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ABSTRACT 

Author: Martin Horvath 

Title: Extension to Multiple Species of a Two-Equation Turbulence Model 

for High Speed Flows 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2010 

The Wilcox (2006) k-co turbulence model has been extended to multiple species 

and implemented in a CFD code for high speed flows using the Steger-Warming flux-

vector splitting scheme. The model was chosen because compressibility corrections are 

not required, nor are viscous damping factors or wall functions to produce the law of the 

wall, and it has previously been validated for approximately one hundred test cases 

ranging from incompressible to hypersonic flow regimes. Initial validation cases using 

first-order accuracy have been performed, including a Mach 2.5 flow past a backward-

facing step and a Mach 2.85 flow into a 24° compression corner. For the backward-

facing step simulation, the surface pressure has a maximum error of 63% in the 

separation region, less than 5% error after the flow reattaches, and an RMS error of 

17.2%, all of which are less than those of Wind-US and Cobalt. For the compression 

corner case, the surface pressure has a maximum error of 27% in the separation region, 

roughly 5% error downstream of separation, and an RMS error of 7.76%. 
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Chapter 1 

Introduction 

1.1 Overview 

The objective of this thesis project is to build the capability to do intensive 

Computational Fluid Dynamics (CFD) applications of hypersonic flows with non-

equilibrium reaction modeling, and incorporating an appropriate means for 

modeling turbulence. One application of interest is a scramjet engine which has a 

complicated flow field including areas of compression, expansion, separation, 

recirculation, wall-bounded shear flows, and free jets. The operation of a 

scramjet engine is shown in Figure 1. 

Inlet body Fuel injection Nozzle 

Supersonic Combustion Supersonic 
Compression Exhaust 

Figure 1: Scramjet Engine Operation 

As can be seen from the geometry of the engine, a series of three-dimensional 

shock waves (oblique, reflected, and refracted) and expansion waves will be 



created by the flow as it passes through the engine. Scramjet flows are 

characterized by turbulent shear layers, jets, wakes, and separated regions as a 

result of struts, injectors, steps, and structural seams, in addition to the high 

Reynolds number of the flow. Turbulent flow structures can effectively block 

parts of the flow, creating additional shock waves. Turbulent boundary layers 

change the displacement thickness, effectively altering the flow path geometry. 

Turbulence causes a loss of total pressure, increases heat transfer, and enhances 

mixing, hence combustion. Sufficiently accurate scramjet simulations cannot be 

achieved assuming laminar flow. 

Background 

There are a number of ways of dealing with turbulent flows, most of 

which involve modeling. The turbulence models that exist today vary in 

complexity and accuracy. The following is a survey of the different types of 

models including algebraic, one-equation, two-equation, Large Eddy Simulation 

(LES), and Detached Eddy Simulation (DES). Before looking at these models it 

will be advantageous to discuss Direct Numerical Simulation (DNS) which is the 

only method that does not require modeling turbulence. 

DNS has the advantage of being the most accurate method because it 

solves the Navier-Stokes (N-S) equations directly using instantaneous flow-field 

information, with no modeling whatsoever. The disadvantage is that the 

computational limitation of present technology prevents solving the N-S 



: > 

equations directly for non-trivial applications with turbulent flows. The limitation 

is the memory and CPU power required for the grid and time resolution needed to 

capture the turbulent eddies. For combustion applications, the problem is 

compounded by the addition of numerous species continuity equations. For more 

information on DNS consult the article by Moin and Mahesh [1]. 

Algebraic models, also known as zero-equation models, are the simplest 

type of turbulence model and are the easiest to implement. These models are 

incomplete in that the mixing length, which is used to determine the eddy 

viscosity, is dependent on the type of flow. Two popular models of this type are 

the Cebeci-Smith [2] and Baldwin-Lomax [3] models. The drawback of algebraic 

models is that they need to be tuned for specific flows using a database, and using 

the model for flows that vary from the database can produce unreliable results. 

One-Equation models add a conservation equation for either the 

turbulence kinetic energy or the eddy viscosity. Early models that use the 

turbulence kinetic energy equation are incomplete, but later models that use an 

equation for the eddy viscosity are complete. The Baldwin-Barth [4] and Spalart-

Allmaras [5] models both use an eddy viscosity equation and are thus complete. 

Although these complete models are an improvement over algebraic models 

because they do not require tuning for specific types of flows, they still have 

problems dealing with flows over a backward-facing step and shock-separated 

flows. 
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Two-Equation models provide an equation for the turbulence kinetic 

energy as well as its dissipation rate. Models of this type are complete and 

therefore do not require prior knowledge of the type of flow. Two widely used 

versions include the k-co and k-e models which have been developed by various 

researchers. The Launder-Sharma [6] model, also known as the Standard k-e 

model, dates back to 1974. Perhaps the newest version of the k-co model is that of 

Wilcox [7] which was revised in 2006. The k-e model has shortcomings for wall-

bounded flows in that it has problems dealing with adverse pressure gradients, 

and therefore separated flows. Also, it does not reproduce the law of the wall 

without using corrections. A third model is the Shear-Stress Transport (SST) 

model by Menter [8], which uses the k-co model near walls and the k-e model 

away from walls. 

