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Abstract 

Author: Daisaku Inoyama 

Title: Vibration Analysis of a Fan/Compressor Blade 

Institution: Embry Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2003 

The vibration of blades in gas turbine engines has become an important issue 

during the last decade because of its significant impact on high cycle fatigue failure due 

to resonant vibrations. The main objective of this thesis is the vibration analysis of 

compressor/fan blade using three-dimensional finite element analysis together with 

various analytical approaches. First, the analytical solutions were established using 

various analytical methods, Bernoulli-Euler, Rayleigh, Rayleigh-Ritz, two-dimensional 

plate, and Timoshenko beam methods. Then, the vibration behaviors of the blade are 

analyzed in full extent using commercially available finite element solver, 

MSC.NASTRAN, and correlated with the analytical solutions. The finite element 

analysis was performed in three different models, straight plate, tapered solid, and blade 

models. Finally, the recommendations are made for more accurate finite element 

modeling and analysis procedures. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

Since the first modern gas turbine engine was invented in the early last century, 

the technology involving a "jet" engine has evolved dramatically. One of the major 

problems that the engineers encountered in the early development stage was the blade 

vibration. Although the theory of structural dynamics was well understood at the time, an 

effective method of determining natural frequencies of the blade and the associated mode 

shapes was not available until the finite element analysis was developed in the mid 

1970's. Dramatic increase in the development of high power computers and rapidly 

increasing capacity for more precise computation of engineering problems during past 

few decades contributed to the capability of utilizing three-dimensional (3-D) finite 

element analysis that could not have been easily implemented before. Using the modern 

computers, the finite element analysis can be performed efficiently to solve for natural 

frequencies and vibration mode shapes of structures with complex geometry, such as a 

rotating fan/compressor blade. In recent years, the vibration of blades has become an 

increasingly important design factor due to its significant impact on high cycle fatigue 

failure, especially for the jet engine installed in the aircraft, where the safety is a major 

concern. It is necessary, therefore, to determine the natural frequencies of blades in gas 

turbine engine and fully understand their vibration behavior to avoid a devastating 

resonant vibration. 
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1.2 Objective of the Research 

The main focus of this thesis is to perform a three-dimensional (3-D) finite 

element analysis on a real fan/compressor blade in order to determine its natural 

frequencies. Consequently, the effectiveness of the finite element analysis for the 

vibration problem can be reinforced by various analytical methods. In addition to the 

determination of natural frequencies, mode shapes and location of nodes can be visually 

examined by computer simulations. 

To accomplish these objectives, the professionally available finite element codes, 

MSC.NASTRAN, and the finite element modeler, MSC.PATRAN are utilized. The 

major advantage of the finite element method is that the natural frequencies of blades can 

be determined exclusively without having to conduct a mechanical vibration testing. 

In order to understand the behavior of the blade under free vibration, the blade is 

modeled as a simple cantilever beam and as a thin flat plate at the beginning. Natural 

frequencies of those simple models are determined using various analytical methods, the 

exact and the approximate methods. The analytical reference that can be compared with 

the finite element solution to verify the reliability of finite element analysis on such a 

vibration problem is established using solutions from those analytical methods. 

1.3 Blade Geometry and Material 

The fan/compressor blade analyzed for this research project has a very complex 

geometry with irregular surfaces. The overall length of the blade is approximately 0.411 

m and the width at the mid-length is approximately 0.1385 m. The blade is comprised of 

irregular surfaces with numerous curves and twisted from bottom to the top. Maximum 
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thickness at the bottom is approximately 0.0155 m and at the top is approximately 0.0032 

meter. The blade is made of the titanium alloy with elastic modulus of 118.3 GPa, shear 

modulus of 42.1 GPa, Poisson's ratio of 0.342, and mass density of 4430 kg/m3. The 

actual blade is shown below. 

Figure 2.1: Geometry of an actual blade 
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Chapter 2 

Background 

2.1 Applications of Vibration Analysis 

Vibration analysis is extremely important for many reasons. The vibration of 

structures is among the key research areas in aerospace engineering, mechanical 

engineering, civil engineering and other related disciplines. Vibration analysis that 

includes determination of natural frequencies (normal mode analysis) and behaviors of 

structures under forced vibration (forced vibration analysis) is vital to many industrial 

applications. In addition, one of the major elements of structural designs is to overcome 

the structural resonance and meet the requirements of the design objectives that include 

low-noise, durability, and reliability 

2.2 Natural Frequencies of Rotating Blades 

The blade vibration has been recognized as one of the major causes of high cycle 

fatigue failure in gas turbine engine. Since compressor/fan blades are continuously 

excited by rotational and aerodynamic forces throughout the engine operation, it is 

imperative to study the response of blades to such excitation forces. If the frequency of 

the excitation force coincides with the natural frequency of blade during the normal 

engine operation range, high amplitude vibration may occur and the resulting stress on 

the blade may cause a catastrophic failure. Therefore, all of the rotating blades shall be 

verified and investigated for natural frequencies to avoid harmful resonant vibration. 
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2.3 Current Research Efforts 

Over the past few decades, numerous researches were conducted over the subject 

of blade vibration. In 1996, Kruse and Pierre of University of Michigan at Ann Arbor 

studied the dynamic response of an industrial turbomachinery rotor and blades [6]. They 

utilized three-dimensional finite element models to investigate the free and forced 

vibration of a rotor and blades of gas turbine engine. The researchers have successfully 

utilized MSC.NASTRAN to study the free vibration natural frequencies of complex 

structures, such as a combined model of a rotor disk and blades. 

Furthermore, Jian Hou from Aeronautical and Maritime Research Laboratory in 

Australia conducted a vibration analysis on the bladed rotor of gas turbine engine [7]. 

Hou utilized the three-dimensional finite element methods to determine the natural 

frequencies of rotating blades with various types of geometric constraints. The three-

dimensional finite element analysis effectively revealed the variations in the natural 

frequencies as the constraint conditions are changed. Hou has examined the natural 

frequencies of several blade-rotor models with different boundary conditions, such as 

free-free, fixed-free, and flexibly fixed-free constraints. 

Recently, several researchers (Fleeter, Zhou, Houstis, and Rice) from Purdue 

University conducted a research on high cycle fatigue (HCF) of a turbomachinery blade 

due to the resonant vibratory stresses [16]. Their approach involved the use of three-

dimensional finite element analysis to determine the natural frequencies and vibration 

modes of the blade. In addition, forcing functions as a result of the rotor movement was 

applied to the model in order to predict the vibratory stresses for various rotor speeds. In 

addition, researchers utilized a computational fluid dynamics (CFD) to determine the 

5 



aerodynamic damping and the aerodynamic forcing functions acting on the finite element 

model to accurately predict the total resonant vibratory stresses. 
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Chapter 3 

Theory 

3.1 Analytical Approach 

The analytical approach can only be used to solve natural frequencies of a 

geometrically simple structure. Thus, it is not possible to determine the natural 

frequencies of the actual blade model by using the analytical methods unless an 

equivalent approximated model with a simple geometry is obtained. Various theoretical 

techniques can be applied to this simple model in order to calculate its natural frequencies 

and mode shapes. In this thesis, the model is first assumed to be a simple cantilever 

beam and its natural frequencies are computed using Bernoulli-Euler method. Then, the 

Timoshenko beam theory is presented to correct the error in the Bernoulli-Euler solution. 

Approximate methods, such as Raleigh method and Rayleigh-Ritz method, are utilized to 

solve for natural frequencies of more complex analytical model, such as the one with 

concentrated mass placed at the intermediate location. Finally, the model is 

approximated as a two-dimensional plate clamped at one side and free at the other sides 

(cantilever plate). The two-dimensional plate vibration theory is presented to gain more 

accuracy in the analytical solution. 

3.1.1 Approximation of Blade Geometry as a Uniform Cantilever Beam 

An accurate approximation of the blade geometry is one of the most important 

processes to obtain accurate analytical solution. For Bernoulli-Euler method, the 

analytical model must have a constant thickness and width as it is considered as a 

uniform beam. Therefore, the thickness of the beam model is set to be the average 
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thickness of the actual blade. This average thickness of the blade is determined by taking 

an average across the width of the blade and, then, taking an average of this value across 

the length of the blade. The calculation process is shown as follows. 

Using the measurement taken from the actual blade, the average thickness at the 

fixed bottom of the actual blade (blade root) is determined, 

T +T 
T — Max-b ' ^Min-b / o 1 \ 

Similarly, at the mid-length of the blade 

T + T 
J1 _ Max-m Min-m /O 0\ 

ave-m ^ V • / 2 

At the top (blade tip) of the blade, the average thickness is 

T +r 
T — Max-t MMin-t /o o\ 

Then, the average blade thickness is determined as, 

HT ave-b ave-m ave-t / o ^ 1 \ 

This average thickness of the blade serves as the uniform thickness of the cantilever beam 

model. It is not necessary to determine the average width of the blade, since it is nearly 

constant along entire blade length. Therefore, the width of a beam (W) is considered the 

same as the middle section width of the blade. With those dimensions available, cross 

sectional area of the beam can be determined by A = TaveW and the moment inertia of the 

beam is / = —WT]ve for the rectangular cross section. This method to represent an actual 

blade as a uniform beam model may sound somewhat unreliable, but it will be proven 

later that the method is actually valid and fairly accurate. 
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3.1.2 Bernoulli-Euler Beam Method 

The transverse vibration of the beam can be analyzed by using the Bernoulli-Euler 

beam method, where the deflection y(x,t) of the beam is due to the bending moment only 

and no considerations are made for rotary inertia and shear deformation. It is known that 

this theory is especially effective when the length-to-width ratio is greater than or equal 

to 10 [1]. Bernoulli-Euler method can still provide an acceptable result down to about 

length-to-width ratio of 3. Since the blade being analyzed in this thesis has the length-

width ratio of about 3, it can be considered as a slender beam and, therefore, the beam 

theory is applicable. 

4 
/ i 

H dx 

M \ KT • • A I > • *£-

dx 

Figure 3.1: Uniform cantilever model 

A differential element dx of the beam is shown above in Figure 3.1. This figure 

illustrates the bending moments M and shear forces V acting upon it. As the beam 

vibrates, the differential element dx moves vertically up and down in the y direction and 

also rotates slightly. By summing the forces in the y-direction yields the formulation 

below. 

+ t £ F = (Am)a„ (3.5) 

where, Am = pAdx and a = 
dt1 

+ t^F = pAdx 
dt2 (3.6) 
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V-V-—dx = pAdx^4 
dx H dt2 (3.7) 

Simplification of Eq.(3.3) allows, 

Now, ignoring the rotary inertia and summing the moments about points A yields, 

Z M = 0 (3.9) 

-M-Vdx+M +—dx = 0 
dx 

(3.10) 

Vdx = dx 
dx 

(3.11) 

V = 
dM 

dx 
(3.12) 

For a linearly elastic beam, 

M = * (3.13) 

where, ju is the curvature of elastic curve. 

From solid mechanics, bending moment is a function of the change in slope of the beam's 

elastic curve. For small slope, 

M = EI 
ydx2 j 

(3.14) 

Substitution of Eq.(3.14) into Eq.(3.12) allows, 

V = — 
dx 

( &„\ 
EI 

dx2 (3.15) 

Then, substituting Eq.(3.15) into Eq.(3.8) results in, 

10 



d 
2 ( &„\ P2 

dx2 
dy 4 #y EI- , 

V dx J 
= PA^ (3.16) 

Considering EI to be constant, Eq.(3.16) becomes, 

•d4y Ad2y 
EI-^- + pA^ = 0 (3.17) 

Rearranging this equation to obtain, 

^ + ( ^ } * ? - 0 (3.18) 
dx4 \EI)dt2 

^ + A ^ = 0 (3.19) 
dx" C2 dt2 v ' 

EI 
where, C = / . Rearrange the above equation to obtain, 

pA 

d4y 1 d2y 
(3.20) 

dx4 c2 dt2 

Equation (3.20) is the one-dimensional wave equation. This partial differential equation 

can be solved by the technique known as the separation of variables. Assume the 

displacement y(x,t) to be the product of two single-variable functions: 

y(x,t) = X(x)T(t) (3.21) 

Differentiating Eq.(3.21) four times with respect to x, 

dx dx 

Also, differentiating Eq.(3.21) twice with respect to t, 

£ - ^ * M 023) 
dt2 dt2 

Substitute Eq.(3.22) and Eq.(3.23) into Eq.(3.20), 
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"'^Am,\X(x)^m (3.24) 
<£c4 C A-

Rearrange Eq.(3.24) and form two ordinary differential equations, 

d4X{x) C2 

= K (3.25) 
dx4 X(x) 

and, 

^ > - L = K (3.26) 
dt2 T(t) 

where, K is an arbitrary constant. For convenience and to avoid a trivial solution, 

K = -a>2 (3.27) 

Then, the two ordinary differential equations become, 

d4X(x) co2 

dx4 C2 

and, 

•X(x) = 0 (3.28) 

*-I®--a>m*T(t) = Q (3.29) 

dt 

Assume two solutions of Eq.(3.21) to be, 

T(t) = Bx sin(<yO + B2 cos(cot) (3.30) 
X(x) = DeXx (3.31) 

Differentiate Eq.(3.31) four times with respect to x to obtain, 

d4X(x) 
dx4 

Substitute Eq.(3.31) and Eq.(3.32) to Eq.(3.28) to obtain, 

= ZUV* (3.32) 

DA4eXx-^rDe"x=0 (3.33) 
C2 
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Simplify above equation to obtain auxiliary equation, 

A 4 - ^ - = 0 (3.34) 

Let AT4 = 4 , 
C2 

A,4-N4=0 (3.35) 

There are four roots for the above equation, 

\ = N (3.36a) 

12=-N (3.36b) 

A3=iN (3.36c) 

XA=-iN (3.36d) 

