1980 and at the conclusion of this study in 1993 were comparable. From 1990, Columbia reported losses in air traffic for 4 consecutive years.

Other small airports which rank high in shortest distances between competing hub sites include:

| Sarasota, Florida      | 52 highway miles |
|------------------------|------------------|
| Daytona Beach, Florida | 54 highway miles |
| Dayton, Ohio           | 54 highway miles |
| Toledo, Ohio           | 56 highway miles |
| Melbourne, Florida     | 68 highway miles |
| Indio/Palm Springs     | 75 highway miles |

Each of the 8 shadow airports (including Columbia and Portland) has suffered from slow or declining growth in scheduled passenger enplanements while their competitors have steadily gained air passengers. In reviewing Table 18, Charlotte, Cincinnati, Riverside, Orlando, and Detroit made significant enplanement gains in comparison to their small competitors. Also, in comparison to all larger airports within this study, this specific group of 8 medium/large competing airports grew at a faster pace. These larger airports averaged 14.10%; the average of all large/medium airports for this study produced a growth rate of 7.05%. Comparing all shadow airports to the 8 declining shadow airports in this study revealed that the overall group grew 2 1/2 times faster. Scheduled passenger enplanements of 8 shadow airports grew at an average annual rate of 1.24% in comparison to the overall shadow airports average annual growth rate of 3.11%. (Manchester, New Hampshire, was not included in this average.)

With respect to median disposable income, Sarasota ranked 1st and Daytona Beach ranked 2nd among all airports in average annual growth in median disposable income. This growth, however, did not translate into growth in passenger enplanements for their community airports. In fact, 5 of the 8 shadow air passenger cities experienced above average annual growth in median disposable income. The average for all airports is 6.52%. Only Dayton, Toledo, and Indio/Palm Springs, California, fell into the bottom 20% of all airports. (Refer to Table 19)

With the exception of Melbourne, Florida, which ranked number 1 in growth in median age, most of the Florida sites ranked below average in average annual growth. (See Table 20) Within the time period of this study, those air passenger cities with the lowest ranking growth rates are the traditional retirement communities. They include Indio/Palm Springs, California; Daytona Beach, Florida; Tampa, Florida, and Sarasota Florida. All had suffered either negative or flat growth in enplanements. In reviewing Table 20, the small/shadow air passenger cities generally dominated the top of the chart reflecting the choice of retirees to live in smaller, less crowded communities.

#### **Improvements to the Model**

The number of observations were limited to 13 for this study with enplanements collected annually. The inclusion of 4 independent variables reduced the degrees of freedom to 8. A suggestion for possible improvements to this model would be to gather either monthly or quarterly enplanements while increasing the degree of freedom and allowing for additional independent variables in an attempt to increase the R<sup>2</sup> above this study's outcome of 12.45%. With the increased number of observations additional variables could be added to the model such as breakdown of age brackets and/or additional variables (nonstop flights, flight frequency, jet service, ticket price, and substitution for flight, etc.) which more accurately measure airport services. This model

attempted to capture the overall impact of airport services through the inclusion of enplanements at the larger competing airport. It was thought that growth outpacing the small airports was generally due to increased or better services being offered at the larger airports. With an increase in the number of observations, specific services could be evaluated and, again, perhaps increase the  $R^2$ .

Also, eliminating those large airports with small airports nearby which artificially divert air passengers to less crowded airports as a result of government regulation regarding "excess capacity," would confine the study to natural market forces. An example of this artificial interference exists between Chicago and South Bend.

Another anomalous factor which may appear with the quarterly or monthly enplanements, may be the impact of weather conditions (especially in the Northeast) on seasonal enplanements. Good weather in the southeastern region of the U.S. may encourage travel to more distant airports while unpredictable winter travel may result in increased passenger traffic at the smaller airports during the season of harsh weather. Again, the inclusion of quarterly or monthly enplanement statistics may capture this factor.

#### Recommendations

After singling out eight shadow airports seemingly troubled by the competition of their nearby larger airports, this study recommends that scheduled passenger enplanements statistics should be added to determine whether declining shadow airports are continuing to lose market share to their nearby larger airport competitors, especially under a strengthening economy (post Gulf War).

Also, those shadow airports with successful growth trends which are within an hour's drive of a larger airport should be scrutinized to see what competitive advantages could be transferred to the shadow airports with declining enplanements.

Finally, shadow airports within an hour drive should diversify services and use target marketing to increase passenger traffic. Airports could consider specializing in charter services, if feasible for the particular community. In addition, targeting advertising resources to the community's demographic profile may encourage more residents to choose the closer airport and increase passenger traffic, thereby recapturing lost market share.

### WORKS CITED

\_\_\_\_\_\_. America's Airport Capacity Needs: A Futurist Approach to Traffic Forecasting for the 21st Century. Aviation Systems Research Corporation. Golden, Colorado, August 1990.

\_\_\_\_\_. "Are the US Titans Running out of Jet Fuel?" The Avmark Aviation *Economist*, (May, 1993): 14-18.

- Ashford, Norman, H. P. Martin Stanton, Clifton A. Moore. *Airport Operations*. London: Pitman Publishing. Reprint 1993.
- Ashford, Norman and Messaoud Benchemam. "Passengers' Choice of Airport: an Application of the Multinomial Logit Model." *Transportation Research Record*,n.s. 1147 (1987): 1-5.
- Debbage, Keith G. "U. S. Airport Market Concentration and Deconcentration." *Transportation Quarterly*, 47 (January 1993): 115-129.
- Doganis, Rigas. Flying Off Course: The Economics of International Airlines. 2nd. ed. New York: Harper Collins Academic, 1991; reprint, New York: Routledge, 1992.
- Furuichi, Masahiko and Frank S. Koppelman. "An Analysis of Air Travelers' Departure Airport and Destination Choice Behavior." Transportation Research Record, 28A (May 1994): 187-195.
- Goetz, Andrew R. "Geographic Patterns of Air Service Frequencies and Pricing at U. S. Cities." Journal of the Transportation Research Forum, 33 (1993): 56-72.

