
The University of Maine
DigitalCommons@UMaine

Honors College

Spring 2019

Exploring Semantic Hierarchies to Improve
Resolution Theorem Proving on Ontologies
Stanley Small
University of Maine

Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors

Part of the Computer Sciences Commons

This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by
an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

Recommended Citation
Small, Stanley, "Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies" (2019). Honors College. 538.
https://digitalcommons.library.umaine.edu/honors/538

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Maine

https://core.ac.uk/display/217153905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors/538?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

EXPLORING SEMANTIC HIERARCHIES TO IMPROVE RESOLUTION THEOREM
PROVING ON ONTOLOGIES

by

Stanley C. Small

A Thesis Submitted in Partial Fulfillment
of the Requirements for a Degree with Honors

(Computer Science)

The Honors College
University of Maine

May 2019

Advisory Committee:
Dr. Torsten Hahmann, Assistant Professor1, Advisor
Dr. Mark Brewer, Professor of Political Science
Dr. Max Egenhofer, Professor1

Dr. Sepideh Ghanavati, Assistant Professor1

Dr. Roy Turner, Associate Professor1

1School of Computing and Information Science

ABSTRACT

A resolution-theorem-prover (RTP) evaluates the validity (truthfulness) of conjectures against a set

of axioms in a knowledge base. When given a conjecture, an RTP attempts to resolve the negated

conjecture with axioms from the knowledge base until the prover finds a contradiction. If the RTP

finds a contradiction between the axioms and a negated conjecture, the conjecture is proven.

The order in which the axioms within the knowledge-base are evaluated significantly impacts the

runtime of the program, as the search-space increases exponentially with the number of axioms.

Ontologies, knowledge bases with semantic (and predominantly hierarchical) structures, describe

objects and their relationships to other objects. For example, a ’Sedan’ class might exist in a sample

ontology with ’Automobile’ as a parent class and ’Minivan’ as a sibling class. Currently, hierarchical

structures within an ontology are not taken into account when evaluating the relevance of each

axiom. Instead, each predicate is automatically assigned a weight based on a heuristic measure

(such as the number of terms or the frequency of predicates relevant to the conjecture) and axioms

with higher weights are evaluated first. My research aims to intelligently select relevant axioms

within a knowledge-base given a structured relationship between predicates. I have used semantic

hierarchies passed to a weighting function to assign weights to each predicate. The research aims

to design heuristics based upon the semantics of the predicates, rather than solely the syntax of the

statements.

I developed weighting functions based upon various parameters relevant to the ontological struc-

ture of predicates contained in the ontology, such as the size and depth of a hierarchy based upon the

structure. The functions I have designed calculate weights for each predicate and thus each axiom in

attempts to select relevant axioms when proving a theorem. I have conducted an experimental study

to determine if my methods show any improvements over current reasoning methods. Results for the

experiments conducted show promising results for generating weights based on semantic hierarchies

and encourage further research.

iii

ACKNOWLEDGEMENTS

Many thanks are given to Dr. Hahmann. This work could not be completed without his continued

support and encouragement. Despite his tremendously busy schedule, he always made time to meet

and answer questions.

Robert Powell also proved instrumental to the process. He wrote a utility which converts Com-

mon Logic Interchange Format (CLIF) into web ontology language (OWL). His work streamlined

the testing process and allowed me to find necessary results.

The thesis committee was also instrumental in producing an undergraduate thesis of scale.

iv

Contents

ABSTRACT iii

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vi

LIST OF TABLES vii

1 INTRODUCTION 1

2 BACKGROUND AND RELATED WORK 3

2.1 Ontologies 3

2.2 Theorem Proving 5

2.3 Semantic Similarity 8

3 APPROACH 9

3.1 Converting Ontologies 9

3.2 Generating a Complete Hierarchy 10

3.3 Calculating Weights for Resolution Theorem Proving 10

4 EXPERIMENTS 14

4.1 Setup 14

4.2 Results 15

4.3 Discussion 16

5 CONCLUSION 18

5.1 Future Work 18

REFERENCES 19

A TESTS 21

AUTHOR’S BIOGRAPHY 28

v

LIST OF FIGURES

1 Sample Ontology 3

2 Semantic Hierarchies 4

3 Resolution Tree 7

4 Prover9 Output 7

5 Approach 9

6 Prover9 GUI 14

vi

LIST OF TABLES

1 Results for the multidim space voids Ontology with percentage change for each func-

tion and statistics for all tests on the ontology at the bottom. 15

2 Results for the inch Ontology with percentage change for each function and statistics

for all tests on the ontology at the bottom. 16

3 Results for the multidim space physcont Ontology with percentage change for each

function and statistics for all tests on the ontology at the bottom. 16

4 Overall Results calculated with each test with the number of clauses generated from

9, 6, and 7 tests respectively from each ontology. 17

5 multidim space voids weights for function 1 21

6 multidim space voids weights for function 2 22

7 inch weights for function 1 23

8 inch weights for function 2 23

9 multidim space physcont weights for function 1 24

10 multidim space physcont weights for function 2 25

vii

1 INTRODUCTION

The rules of logic enable one to prove theorems from axioms stored in a knowledge base. Axioms,

asserted facts typically expressed in a formal manner, provide a computer program with tools to

confirm or refute conjectures without additional user input. Because computers excel at simple and

repetitive tasks, one can witness the applications of automated theorem proving in fields which rely

heavily on ”knowledge acquisition and information retrieval” [11]. The ability for machines to deduce

logically valid conclusions has applications in artificial intelligence and a variety of scientific domains

[13]. Automated theorem proving provides a versatile method for reasoning with a set of facts, and

has been used to prove and verify proofs of multiple theorems. The four color map theorem, initially

proved in 1976 and later proved by a general-purpose theorem-proving software in 2005 remains a

notable example [3]. Moreover, advances have been made in work on the Kepler conjecture and in

finding optimal solutions for a Rubik’s Cube. The general-purpose nature of automated theorem

proving yields applications to a variety of problems. However, automated theorem proving programs

often neglect semantic knowledge embedded in an ontology.

