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ABSTRACT  

Research-based materials developed by the physics education research 

community have helped improve student conceptual understanding in introductory 

physics courses. A growing body of work, however, suggests that poor student 

performance on certain physics tasks, even after research-based instruction, may result 

from the nature of student reasoning itself than from conceptual difficulties. Drawing 

upon dual-process theories of reasoning, it has been argued that some of the poor 

performance from the presence of salient distracting features (SDFs) in physics problems, 

which may cue an incorrect first-available mental model and effectively preclude the 

student from drawing upon relevant knowledge. 

In this study, we explored the relationship between students' initial impressions of 

how to approach a given physics problem and their subsequent performance on the 

problem.  We accomplished this by employing a novel two-stage methodology in which 

students were first given a problem, provided with reasoning elements, and asked to 

categorize these elements as being useful or not useful for solving the problem. Students 

were subsequently asked to use these elements to construct a reasoning chain in order to 

arrive at an answer. Three problems were administered to students in introductory 

calculus-based physics. 

We found that there was a relationship between students' sorting of the elements 

and students' final answers. Specifically, students who initially rejected relevant 

reasoning elements in favor of elements related to a problem's SDF were more likely to 

settle upon an incorrect, SDF-cued answer than students who initially endorsed the 

relevant elements and rejected the SDF-related elements.
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 INTRODUCTION 

 

In physics education research, there has historically been a strong focus on conceptual 

understanding [3]. The results from more than thirty years of research have in turn led to 

the development of research-based instructional materials that have been shown to improve 

student conceptual understanding. However, it has been observed that student performance 

can vary on related questions that target student understanding of the same concept even 

after research-based instruction. As a specific example, researchers have administered a 

two-question sequence on the application of Newton's Second Law to situations involving 

static friction, as shown in Figures 1 and 2. Both questions require the same line of 

reasoning for the students to reach the correct conclusion; in particular, students need to 

recognize that, from Newton's Second Law, the net force on the boxes in both situations 

must be zero since they both remain at rest and therefore have no acceleration. In the first 

question, students were asked to determine whether the applied force was greater than, less 

than, or equal in magnitude to the frictional force [1]. 83% of students came to the correct 

conclusion that the forces were equal in magnitude.  
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Figure 1: Screening question in the forces sequence from [1]. 

  

The key to the correct line of reasoning here is to note that the box remains at rest. 

If the box remains at rest, there must be no net force on the box, meaning the frictional 

force must be equal in magnitude to the applied force.  

In the second question of the sequence, students were asked to compare the 

magnitudes of the frictional forces on two identical box in the same situation as the first 

question, differing only in the coefficients of friction between the box and the surfaces on 

which they are resting. Here the expected line of reasoning for the correct response 

remains unchanged; the boxes remain at rest means there must be no net force. Despite 

the fact that both questions rely on the same concept, Newton's Second Law in a static 

situation, only 65% of students correctly concluded that the frictional force is equal for 

both boxes. In contrast, those students who reached an incorrect answer, including 

roughly 1/5 of the students who applied the correct reasoning to the first problem, 

commonly reached the conclusion that the force of friction was greater on box B, often 

drawing upon the formula for maximum static friction, (fs,max=μN, where μ is the 

coefficient of static friction and N is the normal force exerted on the box by the ground) 

in supporting their answers. This line of reasoning, which argued that the box with the 

larger coefficient of static friction would experience the larger frictional force, appeared 

to be connected to the inclusion of the two different coefficients of static friction. 
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Figure 2: Target question in the forces sequence from [1]. 

  

The published results from this sequence of questions suggest that something 

other than a lack of conceptual understanding is impacting students' reasoning abilities, as 

a significant percentage of students who gave a correct response on the first question 

adopted a new line of reasoning based on a different intuitive relationship. Other research 

using this two-question methodology has shown that roughly 50% of students who gave 

the correct response to the first question in the sequence gave the common incorrect 

response to the second question, with their reasoning cued by incorrect intuitive ideas 

about the physical scenarios (e.g. conservation of the voltage across two capacitors 

connected in series), despite having demonstrated an understanding of the relevant 

physical concepts in their responses to the screening question. [5]. In the case of the 

friction sequence shown in Figures 1 and 2, the addition of the coefficients of static 

friction appeared to inhibit students’ ability to pursue the correct line of reasoning by 

perhaps cuing a more intuitive approach, where a larger number (the larger coefficient of 

static friction) should result in a larger number (the larger frictional force).  We refer to 
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such question components (e.g., the coefficients of static friction in the friction sequence) 

that capture students’ attention negatively affect student performances as salient 

distracting features, or SDFs. 