Then, the Eq.(3.31) becomes, 

X(x) = D/x + D2e~Nx + D3e
iNx + D,e~iNx (3.37) 

Apply trigonometric relationships to transform above equation, 

X(x) = Dx sinh(JV3c) + D2 cosh(JV3t) + D3 sin(Afr) + D4 cos(Nx) (3.38) 

Although constants of the Eq.(3.37) and Eq.(3.38) are actually different, they are 

identified using the same characters for simplicity. Now, combine Eq.(3.30) and 

Eq.(3.38) to obtain a general solution, 

y(x, t) = (Bx sm(<x)t) + B2 cos(tfrf))(A sinh( JVx) + D2 cosh(Afr) + D2 sin(JVx) + Z>4 cos(Nx)) 

(3.39) 

To determine natural frequencies, consider Eq.(3.38) and apply boundary conditions for 

cantilever beam, 

X(0) = 0 (3.40) 
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dX(0) 
dx 

= 0 

d2X(L) 
dx2 

d3X(L) 
dx3 

= 0 

= 0 

(3.41) 

(3.42) 

(3.43) 

It is obvious that four boundary conditions that represent the fixed end and the stress-free 

end are required, since there are four unknown constants. After application of those 

boundary conditions, Eq.(3.38) can be expressed in the matrix form, 

0 1 

N 0 

N2 sinh(iVZ) N2 cosh(JVX) 

N3 cosh(JVZ) N3 sinh(iVI) 

0 

N 

-N2 sm(NL) 

-N3 cos(NL) 

1 

0 

-N2 cos(NL) 

-N3 sin(JVL) 

A 
A 

= {0} (3.44) 

For the above matrix equation to be non-trivial, the determinant of the coefficients must 

vanish. Then, 

det 

0 1 

N 0 

N2 sinh(JV2) N2 cosh(NL) 

N3 cosh(NL) N3 sinh(JVX) 

0 

N 

-N2 sin(iVL) 

-N3 cos(NL) 

1 

0 

-N2 cos(iVL) 

-A^3 sin(TVL) 

= {0} (3.45) 

This will lead to the characteristic equation: 

cos(M;)cosh(JVL) + l = 0 (3.46) 

To solve this equation for (NL) which is the eigenvalue times the length, numerical 

computation must be performed using a computer, 
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(JVZ), =1.8751 (3.47a) 

(NL)2 =4.6941 (3.47b) 

(NL\ = 7.8548 (3.47c) 

®.2 , ~ £ / Using W 4 = ^ - andC= — 
C2 \ / ? ^ 

C2 EI 

Rearrange above equation and multiply by — to obtain, 

(3.48) 

(NLY EI 

"•-efe (349) 

This is the equation for natural frequencies derived using Bernoulli-Euler beam method. 

This equation always results in the positive definite solution and can be easily used to 

compute natural frequencies. 

3.1.3 Timoshenko Beam Theory 

Timoshenko beam theory accounts for both the effect of rotary inertial and shear 

deformation that are neglected in case of Bernoulli-Euler beam method [1]. With these 

considerations, Timoshenko beam theory is applicable to the determination of natural 

frequencies of a thick beam with small length-width ratio. In addition, Timoshenko beam 

theory is useful for the analysis of high frequency vibration where the effect of rotary 

inertia and shear deformation may be significant. Since the uniform beam model 

analyzed using Bernoulli-Euler method has a fairly small length-width ratio, it is 

beneficial to utilize the Timoshenko beam theory to correct the error that may be present 
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in the solution. A differential element dx is shown in Figure 3.2 to illustrate the rotation 

and deformation of the beam in addition to the transverse motion. 

y 

*, d M J 

M + dx 
dx W 

Horizontal 

Tangent to centerline 
ofbeam 

%* Perpendicular to 
cross section 

dy_ 

dx 

Figure 3.2: Transverse vibration considering rotary inertia and shear deformation 

As shown in Figure 3.2, as a beam undergoes transverse vibration, a differential element 

will rotate in addition to its translational motion. The angle of rotation is equal to the 

dy 
slope of the elastic curve, — . Then, the corresponding angular acceleration is given as, 

dx 

d3y 
dxdt2 (3.50) 

Thus, the inertial moment of the differential element about an axis passing through its 

mass center and perpendicular to the x-y plane is, 

&y -pi 
dxdt2 -dx (3.51) 

where, / is the moment of inertia of the cross section. The governing differential 

equation of the beam, Eq.(3.17), can, therefore, be modified to account for rotary inertial 

by including Eq.(3.51). The governing differential equation of the beam becomes, 
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d'y AS!y , <?y 
EI-^ + pA^f-pI—^jdx = 0 (3.52) 

The slope of the deflection curve will depend upon shearing deformations as well as on 

rotation of the cross section. In Figure 3.2, 6 represents the slope of the deflection curve 

without the consideration of shear deformation and y/ is the angle of shear at the neutral 

axis. Then, the slope of the deflection curve due to both shear force and bending moment 

can be written as, 

^ = 0 + V (3.53) 
dx 

Where, 

V 
y/ = (3.54) 
Y kAG y ; 

A = cross-sectional area of the beam 

G = modulus of rigidity 

k = Timoshenko's shear coefficient, dependent on the shape of the cross-section 

Timoshenko's shear coefficient is the given constant. For the rectangular cross section, 

the coefficient, k, is given as —. Summing the moment at the right edge of the 
6 

differential element in Figure 3.2 with consideration of rotary inertia, 

dM J Td2e 
dx- pi—-

dx H dt2 

Vdx-^^dx-pl—dx = 0 (3.55) 

where, by definition, 

M = -EI— (3.56) 
dx 

and, 
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V = kyAG = kAG\^—e (3-57) 

Substituting Eq.(3.56) and Eq.(3.57) into Eq.(3.55) allows the differential equation for 

rotation, 

dx \ dx j PI-^T = ° dt 
(3.58) 

Summing the force in the vertical direction allows, 

dv .d2e . 
pA—r = 0 

dx dt2 

(3.59) 

Applying Eq.(3.57) to the above equation allows the differential equation for the 

transverse motion. 

kG 
(d2y d6) d2y 

dx2 dx dt2 (3.60) 

dO 
By solving Eq.(3.60) for — and substituting the result in Eq.(3.58), the equation of 

dx 

motion for the beam can be formed as, 

d'y Ad2y f E] d'y p2I d4y . 

dx4 dt2 H I kG)dx2dt2 kG dt4 (3.61) 

For cantilever beam, boundary conditions are given as follows. 

Fixed end: 

0 = y = O (3.62a) 

Free end: 

kAci^-e 
[dx 

J dx 
(3.62b) 
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Since the solution of Eq.(3.61) with boundary conditions, Eq.(3.62a) and Eq.(3.62b), 

cannot be obtained easily and the resulting frequency equation is rather complex, a graph 

showing the influence of shear deformation and rotary inertia is presented below [ ]. 
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z> 
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Rodius of gyrption of cross-section 

Length of beam 
^*JT7AX1 

Figure 3.3: Influence of rotary inertia and shear deformation on natural frequencies of a 

cantilever beam (From J.G. Sutherland and L.E. Goodman Technical Report) 

3.1.4 Approximation of Blade: Tapered Beam with a Concentrated Mass 

The continuous systems discussed thus far have simple geometry with a simple 

governing equation. This simple system could be solved by an exact analytical method, 

using Bernoulli-Euler beam theory. It is obvious that this simple uniform beam may not 

show the clear picture of the actual behavior of the blade. Therefore, more desirable 

results may be obtainable by assuming the blade to be a mildly tapered beam with a 
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concentrated mass. The concentrated mass represents two protruding figures at the 

middle of the blade. 

The averaging procedure of blade thickness is similar to the one of uniform beam. 

The average thickness across the width is taken at the bottom and the top of the blade. 

These average thicknesses of blade are considered as the thickness of beam at the top and 

bottom. Beam thickness at the bottom linearly tapers down to the one at the top. As 

mentioned previously, width of the beam is considered constant, since it does not differ 

significantly throughout the entire length of the actual blade. The tapered beam model is 

shown below. 

ave-b X T <-±T 
ave-b ^ ' ave-t 

w 

Figure 3.4: Tapered beam with a concentrated mass model 

Average thickness at the bottom is determined by, 

rp _ ±Max-b ^ ±Min-b 

2 ave-b (3.63) 

Similarly for the top, 

T 
ave-t 

T +T 
xMax-t ^ ±Min-t (3.64) 

Then, the variation of the thickness along beam length can be expressed as, 
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T(x) = 
( T ^J1 \ 

rp ave-b ave-t v 
1 ave-b T

 X 

\ L J 
(3.65) 

Also, the cross sectional area of the beam can be expressed as, 

A(x) = T(x)W= Z V . -T^_h-T ave-b ave-t x\W (3.66) 

Since the cross sectional shape of the beam is rectangle, the moment of inertia can be 

obtained using, 

I(x) = ±-W[T(x)]3 

substituting Eq.(3.65) into the above equation, 

(3.67) 

I(x) = ±w(Tave_b- ave-b ave-t (3.68) 

Expand above equation and simplify to obtain, 

I(x) =—W 
12 

T^-T T"^ ^ T 7 ^ ave-b ave-t 
ave-b ave-b T 

x + L ave-b 
T^-T T„.,^-T 

^ \ 
- ave-b aye-t „ 2 . ave-b ave-t 

(3.69) 

This is the equation for moment of inertia for the tapered beam. Next, the Rayleigh and 

Rayleigh-Ritz methods are employed to estimate natural frequencies of the beam. 

3.1.5 Approximate Method 

Exact solutions can only be obtained for beams with simple geometry. 

Unfortunately, exact solutions for the vibration of continuous systems with complex 

geometry may not be available for most practical purposes [10]. Therefore, an 

approximate method must be utilized for a continuous system that carries a concentrated 

mass and has a non-uniform geometry. 
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In case of the blade geometry in this thesis, it is obvious that the best analytical 

solution can be obtained by assuming the concentrated mass at the middle section of the 

blade where two protruding geometries are present. In addition, the actual blade does not 

have a constant thickness along its length and should be modeled as a tapered beam 

instead of a uniform beam. Finally, as mentioned previously, Bernoulli-Euler theory is 

known to provide a good solution only in case of slender beam and should not be applied 

when the length-width ratio requirement is not met. Although the blade is considered 

'fairly' slender (LAV between 3 and 10), the exact solution obtained by Bernoulli-Euler 

theory should, at least, be verified by an approximate method. 

3.1.6 Rayleigh's Method 

The Rayleigh's method is an approximate method useful in estimating the first 

natural frequency of an undamped continuous system [10]. The disadvantage of this 

method is its incapability in determining the higher natural frequencies and mode shapes 

of vibration. Although Rayleigh's method may not be the best choice of approximate 

method due to those drawbacks, it is considered as the basis for the majority of 

approximate techniques used in vibration analysis and, therefore, worth mentioning here. 

Consider the beam in Figure 3.4 and assume a general solution of transverse deflection, 

y(x,t) = X(x)Z(t) (3.70) 

where, 

X(x) is the assumed deflected shape 

Z(t) is the time variable function 

Strain energy due to transverse deformation is defined as, 
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U = \£EI(x) d2y(x,t) 
dx2 dx 

Substituting Eq.(3.70) to the above equation, 

U = Uz(t)f^EI(x) 
d2X(x) 

dx2 

-\2 

dx 

where, 

E = Modulus of elasticity 

I(x) = Moment of inertia 

Kinetic energy of vibration is defined as, 

1 i * V = -[pA(x) dy(x,t) 
dt 

, 1 dx +—m 
2 

dy(lm,t) 
dt 

Substituting Eq.(3.70) to above equation, 

(3.71) 

(3.72) 

(3.73) 

2 
dZ(t) 

dt 
£pA(x)[X(x)]2dx + ±m[X(lm)]2 dZ{t) 

dt 
(3.74) 

where, 

p = Mass density 

A{x) = Cross sectional area of the beam 

m — Concentrated mass 

/ = Distance to concentrated mass from the wall 
m 

If the free vibration is assumed to be harmonic in nature or y = f (sin cot), then the time 

function can be expressed as, 

Z(t) = C sin cot (3.75) 

dZjt) 
dt 

= Ceo cos cot (3.76) 
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where, Z(t) = C 

C = the amplitude at any given time 

co = circular natural frequency 

For maximum Z(t), sin cot becomes unity, then, 

Z =C 
max 

(3.77) 

dZ(t) 
For maximum ——, cos cot becomes unity, then, 

dt 

dZ(t) 
dt 

Ceo (3.78) 

By substituting Eq.(3.77) into Eq.(3.72), maximum strain energy can be expressed as, 

U^=\C2[EI{X) d2X(x) 
dx2 

-12 

dx (3.79) 

By substituting Eq.(3.78) into Eq.(3.74), maximum kinetic energy can be expressed as, 

V* =\CWt pA(x)[X(x)]2dx + ̂ mC2co2[X(lj]2 (3.80) 

From the conservation of energy, maximum strain energy and kinetic energy must be 

equal, 

V =U 
max max 

(3.81) 

Substituting Eq.(3.79) and Eq.(3.80) into the above equation allows, 

- C V f pA(x) [X(x)fdx + i mCW [X(lm )]2 = IC2 f EI(x) 
d2X(x) 

dx2 

- i 2 

dx 

(3.82) 

Simplify and above equation to obtain, 

24 



CO' [ I pA(x) [X(x)fdx + m [X(lm )f 1 = £ EI(x) d2X(x) 
dx2 dx (3.83) 

Rearrange above equation to obtain, 

co = XD -
J>« d2X(x) 

dx2 dx 

R~ rL 
[pA(x)[X(x)]2dx + m[X(lm)f 

(3.84) 

This is the equation for the fundamental natural frequency and known as Rayleigh 

quotient. Assuming that deflected shape of the beam is, 

X(x) = ' * Y (3.85) 

d2X(x) _ 2 
dx2 ~ L2 (3.86) 