LES is a newer method for dealing with turbulence where only the small 

eddies are modeled, and the large eddies are computed directly. These smaller 

eddies are considered to be subgrid-scale (SGS), and the problem lies in 

developing an accurate SGS model. Although LES is less computationally 

expensive than DNS, it is still not useful for large-scale or complex turbulent 

flows until computer power increases. For more information on LES, consult the 

text by Sagaut and Germano [9]. 

DES is a blend of LES and the Reynolds-averaged Navier-Stokes (RANS) 

equations. LES is used for the largest eddies, and RANS with a turbulence model 

is used for boundary layers and thin shear layers. This method was introduced by 



Spalart et al. [10]. The computation time for DES is much less than that for LES, 

and thus is the logical next step in the transition from RANS to LES. 

Approach 

A two-equation turbulence model will be added to an existing finite 

volume code for multi-species compressible flows, called HYP [11-13]. Steger-

Warming flux-vector splitting [14] will be the upwind scheme used to capture 

shocks because it is a favorable method for hypersonic flows [15]. 

The Wilcox (2006) k-co model [7] will be implemented for this project. 

This version of the k-co model has had positive results for approximately 100 test 

cases, including but not limited to: attached boundary layers, free shear flows, 

backward-facing steps, and shock-separated flows. Other considerations that 

make the k-co model more appealing than other turbulence models, such as the k-e 

model, include not having to use viscous damping factors or wall functions to 

reproduce the law of the wall. Also, the k-e model is not accurate for flows with 

adverse pressure gradients [16]. 
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Chapter 2 

Turbulence Modeling 

This chapter presents some well-known results for the governing 

equations for turbulent flows. In some places the notation reflects the particular 

turbulence model used, which is described in the following chapter. For more 

detailed discussions and derivations, one may consult any of a number of 

excellent texts [17-19]. 

2.1 Reynolds Averaging 

Turbulence is made up of swirling motions called eddies, the larger of 

which contain the most energy. They eventually decay into smaller eddies and 

finally dissipate into heat. Turbulent eddies are typically modeled as a fluctuating 

velocity. The instantaneous velocity (ut) can then be expressed as the sum of the 

mean velocity (iZt) and the fluctuating component (u[). 

ut = ux + u[ (2.1) 

For laminar flows, there are no fluctuations in the velocity. For steady flows, the 

mean velocity is constant for both laminar and turbulent flows. 



Reynolds averaging, which is time averaging, is done as follows for the 

velocity or any flow variable. 

1 fT 

ut = lim - ux dt (2.2) 

The instantaneous values in the N-S equations are then replaced with the sum of 

Reynolds-averaged (mean) and fluctuating component. The N-S equations are 

then time-averaged resulting in averaged variables replacing their instantaneous 

counterparts, as well as extra terms involving the products of the fluctuating 

velocity components. These extra terms form the Reynolds-stress tensor defined 

below, which is the turbulent analog to the laminar shear-stress tensor. 

fTiJ = -pu[u} (2.3) 

For an incompressible flow, the conservation of momentum equation, in 

tensor notation, is then given by the following. 

duz _ dux dP 
dt J dXj dxx ' dXj 

du, dP d / \ 

The altered N-S equations are referred to as the Reynolds-averaged Navier-Stokes 

equations (RANS). 
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Favre Averaging 

For compressible flows, the method of Reynolds averaging produces terms 

that do not parallel those found in the laminar equations. To compensate for this, 

Favre-averaging, which is mass-averaging, is used as shown below. 

1 1 fT 

ux = - l i m - puxdt (2.5) 
P r ^ ° ° T Jo 

When using Favre-averaging, the notation for the mean and fluctuating 

components of the instantaneous flow-field variables is usually changed as 

follows: 

ux = ux + u" (2.6) 

A procedure similar to the Reynolds-averaging process is then followed, 

including variable substitution and time-averaging the N-S equations. The 

resulting form of the continuity equation is no different from the laminar case. 

dp d 

¥ + ^ w = ° (2j) 

The conservation of momentum equation differs from the laminar version with 

the addition of the Reynolds-stresses. 

d , d ,_ , dP d , x 
- (pSJ + - ( ^ f i j = - - + — (fLjl + fTjl) (2.8) 

The modeled form of the conservation of energy equation introduces several new 

terms which need to be quantified. These terms include: turbulence kinetic 

energy (k) which is part of the total specific energy (£), turbulent heat-flux 



vector (qT), molecular diffusion and turbulent transport of turbulence kinetic 

energy which includes a closure coefficient (cr*) and the specific dissipation rate 

(a>), and Reynolds-stress work. 

