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ABSTRACT 

Streptococcus agalactiae or Group B Streptococcus (GBS), is a Gram-positive 

commensal bacterium that is harmless in healthy adults, yet causes systemic diseases in 

neonates, the elderly, and immunocompromised individuals. Neonates are at risk of GBS 

infection in utero or during delivery due to the colonization of the organism in the vaginal 

canal of between 15-30% of adult females. GBS can cause severe neonatal sepsis and 

meningitis, as well as chorioamnionitis, which can cause premature birth and stillbirth. 

GBS infection is greatly facilitated by the presence of a bacterial capsule; a protective, 

polysaccharide matrix surrounding the cell that plays a key role in the pathogen’s ability 

to evade host immune responses. Antibiotics are effective in reducing the chances of 

neonatal infection by GBS; however, they also increase the likelihood of the organism 

developing antibiotic resistance. An approach to manipulate GBS and reduce its 

functionality would be beneficial to counter the potential of antibiotic resistance 

developments, while avoiding the cytotoxic effects that antibiotics can impose on the 

host. 

The GBS CpsA protein, a putative transcriptional regulator of the capsule locus 

within the GBS genome, plays a significant role in capsule production. Without CpsA, 

GBS displays reduced capsule production, and thus, reduced virulence. In this study 

Aspartic Acid-375 and Arginine-378 were targeted in the LytR domain of CpsA, a 

domain proposed to be responsible for the ligation of capsule to the cell wall of GBS. 

This work will provide insight into which amino acids are the key residues required for 

the function of CpsA.
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1. INTRODUCTION 

1.1 Streptococcus agalactiae 

Streptococcus agalactiae, or Group B Streptococcus (GBS), is a Gram-positive 

commensal bacterium that normally grows in short chains of two to five cocci (1). In 

approximately 30% of healthy adults, GBS is an asymptomatic colonizer of the 

gastrointestinal tract, genitourinary tract, and additionally in women, the vaginal canal 

(2). Although asymptomatic and harmless in healthy adults, GBS is an opportunistic 

pathogen that can cause systemic diseases in neonates, the elderly, and 

immunocompromised individuals (3). Regardless of modern prophylactics, GBS is the 

leading cause of neonatal sepsis in high-income countries (4). In newborns, GBS can also 

cause meningitis, chorioamnionitis, and pneumonia (5). GBS infections are also a cause 

of preterm delivery, antepartum and postpartum stillbirth, and puerperal sepsis (6). 

Neonatal infection by GBS can be characterized as either being early-onset or late-onset. 

Early-onset GBS infections (0-6 days) stem from vertical transmission of the pathogen 

from mother to child before or during delivery through bacterial particles present within 

the amniotic fluid. Late-onset GBS infections (7-89 days) occur after delivery and are 

acquired from the mother or the environment (7). Current practices to reduce 

transmission of GBS to newborns include screening and intrapartum antibiotic 

prophylaxis using penicillin (8). Despite being effective, antibiotic administration can 

pose major threats to the development of both the newborn’s gut microbiota as well as 

their immune system (9). 
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1.2 Peptidoglycan 

Gram positive organisms, such as GBS, contain a cell wall consisting of a thick 

peptidoglycan layer, cell wall-associated teichoic acids, capsular polysaccharide (CPS) 

and other associated proteins. The peptidoglycan of the cell wall is made up of repeated 

N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM), with several peptides 

and proteins attached via cross-linking or covalent and non-covalent interactions. The 

thick peptidoglycan layer also plays a major role in protecting the bacterial cell 

membrane. Importantly, anionic teichoic acids are scattered throughout the 

peptidoglycan, functioning to provide cell wall integrity, as well as granting the cell 

surface an overall negative charge (10). The peptidoglycan primarily acts as a scaffold for 

adherence and/or anchoring for several proteins and peptides. Many of these cell wall-

associated proteins interact with the extracellular environment, working to maintain the 

functionality of the cell, while also protecting the cell from external threats. A major 

player in the protection of GBS is the capsular polysaccharide (CPS), which acts as the 

outermost layer of the cell surface, providing the cell with additional protection and 

structural integrity (11). 

1.3 Group B Streptococcus Capsule 

GBS infection is primarily facilitated by the presence of a bacterial capsule, a 

protective, polysaccharide matrix surrounding the cell that plays a key role in the ability 

of the pathogen to evade host immune responses, to bind to host cells, and to penetrate 

host tissues. The GBS capsule consists of capsular polysaccharides (CPS) which are 

covalently bound to the N-acetylglucosamine peptides of peptidoglycan (10). The 

enzyme(s) that covalently add and ligate CPS to the N-acetylglucosamine peptide have 
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not been determined in GBS and therefore elucidating the enzymatic process is one of the 

key objectives of this study. There are approximately nine antigenically distinct serotypes 

of GBS CPS, each consisting of various arrangements of galactose, glucose, GlcNAc, and 

sialic acids, such as N-acetylneuraminic acid (12). N-acetylneuraminic acid, commonly 

found in human and mammalian cells, allows for GBS to employ host-cell molecular 

mimicry, a means of avoiding recognition and phagocytosis by host immune cells (13).  