Also, 

x(!J = 
n \2 

(3.87) 

Apply Eq.(3.86) and Eq.(3.69) to the numerator of Eq.(3.84) to obtain, 

I Em 

l* 

~d2X(x) 

dx2 

2 

dx = 

r , ( i 
i 

12 
W T3 -

ave-b 

-IT2 
D1 ave-b 

\ 

(L..^-T L ave-b M ave-t I v , rr I ave-b ave-t 2 , T^_„-T _ V , (Tu-T ^ ^ 
ave-b ave-t 

(3.88) 

After the integration and simplification, the above equation becomes, 
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EW 

d2X(x) 

dx2 dx = 

3L3 
3 1 1 

T3 T2 (T —T \4---T (T —T \2+ — (T —T \3 

ave-b rs ave-b v^ ave-b * ave-t / ~ ~ -* ave-b V^ ave-b x ave-t / A ^ ave-b J ave-t) 

Apply Eq.(3.87), Eq.(3.85), and Eq.(3.66) to denominator of Eq.(3.84) to obtain, 

{pA(x)[X(x)]2dx + m[X(lm)f = {pW 71..., t -
T -T VxV ave-b ave-t 

ave-b 

(3.89) 

L 
dx + m\ -*-

(3.90) 

After integration and simplification, the above equation becomes, 

£pA(x)[X(x)]2dx + m[X(IM)f = pWL -T _ 1 (T _ r \ 
^ ave-b s- \ ave-b ave-t / + ra 

(3.91) 

Substitution of Eq.(3.91) and Eq.(3.89) into Eq.(3.84) allows, 

EW 

co =• 
3Z3 

3 1 1 
r 3 - —r2 (T —T ) + -T (T -T Y+ — (T -T V 

ave-6 /-) ave-6 V ave-b ave-t J -» ave-b V ave-£ ave-f / A 1 ave-6 ave-r / 

yPfFZ -T - — (T -T ) 
r ave-b s- V ave-b ave-t/ 

+ m\ 

(3.92) 

Simplify above equation to obtain the final form, 

\EWL 

CD 

T3 --T2 (T -T ) + -T (T -T V+ — (T -T V 
ave-b r> ave-6 V^ ave-b ave-t / ~ ave-b V ave-A x ave-f / /i ^ ave-6 ove-f / 

3pWL5 
^ ave-b /- \ ave-b ave-t/ + 3ml4 

(3.93) 

Eq.(3.93) is the fundamental frequency equation derived by Rayleigh method for the 

tapered beam with concentrated mass. 
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3,1.7 Rayleigh-Ritz Method 

The Rayleigh-Ritz method is an extension of the Rayleigh's method with several 

important improvements. In addition to increased accuracy for estimating the 

fundamental frequency, the Rayleigh-Ritz method furnishes the capability to estimate 

higher natural frequencies and determine the associated mode shapes [1]. Like 

Rayleigh's method, the mode shape is assumed as a priori. However, in Rayleigh-Ritz 

method, the mode shape is given in the form of an infinite series as shown below. 

As the number of terms in infinite series approximation increases, more accurate results 

can be achieved. 

Consider the Rayleigh quotient for tapered beam derived previously Eq.(3.84), 

{EI(x) ~d2X(x)~ 

dx2 

2 

dx 

[pA(x)[X(x)]2dx + m[X(lm)f 

The idea behind the Rayleigh-Ritz method is to minimize the frequency or Rayleigh 

quotient with respect to al 's. Then, 

J>(x) ~d2X{x) 

dx2 

2 

dx 

{pA(x)[X(x)fdx + m[X(lm)]2 

which yields, 

dXR _ d 
dat dal 
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[lpA(x)[X(x)]2dx + m[X(lm)}2^-£-WEI(x) d2X(x) 
dx2 dx 

tmx)\ d
2X(x) 
dx2 dx j - [ f pA(x) [X(x)fdx + m [X(lm )f ] 

[£pA(x)[X(x)]2dx + m[X(lm)]2 
~\2 = 0 (3.96) 

In order for the above equation to be valid, the denominator cannot be zero, then, 

d2X(x) [£pA(x)[X(x)]2dx + m[X(lm)]2^-£- \%EI(x) 
dx2 dx 

J>*) d2X(x) 
dx2 dx -[£ pA(x)[X(x)fdx + m[X(lj]2 _5 Tfi 

da 
= 0 

(3.97) 

Rearrange this equation, 

d 
da, 

%EI(x) 
~d2X(x) 

dx2 

2 

dx 

\U 

£mx) 

>A(x)[X(; 

'd2x{x)~ 
dx2 

K)] dx + m 

2 

dx 

[X(l 

d 

Jf]da-
[£pA(x)[X(x)fdx + m[X(lj]2j = 0 

(3.98) 

Apply Eq.(3.84) to the above equation, 

_d_ 
da: 

£EI(X) 
d2x(x) 

dx2 dx -co 
d r > 

da, 
[ £ PA(x)[X(x)]2dx + m[X(lm)]2yO (3.99) 

Simplify above equation to obtain, 

da: 

%EI(x)\ ^ £ ^ dx-co2[£pA(x)[X(x)]2dx + m[X(lm)]2 = 0 (3.100) 

Eq.(3.100) is the Rayleigh-Ritz equation for the tapered beam with a concentrated mass. 

Apply Eq.(3.94) to the above equation, 
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tfda, {EI{x)[aJXrf dx-co2\£ PA{x)[aJXx)px + m[aJXlJt = 0 

(3.101) 

The above equation can be written as 

^ d 
T.^\lEI(x)[aJXx)][aj:{x)]dx-coAtpA^ = 0 

Stiffness matrix of the beam for transverse motion is given as, 

kg = lEI(x)fllx)fj\x)dx 

Mass matrix of the beam can be expressed as, 

mu = IpAxKtofjixjdx 

Eq.(3.102) can be written in simpler form using Eq.(3.103) and Eq.(3.104). 

Z -^-\aKa3 -^[WjVj + I W [ f l . / iW][V/ X ) ] ] l = () 

1=1,7=1 oal
 L 

Performing a partial derivative with respect to al and obtain, 

t[2ktaJ -co2 [2mljaj +2mfl(lm)aJfJ(lm)]] = 0 

By rearranging above equation, 

In matrix form, 

£2[klJ-co2[mlJ+mfl(lm)fJ(lm)']]aj =0 
7=1 

[k]-*2[[m] + m{Alj}{f(lj}T]\{a} = {0} 

Note that the mass matrix [m] and the concentrated mass m is not the same. 

(3.102) 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

(3.107) 

(3.108) 
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In order for the above equation to be true, the determinant of coefficient matrix must 

vanish. Then, 

det |M-^2[[m] + m{/ ( / j}{ / ( / j} r ] | = 0 (3.109) 

or, 

det|[fc]-^2[M]| = 0 (3.110) 

where, [M] is the total mass matrix. 

Assume the deflection function to be, 

X(x) = axx
2+a2x

3 (3.111) 

Since the assumed deflection function has two terms, estimate of two natural frequencies 

can be obtained. From the equation above, two Ritz deflection functions can be obtained, 

fx=x2 (3.112) 

f2=x3 (3.113) 

Then, the second derivatives of Ritz function is, 

/;=2 (3.114) 

f2'=6x (3.115) 

Mass matrix can be determined by Eq.(3.104), 

"»ii =PWt (Tave-b-
Tave-b~Tave-'x)x4dx (3.116) 

mu = m21 = pW f {Tave_b - T™-»-T™-< X)x5dx (3.117) 

m22 = pW f (Tave_b - Tave-b ~Tave-' x)x6dx (3.118) 

Integration of above equations yields, 
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mn = 

mn = m2X 

_pWL\Tave_b-5Tave_t) 

30 

_pWL\Tave_b-6Tave_t) 

42 

m22 = 
_pWL\Tave_b-lTme_t) 

56 

Considering the concentrated mass, the total mass matrix can be written as, 

M = p ^ 5 ( ^ - , - 5 ? ; v e w ) , „ , , 4 

30 
• + ml_ 

(3.119) 

(3.120) 

(3.121) 

(3.122) 

MU=M21 
_ pWL\T^b-6TaYe.t) 

42 
+ ml_ (3.123) 

M22 = P^^-b-7Tave_t)+ml6 
22 56 

Stiffness matrix can be obtained by Eq.(3.103), 

KAWE{ 
( 

(3.124) 

rpi 'XT 
ave-b ave-b 

(T —T \ 
1 ave-b ave-t 

L J 

IT -T 
Y i T ave-b ave-t 

(T -T Y ^ 
y2 . ave-b ave-t \ v 3 

J 

dx 
J 

(3.125) 

Kl ~ 2̂1 ~ " ^ J, 
f T„^-T \ 

rpl rlrr2 ave-b ave-t 
^ ave-b ave-b I j - x+Z ave-b 

T^_h-T 71. ,.-71 flve-6 ave-t \ „2 , -1 Qyg-ft -* ave-f 
V "i 

\xdx 

k22=3WEnTa
3

ve_b-3T2
ve_b 

(T -T \ 
ave-b ave-t ~ , y ave-b 

v 

ave-b ave-t _ 2 , 

V 

(3.126) 
\3 ^ r̂ -r 

ave-b ave-t v 3 
X J* 

(3.127) 

Integration of above equations allows, 

kn -
EWL(Tave_t+Tave_b)(T

2
ve_b -T

2
me_t) 

12 
(3.128) 
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, _ EWL2 {T3
me_b + 2T2

ve_bTave_t + 3Tave_bT
2
ve_t + AT3

ave_t) 
_ / c ^ _ — 

20 
v12 'v21 

k22 -
_ EWL3(Tl_b +3T2

ve_bTave_t+6Tave,bT
2
ve_l+lOTa

3
ve_t) 

20 

Combine stiffness and total mass matrices using Eq.(3.110) allows, 

det 
kx, - co2Mx j k12 - co2Mu 

k2x - co2M2l k22 - co2M22 
= 0 

The above determinant can be expanded as, 

Vco4+Zco2+Y = 0 

where, 

V = (MnM22-MuM2l) 

Z = (ki2M2i +k2XMn -knM22 -k22Mu) 

Y = (knk22 -k2lku) 

(3.129) 

(3.130) 

(3.131) 

(3.132) 

(3.133) 

(3.134) 

The equations shown above, Eq.(3.132) to Eq.(3.134), are the frequency equations for the 

tapered beam with a concentrated mass, derived by Rayleigh-Ritz method. The 

frequency equations have four roots, 

]-2V(Z-4z2-WY) 
2V 

(3.135) 

and, 

]-2V(Z + 4z2-WY) 
2V 

(3.136) 
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When the above root equations are evaluated, two roots will result in positive real 

numbers. Those two numbers are the first two fundamental frequencies of the tapered 

beam with concentrated mass. 

3.1.8 Two Dimensional Plate Method 

All the methods presented previously are the one-dimensional analysis and no 

considerations are given to the torsional vibration of the beam. This is often critical when 

the real figure to be represented as an analysis model has a wide width and/or a thin 

thickness, as in the case of this thesis [12]. Therefore, the main focus of this section is to 

model the blade as a thin plate and analyze its vibration behavior. The flat plate model is 

shown below in Figure 3.3. 

h 

/ 

Figure 3.5: Two-dimensional flat plate model 

The equation of motion of a flat plate based on Kirchhoff theory is, 

DV4w+phwtt=0 (3.137) 

where, subscript indicates partial derivatives and V4 is the biharmonic operator, 

w(x,y;t) is the displacement and D is the flexural rigidity of the plate as defined by, 
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Eh3 

D= , (3.138) 

12(1 -v2) 

where, h is the constant thickness of the plate and v is the Poisson's ratio. By definition, 

the biharmonic operator or V4 is, 

V4w = wxxxx+2wxxyy+wyyyy (3.139) 

The natural boundary conditions of a flat plate can be written as, 

wxxx+{2-v)wyyx =0 (3.140) 

w„+uww = 0 (3.141) 

The geometric boundary conditions for a cantilever plate are, 

w(0,y) = 0 (3.142) 

wx(a,y) = wy(a,y) = 0 (3.143) 

wx(x,0) = wy(x,0) = 0 (3.144) 

wx(x,b) = wy(x,b) = 0 (3.145) 

Assuming the solution to be harmonic in time, 

w(x, y; t) - W(x, y) cos(cot -a) (3.146) 

Then, the Eq.(3.137) becomes, 

V2W-X4W = 0 (3.147) 

This is the eigenvalue equation and A is the eigenvalue. Where, 

^=^Ph. (3.i48) 
D 

Eigenvalue can also be written as, 

.2 „ 2 \ph 
r=coa\^- (3.149) 

M D 
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Since there is no closed form solution for this problem with given boundary conditions, 

the numerical computation must be performed to find the eigenvalue. The eigenvalue 

must be determined for various Poisson's ratio and length-width ratio (—). The table 
b 

below shows the lists of eigenvalues for Poisson's ratio of 0.342 (titanium alloy). 

a/b 

2 

2.5 

3.0 

1 

3.420 

3.406 

3.395 

2 

14.50 

17.58 

20.68 

3 

21.28 

21.24 

21.20 

Mode Sequence (n) 

4 

47.32 

56.14 

59.60 

5 

59.76 

59.72 

65.07 

6 

91.24 

104.3 

117.3 

7 

92.68 

117.1 

118.0 

8 

117.7 

143.4 

183.7 

Table 3.1: First eight eigenvalues ( X 's) for the vibration mode of the cantilever plate 

Since there is an eigenvalue for each corresponding natural frequency, Eq.(3.149) is 

rewritten as, 

X2
n=cona2\^ (3.150) 

Rearrange above equation and obtain, 

X: D 
CO, = 

a V ph 
(3.151) 

Substitute Eq.(3.138) into the above equation, 

X2 Eh2 

co„ = " a2\\2p(\-v2) 
(3.152) 
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The flat plate model does not include many of the real features of the blade, such as 

tapered thickness and concentrated mass. Although such simplifications are utilized, this 

equation can depict the torsional vibration and, therefore, is important to this thesis. 