-(pE)+ — [uJ(pE + P)] 
dt dx, 

a / \ a \( pk\ OK (2.9) 

The following equations describe the origins of the new terms. The turbulence 

kinetic energy, given from the correlation, 

k = -u'l'u'l' (2.10) 

is identical in form to the specific kinetic energy with the exception that mean 

velocities are replaced with fluctuating velocities. The total specific energy, 

which now includes the turbulence kinetic energy, is given by the following 

equation. 

E = e + -uxux + k (2.11) 

The turbulent heat-flux vector is defined from a correlation of density, as well as 

velocity and enthalpy fluctuations. 

qTj = puj'h" (2.12) 
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The molecular diffusion and turbulent transport of turbulence kinetic energy arise 

from the following correlations respectively. 

/ pk\ dk 1 

r + °*1Z) dx~- = TL»U" - PU"\U"U" ^2-1 3) 

The closure coefficient and the specific dissipation rate will be discussed further 

in Chapter 3. For completeness sake, the average pressure shown in the 

momentum and energy equations is calculated using the Reynolds-averaged 

density, the Favre-averaged temperature, and the gas constant. 

P = pRf (2.14) 

It is important to note that certain quantities have been defined in terms of 

fluctuating velocity components which are unknown. Determining correlations 

for these fluctuating components constitutes the "closure problem," which is 

solved largely by empirical methods. The particular approach is unique to the 

turbulence model employed. 

In the next chapter we introduce a two-equation turbulence model which 

augments the N-S equations with conservation equations for turbulence kinetic 

energy and turbulence dissipation rate. 
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Chapter 3 

Wilcox k-co Turbulence Model 

This chapter summarizes Wilcox7s presentation [7] of his 2006 version of 

the k-co model implemented here. 

3.1 Turbulence Model Equations 

The turbulence kinetic energy equation is derived by multiplying the 

instantaneous momentum equation by u" and then time averaging. The following 

equation results after a considerable amount of algebra and making use of the 

continuity equation. 

lm+±(pujk) 
duL du" 

TTlJ dXj TL>1 dXj (3.1) 

d ( 1 N _ d P ~~du[F 

Analyzing this equation term by term, the left-hand side has the usual unsteady 

and convective terms. The first term on the right-hand side represents the rate of 

production of turbulence kinetic energy per unit volume, where the term 

^production" means a transfer of energy from the mean flow to turbulence. The 
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second term is dissipation: the rate of change of turbulence kinetic energy to heat, 

which is modeled by the following. 

du[' 
% ~ = P-Pk<0 (3.2) 

The closure coefficient (/?*) and the specific dissipation rate will be discussed 

later in this chapter. The third and fourth terms are the exact same correlations 

(eqn. 2.13) that appear in the conservation of energy equation, and therefore 

represent the molecular diffusion and turbulent transport of turbulence kinetic 

energy. The last three terms are pressure diffusion, pressure work, and pressure 

dilatation respectively. Pressure diffusion is modeled as part of the turbulent 

transport mentioned earlier due to the lack of experimental evidence to prove 

otherwise. Several models have been proposed for pressure work, but they have 

limited applicability [7]. Models for pressure dilatation are important for flows 

with a large turbulence production-to-dissipation ratio, such as cross-flows [20]. 

Thus, certain injector configurations may not be modeled well by this 

formulation. This is not the case for thin shear layers, such as boundary layers 

and mixing layers, which are the types of flows for which this model has been 

validated. The turbulence kinetic energy equation for this particular model is then 

given by the following, noting that the pressure work and pressure dilatation 

terms have been neglected. 

I w+h, to*>=f*«% - p'pka+ik, ^pk\ dk 

co ) dXj 
(3.3) 
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Unlike the turbulence kinetic energy equation, the specific dissipation rate 

equation cannot be formally derived. Instead, it is proposed to have a similar 

form that includes unsteadiness, convection, production, dissipation, and 

diffusion. This particular model also employs cross diffusion which will be 

discussed later in this chapter. The specific dissipation rate equation is then given 

by the following, where the last term is the cross diffusion. 

d r- ^ d r-~ ^ 

dt dXj 
co dux _ d 

p dk dco 

co dXj dXj 

pk\ dco 
H + c—k— co 1 dXjj 

(3.4) 

As can be seen, many new closure coefficients have arisen in this equation. 

At this point, the supplementary equations and closure coefficients for the 

turbulence model are presented. The laminar shear-stress and Reynolds-stress 

tensors are given by the following, noting that the Boussinesq approximation is 

used to calculate the Reynolds-stress. 

