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ABSTRACT

Author: Martin Horvath
Title: Extension to Multiple Species of a Two-Equation Turbulence Model
for High Speed Flows

Institution: ~ Embry-Riddle Aeronautical University

Degree: Master of Science in Aerospace Engineering
Year: 2010

The Wilcox (2006) k-w turbulence model has been extended to multiple species
and implemented in a CFD code for high speed flows using the Steger-Warming flux-
vector splitting scheme. The model was chosen because compressibility corrections are
not required, nor are viscous damping factors or wall functions to produce the law of the
wall, and it has previously been validated for approximately one hundred test cases
ranging from incompressible to hypersonic flow regimes. Initial validation cases using
first-order accuracy have been performed, including a Mach 2.5 flow past a backward-
facing step and a Mach 2.85 flow into a 24° compression corner. For the backward-
facing step simulation, the surface pressure has a maximum error of 63% in the
separation region, less than 5% error after the flow reattaches., and an RMS error of
17.2%. all of which are less than those of Wind-US and Cobalt. For the compression
corner case, the surface pressure has a maximum error of 27% in the separation region,

roughly 5% error downstream of separation, and an RMS error of 7.76%.
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ay Augmented speed of sound

A, B,C Conservative flux Jacobian

A B,C Non-conservative flux Jacobian

Cp Specific heat at constant pressure

Ciim Stress-limiter strength

é Favre-averaged specific internal energy
ex Specific kinetic energy

E Specific total energy

fs Vortex-stretching function

F;, G|, H; Inviscid flux vectors in x, y, z directions
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k Turbulence kinetic energy
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qL, qr Laminar, turbulent heat-flux vector
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Y Mean strain-rate tensor

t Time

T Favre-averaged temperature
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u,v,w Favre-averaged velocity components in x, y, z directions
', v, w’ Favre-averaged covariant velocity components in &, 7, { directions
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\' Non-conservative state vector
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Greek Symbols
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K Thermal conductivity

A Eigenvalues of flux Jacobian

At AT Positive, negative eigenvalues of flux Jacobian

U Molecular viscosity

Ur Eddy viscosity

&En¢ Curvilinear coordinates (computational space)

&nud, Metrics

o Mean density of mixture



Laminar, Reynolds stress tensors (using Favre-averaged velocities)
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Chapter 1

Introduction

1.1 Overview

The objective of this thesis project is to build the capability to do intensive
Computational Fluid Dynamics (CFD) applications of hypersonic flows with non-
equilibrium reaction modeling, and incorporating an appropriate means for
modeling turbulence. One application of interest is a scramjet engine which has a
complicated flow field including areas of compression, expansion, separation,
recirculation, wall-bounded shear flows, and free jets. The operation of a

scramjet engine is shown in Figure 1.

Inlet body Fuel injection Nozzle

Supersonic Combustion Supersonic
Compression Exhaust

Figure 1: Scramjet Engine Operation

As can be seen from the geometry of the engine, a series of three-dimensional

shock waves (oblique, reflected, and refracted) and expansion waves will be
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created by the flow as it passes through the engine. Scramjet flows are
characterized by turbulent shear layers, jets, wakes, and separated regions as a
result of struts, injectors, steps, and structural seams, in addition to the high
Reynolds number of the flow. Turbulent flow structures can effectively block
parts of the flow, creating additional shock waves. Turbulent boundary layers
change the displacement thickness, effectively altering the flow path geometry.
Turbulence causes a loss of total pressure, increases heat transfer, and enhances
mixing, hence combustion. Sufficiently accurate scramjet simulations cannot be

achieved assuming laminar flow.

Background

There are a number of ways of dealing with turbulent flows, most of
which involve modeling. The turbulence models that exist today vary in
complexity and accuracy. The following is a survey of the different types of
models including algebraic, one-equation, two-equation, Large Eddy Simulation
(LES), and Detached Eddy Simulation (DES). Before looking at these models it
will be advantageous to discuss Direct Numerical Simulation (DNS) which is the

only method that does not require modeling turbulence.