 Heckler [2] looks at the choice of which line of reasoning is selected through the 

lens of competing mental models. In the case of the friction sequence, the coefficients of 

friction cue a mental model that the brain processes more quickly and seems applicable to 

the problem on the surface. In order to determine why these salient distracting features 

can so significantly affect student performance on problems, we turn to cognitive science. 

 

1.1 Dual-Process Theories of Reasoning and Decision-Making 

A number of theories have been developed in cognitive science attempting to describe 

the process of individual reasoning and decision-making. Taken collectively, we refer to 

these theories as dual-process theories of reasoning [6,7]. These dual-process theories 

posit that human reasoning may be categorized by two processes: the heuristic 

(sometimes called process 1) and the analytic (or process 2). The heuristic process 

(process 1) occurs very quickly, often subconsciously. Essentially, the brain constructs a 

relevant mental model based on the individual's goals, expectations, previous experience, 

and situational cues, and this first-available mental model is often applied without any 

further interruptions. A common example of the heuristic process is the fact that you can 

quickly tell someone is angry when you first see that person, without thinking about the 

specific characteristics that "tell" you that is the case. 

The analytic process (process 2) is much slower and more effortful than the heuristic 

process, which is why the heuristic process is responsible for most common, day-to-day 
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decisions. The analytic process requires considerable mental effort, making it poorly 

suited for such  common decisions. An example of analytical processing is solving a 

complex mathematical problem. 

When the analytic process is first engaged, it begins by assessing whether the mental 

model generated by the heuristic process is a satisfactory model for the task at hand. Due 

to various biases people have regarding their own judgments (e.g. confirmation bias, a 

reluctance to expressly search for counterexamples, and a tendency to rationalize), it is 

likely that the original model will still be deemed satisfactory [6]. However, in the case in 

which the initial mental model is not deemed satisfactory, the mental model is modified 

or replaced before being reassessed. This pattern repeats until the mental model is 

considered a satisfactory response. 

 

Figure 3: A Diagram, adapted from [6] Illustrating Evans’ revised and extended 

heuristic-analytic theory. 
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Researchers in physics education have begun applying dual-process theories of 

reasoning to account for student performance on qualitative physics questions. In 

particular, Heckler has explored the role of salient distracting features and how to 

determine what information a student uses to solve a given problem, putting forward of 

model of competing relevant and irrelevant information. Kryjevskaia, Stetzer, and Groz 

observed, through sequences of screening questions to check conceptual understanding 

and target questions with SDFs, that "a significant fraction of students who applied 

correct and complete reasoning on the screening question(s) failed to do so on a target 

question that called for the same knowledge and skills [8]." They argued that, because 

such failure to apply proper reasoning arises from a failure to engage the analytic process 

based on heuristic-analytic theory, focused effort on improving student metacognition 

would improve ability to engage the analytic process and thus improve overall reasoning. 

As a specific example, if we reexamine the paired question sequence from Figures 1 and 

2, one can recognize the general process leading to the incorrect conclusion. One sees the 

different μs for the two boxes. Through the heuristic process, this cues a mental model on 

the idea that bigger μ means bigger frictional force. Upon being asked to explain their 

reasoning, the analytic process is engaged. The students rationalize their current model 

based on the expression for maximum static friction or kinetic friction. The mental model 

is approved by the analytic process, and the student concludes that there is a greater 

frictional force on box B. 