Gujarati, Damodar. Basic Econometrics. New York: McGraw-Hill Inc., 1978.

- Hansen, Mark. "Positive Feedback Model of Multiple-Airport Systems." Journal of Transportation Engineering, 121 (Nov./Dec. 1995): 453-460.
- Haynes, William Warren. Mangerial Economics Analysis and Cases. Homewood, Illinois: The Dorsey Press, Inc., 1963.
- Harvey, Greig. "Research Directions in Travel Demand Analysis." Transportation Research, Part A, n.s. 19A (Sept.-Nov 1985): 455-459.
- Harvey, Greig. "Study of Airport Access Mode Choice." Journal of Transportation Engineering, 112 (September 1986): 525-545.
- Harvey, Greig. "Airport Choice in a Multiple Airport Region." *Transportation Research Record*, 21A (March 1987): 439-449.
- Innes, David J. and Donla H. Doucet. "Effects of Access Distance and Level of Service on Airport Choice." *Journal of Transportation Engineering*, n. s. 116 (July/August 1990): 507-516.
- Kaemmerle, Kenneth C. "Estimating the Demand for Small Community Air Service." *Transportation Research, Part A*, n.s. 25A (15 May 1990): 101-112.
- Kasarda, John D. "Demographics--The Spatial Redistribution of People and Jobs." In Aviation Forecasting Methodology: A Special Workshop (Transportation Research Board) Held in Washington, D.C. 4-5 April 1989, Washington, D.C.: Transportation Research Circular, 1989.
- Phillips, Edward H. "Market Forces to Reshape Hub-and-Spoke System." Aviation Week & Space Technology, 21 February 1994.
  - \_\_\_\_\_. Sales and Marketing Management. 1981-1994 Survey of Buying Power. A Bill Publication. 1981-1994 (July/August issues).
- Rodgers, John, "FAA Forecasts," In Restructuring for Growth and Profitability: 20th Annual FAA Commercial Aviation Forecast Conference Proceedings in Washington, D.C., March 3, 1995, by Federal Aviation Administration, U.S. Department of Transportation, 1995, 42-48.

Shaw, Stephen. Airline Marketing and Management. Malabar, FL: Krieger Publishing Company. 1993.

\_\_\_\_\_. Standard Highway Mileage Guide. Skokie, IL: Rand McNally. 1987.

U. S. Department of Transportation. Federal Aviation Administration. *Airport Activity Statistics of Certified Route Air Carriers*. Washington: Superintendent of Documents. 1980--1993.

Upclose United States Databook. El Granada: Upclose Publishing. 1993.

Windle, Robert and Martin Dresner. "Airport choice in Multiple-Airport Regions." Journal of Transportation Engineering, 121 (Jul/Aug, 1995): 332-337.

# APPENDIX A

## SCHEDULED PASSENGER ENPLANEMENTS

### 1980 TO 1993

| ENPLANEMENTS         | CITY/MSA                        | 1980       | 1981       | 1982       | 1983       | 1984       | 1985       | 1986       |
|----------------------|---------------------------------|------------|------------|------------|------------|------------|------------|------------|
| Alabama              | Huntsville                      | 240,363    | 213,390    | 225,797    | 231,175    | 266,277    | 281,048    | 299,327    |
| California           | Indio/Palm Springs              | 216,224    | 176,933    | 154,151    | 185,047    | 234,051    | 242,299    | 291,320    |
| California           | Riverside                       | 982,390    | 871,424    | 968,730    | 1,175,644  | 1,488,495  | 1,771,099  | 2,030,310  |
| Colorado             | Colorado Springs                | 276,119    | 223,845    | 195,928    | 246,439    | 409,981    | 576,197    | 711,341    |
| Colorado             | Denver                          | 9,615,785  | 10,437,142 | 11,404,157 | 11,401,005 | 12,812,656 | 13,862,992 | 15,087,330 |
| Connecticut          | Hartford                        | 1,401,135  | 1,162,993  | 1,144,221  | 1,420,664  | 1,535,368  | 1,705,896  | 1,998,477  |
| District of Columbia | Washington                      | 7,756,053  | 7,282,727  | 7,132,925  | 7,885,801  | 8,191,080  | 9,015,583  | 10,890,580 |
| Florida              | Daytona Beach                   | 377,924    | 286,696    | 233,219    | 244,240    | 235,700    | 235,678    | 295,080    |
| Florida              | Fort Myers                      | 546,422    | 532,612    | 543,908    | 582,014    | 579,416    | 776,762    | 967,371    |
| Florida              | Jacksonville                    | 872,979    | 858,902    | 982,157    | 1,044,359  | 1,056,365  | 1,160,053  | 1,373,191  |
| Florida              | Melbourne                       | 184,059    | 148,997    | 187,505    | 284,284    | 317,686    | 293,144    | 220,672    |
| Florida              | Orlando                         | 3,124,568  | 2,866,389  | 3,268,933  | 3,721,059  | 4,108,413  | 4,848,771  | 5,946,686  |
| Florida              | Sarasota/Bradenton              | 575,194    | 514,169    | 662,976    | 696,177    | 653,968    | 621,993    | 637,386    |
| Florida              | Tampa                           | 3,600,730  | 3,184,121  | 3,560,548  | 3,830,148  | 3,962,211  | 4,240,557  | 4,875,116  |
| Illinois             | Chicago                         | 19,417,854 | 16,906,634 | 16,699,134 | 18,953,681 | 20,030,016 | 22,752,033 | 26,512,200 |
| Indiana              | South Bend                      | 159,349    | 159,349    | 90,361     | 134,472    | 165,115    | 191,334    | 278,523    |
| Kentucky             | Lexington                       | 320,061    | 284,523    | 262,392    | 281,773    | 290,556    | 300,128    | 342,907    |
| Kentucky             | Louisville                      | 993,355    | 848,184    | 874,842    | 855,970    | 845,914    | 912,181    | 946,140    |
| Louisiana            | <ul> <li>New Orleans</li> </ul> | 3,107,183  | 2,928,436  | 2,852,632  | 2,868,966  | 3,193,181  | 2,912,675  | 3,040,026  |
| Louisiana            | Baton Rouge                     | 273,479    | 267,790    | 272,948    | 291,828    | 318,398    | 351,061    | 376,852    |
| Maine                | Portland                        | 251,552    | 219,166    | 209,560    | 331,078    | 451,124    | 458,369    | 531,807    |
| Maryland             | Baltimore                       | 1,652,494  | 1,521,330  | 1,903,229  | 2,296,538  | 2,876,946  | 3,408,608  | 3,847,977  |
| Massachusetts        | Boston                          | 6,844,951  | 6,622,905  | 7,111,936  | 8,044,651  | 8,702,896  | 9,112,901  | 9,695,876  |
| Michigan             | Detroit                         | 5,050,735  | 4,749,836  | 4,790,521  | 4,888,149  | 5,357,166  | 7,163,840  | 8,206,266  |
| Michigan             | Lansing                         | 181,343    | 112,548    | 114,041    | 158,000    | 143,501    | 105,205    | 103,072    |
| Michigan             | Saginaw/Bay City                | 191,130    | 141,595    | 133,202    | 141,497    | 136,910    | 166,137    | 190,609    |
| New Hampshire        | Manchester                      | 10,986     | 387        | 72         | 0          | 8,536      | 23,844     | 21,158     |
| New Jersey           | Newark                          | 4,206,011  | 4,523,898  | 5,659,064  | 8,300,298  | 11,743,964 | 14,272,558 | 19,553,707 |
| New York             | Buffalo                         | 1,540,313  | 1,333,165  | 1,620,637  | 1,707,482  | 1,803,770  | 1,681,254  | 1,731,363  |