The production and regulation of GBS capsule is key to the virulence and survival 

of the organism. CpsA is a putative transcriptional regulator protein of the capsule locus 

and is likely responsible for GBS capsule synthesis and ligation to the outer cell wall (1). 

 

1.4 CpsA Protein 

CpsA is a putative transcriptional regulator of the capsule locus in the GBS 

genome and is encoded by cpsA. This protein is common to all serotypes of GBS and 

belongs to the LytR-CpsA-Psr (LCP) protein family. The LCP protein family is 

associated with cell wall maintenance, stability, and carbohydrate linkage (1). The CpsA 

protein contains an intracellular DNA-binding domain, three transmembrane domains, an 

extracellular accessory domain, and an extracellular LytR domain (Figure 1). The LytR 

domain is a putative phosphotransferase that is likely involved in capsular attachment and 

cell wall stability. The CpsA protein is highly conserved in other Streptococcus species, 

including Streptococcus pneumonia and Streptococcus iniae, and is shown to play a 

bifunctional role in capsule expression and cell wall stability (1). 
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Figure 1. CpsA protein structure. Diagram displaying the DNA-Binding domain (N-

terminus), three transmembrane domains (red), Accessory Domain (Purple), and LytR 

Domain (Green). 

1.5 Previous Research 

The CpsA protein has been demonstrated to regulate the transcription of the 

capsule locus (10), although the mechanism of this is not known. Previous research 

showed that the deletion of cpsA in S. agalactiae and S. iniae resulted in a myriad of 

pleiotropic effects (14). The deletion caused a decrease in levels of CPS production and 

microscopy analysis revealed that ΔcpsA GBS displayed a long-chain phenotype. 

Whether the long-chain phenotype is a result of decreased capsule is unknown, however 

it is predicted that CpsA-dependent changes to the cell wall are responsible for 

differences in chain lengths between wild-type and ΔcpsA GBS (1). 

CpsA plays a vital role in the virulence of GBS. Rowe et al, demonstrated that in 

the absence of CpsA, GBS virulence was attenuated in a zebrafish model. Zebrafish were 

inoculated with a wild-type strain of GBS 515, and after six days post-infection only 8% 

survived. This was compared against ΔcpsA GBS 515-inoculated zebrafish, which after 

six days post-infection displayed a viability of 68% (1). 

Cps2A is a Streptococcus pneumoniae protein analogous to CpsA. Both proteins 

are highly conserved (50% identical and 69% amino acid similarity), with exceptions to a 
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few differences in amino acids (1). Kawai et al, was able to characterize the Cps2A 

protein and solve the crystal structure to visualize the two extracellular domains (Figure 

2). The goal of the study was to determine Cps2A functionality through the visualization 

of the folded protein structure and its amino acid residues (11). The crystal structure 

displays that both the Accessory and LytR domains fold independently of one another 

and that a buried decaprenyl-phosphate lipid is present in the LytR active site. The 

function of the buried lipid is not known; however, it may play an integral part in the 

ligation of CPS to the cell wall. Key residues that interact with the phosphate headgroup 

of the decaprenyl-phosphate lipid to maintain its stability are R267, R362, and R374 

(Figure 3). These residues form key interactions with the phosphate oxygens to create a 

positively charged pocket in the surface of the protein (11). D371 and Q378 interact with 

the arginine residues to stabilize their conformations (Figure 3). In GBS, these residues 

are shifted slightly, but are predicted to maintain similar interactions. 
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Figure 2. Crystal structure of Cps2A extracellular domains in Streptococcus 

pneumoniae. The Accessory Domain (red) folds separately from the LytR Domain 

(green). The LytR Domain displays a buried decaprenyl-phosphate (carbon atoms are 

yellow, phosphorous is orange, and oxygen is red) (11). 

 

 

Figure 3. Lipid binding by the LCP domain of Cps2A in Streptococcus pseudomonas. 

Figure displays the decaprenyl-phosphate binding to Cps2A, as well as the two key 

residues of this study: D371 and R374 (D375 and R378 in GBS) (11). 
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1.6 Research Objective 

The primary objective of this study is to gain insight into the functions of CpsA 

through LytR mutations. To test the hypothesis that there are key amino acid residues of 

the LytR Domain essential to the functionality of CpsA, point-mutations at Aspartic 

Acid-375 and Arginine-378 (correlating to D371 and R374 in S. pneumoniae) of the LytR 

domain will be generated in GBS. The effects of these point mutations will help elucidate 

the functions of key residues within the LytR domain and help determine if they are 

essential for GBS capsule production or capsular attachment to the cell wall. The findings 

of this study may contribute to future medical approaches to treating and preventing GBS 

infections. In determining which amino acids are essential to CpsA and capsule 

regulation, researchers could develop a targeted therapy that reduces GBS virulence and 

promotes the normal function of the innate immune system. 
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2. MATERIALS AND METHODS 

2.1 Plasmid Construction 

2.1.1 Plasmid Preparation 

 The pLZ12-rofA-pro shuttle vector (can replicate in E. coli and Streptococci) 

containing a Chloramphenicol resistance marker was provided by Dr. Melody Neely 

(University of Maine, Orono, Maine, USA). The plasmid underwent a restriction enzyme 

digestion in order to prepare it for ligation. The plasmid was digested with BamHI and 

PstI and was verified to be ~4500bp by gel electrophoresis on a 0.8% agarose gel. The 

digested plasmid was then gel isolated using a GeneJET Gel Extraction Kit 

(ThermoFisher Scientific). 