2 _ _ 1duk 

% = 2/*Si;i fTij = 2{iTSXJ --pk8X]> SXJ = SXJ - 3 ^ * u (3 '5) 

The mean strain-rate tensor (using Favre-averaged velocities) and the Kronecker 

delta are defined as: 

i ; 2\dXj dxX/ *« = {a Wj (36) 
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The eddy viscosity, which is part of the Boussinesq approximation, uses the 

following equations to determine its value. 

pk 
iUr = -zr, co = max i 

co 
co, Cl lim 

2S S 

r j' Cnm = l (3-7) 

Note that the eddy viscosity is limited by the value in the denominator. This is 

the stress-limiter that is discussed later in this chapter. The laminar and turbulent 

heat-flux vectors can be calculated from the following expressions. 

df _ \ircv dt 
(3.8) 

The closure coefficients required to complete the model are the following 

constants and expressions. 

a 
13 

" 2 5 ' 

tfd = 

P* = 

f 

o, 

°do> 

9 
a = 

100' 

dk dco 

dXj dXj 

dk dco 

dXj dXj 

1 3 8 

< 0 

> 0 
<>do = 

(3.9) 

(3.10) 

1 + 8 5 j 6 

P-Mf>' ^ " 1 + 100^' Xoj 
^ij^jk^ki 

(P'<o¥ 
p0 = 0.0708 (3.11) 

lJ 2\dXj dXl/ 
5

^ C TTL «-» 

ki = ^ki ~nT7~dki 2 dx. m 

(3.12) 
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The equation for Q.Xj is the mean-rotation tensor, and Skx is the mean strain-rate 

tensor as previously defined in Equation 3.6. 

The RANS equations presented in Chapter 2, along with the turbulence 

model equations given here, are the complete set of equations required to deal 

with turbulent flows. 

3.2 Improvements to Wilcox k-co Model 

The major improvements to the Wilcox (2006) k-co model compared to the 

1998 version include the addition of two components: a stress-limiter to the eddy 

viscosity, and cross diffusion to the specific dissipation rate equation. The stress-

limiter reduces the eddy viscosity, which in turn limits the Reynolds-stresses 

when the dissipation of turbulence-energy is less than its production. This 

improves the accuracy for separated flows from the incompressible through to the 

hypersonic regions. The cross-diffusion term helps to diminish the sensitivity of 

the solution to the chosen freestream value for the specific dissipation rate. This 

in turn improves the accuracy for both free shear and wall-bounded flows. As a 

result of these improvements, compressibility corrections are no longer necessary 

resulting in the same closure coefficients being used for both the incompressible 

and compressible-flow versions of the model. 
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Chapter 4 

Implementation of k-co Model in CFD 

4.1 CFD Code Description 

The CFD code to which the turbulence model will be added is called HYP. 

The primary developer is Dr. Eric Perrell, and additional functionality has been 

added by Masters students over the years. HYP is a low-order, compressible-

flow, CFD code written in Fortran 90. Some of the current capabilities include 

non-equilibrium chemically reacting flows and parallel processing. The 

turbulence model will be integrated with the code in a manner that makes use of 

both of these capabilities. At this time the code is not fully implicit, and for that 

reason the turbulence model will be coded explicitly. It is important to note that 

the inviscid fluxes will be capable of implicit calculation. For more information 

about HYP, please see the user's manual created by Francois Schmitt and Dr. Eric 

Perrell [21]. 

The conservation form of the RANS and turbulence model equations can 

be written in vector form for physical space (x, y, z) as follows: 

^ + | _ ( F l _ F v ) + l ; ( G l _ G v ) + | ( H l - H v ) = S (4.1) 
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These equations can be transformed to computational space (£,77, Q resulting in: 

dQ d d d 
_ + - ( F ; - F W + - ( G | - G W + - ( H | - H W = S 

For this particular transformation method, the conservative state vector (Q) 

remains the same for both the physical and computational domains. 

(4.2) 

"Pi 

Pns 
pu 

Q = pv (4.3) 
pw 
pE 
pk 
pco 

Note that there is a continuity equation for each species to facilitate dealing with 

chemically reacting flows, and the mixture density (p) is the sum of the species 

densities. Also, the internal energy must be calculated using standardized 

enthalpies for each species due to the chemical reactions. Making use of the 

definition of enthalpy and the ideal gas equation of state yields the following 

expression for the internal energy per unit volume. 

ns 
pe = P 

ZZLPsRs La 
5 = 1 

Psty-P (4.4) 

In this expression, the reference temperature for the enthalpy of formation Qif) is 

absolute zero. 
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The difference between the physical and computational flux vectors, as 

well as the source terms, will be discussed in the sections that follow. 

4.2 Inviscid Fluxes 

The inviscid flux vectors in physical space are given by the following: 

pxu 

PnsU 

pu2 + P + 2-pk 
puv 
puw 

u(pE + P+ \pk) 

puk 
puo) 

G,= 

p^v 

PnsV 

pvu 
pv2 + P + -pk 

pvw 

v(pE + P + \pk) 

pvk 
pva) 

Hi = 

pxw 

Pus™ 
pwu 
pwv 

pw2 + P + 2-pk 

w(pE + P+ \pk) 

pwk 
pwo 

(4.5) 