| ENPLANEMENTS   | CITY/MSA               | 1980       | 1981       | <i>1982</i> | 1983       | 1984       | 1985       | 1986       |
|----------------|------------------------|------------|------------|-------------|------------|------------|------------|------------|
| New York       | New York               | 17,520,433 | 16,686,921 | 17,418,606  | 18,580,651 | 20,008,318 | 19,665,920 | 14,405,042 |
| New York       | Rochester              | 870,480    | 736,282    | 843,811     | 861,319    | 895,372    | 1,229,991  | 1,241,968  |
| North Carolina | Charlotte              | 1,480,787  | 1,894,928  | 2,768,882   | 3,763,812  | 4,226,187  | 5,102,703  | 5,687,255  |
| North Carolina | Greensboro/High Point  | 696,327    | 756,800    | 683,403     | 740,899    | 785,241    | 1,102,525  | 1,039,838  |
| North Carolina | Raleigh/Durham         | 866,007    | 828,176    | 911,866     | 1,122,732  | 1,289,108  | 1,345,077  | 1,441,832  |
| Ohio           | Cincinnati             | 1,391,638  | 1,331,791  | 1,598,641   | 1,769,830  | 1,703,819  | 2,014,386  | 2,136,184  |
| Ohio           | Cleveland              | 2,989,234  | 2,656,006  | 2,521,662   | 2,626,602  | 2,751,460  | 3,023,714  | 3,092,753  |
| Ohio           | Dayton                 | 889,035    | 707,426    | 774,638     | 1,191,509  | 1,430,970  | 1,732,155  | 2,140,242  |
| Ohio           | Toledo                 | 274,162    | 222,837    | 199,887     | 265,347    | 283,654    | 268,297    | 282,421    |
| Oregon         | Eugene                 | 232,376    | 180,321    | 156,627     | 172,928    | 176,063    | 194,620    | 265,929    |
| Oregon         | Portland               | 1,804,395  | 1,731,302  | 1,850,515   | 2,074,741  | 2,150,617  | 2,526,852  | 2,414,960  |
| Pennsylvania   | Allentown              | 273,839    | 152,033    | 136,490     | 144,398    | 164,576    | 168,074    | 221,559    |
| Pennsylvania   | Harrisburg/York        | 284,299    | 200,711    | 176,164     | 208,927    | 214,086    | 284,659    | 375,182    |
| Pennsylvania   | Philadelphia           | 4,058,167  | 3,581,634  | 3,844,822   | 3,980,574  | 4,365,216  | 4,760,972  | 5,423,885  |
| Pennsylvania   | Harrisburg/York        | 284,299    | 200,711    | 176,164     | 208,927    | 214,086    | 284,659    | 375,182    |
| Rhode Island   | Providence             | 459,316    | 319,354    | 305,433     | 314,620    | 398,756    | 553,540    | 715,688    |
| South Carolina | Columbia               | 416,684    | 389,814    | 338,016     | 377,295    | 395,480    | 548,738    | 627,480    |
| South Carolina | Greenville/Spartanburg | 329,354    | 282,762    | 243,589     | 299,759    | 351,049    | 399,164    | 422,998    |
| Tennessee      | Nashville              | 1,122,084  | 1,033,206  | 1,079,076   | 1,108,572  | 1,216,188  | 1,395,487  | 2,165,808  |
| Virginia       | Richmond               | 619,775    | 565,832    | 461,362     | 476,137    | 564,687    | 703,497    | 807,801    |
| Wisconsin      | Greenbay               | 299,342    | 243,000    | 251,645     | 218,942    | 171,375    | 198,939    | 221,754    |
| Wisconsin      | Madison                | 352,745    | 275,483    | 274,961     | 298,751    | 329,074    | 376,807    | 414,895    |
| Wisconsin      | Milwaukee              | 1,623,318  | 1,550,847  | 1,562,381   | 1,352,044  | 1,115,865  | 1,350,401  | 1,514,107  |