DNS has the advantage of being the most accurate method because it
solves the Navier-Stokes (N-S) equations directly using instantaneous flow-field
information, with no modeling whatsoever. The disadvantage is that the

computational limitation of present technology prevents solving the N-S
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equations directly for non-trivial applications with turbulent flows. The limitation
is the memory and CPU power required for the grid and time resolution needed to
capture the turbulent eddies. For combustion applications, the problem is

compounded by the addition of numerous species continuity equations. For more

information on DNS consult the article by Moin and Mahesh [1].

Algebraic models, also known as zero-equation models, are the simplest
type of turbulence model and are the easiest to implement. These models are
incomplete in that the mixing length, which is used to determine the eddy
viscosity, is dependent on the type of flow. Two popular models of this type are
the Cebeci-Smith [2] and Baldwin-Lomax [3] models. The drawback of algebraic
models is that they need to be tuned for specific flows using a database, and using

the model for flows that vary from the database can produce unreliable results.

One-Equation models add a conservation equation for either the
turbulence kinetic energy or the eddy viscosity. Early models that use the
turbulence kinetic energy equation are incomplete, but later models that use an
equation for the eddy viscosity are complete. The Baldwin-Barth [4] and Spalart-
Allmaras [5] models both use an eddy viscosity equation and are thus complete.
Although these complete models are an improvement over algebraic models
because they do not require tuning for specific types of flows, they still have
problems dealing with flows over a backward-facing step and shock-separated

flows.



Two-Equation models provide an equation for the turbulence kinetic
energy as well as its dissipation rate. Models of this type are complete and
therefore do not require prior knowledge of the type of flow. Two widely used
versions include the k- and k-&¢ models which have been developed by various
researchers. The Launder-Sharma [6] model, also known as the Standard k-¢
model, dates back to 1974. Perhaps the newest version of the k- model is that of
Wilcox [7] which was revised in 2006. The k-¢ model has shortcomings for wall-
bounded flows in that it has problems dealing with adverse pressure gradients,
and therefore separated flows. Also, it does not reproduce the law of the wall
without using corrections. A third model is the Shear-Stress Transport (SST)
model by Menter [8], which uses the k- model near walls and the k-¢ model

away from walls.

LES is a newer method for dealing with turbulence where only the small
eddies are modeled, and the large eddies are computed directly. These smaller
eddies are considered to be subgrid-scale (SGS), and the problem lies in
developing an accurate SGS model. Although LES is less computationally
expensive than DNS, it is still not useful for large-scale or complex turbulent
flows until computer power increases. For more information on LES, consult the

text by Sagaut and Germano [9].

DES is a blend of LES and the Reynolds-averaged Navier-Stokes (RANS)
equations. LES is used for the largest eddies, and RANS with a turbulence model

is used for boundary layers and thin shear layers. This method was introduced by



1.3

Spalart et al. [10]. The computation time for DES is much less than that for LES,

and thus is the logical next step in the transition from RANS to LES.

Approach

A two-equation turbulence model will be added to an existing finite
volume code for multi-species compressible flows, called HYP [11-13]. Steger-
Warming flux-vector splitting [14] will be the upwind scheme used to capture

shocks because it is a favorable method for hypersonic flows [15].

The Wilcox (2006) k-w model [7] will be implemented for this project.
This version of the k-@ model has had positive results for approximately 100 test
cases, including but not limited to: attached boundary layers, free shear flows,
backward-facing steps, and shock-separated flows. Other considerations that
make the k-« model more appealing than other turbulence models, such as the k-¢
model, include not having to use viscous damping factors or wall functions to
reproduce the law of the wall. Also, the k-¢ model is not accurate for flows with

adverse pressure gradients [16].



Chapter 2

Turbulence Modeling

2.1

This chapter presents some well-known results for the governing
equations for turbulent flows. In some places the notation reflects the particular
turbulence model used, which is described in the following chapter. For more
detailed discussions and derivations, one may consult any of a number of

excellent texts [17-19].