The pressure like term (fpfc) that appears in the momentum and energy equations 

is a component of the diagonal elements in the Reynolds-stress tensor, and it 

belongs with the inviscid fluxes because it is a first derivative in the system of 

equations. The flux vectors in computational space are found using the following 

transformations, 

F' = &F + <fyG + <fzH G' = rjxF + r?yG + r,zH H' = &F + (yG + (ZH (4.6) 

where <fy = — , for example. These derivative terms in the transformations, 

which are determined by grid geometry, are known as metrics. In this particular 

transformation, the metrics are normalized as follows: 

,2 . „2 , „2 _ 2 . 72 , / 2 _ ti+tf + ti = 1 rii+ri$+rii = l # + # +£ = 1 (4.7) 
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The metrics are also used to define the covariant velocities below. 

u' = $xii + $yv + <fzw v' = r]xii + riyV + rizw w' = ^Xu + 7
yv + 7

zw (4.8) 

Using the transformations and the definitions of the covariant velocities, the 

inviscid flux vector in the <f direction is given by: 

pxu 

Pns u' 

pun' + ^ gpfc + P) 

F|/ = pvu' + <fy Qpfc + P ) ( 4 9 ) 

pwu' + ^z gpfe + P ) 

(pE + p + |pfc)fi' 

p/cu' 
pan*' 

The inviscid flux vectors in the 77 and ( directions are similar in form with the 

exception of the respective covariant velocities and metrics. 

In this implementation, the inviscid fluxes are upwinded using Steger-

Warming flux-vector splitting. Up winding ensures that only information from the 

domain of dependence is used for the discretization of the fluxes. This is an 

important point as it allows the discretization to adapt to both subsonic and 

supersonic flows. 

To start the process, the Euler equations in computational space can be 

rewritten as 

dQ dQ dQ 3Q 
- ^ + A - ^ + B - ^ + C - ^ = 0 
dt d<f drj d( 

(4.10) 
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where the leading terms are the conservative flux Jacobians given by: 

. d¥' dG' dW / / 1 1 1 X 
A = 3Q B = a q C = W (4 I1 ) 

Steger and Warming state that the flux vectors are homogeneous functions of 

degree one in Q if the equation of state is that of a perfect gas. This allows the 

flux vectors to be expressed as: 

F' = AQ G' = BQ H' = CQ (4.12) 

A flux Jacobian can be decomposed into eigenvectors and eigenvalues as follows: 

A = RAL (4.13) 

Here, the matrix of left eigenvectors (L) is the inverse of the matrix of right 

eigenvectors (R), and the eigenvalues (A) are a diagonal matrix. The positive 

and negative fluxes can then be separated by using only the positive or negative 

eigenvalues in their respective calculations. 

F' = F'+ + F'" = RA+LQ + RALQ (4.14) 

The method of determining the flux Jacobians, eigenvectors, and 

eigenvalues detailed by Hirsch [22] is used as a guideline for the present 

derivation. Finding the eigenvalues of the system is less complicated if the Euler 

equations are recast in non-conservative form using primitive variables 

dV ^dV ^dV „dV 
— + A— + B — + C— = 0 (4.15) 
dt d<f dr\ d( 
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where the leading terms are the non-conservative flux Jacobians given by: 

~ dVdF' _ dVdG' 
A = — — B = — — C = dQdV dQdV 

dVdH' 

aQav 
(4.16) 

The non-conservative state vector (V), which is required in the calculation of the 

Jacobian, has the following form: 

Pi 

Pns 
U 

V = | v I (4.17) 
w 
p 
k 
CO 

The first calculation for this derivation is a transformation matrix that is 

required to switch between conservative and non-conservative forms. 

a < j _ 

av 
fc/i + &i 

I 

0 

V 

W 

_YR1T 
y - 1 

O) 

+ ek + k hf 
' ns 

+ ̂ n s 

0 

1 
u 
V 

w 
_ YRnsT 

y- i 
k 
O) 

+ ê  + fc 

0 

0 
P 
0 
0 

pu 

0 
0 

0 

0 
0 

p 
0 

0 
0 

0 

0 
0 
0 

p 
pw 

0 
0 

0 

0 
0 
0 
0 
1 

0 
0 

0 

0 
0 
0 
0 

p 

p 
0 

0 

0 
0 
0 
0 

0 

0 
p 

(4.18) 

To simplify the above result, the term ek is used to represent the specific kinetic 

energy. The inverse of this transformation is also required, and is provided in the 

appendix due to its size. The non-conservative flux Jacobian (A) is then found 

,0F' using Equation 4.16 (— is given in the appendix). 
av 
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^ 
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u' 
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0 

0 

0 
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(4.19) 

The remaining two flux Jacobians are similar in form with the exception of the 

respective covariant velocities and metrics. The speed of sound term in the 

Jacobian is defined as, 

ak = Ja2+-kY (4.20) 

where "a" is the speed of sound in the absence of turbulence (a = ^/y/?T). This 

term also appears in the eigenvalues of the Jacobian as shown below. 