| ENPLANEMENTS         | CITY/MSA           | 1987       | 1988       | 1989       | 1990       | 1991       | <i>1992</i> | 1993       |
|----------------------|--------------------|------------|------------|------------|------------|------------|-------------|------------|
| Alabama              | Huntsville         | 359,374    | 355,930    | 357,658    | 381,668    | 378,501    | 407,079     | 394,940    |
| California           | Indio/Palm Springs | 309,968    | 300,029    | 326,599    | 353,294    | 331,221    | 312,769     | 274,724    |
| California           | Riverside          | 2,232,486  | 2,353,959  | 2,608,588  | 2,641,132  | 2,837,028  | 2,965,837   | 3,028,121  |
| Colorado             | Colorado Springs   | 682,285    | 641,126    | 599,669    | 551,507    | 608,831    | 698,777     | 732,422    |
| Colorado             | Denver             | 15,593,583 | 14,441,817 | 12,320,246 | 11,961,839 | 12,313,733 | 13,426,038  | 14,328,589 |
| Connecticut          | Hartford           | 2,267,686  | 2,321,986  | 2,269,982  | 2,312,455  | 2,107,004  | 2,131,225   | 2,167,003  |
| District of Columbia | Washington         | 12,030,011 | 11,586,627 | 11,439,093 | 11,483,285 | 11,340,673 | 11,290,271  | 11,215,785 |
| Florida              | Daytona Beach      | 374,058    | 433,958    | 412,317    | 490,336    | 391,319    | 414,790     | 384,516    |
| Florida              | Fort Myers         | 1,241,995  | 1,460,146  | 1,525,884  | 1,712,679  | 1,585,515  | 1,584,414   | 1,700,882  |
| Florida              | Jacksonville       | 1,407,222  | 1,287,939  | 1,249,258  | 1,266,677  | 1,146,229  | 1,179,087   | 1,234,294  |
| Florida              | Melbourne          | 243,711    | 291,352    | 288,087    | 360,126    | 305,371    | 315,398     | 283,008    |
| Florida              | Orlando            | 7,074,737  | 7,473,086  | 7,373,449  | 7,677,769  | 7,605,356  | 8,535,628   | 8,714,400  |
| Florida              | Sarasota/Bradenton | 761,025    | 842,674    | 794,430    | 989,935    | 883,000    | 840,157     | 805,613    |
| Florida              | Tampa              | 4,798,969  | 4,538,643  | 4,429,612  | 4,781,138  | 4,353,420  | 4,423,496   | 4,771,252  |
| Illinois             | Chicago            | 28,671,279 | 29,770,857 | 29,073,992 | 29,183,423 | 28,816,463 | 30,645,315  | 32,119,096 |
| Indiana              | South Bend         | 229,833    | 244,615    | 244,077    | 224,050    | 242,206    | 356,377     | 345,969    |
| Kentucky             | Lexington          | 336,610    | 331,667    | 334,073    | 291,634    | 277,864    | 310,419     | 341,677    |
| Kentucky             | Louisville         | 1,034,162  | 1,013,770  | 910,288    | 937,645    | 893,817    | 963,178     | 1,117,049  |
| Louisiana            | New Orleans        | 3,311,172  | 3,200,056  | 3,170,967  | 3,361,062  | 3,151,718  | 3,231,972   | 3,282,080  |
| Louisiana            | Baton Rouge        | 400,314    | 388,419    | 427,295    | 423,808    | 406,214    | 423,313     | 354,648    |
| Maine                | Portland           | 574,313    | 612,800    | 432,704    | 472,393    | 450,252    | 447,248     | 472,996    |
| Maryland             | Baltimore          | 4,009,780  | 4,369,596  | 4,446,139  | 4,420,425  | 4,249,906  | 3,614,491   | 3,950,419  |
| Massachusetts        | Boston             | 10,255,305 | 10,141,298 | 9,661,258  | 9,549,585  | 8,862,052  | 9,087,607   | 10,202,076 |
| Michigan             | Detroit            | 9,254,473  | 9,343,770  | 10,084,132 | 10,265,768 | 9,938,906  | 10,408,519  | 11,277,359 |
| Michigan             | Lansing            | 117,548    | 174,737    | 207,063    | 187,455    | 190,010    | 234,357     | 192,833    |
| Michigan             | Saginaw/Bay City   | 205,392    | 222,619    | 246,982    | 219,310    | 218,113    | 231,478     | 224,347    |
| New Hampshire        | Manchester         | 111,501    | 168,880    | 228,874    | 267,963    | 292,793    | 282,131     | 270,760    |
| New Jersey           | Newark             | 11,288,941 | 10,837,963 | 20,921,323 | 9,853,925  | 9,737,488  | 10,442,112  | 10,965,362 |
| New York             | Buffalo            | 1,728,690  | 1,780,070  | 1,628,990  | 1,637,293  | 1,542,816  | 1,484,181   | 1,463,368  |