Reynolds Averaging

Turbulence is made up of swirling motions called eddies, the larger of
which contain the most energy. They eventually decay into smaller eddies and
finally dissipate into heat. Turbulent eddies are typically modeled as a fluctuating
velocity. The instantaneous velocity (u,) can then be expressed as the sum of the

mean velocity (#,) and the fluctuating component (u,).

u =1, +u (2.1)

For laminar flows, there are no fluctuations in the velocity. For steady flows, the

mean velocity is constant for both laminar and turbulent flows.



Reynolds averaging, which is time averaging, is done as follows for the

velocity or any flow variable.

T

1
o, = lim = . u, dt (2.2)

The instantaneous values in the N-S equations are then replaced with the sum of
Reynolds-averaged (mean) and fluctuating component. The N-S equations are
then time-averaged resulting in averaged variables replacing their instantaneous
counterparts, as well as extra terms involving the products of the fluctuating
velocity components. These extra terms form the Reynolds-stress tensor defined

below, which is the turbulent analog to the laminar shear-stress tensor.
TTU = —puyy (2.3)
For an incompressible flow, the conservation of momentum equation, in
tensor notation, is then given by the following.

om, _ om, oP 3

p-a—t+ puj-a71= —a—xl-i‘ a—X']-(fLﬂ-l-fT”) (2.4)

The altered N-S equations are referred to as the Reynolds-averaged Navier-Stokes

equations (RANS).
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Favre Averaging
For compressible flows, the method of Reynolds averaging produces terms
that do not parallel those found in the laminar equations. To compensate for this,

Favre-averaging, which is mass-averaging. is used as shown below.

1
= ET—»oon pu, dt (2.5)

When using Favre-averaging, the notation for the mean and fluctuating
components of the instantaneous flow-field variables is usually changed as

follows:
u, =1, +u, (2.6)

A procedure similar to the Reynolds-averaging process is then followed,
including variable substitution and time-averaging the N-S equations. The

resulting form of the continuity equation is no different from the laminar case.

ap
2 (i) = 2.
6t+6x (pt1,) =0 (2.7)

The conservation of momentum equation differs from the laminar version with

the addition of the Reynolds-stresses.

ad d oP 0 ,_ 3

3% —(pti,) + (puju ) = —Ex—l + a_xj(TLﬁ + rTﬂ) (2.8)
The modeled form of the conservation of energy equation introduces several new
terms which need to be quantified. These terms include: turbulence kinetic

energy (k) which is part of the total specific energy (E), turbulent heat-flux



vector (qr), molecular diffusion and turbulent transport of turbulence kinetic
energy which includes a closure coefficient (¢*) and the specific dissipation rate
(w), and Reynolds-stress work.

a d
57 (PE) + % [, (BE + P)]

——a—( )+ i ( + *ﬁk)ak 2.9
- axj qL} QT] axj Uu o W x] ( . )

+ % [al (fLJl + fTﬂ)]

The following equations describe the origins of the new terms. The turbulence

kinetic energy, given from the correlation,

1_
k = Eu{’u{’ (2.10)

is identical in form to the specific kinetic energy with the exception that mean
velocities are replaced with fluctuating velocities. The total specific energy,
which now includes the turbulence kinetic energy, is given by the following

equation.

L+ k (2.11)

5]
Il
™
+
N =
[

The turbulent heat-flux vector is defined from a correlation of density, as well as

velocity and enthalpy fluctuations.

qr, = pu’R”’ (2.12)
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The molecular diffusion and turbulent transport of turbulence kinetic energy arise

from the following correlations respectively.

PRy Ook e
Ht+o ) 3x = Tt T P (2.13)
)

The closure coefficient and the specific dissipation rate will be discussed further
in Chapter 3. For completeness sake, the average pressure shown in the
momentum and energy equations is calculated using the Reynolds-averaged

density, the Favre-averaged temperature, and the gas constant.
P = pRT (2.14)

[t is important to note that certain quantities have been defined in terms of
fluctuating velocity components which are unknown. Determining correlations
for these fluctuating components constitutes the ““closure problem,” which is
solved largely by empirical methods. The particular approach is unique to the

turbulence model employed.