 

2.1.2 Splicing by Overlap Extension – Polymerase Chain Reaction (SOE-PCR) 

cpsA mutations D375A and R378A were created in the cpsA gene of GBS using a 

three-reaction PCR procedure (SOE-PCR) to create a mutant cpsA fragment. The first 

PCR used GBS genomic DNA as template with primers 5’ GBS-CpsA-RBS-BamHI and 

3’ CpsA-D375A-R378A and Q5 High-Fidelity DNA Polymerase. Following the PCR, the 

reaction was verified to be ~1145bp using gel electrophoresis on a 0.8% agarose gel and 

the band was extracted and purified using a GeneJET Gel Extraction Kit (ThermoFisher 

Scientific). The purified mutant cpsA DNA fragment (Fragment 1) was stored in a 1.5mL 

microcentrifuge tube at 4℃. 

The second PCR used GBS genomic DNA as template, primers 5’ CpsA-D375A-

R378A and 3’ GBS-cpsA-full-PstI and Q5 High-Fidelity DNA Polymerase (New 
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England BioLabs). Following the PCR, the reaction was verified to be ~350bp using gel 

electrophoresis on a 0.8% agarose gel and the band was extracted and purified using a 

GeneJET Gel Extraction Kit (ThermoFisher Scientific). The purified mutant cpsA DNA 

fragment (Fragment 2) was stored in a 1.5mL microcentrifuge tube at 4℃. 

 In the final PCR, a SOE reaction was performed to create the full mutant cpsA. 

Fragment 1 and Fragment 2 were used as template with outside primers 5’ GBS-CpsA-

RBS-BamHI and 3’ GBS-cpsA-full-PstI and Q5 High-Fidelity DNA Polymerase (New 

England BioLabs). Following the PCR, the reaction was verified to be ~1470bp using gel 

electrophoresis on a 0.8% agarose gel and the band was excised and purified using a 

GeneJET Gel Extraction Kit (ThermoFisher Scientific). Once purified, the full-length 

mutant cpsA fragment was digested with BamHI and PstI using the same protocol as 

listed in 2.1.1 Plasmid Preparation. The digested mutant cpsA DNA fragment was then 

ligated with the digested pLZ12-rofA-pro vector from protocol 2.1.1. In addition, a 

negative control consisting of just the digested vector and no mutant cpsA was also 

ligated. The ligation reaction mixtures were incubated at room temperature for 30 

minutes. After the ligation reactions, any remaining salts in the products were removed 

using butanol precipitation. 

  

2.1.3 Electrotransformation of Escherichia coli 

 Competent Escherichia coli were provided by Dr. Melody Neely (University of 

Maine, Orono, Maine, USA) and used as a primary means of transformation to complete 

the previous ligation reactions and seal any DNA nicks. 40 microliters of electro-

competent E. coli cells were mixed with 5uL of the ligated mutant cpsA plasmid 
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Electrotransformation was performed using a Gene Pulser II Electroporation System 

(BIO-RAD) set to 2.5µm, 2.5kV, and 200Ω. The electroporated cells were immediately 

transferred into 1 mL of SOC medium and incubated at 37℃ for 1.5 hours in a shaking 

water bath. Following the incubation, the transformant groups and negative control were 

plated on LB agar plates supplemented with Chloramphenicol (20µg/mL) to select for 

transformants. 

 

2.1.4 Colony PCR and Plasmid Analysis 

 Several transformed colonies were selected and used in a colony PCR to confirm 

the presence of the cpsA gene using Dreamtaq Green PCR Mastermix (ThermoFisher 

Scientific) and primers 5’ GBS-CpsA-RBS-BamHI and 3’ GBS-cpsA-full-PstI. After 

performing the colony PCRs, the reactions were verified for size through gel 

electrophoresis on a 0.8% agarose gel. Band length results were compared against a 1kb 

ladder, and a positive and negative control. Colonies that were verified to contain the 

mutant cpsA plasmid were inoculated into Luria Broth (LB) with Chloramphenicol 

(20ug/mL) and used in a plasmid preparation using the Hi-Pure Plasmid Midiprep Kit 

(ThermoFisher Scientific). Following plasmid isolation, the concentration of each 

plasmid DNA was analyzed using a NanoDrop OneC Microvolume UV-Vis 

Spectrophotometer (ThermoFisher Scientific). The products were then sequenced by 

Patty Singer (University of Maine Sequencing Facility, Orono, Maine, USA) to verify 

that the mutant plasmid contains the D375A and R378A mutations and no other 

mutations in the cpsA sequence. 

