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ABSTRACT 

In an attempt to increase alternative energy sources, there has been greater 

development of wind farms across the United States. This expanded development may 

pose a potential threat to birds that are flying overhead (EIA 2017, Leung and Yang 

2011). More information is needed on the factors that affect a bird’s behavior while 

flying and if the current policies and dimensions of wind turbines interfere with flight 

altitudes. We used data from GPS-marked great blue herons (Ardea herodias) in Maine to 

classify their flight altitudes relative to wind turbine height and assess different landscape 

factors that affect flight altitude. We found an altitude range of 1 m to 924 m, compared 

to a range of wind turbine heights in Maine from 24 m to 156 m, with 43% of observed 

flight altitudes falling within that range. We found elevation, speed, proximity to open 

water and wetlands, and the proportion of surrounding urban development and forest 

cover to have a positive effect on flight altitude. Slope had a negative effect on heron 

flight altitudes. Our results can help to better understand how the flying behavior of birds 

is affected by the surrounding landscape, and therefore how that behavior may be 

affected by human developments, such as constructed wind turbines.



 iii 

 

ACKNOWLEDGEMENTS 

GPS data was provided by the Maine Department of Inland Fisheries and 

Wildlife. I would like to thank my thesis advisor Dr. Erik Blomberg for all of his help, 

guidance, expertise, patience, and for always promptly answering my anxious emails 

throughout my entire thesis process. I would like to thank wildlife biologist and 

committee member Danielle D’Auria for her expertise and for helping me navigate 

through the data of this study. My thanks go out to the rest of my committee members: 

Dr. Katharine Ruskin, Dr. Parinaz Rahimzadeh-Bajgiran, and R.W. Estela for their 

expertise and suggestions throughout my thesis process. I would also like to thank Val 

Watson for being the mutual connection between me and Danielle that started this project 

in the first place. Lastly, a huge thank you to all of my friends for their unwavering 

support throughout this whole process.  

 

 

 

 

 

 

 

 

 

 



 iv 

 

TABLE OF CONTENTS 

INTRODUCTION ...............................................................................................................1 

METHODS ..........................................................................................................................4 

Study area.................................................................................................................4 

Capturing birds.........................................................................................................4 

Processing data.........................................................................................................5 

 GIS analysis……………………………………………………………………….6 

 Statistical analysis in R……………………………………………………………7 

RESULTS …………………………………………………...…………………………....9 

DISCUSSION …………………………………………………...……………………....11 

LITERATURE CITED ………………………………………………………………….16 

BIBLIOGRAPHY …………………………………………………………...………..…18 

AUTHOR’S BIOGRAPHY …………………………………………………………......25 

 

 

 

 

 

 

 

 

 

 

 

  

 



 v 

TABLE OF FIGURES 

Figure 1. Boxplot of the flight altitudes for each individual great blue heron, sampled in 

Maine 2016-2018. The blue lines represent the lower and upper range of wind turbine 

heights, with the average height represented by the red dashed line. ................................23 

Figure 2 Histogram of the range of flight altitudes of great blue herons sampled in Maine 

2016-2018. The blue lines represent the lower and upper range of wind turbine heights, 

with the average height represented by the red dashed lines .............................................23 

Figure 3 Predicted flight altitudes of great blue herons based on landscape variables, 

sampled in Maine 2016-2018……………………………….....………………………………24 

 

 



1 
 

 

INTRODUCTION 

 Development of alternative energy sources has increased globally, growing in 

popularity and creating new political and ecological controversies. Wind power has 

grown in particular, accounting for 8% of generating capacity in the United States in 

2016, which occurs from inland grasslands to along coastlines, with an average annual 

growth of 30% (EIA 2017, Leung and Yang 2011). In 2016, almost 25% of the wind 

capacity in the U.S. was credited to Texas alone, with Iowa, Oklahoma, California, and 

Kansas contributing another 20% combined generating capacity (EIA 2017). However, 

other states, such as Maine, have increased their wind power production in an ever-

growing effort to become less dependent on carbon-based energy sources. The wind 

power established in Maine has grown to over 900 megawatts, making up 20% of the 

generating capacity in the state (DOE 2017). Given the past and likely continued 

expansion of wind energy development in Maine, greater information is needed to 

understand potential conflicts with the states natural resources.  