In the next chapter we introduce a two-equation turbulence model which
augments the N-S equations with conservation equations for turbulence kinetic

energy and turbulence dissipation rate.
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Chapter 3

Wilcox k-w Turbulence Model

This chapter summarizes Wilcox’s presentation [7] of his 2006 version of

the k- model implemented here.

3.1 Turbulence Model Equations
The turbulence kinetic energy equation is derived by multiplying the
instantaneous momentum equation by u," and then time averaging. The following
equation results after a considerable amount of algebra and making use of the

continuity equation.

Jd  _ a ,__
50 (Pl + Py (pi, k)

o, Jur
=Tp, =—— T, = 2
udx, b ox, (3.1)
————————.— 117
+ d (W — putyru — 5/'{[/7) _ ap +p! Ju,
ax, \ N l J2mt J ' 0x, ox,

Analyzing this equation term by term, the left-hand side has the usual unsteady
and convective terms. The first term on the right-hand side represents the rate of
production of turbulence kinetic energy per unit volume, where the term

“production” means a transfer of energy from the mean flow to turbulence. The
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second term is dissipation: the rate of change of turbulence kinetic energy to heat,

which is modeled by the following.

The closure coefficient (8*) and the specific dissipation rate will be discussed
later in this chapter. The third and fourth terms are the exact same correlations
(eqn. 2.13) that appear in the conservation of energy equation, and therefore
represent the molecular diffusion and turbulent transport of turbulence kinetic
energy. The last three terms are pressure diffusion, pressure work, and pressure
dilatation respectively. Pressure diffusion is modeled as part of the turbulent
transport mentioned earlier due to the lack of experimental evidence to prove
otherwise. Several models have been proposed for pressure work, but they have
limited applicability [7]. Models for pressure dilatation are important for flows
with a large turbulence production-to-dissipation ratio, such as cross-flows [20].
Thus, certain injector configurations may not be modeled well by this
formulation. This is not the case for thin shear layers, such as boundary layers
and mixing layers, which are the types of flows for which this model has been
validated. The turbulence kinetic energy equation for this particular model is then
given by the following, noting that the pressure work and pressure dilatation
terms have been neglected.

J o ,__ .\ _ . 04 . 0 . Pk 0k A
a(pk) +a—xj(pujk) =1r,, 7% B pkw + 7%, [(u +0o —) ] (3.3)



Unlike the turbulence kinetic energy equation, the specific dissipation rate
equation cannot be formally derived. Instead, it is proposed to have a similar
form that includes unsteadiness, convection, production, dissipation, and
diffusion. This particular model also employs cross diffusion which will be
discussed later in this chapter. The specific dissipation rate equation is then given

by the following, where the last term is the cross diffusion.

J a ,__
pn (pw) + % (pi,w)

w07 _, 0 pk\ dw

_QETT”E_MM +571[(,u+a—a—,—)5?]] (3.4)
p 0k dw

+O'daa;a

As can be seen, many new closure coefficients have arisen in this equation.

At this point, the supplementary equations and closure coefficients for the
turbulence model are presented. The laminar shear-stress and Reynolds-stress
tensors are given by the following, noting that the Boussinesq approximation is

used to calculate the Reynolds-stress.

_ 101,

Sl] =Sl]—§a—xk'6u (35)

_ _ 2 _
fLU = 2USy, fTU = 2urS,; — 5 pkéd,,

3

The mean strain-rate tensor (using Favre-averaged velocities) and the Kronecker

delta are defined as:

1 /o1, 01, 1, i=j .
Su‘§<5?,+é7l> S0=lo, i2] 3:6)
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The eddy viscosity, which is part of the Boussinesq approximation, uses the

following equations to determine its value.