 



11 
 

2.2 Electrotransformation of Streptococcus agalactiae 

 Wild-Type and ΔCpsA Group B Streptococcus 515 cultures were grown 

overnight at 37℃ in Todd-Hewitt Yeast Broth (THYB) supplemented with 80 mM of 

Glycine. The overnight cultures were then diluted into 25mL of THYB supplemented 

with 80 mM of Glycine at a dilution rate of 1:20. The subcultures were grown in a 

shaking water bath at 37℃ to an OD600 of 0.400 and then harvested by centrifugation, 

washed three times with 10 mL off chilled 10% glycerol, and resuspended in 1mL of 

chilled 10% glycerol, followed by incubation on ice. The mutant plasmid was 

transformed into Wild-Type GBS 515 and into ΔCpsA GBS 515 using 3uL of the 

plasmid DNA and 200uL of the GBS cells. Electroporation was performed with a Gene 

Pulser II Electroporation System (BIO-RAD) at 25µm, 2.0kV, and 400Ω. The 

electroporated cells were immediately transferred to 10mL of fresh THYB medium and 

allowed to recover for 90 minutes at 37℃ before plating on THY agar with 3ug/mL of 

Chloramphenicol. Two negative controls were also electroporated, consisting of either 

Wild-Type or ΔCpsA GBS 515 cells and no added plasmid. 

  

2.3 Microscopy 

Light microscopy was performed on Wild-Type GBS 515, ΔCpsA GBS 515, 

Wild-Type GBS 515 + pCpsA Mutant, and ΔCpsA GBS 515 + pCpsA Mutant strains 

using a compound microscope (Zeiss Axiostar), visualized at a magnification of 1000X. 

Five fields of view for each strain were saved in JPEG format and the average cocci per 

chain was calculated manually. 
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2.4 Enzyme-Linked Immunosorbent Assay (ELISA) 

 Overnight cultures of each experimental strain (Wild-Type GBS 515, ΔCpsA 

GBS 515, Wild-Type + mutant plasmid, and ΔCpsA + mutant plasmid) were grown in 

10mL THYB supplemented with Chloramphenicol(3ug/mL).  

Pre-absorption of the secondary antibody was performed by mixing 2.5mL of 

both Wild-Type and ΔCpsA GBS 515, followed by centrifugation and resuspension in 

1mL of Tris-Buffered Saline (TBS). Secondary antibody (goat, anti-rabbit IgG 

conjugated to alkaline phosphatase) was added at a 1:100 dilution and incubated at 4℃ 

for 1 hour on a rotator. After the incubation, cells were pelleted by centrifugation and the 

supernatant was collected and filtered with a 0.22µm syringe filter. This resulted in 

obtaining ~1mL of 1:100 pre-adsorbed secondary antibody. 

 The remaining overnight cell cultures were normalized to an OD600 of 0.750. 

Normalized samples were then pelleted via centrifugation, resuspended in 1mL TBST, 

and vortexed. The samples were pelleted again via centrifugation and resuspended in mL 

TBST. Primary antibody (rabbit - anti-serotype 1a) at a final dilution of 1:20,000 was 

added and incubated at 4℃ on a rotator for 1 hour. Cells were pelleted via centrifugation 

and washed three times with TBST, vortexing after each wash. The cells were 

resuspended in 1mL of TBS-T. Next, the pre-adsorbed secondary antibody was added to 

each cell sample to a final dilution of 1:5,000. The cell samples were then incubated at 

4℃ for 1 hour on a rotator. Following the incubation, cell samples were pelleted via 

centrifugation and then washed three times with TBST. The cells were then resuspended 

in 1mL of TBS-T. Following this, an alkaline phosphatase assay was performed on all 

reactions in a 96-well plate, using pNPP as substrate and 50uL of cells per well. Assays 
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were performed in triplicate at no dilution, a 1:2 dilution, and a 1:4 dilution. Following 

the addition of cells and pNPP to each well, the contents of the 96-well plate were 

incubated in the dark at room temperature for 1 hour. The plate was then read at OD405 

and OD600 using a 96 Microplate Reader (VersaMax). 

 

2.5 Fluorescent Vancomycin Assay 

 Overnight cultures of negative control groups (Wild-Type GBS 515 and ΔCpsA 

GBS 515) and mutant plasmid cpsA in GBS 515 Wild-Type and ΔCpsA, were grown in 

THYB with 3ug/mL of chloramphenicol). Overnight cultures were subcultured into 

THYB+Chloramphenicol (3ug/mL) and grown to mid-log phase (OD600=0.300). The 

cultures were then concentrated to an OD600 of 1.0. Ten microliters of the cultures were 

incubated with 1ug/uL of BODIPY_FL Vancomycin (ThermoFisher Scientific) at 37℃ to 

allow for the incorporation of the fluorescent stain into newly formed cell walls. The cell 

cultures were then washed three times in Phosphate-Buffered Saline (PBS) and then 

resuspended in 3uL PBS. Cells treated with fluorescent vancomycin were observed as a 

wet mount at 1000X on a fluorescent microscope (Zeiss Axiostar). 