3.2 Finite Element Approach 

Engineering analysis can be divided into two categories, classical methods and 

numerical methods [14]. Classical methods attempt to solve problems directly by 

forming governing differential equations based on the fundamental principles of physics. 

Classical methods can be sub-divided into two categories, exact method and approximate 

method. Exact solutions have closed form and can be obtained for simple problems, 

involving regular geometries, loading, and boundary conditions. The example of the 

exact method is the Bernoulli-Euler beam theory, which was presented previously. 

Classical approximate methods can be used for slightly more complex problem, but it still 

requires regular geometric shapes, simple boundary conditions, and well-defined loads. 

The example is the tapered beam with concentrated mass demonstrated previously using 

Rayleigh method and Rayleigh-Ritz method. Although classical methods may provide 

solutions that bear little resemblance to the real-life phenomena due to the limitation, they 

still provide a good insight of the problem. 

Finite element analysis is a powerful numerical procedure that provides excellent 

approximation. Unlike the classical method, the finite element method is capable of 

solving complex problems. The finite element method uses the standard regular-shaped 

geometrical elements to approximate complex structural problems. Often, this is the only 

possible method to obtain solutions from complex problems, such as the one in this 

thesis. 
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3.2.1 Equation of Motion 

The basic types of motion in a dynamic system are displacement u and the first 

and second derivatives of displacement with respect to time. These derivatives are 

velocity and acceleration given as, 

du 
u= — = V = Velocity 

dt y 

u =• 
d2u 

~dtr = a = Acceleration 

(3.153) 

(3.154) 

The simplest way to derive the equation of motion of dynamic system is to consider a 

single degree-of-freedom model shown below. 

m = mass 
c = damping 
k = stiffness 
P = applied force 
u = displacement 

/ 7 / / V 

Figure 3.6: Single degree-of-freedom model 

Newton's second law is applied to the model shown above. Summation of the force in 

vertical direction allows, 

t ] T F = mw (3.155) 

Pit) -ku-cu = mix 

Rearranging the above equation, 

mix + cu + ku = P(t) 

(3.156) 

(3.157) 
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This is the equation of motion for the SDOF system. Similarly, the equation of motion 

for the multiple degree-of-freedom (MDOF) system can be expressed as, 

W i i } + [cKii} + [*Kii}== {P(t)} (3.158) 

where, 

[M] is the mass matrix 

[k] is the stiffness matrix 

[c] is the damping coefficient matrix 

3.2.2 Normal Modes Analysis 

The equation of motion used for the normal modes analysis is the one of 

undamped free vibration, since the natural frequency of the system is not affected by 

loading or damping conditions [14]. Neglecting the damping and the applied force, the 

governing equation of motion becomes, 

[M]{w} + [^]{w} = 0 (3.159) 

To solve an above equation, displacement vector is assumed a harmonic motion. 

{u} = {S}smcot (3.160) 

where, {S} is the eigenvector or mode shape and co is the natural frequency. 

Differentiation of the assumed harmonic solution above is, 

{u} = {s}cDsmto)t (3.161) 

{u} = -{s}co2sma)t (3.162) 

Substituting above equations to the governing equation of motion allows, 
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-a)2[M]{s}sincDt + [k]{s}sma)t = 0 (3.163) 

Simplify above equation to obtain, 

ilk]-co2[M]\s} = 0 (3.164) 

This equation is called the eigenvalue equation and co2 is the eigenvalue. For this 

equation to be true, {s} * 0 must also be true and the determinant of ([k]- G>2[M\) must 

vanish. 

det([k]-o2[M]) = 0 (3.165) 

This is the characteristic equation from which the eigenvalues or co^ can be obtained. 

Corresponding to each eigenvector or mode shape {S}, there exists an eigenvalue that 

must satisfy the characteristic equation. Thus, 

{[k]-co2
n[M]){Sn} = 0 (3.166) 

Each eigenvalue and eigenvector defines a vibration mode of the structure. The solution 

procedures and determination of the eigenvalues and mode shapes (eigenvector) using the 

finite element method is discussed in the next chapter. In addition, brief explanations of 

the eigenvalue extraction methods are presented in the Appendix. 
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Chapter 4 

Finite Element Analysis Procedures 

4.1 Finite Element Modeling Procedures 

Finite Element Modeling (FEM) is one of the most important and probably the 

most difficult step of the analysis. It is essential to use FEM to solve complex and 

practical structural problems.. The modeling process includes the import of geometry 

from CAD program such as CATIA, geometric modification, meshing, examination of 

mesh, and element/material property definitions. 

4.1.1 Importing Geometric Model into Finite Element Modeler 

The blade geometry is transferred from CATIA workbench into MSC.PATRAN, 

one of the most reliable finite element modeling program available today. In order to 

import CATIA model into MSC.PATRAN, geometric model file of CATIA must be 

saved in transferable format, such as IGES (Initial Graphics Exchange Specifications). 

IGES is a neutral file format defined by ANSI for exchange of data across different CAD 

programs [8]. Although PATRAN accepts other formats, such as STEP, VDA, ACIS, 

and many other CAD program formats, IGES has been widely used in the professional 

industry to exchange data.. Therefore, it is the file format used in this thesis. CATIA 

model file can be easily converted to IGES file by "SAVE-AS" option of CATIA 

workbench. This converted file is imported into PATRAN by choosing the "File-Import" 

of PATRAN main menu. Extreme caution should be practice for the setting of global 

model tolerance. The global model tolerance sets a minimum distance between separate 

points, curves, surfaces, and solid. If entities are located within this tolerance from each 
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other, PATRAN sees the entities as one. On the other hands, the large tolerance may 

cause a gap between two connected entities. The selection of a proper global model 

tolerance is extremely critical, as one may observe. Therefore, it is generally a good 

engineering practice to utilize a 0.05 percent model tolerance with respect to the 

maximum size of the model. For this thesis, 0.05 percent model tolerance is 

approximately equivalent to 0.0021 m for the blade length of 4.137 m. The imported 

blade model is shown in Figure 4.1. 

Figure 4.1 Imported blade model 
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4.1.2 Geometric Modification 

In most cases, an imported geometric model requires modifications. Geometric 

models are not always prepared in CAD system with the consideration to analyze them 

later using finite element programs. Therefore, it must be modified to remove extraneous 

detail, to construct missing entities, and to reconstruct geometries for any distortion. 

IGES format is extremely broad standards that include many different types of geometric 

data and not all entity types in IGES are supported by PATRAN. This result in 

incomplete geometries, such as curves being translated as a series of points, or a regular 

solid being represented by its boundary surfaces. This model distortion must be repaired 

before any further actions can be performed. In the case of the blade model shown in 

Figure 4.1, each edge of the model must be matched with adjacent surfaces using "Edge-

Match" function of PATRAN to close gaps between edges that opened during the 

importing process. In addition, PATRAN does not recognize the solid entities of IGES 

format. Therefore, solid model of the blade must be reformed by specifying the closed 

surfaces to form a boundary represented solid. 

The blade model, shown in Figure 4.1, is not a topologically congruent model 

and, thus, it must be modified. Topological congruency is a prerequisite for creating a 

valid finite element model because it assures that all regions of the model geometry can 

be made into one connected entity during the element generation process. To be 

topologically congruent, the model must meet the following requirements. 

• Adjacent regions of geometry share matching boundaries and vertices. 

• The geometric components form a closed surface or solid region. 
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• There is no overlap between adjacent regions. 

When edges of two adjacent regions are congruent, the same number of edge nodes 

will be created for each region at the boundary. This guarantees the formation of 

continuous elements along all boundaries of the model and no free-edges would be 

present. 

In addition to ensuring the topological congruency, extra or unnecessary features of 

model must be removed for many reasons. The protruding shapes (two small 

attachments) at the mid-section of the blade must be removed and represented as a 

concentrated mass. This is done ,first to maintain the topological congruency, second to 

avoid concentration of mesh density, and third to eliminate small angles at small features. 

The bottom part of the blade is not necessary for the analysis and can be removed for 

simplification, since it is fixed to the fan/compressor rotor in the real case. The modified 

model of the blade is shown in Figure 4.2. 
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Figure 4.2: Modified blade model 

4.1.3 Meshing of the Blade 

The finite element method solves the problem by dividing the complex model into 

an assembled group of finite elements or small-interconnected pieces, commonly referred 

to as a mesh. The generation of meshes or "meshing" is performed semi-automatically 

using the "mesh" function of PATRAN. The solid model is generally subdivided into 

meshable sections and each section is carefully meshed using tetrahedron topology. The 

tetrahedron topology is utilized because of its conformability to complex shapes, 

although the computational speed may not be as fast as hexahedron topology. The mesh 

density must be chosen carefully to avoid the element overlapping and to avoid free-

edges. The meshed finite element model is shown in Figure 4.3. 
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Figure 4.3: Meshed blade model 

4.1.4 Blade Material Property, Element Property, and Constraint Definition 

After completing the meshing process, the geometric property, material property, 

and the constraints for each element should be defined. Generally, the material property 

must be defined first. The fan blade is made of titanium alloy, as mentioned previously. 

In this thesis, SI unit is utilized throughout. Following material properties are supplied to 

PATRAN. 

• Modulus of Elasticity (E) = 113.8 GPa 

• Modulus of Rigidity (G) = 42.1 GPa 

• Mass Density (p) = 4430 Kg/m3 

• Poisson's Ratio (o) = 0.342 
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The "Property" function of PATRAN defines the property of each mesh. The 

blade model consists of tetrahedron meshes and they must be defined as tetrahedron solid 

elements. Finally, load (if necessary) and boundary conditions must be applied to the 

model. For free vibration analysis, no loads are necessary. PATRAN has option of 

applying nodal constraints to geometric regions, instead of applying to each individual 

node. This is a useful function because some nodal constraints must be applied to certain 

regions or surfaces and it may not be practical to apply the boundary conditions to each 

single node. Since it is assumed that the blade is fixed to the fan/compressor rotor, any 

translations and rotations are constrained at the blade root. 

4.1.5 Mesh Examination and Remeshing 

After all the modeling processes are complete, the FE model must be examined 

for proper element symmetry and nodal connectivity to ensure the sound and accurate 

analysis results. The examination of mesh is generally performed in several different 

steps. The first step is to check the nodal connectivity of each element by visually 

observing the mesh for any free edges. The free edge is the portion of element that is not 

connected to adjacent elements. Although solver is capable of running an analysis of a 

model with free edges, resulting discontinuity of elements may cause an erroneous 

solution. Free edges and discontinuous nodes become clearly visible by using "Element-

Verify" option of PATRAN. Then, the model must be equivalenced to join 

discontinuous nodes and to eliminate free edges. If free-edges can be eliminated, the 

meshing process was not successful and must be remeshed using different mesh sizes and 

density. In addition to the visual examination, the element shape test must be performed 
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using the PATRAN's automatic testing function. PATRAN checks each element for an 

aspect ratio, which is the maximum value of dimensional ratio of the opposing edges or 

faces. The aspect ratio implies the skewness of the elements. The shape of the element is 

extremely critical, since it is known that finite element analysis provides more accurate 

solutions when the aspect ratio is close to one. If too many elements in the model have 

high skewness and the aspect ratio is above the threshold value, then the model may have 

to be meshed for better shape and symmetry, using different mesh size and density. 

4.2 Finite Element Analysis 

After finite element modeling, the analysis file that contains finite element model 

data is submitted to the solver for the analysis. PATRAN has the capability of creating 

several format of analysis file that can be utilized by ABACUS, ANSYS, NASTRAN , 

and many other analysis codes [8]. The solver used for this thesis is MSC.NASTRAN 

2001 Enterprise. 

4.2.1 Creating Analysis File 

First, PATRAN must create an analysis file called, "bulk data file." The bulk data 

file constraints all the information required for NASTRAN to perform an analysis. This 

file can be created by the "Analysis" option of PATRAN. Within this option, there is a 

sub-option called, "Solution type." Here, the solution type should be set to the "Normal 

Mode" for a modal analysis. In addition, the translation parameter must be set for 

NASTRAN to provide "xdb" file back. The bulk data file should appear as 

"jobname.bdf' in the same location where the model file is present. 
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4.2.2 Running Analysis 

NASTRAN program is opened either using terminal commands or choosing 

PATRAN Windows icon. The bulk data file created by PATRAN is submitted to 

NASTRAN. After submitting an analysis file, NASTRAN begins analysis and, upon 

completion of the analysis, several output files including the one with xdb extension will 

be obtained. This xdb file contains all the results requested by PATRAN. 

4.2.3 Importing and Obtaining Results 

The xdb file must be imported to PATRAN to see a result. PATRAN reads xdb 

file when an option, "Analysis-Attach XDB," is chosen. Then, solutions of modal 

analysis can be obtained by choosing, "Result" option. First ten natural frequencies will 

be listed in the result case box and the mode shapes can be observed graphically by 

choosing a desired mode from the box. 
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Chapter 5 

Results 

5.1 Analytical Solution 

The analytical methods presented in this thesis are the Bernoulli-Euler beam 

method, Timoshenko beam theory, Rayleigh's method, Rayleigh-Ritz method, and two-

dimensional flat plate method. First, following measurements are taken from the actual 

blade. 

• Middle section width (W) = 0.1354 m 

• Root-to-tip length of the blade at mid-section (L) = 0.3440 m 

• Maximum thickness at the blade bottom (Tm^_b) = 0.0155 m 

• Minimum thickness at the blade bottom ( T ,) = 0.0062 m 
^ nun—b ' 

• Maximum thickness at the blade middle ( TmaK_m) = 0.0073 m 

• Minimum thickness at the blade middle ( 2 ^ ^ ) = 0.0035 m 

• Maximum thickness at the blade top ( 7 ^ , , ) = 0.0040 m 

• Minimum thickness at the blade top ( 7^ . , ) = 0.0020 m 

• Concentrated mass (m) = 0.05316kg 

• Distance to the concentrated mass from the blade root (lm) = 0.22 m 

Following material properties are given. 