7
Com== 3.7

) W =maxqw, Ciym 5

Ur =

(=

Note that the eddy viscosity is limited by the value in the denominator. This is
the stress-limiter that is discussed later in this chapter. The laminar and turbulent

heat-flux vectors can be calculated from the following expressions.

oT prc, 0T
= —} — - — — 3.8
L, : 0x, ar, Prr 0x, S

The closure coefficients required to complete the model are the following

constants and expressions.

13 9 1 3 8
= — i p— = - = P = - 3.9
=25 B =150 9% 9 =g Pm (3.9)
0 0k dw
B T 0x0x T 1 310
Oq = ok dw ) Ogo = § (3.10)
dor B, ox,
1+85y, Q9 Sk
= = Ao = [k e = 00708 (311
1/ou, o X 191,
] =5, —=ZUm 3.12
Ql] 2<axj axl Sk,l. Skl Zaxm 5](1. (') )
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The equation for Q;; is the mean-rotation tensor, and Sy; is the mean strain-rate

tensor as previously defined in Equation 3.6.

The RANS equations presented in Chapter 2, along with the turbulence
model equations given here, are the complete set of equations required to deal

with turbulent flows.

Improvements to Wilcox k- Model

The major improvements to the Wilcox (2006) k- model compared to the
1998 version include the addition of two components: a stress-limiter to the eddy
viscosity, and cross diffusion to the specific dissipation rate equation. The stress-
limiter reduces the eddy viscosity, which in turn limits the Reynolds-stresses
when the dissipation of turbulence-energy is less than its production. This
improves the accuracy for separated flows from the incompressible through to the
hypersonic regions. The cross-diffusion term helps to diminish the sensitivity of
the solution to the chosen freestream value for the specific dissipation rate. This
in turn improves the accuracy for both free shear and wall-bounded flows. Asa
result of these improvements, compressibility corrections are no longer necessary
resulting in the same closure coefficients being used for both the incompressible

and compressible-flow versions of the model.
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Chapter 4

Implementation of k- Model in CFD

4.1 CFD Code Description

The CFD code to which the turbulence model will be added is called HYP.
The primary developer is Dr. Eric Perrell, and additional functionality has been
added by Masters students over the years. HYP is a low-order, compressible-
flow, CFD code written in Fortran 90. Some of the current capabilities include
non-equilibrium chemically reacting flows and parallel processing. The
turbulence model will be integrated with the code in a manner that makes use of
both of these capabilities. At this time the code is not fully implicit, and for that
reason the turbulence model will be coded explicitly. It is important to note that
the inviscid fluxes will be capable of implicit calculation. For more information
about HYP, please see the user's manual created by Francois Schmitt and Dr. Eric

Perrell [21].

The conservation form of the RANS and turbulence model equations can

be written in vector form for physical space (x, y, z) as follows:

Q o 3 9
KR, 9 _ 2 G — Z (H,—H.) = 4,
o5t + Ep (F,—Fy) + 3y (G = Gy) + 37 (Hi—Hy) =S 4.1)
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These equations can be transformed to computational space (¢,7, {) resulting in:

aQ
(FI Fv)+ (GI Gv)"‘ (HI Hy) =S (4.2)

5t

For this particular transformation method, the conservative state vector (Q)

remains the same for both the physical and computational domains.

oy

|
14

'D;DI
[

(4.3)

e

S o O Vo
=

£

Note that there is a continuity equation for each species to facilitate dealing with
chemically reacting flows, and the mixture density (p) is the sum of the species
densities. Also, the internal energy must be calculated using standardized
enthalpies for each species due to the chemical reactions. Making use of the
definition of enthalpy and the ideal gas equation of state yields the following
expression for the internal energy per unit volume.

s Zs-1PsC
pé = Pim— :s + Z pshy — P (4.4)

In this expression, the reference temperature for the enthalpy of formation (hy) is

absolute zero.
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The difference between the physical and computational flux vectors, as

well as the source terms, will be discussed in the sections that follow.