 

2.6 Zebrafish Immune Response Assay 

2.6.1 Preparation  

Zebrafish were bred and 2-day old embryos were used for infections. The day 

before injecting zebrafish larvae, overnight cultures of Wild-Type GBS 515 with pLZ12-

rofA-pro vector, ΔCpsA GBS 515 with pLZ12-rofA-pro vector, and ΔCpsA GBS 515 
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with the mutant cpsA plasmid were grown in THYB broth supplemented with 

Chloramphenicol (3ug/mL).   

 

2.6.2 Bacterial Dosage 

 Overnight bacterial cultures were subcultured at a dilution of 1:20 into THYB 

supplemented with Chloramphenicol (3ug/mL). Subcultures were incubated at 37℃ until 

the culture reached the mid-log phase of growth. Subcultures were normalized to an 

OD600 of 0.225. Following normalization, 1 mL of each cell sample was pelleted via 

centrifugation at 14,000 RPM for 5 minutes. The supernatant was then removed, and the 

pellet was resuspended in 1 mL of sterile THYB. The sample was pelleted and 

resuspended again in the same manner and then placed on ice. The cell samples should 

now be at a concentration of 1 x 10^8 CFU/mL. 

 

2.6.3 Inoculum Dose Verification 

Each of the tested groups were serially diluted out to 10^-7 and 100uL of the 10^-

6 and 10^-7 dilutions were plated on THY Agar-Chloramphenicol (3ug/mL) plates. The 

plates were incubated for 24 hours at 37℃ in 5% CO2 and then counted to verify that the 

concentration of the cell samples were 1x10^8 CFU/mL. 

 

2.6.4 Microinjections into the Yolk Sac 

 Dechorionated embryos were anesthetized by placing them in 25 mL of fish 

embryo water supplemented with 2mL of Tricaine. A microinjector needle was cut and 
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calibrated to release ~1nL of the cell suspension per injection. Fish were injected with 

100 CFU (1nL of 1x10^8 CFU/mL) of each strain or with sterile media as a negative 

control. Once the needle was loaded with the correct dose + 0.1% phenol red, 

anesthetized fish embryos were stabilized in methylcellulose on an agar injection plate. 

The fish were then injected in the lower part of their yolk sacs and washed into fresh fish 

water without tricaine to rinse off the methylcellulose. The fish were then immediately 

placed into a well of a 6-well plate. This procedure was repeated for each of the tested 

groups, using 20 zebrafish larvae for each experimental group and 10 zebrafish larvae for 

the negative control group (sterile media). The zebrafish were then incubated at 27-29℃ 

and monitored for survival over a period of 72 hours, removing any dead larvae as the 

monitoring progressed. 
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3. RESULTS 

3.1 Chain Length Analysis using Microscopy 

 GBS chain lengths are dependent on cell wall interactions (14). For this reason, if 

the LytR Domain mutations influence cell wall stability and CpsA ligation to the cell 

wall, then a change in chain length phenotype may be displayed in the mutant GBS 

strain. Analysis of the chain lengths of each experimental strain of GBS 515 revealed that 

the wild-type chain length frequency (Figure 4A) remained consistent with the expected 

short-chain phenotype. As demonstrated in previous research (1), the ΔcpsA GBS chain 

length frequency (Figure 4B) remained consistent with the expected long-chain 

phenotype. Wild-Type-pmutantcpsA (Figure 4C) and ΔcpsA-pmutantcpsA (Figure 4D) 

strains exhibited short-chain phenotypes. A comparison of the average chain length 

between experimental groups (Figure 5E) displayed that the wild-type GBS strain had an 

average chain length of ~2.79 cocci, which is consistent with the normal amount of cocci 

seen in wild-type GBS (1). The ΔcpsA GBS strain had an average chain length of ~9.92 

cocci, consistent with the long chain phenotype seen in the cpsA deletion strain (8). Wild-

Type-pmutantcpsA strain had an average chain length of ~3.84 cocci and the ΔcpsA-

pmutantcpsA strain had an average chain length of ~2.9 cocci. Statistical analysis of the 

data reveals that the average chain length of the ΔcpsA-pmutantcpsA strain complimented 

the average chain length of the wild-type GBS strain. Additionally, the data revealed that 

the increase in average chain length of the Wild-Type-pmutantcpsA, as compared to the 

wild-type strain, are statistically significant; However, with an average chain length of 

3.84, the Wild-Type-pmutantcpsA strain has a chain length of between 2 and 4 cocci, 



17 
 

which is in the range of a normal, short-chain phenotype as exhibited by wild-type in a 

previous study (1). The short-chain phenotypes demonstrated by the mutant cpsA strains 

of GBS suggest that the D375A and R378A mutations are not effective in altering the 

functionality of the LytR Domain and therefore the cell wall interactions of GBS. 

 

 

Figure 4. Chain length frequency of experimental GBS 515 strains. Five fields of view 

per group were analyzed to calculate the chain length distribution of each experimental 

group. A) Chain length frequency of Wild-Type GBS 515 strain containing an empty 

plasmid. B) Chain length frequency of ΔcpsA GBS 515 strain containing an empty 

plasmid. C) Chain length frequency of Wild-Type GBS 515 strain containing a mutant 
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cpsA plasmid. D) Chain length frequency of the ΔcpsA GBS 515 strain containing a 

mutant cpsA plasmid. 