A = 

•u' 0 0 
0 \ 0 
0 0 u' 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

.0 0 0 

ionofthe|pA: 

0 
0 
0 
u' 
0 
0 
0 
0 
0 

0 
0 
0 
0 
u' 
0 
0 
0 
0 

0 
0 
0 
0 
0 
u' 
0 
0 
0 

0 
0 
0 
0 
0 
0 
u' 
0 
0 

0 
0 
0 
0 
0 
0 
0 

u' + ak 

0 

0 
0 
0 
0 
0 
0 
0 
0 

u' — ak 

term in the inviscid fluxes, the speed 

(4.21) 

augmented by the turbulence kinetic energy as previously found by Siikonen [23]. 
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The non-conservative right and left eigenvectors for this system, R and L, 

are presented in the appendix. The conservative forms of the eigenvectors are 

obtained by using the following transformations. 

dQ ^ _ dV 
R = ^ R L = LaQ ( 4 2 2 ) 

Inspection of the left eigenvectors (in appendix) reveals a potential problem: the 

presence of metrics in the denominator can be destabilizing if sufficiently small. 

It can be shown that three variations of these eigenvectors exist, each with a 

different metric in the denominator. Therefore, all that is required to alleviate this 

problem is to compare the magnitudes of the metrics and choose the appropriate 

eigensystem such that the largest is in the denominator. 

The explicit upwind scheme used for the inviscid fluxes is first-order 

accurate which may be insufficient, as will be seen in the upcoming chapter 

dealing with validation. 



4.3 Viscous Fluxes 

The viscous flux vectors in physical space are given by the following: 

Fv = 

Gv = 

Hv = 

0 

2Sxy(ii + nT) 
2Sxz(n + nT) 

I PLTCV\ df ( pk\ dk , _ 

V + ~P~^) ~d~X + V* + °* 77J fa + 2(M + ^ O * 5 * * + *Sxy + WSXZ) 
I pk\dk 

/ pk\dco 

0 

0 
2Syx(ji + fxT) 

2Syy(jl + fr) 

2Syz{\i + Mr) 

/ nTcp\df ( pk\dk . ~ \ 
\K + ~P~^) ty + Vl + a'~co~)lFy: + 2^ + ^ H ^ y * + vSyy + wSyz) 

I pk\dk 

( pk\dco 

0 

0 

2Szx(fi + nT) 
2Szy(n + nT) 
2Szz(\x + nT) 

( uTcn\df ( pk\dk , _ . 
[K + ^ J — + (ft + o* ^ j ^ + 2(jx + lxT){uSzx + vSzy + wSzz) 

(4 

(4 

pk\ dk 

pk\dco 

(4 
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The viscous flux vectors in computational space are found using the previously 

defined transformations. The viscous flux vector in the <f direction is then given 

by: 

Fv 

0 
20* + HT)(fxSxx + SySyx + SzSzx) 

2(H + Mr)(£Ay + SySyy + tezy) 

2 0 + HrXfxSxz + SySyZ + ZZSZZ) 

/ nTcp\ df df / pk\ df dk r s 3f _ 

/ pk\ ( dk dk dk\ 

/ pk\ ( dco dco dco\ 

(4.26) 

The viscous flux vectors in the rj and £ directions are similar in form with the 

exception of the respective metrics. For the discretization of the derivative terms, 

a second-order accurate scheme is used. 

4.4 Source Terms 

The source terms for the turbulence model are given by the following: 

S = 
0 

co dut , p dk dco 

k lJ dXj co dXj dXj 

(4.27) 
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All that is required for calculation in computational space is to apply the chain 

rule to the derivative terms. Similar to the viscous fluxes, the discretization is 

second-order accurate. 

4.5 Boundary Conditions 

Two boundary conditions of interest for the turbulence kinetic energy and 

specific dissipation rate are solid walls and the freestream. The treatment of the 

freestream will be addressed first. 

Inspection of the turbulence model equations reveals that the turbulence 

kinetic energy and specific dissipation rate must be non-zero everywhere in the 

flow because they both appear in the denominator. The freestream values must 

then be determined. 

To estimate the freestream turbulence kinetic energy it is helpful to use a 

quantity called the turbulence intensity which relates the turbulence kinetic energy 

to the freestream velocity. The ranges of turbulence intensity for different flow 

conditions are available from reputable online sources, commercial flow-solver 

user guides, and scholarly papers, allowing the freestream turbulence kinetic 

energy to then be estimated. 

Wilcox [7] shows that the solution to free shear flows is sensitive to the 

value of the specific dissipation rate in the freestream, therefore it must be chosen 



27 

carefully. Although the cross diffusion term in the specific dissipation rate 

equation helps to reduce the sensitivity, it is wise to choose a freestream value 

that is less than 1% of the maximum to virtually eliminate the problem. This may 

require altering the freestream value as the simulation progresses. 

The solid-wall boundary condition for the turbulence kinetic energy is 

simply zero due to the no-slip/no-penetration conditions. The specific dissipation 

rate is numerically problematic in that it is singular for a perfectly-smooth wall. 

As detailed by Wilcox [7], a "slightly-rough-surface boundary condition" can be 

used as an accurate alternative. 