• Modulus of elasticity (E) = 113.8 GPa 

• Modulus of Rigidity (G) = 42.1 GPa 

• Mass density (p ) = 4430 kg/m3 
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• Poisson's ratio (u) = 0.342 

5.1.1 Bernoulli-Euler Beam Method 

In order to apply the Bernoulli-Euler method, the blade has been idealized as a 

cantilever beam with a uniform thickness throughout its length. First, it is necessary to 

calculate the average thickness at the blade root, 

r - - r ~ ;r"-'=aoi55;°-0062=o.oio85M 

At the middle, 

r — - T""- lT"-" - ° 0 0 7 3 ; 0 0 0 3 5 = 0.0054W 

At the top, 

r _ = ^ - , ^ M „ , = 0.0040^0.0020 = 0 0 Q 3 0 m 

Then, the average thickness of the blade is obtained as, 

T _ Tave.b+Tave_m +Tave_t _ 0.01085 + 0.0054 + 0.0030 __ 
3 3 

This value, Tave = 0.0064/w, has been used to represent the beam thickness. Therefore, 

the cross-sectional area of the beam is, 

A = TaveW = (0.0064)(0.1354) = 0.0008124m2 

The moment of inertia for rectangular beam is, 

/ = — WT3
ve =—(0.1354)(0.0064)3 =2.958xl0"9m4 

Using the frequency equation, Eq.(3.49), determine first three natural frequencies, 

_ (NL)l EI. 
L2 "ipA n T2 
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Where, eigenvalues are determined previously as (NL\ =1.8751, (NL)2 =4.6941, and 

(NL)3 = 7.8548. For first natural frequency, 

a =(NLl f£T_ 1.87512 (H3.8xl09)(2.958xl0-9) rod 
1 L2 \pA 0.3442 \ (4430)(0.0008124) ' s 

„ cox 287.35 
R =—L = 

2;zr 2K 

45.73Hz 

Similarly, 

_ (NL)l IEF_4.694l2 | (H3 .8x l0 9 ) (2 .958x lO- 9 ) = i 8 o o 8 2 ^ 
<°2= T2 L2 yjpA 0.3442 'y (4430) (0.0008124) 

_ co2 _ 1800.82 
2 ~ In ~ 2n 

286.61/fe 

Finally, 

6>3 = 
(JVX)2 p T = 7.854S2 (H3.8xl09)(2.958xlQ-9) 5 rod 

L2 \pA 0.3442 \ (4430) (0.0008124) ' s 

co3 _ 5042.39 
2;r 2;r 

802.52#z 

Mode 

1 

2 

3 

Frequency 

45.730 Hz 

286.61 Hz 

802.52 Hz 

Vibration Type 

Transverse 

Transverse 

Transverse 

Table 5.1: Summary of the Bernoulli-Euler solution 
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It should be noted that natural frequencies obtained are valid only for the 

transverse vibration, since there are no consideration given for torsional behavior of the 

beam. The concentrated mass is not considered in this analytical method. In addition, 

the averaged thickness of the beam is much smaller than the root thickness of the actual 

blade. This may alter the beam to be more flexible than the actual blade and result in 

lower natural frequencies. Nevertheless, the finite element solution should have a natural 

frequency close to that of the analytical solution obtained using the Bernoulli-Euler 

method. 

5.1.2 Solution of the Timoshenko Beam Theory 

The Timoshenko Beam theory is used to correct the Bernoulli-Euler solution for 

errors due to the rotary inertia and the shear deformation. In this thesis, the graphical 

approach was utilized. In order to utilize a graph shown in Figure 3.3, ratio of the radius 

of gyration to the length of beam must be determined first. 

2 - 9 5 8 * 1 0 " =0.0055 
V AL2 \ (0.0008124)(0.344)2 

Since the ratio is very small, it is obvious that the effect of shear deformation and 

rotary inertia to the transverse vibration of the beam is negligible. This can be observed 

in Figure 3.3 that the correction factors are almost unity or equal to one. Therefore, 

Timoshenko beam theory proves that Bernoulli-Euler solution obtained in this thesis is 

accurate without the consideration of rotary inertia and shear deformation. 

5.1.3 Solution of the Rayleigh's Method 

Rayleigh's method can only be used to predict the fundamental frequency of the 

beam, but it is capable of analyzing more complex beam model. Unlike Bernoulli-Euler 
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method, it is an approximate method and the blade can be modeled as a tapered beam 

with concentrated mass. The calculation and results are shown below. First, the average 

thickness at the blade root and at the top of the blade must be determined. 

r _ = W,^„„.t = 0.0155,0.0062 = 0 0 1 0 8 5 w 

2 2 

Apply those values with geometric and material properties to Eq.(3.93), 

EWL 

co = 

3 1 1 
r 3 -~-T2 (T -T )±-T (T -T V+ — (T -T V 

ave-b /-) ave-b V ave-b ave-t) ~ ave-b \ ave-b ave-ts A \ ave-b ave-t/ 

3pWL5 -T - — (T -T ) 
^ ave-b /r ^ ave-b ave-t J 

+ lmC 

(l 13.8 xlO9) (0.1354)(0.344) (0.01085)3 - - (0.01085)2 (0.01085 - 0.003) + - 0.01085(0.01085 - 0.003)2 + - (0.01085 - 0.003)3 

: 2 3 4 

1 3 (4430) (0.1354) (0.344)5 - (0.01085) - - (0.01085 - 0.003) 
.5 6 

+ 3(0.05316)(0.22)4 

1245.14 o n o ACrad 
co = J = 398.45 

V 0.007843 s 

F = 
CD _ 398.45 
In 2K 

63A2Hz 

Mode Natural Frequency Vibration Type 

63.420 Hz Transverse 

Table 5.2: Summary of the Rayleigh's method solution 

As one may have noticed, the linear taper of the model assumed for this method may 

have resulted in "over-stiffened" analysis model. Since the thickness of the actual blade 
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exponentially tapers from root to tip (actual blade is thinner), the natural frequency 

obtained by Rayleigh's method is essentially higher than that of an actual blade. 

Although this may be the case, the finite element solution should have a fundamental 

natural frequency close to the one obtained using Rayleigh's method. 

5.1.4 Rayleigh-Ritz Method 

Rayleigh-Ritz method is considered as a one of the most reliable approximate 

method for the dynamic analysis of beams. Like Rayleigh's method, this method can 

handle more complex model, consisting of tapered beam and concentrated mass. The 

greatest advantage of this method over its predecessor is its capability to determine 

higher natural frequencies. The calculation for first two natural frequencies and its 

solution is shown below. 

Four roots of the frequency equation are derived as, 

J-2V(Z-4z2-4VY) J J-2F(Z + Vz2-4*T) 
±-* and ± -

2V 2V 

where, 

V = MnM22-Ml2M2l 

Z = knM2x + k21Ml2 - knM22 - k22Mu 

Y = kuk22 — k2lkl2 

The total mass and stiffness matrices are given in Eq.(3.122) to Eq.(3.124) and 

Eq.(3.128) -Eq.(3.130) respectively as follows. 

Mn = PWL^T^-5T^Kmi: 
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MX2 =M2X = PWL6^e-b-^ave_t)+mlS 
12 21 ^ 

Mi2 = PWL\Tave_b-lTave_t) 
22 56 

, _ EWL(Tave_t + Tave_b)[Tave_b -Tave_t j 

12 

, _ , _ EWL \Tave.b + 2Tave_bTave_l + 3Tave_bTave_t + 4iave_, j 

, _ EWL3(7j_, +3T2
ve_bTave_t +6Tave_bT

2
ve_, + 1 0 2 ^ ) 

* 2 2 " 20 

Since all the constants of stiffness and mass matrix are known, the above equations can 

be computed. The total mass matrix is determined as follows. 

Mu = 0.002614269914 

MX2 =M2X = 0.0007101590714 

M22 = 0.0002004974030 

Now, the stiffness matrix must be determined. 

*,, = 775.2497398 

kx2=k2X= 217.3995520 

k22 = 100.1297737 

Determine the coefficients of the frequency equation, 

F = 1.98284218xl0"7 

Z = -0.1084252864 

Y = 30363.0158 

Finally, roots of the frequency equation can be determined, 
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^-2(l.98284xl0-7)(-0.1084253-^(-0.1084253)2-4(l.98284xl0-7)(30363.0158) 

2 (l .982843 xlO-7) 

and, 

+ 
^-2(l.98284xl0-7)(-0.1084253 + ^(-0.1084253)2-4(l.98284xl0-7)(30363.0158) 

2 (l .982843 xlO-7) 

The above root equations are evaluated as, 

-2274.227,2274.227, -544.199, 544.199 

Taking only positive real roots, following solutions are obtained. 

c A A 1 1 n m d 

co, =544.119 

f> = 
544.119 

2n 
86.599/fe 

co2 = 2274.227 
rad 

fi = 
2274.227 

2n 
361.95ife 

Mode 

1 

2 

Natural Frequency 

86.599 Hz 

361.95 Hz 

Vibration Type 

Transverse 

Transverse 

Table 5.3: Summary of the Rayleigh-Ritz solution 

The Rayleigh-Ritz solution did not match well with other solutions. This is due to 

the fact that only two terms are used in the infinite series to assume the mode shape. In 
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order to obtain more accurate solution, the number of terms in mode shape function must 

be increased. 

5.1.5 Two-Dimensional Plate Method 

So far, all the analytical solutions are obtained with an assumption that the blade 

can be represented as a beam and the torsional motion is negligible. While this 

assumption is valid for a slender object, the presence of torsional modes should not be 

neglected for many cases. Therefore, more accurate results can be obtained by 

considering the blade as a two-dimensional plate. Using Eq.(3.152), natural frequencies 

of the cantilever plate can be determined. The frequency equation is derived as, 

^ a2\\2p(l-u2) 

Consider that the plate has constant length, thickness, and width. Then, 

a = L = 0.344m 

h = Tave= 0.0064m 

Where, X2 is the eigenvalues that were determined previously and listed in Table 3.1. In 

order to find an eigenvalue for a particular plate geometry, the length-width (a/b) ratio 

must be known. The length-width ratio is found to be, 

a = Z = _ 0 3 4 4 _ = 2 5 4 1 s 2 5 

b W 0.1354 

By observing, the Table 3.1 for X2 with - = 2.5, following X2 can be obtained. 

X? =3.406 X\ =17.58 X] =21.24 X] =56.14 

X] =59.72 X2 =104.3 A] =117.1 X\ =143.4 
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Using all the values obtained, the natural frequencies can be determined. 

co, = 
Eh2 3.406 |(H3.8xl09)(0.0064)2

 =1%6%lrad_ 

a2 ^\2p{\-v2) (0.344)2 ^ 12(4430)(l-0.3422) 

„ co. 286.81 
Fl=—L = 

2n 2K 
45.65 Hz 

F2 = WH 17.58 
3.406 

(45.65) = |235.61ife 

^ 3 = 

(^ 

\K J 
W)-l ^11(45.65), 

3.406 Jv ; 284.66#z 

4 U. WH 56.14 
3.406J 

•](45.65)= 15239Hz 

2 A 

U2 W)= 
59.72 
3.406 

(45.65) = |800.37#z 

F6 = 
{X2^ 

K W)H 
V'1! / 

104.3 
3.406 

(45.65) = [l397.84/fe 

F,= '$K fm.i 
v 3.406, 

(45.65) = |1569.39ifc 

Fs = 
\% J 

WH 
' 143.4 ̂  
3.406. 

(45.65) = 11921 MHz 

The summary of results is shown below. 
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Mode 

1 

2 

3 

4 

5 

6 

7 

8 

Natural Frequency 

45.650 Hz 

235.61 Hz 

284.66 Hz 

752.39 Hz 

800.37 Hz 

1397.8 Hz 

1569.4 Hz 

1921.9 Hz 

Vibration Type (n,m) 1 

1st, Transverse (1,1) 

1st, Torsional (1,2) 

2nd, Transverse (2,1) 

1st, Transverse/Torsional (2,2) 

3rd, Transverse (3,1) 

2nd, Transverse/Torsional (3,2) 

4th, Transverse (4,1) 

3rd, Transverse/Torsional (4,2) 

Table 5.4: Summary of the analytical two-dimensional plate solution 

As of BemouUi-Euler method, this two-dimensional plate method uses a model 

having an averaged thickness at the root. In other words, the plate model is more 

flexible than the actual blade. Therefore, one can expect the result obtained by this 

method to be lower than that of the actual blade. Even if that is the case, valid finite 

element solution should still be similar to the analytical two-dimensional plate solution 

shown above. 

5.2 Finite Element Solution 

Finite element solutions are obtained for several different models that 

approximate the actual blade geometry. The first model is a straight plate with a 

concentrated mass. The next model is the tapered solid model with a concentrated mass. 

The last model is the actual blade model with concentrated mass. 
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5.2.1: Plate Finite Element Solution 

The straight flat plate model is consisting of four-node quadrilateral plate 

elements (QUAD4) with material properties of titanium ( E= 113.8 GPa, G= 42.1GPa, 

u= 0.342, p = 4430 kg/m3) and a point mass element that represents the concentrated 

mass of 0.05316 kg is placed at 0.22 m from the bottom. Each of those QUAD4 plate 

elements has uniform thickness of 0.0064 m, length of 0.344 m, and width of 0.1354 m. 

Since the analytical plate methods presented previously uses the same model dimensions, 

solutions of the finite element plate method is close to the one obtained previously by the 

analytical plate method. In addition, the same dimensions are also used for the Bernoulli-

Euler method. Therefore, this finite element plate model provides the result similar to the 

one obtained by Bernoulli-Euler method for the transverse vibration. Summary of the 

comparison is shown below. 