 Many studies have assessed the possible risks of wind turbines to birds, 

specifically the risk of mortality due to collision with turbine blades (Larson and 

Guillemette 2007, Osborn and Higgins et al. 2000, Osborn and Dieter et al. 1998, 

Niemuth and Walker 2013, Pearce-Higgins and Stephen 2009). Although difficult to 

quantify, bird mortality due to turbine collision is thought to be higher than that 

associated with power lines (Barrio and Rodriguez 2004). While a number of studies 

have found that the effect of wind turbines on bird mortality is minimal, that effect is 

dependent on the specific site, species, and season (Aschwanden et al. 2018, Larsen and 
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Guillemette 2007, Barrio and Rodriguez 2004, Osborn and Higgins et al. 2000). Greater 

information is needed on how surrounding landscape factors affects a bird’s altitude 

during flight. The influences of these factors, and how a bird in flight uses the air column 

as a result, is necessary to more accurately assess the relative risk of collision from wind 

turbines. 

 Great blue herons (Ardea herodias) are colony nesters, meaning multiple breeding 

pairs all nest in the same group of trees, commonly putting more than one nest in one 

tree. Herons usually nest in trees that are nearby to wetlands or other bodies of water but 

distant from human noise and development. During their breeding season, herons fly 

back and forth from their colony to their foraging site to hunt for fish or amphibians 

several times a day (Howell, Lewington and Russell 2014). In 2007, the great blue heron 

was listed as a species of special concern in the state of Maine, after censuses conducted 

confirmed that the coastal population had decreased by 82.5% since 1983 (MDIFW). 

This decline has been partly attributed to habitat disturbance (MDIFW 2015). Most of the 

information on great blue herons in the state of Maine has historically focused on coastal 

colonies and the factors that influence their habitat selection. With such a strong increase 

in the construction wind farms during recent decades, more information on behavior 

during flights is needed to better understand potential risks alternative energy sources 

could pose to the Maine heron population.  

In this study, our objective (that of Maine Department of Inland Fisheries and 

Wildlife biologist Danielle D’Auria and myself) was to better understand the factors that 

affect the height at which a great blue heron flies during commuting flights between 

breeding colonies and foraging areas (hereafter foraging flights) during the breeding 
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season. In the spring of 2016, the Maine Department of Inland Fisheries and Wildlife 

(MDIFW) deployed five 48g Bird Solar Unit GPS transmitters from e-obs on 5 great blue 

heron breeding in Maine in order to gain more information on their movement patterns 

and behaviors during breeding and migration. Our specific objectives for this work were 

to utilize the information collected by the tagged herons to: 1) to better understand the 

landscape factors that affect flight altitude and 2) to broadly characterize flight altitudes 

relative to the range of observed wind turbine heights in the state. We focused on how 

elevation, slope, and different land cover types affected the flight altitude of the herons, 

as well as how a heron’s flight speed was affected by its height above ground. 
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METHODS 

Study Area 

Four herons were captured in central Maine, while the fifth was captured in 

southern Maine. Within central Maine, three herons were from the greater Bangor area in 

Penobscot County, and the other in the town of Palmyra in Somerset County. Bangor is 

the third largest city in Maine with a population of around 30,000 people (United States 

Census Bureau 2017), and is located along the Penobscot River, the largest watershed in 

the state. Palmyra is a small agricultural town of approximately 2,000 residents (United 

States Census Bureau 2017). 

The fifth heron was captured in New Gloucester, Maine, in Cumberland County. 

New Gloucester is a rural town that has a population of almost 6,000 people, but is part 

of the greater Portland metropolitan area (United States Census Bureau 2017). 

 

Capturing Birds 

         Great Blue Herons were captured by the Maine Department of Inland Fisheries 

and Wildlife (MDIFW) during spring 2016. Herons were baited using live, locally 

captured fish contained within bait pans, placed in locations where heron foraging 

activity was observed. Each basin, which was approximately 70 cm long × 63 cm wide × 

16 cm deep and had multiple 3mm holes to ensure water movement, was filled with bait 

and then anchored with bricks. Following a multiple day baiting period, we set 30-40 

modified foot-hold traps around the basin, at least 30 cm away from its edge (Brzorad 

and Maccarone 2014). We observed from a blind 50-100m away from the traps until a 

bird was captured. 
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         Once a heron was captured, we attached a 48g Bird Solar GPRS Unit from e-obs 

GmbH (Germany) (Bird Solar, e-obs digital telemetry; www.e-obs.de) onto the bird using 

a backpack-style harness using Teflon ribbon and metal clips. These transmitters record 

date and time, location coordinates, ground speed, heading, and ellipsoidal height every 5 

minutes, assuming the battery is appropriately charged or the heron is moving regularly.  