The primary goal of this investigation was to move closer to accessing students’ 

heuristic thinking by identifying the features of the question and the reasoning elements 

that they thought would be useful. To this end, we administered a number of problems 
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including an initial task in which students were first asked to sort provided reasoning 

elements (e.g. given statements about the physical situation as well as correct concepts 

and mathematical relationships) based on whether or not they thought the elements would 

be useful for solving the problem prior to formally solving it. Students then solved the 

problem in a reasoning chain construction task format, which is described in the next 

section. 

1.2 Research Question and Methodology 

Since our overarching goal was to investigate the relationship between students’ first-

available mental models (from the heuristic process) and their final answers, we wanted 

to document their initial perceptions of which reasoning elements, composed of true 

statements or physics concepts that one could apply to a given problem, would be useful 

in solving the problem.  Doing so would enable us to examine the relationship between 

those perceptions and student performance on the problem.  Thus, the research question 

driving the investigation was the following: When first looking at a reasoning chain 

construction task, which elements do students identify as being useful (or not useful) in 

solving the physics question?  

Dual-process theories of reasoning would predict that incorrect first-available mental 

models, cued by the salient distracting features of the problem may prevent some students 

from exploring alternatives while actively solving the problem. Thus, one would predict 

that those students who exclusively attend to the salient distracting feature during the 

sorting task are more likely to arrive at an incorrect answer. 

As the method to gather data, we administered several problems to students in 

introductory physics as part of online exam reviews, divided into two stages, using the 
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Qualtrics online survey platform [10]. In stage 1, students were first presented with the 

problem statement and all of the reasoning elements, and were asked to sort the reasoning 

elements into one of two groups: “Items you believe will be useful,” and “Items you 

believe will not be useful.” After confirming that they were satisfied with how they have 

sorted all the elements, students then proceeded  to answer the problem through stage 2, 

the chaining task. The chaining task consists of a reasoning space and three different 

pools of "tiles" to place into the reasoning space: the reasoning elements (described 

previously), connecting words (such as, and, so, but, therefore, etc.), and the possible 

conclusions to the problem [9]. See Figure 4. By moving the reasoning elements into the 

reasoning space and incorporating connecting words as needed, students used the 

interface [10] to actively construct the lines of reasoning they employed to arrive at a 

conclusion. 

 

Figure 4: Example Chaining Task. 
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Research tasks were either drawn from the literature or developed by the research 

team such that there was a well-defined salient distracting feature (that would serve to 

cue a common incorrect response) as well as relevant reasoning elements. In this thesis, 

we discuss results from three different tasks:  (1) the Capacitor Comparison Question, (2) 

Charge Ring Comparison Question: Different Total Charge, and (3) Charge Ring 

Comparison Question:  Same Total Charge. 

Research tasks were administered on exam review assignments for participation 

credit in the second semester of the introductory calculus-based physics sequence at the 

University of Maine.  For each task, student data were analyzed on the basis of reasoning 

elements selected as useful or not useful in stage 1 (sorting task) and on the basis of the 

conclusions drawn at the end of stage 2 (reasoning chain construction task). To answer 

our research question, we focused on student responses that either endorsed the SDF-

related reasoning element and rejected one or more of the relevant reasoning elements or 

that endorsed one or more of the relevant reasoning elements and rejected the SDF-

related reasoning elements prior to reasoning chain construction.  We then examined the 

performance of each group of students on the physics question in stage 2 and determined 

whether or not any differences between the two groups of responses were statistically 

significant. 
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RESEARCH TASKS AND RESULTS  

 

In this section, we describe three research tasks and present the associated results 

from the data collected. 

2.1 Capacitor Comparison Task 

The capacitor comparison task was drawn from the literature and adapted slightly 

for use in this study. Note that it was selected due to the presence of a documented salient 

distracting feature that leads to a common incorrect response. 

Problem Overview 

In this problem (see Figure 3), originally developed and used by A.F. Heckler and 

reported in an article entitled “The Ubiquitous Patterns of Incorrect Answers to Science 

Questions: The Role of Automatic, Bottom-up Processes” [2], students are shown two 

capacitors and are provided with information about the electric potentials on each plate 

and in the middle of each capacitor. Students are asked to determine whether the 

magnitude of the electric field at point A in capacitor 1 is greater than, less than, or equal 

to that of at point B in capacitor 2. 