Ontologies provide a ”common vocabulary” for researchers to speak about a specific domain

by describing entities and the relationships between them [6]. A formal description of a specific

environment provides researchers and machines with a shared understanding by aiming to capture

the semantics of a domain’s concepts and relations. Some relationships between an ontology’s terms

may be explicitly defined, but many are implicit. For example, three axioms one might find in a

knowledge base are below.

SubaruLegacy(myCar)

∀x SubaruLegacy(x)→ Sedan(x)

∀x Sedan(x)→ Automobile(x)

The first axiom asserts my car is a Subaru Legacy. The next states a Subaru Legacy is a sedan.

The last asserts all sedans are automobiles. While one can easily deduce the fact my car is an

1

automobile, no single axiom explicitly describes such a statement. Fortunately, formal logic defines

rules of inference which allow one to transform established facts into new conclusions solely based

on the syntax of these statements. Both humans and computers can clearly distinguish well formed

statements (x + y = 4) from those which are not (x4y+ =). Beyond the syntax of statements,

ontologies and logics also define the semantics or meaning of sentences (i.e. declaring x + y = 4 is

true when x = 1 and y = 3 but false when x = 0 and y = 1). Thus, the sentence ∃x, y (x + y = 4)

asserting that x + y = 4 is true for some numbers is true, whereas ∀x, y (x + y = 4), asserting that

x + y = 4 is true for all possible combinations of x and y is false.

Like many taxonomies, or schemes of classification, one can often form maps of relationships

within an ontology which resemble a hierarchy. Knowledge encoded in semantic hierarchies could

help an automated theorem prover determine which axioms might be most helpful when attempting

to prove a specific conjecture. This work attempts to improve automated theorem proving with

ontologies by identifying relevant facts via semantic relationships, and ignoring those less likely to

yield a proof by applying weights on entities and relationships within the ontology. Experimental

results indicate weighting functions show promise when attempting to reduce the number of clauses

generated with a proof.

2

2 BACKGROUND AND RELATED WORK

2.1 Ontologies

The word ontology (”study of being”) combines Greek onto- (”being”) and -logia (”logical dis-

course”). The act of organized and classifying knowledge and existence in philosophy has given

birth to the study of formal logic and automated reasoning in computer science. Researchers often

use ontologies to share information among people or computer programs, to enable domain knowl-

edge reuse, to make definitions of a particular domain explicit, or to analyze domain knowledge

[6].

Figure 1: This sample ontology, with inspiration from an example by Natalya F. Noy, describes
entities and relations in the ’automobiles’ domain. The ontology serves to provide a ”formal explicit
description” of classes (outlined in black) along with properties which describe relationships between
classes (such as how Subaru Legacy is produced by Subaru). While not displayed in the figure,
an ontology also defines property restrictions within the domain (so an instance of the Subaru
class cannot produce a car manufacturer). The ontology, along with individual instances of classes
(highlighted in red) constitutes a knowledge base [6].

In reality, few differences between an ontology and a knowledge base exist. Knowledge engineers

must traverse a ”fine line where the ontology ends and the knowledge base begins” [6]. At the

least, an ontology defines categories (or classes) and relationships among objects. One can think of

an ontology as a ”vocabulary” used to describe a domain [10, p. 308]. Typically, both classes and

relationships between classes can be arranged as hierarchies (see Figure 1), which are here referred

3

to as semantic hierarchies. When designing an ontology, one must decide the scope and organization

of the knowledge, along with the language used.

2.1.1 Class Inheritance and Semantic Reasoning

Many relations within an ontology serve to organize classes. For example, in the ’automobiles’

ontology, most of the classes are organized by ”is-a” relationships and classes inherit attributes such

as domain and range restrictions. For example, my car would inherit properties of the ’Automobile’,

’Sedan’, and ’Subaru Legacy’ classes, such as having four seats.

Figure 2: Hierarchies describing classes and relationships within the commonly used Gene Ontology
(not used for experiments) can be viewed in Protégé, with inferred hierarchies generated by Pellet
reasoner [2].

Software tools referred to as semantic reasoners, or simply reasoners, can infer logical conse-

quences from a set of axioms. Because an ontology may not explicitly define all relationships be-

tween classes and properties, one may use a reasoner to deduce implicit knowledge. A reasoner can

generate a more complete view of an ontology, specifically complete hierarchies describing classes

and relationships. These hierarchies are referred to as semantic hierarchies.

Ontologies, especially those used in research, can contain hundreds or thousands of classes and

relationships but only a small fraction of those are likely needed for any specific proof. By consulting

4

knowledge embedded in the semantic hierarchies for a specific ontology one could possibly reduce

the time needed to prove a specific conjecture when many irrelevant axioms exist.

2.1.2 First-order Logic Ontologies

Automatic theorem proving requires a logic defining the syntax of valid statements to run without

additional user input. Formal logics like first-order logic, also known as predicate logic and first-

order predicate calculus, define a structure for statements which can be used to form logical and

mathematical proofs. Consider the following set of asserted facts expressed in first-order predicate

logic, commonly referred to as axioms.

isSedan(myCar)

∀x isSedan(x)→ hasFourSeats(x)

The first axiom asserts my car is a sedan. The second axiom asserts all sedans have four seats.