| ENPLANEMENTS   | CITY/MSA               | 1987       | 1988       | 1989      | 1990       | 1991               | 1992       | 1993       |
|----------------|------------------------|------------|------------|-----------|------------|--------------------|------------|------------|
| New York       | New York               | 21,466,318 | 21,982,221 | 9,822,491 | 20,412,533 | 17,439,839         | 17,554,230 | 17,595,951 |
| New York       | Rochester              | 1,254,005  | 1,241,528  | 1,149,438 | 1,154,747  | 1,067,343          | 1,018,125  | 1,007,944  |
| North Carolina | Charlotte              | 6,021,104  | 6,619,780  | 6,903,482 | 7,076,954  | 7,668,793          | 8,220,185  | 7,803,870  |
| North Carolina | Greensboro/High Point  | 1,026,113  | 993,682    | 894,404   | 894,532    | 810,404            | 848,948    | 945,896    |
| North Carolina | Raleigh/Durham         | 2,316,211  | 3,517,525  | 4,116,520 | 4,361,369  | 4,309,550          | 4,376,097  | 4,203,412  |
| Ohio           | Cincinnati             | 3,264,622  | 3,542,865  | 3,770,623 | 3,907,625  | 4,314,474          | 4,903,127  | 5,127,375  |
| Ohio           | Cleveland              | 3,102,547  | 3,547,258  | 3,722,208 | 3,836,050  | 3,545,000          | 3,740,901  | 3,893,989  |
| Ohio           | Dayton                 | 2,166,547  | 2,140,470  | 2,083,123 | 1,845,160  | 1,757 <b>,8</b> 93 | 933,753    | 384,516    |
| Ohio           | Toledo                 | 252,832    | 243,785    | 234,377   | 202,354    | 204,983            | 244,646    | 206,221    |
| Oregon         | Eugene                 | 272,112    | 227,646    | 240,151   | 224,658    | 256,950            | 277,504    | 354,495    |
| Oregon         | Portland               | 2,834,327  | 2,823,311  | 3,054,925 | 3,025,345  | 3,164,431          | 3,500,423  | 4,187,972  |
| Pennsylvania   | Allentown              | 263,930    | 295,168    | 296,246   | 349,358    | 340,076            | 349,951    | 325,261    |
| Pennsylvania   | Harrisburg/York        | 396,226    | 420,741    | 443,954   | 437,341    | 452,218            | 515,660    | 517,900    |
| Pennsylvania   | Philadelphia           | 6,602,687  | 6,633,677  | 6,247,489 | 6,970,820  | 6,381,130          | 6,827,030  | 7,292,669  |
| Pennsylvania   | Harrisburg/York        | 396,226    | 420,741    | 443,954   | 437,341    | 452,218            | 515,660    | 517,900    |
| Rhode Island   | Providence             | 864,078    | 944,843    | 952,289   | 1,060,719  | 954,208            | 976,879    | 970,186    |
| South Carolina | Columbia               | 570,566    | 531,224    | 487,069   | 512,759    | 476,079            | 452,350    | 420,075    |
| South Carolina | Greenville/Spartanburg | 498,312    | 506,508    | 493,426   | 503,271    | 435,383            | 423,578    | 476,561    |
| Tennessee      | Nashville              | 2,987,233  | 3,244,014  | 3,746,367 | 3,404,243  | 3,901,875          | 4,461,221  | 3,813,856  |
| Virginia       | Richmond               | 873,569    | 850,593    | 826,955   | 864,381    | 819,539            | 882,368    | 928,769    |
| Wisconsin      | Greenbay               | 201,876    | 191,534    | 189,963   | 187,513    | 202,288            | 254,281    | 258,138    |
| Wisconsin      | Madison                | 378,019    | 373,288    | 384,201   | 425,563    | 390,951            | 524,474    | 529,283    |
| Wisconsin      | Milwaukee              | 1,619,426  | 1,779,140  | 1,871,914 | 1,915,390  | 1,756,680          | 1,938,384  | 2,085,185  |