 
Figure 5: Capacitor Comparison Task. 
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The expected line of reasoning required to arrive at a correct conclusion (that the 

electric field at point A in capacitor 1 has a greater magnitude) is to recognize that the 

strength of the electric field in a parallel plate capacitor is related to the electric potential 

difference between the plates by 𝐸 =
∆𝑉

𝑑
 and that both plates have the same spacing d. 

However, this question was particularly useful as a starting point for this investigation 

since the question has a known SDF – the electric potential at the midpoint of each 

capacitor. Thus, the SDF-associated line of reasoning is to associate the electric field at a 

point with the value of the electric potential at a point, thereby leading to the incorrect 

conclusion that the electric field at point A in capacitor 1 is smaller than that at point B in 

capacitor 2. 

Table 1: Reasoning Elements In Capacitor Comparison Task Responses. 

∆𝑉𝑎𝑏 = ∫ �⃑� (𝑥)
𝑏

𝑎

∙ 𝑑𝑥⃑⃑ ⃑⃑  

𝐸 =
𝑑𝑉

𝑑𝑥
 

For a parallel plate capacitor 

∆𝑉 = 𝐸𝑑 

Points A and B are midway between the plates for capacitors 1 and 2 respectively 

The electric field between two plates of a parallel plate capacitor is uniform 

The plate separation d is the same for both capacitors 

The electric potential at point A is less than at point B (SDF) 

The absolute value of the electric potential difference across capacitor 1 is greater than 

that across capacitor 2 (Relevant) 
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Results 

 This problem was administered in an online exam review to 245 students. From 

the overall student performance (Table 2), we can see there is roughly a 50-50 split 

between the correct and common incorrect responses. While Heckler did not report the 

prevalence of all responses in his study, our results are consistent with his reported 

“roughly 50% of students" correctly concluding that the magnitude of the electric field at 

point A is greater than the magnitude of the electric field at point B [2]. Based on this 

consistency, we are inclined to believe that both the inclusion of the sorting task and the 

use of the reasoning chain construction format did not significantly impact student 

performance on the problem. 

 

 

Table 2: Student Performance on Capacitor Comparison Task in Chaining Format,  

N = 206. 

Conclusion % of Total Responses 

𝐸𝐴 < 𝐸𝐵  47% 

𝐸𝐴 > 𝐸𝐵 (Correct) 44% 

𝐸𝐴 = 𝐸𝐵  9% 

 

 The results (Table 3) of the sorting task for the relevant reasoning element 

(∆𝑉1 > ∆𝑉2)  and SDF-associated reasoning element (𝑉𝐴 < 𝑉𝐵) show that for each 

element, approximately 50% of students said it was useful. Thus, students did not seem to 

demonstrate a strong initial preference for one of these elements over the other. We were, 

however, most interested in comparing the performance of those students who 

specifically sorted the relevant element as useful and the SDF-associated element as not 

useful to that of those who sorted the SDF-associated element as useful and the relevant 
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element as not useful, as each group was, at least initially, strongly committed to focusing 

on a particular sub-set of problem features.  

Table 3: Sorting Task Results for Capacitor Comparison Task. 

 

Classification 

Reasoning Element 

% of total responses 

(N=245) 

 ∆𝑉1 > ∆𝑉2 𝑉𝐴 < 𝑉𝐵 

Useful 55% 47% 

Not Useful 45% 53% 

 

 By looking at the extremes of the possible results from the sorting task (sorted 

both elements as useful, sorted both as not useful, or our results of interest where one 

element was sorted as useful and the other was sorted as not useful) we can see more 

clearly that those students who endorsed the SDF-related element and rejected the 

relevant element had much higher rates of reaching an incorrect conclusion on the 

problem than those who endorsed the relevant element while rejecting the SDF-related 

element.  

Table 4: Examining the Effect of Endorsing the SDF and Rejecting Relevant Information 

or vice-versa on Student Performance for the Capacitor Comparison Task. 