By expressing facts in a formal notation, one makes proofs using such statements mechanical and

easily parsed by a computer. Ontologies used for experiments are described used Common Logic,

a formal logic based on first-order logic. Predicates describe objects in a knowledge base. In the

cases above, isSedan() would serve as a predicate acting on a myCar object in the former, and a

variable labeled x in the latter. Variables in first-order logic are quantified, meaning the application

of a variable is defined for either some (∃) or all (∀) objects in the domain. Ontologies are converted

into Ontology Web Language (OWL) for experiments.

2.2 Theorem Proving

Automated theorem proving depends on having an established logic for expressing facts (such as

Common Logic), a method of generating new facts without requiring additional knowledge, and a

strategy for searching through all possible new facts one could generate to reach a specific goal (such

as proving a conjecture).

5

2.2.1 Inference Rules

One can use axioms to derive facts which logically follow using inference rules. The two previous

statements do not directly state the my car has four seats. However, one can derive the statement

hasFourSeats(myCar) by using the inference rule modus ponens, defined below.

A

A→ B

∴ B

(1)

One can think of A and B as variables representing statements, and any statements can replace

them. In the example above, one can replace A with isSedan(myCar) and B with hasFourSeats(myCar)

after instantiating x with myCar (which is possible because x is bound by the universal quan-

tifier ∀ and we can replace x with anything defined in the domain). Therefore, one can assert

hasFourSeats(myCar) is true, without the statement having been defined explicitly as an axiom.

A sound inference rule defines a valid rule for statements and always generates true statements when

the assumed premises are true.

2.2.2 Resolution

Automated theorem proving requires a set of axioms and a set of rules to generate new facts, but

also a strategy to search through the possible applications of the inference rules. Knowledge bases

can grow quite large, and generating all possible facts based on a given set of axioms often remains

impractical or unfeasible. Resolution exists as historically significant and widely used method for

automated theorem proving [1, p. 51].

In order to use resolution as a proof technique, axioms must first be expressed in Conjunctive

Normal Form (CNF), also known as clausal form. One may follow a 7-step procedure of con-

verting the set of facts into a conjunction of disjunctions. The process eliminates biconditionals,

implications, and quantifiers so the second axiom ∀x isSedan(x) → hasFourSeats(x) becomes

¬isSedan(x)∨hasFourSeats(x). One can then resolve the statements by instantiating the variable

6

Figure 3: The figure above displays a resolution tree for the inference rule described in the previous
section. The bold statement shows the negated conjecture. The tree also displays x bound to
SubaruLegacy.

x with SubaruLegacy in a process called unification, binding the variable.

isSedan(myCar),¬isSedan(x) ∨ hasFourSeats(x)

hasFourSeats(myCar)

Finally, one can resolve the axiom with the negated conjecture, proving the statement true.

1 (all x (isSedan(x) -> hasFourSeats(x))) # label(non_clause). [assumption].

2 hasFourSeats(myCar) # label(non_clause) # label(goal). [goal].

3 -isSedan(x) | hasFourSeats(x). [clausify(1)].

4 isSedan(myCar). [assumption].

5 hasFourSeats(myCar). [resolve(3,a,4,a)].

6 -hasFourSeats(myCar). [deny(2)].

7 $F. [resolve(5,a,6,a)].

Figure 4: Prover9 displays output for the automated proof.

Because the number of clauses an automated theorem prover can generate greatly increases with

respect to the size of the knowledge base, researchers have begun to form heuristics to evaluate

the relevance of axioms when completing a proof. Some methods include evaluating the semantic

similarity between predicates to determine which axioms might be more relevant when attempting

to form a proof.

7

2.3 Semantic Similarity

Evaluating the similarity of two entities (i.e. classes or relationships) can serve as one heuristic

when attempting to reduce the number of clauses generated during a proof. Multiple metrics have

been developed for evaluating the semantic similarity of terms with different approaches, including:

edge-counting measures, feature-based measures, and measures based on information content [11]

[8] [9]. Edge-counting metrics for semantic similarity when applied to semantic hierarchies remain

the focus of this work.

Calculating the distance between two entities in an ontology remains a straightforward and

intuitive method of calculating the semantic similarity. One can formally define the metric as

follows. In an undirected graph G defined as a pair (V,E), where V is a set of vertices, and E is a

set of edges between the vertices E ⊆ (u, v)|u, v ∈ V , one can define a path path(a, b) = l1,...,lk as

a set of links connecting a and b in a taxonomy and |path(a, b)| = k as the length of the path [11].

One can calculate the semantic distance between a and b using equation 2 [7].

sim1(a, b) = min∀i|pathi(a, b)| (2)

Semantic hierarchies can be expressed as trees, and by incorporating depth of the taxonomy into the

function, Wu [14] has seen improvement in the metric. Because ontologies can vary greatly in depth

due to the design of the ontology, some researchers have attempted to calculate semantic similarity

using the lowest common ancestor (LCA), defined between two vertices a and b as the lowest vertex

in the tree with both a and b as descendants (where we allow a vertex to be a descendant of itself)

[14]. The root of a tree has no ancestors.

sim2(a, b) =
2× sim1(LCA, root)

sim1(a, LCA) + sim1(b, LCA) + 2× sim1(LCA, root)
(3)

8

3 APPROACH

This work aims to evaluate the effectiveness of using a semantic hierarchy generated from an on-

tology to calculate weights for predicates that will help focus the theorem prover on using axioms

that are deemed more relevant to proving a conjecture. In efforts to quantitatively evaluate the

effectiveness of the proposed methods, I conducted a series of experiments on multiple ontologies

from the COmmon Logic Ontology REpository (COLORE)1, a ”testbed for ontology evaluation and

integration techniques” [4]. Pellet [12], a semantic reasoner, is used to generate semantic hierarchies,

which are then used to calculate the assigned weights for each predicate when executing proofs. Fi-

nally, tests were run using Prover9 [5] to compare the default weights to the calculated weights. The

effectiveness of the process was measured by comparing the number of clauses generated by Prover9

for each proof.