Ellipsoidal height is defined as the height above the reference ellipsoid that approximates 

the earth’s shape and surface. Data is transmitted daily via SMS/Text messaging 

technology to Movebank, an open-source website (www.movebank.org).As the tags are 

solar-powered, shady conditions or feathers blocking the transmitter may affect battery 

level and thus inhibit regular collection of data.  

 

Processing Data  

         We used movement data to distinguish migration periods from breeding for each 

individual bird and excluded data not associated with the breeding period. The post-

breeding period, prior to migration, was also excluded because the daily behaviors of the 

herons tend to change after completion of the breeding season. Thus, our inferences are 

restricted to foraging flights made while herons are actively associated with their 

breeding colonies. While the specific dates of data extracted for each bird varied, the 

breeding season generally lasted between April and July. Three seasons of data were 

available for 2 of the birds, while only 1 season was downloaded for the remaining 

individuals. 

 We used the speed of the herons to distinguish locations collected during flight 

versus those collected while the bird was stationary. We explored the distribution of 

speed measurements, which ranged from 0.0 m/s to 29.0 m/s, and we used 4.0 m/s as a 

http://www.movebank.org/
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cutoff speed where every point collected >4.0 m/s was considered a flight location. All 

other points were excluded from the dataset.  

         Transmitters recorded the height above ellipsoid which does not equate directly to 

height above ground, so, we converted these values to height above ground using a WGS 

1984 geoid height GIS layer. To find the height above ground, we subtracted the geoid 

height from the height above ellipsoid, and then subtracted elevation for each heron 

location. For our analysis, we only included positive values that fell within 99% quantile 

of the range of flight altitudes to eliminate extreme outliers. 

 

GIS Analysis 

We used ArcGIS version 10.6 (ESRI) to derive landscape variables that we 

hypothesized may affect heron flight height. We set the projection for the imported points 

as NAD 1983 UTM zone 19, as that zone encompasses Maine. Additionally, we obtained 

geographic information system (GIS) layers for land cover and geoid height from the 

United States Geological Survey (USGS) (www.usgs.gov) and the GIS layer of Maine 

elevation from the National Oceanic and Atmospheric Administration (NOAA) 

(www.noaa.gov). We used a digital elevation model (DEM) to extract the elevation at 

each heron flight point, as we hypothesized that herons would increase altitude as 

elevation increased. This same layer was used to derive slope values for each point as 

well. 

 The specific land cover types we were interested in analyzing were forest, 

wetland, open water, and low intensity urban development. Herons are known to 

minimize their contact with humans and are therefore primarily found within and around 

http://www.usgs.gov/
http://www.noaa.gov/
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these types of land cover for nesting, foraging, and flying in between sites (Gibbs and 

Woodward et al. 1987). As herbaceous wetlands and woody wetlands are often found 

together, we combined them into one land cover type: wetlands. We calculated the 

Euclidean distances from each flight point to two different land cover types: open water 

and wetland. In addition, we performed a moving window analysis to calculate a mean 

input for the cells surrounding a flight point that included forest land cover, and then 

again for low intensity urban development and medium/high intensity urban 

development. Focal statistics analysis was performed for each of those land cover types at 

four different distances, in order to account for a range of distances and timings required 

for a heron to alter its height depending on the land cover below. The average heron 

flight speed was 11 m/s, so we used this speed to calculate the average distance the 

herons were traveling at 15-, 30-, 45-, and 60-second intervals, which approximately 

corresponded with 175 m, 345 m, 520 m, and 690 m buffers, respectively. We also 

assessed how many different land cover types were within a 345 meter radius of each 

flight point. Finally, we used the spatial analyst tool to extract the values from each raster 

layer at each flight point.  