Conclusion SDF is useful, relevant is 

not 

N = 42 

Relevant is useful, SDF is 

not 

N = 56 

Correct 24% 86% 

Incorrect 76% 14% 

As a note, Table 4 reduces the categories from all possible conclusions down to 

correct and incorrect in order for the numbers to be large enough to perform a chi-

squared test for statistical significance. This test gave us a 𝜒2 value of 38.074 and a P 

value less than 0.00001, showing that the two columns are so different that the difference 

cannot be attributed to random distribution and therefore can be associated with the 

differences in element sorting. 
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2.2 Charge Ring Comparison Task: Different Total Charge 

In this section, we describe the first of two research tasks expressly designed for 

this project and report on the associated findings. Both tasks were administered as part of 

the same online exam review to a total 186 students, with 91 being randomly selected for 

this version and 95 for the alternative version described later. In order to ensure that the 

task was useful for the investigation, a salient distracting feature (as anticipated by 

researchers) was explicitly incorporated into the underlying physics problem. 

 

Problem Overview 

In this problem, shown in Figure 4, students are shown two arrangements of point 

charges in a ring about a point P, with all the point charges in a given ring being equal 

and are asked to determine whether the magnitude of the electric field is greater at the 

center of charge arrangement A or B. 

 

 

 

 

 

 

 

 

 

Figure 6: Charge Ring Comparison Task: Different Total Charge. 
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The expected line of reasoning for the correct conclusion is to note that the 

symmetry of arrangement A means the electric field contributions from each pair of 

charges will cancel out due to superposition, meaning that at point P in arrangement A 

the electric field will be 0. As this symmetry argument cannot be applied to arrangement 

B, there will be some electric field, so the magnitude of the electric field at point P is less 

in arrangement A than in arrangement B. The SDF in this problem is the charge 

comparison statement indicating that Q>>q. The line of reasoning associated with the 

SDF-related element (Q>>q), is similar to that given on the friction sequence target 

question (Figure 2) in that larger charges will result in a larger field. 

 

Table 5: Reasoning Elements In Charge Ring Comparison Task: Different Total 

Charge 

The net electric field at a point is the vector sum of the electric fields due to all charges 

The electric field from identical charges on opposite sides of point P cancel 

The electric field due to a positive charge is directed radially outward from the charge 

Each identical point charge contributes an electric field at point P of the same 

magnitude 

The charges in Arrangement A have greater magnitude than those in Arrangement B 

(+Q>>+q) (SDF) 

The charges in Arrangement A are distributed symmetrically about point P (Relevant) 

There are more charges in Arrangement A than in Arrangement B 

The charges in Arrangement B are not distributed symmetrically about point P 

(Relevant) 

�⃑� =
1

4𝜋𝜀0

𝑞

𝑟2
�̂� 

 

Results 

 Looking at the overall student performance on the reasoning chain construction 

task, roughly half of students arrive at the correct conclusion, similar to the overall 

performance on the capacitor comparison task. For the incorrect responses, however, 
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there is more of a distribution of responses, with 23% of students arriving at the common 

incorrect conclusion compared to 47% for the capacitor comparison task. 

Table 6: Student Performance on Charge Ring Comparison Task: Different Total Charge 

in Chaining Format, N = 91. 

Conclusion % of Responses 

𝐸𝐴 > 𝐸𝐵  23% 

𝐸𝐴 < 𝐸𝐵 (correct) 55% 

𝐸𝐴 = 𝐸𝐵  4% 

 

 Note that the percentages in Table 6 above do not sum to 100% due to an 

excluded subset of students. These excluded students either did not include a conclusion 

tile in their reasoning chain construction task response or they concluded that the answer 

could not be determined. 

 The sorting results for the SDF element in this task (charges in A are larger) are 

comparable to those for the capacitor comparison task, with roughly half of the students 

sorting it as useful. There is a distinction to be seen in the sorting results of the relevant 

elements (A is symmetrical and/or B is not), though. We see here that 73% of students 

sorted at least one of them as useful, whereas only 55% of students did so in the capacitor 

comparison task. That being said, this discrepancy may be due to the number of relevant 

elements. In the charge ring tasks, students were considered to be sorting relevant 

information as useful if they sorted either or both of the relevant elements as useful, 

whereas in the capacitor comparison task there was only one relevant element. 
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Table 7: Sorting Task Results for Charge Ring Comparison Task: Different Total Charge. 