Figure 5: The figure above illustrates my process of conducting experiments. The first step, con-
verting the ontologies into OWL format, lives outside of the scope of my research.

3.1 Converting Ontologies

The ontologies in COLORE are specified using the Common Logic syntax. No tools exist for gener-

ation of the complete hierarchy directly from an ontology defined using Common Logic. However,

virtually all Web Ontology Language (OWL) reasoners, including Pellet, efficiently implement the

task of organizing classes. Thus, one needs to translate the ontology to OWL, use an OWL reasoner

to complete the hierarchy, and then calculate predicate weight based on that hierarchy. Powell2 has

written a utility which executes the conversion and has generated the files necessary to conduct this

1https://github.com/gruninger/colore
2https://github.com/thahmann/macleod/tree/master/macleod/dl

9

research. Not all ontologies in COLORE define conjectures to test the ontologies, which limits the

scope of my experiments to the sufficiently large ontologies.

3.2 Generating a Complete Hierarchy

After converting an ontology into the OWL format, one can generate semantic heirarchies including

both asserted relationships and inferred relationships. Pellet can be used to generate the inferred

semantic hierarchy, which are then displayed in an ontology development environment Protégé [2]

(Figure 2). The reasoner uses a description logic based classification algorithms on the OWL ontology

to identify inferred logical consequences (i.e. relationships between classes) not explicitly defined.

The reasoner generates complete class hierarchies, but does not change the relationship hierarchy.

3.3 Calculating Weights for Resolution Theorem Proving

3.3.1 Default Weights in Prover9

Prover9 assigns weights to predicates automatically unless the user explicitly defines them. An

understanding of the process helps one to develop new weights for the predicates. Lower weights

give higher preference for a predicate when generating clauses. Rules for weighting axioms in terms

of relevance when attempting to prove a specific conjecture are as follows [5]:

• The default weight of a constant or variable is 1.

• The default weight of a term or atomic formula is one more than the sum of the weights of its
arguments.

• The default weight of a literal is the weight of its atomic formula.

• The default weight of a clause is the sum of the weights of its literals.

Below is an example of how one may modify weights in Prover9 [5].

list(weights).

weight(a) = 3. % the weight of the constant a is 3

weight(f(a,x)) = 5 * weight(x). % weight(f(a,term)) = 5 * weight(term)

weight(f(a,_)) = -1. % _ matches any variable

weight(x | y) = 2 + (weight(x) + weight(y)). % add 2 for each "or" symbol

end_of_list.

10

3.3.2 Semantic Weighting Functions

Assigning weights to specific predicates allows one to incorporate knowledge contained in semantic

hierarchies into proofs. After semantic hierarchies have been generated, weights can be assigned to

each class and subproperty. Two explicit weighting functions inspired by related works in calculating

semantic similarity were formed and tested. For each conjecture, weights were then calculated by

hand and entered into a spreadsheet.

A python script was used to generate the input files used by Prover9 from the spreadsheet for

each conjecture. The calculated weights were then entered into Prover9 as additional input along

with the axioms and the conjecture. The weighting functions are currently applied by hand to the

ontologies, with the beginnings of an automated program underway.

3.3.3 Function 1

The first function attempts to make use of the completed class hierarchy generated by a semantic

reasoner by giving preference to predicates existing on a path between pairs of predicates in the

conjecture. For example, if one wished to prove the conjecture Automobile(myCar) using the

ontology provided in Figure 1, it is reasonable to assume the theorem prover would need to traverse

a series of axioms ascending the class hierarchy. Also, the ’Sedan’ and ’Subaru Legacy’ classes might

not be given as much preference as predicates contained in the conjecture (i.e. Automobile(x)).

Additionally, if the conjecture contains relationships (such as Produces(x, y)), once can apply the

same principles. Additionally, in an effort to give lower preference to predicates not contained on

paths connecting pairs of classes or relationships, unweighted ancestors and descendants are assigned

higher weights (because they are less relevant). In order to achieve the goals above, Function 1 is

defined as follows:

• Each predicate describing a class or relationship contained in the conjecture is given weight 1.

• For each pair of predicates describing classes within the conjecture, if a path exists between
the two classes in the class hierarchy, predicates describing classes contained on the path are
given weight 1.

11

• For each pair of predicates describing relationships within the conjecture, if a path exists
between the two relationships in the relationship hierarchy, predicates describing relationships
contained on the path are given weight 1.

• Descendents of predicates describing classes or relationships contained in conjecture without
weights are given a weight corresponding to the depth of the entity. Subclasses and sub-
properties are given a weight of the respective parent class or property plus 1.

• All ancestors of predicates with a weight generated and all top-level classes corresponding to
predicates without a weight assigned are given weight 10.

• All ancestors of predicates with a weight generated all top-level relationships corresponding to
predicates without a weight assigned are given weight 10.

Given the example ’automobile’ ontology and the conjecture Automobile(myCar), the following

weights are calculated.

list(weights).

weight(SubaruLegacy(x)) = 1.

weight(Sedan(x)) = 1.

weight(Automobile(x)) = 1.

weight(Minivan(x)) = 2.

weight(ToyotaSienna(x)) = 3.

weight(FordWindstar(x)) = 3.

weight(CarManufactuer(x)) = 10.

% weight(Produces(x,y)) - This is not defined as the conjecture contains no relationships.

end_of_list.

Automobile(x) is contained within the conjecture, and is given a weight 1. Sedan(x) and

SubaruLegacy(x) are given a weight 1 because they exist on the path between the predicates nec-

essary to prove a conjecture regarding myCar. Minivan(x) is one step away from the path and

is given weight 2. Furthermore, ToyotaSienna(x) and FordWindstar(x) are grandchildren (two

steps down) of those contained on the path, and are given a weight 3. Finally, CarManufactuer

is given weight 10, as all ancestors of predicates with a weight generated and all top-level classes

corresponding to predicates without a weight assigned are given weight 10.