 

Figure 5. Effect of mutations on chain length. Analysis of overnight GBS cultures of 

Wild-Type with an empty plasmid (A), ΔcpsA with an empty plasmid (B), Wild-Type 

with a mutated ΔcpsA plasmid (C), and ΔcpsA with a mutated ΔcpsA plasmid (D) by 
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microscopy was performed. Five fields of view for each experimental group were 

visualized and the average number of cocci per chain was calculated (E). WT-pempty has 

an average chain length of 2.79 cocci, ΔcpsA-pempty has an average chain length of 9.92 

cocci, WT-pmutantcpsA has an average chain length of 3.84 cocci, and ΔcpsA-

pmutantcpsA has an average chain length of 2.90 cocci. Error bars represent the standard 

error. **, P<0.01. N.S., P=0.695. 

 

3.2 Capsule Quantification through an Enzyme-Linked Immunosorbent Assay 

An Indirect Enzyme Linked Immunosorbent Assay (ELISA) was used to quantify 

the amount of capsule expressed in the experimental GBS 515 groups. If the D375A and 

R378A mutations were effective in reducing capsule production or capsular ligation to 

the cell wall, then there should be an overall decrease in capsule expression when 

comparing the mutant strains of GBS to the wild-type strain. ELISA results of each 

experimental GBS 515 group revealed that Wild-Type-pempty has significantly more 

capsule present than ΔcpsA-pempty (Figure 6). The Wild-Type-pmutantcpsA GBS strain 

displayed an expression of 5992.29 capsular units and the ΔcpsA-pmutantcpsA GBS 

strain displayed an expression of 6280.153 capsular units. In comparison to the Wild-

Type-pempty strain, which expressed 6514.8 capsular units, the capsular levels of the 

Wild-Type-pmutantcpsA and the ΔcpsA-pmutantcpsA strains were decreased, however 

the decreases were not statistically significant to confirm a correlation by the effects of 

the mutations. These results suggest that the D375A and R378A mutations are not 

effective in decreasing the amount of capsule that is expressed on the cell wall of GBS. 

The results of this data are based on a single experiment consisting of three dilutions, 

with each dilution performed in triplicate, and therefore further ELISA trials are required 

to confirm the accuracy of the presented data. 
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Figure 6. Comparison of levels of capsule present in GBS experimental groups. Capsule 

levels were calculated using the average of nine ELISA results per group, after 

subtracting background quantities. Error bars represent the standard error. **, P<0.02. 

N.S., P>0.10. 

3.3 Changes in Cell Wall Morphology 

 The Fluorescent Vancomycin Assay was performed to determine the effect that 

the D375A and R378A mutations have on the cell wall morphologies of GBS. If D375 

and R378 play a significant role in cell wall stability, then the mutant strains of GBS 

should display as having abnormal cell wall morphologies. Results of the Fluorescent 

Vancomycin Assay show that the cell wall morphologies of the Wild-Type-pempty GBS 

515 strain are relatively stable, indicated by a bright ring of green fluorescence 

surrounding the individual cocci (Figure 7A). A cpsA deletion in GBS 515 causes cell 

wall abnormalities and instability, demonstrated by cocci that are equally fluorescent 

throughout, indicative of a leaky cell wall (Figure 7B). The Wild-Type-pmutantcpsA and 
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ΔcpsA-pmutantcpsA GBS 515 strains display varying results, with most cells in the 

observed fields of view displaying stable cell walls, similar to the results demonstrated by 

the Wild-Type-pempty GBS 515 strain (Figures 7C and 7D). Further experimentation and 

analysis is necessary to accurately quantify the overall cell wall stability of the GBS 

strains. 

 

 

Figure 7. Effects of mutations on GBS cell wall morphology. The cell wall morphologies 

of Wild-Type-pempty (A), ΔcpsA-pempty (B), Wild-Type-pmutantcpsA (C), and ΔcpsA-

pmutantcpsA (D) were observed by fluorescent microscopy after incubating with 1ug/uL 

BODIPY_FL Vancomycin (ThermoFisher Scientific). 

 

3.4 Zebrafish Survivability Assay 

Previous research shows that a cpsA deletion strain of GBS has an attenuated 

virulence in a zebrafish model of infection (1). Therefore, cpsA expression and 
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functionality is shown to be a key determinant in the infectivity of GBS. To test if the 

D375A and R378A mutations are effective in reducing the virulence of GBS, zebrafish 

larvae were infected with ~100 CFU of the experimental GBS strains and monitored for 

their survivability. If the D375A and R378A mutations reduce GBS virulence, then there 

should be an increased survivability compared to wild-type GBS infected zebrafish. 