 

Classification 

Reasoning Element 

% of total responses 

(N=91) 

 A is symmetrical  

and/or B is not 

Charges in A are 

larger 

Useful 73% 44% 

Not Useful 27% 56% 

 

 From Table 8, we can again see that those students who sorted relevant elements 

as useful and the SDF-associated element as not useful had higher rates of reaching the 

correct conclusion than those who sorted the SDF-assoiated element as useful and 

relevant elements as not useful. The fact that those students who sorted the SDF-

associated element as useful and relevant elements as not useful had equal rates of 

reaching correct and incorrect conclusions, compared to 76% of students in that subset 

reaching incorrect conclusions in the capacitor comparison task, can likely be attributed 

to the low N value. 

 

Table 8: Examining the Effect of Endorsing the SDF and Rejecting Relevant Information 

or vice-versa on Student Performance for Charge Ring Comparison Task: Different Total 

Charge. 

Conclusion SDF is useful, relevant is 

not 

N = 14 

Relevant is useful, SDF is 

not 

N = 40 

Correct 50% 73% 

Incorrect 50% 27% 

We used a 𝜒2 test to check statistical significance of these results. While we 

cannot claim statistical significance due to the number of responses  being too small for a 

𝜒2 test to be valid, the test yielded a 𝜒2 of 4.668 and a P of 0.0307, which would 

normally indicate statistical significance. In order to gauge the extent to which a small 

fluctuation would impact these results, we arbitrarily shifted two student responses from 
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the pool of “SDF is useful, relevant is not useful, correct,” to “SDF is useful, relevant is 

not, incorrect,” in order to satisfy the requirements of the test, and found that it still 

showed statistical significance. 

 

2.3 Charge Ring Comparison Task: Same Total Charge 

This problem is an alternate version of the previous Charge Ring Task. However, 

in this version, the total charge in each arrangement is the same, which serves as a new 

salient distracting feature, cueing the idea that the magnitudes of the electric fields in 

both arrangements will also be the same. 

 

Problem Overview 

In this problem, as in the Charge Ring Comparison Task: Different Total Charge, 

students are shown two arrangements of point charges arrayed around point of interest P, 

with the point charges on opposite sides of P being equal, and are asked to determine 

whether the magnitude of the electric field is greater at the center of arrangement A or B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Charge Ring Comparison Task: Same Total Charge. 
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The expected correct approach is to use symmetry to show that the electric field 

contributions in arrangement A all cancel, while they do not for arrangement B. The 

SDF-associated line of reasoning focuses on the fact that the total charge is equal in both 

arrangements, leading students to conclude that the electric field is the same in both 

arrangements. 

Students were provided with the reasoning elements shown in Table 9 below, 

including those elements given for the same total charge version of the task as well as 

elements unique to this version (signified by italics). 

 

Table 9: Reasoning Elements In Charge Ring Comparison Task: Same Total 

Charge.  Elements unique to this version of the Charge Ring Comparison Task are 

italicized. 

The net electric field at a point is the vector sum of the electric fields due to all charges 

The electric field from identical charges on opposite sides of point P cancel 

The electric field due to a positive charge is directed radially outward from the charge 

Each identical point charge contributes an electric field at point P of the same 

magnitude 

The charges in Arrangement A are distributed symmetrically about point P (Relevant) 

There are more charges in Arrangement A than in Arrangement B 

The charges in Arrangement B are not distributed symmetrically about point P 

(Relevant) 

�⃑� =
1

4𝜋𝜀0

𝑞

𝑟2
�̂� 

The magnitude of all charges in Arrangement A are not the same 

The magnitude of all charges in Arrangement B are not the same 

The total charge is the same in each arrangement (SDF) 

 

Results 

As with the other two tasks, roughly half of the students reached the correct 

conclusion in the reasoning chain construction task. Perhaps unsurprisingly, changing the 
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salient distracting feature has changed the common incorrect response from 𝐸𝐴 > 𝐸𝐵 in 

the different total charge version to 𝐸𝐴 = 𝐸𝐵  in the same total charge version. 