3.3.4 Function 2

The second function attempts to make use of the lowest common ancestor (LCA) of each class or

relationship with inspiration from equation 3. Again, predicates within the conjecture are preferred.

12

Siblings and the parent of the LCA are weighted highly, and descendents of predicates without

weights are given weights increasing with the depth of the semantic hierarchy.

• Each predicate describing a class or relationship contained in the conjecture is given weight 1.

• For each pair of predicates describing classes within the conjecture, if a path exists between
the two classes in the class hierarchy, predicates describing the lowest common ancestor are
given weight 1 and classes contained on the path which are neither a predicate contained in
the conjecture or the lowest common ancestor are given weight 2.

• For each pair of predicates describing relationships within the conjecture, if a path exists
between the two relationships in the class hierarchy, predicates describing the lowest common
ancestor are given weight 1 and classes contained on the path which are neither a predicate
contained in the conjecture or the lowest common ancestor are given weight 2.

• Siblings and parents of a LCA are given a weight 3.

• Descendents of predicates describing classes or relationships contained in conjecture without
weights are given a weight corresponding to the depth of the entity. Subclasses and sub-
properties are given a weight of the respective parent class or property plus 1.

Given the example ’automobile’ ontology and the conjecture FordWindstar(myCar)∨SubaruLegacy(myCar),

the weights can be calculated as follows.

list(weights).

weight(SubaruLegacy(x)) = 1.

weight(FordWindstar(x)) = 1.

weight(Automobile(x)) = 1. % LCA

weight(Sedan(x)) = 2.

weight(Minivan(x)) = 2.

weight(ToyotaSienna(x)) = 3.

weight(CarManufactuer(x)) = 3.

end_of_list.

Again, Automobile(x) is contained within the conjecture, and is given a weight 1 for being both

on the path, and for being the lowest common ancestor. FordWindstar(x) and SubaruLegacy(x)

are given a weight 1 because they exist on the path between the predicates necessary to prove a

conjecture regarding myCar. Minivan(x) and Sedan(x) are one step away from the path and is

given weight 2. Furthermore, ToyotaSienna(x) and FordWindstar(x) are grandchildren (two steps

down) of those contained on the path, and are given a weight 3.

13

4 EXPERIMENTS

4.1 Setup

Experiments were conducted using Prover9, an ”automated theorem prover for first-order and equa-

tional logic” written by William McCune [5]. Many tests were conducted using a version of the

program which supports a graphical user interface (GUI), but a command line version, useful for

running automated tests, exists. Git was used for version control and a repository containing source

code for tests can be found at https://github.com/stanleysmall/thesis.

Figure 6: The GUI for Prover9 on macOS allows one to enter axioms into the top text field and
conjectures into the bottom text field. Predicate weights are entered in the ’Additional Input’ tab in
the navigation bar. Users can start the proof by pressing the ’Start’ button below the Prover9 logo
after specifying a time limit. After the proof has completed, users can view the number of clauses
generated by the proof by pressing the ’Info’ button below the ’Start’ button [5].

14

4.2 Results

Below are empirical results for the described study. Each table contains a series of conjectures, and

the number of clauses generated for both default weights and each of the weighting functions. A

dash represents no change, and 0 indicates a change less than 1 percent. All weights for the tests

are contained in Appendix A.

Tables contain the average and median number of clauses generated along with a sum. The

percentage change indicates an increase or decrease in the number of clauses generated (a primary

indicator of the effectiveness of the functions). The statistics regarding percentage change are calcu-

lated using the number of clauses generated. For example, if the default number of clauses generated

was 100,000 but the function generated 50,000, the percentage change would be minus 50 percent.

Conjecture Default Function 1 Percent Change 1 Function 2 Percent Change 2
1 85691 9165 -89 9231 -89
2 1803 1803 - 1803 -
3 1803 1803 - 1803 -
4 175 175 - 175 -
5 175 175 - 175 -
6 172 172 - 172 -
7 6357 6337 0 6225 -2
8 6015 5855 -3 2352 -61
9 1802 1802 - 1802 -

Average 11555 3032 -74 2638 -77
Median 1803 1803 0 1803 0
Sum 103993 27287 -74 23738 -77

Table 1: Results for the multidim space voids Ontology with percentage change for each function
and statistics for all tests on the ontology at the bottom.

15

Conjecture Default Function 1 Percent Change 1 Function 2 Percent Change 2
1 140734 50476 -64 50476 -64
2 480 754 57 742 55
3 295 295 - 234 -21
4 308 308 - 332 8
5 28188 28188 - 28188 -
6 11793 7830 -34 7830 -34

Average 30300 14642 -52 14634 -52
Median 6137 4292 -30 4286 -30
Sum 181798 87851 -52 87802 -52

Table 2: Results for the inch Ontology with percentage change for each function and statistics for
all tests on the ontology at the bottom.

Conjecture Default Function 1 Percent Change 1 Function 2 Percent Change 2
1 426 426 - 410 -4
2 285 285 - 285 -
3 426 426 - 430 -1
4 289 266 -8 324 -12
5 438 438 - 323 -26
6 283 240 -15 283 -
7 495 425 -14 255 -48

Average 377 358 -5 330 -12
Median 426 425 0 323 -24
Sum 2642 2506 -5 2310 -13

Table 3: Results for the multidim space physcont Ontology with percentage change for each function
and statistics for all tests on the ontology at the bottom.

4.3 Discussion

In one case for function 1 and 2 cases for function 2 out of 22 samples, the algorithm increases

the number of clauses generated when proving a conjecture, but does not do so to the point where

the proof does not finish. For the majority of proofs, the number of clauses generated decreases or

remains unchanged.