40000// 
co = — ^ (4.28) 

For a wwhydraulically-smooth surface", the average height of sand-grain roughness 

(fcs) must be sufficiently small to satisfy the following: 

^ ^ < 5 (4.29) 

where uT is the friction velocity. 

This concludes the discussion of the implementation of the turbulence 

model. Other texts consulted include those by Anderson [24] and Tannehill [25]. 
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Chapter 5 

Verification and Validation 

To build confidence in the solutions obtained from CFD simulations, the 

code must first be verified to produce known analytical results and validated 

against experimental data. The following test cases constitute the start of this 

process. 

5.1 Inviscid Verification Case 

Using only the inviscid fluxes, a verification case can be run to check two 

items: the analytical results for an inviscid, compressible flow are obtained, and 

both the turbulence kinetic energy and specific dissipation rate are conserved in 

space. For this case, a supersonic flow into a compression corner, comprised of a 

single species (N2X is used to create an oblique shock wave. Starting from the 

first grid point downstream of the shock, the percent error for the pressure, 

temperature, and velocity at the wall are plotted in Figure 2. 
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Figure 2: Percent Error - Inviscid Verification 

The resolution of the shock wave is smeared across three cells which is why the 

error is large in that region. Once resolved, the error is less than 1% of the 

analytical results. The smeared shock wave is shown by the pressure contours in 

Figure 3. 
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Figure 3: Pressure Contours - Inviscid Verification 

Running the simulation using single precision will produce values for k 

and co that are not precisely constant for the entire flow-field. Switching to 

double precision alleviates this problem, signifying that it is only round-off error. 

This is the only quantified verification that has been performed, and an 

obvious test case for the future is to verify that the law of the wall is obeyed for a 

turbulent boundary layer. 

5.2 Mach 2.5 Flow past a Backward-Facing Step 

The experimental data of Smith [26], for a step-height of 0.443 inches, is 

used here for validation. The Wind-US code also uses this data for validation, 
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and the case can be found in the NPARC Alliance Verification and Validation 

Archive. The grid from that case, shown in Figure 4, is used here, and it consists 

of two blocks; one upstream of the step (red), and the other downstream (green). 

Figure 4: Computational Grid - Backward-Facing Step 

To ensure adequate grid resolution in the boundary layer, the y+ value of the first 

grid point from the walls is approximately one. 

To simulate air, a two-species mixture composed of 79% N2 and 21% O2 

is used. The freestream conditions for the simulation are given in Table 1, where 

the values in brackets come directly from the experiment. 

Freestream Conditions 

Too 

Poo 

Uoo 

Koo 

CO00 

= 153K 
= 13316Pa 

= 620 m/s 

= lE-8*iioo2: 

= 3900 s"1 

(TV 
(Po = 

(Moo 

= 620 °R) 
: 33 psi) 

= 2.5) 
= 0.00384 m2/s2 

Table 1: Freestream Conditions - Backward-Facing Step 

The turbulence intensity (1E-8) and freestream specific dissipation rate are typical 

values used by Wilcox [27] in the companion software included with his book. A 



surface-roughness height of 3.048 jam is used for the wall boundary-condition of 

the specific dissipation rate, also from Wilcox. 

The results for the surface pressure are shown in Figure 5 where the step 

location corresponds to x = 0. They are compared to those of Wind-US using the 

HLLC scheme and the Menter SST turbulence model with compressibility 

corrections, and Cobalt with the Wilcox (1998) k-co model. 

O Smith 
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WIND-First 

WIND-Second 

COB ALT-First 

COBALT-
Second 

0 1 2 3 4 5 6 7 

x(in) 

Figure 5: Surface Pressure - Backward-Facing Step 

As expected, the second-order results are much better, with the Wind-US solver 

being the closest. A percent-error comparison of the first-order solutions is 

shown in Figure 6. 
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Figure 6: Percent Error - Backward-Facing Step 

It can be seen that HYP, with the Wilcox (2006) k-co model, performs better from 

the step up to x = 1.5, Wind-US has an advantage for a small region centered at x 

= 2, and all perform equally well after that. It should be noted that the error is 

significantly greater than 5% for all of the solvers for the first 1.5 inches behind 

the step. The RMS error for HYP, Wind-US, and Cobalt is 17.2, 23.3, and 19.0 

percent respectively. 

The pressure contours in Figure 7 show expansion waves originating at the 

corner of the step, and an oblique shock where the flow reattaches downstream. 
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Figure 7: Pressure Contours - Backward-Facing Step 

From this validation case it can be seen that although the first-order results 

are comparable to those of other flow solvers, a second-order upwind scheme 

should improve the accuracy of the solution considerably. 

5.3 Mach 2.85 Flow into a 24° Compression Corner 

For a second validation case, the experimental data of Settles, Vas, and 

Bogdonoff [28] is used. Wilcox [7] also uses this data for validation, and the grid 

from that case is used here. The grid is shown in Figure 8, noting that only every 
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fourth grid line is visible for clarity. 