# APPENDIX B

# MEDIAN AGE FOR MSAs

## 1980-1993

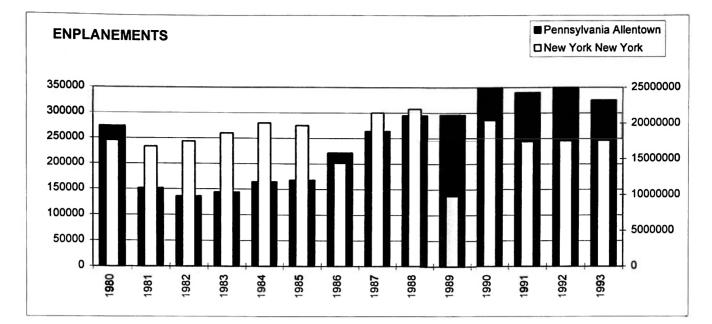
| MEDIAN AGE     | CITY/MSA           | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
|----------------|--------------------|------|------|------|------|------|------|------|------|------|
| Alabama        | Huntsville         | 28.9 | 30.0 | 29.6 | 30.1 | 30.3 | 30.6 | 31.0 | 31.4 | 31.7 |
| California     | Indio/Palm Springs | 46.6 | 46.6 | 46.7 | 46.7 | 46.7 | 46.8 | 46.9 | 46.9 | 47.0 |
| Colorado       | Colorado Springs   | 25.7 | 27.7 | 27.9 | 28.0 | 28.3 | 28.6 | 28.9 | 29.2 | 29.5 |
| Florida        | Daytona Beach      | 42.5 | 40.5 | 40.8 | 41.0 | 41.2 | 41.5 | 41.6 | 41.8 | 42.0 |
| Florida        | Melbourne          | 30.4 | 34.8 | 35.2 | 35.5 | 35.9 | 36.1 | 36.5 | 36.8 | 37.1 |
| Florida        | Sarasota           | 52.1 | 50.8 | 50.9 | 50.9 | 51.0 | 51.0 | 51.1 | 51.1 | 51.1 |
| Indiana        | South Bend         | 30.5 | 30.9 | 31.2 | 31.4 | 31.7 | 32.0 | 32.3 | 32.5 | 32.8 |
| Kentucky       | Lexington          | 27.9 | 29.1 | 29.3 | 29.6 | 30.0 | 30.2 | 30.5 | 30.8 | 31.0 |
| Kentucky       | Louisville         | 29.4 | 30.5 | 30.8 | 31.1 | 31.4 | 31.6 | 31.9 | 32.2 | 32.5 |
| Louisiana      | Baton Rouge        | 26.3 | 26.8 | 27.1 | 27.4 | 27.7 | 28.0 | 28.3 | 28.5 | 28.8 |
| Maine          | Portland           | 30.9 | 31.4 | 31.9 | 32.2 | 32.5 | 32.7 | 33.0 | 33.3 | 33.6 |
| Michigan       | Lan'sing           | 26.5 | 26.9 | 27.2 | 27.5 | 27.8 | 28.1 | 28.4 | 28.7 | 28.9 |
| Michigan       | Saginaw/Bay City   | 28.4 | 28.5 | 29.2 | 29.5 | 29.8 | 30.1 | 30.5 | 30.7 | 31.0 |
| New York       | Rochester          | 30.3 | 30.8 | 31.1 | 31.4 | 31.7 | 31.9 | 33.3 | 32.5 | 32.8 |
| North Carolina | Greensboro         | 31.0 | 31.1 | 31.7 | 31.9 | 32.2 | 32.5 | 32.8 | 33.1 | 33.3 |
| Ohio           | Dayton             | 29.5 | 30.8 | 31.1 | 31.4 | 31.7 | 32.0 | 32.3 | 32.6 | 32.9 |
| Ohio           | Toledo             | 29.8 | 29.6 | 29.9 | 30.2 | 30.5 | 30.8 | 31.1 | 31.3 | 31.6 |
| Oregon         | Eugene             | 28.6 | 29.5 | 29.8 | 30.0 | 30.3 | 30.5 | 30.8 | 31.0 | 31.2 |
| Pennsylvania   | Allentown          | 30.0 | 33.6 | 33.9 | 34.1 | 34.4 | 34.6 | 35.0 | 35.3 | 35.6 |
| Pennsylvania   | Harrisburg/York    | 31.6 | 32.1 | 32.5 | 32.6 | 32.9 | 33.1 | 33.4 | 33.7 | 34.0 |
| Rhode Island   | Providence         | 32.5 | 32.6 | 32.9 | 33.2 | 33.5 | 33.7 | 34.1 | 34.3 | 34.6 |
| South Carolina | Columbia           | 27.0 | 28.0 | 28.3 | 28.5 | 38.9 | 29.2 | 29.6 | 39.8 | 30.1 |
| South Carolina | Greenville         | 30.0 | 30.4 | 30.7 | 31.0 | 31.3 | 31.6 | 31.9 | 32.2 | 32.4 |
| Virginia       | Richmond           | 30.9 | 30.9 | 31.0 | 31.3 | 31.5 | 31.8 | 32.1 | 32.3 | 32.5 |
| Wisconsin      | Greenbay           | 27.4 | 28.1 | 28.5 | 28.8 | 29.1 | 29.4 | 29.7 | 30.0 | 30.3 |
| Wisconsin      | Madison            | 26.4 | 28.3 | 28.6 | 28.9 | 29.1 | 29.4 | 29.6 | 29.9 | 30.1 |

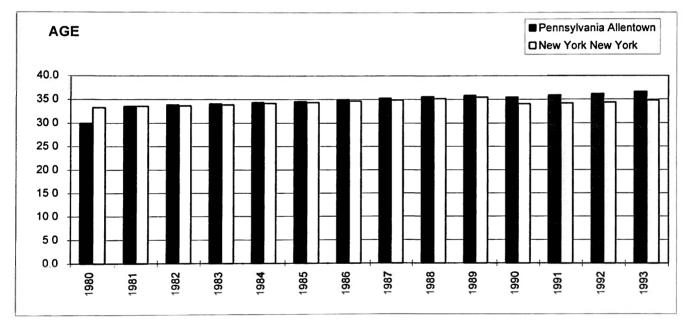
| MEDIAN AGE     | CITY/MSA           | 1989 | 1990 | 1991 | 1992 | 1993 |
|----------------|--------------------|------|------|------|------|------|
| Alabama        | Huntsville         | 32.0 | 32.0 | 32.3 | 32.6 | 32.9 |
| California     | Indio/Palm Springs | 47.0 | 43.9 | 44.0 | 44.1 | 43.9 |
| Colorado       | Colorado Springs   | 29.7 | 30.3 | 30.5 | 30.7 | 30.9 |
| Florida        | Daytona Beach      | 42.2 | 39.8 | 40.0 | 40.6 | 40.9 |
| Florida        | Melbourne          | 37.4 | 36.5 | 36.8 | 37.0 | 37.4 |
| Florida        | Sarasota           | 51.1 | 48.9 | 49.0 | 46.5 | 46.8 |
| Indiana        | South Bend         | 33.0 | 32.9 | 33.3 | 33.4 | 33.7 |
| Kentucky       | Lexington          | 31.2 | 31.9 | 32.2 | 32.0 | 32.2 |
| Kentucky       | Louisville         | 32.7 | 33.9 | 34.3 | 34.5 | 34.8 |
| Louisiana      | Baton Rouge        | 29.0 | 29.9 | 30.1 | 30.3 | 30.5 |
| Maine          | Portland           | 33.9 | 33.7 | 34.1 | 34.3 | 34.6 |
| Michigan       | Lansing            | 29.2 | 29.9 | 30.2 | 30.3 | 30.6 |
| Michigan       | Saginaw/Bay City   | 31.3 | 33.0 | 33.4 | 33.6 | 34.0 |
| New York       | Rochester          | 33.1 | 33.0 | 33.3 | 33.5 | 33.9 |
| North Carolina | Greensboro         | 33.6 | 34.1 | 34.5 | 34.8 | 35.2 |
| Ohio           | Dayton             | 33.1 | 33.5 | 33.9 | 34.1 | 34.5 |
| Ohio           | Toledo             | 31.9 | 32.0 | 32.3 | 32.5 | 32.8 |
| Oregon         | Eugene             | 31.4 | 34.0 | 34.4 | 34.6 | 35.0 |
| Pennsylvania   | Allentown          | 35.9 | 35.5 | 35.9 | 36.2 | 36.6 |
| Pennsylvania   | Harrisburg/York    | 34.2 | 34.9 | 35.1 | 35.3 | 35.7 |
| Rhode Island   | Providence         | 34.9 | 34.1 | 34.4 | 34.6 | 35.0 |
| South Carolina | Columbia           | 30.2 | 31.3 | 31.6 | 31.8 | 32.0 |
| South Carolina | Greenville         | 32.7 | 33.3 | 33.7 | 34.2 | 34.5 |
| Virginia       | Richmond           | 32.8 | 33.3 | 33.6 | 33.8 | 34.1 |
| Wisconsin      | Greenbay           | 30.5 | 31.5 | 31.8 | 31.9 | 32.2 |
| Wisconsin      | Madison            | 30.3 | 30.9 | 31.2 | 31.4 | 31.6 |