Function 1 saw an average 19 percent reduction in the number of clauses generated and function

2 saw an average 23 percent reduction, suggesting the use of semantic hierarchies can reduce the

number of clauses generated by an automatic theorem prover when attempting to prove a conjecture

on an ontology. Both approaches seem to provide the same or better performance in many cases,

with only a handful of cases where the number of clauses generated actually increased. Neither

function performs significantly better than the other for a specific ontology, or for the majority

16

Metric Default Function 1 Percent Change 1 Function 2 Percent Change 2
Average 13111 5347 -59 5175 -61
Median 459 432 -6 420 -8
Sum 288433 117644 -59 113850 -61

Table 4: Overall Results calculated with each test with the number of clauses generated from 9, 6,
and 7 tests respectively from each ontology.

of tests. The functions designed performed well for the ontologies tested; however, more tests are

required to make generalized claims regarding the effectiveness of said methods.

The functions appear to help most when pairs of predicates are at a greater distance from one

another (in regards to the minimum path), or when the semantic hierarchies are many levels deep.

This seems to apply both to predicates describing classes and relationships, especially so when a

percentage decrease in number of clauses generated for a specific conjecture exceeded 50 percent.

In the inch calculus ontology, conjecture 2 is (all x all y (GED(x,y) & GED(y,x) & (all z

(CH(z,x) -> CH(z,y))) -> CS(x,y))). In this case, the weighting functions increased the num-

ber of clauses generated by a significant amount. The relationship hierarchy is much smaller than

those for the other ontologies. Additionally, two predicates are repeated twice in the conjecture, un-

like many others. The combination of a shallow hierarchy and repeated predicates likely contributed

to an increase in the number of clauses generated.

17

5 CONCLUSION

When proving specific conjectures with few predicates on large ontologies, semantic hierarchies can

focus the search of a resolution theorem prover. Results of the preliminary experiments conducted

indicate further work might yield lucrative results, especially for exceptionally large ontologies.

Nevertheless, the test show promise in this relatively unexplored area of research.

5.1 Future Work

The scarcity of suitable ontologies to test provides many opportunities for advancement. Oppor-

tunities for further research include fully automating the search procedure, working with a larger

number of ontologies to ensure the weighting functions actually do as they say, or developing a new

approach for automatically weighting the predicates.

Adjustments regarding the tolerance or aggressiveness (regarding a willingness to disregard

clauses) of the functions appears to be a promising path forward. Depending on the shape and

depth of semantic hierarchies for an ontology, weights could be increased to values nearing 100 or

more. Experiments conducted used a maximum weight of ten for any one predicate in an effort to

reduce any increase in the number of clauses generated.

18

References

[1] Wolfgang Ertel. Introduction to artificial intelligence. Springer, 2018.

[2] John H Gennari et al. “The evolution of Protégé: an environment for knowledge-based systems

development”. In: International Journal of Human-computer studies 58.1 (2003), pp. 89–123.

[3] Georges Gonthier. “Formal proof–the four-color theorem”. In: Notices of the AMS 55.11 (2008),

pp. 1382–1393.

[4] Michael Grüninger and Megan Katsumi. “Specifying ontology design patterns with an ontology

repository”. In: Proceedings of the 3rd International Conference on Ontology Patterns-Volume

929. Citeseer. 2012, pp. 1–12.

[5] William McCune. Prover9 and mace4. 2005.

[6] Natalya F Noy, Deborah L McGuinness, et al. Ontology development 101: A guide to creating

your first ontology. 2001.

[7] Roy Rada et al. “Development and application of a metric on semantic nets”. In: IEEE trans-

actions on systems, man, and cybernetics 19.1 (1989), pp. 17–30.

[8] M Andrea Rodriguez, Max J Egenhofer, and Robert D Rugg. “Assessing semantic similarities

among geospatial feature class definitions”. In: International Conference on Interoperating

Geographic Information Systems. Springer. 1999, pp. 189–202.

[9] Alex Roederer, Yury Puzis, and Geoff Sutcliffe. “Divvy: An ATP meta-system based on axiom

relevance ordering”. In: International Conference on Automated Deduction. Springer. 2009,

pp. 157–162.

[10] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Malaysia; Pear-

son Education Limited, 2016.

[11] David Sánchez et al. “Ontology-based semantic similarity: A new feature-based approach”. In:

Expert systems with applications 39.9 (2012), pp. 7718–7728.

19

[12] Evren Sirin et al. “Pellet: A practical owl-dl reasoner”. In: Web Semantics: science, services

and agents on the World Wide Web 5.2 (2007), pp. 51–53.

[13] Josef Urban. “An overview of methods for large-theory automated theorem proving”. In:

(2011).

[14] Zhibiao Wu and Martha Palmer. “Verbs semantics and lexical selection”. In: Proceedings of

the 32nd annual meeting on Association for Computational Linguistics. Association for Com-

putational Linguistics. 1994, pp. 133–138.