Zebrafish infection results reveal that the ΔcpsA-pmutantcpsA GBS 515 strain is 

comparable to the ΔcpsA-pempty GBS 515, yet to a lesser extent (Figure 8).  Twenty-

Four hours post-infection, 70% of Wild-Type-pempty, 95% of ΔcpsA-pempty, and 75% 

of the ΔcpsA-pmutantcpsA injected zebrafish were alive. However, 48 hours and 72 hours 

post-infection, while all the Wild-Type-pempty GBS 515-infected fish had succumbed to 

the infection, 30% of the ΔcpsA-pempty, and 25% of the ΔcpsA-pmutantcpsA groups had 

survived the infection. These results demonstrate that the mutations created in cpsA may 

influence GBS virulence. The results of this experiment were compiled from a single 

trial, using 20 zebrafish per experimental group, and therefore the experiment needs to be 

repeated to confirm the effects of the mutations. Further trials are required to determine if 

the data is statistically significant. 
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Figure 8. Effects of mutations on GBS virulence. Experimental strains were injected into 

zebrafish at a volume of 1nl, which was ~100 CFU. Every 24 hours, over a period of 72 

hours, living fish were counted and a percentage of the surviving fish was recorded. 
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4. DISCUSSION 

Despite medical advancements, such as pre-screening and intrapartum antibiotic 

prophylaxis (IAP), GBS infections remain a predominant cause of early-onset disease in 

neonates (15). Additionally, the incidence of invasive GBS infections in adults has 

increased over the past eleven years, most likely due to the increase in a prevalence of 

chronic diseases, such as diabetes and obesity (16). Current treatments for GBS infection 

include common antibiotics, such as penicillin, administered during labor, delivery, or 

after diagnosis of GBS infection. Antibiotics, however, are not a lasting treatment as 

antibiotic resistance becomes more prevalent in GBS populations (16). For this reason, 

new therapies targeting GBS virulence factors, such as capsular polysaccharide and β-

hemolysin, are being researched (17). 

The streptococcal CpsA protein is a member of the LytR-CpsA-Psr (LCP) family; 

a multifunctional family of proteins involved in attaching carbohydrates, capsular 

polysaccharide, and teichoic acids to the cell wall in various Gram-positive bacterial 

populations (1). Although the major functions of the LCP family have been identified, the 

mechanisms by which the LCP family functions is still mostly unknown.  

CpsA is a putative transcriptional regulator of the capsule locus and is therefore 

an integral cog in the capsule-regulating machine. In a previous experiment, an in-frame 

deletion of cpsA, the protein-coding gene of CpsA, was performed in GBS which resulted 

in reduced levels of capsule (18), reinforcing the significance of the gene. The GBS 

capsule is one of the key virulence factors contributing to the pathogenicity of GBS. The 

capsule functions as a protective layer surrounding the cell, aiding in evasion of host 

immune responses and the binding of host cells. Hanson et al, demonstrated that a ΔcpsA 
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strain of GBS 515 had reduced levels of capsule, as well as a significantly reduced 

virulence in a zebrafish infection model (14). 

The CpsA protein contains three major domains: an intracellular DNA-binding 

domain, an extracellular accessory domain, and an extracellular LytR domain. The LytR 

domain, predicted to be involved in capsular attachment and cell wall stability, was the 

central focus of this study. Kawai et al elucidated the crystal structure of the LytR domain 

in the CpsA protein of Streptococcus pneumoniae and determined which residues were 

potentially essential to its function (11). In their work, they found a lipid molecule buried 

in the LytR domain active site, leading them to suggest that this domain may play a key 

role in the ligation of CPS to the cell wall. Due to the significant homology between S. 

pneumoniae and GBS, the crystal structure solved by Kawai was used as a guide to 

discern which residues should be mutated in the GBS cpsA gene. Aspartic Acid-375 and 

arginine-378 in GBS, correlating to aspartic acid-371 and arginine-374 in S. pneumoniae, 

are predicted to interact with one another in order to form and stabilize a positively 

charged pocket containing the phosphate head group of the buried lipid (11). Aspartic 

Acid is a negatively charged, polar amino acid, and arginine is a positively charged, polar 

amino acid. Due to the properties of these amino acids, along with the proximity between 

the two residues as displayed in the Cps2A crystal structure (Figure 3), it is predicted that 

there may be an attraction between D375 and R378, contributing to the protein-folded 

structure of CpsA in GBS (11). In this study, D375 and R378 were both mutated to 

alanine molecules. Alanine is a small, neutral, and hydrophobic molecule. In replacing 

the two oppositely-charged amino acids with neutral molecules, potential interactions 

between the original two residues may be decreased, thus reducing the stability of the 
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phosphate head group interaction with the positively-charged pocket within the LytR 

active site. In doing so, experimental analysis of the mutant cpsA strains can be used to 

elucidate the mechanism behind the functions of the buried lipid within the LytR domain. 

The chain length of GBS is determined by various factors, such as the production 

of autolysins. All the factors contributing to GBS chain length are not known, however 

capsular levels have been demonstrated to also be a factor (14). Due to the role that CpsA 

plays in capsular levels of GBS, microscopy analysis of the cpsA mutant strains of this 

study were performed (Figure 4). Wild-Type-pempty and ΔcpsA-pempty GBS 515 strains 

were significantly consistent with the respective short-chain and long-chain phenotypes 

demonstrated in the literature (14), with a p-value of less than 0.01. In comparing the 

Wild-Type-pmutantcpsA and ΔcpsA-pmutantcpsA GBS strains to the empty plasmid 

strains, it was determined that the mutant strains were not consistent with the ΔcpsA-

pempty GBS 515 strain. Additionally, the ΔcpsA-pmutantcpsA strain displayed as having 

an average capsular level like that of the Wild-Type-pempty GBS 515 strain (Figure 6).  