Analytical Plate Solution 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

Freq. (Hertz) 

45.650 

235.61 

284.66 

752.39 

800.37 

1397.8 

1569.4 

1921.9 

Vibration Type 

1st, transverse 

1st, torsional 

2nd, transverse 

1st, transv/Torsion 

3rd, transverse 

2Dd, transv/Torsion 

4th, transverse 

3rd, transv/Torsion 

Plate FEA Solution 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

Freq. (Hertz) 

42.457 

216.68 

263.15 

684.50 

734.38 

797.10 

1247.4 

1424.7 

Vibration Type 

1st, transverse 

1st, torsional 

2n , transverse 

1st, transv/torsion 

3rd, transverse 

1st, chordwise 

2nd, transv/torsion 

4th, transverse 

Table 5.5: Comparison between the analytical plate solution and the plate FEA solution 
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The table clearly reveals that the vibration behavior of the finite element plate is 

close to the analytical plate solution. For first to fifth modes of vibration, natural 

frequencies and the vibration types of the finite element plate resembles the one of 

analytical plate. The large difference can be observed in the sixth mode. One can 

observe that the sixth mode of finite element solution is the chordwise vibration mode 

that cannot be determined by analytical methods. In other words, the chordwise vibration 

mode is skipped in the case of the analytical plate method. Thus, the seventh mode of 

finite element plate and the sixth mode of analytical reference coincide as shown in the 

table. Consequently, the eighth mode of the plate is close to the seventh mode of 

analytical reference. The finite element plate solution is proven accurate and can be used 

for the comparison with the blade finite element solution. 

5.2.2 Finite Element Solution of Tapered Solid Model 

The tapered solid model consists of ten-nodes tetrahedron solid elements 

(TET10). Each of those solid elements is given the material properties of titanium alloy. 

Tapered thickness of this solid model varies linearly from 0.1085 m at the bottom to 

0.003 m at the top. In addition, the point mass element represents the concentrated mass 

of 0.05316 kg placed at 0.22 m from the root. Since the same dimensions are used for the 

computation of approximate analytical solutions, the natural frequencies obtained from 

the finite element tapered solid model should be close to the one obtained from 

Rayleigh's method. This similarity should be valid only for the transverse vibration 

modes, since the approximate method neglects the presence of torsional vibration. 

Summary of the comparison is shown below. 
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Rayleigh's Method Solution 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

1 

Freq. (Hertz) 

63.420 Hz 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

j N/A 

Vibration Type 

1st, transverse 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

Tapered Solid FEA Solution 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

1 

Freq. (Hertz) 

61.855 

258.74 

278.34 

652.01 

692.08 

1056.6 

1283.8 

1360.2 

Vibration Type 

1st, transverse 

1st, torsional 

2nd, transverse 

1st, transv/torsion 

3rd, transverse 

1st, chordwise 

2nd, transv/torsion 

3rd, transv/torsion 

Table 5.6: Comparison between Rayleigh's method and the tapered solid FEA Solutions 

Due to the limitation of Rayleigh's method, the comparison can be made only for 

the fundamental frequency. The table clearly reveals that the first natural frequency 

obtained using the Rayleigh's method is almost identical to the one obtained by the finite 

element method. Thus, the tapered solid solution is valid and can be used for the 

comparison with blade solution in the next section. 

5.2.3 Finite Element Solution of the Blade Model 

Finally, the blade model provides the most reliable and accurate solution. As 

mentioned previously, this model consists of ten-node tetrahedron solid elements that 

have material property of titanium alloy. Two protruding attachments of the actual blade 

are represented as a concentrated mass using a point mass element of 0.05316 kg. Since 

there is no analytical solution available to compare with the blade solution, other finite 
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element solutions that were proven previously would be used for the comparison. In the 

table below, comparisons are made with tapered solid model and plate model solutions to 

prove the validity of the blade model solution. 

Plate FEA solution 

Mode 

1 

2 

3 

! 4 

5 

6 

7 

8 

Freq. (Hertz) 

42.457 

216.68 

263.15 

684.50 

734.38 

797.10 

1247.4 

1424.7 

Vibration Type 

1st, transverse 

1st, torsional 

2nd, transverse 

1st, transv/torsion 

3rd, transverse 

1st, chordwise 

2nd, transv/torsion 

4th, transverse 

Blade FEA solution 

Mode 

1 

2 

3 

4 

; 5 

6 

7 

1 8 

Freq. (Hertz) 

47.685 

227.98 

296.67 

479.56 

983.18 

1179.5 

1585.8 

1660.4 

Vibration Type 

1st, transverse 

2nd, transverse 

1st, torsional 

3rd, transverse 

4th, transverse 

1st, transv/torsion 

2nd, transv/torsion 

3rd, transv/torsion 

Table 5.7: Comparison between the plate FEA and the blade FEA solutions 

As one can observe from the table, the vibration behavior of the finite element 

blade is very similar to that of a plate model. Although the mode sequence is different, it 

is clearly visible that those two solutions share the close similarities. For instance, the 

first three vibration modes are almost the same, except that the second and the third 

modes are switched. The deviation of the blade solution from the plate solution is due to 

the twist of the actual blade. It is physically possible that the blade twist allows the 

chordwise vibration mode to appear as the transverse and/or torsional vibration modes. 
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As a proof, the chordwise vibration mode that is visible for the straight plate model is not 

observable in the case of twisted blade model. Next, the blade solution is compared with 

the tapered solid FEA solution in the table shown below. 

Tapered Solid FEA solution 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

Tab 

Freq. (Hertz) 

61.855 

258.74 

278.34 

652.01 

692.08 

1056.6 

1283.8 

1360.2 

e 5.8: Comparison 

Vibration Type 

1st, transverse 

1st, torsional 

2nd, transverse 

1st, transv/torsion 

3Td, transverse 

1st, chordwise 

2nd, transv/torsion 

3rd, transv/torsion 

L between the taper 

Blade FEA solution 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

ed solid 

Freq. (Hertz) 

47.685 

227.98 

296.67 

479.56 

983.18 

1179.5 

1585.8 

1660.4 

FEA and the blade 

Vibration Type 

1st, transverse 

2nd, transverse 

1st, torsional 

3rd, transverse 

4th, transverse 

1st, transv/torsion 

2nd, transv/torsion 

3rd, transv/torsion 

FEA solutions 

One may observe from the table that the tapered solid solution shares the close 

similarity with the blade solution for the first three vibration modes. As in the case of the 

plate solution, the blade solution deviates away from the tapered solid solution for the 

higher modes due to the twist of an actual blade. Nevertheless, it is appropriate to state 

here that the finite element solution of the blade model is valid and accurate. 
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5.2.4 Close Examination of the Plate Finite Element Solution 

MSC.Patran 2001 r2a 26-Jun-03 14:18:13 

Fringe: SC1 DEFAULT, A1 :Mode 1 : Freq. = 42.457: Eigenvector^ 

Deform: SC1 DEFAULT, A1 :Mode 1 : Freq. = 42 J 

nal-(NON-U\YERED) (MAG) 

tional 

Y 
[0.o:!4Rfirnn=ii 

x 

-1.94-0071 
default_Fringe : 

Max 1.72+000 @Nd 31 
Mm 0. @Nd15 
default_Deformation : 

Ma*1 7? + nnn(aiNH 3ll 

Figure 5.1: Mode 1 of the flat plate model 
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MSC.Patran 2001 r2a 26-Jun-03 1418:25 

Fringe: SC1 :DEFAULT. A1 :Mode 2 : Freq. = 216.68: Eigenvectors, Tronslatgi^-flfl^LAYERED) (MAG) 

Deform SC1 DEFAULT, A1 Mode 2 Freq = 216 6 ^ M n M » r < M | Btional 

Y 

Z X 

o?i4Rficnn=i,i 

2.15+000 

2.01+000 

1.87+000 

1.72+000 

1.58+000 

1 43+000 

1.29+000 

1.15+000 

1.00+000 

8.61-001 

717-001 

574-001 

4.30-001 

2.87-001 

1.43-001 

2.98-0081 
default_Fnnge : 

Max2.15+000@Nd1 
Min 0. @Nd15 
default_Deformation: 

Max ? 15+000 (3)Nnl 1 I 

Figure 5.2: Mode 2 of the flat plate model 
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MSC.Patran 2001 r2a 26-Jun-03 14:18:48 

Fringe: SC1 DEFAULT, A1 :Mode 3 : Freq. = 263.15: Eigenvectors, fr|apfl$tpnal-(NON-LAYERED) (MAG) 

Deform: SC1 DEFAULT, A1 :Mode 3 : Freq. = 2 6 ^ fi _ ) • ; 1 _|t ional 

Y 
b?34c,firnn=n 

X 

-1.94-0071 
default_Fringe: 

Max 1.71+000 @Nd 31 
Min 0. @Nd15 
default_Deformation: 

M**1 71+nnnf5)Nd3ll 

Figure 5.3: Mode 3 of the flat plate model 
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MSC.Patran 2001 r2a 26-Jun-03 14:19:12 

Fringe: SCI DEFAULT, A1 :Mode 4 : Freq. = 684.5: Eigenvectors, TransIatiergajffilQ^(LAYERED) (MAG) 

Deform: SC1 DEFAULT, A1 :Mode 4 : Freq. = 68<1 E f i v M B s T r S I l o n a l 

Y 

Z X 

l0?345fi(nn=i'i 

2.39+000 

223+000 

2.07+000 

1.91+000 

1.75+000 

1.59+000 

3.58-0071 
default_Fringe : 

Max 2.39+000 @Nd 1 
Mm 0. @Nd15 
default_Deformation : 

Max ? 39+nnn <"3)Nd 1 I 

Figure 5.4: Mode 4 of the flat plate model 
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MSC.Patran 2001 r2a 26-Jun-03 14:19:22 

Fringe: SC1 DEFAULT, A1 :Mode 5 : Freq. = 734.38: Eigenvfc^^(i)fflislational-(NON-LAYERED) (MAG) 

Deform: SC1 DEFAULT A1 Mode 5 : Freq. = 7 3 i H U Blional 

H fo?34RfiOT)*1^ 

-1.94-0071 
default_Fringe : 

Max 174+000 ©Nd 46 
Mm 0. @Nd15 
default_Deformation . 

M R * I 74+nnn(aNH4ri 

Figure 5.5: Mode 5 of the flat plate model 

69 



MSC.Patran 2001 r2a26-Jun-03 14:19:34 

Fringe: SC1 DEFAULT, A1 :Mode 6 : Freq. = 797.1: Eige^ 

Deform: SC1 DEFAULT, A1 :Mode 6 : Freq. = 797.1: Eig, 

Translational-(NON-LAYERED) (MAG) 
1.66+000 

Y 
K)?345ficnn=n 

1.66+000 

1.55+000 

1.44+000 

1.33+000 

1.22+000 

1 n+oool 

997-001 

2.24-0071 
default_Fringe : 

Max 1.66+000 @Nd 1 
Mm 0. @Nd15 
default_Deformation : 

Mav1 fifi+nnn(SNrt 1 I 

Figure 5.6: Mode 6 of the flat plate model 
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MSC.Patran 2001 r2a 26-Jun-03 14:19:46 

Fringe: SC1 DEFAULT, A1 :Mode 7 : Freq. = 1247.4: Eigenvectors, Trans I atigr^-ftflflfr LAYERED) (MAG) 

Deform: SC1 DEFAULT, A1 :Mode 7 : Freq. = 1 Z 0 K J ^ r t m m ^ l % M & o n o l 

Y 

Z X 

?345ficnn=n 

2.61+000 

2.44+000| 

2.27+000 

2.09+000 

1.92+000 

1 74+000| 

2.09-0071 
default_Fringe : 

Max2 61+000@Nd1 
Min 0. @Nd15 
default_Deformation: 

Mfix?fii+nnnONrn I 

Figure 5.7: Mode 7 of the flat plate model 
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MSC.Patran 2001 r2a 26-Jun-03 14:19:55 

Fringe: SC1 DEFAULT, A1 :Mode 8 : Freq. = 1424.7. Eigenvector^ 

Deform: SC1 DEFAULT, A1 :Mode 8 : Freq. = 14§^ 

Y 

Z X 

slational-(NON-LAYERED) (MAG) 

tional 

S9?345R^nn=ii 

-2.38-0071 
default_Fringe : 

Max 1.95+000 @Nd 46 
Mm 0. @Nd15 
default_Deformation : 

Max1 95+000 (5>NrJ 4fJ 

Figure 5.8: Mode 8 of the flat plate model 
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The first natural frequency of this model is 42.457 hertz and the mode shape is 

dominantly transverse as shown in Figure 5.1. No nodes are present for the first 

transverse mode, since there is no location where the mode shape intersects the zero 

displacement line. As one may notice, the value of natural frequency obtained from this 

finite element analysis is very close to the one obtained from Bernoulli-Euler method and 

analytical plate method as predicted previously. 

The second natural frequency is found to be 216.68 hertz and the mode shape is 

dominantly torsional. Since it is the first torsional mode, the single node is present at the 

center of the plate along the length. The node location is ranging from 0.0542 m to 

0.08138 m from either plate edges and it can be observed in Figure 5.2 as a single black 

line. The second natural frequency obtained from this analysis is similar to the one 

obtained from analytical plate method. 

The third natural frequency is 263.15 hertz and the mode shape is dominantly 

transverse as shown in Figure 5.3. This natural frequency is similar to the one obtained 

from Bernoulli-Euler and analytical plate methods. One node can be seen as a single 

black line across the plate width at approximately two-third of the length from the plate 

bottom. The exact measurement shows that it is located approximately 0.2794 m from 

the bottom. 

The fourth mode of vibration exhibits both transverse and torsional characteristics 

and the natural frequency is found to be 684.50 hertz. Two nodes can be observed in 

Figure 5.4 as a black line across the plate width and a dark red line along the plate length. 