20

A TESTS

Table 5: multidim space voids weights for function 1

Entity Type Superclass(es) 1 2 3 4 5 6 7 8 9
CAVITY Class owl:Thing 10 10 10 10
Closed Class owl:Thing 10 10 10 10
ComplexV Class V 2 2 2
Con Class S
DPF Class F
F Class PED RPForDPF
Gap Class owl:Thing 2 10 10 10
HOL Class owl:Thing 2 10 10 10
Hole Class owl:Thing 10 1 10 10
ICon Class Con
M Class PED mat 1
Max Class S
MaxDim Class S
Min Class S
MinDim Class S
NAPO Class POB
PED Class POBorMorF 10 10 10 1
POB Class PED mat
POBorMorF Class owl:Thing
POBorMorRPF Class owl:Thing
POBorRPF Class owl:Thing
RPF Class F mat
RPForDPF Class owl:Thing
S Class owl:Thing 10 10 10 1
SimpleV Class V 2 2 2
SimpleVorComplexV Class owl:Thing
TUN Class owl:Thing 10 10 10 10
V Class SimpleVorComplexV 1 1 1 10
ZEX Class S 1
mat Class POBorMorRPF 1
BCont ObjectProperty
C ObjectProperty 10 10 10 10 10
Cont ObjectProperty
Covers ObjectProperty
DK1 ObjectProperty 10 10 10 10 10
EqDim ObjectProperty
ICont ObjectProperty
Inc ObjectProperty 10 10 10 10 10
P ObjectProperty
PO ObjectProperty
PP ObjectProperty
SC ObjectProperty
TCont ObjectProperty
VS ObjectProperty 10 10 10 10 10
ch ObjectProperty 10 10 10 10 10
gt ObjectProperty
hosts ObjectProperty

21

Entity Type Superclass(es) 1 2 3 4 5 6 7 8 9
hostscavity ObjectProperty
hostscavityi ObjectProperty
hostscavityt ObjectProperty
hostsg ObjectProperty
hostsh ObjectProperty
hostshollow ObjectProperty
hoststunnel ObjectProperty
hostsv ObjectProperty
hostsve ObjectProperty
hostsvi ObjectProperty
lt ObjectProperty
r ObjectProperty 10 10 10 10 10
”=” ObjectProperty 10 10 10 10 10
”gt=” ObjectProperty 10 10 10 10 10
”lt=” ObjectProperty 10 10 10 10 10

Table 6: multidim space voids weights for function 2

Entity Type Superclass(es) 1 2 3 4 5 6 7 8 9
CAVITY Class owl:Thing 10 10 10 10
Closed Class owl:Thing 10 10 10 10
ComplexV Class V
Con Class S
DPF Class F
F Class PED RPForDPF
Gap Class owl:Thing 1 1 10
HOL Class owl:Thing 10
Hole Class owl:Thing 1 1 10 10
ICon Class Con
M Class PED mat 1
Max Class S
MaxDim Class S
Min Class S
MinDim Class S
NAPO Class POB
PED Class POBorMorF 10 10 1
POB Class PED mat
POBorMorF Class owl:Thing
POBorMorRPF Class owl:Thing
POBorRPF Class owl:Thing
RPF Class F mat
RPForDPF Class owl:Thing
S Class owl:Thing 10 10 10 1
SimpleV Class V
SimpleVorComplexV Class owl:Thing
TUN Class owl:Thing 10 10 1 10
V Class SimpleVorComplexV 1 1 10 10
ZEX Class S 1
mat Class POBorMorRPF 1
BCont ObjectProperty
C ObjectProperty 10 10 10 10 10
Cont ObjectProperty

22

Entity Type Superclass(es) 1 2 3 4 5 6 7 8 9
Covers ObjectProperty
DK1 ObjectProperty 10 10 10 10 10
EqDim ObjectProperty
ICont ObjectProperty
Inc ObjectProperty 10 10 10 10 10
P ObjectProperty
PO ObjectProperty
PP ObjectProperty
SC ObjectProperty
TCont ObjectProperty
VS ObjectProperty 10 10 10 10 10
ch ObjectProperty 10 10 10 10 10
gt ObjectProperty
hosts ObjectProperty
hostscavity ObjectProperty
hostscavityi ObjectProperty
hostscavityt ObjectProperty
hostsg ObjectProperty
hostsh ObjectProperty
hostshollow ObjectProperty
hoststunnel ObjectProperty
hostsv ObjectProperty
hostsve ObjectProperty
hostsvi ObjectProperty
lt ObjectProperty
r ObjectProperty 10 10 10 10 10
”=” ObjectProperty 10 10 10 10 10
”gt=” ObjectProperty 10 10 10 10 10
”lt=” ObjectProperty 10 10 10 10 10

Table 7: inch weights for function 1

Entity Type Superclass(es) 1 2 3 4 5 6
ZEXI Class owl:Thing 10 10
CH ObjectProperty 1 1 1 1 1 1
CS ObjectProperty 1 1 10 10 1 1
GED ObjectProperty 10 1 1 1 1 10
INCH ObjectProperty 1 1 1 1 1 1

Table 8: inch weights for function 2

Entity Type Superclass(es) 1 2 3 4 5 6
ZEXI Class owl:Thing 10 10
CH ObjectProperty 1 1 1 1 1 1
CS ObjectProperty 1 1 10 10 1 1
GED ObjectProperty 10 1 1 1 1 10
INCH ObjectProperty 1 1 1 1 1 1

23

Table 9: multidim space physcont weights for function 1

Entity Type Superclass(es) 1 2 3 4 5 6 7
CAVITY Class owl:Thing
Closed Class owl:Thing
ComplexV Class V
Con Class S
DPF Class F
F Class PED
Gap Class owl:Thing
HOL Class owl:Thing
Hole Class owl:Thing
ICon Class Con
M Class mat PED
Max Class S
MaxDim Class S
Min Class S
MinDim Class S
NAPO Class POB
PED Class owl:Thing
POB Class mat PED
RPF Class mat F
S Class owl:Thing
SimpleV Class V
TUN Class owl:Thing
V Class owl:Thing
ZEX Class S
mat Class owl:Thing
BCont ObjectProperty
C ObjectProperty 10
Cont ObjectProperty
Covers ObjectProperty
DK1 ObjectProperty 10
EQUALS ObjectProperty
EqDim ObjectProperty
ICont ObjectProperty
Inc ObjectProperty 10
P ObjectProperty
PO ObjectProperty
PP ObjectProperty
SC ObjectProperty
StrongC ObjectProperty
TCont ObjectProperty
VS ObjectProperty
ch ObjectProperty 10 10 10 10 10 10
conporespace ObjectProperty 10 10 10 10 10 10
convoidspace ObjectProperty 10 10 10 10 10 10
dep ObjectProperty 10 10 10 10 10 10
depcont ObjectProperty
depimmatcontains ObjectProperty
depmatcont ObjectProperty
detcont ObjectProperty 1
enclosesmat ObjectProperty
enclosesvoid ObjectProperty 1