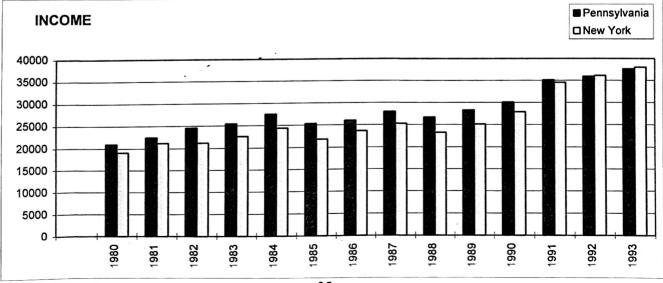
# APPENDIX C

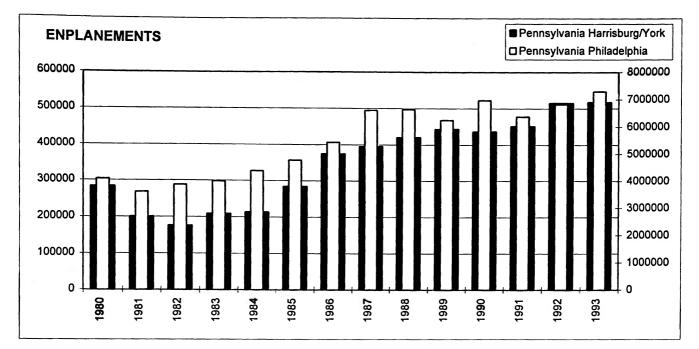
# MEDIAN DISPOSABLE INCOME FOR MSAs

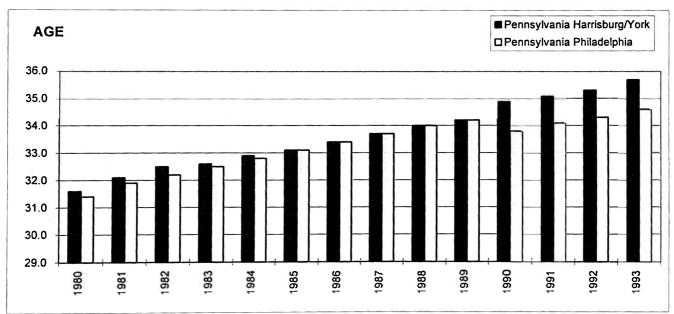
1980 to 1993


| MEDIAN INCOME  | CITY/MSA               | 1980   | 1981   | 1982   | 1983   | 1984   | 1985   | 1986   | 1987   | 1988   |
|----------------|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Alabama        | Huntsville             | 18,404 | 20,316 | 22,156 | 24,384 | 26,508 | 24,485 | 25,798 | 26,950 | 26,135 |
| California     | Indio/Palm Springs     | 19,202 | 20,044 | 20,923 | 21,685 | 23,930 | 22,277 | 22,703 | 25,208 | 24,884 |
| Colorado       | Colorado Springs       | 16,384 | 17,334 | 20,229 | 22,259 | 23,694 | 23,147 | 24,101 | 24,765 | 22,453 |
| Florida        | Daytona Beach          | 11,835 | 13,246 | 16,437 | 18,066 | 20,617 | 19,389 | 20,237 | 21,011 | 20,682 |
| Florida        | Melbourne              | 17,736 | 19,980 | 20,812 | 21,036 | 22,791 | 22,239 | 22,983 | 23,987 | 23,209 |
| Florida        | Sarasota /Bradenton    | 12,863 | 14,306 | 18,774 | 20,504 | 22,181 | 21,267 | 22,299 | 23,549 | 22,408 |
| Indiana        | South Bend             | 19,566 | 21,545 | 21,684 | 23,698 | 25,051 | 23,735 | 24,330 | 25,562 | 23,641 |
| Kentucky       | Lexington              | 18,165 | 19,374 | 20,204 | 21,862 | 24,518 | 21,849 | 22,423 | 23,839 | 21,716 |
| Kentucky       | Louisville             | 19,643 | 21,262 | 20,915 | 23,177 | 25,648 | 23,280 | 23,620 | 25,144 | 23,179 |
| Louisiana      | Baton Rouge            | 21,345 | 23,087 | 24,524 | 25,320 | 26,861 | 24,546 | 24,555 | 24,962 | 22,322 |
| Maine          | Portland               | 18,290 | 20,426 | 21,067 | 22,734 | 25,131 | 23,098 | 24,719 | 26,830 | 26,589 |
| Michigan       | Lansing                | 21,953 | 24,831 | 25,032 | 27,333 | 29,024 | 27,094 | 27,408 | 28,297 | 25,543 |
| Michigan       | Saginaw/Bay City       | 23,175 | 25,701 | 24,557 | 26,179 | 27,280 | 25,156 | 26,147 | 26,992 | 24,674 |
| New York       | Rochester              | 23,284 | 25,421 | 27,035 | 29,014 | 30,404 | 27,764 | 30,176 | 30,698 | 28,235 |
| North Carolina | Greensboro/High Point  | 18,606 | 19,889 | 20,130 | 22,339 | 24,256 | 22,640 | 23,412 | 24,052 | 23,665 |
| Ohio           | Dayton                 | 21,015 | 23,076 | 23,374 | 23,724 | 26,293 | 24,752 | 25,919 | 26,402 | 24,575 |
| Ohio           | Toledo                 | 21,971 | 24,061 | 23,016 | 23,980 | 25,763 | 24,538 | 25,402 | 27,186 | 24,177 |
| Oregon         | Eugene                 | 17,862 | 18,749 | 18,753 | 19,871 | 21,625 | 20,220 | 21,035 | 21,070 | 21,018 |
| Pennsylvania   | Allentown              | 20,980 | 22,496 | 24,576 | 25,473 | 27,537 | 25,338 | 26,029 | 27,974 | 26,691 |
| Pennsylvania   | Harrisburg/York        | 21,047 | 22,655 | 23,903 | 25,153 | 27,002 | 24,645 | 25,878 | 28,054 | 26,427 |
| Rhode Island   | Providence             | 19,228 | 21,032 | 21,894 | 23,313 | 26,412 | 24,614 | 25,640 | 26,968 | 26,087 |
| South Carolina | Columbia               | 18,010 | 19,588 | 21,033 | 22,873 | 25,161 | 23,483 | 24,549 | 25,611 | 24,497 |