Table 10: Student Performance on Charge Ring Comparison Task: Same Total 

Charge in Chaining Format, N = 95. 

Conclusion % of Total Responses 

𝐸𝐴 > 𝐸𝐵  8% 

𝐸𝐴 < 𝐸𝐵 (correct) 57% 

𝐸𝐴 = 𝐸𝐵  20% 

 

 As with the different total charge version, Table 11 shows that roughly half of the 

students sorted the SDF-associated element as useful, while a greater portion of students 

sorted relevant elements as useful rather than not useful. Again, this is possibly explained 

by the presence of multiple relevant reasoning elements in the task 

Table 11: Sorting Task Results for Charge Ring Comparison Task: Same Total 

Charge 

 

Classification 

Reasoning Element 

% of total responses 

(N=91) 

 A is symmetrical or 

B is not 

Total charge is the 

same 

Useful 65% 49% 

Not Useful 35% 51% 

 

 Looking at the extreme groups from the sorting task in Table 12, we see a 

continuation of the trend observed in the capacitor comparison task and the other charge 

ring comparison task, where those students who sorted the relevant elements as useful 

and the SDF-associated element as not useful are markedly more likely to reach the 

correct conclusion than those who sorted the SDF-associated element as useful and 

relevant elements as not useful 

Table 12: Examining the Effect of Endorsing the SDF and Rejecting Relevant Information or 

vice-versa on Student Performance for Charge Ring Comparison Task: Same Total Charge. 
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Conclusion SDF is useful, relevant is 

not 

N = 23 

Relevant is useful, SDF is 

not 

N = 38 

Correct 30% 76% 

Incorrect 70% 24% 

 

The 𝜒2 test for these data gives a 𝜒2 value of 12.47 and a P value of 0.0004, 

showing that the columns are different beyond what can be accounted for by random 

distribution. This statistically significant difference in performance suggests that there is, 

in fact, a relationship between the aspects of the problem context the students endorse 

and reject and the likelihood of arriving at a correct conclusion. 
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DISCUSSION  

 

In this investigation, we attempted to move closer to probing students’ first-

available mental models by asking them to identify specific reasoning elements 

(including features of the problem) that they felt were useful or not useful prior to solving 

a problem.  By examining the relationship between student performance on the problem 

itself and the reasoning elements they simultaneously endorsed and rejected, we found 

that students who initially rejected relevant reasoning elements in favor of SDF-related 

elements were more likely to reach an incorrect, SDF-cued conclusion than students who 

initially endorsed relevant elements and rejected SDF-related elements.  The findings 

from this investigation further highlight the utility of dual-process theories of reasoning 

and decision-making in accounting for seemingly disparate student performance on 

physics problems by providing additional evidence that first-available mental models 

generated by the heuristic process and cued by salient distracting features can inhibit 

students’ reasoning processes and lead them to incorrect conclusions. This would support 

the established idea of confirmation bias, stating that most reasoners are poor at 

generating alternative possibilities and instead tend to rationalize their first-available 

mental models. 
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CONCLUSION  

 

The main goal of this research was attempting to get closer to the heuristic 

process by asking students about what physical concepts and problem features they 

initially think will be useful in problem solving prior to being asked to solve the problem. 

To accomplish this we administered a number of questions to students on online exam 

reviews in two parts: a sorting task in which students were asked to sort reasoning 

elements by whether the students thought they would be useful to solving the problem, 

followed by a reasoning chain construction task in which students were asked to use a 

number of reasoning elements to illustrate their line of reasoning. This method seems to 

have been successful at providing insight into students' initial thoughts on the problems, 

as we can somewhat reliably reconstruct the mental models seen in the chaining task or 

reject possible mental models based on what reasoning elements a student endorsed or 

rejected in the sorting task. The importance of this insight lies in enabling both 

researchers and instructors to identify the patterns in reasoning that would indicate 

students are failing to engage the analytical process in a productive manner, allowing 

them to modify instruction accordingly, possibly through the development and 

implementation of research that explicitly attend to the dual-process nature of student 

reasoning in physics. 
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