The comparable results of the ΔcpsA-pmutantcpsA strain to the Wild-Type strain may 

allude to the failure of the D375A and R378A mutations to significantly affect capsular-

cell wall interactions within GBS. This, however, is contradicted in the comparison of the 

Wild-Type-pmutantcpsA strain to the Wild-Type-pempty strain. Microscopy results 

revealed that the average chain length of the Wild-Type-pmutantcpsA strain was still 

significantly less than that of the ΔcpsA-pmutantcpsA strain, but slightly larger than the 

Wild-Type-pempty strain. Although these results are variable, the differences are not 

substantial enough to resemble the ΔcpsA-pmutantcpsA strain and additionally, the results 
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of the chain length analysis are comparable to the expected chain length analysis results 

of wild-type GBS in previous research (1). 

The Enzyme-Linked Immunosorbent Assay data of this study similarly 

demonstrates the ineffectiveness of the mutations to significantly affect capsular 

interactions that would result in reduced levels of attached capsule. As described in 

previous literature, ΔcpsA-pempty GBS 515 strain had significantly reduced levels of 

capsule when compared to the Wild-Type-pempty strain (Figure 6). Further ELISA trials 

are required to confirm the accuracy of the presented data. 

The LytR domain is predicted to have functions in capsular attachment to the cell 

wall as well as in cell wall stability. If mutations in the LytR domain reduced the 

regulation of cell wall stability in GBS, then the cell wall of GBS would be abnormally 

formed, unstable, and non-uniform. A fluorescent vancomycin assay was performed as a 

means of visualizing the cell walls of each of the experimental groups (Figure 7). 

Fluorescently-tagged vancomycin binds to the cell wall of GBS and is unable to penetrate 

through the bacteria, unless the cell wall is unstable. This is demonstrated in a 

comparison between the Wild-Type-pempty and ΔcpsA-pempty GBS 515 strains. The 

Wild-Type-pempty strain displays as round cocci, with fluorescent green rings 

surrounding many of the bacteria (Figure 7A). This differs from the ΔcpsA-pempty GBS 

515 strain which demonstrated as having variable results, with many of the cocci 

fluorescing all throughout, indicating a weak and leaky cell wall (Figure 7B). Results of 

the mutant strains also reveal varying phenotypes; however, many of the cocci are normal 

and resemble the Wild-Type-pempty phenotype. This data supports the previous evidence 
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that the D375A and R378A mutations do not have a significant, negative effect on 

capsular-cell wall interactions within GBS 515. 

Ultimately, cpsA mutations are being constructed and analyzed to better 

understand the function of the GBS CpsA protein in expression of capsular 

polysaccharide. In doing so, mutated GBS with reduced levels of capsule are not as 

virulent in hosts that don’t have a developed immune system (1). Larval zebrafish 

infections of mutant GBS were used in this study to test the virulence of the experimental 

GBS 515 strains. Larval zebrafish are excellent model organisms of infection to 

demonstrate the effect of pathogens on a host without an adaptive immune system, such 

as human neonates. In this study, experimental strains of GBS 515 were injected into 

twenty zebrafish per strain at a volume of 1nl, which was ~100 CFU. The GBS injections 

were performed in the yolk-sac of the zebrafish to create a systemic GBS infection. The 

zebrafish were monitored for survivability over a period of 72 hours. As predicted, over a 

72-hour period, the Wild-Type-pempty GBS infections led to the complete death of all 

tested zebrafish and the ΔcpsA-pempty GBS infections led to a greater level of 

survivability at a 30% survival rate. Interestingly, the ΔcpsA-pmutantcpsA GBS strain 

displayed a 25% survival rate of the infected zebrafish population. The survivability 

assay was only performed once, and further trials are required to determine if the data is 

statistically significant. 

The lack of significant changes in capsular levels, cell wall stability, and capsular 

interactions demonstrated in this study confirm that the D375A and R375A mutations 

were not an effective means of decreasing GBS 515 virulence. Future experimentation to 

further elucidate the role of the buried lipid in the LytR domain of GBS CpsA would be 
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to mutate other significant residues that interact to form the positively-charged pocket of 

the LytR domain. Additionally, mutating amino acid residues that have an attractive 

relationship (aspartic acid and arginine) to residues that have a repulsive relationship may 

have an increased effect on altering the folding and functionality of the LytR domain. 

Research is currently being conducted to further characterize the capsular interactions of 

GBS and the amino acid residues that are essential to the functions of CpsA (Melody 

Neely, University of Maine, Orono, ME, USA). In its entirety, the research performed in 

this study helps to provide additional insights to the function of the LytR domain of the 

CpsA protein. Specifically, it helps to specify which residues may be key to decreasing 

the virulence of GBS and may provide information beneficial to the development of 

future GBS infection treatments. 
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