Inviscid Fluxes

The inviscid flux vectors in physical space are given by the following:

Pyt 1 [ p1U ] [ pW
P Prs s
pu* + P+ 2pk pri pwit
—~ o~ A152 =
F, = puv G =| PP +P+3pk = ", (4.5)

puw pow pwW* + P+ pk

ﬁ(ﬁE+P+§ﬁk) ﬁ(ﬁE+P+-§-ﬁk) W ﬁE+P+3ﬁk)

L piik 5ok sk
piiw 5w d | e

The pressure like term (3pk) that appears in the momentum and energy equations

is a component of the diagonal elements in the Reynolds-stress tensor, and it
belongs with the inviscid fluxes because it is a first derivative in the system of

equations. The flux vectors in computational space are found using the following

transformations,

F =§F+&,G+EH G' =n.F +n,G+n,H H' =F+{,G+{;H (4.6)

a o . .
where ¢, = a—i , for example. These derivative terms in the transformations,

which are determined by grid geometry, are known as metrics. In this particular

transformation, the metrics are normalized as follows:

E2+&+82=1  ni+ni+ni=1 G+ +E= 4.7)
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The metrics are also used to define the covariant velocities below.

~

W =&a+&,0+¢,W B =l + 0y U +n,W W =4+, 0+w  (4.8)

Using the transformations and the definitions of the covariant velocities, the

inviscid flux vector in the & direction is given by:

p. i’ ]
Prstl’
puil’ + &, (gﬁk + P)
s 2_
F = pou’ + &, (gpk + P) 4.9)
pwit’ + &, (3pk + P)
pE + P + gﬁk) i’
sk’
i pwil’

The inviscid flux vectors in the 7 and { directions are similar in form with the

exception of the respective covariant velocities and metrics.

In this implementation, the inviscid fluxes are upwinded using Steger-
Warming flux-vector splitting. Upwinding ensures that only information from the
domain of dependence is used for the discretization of the fluxes. This is an

important point as it allows the discretization to adapt to both subsonic and

supersonic flows.

To start the process, the Euler equations in computational space can be

rewritten as

0Q 9Q _3aQ _0Q
E‘I‘Aa—fﬁ'B%‘{'ca—(—O (4.10)



where the leading terms are the conservative flux Jacobians given by:

oF’ 3G oW’

A=% B—% C—%

(4.11)

Steger and Warming state that the flux vectors are homogeneous functions of
degree one in Q if the equation of state is that of a perfect gas. This allows the

flux vectors to be expressed as:
F' = AQ G' =BQ H' =CQ (4.12)
A flux Jacobian can be decomposed into eigenvectors and eigenvalues as follows:
A = RAL (4.13)

Here, the matrix of left eigenvectors (L) is the inverse of the matrix of right
eigenvectors (R), and the eigenvalues (A) are a diagonal matrix. The positive
and negative fluxes can then be separated by using only the positive or negative

eigenvalues in their respective calculations.
F'=F*"+F~ =RA'LQ+ RATLQ (4.14)

The method of determining the flux Jacobians, eigenvectors, and
eigenvalues detailed by Hirsch [22] is used as a guideline for the present
derivation. Finding the eigenvalues of the system is less complicated if the Euler

equations are recast in non-conservative form using primitive variables

av. oV _9dV _oJV
—+A—-+B—

— = 4.
ot | 9 an+ca( 0 (+15)
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where the leading terms are the non-conservative flux Jacobians given by:

€C=—— (4.16)

The non-conservative state vector (V), which is required in the calculation of the

Jacobian, has the following form:

e QI
oy

1%

(4.17)

S xvias

The first calculation for this derivation is a transformation matrix that is

required to switch between conservative and non-conservative forms.