| South Carolina | Greenville/Spartanburg | 17,510 | 19,135 | 19,369 | 20,079 | 21,540 | 20,019 | 20,906 | 21,505 | 21,056 |
| Virginia       | Richmond               | 20,553 | 22,639 | 23,200 | 24,978 | 27,808 | 27,160 | 28,145 | 29,697 | 29,463 |
| Wisconsin      | Greenbay               | 20,496 | 21,997 | 23,074 | 26,064 | 27,253 | 25,113 | 25,982 | 27,056 | 25,051 |
| Wisconsin      | Madison                | 21,420 | 22,825 | 23,301 | 27,001 | 27,330 | 25,071 | 26,183 | 27,703 | 25,812 |


| MEDIAN INCOME  | CITY/MSA               | 1989   | 1990   | 1991   | 1992   | 1993   |
|----------------|------------------------|--------|--------|--------|--------|--------|
| Alabama        | Huntsville             | 27,940 | 30,483 | 35,828 | 36,543 | 38,846 |
| California     | Indio/Palm Springs     | 25,310 | 27,985 | 29,126 | 29,480 | 30,593 |
| Colorado       | Colorado Springs       | 24,067 | 25,678 | 30,835 | 31,395 | 33,108 |
| Florida        | Daytona Beach          | 21,927 | 23,439 | 25,187 | 25,680 | 27,871 |
| Florida        | Melbourne              | 25,181 | 26,592 | 31,471 | 32,146 | 34,933 |
| Florida        | Sarasota /Bradenton    | 24,246 | 25,788 | 29,715 | 28,433 | 31,223 |
| Indiana        | South Bend             | 24,727 | 26,366 | 30,211 | 31,465 | 33,724 |
| Kentucky       | Lexington              | 23,146 | 24,831 | 31,230 | 31,780 | 33,503 |
| Kentucky       | Louisville             | 24,505 | 25,896 | 30,367 | 31,670 | 33,691 |
| Louisiana      | Baton Rouge            | 24,549 | 28,110 | 31,743 | 33,006 | 35,241 |
| Maine          | Portland               | 28,561 | 29,780 | 34,729 | 36,552 | 37,572 |
| Michigan       | Lan'sing               | 28,166 | 29,475 | 34,223 | 35,986 | 38,225 |
| Michigan       | Saginaw/Bay City       | 26,687 | 27,682 | 30,244 | 31,495 | 33,111 |
| New York       | Rochester              | 29,974 | 32,561 | 35,735 | 36,619 | 38,489 |
| North Carolina | Greensboro/High Point  | 25,483 | 26,410 | 29,843 | 31,062 | 32,873 |
| Ohio           | Dayton                 | 26,197 | 27,773 | 32,689 | 33,662 | 35,758 |
| Ohio           | Toledo                 | 25,805 | 27,210 | 30,443 | 31,209 | 32,693 |
| Oregon         | Eugene                 | 21,649 | 22,972 | 27,136 | 28,076 | 29,309 |
| Pennsylvania   | Allentown              | 28,286 | 30,117 | 35,122 | 35,969 | 37,674 |
| Pennsylvania   | Harrisburg/York        | 28,053 | 30,491 | 35,074 | 36,925 | 38,670 |
| Rhode Island   | Providence             | 27,798 | 28,441 | 31,744 | 33,353 | 33,829 |
| South Carolina | Columbia               | 25,610 | 28,565 | 31,696 | 32,729 | 34,480 |
| South Carolina | Greenville/Spartanburg | 22,112 | 24,687 | 29,662 | 29,881 | 31,508 |
| Virginia       | Richmond               | 31,876 | 32,135 | 34,244 | 35,164 | 37,668 |
| Wisconsin      | Greenbay               | 25,919 | 28,491 | 24,218 | 25,599 | 27,803 |
| Wisconsin      | Madison                | 28,138 | 30,218 | 36,172 | 37,799 | 40,648 |


# **APPENDIX D**


# CHARTS COMPARING ENPLANEMENTS, MEDIAN AGE, AND MEDIAN DISPOSABLE INCOME FOR COMPETING MSAs


1980 to 1993