Figure 8: Computational Grid - Compression Corner 

To ensure adequate grid resolution in the boundary layer, the y value of the first 

grid point from the walls is approximately one. 

To simulate air, a two-species mixture composed of 79% N2 and 21% O2 

is used. The freestream conditions for the simulation are given in Table 2, where 

the values in brackets come directly from the experiment. 
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Freestream Conditions 
Too 

Poo 

Uoo 

Koo 

COoo 

= 100K 
- 23545 Pa 

= 571 m/s 
= 1E-8 * u^2 

= 3870 s-1 

(T0 = 

(Po = 
(Moo 

= 0.00 

= 472 °R) 
lOOpsi) 

= 2.85) 
326 m2/s2 

Table 2: Freestream Conditions - Compression Corner 

The turbulence intensity (1E-8), freestream specific dissipation rate, and surface-

roughness height of 3.048 jxm used for the wall boundary-condition of the specific 

dissipation rate, all come from the validation case of Wilcox. There is also an 

incoming boundary layer profile with defined values for all of the flow variables, 

also from Wilcox. 

A similar experiment was conducted by Dolling and Murphy [29] at a 

Mach number of 2.90, and that data is included here as well for reference 

following the example of Wilcox. The results for the surface pressure are shown 

in Figure 9 where the compression corner location corresponds to x/h = 0, and h is 

the incoming boundary layer thickness. The results are compared to those of 

Wilcox who uses the MacCormack scheme with his 2006 version of the k-co 

model, and Fluent using the Roe flux-difference splitting scheme with the Wilcox 

(1998) k-co model. 
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Figure 9: Surface Pressure - Compression Corner 

The first-order solutions of HYP and Fluent predict flow separation further 

downstream than the actual separation point. Also note the Wilcox (1998) k-co 

model used by Fluent does not include the stress limiter or cross diffusion, but it 

is unlikely that this is the cause of the differences seen here. A percent-error 

comparison of the solutions is shown in Figure 10. 
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Figure 10: Percent Error - Compression Corner 

It can be seen that Wilcox is more accurate at predicting separation, but shortly 

thereafter Fluent, for the most part, has the least amount of error. The RMS error 

for Wilcox, HYP, and Fluent is 5.63, 7.76, and 6.34 percent respectively. 

In Figure 11, the pressure contours show where the flow separates 

upstream of the corner and then reattaches further up the ramp. 



39 

100000 
85000 
70000 
55000 
40000 
25000 

Figure 11: Pressure Contours - Compression Corner 

The grid for this case has 80,000 cells which is significantly more than the 

backward-facing step case. As a result, the computation time is considerably 

longer. The explicit scheme used in HYP takes 10 days, whereas the 

MacCormack fully-implicit scheme used by Wilcox takes only 1 hour. To 

improve the performance of HYP, a grid sequencing method was also added to 

the code. This decreases the number of cells in the original grid, and then adds 

cells as the solution progresses until the original grid is again obtained. Using this 

method, the solution time is decreased from 10 days to 1 day. 

As was seen in the previous validation case, the first-order results are not 

sufficiently accurate, and a second-order upwind scheme should be considered. 
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Also, it is now apparent that an implicit scheme will be beneficial, especially for 

practical applications where a large number of cells will be required. 
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Chapter 6 

Summary 

6.1 Overview of Results 

A two-equation turbulence model for hypersonic flows has been extended 

to multiple species and implemented using Steger-Warming flux-vector splitting. 

In the derivation of the eigenvalues it was found that the presence of turbulence 

affects the speed of sound. The inviscid verification case was successful with less 

than 1% error when compared to the analytical results. For this verification, only 

scalar transport of the turbulence kinetic energy and specific dissipation rate was 

calculated: source terms were neglected. Two turbulent cases were used for 

validation: supersonic flow past a backward-facing step and into a compression 

corner. For the backward-facing step simulation, the surface pressure has a 

maximum error of 63% in the separation region, less than 5% error after the flow 

reattaches, and an RMS error of 17.2%. Compared to the results of Wind-US and 

Cobalt, HYP has the least error, both RMS and maximum. For the compression 

corner case, the surface pressure has a maximum error of 27% in the separation 

region, roughly 5% error downstream of separation, and an RMS error of 7.76%. 

In this case, HYP has the largest RMS and maximum error compared to Fluent 

and Wilcox. 
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6.2 Future Recommendations 

The implementation of an implicit scheme should be the first task, so as to 

make all future simulations time-efficient. Secondly, the inviscid fluxes need to 

have second-order accuracy to improve the results. Also, due to the limited 

amount of verification performed, it would be beneficial to check that the law of 

the wall is observed in a turbulent boundary layer. After completing these initial 

tasks, the turbulence model can then be tested more rigorously: systematic 

validation for three-dimensional reacting flows, for which Wilcox has not 

validated this model. First, 3-D cases can be run to see if the closure coefficients 

require retuning, and then reactions can be added for final validation. 
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