0 0 0 0 0 00

0 1 0 0 0 0 00

i i p 0 0 0 00

0Q _ b 7 0 5 0 0 0 0
v~ W W 0 0 5 0 00 (4.18)

hf1+f11—’YR_‘1T+ek+k h,m+fzﬂs—yffir+e,\+k oL pv pw ylfl p 0

k k 0 0 0 0 5 0

w w 0 0 0 0 0 pl

To simplify the above result, the term ey, is used to represent the specific kinetic
energy. The inverse of this transformation is also required, and is provided in the

appendix due to its size. The non-conservative flux Jacobian (A) is then found

using Equation 4.16 (%FV’ is given in the appendix).
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I o 0 $xPr $yp1 $2P1 0 0 o0
0 o gxpns fyﬁns fzﬁns 0 0 0
2k 2k ~
P e u 0 0 fx5 &3 O
~ 2k 2k . 1 2
A=|553 Sy 0 u 0 $y5 $y3 O (4.19)
2k 2k ~1
R = 0 0 i §5 &5 0
0 0 &p(at-3k) &p(at-3) &p(ai-3k) @ o o
0 0 0 0 0 0 w 0
0 0 0 0 0 0 0 uH

The remaining two flux Jacobians are similar in form with the exception of the
respective covariant velocities and metrics. The speed of sound term in the

Jacobian is defined as,

a; = /az +zky (4.20)

where "a" is the speed of sound in the absence of turbulence (a = /yRT). This

term also appears in the eigenvalues of the Jacobian as shown below.

w0 0 0 0 0 0 0 0
0 -~ 0 0 0 0 0 0 0
0 0@ 0 0 0 0 0 0
00 0 @ 0 0 0 0 0
A=lo 0 0o 0o @ o0 o0 0 0 (4.21)
00 0 0 0 @ 0 0 0
00 0 0 0 0 @ 0 0
00 0 0 0 0 0 @#+a, 0
0 0 0 0 0 0 0 0  i—al

Due to the inclusion of the gﬁk term in the inviscid fluxes, the speed of sound is

augmented by the turbulence kinetic energy as previously found by Siikonen [23].
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The non-conservative right and left eigenvectors for this system, R and L,
are presented in the appendix. The conservative forms of the eigenvectors are

obtained by using the following transformations.

0Q - '
RZ—QR L=

v L5(—2 (4.22)

Inspection of the left eigenvectors (in appendix) reveals a potential problem: the
presence of metrics in the denominator can be destabilizing if sufficiently small.
[t can be shown that three variations of these eigenvectors exist, each with a
different metric in the denominator. Therefore, all that is required to alleviate this
problem is to compare the magnitudes of the metrics and choose the appropriate

eigensystem such that the largest is in the denominator.

The explicit upwind scheme used for the inviscid fluxes is first-order
accurate which may be insufficient, as will be seen in the upcoming chapter

dealing with validation.



4.3 Viscous Fluxes

The viscous flux vectors in physical space are given by the following:

0

0
zs_xx(.u + ur)
28y (1 + ur)
28y (u+ pur)

FV = = —
Urc,\ 0T . bk\ 0k = - -
(K + PTer>a + (y +0 Z)a_x +2(u+ pr)(USex + USyy + WSyz)
_pk\ ok

(«+o D)5

28y (1 + pr)
zs—yy(:u + #T)
ZSyZ(:u + ur)

Gv = f—2 -
urcp) oT ( *pk) ok - .= .
— —)—+2(u+ uS,, + vS,, + wS
(K + Prr ay +l{uto o ay (ﬂ #T)( yx vy yZ)

(4.24)

25 (u + pr)
ZSzy(/" + ur)

Hy = prcy\ 0T ﬁiSEZIS“ e - . = (4.25)
(e Tt ) g+ (1 0 ) 35+ 200 (@ + 5525 4 352
eyt

w/ 0z

<y+a
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The viscous flux vectors in computational space are found using the previously

defined transformations. The viscous flux vector in the & direction is then given

by:

( ;

0

2(u + #T)(fxgxx + S(ysyx + Stzszx)

2(u + ,“T)(fxsxy + fys_yy + fzszy)

2(u+ .uT)(foxz + fySyz +¢; -zz)

UrCy\ 0 OT 0¢ dk
(+ Prrp)a—xla—xl_l— (k4" )a a

(“ to ;) (fx ox S(y 6y i g:)

(+ ﬁk)( aa)+ 6w+ aa))

3
I

+2(u +#T) lj

(4.26)

The viscous flux vectors in the 17 and ¢ directions are similar in form with the

exception of the respective metrics. For the discretization of the derivative terms,

a second-order accurate scheme is used.