Since it is the combination of second transverse and first torsional modes, it can also be 

interpreted in the two dimensional notation as<y21. The transverse node is located 
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approximately 0.254 m from the fixed bottom and the torsional node is ranging from 

0.05425 m to 0.08138 m from either plate edge. 

The fifth mode of vibration is dominantly transverse and its natural frequency is 

734.38 hertz. It has two nodes as shown in Figure 5.5. The first node is located at 0.1778 

m from the bottom and shown as a single black line across the plate width. The second 

one is located at 0.3048 m from the bottom and similarly shown as a black line. 

The sixth mode of vibration has a characteristic of both chordwise (lateral) and 

transverse vibrations. Since the mode shape does not intersect the zero displacement line, 

no nodes are present. As mentioned previously, this vibration mode is not depicted in 

any analytical solutions due to the fact that consideration of chordwise motion is 

neglected for all the analytical method utilized in this thesis. 

The seventh mode of vibration exhibits both transverse and torsional 

characteristics. The natural frequency is 1247.4 hertz and three nodes, two transverse and 

one torsional, are present. The first transverse node is located at approximately 0.1524 m 

to 0.1778 m from the plate bottom. The second transverse node is located at 0.2794 m to 

0.3048 m from the bottom. The torsional node is located at the center along the plate 

length and ranging from 0.05425 m to 0.08138 m from either plate edge. 

The eighth mode of vibration is dominantly transverse and has three nodes. The 

first node is located at 0.1270 m from the bottom and it is shown as a black line. The 

second node is at 0.2286 m and it can be seen as a red line with black spots. The third one 

is at 0.3302 m and it is shown as a yellow line with red spots. 
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Close Examination of the Tapered Solid Finite Element Solution 

MSC.Patran 2001 r2a 17-May-03 20:05:49 

Fringe: SC1 DEFAULT. A2:Mode 1 : Freq. = 61.855: Eigenvectog.^3ar^)ional-(NON-LAYERED) (MAG) 

Deform: SC1 DEFAULT. A2:Mode 1 : Freq. = 61.8' 

Y -209-0071 
default_Fringe: 

Max 2 33+000 @Nd 89 
Min 0. @Nd 1 
default_Deformation : 

Max 2.33+000 @Nd 89 

Figure 5.9: Mode 1 of the tapered solid model 
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MSC.Patran 2001 r2a 17-May-03 20:06:12 

Fringe: SC1 :DEFAULT, A2:Mode 2 : Freq. = 258.7 

Deform: SCI DEFAULT, A2:Mode 2 : Freq. = 258 

Y 

X 

DTS, Translational-(NON-LAYERED) (MAG) 

nal 

-3.87-0071 
default_Fringe: 

Max 3.66+000 @Nd 700 
Mm 0 @ N d 1 
default_Deformation: 

Max 3.66+000 @Nd 700 

Figure 5.10: Mode 2 of the tapered solid model 
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MSC.Patran 2001 r2a 17-Ma^03 20:06:26 

Fringe: SC1 DEFAULT, A2:Mode 3 : Freq. = 278.34: EigenvertofXg>s4^ional-(NON-LAYERED) (MAG) 

Deform: SCI DEFAULT. A2:Mode 3 : Freq. = 278.S . -HLw=r2^s . .I'J*w*sfir,9l 
: #M--MT)*^' 

«*WM 

Y 

Z X 

2.91+000 

2.72+000 

2.53+000J 

-2.09-0071 
default_Fringe: 

Max 2.91+000 @Nd 89 
Min 0. @Nd1 
default_Deformation: 

Max 2 91 +000 @Nd 89 

Figure 5.11: Mode 3 of the tapered solid model 
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MSC.Patran 2001 r2a 17-May-03 20:06:46 

Fringe: SC1 DEFAULT, A2:Mode A : Freq. = 652.0 

Deform: SC1 DEFAULT, A2:Mode A : Freq. = 652 

:ors, Translational-(NON-LAYERED) (MAG) 

1.79-0071 
default_Fringe: 

Max 439+000 @Nd 700 
Min 0. @Nd1 
default_Deformation: 

Max 4.39+000 @Nd 700 

Figure 5.12: Mode 4 of the tapered solid model 
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MSC.Patran 2001 r2a 17-May-03 20:07:05 

Fringe: SC1 DEFAULT, A2:Mode 5 : Freq. = 692.08: Eiqenvecto&fffi^Wftliorial-n JON-LA i ERED) (MAG) 

Deform: SC1 DEFAULT, A2:Mode 5 : Freq. = 692 

Y -3.87-0071 
default_Fringe: 

Max 2.89+000 @Nd 89 
Mm 0. @Nd1 
default_Deformation: 

Max 2.89+000 @Nd 89 

Figure 5.13: Mode 5 of the tapered solid model 
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MSC.Patran 2001 r2a 17-May-03 20:07:20 

Fringe: SC1 DEFAULT, A2:Mode 6 : Freq. = 1056.7: Eige 

Deform: SC1 DEFAULT, A2:Mode 6 : Freq. = 1056.7: Eig 

Translational-(NON-LAYERED) (MAG) 
2.07+000 

Y 

X 

-1.49-0071 
default_Fringe: 

Max 2 07+000 @Nd 671 
Mm 0. @Nd 1 
default_Deformation: 

Max 2 07+000 @Nd 671 

Figure 5.14: Mode 6 of the tapered solid model 
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MSC.Patran 2001 r2a 17-May-03 20:07:33 

Fringe: SC1 DEFAULT, A2:Mode 7 : Freq. = 1283 

Deform: SC1 DEFAULT, A2:Mode 7 : Freq. = 128 

300f$tors, Translational-(NON-LAYERED) (MAG) 

tnal 

Y 

4.33+000L 

4.04+OOol 

3.75+OOol 

3.47+000| 

3.18+OOol 

2.89+OOol 

715-0071 
default_Fnnge: 

Max 4.33+000 @Nd 700 
Mm 0@Nd1 
default_Deformation: 

Max 4.33+000 @Nd 700 

Figure 5.15: Mode 7 of the tapered solid model 
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MSC.Patran 2001 r2a17-May-03 20:07:47 

Fringe: SC1 DEFAULT, A2:Mode 8 : Freq. = 1360.2: Eigenvector, 

Deform: SC1 DEFAULT, A2:Mode 8 : Freq. = 1369^2: 

ion al-(NON-LAYERED) (MAG) 

nal 

Y 

X 

5.36-0071 
default_Fringe : 

Max 4.03+000 @Nd 89 
Mm 0. @Nd1 
default_Deformation: 

Max 4.03+000 @Nd 89 

Figure 5.16: Mode 8 of the tapered solid model 
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The first mode of vibration is dominantly transverse and the natural frequency is 

61.855 hertz. It has no nodes as shown in Figure 5.9. As one can observe, the natural 

frequency is similar to the one obtained by Rayleigh method. 

The second natural frequency is 258.74 hertz and the mode shape is dominantly 

torsional. It has a single node at the center of the model along the length shown as a 

lengthwise black line in Figure 5.10. This torsional node is located at approximately 

0.0677 m from either edge of the model. Although Rayleigh and Rayleigh-Ritz methods 

do not provide any solutions for the torsional vibration and they cannot be used for a 

comparison, one can still observe that this torsional natural frequency is similar to that of 

the analytical plate method. 

The third mode of vibration is dominantly transverse and has a single node. The 

transverse node is located at 0.2638 m from the root of the model. This node can be 

observed as a black line across the model width in Figure 5.11. The third natural 

frequency is 278.34 hertz. 

The fourth vibration mode exhibits both transverse and torsional characteristics. 

It has two nodes where one of them is transverse and another one is torsional. The 

transverse node is located at approximately 0.2619 m from the fixed bottom shown as a 

chordwise black line in Figure 5.12. The torsional node is located at the center of the 

model along the length as a lengthwise black line. The measurement shows that this 

transverse node is located at approximately 0.0679 m from either edge. Those two nodes 

together appear on the model as a black "cross." The fourth natural frequency is 

determined to be 652.01 hertz. 
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The fifth mode of vibration is dominantly transverse and the natural frequency is 

determined to be 692.08 hertz. Two nodes are present for this vibration mode, where the 

first node is located approximately 0.1882 m and the second one is located approximately 

0.3029 m from the fixed bottom. Those nodes can be observed in Figure 5.13 as two 

black lines across the model width. 

The sixth vibration mode is characterized with purely lateral vibration and has no 

node, as shown in Figure 5.14. The frequency is 1056.6 hertz and no analytical methods 

can depict this lateral vibration mode, as mentioned previously. 

The seventh vibration mode exhibits both transverse and torsional vibration. The 

natural frequency is 1283.8 hertz and there are three nodes, two transverse and one 

torsional. The first transverse node is located at 0.1759 m and the second one is at 0.2949 

m from the bottom. Those transverse nodes can be seen in Figure 5.15 as black lines 

across the model. Torsional node is located at the center of the model along the length 

and it can be seen as a lengthwise black line. 

The eighth natural frequency is 1360.2 hertz and the mode shape exhibits both transverse 

and torsional vibration. The transverse node can be seen at approximately 0.1368 m from 

the bottom, as shown in Figure 5.16. The "point" node is located at approximately 

0.2767 m from the bottom and 0.071 m from the side. In addition, there is a node that 

appears as a "ring" at the center of the model. This is probably due to the complex 

coupling between torsional and transverse modes of vibration. 
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5.2.6 Close Examination of the Blade Finite Element Solution 

MSC.Patran 2001 r2a 29-Apr-03 21:38:44 

Fringe: SC1 DEFAULT, A1 ;Mode 1 : Freq. = 47.685: Ei 

Deform: SC1 DEFAULT, A1 Mode 1 : Freq. = 47.̂ 85 

Y 

X 

3@M$J)$ Translational-(NON-LAYERED) (MAG) 

anal 

209-0071 
default_Fringe 

Max 2.56+000 @Nd 3179 
Mm 0 @Nd132 
default_Deformation 

Max 2 56+000 @Nd 3179 

Figure 5.17: Mode 1 of the blade model 
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MSC.Patran 2001 r2a 29-Apr-03 21:53:24 

Fringe: SC1 DEFAULT, A1 :Mode 2 : Freq. = 227 

Deform: SC1 DEFAULT, A1 :Mode 2 : Freq. = 227,1.9' 

Y 

ON-LAYERED) (MAG) 

-8.94-0081 
default_Fnnge : 

Max 2.58+000 @Nd 3179 
Mm 0. @Nd132 
default_Deformation: 

Max 2.58+000 @Nd 3179 

Figure 5.18: Mode 2 of the blade model 

86 



MSC.Patran 2001 r2a 29-Apr-03 21:54:49 

Fringe: SCI DEFAULT, A1 :Mode 3 : Freq. = 296.87, 

Deform: SC1 DEFAULT, A1 :Mode 3 : Freq. = 296,1. 

Y 

Traditional 

al-(NON-LAYERED) (MAG) 

-447-0071 
default_Fnnge: 

Max 3.52+000 @Nd 3179 
Min 0. @Nd 132 
default_Deformation: 

Max 3.52+000 @Nd 3179 

Figure 5.19: Mode 3 of the blade model 
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MSC.Patran 2001 r2a 29-Apr-03 21:56:31 

Fringe: SC1 DEFAULT, A1 :Mode 4 : Freq. = 479.96: Ei 

Deform: SC1 DEFAULT, A1 :Mode 4 : Freq. = 479,156 

Y 

ranslational-(NON-LAYERED) (MAG) 

507-0071 
default_Frmge : 

Max 3.16+000 @Nd 3179 
Min 0. @Nd132 
default_Deformation: 

Max 3.16+000 @Nd 3179 

Figure 5.20: Mode 4 of the blade model 
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MSC.Patran 2001 r2a 29-Apr-03 21:58:12 

Fringe: SC1 DEFAULT, A1 :Mode 5 : Freq. = 983 

Deform: SC1 DEFAULT, A1 :Mode 5 : Freq. = 98 

sQfl̂ RpTS; Translational-(NON-LAYERED) (MAG) 

til 

Y 

X 

4.45+000 

4.15+000 

3.85+000 

6.56-0071 
default_Fringe: 

Max 4.45+000 @Nd 3179 
Min 0@Nd132 
default_Deformation: 

Max 4.45+000 @Nd 3179 

Figure 5.21: Mode 5 of the blade model 
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MSC.Patran 2001 r2a 29-Apr-03 21:59:26 

Fringe: SC1 DEFAULT, A1 :Mode 6 : Freq. = 1179! 

Deform. SC1 DEFAULT, A1 :Mode 6 : Freq. = 117,9 

Y 

X 

Trar%teticjn6l 

i 

l-(NON-LAYERED) (MAG) 

5.43+000 

5.06+000 

4.70+000J 

4.34+000 

3.98+000 

3.62+000 

3.26+000 

2.89+000 

2.53+000 

2.17+000 

1.81+000 

1.45+000 

1.09+000 

723-00l| 

3.62-001 

-1 79-007H 
default_Fnnge: 

Max 5.43+000 @Nd 3179 
Mm 0. @Nd132 
defaultJDeformation: 

Max 5.43+000 @Nd 3179 

Figure 5.22: Mode 6 of the blade model 
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MSC.Patran 2001 r2a29-Apr-03 22:00:58 

Fringe: SC1 DEFAULT, A1 :Mode 7 : Freq. = 
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Figure 5.23: Mode 7 of the blade model 
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Figure 5.24: Mode 8 of the blade model 
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First mode of vibration represents the resonant vibration caused by an excitation 

at the first or fundamental natural frequency. Generally, the resonant vibration due to 

first several natural frequencies causes a highest amplitude displacement and prolonged 

blade operations near those ranges of frequencies should be avoided. The first natural 

frequency of the blade occurs at 47.685 hertz. Therefore, prolonged rotor operation near 

2861 RPM should be avoided. As one may observe from Figure 5.17, the first vibration 

mode of the blade is dominantly transverse. The highest displacement occurs at the tip of 

the blade. In addition, the node does not exist for this mode of vibration due to the fact 

that the first transverse mode never intersects the zero displacement line. As mentioned 

previously, node is the location where the mode shape of vibration intersects the zero 

displacement line. 