24

Entity Type Superclass(es) 1 2 3 4 5 6 7
fullphyscont ObjectProperty 10 10 10 10 10 10
gt ObjectProperty
hosts ObjectProperty
hostscavity ObjectProperty
hostscavityi ObjectProperty
hostscavityt ObjectProperty
hostsg ObjectProperty
hostsh ObjectProperty
hostshollow ObjectProperty
hoststunnel ObjectProperty
hostsv ObjectProperty 10 10 10 10 10 10
hostsv1 ObjectProperty
hostsv2 ObjectProperty
hostsv3 ObjectProperty
hostsvany ObjectProperty 10 10 10 10 10 10
hostsve ObjectProperty
hostsvi ObjectProperty
immatcont ObjectProperty 1
inside ObjectProperty 1 1
isurroundsmat ObjectProperty
isurroundsvoid ObjectProperty
lt ObjectProperty
matcont ObjectProperty 1
matdep ObjectProperty 1 1
matfillsinside ObjectProperty
matinside ObjectProperty 1
matsplitinside ObjectProperty
osurroundsmat ObjectProperty
osurroundsvoid ObjectProperty 1
porespace ObjectProperty 10 10 10 10 10 10
r ObjectProperty 10 10 10 10 10 10
submaterial ObjectProperty
subvoid ObjectProperty
surrounds ObjectProperty
surroundsmat ObjectProperty
surroundsvoid ObjectProperty 1 1
voidinside ObjectProperty 1
voidspace ObjectProperty 10 10 10 10 10 10
voidspaceall ObjectProperty 10 10 10 10 10 10
”gt=” ObjectProperty
”lt=” ObjectProperty

Table 10: multidim space physcont weights for function 2

Entity Type Superclass(es) 1 2 3 4 5 6 7
CAVITY Class owl:Thing
Closed Class owl:Thing
ComplexV Class V
Con Class S
DPF Class F
F Class PED
Gap Class owl:Thing

25

Entity Type Superclass(es) 1 2 3 4 5 6 7
HOL Class owl:Thing
Hole Class owl:Thing
ICon Class Con
M Class mat PED
Max Class S
MaxDim Class S
Min Class S
MinDim Class S
NAPO Class POB
PED Class owl:Thing
POB Class mat PED
RPF Class mat F
S Class owl:Thing
SimpleV Class V
TUN Class owl:Thing
V Class owl:Thing
ZEX Class S
mat Class owl:Thing
BCont ObjectProperty
C ObjectProperty 10
Cont ObjectProperty
Covers ObjectProperty
DK1 ObjectProperty 10
EQUALS ObjectProperty
EqDim ObjectProperty
ICont ObjectProperty
Inc ObjectProperty 10
P ObjectProperty
PO ObjectProperty
PP ObjectProperty
SC ObjectProperty
StrongC ObjectProperty
TCont ObjectProperty
VS ObjectProperty
ch ObjectProperty 10 10 10 10 10 10
conporespace ObjectProperty 10 10 10 10 10 10
convoidspace ObjectProperty 10 10 10 10 10 10
dep ObjectProperty 10 10 10 10 10 10
depcont ObjectProperty
depimmatcontains ObjectProperty
depmatcont ObjectProperty
detcont ObjectProperty 1
enclosesmat ObjectProperty
enclosesvoid ObjectProperty 1
fullphyscont ObjectProperty 10 10 10 10 10 10
gt ObjectProperty
hosts ObjectProperty
hostscavity ObjectProperty
hostscavityi ObjectProperty
hostscavityt ObjectProperty
hostsg ObjectProperty
hostsh ObjectProperty
hostshollow ObjectProperty

26

Entity Type Superclass(es) 1 2 3 4 5 6 7
hoststunnel ObjectProperty
hostsv ObjectProperty 10 10 10 10 10 10
hostsv1 ObjectProperty
hostsv2 ObjectProperty
hostsv3 ObjectProperty
hostsvany ObjectProperty 10 10 10 10 10 10
hostsve ObjectProperty
hostsvi ObjectProperty
immatcont ObjectProperty 1
inside ObjectProperty 1 1
isurroundsmat ObjectProperty
isurroundsvoid ObjectProperty
lt ObjectProperty
matcont ObjectProperty 1
matdep ObjectProperty 1 1
matfillsinside ObjectProperty
matinside ObjectProperty 1
matsplitinside ObjectProperty
osurroundsmat ObjectProperty
osurroundsvoid ObjectProperty 1
porespace ObjectProperty 10 10 10 10 10 10
r ObjectProperty 10 10 10 10 10 10
submaterial ObjectProperty
subvoid ObjectProperty
surrounds ObjectProperty
surroundsmat ObjectProperty
surroundsvoid ObjectProperty 1 1
voidinside ObjectProperty 1
voidspace ObjectProperty 10 10 10 10 10 10
voidspaceall ObjectProperty 10 10 10 10 10 10
”gt=” ObjectProperty
”lt=” ObjectProperty

27

AUTHOR’S BIOGRAPHY

Stanley C. Small grew up in Hampden, Maine with his mother Diane and his father Scott. He

attended the University of Maine and received a Bachelor of Science degree in Computer Science in

May of 2019.

28

	The University of Maine
	DigitalCommons@UMaine
	Spring 2019

	Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies
	Stanley Small
	Recommended Citation

	tmp.1559829750.pdf.yx7hP