Source Terms

The source terms for the turbulence model are given by the following:

0
S = :
0
oti,
Tua —ﬂ pkw
w o1, p 0k dw
Lakrrua——ﬁpw +0’daa—x}a—x}_

(4.27)
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All that is required for calculation in computational space is to apply the chain
rule to the derivative terms. Similar to the viscous fluxes, the discretization is

second-order accurate.

Boundary Conditions

Two boundary conditions of interest for the turbulence kinetic energy and
specific dissipation rate are solid walls and the freestream. The treatment of the

freestream will be addressed first.

Inspection of the turbulence model equations reveals that the turbulence
kinetic energy and specific dissipation rate must be non-zero everywhere in the
flow because they both appear in the denominator. The freestream values must

then be determined.

To estimate the freestream turbulence kinetic energy it is helpful to use a
quantity called the turbulence intensity which relates the turbulence kinetic energy
to the freestream velocity. The ranges of turbulence intensity for different flow
conditions are available from reputable online sources, commercial flow-solver
user guides, and scholarly papers, allowing the freestream turbulence kinetic

energy to then be estimated.

Wilcox [7] shows that the solution to free shear flows is sensitive to the

value of the specific dissipation rate in the freestream. therefore it must be chosen



carefully. Although the cross diffusion term in the specific dissipation rate
equation helps to reduce the sensitivity, it is wise to choose a freestream value
that is less than 1% of the maximum to virtually eliminate the problem. This may

require altering the freestream value as the simulation progresses.

The solid-wall boundary condition for the turbulence kinetic energy is
simply zero due to the no-slip/no-penetration conditions. The specific dissipation
rate 1s numerically problematic in that it is singular for a perfectly-smooth wall.
As detailed by Wilcox [7], a “slightly-rough-surface boundary condition” can be

used as an accurate alternative.

40000y
e

W (4.28)

For a “hydraulically-smooth surface™, the average height of sand-grain roughness

(k) must be sufficiently small to satisfy the following:

pucks
U

<5 (4.29)

where u; is the friction velocity.

This concludes the discussion of the implementation of the turbulence

model. Other texts consulted include those by Anderson [24] and Tannehill [25].



Chapter 5

Verification and Validation

5.1

To build confidence in the solutions obtained from CFD simulations, the
code must first be verified to produce known analytical results and validated
against experimental data. The following test cases constitute the start of this

process.

Inviscid Verification Case

Using only the inviscid fluxes, a verification case can be run to check two
items: the analytical results for an inviscid, compressible flow are obtained, and
both the turbulence kinetic energy and specific dissipation rate are conserved in
space. For this case, a supersonic flow into a compression corner, comprised of a
single species (N»), is used to create an oblique shock wave. Starting from the
first grid point downstream of the shock, the percent error for the pressure,

temperature, and velocity at the wall are plotted in Figure 2.
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Figure 2: Percent Error - Inviscid Verification

The resolution of the shock wave is smeared across three cells which is why the
error is large in that region. Once resolved, the error is less than 1% of the

analytical results. The smeared shock wave is shown by the pressure contours in

-~

Figure 3.
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Figure 3: Pressure Contours - Inviscid Verification

Running the simulation using single precision will produce values for k
and w that are not precisely constant for the entire flow-field. Switching to

double precision alleviates this problem, signifying that it is only round-off error.

This is the only quantified verification that has been performed, and an
obvious test case for the future is to verify that the law of the wall is obeyed for a

turbulent boundary layer.

5.2 Mach 2.5 Flow past a Backward-Facing Step
The experimental data of Smith [26], for a step-height of 0.443 inches, is

used here for validation. The Wind-US code also uses this data for validation,
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and the case can be found in the NPARC Alliance Verification and Validation
Archive. The grid from that case, shown in Figure 4, is used here, and it consists

of two blocks; one upstream of the step (red), and the other downstream (green).

Figure 4: Computational Grid - Backward-Facing