Second mode of vibration occurs when the blade is excited by a periodic force 

that has an oscillation frequency near the second natural frequency of the blade. As one 

may observe from Figure 5.18, the second vibration mode is dominantly transverse. In 

addition, the node occurs at approximately 0.3082 m to 0.3152 m from the bottom of the 

dovetail attachment. It should be noted that the slight torsional vibration is in effect and 

the node is not totally displacement-free, although it is the point of minimum 

displacement. For the analysis of the blade model, measurement is taken from the bottom 

of the dovetail attachment, not the blade bottom. Therefore, the length of the bottom 

attachment should be subtracted from the above node location when making comparisons 

with node locations obtained from other models. The second natural frequency of the 

blade is 227.98 hertz and the rotor speed of 13739 RPM can cause the resonant vibration. 
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Third mode of vibration is the result of an excitation at the third natural 

frequency. It is clearly visible from Figure 5.19 that the third vibration mode is 

dominantly torsional. In two-dimensional notation, this mode corresponds to col2, which 

is the first anti-symmetric mode of the blade. Node location is at the center of the blade 

along its length and located approximately 0.0574 m to 0.0654 m from the blade front 

edge. The black line of the contour diagram represents the location where the 

displacement due to the vibration is not present. The third natural frequency of the blade 

is 296.67 hertz and prolonged excitation at 17920 RPM is not recommended. 

Fourth mode of vibration occurs if the excitation frequency is at the fourth natural 

frequency of the blade. The fourth natural frequency of the blade is 479.56 hertz and 

rotational excitation near 28774 RPM should be avoided. In this mode, the blade has two 

nodes at approximately 0.3467 m to 0.3543 m and 0.1927 m to 0.2048 m from the bottom 

of the dovetail attachment. Although this mode characterized with dominantly transverse 

vibration, the small torsional displacement is still present at those node locations. 

Therefore, nodes are not completely displacement-free as in the case of second mode. 

Fifth natural frequency for the blade is 983.18 hertz and the resonant vibration 

may occur at 58991 RPM, which is way above the operational speed of fan/compressor 

rotor. This mode is dominantly transverse and has two nodes. The first node occurs at 

approximately 0.3378 m to 0.3632 m from the bottom of dovetail. The second one 

occurs at approximately 0.2611 m to 0.2803 m and can be seen clearly in Figure 5.21 as a 

black spot. 

Sixth mode of vibration occurs at 1179.5 hertz. The diagram clearly depicts the 

node that represents co22 of two-dimensional vibration. It also shows a coupling between 
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torsional and transverse vibration. The transverse node occurs at approximately 0.3034 

m to 0.3112 m from the bottom of dovetail. The torsional node occurs at the center of the 

blade along its length and located at approximately 0.0.654 m to 0.0703 m for the blade 

front edge. 

Seventh natural frequency of vibration for the blade is 1585.8 hertz and it is high 

enough that vibration due to this frequency is not a concern for the normal blade 

operation. This mode exhibits both torsional and transverse vibration and its natural 

frequency corresponds to co32 in two-dimensional notation. Mode shape is somewhat 

complex and it is difficult to describe them in words. Therefore, the diagram in Figure 

5.23 should be consulted to locate the approximate position of nodes. 

Eighth mode of vibration of the blade occurs at 1660.4 hertz. This mode is a 

combination of torsional and transverse vibration. As one may observe, several nodes are 

available and they can be seen clearly in Figure 5.24 as black lines. 
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Chapter 6 

Conclusion 

The analytical results were obtained using Bernoulli-Euler, Timoshenko, 

Rayleigh, Rayleigh-Ritz, two-dimensional plate, Timoshenko beam methods. In the 

previous chapter, the analytical results were compared with finite element solutions The 

analytical results clearly revealed the validity of finite element solutions. It was observed 

that the beam models (Bernoulli-Euler beam) and two-dimensional plate model compared 

well with the finite element solution of the blade model. The Rayleigh and Rayleigh-Ritz 

methods did not correlate well with the actual blade model due to the fact that the 

thickness of the real blade tapers exponentially, not linearly. However, when the 

Rayleigh's method was compared with the finite element solution of tapered beam (not 

the actual blade model), the valid correlation was established. The solution from 

Rayleigh-Ritz method did not compare well with the tapered model solution either. As 

mentioned previously, the error of Rayleigh-Ritz solution is the result of the insufficient 

terms used in the mode shape function. 

The vibration characteristics of a straight plate determined by the finite element 

analysis closely resembles the plate analytical solution. As one can observe from Table 

6.10, vibration types and natural frequencies of plate finite element solution is extremely 

similar to the analytical reference, except for the chordwise vibration mode that could not 

be depicted by any analytical methods. This close resemblance is due to the fact that the 

plate analytical solution was obtained using the analytical model similar to the plate finite 

element model (in fact, almost identical). 
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The blade model consists of twisted geometric figure, unlike other finite element 

models (straight plate and tapered solid). Due to this difference in the geometric figure, 

the blade finite element solution differs substantially from other finite element solutions 

for some vibration modes. Nevertheless, the blade model shares the similar vibration 

characteristics with the analytical models and other finite element models for majority of 

the cases, as shown in the previous chapter. Therefore, it is concluded that the blade 

finite element solution is valid and accurate. The main objective of this thesis was 

successfully accomplished. 
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Chapter 7 

Recommendation 

7.1 Effect of Blade and Rotor Joints 

In this thesis, the constraint condition of the finite element model at the root of the 

blade is considered as a connection rigidly fixed onto the "wall". In fact, there are other 

considerations that could be made to improve the finite element solution. Generally, 

compressor/fan blade is attached to a rotor disk by joints that the "dovetail" of a blade is 

slided into the "Christmas tree" slots of the rotor disk. Although the joints are tightly 

fixed together when the engine is not in the operation, they may not be as rigid when the 

engine is in the operation [7]. In other words, the coupling stiffness between blades and 

the rotor in service may differ substantially from the rigidly fixed condition. Therefore, it 

may be more proper to assume that blades are "flexibly" fixed to a rotor disk. The 

research on the flexibly fixed constraint for blade/rotor joints was conducted by Jian F 

Hou [7]. In order to simulate the flexibly fixed joints, Hou combined a rotor model and a 

blade model into a single finite element model. Consequently, the interaction between 

blades and the rotor is similar to the behavior of sliding joints with certain stiffness. This 

system interaction altered the problem nonlinear in nature. The research revealed that 

natural frequencies of the system (blade and rotor) are lower than that of the blade alone 

by several percent, depending on the mode of vibration. Unfortunately, at the time of this 

writing, the university did not possess finite element program (solver) that is capable of 

non-linear dynamics analysis in this degree. The recommendation should be made here 

for the future research that nonlinear dynamics behaviors results from this flexibly fixed 
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joint may be important and should be considered instead of assuming the rigidly fixed 

constraint at the blade bottom. 

7.2 Gap Contacts between Blade Attachments 

Previously, the assumption was made that two protruding figures on a blade can 

be considered as a single concentrated mass. In the normal operation of the engine, those 

protruding figures actually serve as attachments between adjacent blades. Since those 

attachments are not rigidly fixed to one another, the finite element model to represent this 

condition must not be a fixed constraint. In addition, each attachment is separated from 

the adjacent one by an extremely small gap. Two adjacent attachments are bumping and 

sliding on each other during the normal engine operation. Therefore, the best 

representation of the interaction between attachments is the combination of gap contacts 

and sliding lines. Although gap contacts and sliding lines can be easily modeled using 

MSC.PATRAN, the dynamics problem involving those movable constraints are nonlinear 

in nature and not solvable by standard MSC.NASTRAN (requires special option) [9]. 

Thus, the problem of this nature is considered beyond the scope of this research project. 

7.3 Forced Vibration Analysis and Computational Fluid Dynamics (CFD) 

The purpose of normal mode analysis performed in this thesis is to determine 

natural frequencies and mode shapes of the compressor/fan blade. Using the natural 

frequencies, the analysis involving the forced vibration can be performed. The forced 

vibration analysis can be subdivided into two categories, frequency response analysis and 

transient response analysis. In frequency response analysis, the excitation is explicitly 

defined in the frequency domain and structural responses to the steady-state oscillatory 
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excitation are computed. The transient response analysis is utilized when the structural 

response to the time-varying excitation is desired. 

In order to perform a forced vibration analysis, nature of the excitation force on 

the blade surface must be known. The most reliable and probably the only method to 

accurately determine the aerodynamic force is the computational fluid dynamics (CFD). 

The force intensity, location, and any types of information regarding the aerodynamic 

pressure being applied to the blade surface can be found using CFD. One of the most 

popular CFD solver available today is FLUENT and the meshing program, GAMBIT. 

The same CAD model (CATIA model) used for PATRAN can also be used by GAMBIT 

to mesh the external space around the blade. Then, FLUENT solver can solve the fluid 

mechanics problem using this external mesh. Since the University has both FLUENT 

and GAMBIT programs, it is probably not a difficult task to perform a CFD on the blade 

model. Therefore, the recommendation should be made here that CFD, instead of 

classical aerodynamics, should be utilized to determined aerodynamic forces. 

7.4 Aerodynamic and Structural Damping 

This research project was performed with an assumption that there are no 

damping effects present in the blade vibration. Although this is a good assumption for 

the free vibration analysis, it may not be sufficient for forced vibration analysis. Two 

major types of damping effects for a rotating blade are the aerodynamic damping and the 

structural damping. Aerodynamic damping results from the interaction between 

aerodynamic forces and the blade motion. Therefore, it can be determined by theory of 

aeroelasticity. Structural damping is the inherent tendency of the blade to reduce the 

intensity of vibration by itself. These damping effects may hold importance in the forced 
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vibration analysis. Therefore, inclusion of aerodynamic and structural damping effects 

can be considered as the future work. 
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Appendix 

Eigenvalue Extraction Methods 

There are several methods of real eigenvalue extraction that can be presented 

here. These methods are numerical approaches to solving for natural frequencies and 

modes shapes. While most of the methods can be applied to all problems, the choice is 

often made based on the efficiency of the solution process [14]. 

The methods of eigenvalue extraction belong to one or both of the following two 

groups. 

• Transformation methods 

• Tracking methods 

In transformation method, the eigenvalue equation is first transformed into a special form 

from which eigenvalue may easily be extracted. In tracking method, the eigenvalues are 

extracted one at a time using an iterative procedure. 

The most popular and recommended eigenvalue extraction method is the Lanczos 

method. The Lanczos method combines the best characteristics of both the tracking and 

transformation methods. For most finite element analysis, the Lanczos method is the best 

method to use for its obvious advantages. Other popular eigenvalue extraction methods 

are shown below. 

• Transformation methods 

• Lanczos method 

• Givens method 
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• Householder method 

• Modified Givens method 

• Modified Householder method 

• Tracking method 

• Inverse power method 

• Sturm modified inverse method 

Al Lanczos Method 

The Lanczos method overcomes the limitations and combines the best features of 

the other eigenvalue extraction methods. It requires that the mass matrix to be positive 

semi-definite and the stiffness matrix to be symmetric. Like the transformation methods, 

it does not miss any roots, but has the efficiency of the tracking methods, because it only 

makes the calculations necessary to find the desired roots. This method computes 

accurate eigenvalues and eigenvectors. Over past few decades, its performance has been 

continually enhanced since its introduction and giving it a great advantage over other 

methods. The Lanczos method is the preferred method for most medium to large size 

problem, since it has a performance advantage over other methods. Therefore, Lanczos is 

the choice of computation method for this research project. 

A2 Givens and Householder Method 

The Givens and Householder modal extraction methods require a positive definite 

mass matrix (all DOF must have mass). There is no restriction on the stiffness matrix 

except that it must be symmetric. These matrices always result in real or positive 

eigenvalues. The Givens and Householder methods are the most efficient method for 
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small problems and problems with dense matrices when large portions of the 

eigenvectors are needed. These methods find all of the eigenvalues and as many 

eigenvectors as desired. 

The Givens and Householder methods fail if the mass matrix is not positive 

definite. To minimize this problem, degree-of-freedom with null columns are removed 

by the application of static condensation. The static condensation process may not be 

able to remove all possible causes of mass matrix singularity, but it greatly improves the 

reliability of the Givens and Householder methods. 

A3 Modified Givens and Modified Householder Methods 

The modified Givens and modified Householder methods are similar to their 

original methods with the exception that the mass matrix can be singular. Although the 

mass matrix is not required to be nonsingular in the modified methods, a singular mass 

matrix can produce one or more infinite eigenvalues. Due to round-off error, these 

infinite eigenvalues may appear in the output as very large positive or negative 

eigenvalues. To reduce such irrelevant results, degree-of-freedom with null masses are 

eliminated by static condensation. 

A4 Inverse Power Method 

The inverse power method is a tracking method since the lowest eigenvalue and 

eigenvector in the desired range are found first. Then, higher roots are found by an 

iterative procedure. The inverse power method is unpopular method since it can miss 

modes. The Strum modified inverse power method presented next is a more reliable 

tracking method. 
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A5 Sturm Modified Inverse Power Method 

This method is similar to the inverse power method except that it uses Sturm 

sequence logic to ensure that all modes are found. The Sturm sequence check determines 

the number of eigenvalues lower than a trial eigenvalue, and then finds all of the 

eigenvalues lower than this trial eigenvalue until all modes in the desired range are 

computed. This process helps to ensure that modes are not missed. The Sturm modified 

inverse power method is useful for an analysis in which only the lowest few modes are 

needed. This method is also useful as a backup method to verify the accuracy of other 

methods. 
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