 

Statistical Analysis in R 

 Prior to model building, we z-standardized the numeric variables and created a 

correlation matrix to ensure there were no highly correlated variables. Any combination 

of variables with correlation >0.6 were considered highly correlated, and we excluded 

one of the pair from our models. We fit a linear mixed-effect model to the data that 

included an individual random intercept term, starting with a null equation (intercept plus 
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individual random effect) and then continuing with each variable. We included all 

variables that were supported and not highly correlated with each other to create a final 

linear mixed-effect model. We used an Akaike’s Information Criterion (AIC) to assess 

model support and determined variables were supported when models were within 2.0 

AIC units. We used the AIC of this model to compare to the other AIC scores for each 

individual variable. We also evaluated 95% confidence intervals for the slope coefficient 

(β) of each variable, and considered a variable supported when the interval did not 

overlap 0.0.  
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RESULTS 

         The flight speeds of the 5 herons ranged from 4.0 to 27.0 m/s, with an average of 

11m/s ± 2.9. Flight altitudes ranged from 1 m to 924 m above ground level with an 

average of 50m. Each bird had some variation in their range of flight altitudes. Two birds 

flew within the general range of 1 to 200m above ground, while the remaining 3 birds 

flew more consistently at lower altitudes, between 1 and 100 m (Fig. 1). While these are 

the general ranges that the herons flew within, there were numerous outliers at higher 

altitudes for 3 of the birds. Overall, we found that 43% of heron flight altitudes fell within 

the range of normal turbine height construction in Maine, which we found was between 

24 m and 156 m (Fig.2). 

 Our correlation matrix revealed that the only highly correlated variables were the 

focal statistics for low intensity urban development at distances of 175, 345, 520, and 690 

m, as well as the focal statistics for forest land cover at the same distances. While all 

models for the focal statistics of low intensity urban development were supported with 

positive effects, the lowest AIC value out of these models was at a distance of 345 m 

(Table 1). For this reason, we used only the values at a distance of 345 m for additional 

statistical analysis of urban development land cover. After performing the general linear 

mixed model regressions on all of the variables and a null model, the AIC values were 

ranked from lowest (most supported) to highest (least supported) in comparison to the 

value for the null model, which was 28661.41 (Table 1). The proximity to open water 

model and proportion of forest land cover did not have any effect on flight altitudes. 

Slope had a negative effect on flight altitude. The rest of the variables had positive effects 
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on flight altitude (Fig 3.). The model for speed had the best fit out of our tested variables, 

with the lowest AIC value of 28596.48 (Table 1). 
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DISCUSSION 

 We found that herons increased their flight altitudes as they flew at faster speeds, 

or more likely, flying at greater altitudes facilitated faster flight. Previous studies have 

shown that birds generally fly faster at higher altitudes, usually to minimize travel time 

and maximize energy intake at their destination, whether it be a migration stop-over or 

foraging patch (Chevallier and Handrich et al . 2010, Hedenstrom and Alerstam 1995, 

Brigham and Fenton et al. 1998, Nilsson and Klaasen et al. 2013). The speed and altitude 

of bird flights has been found to be influenced by travel distances and wind speed, as 

higher wind speeds may occur at higher altitudes, which will affect flight height, 

especially during longer flights (Chevallier and Handrich et al. 2010, Hedenstrom and 

Alerstam 1995, Allen 1939). Most of the literature concerning flight speed with relevance 

to altitude focuses on migration flights, which do not directly apply to foraging 

flights.  Our study supports that flight speed is an important influence on flight heights 

and may affect it in similar ways.  

We found that the type of land cover the herons flew over influenced their flight 

height. Two of our land cover variables were supported in our models with positive 

effects. The greater the distance between a heron and any type of wetland, the greater the 

flight altitude. Altitude also increased with proportional low intensity urban development 

cover, at all of the distances that we tested. However, the distance with the best AIC 

value was within 345 meters. This suggests that 345m, or about 30 seconds of flight 

speed, may be the distance at which herons assess their surroundings and adjust altitude 

accordingly. Our findings imply that risk of collision may increase around wetlands as 

herons decrease their altitude, presumably prior to landing or following take off near 
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these features. These implications support guidelines imposed by MDIFW that proposed 

developments cannot be near to sensitive or significant areas and habitats (WEF 

guidebook).  

Elevation had a positive effect on heron flight altitude, so when elevation 

increases, flight altitude increases as well. In addition, slope had a negative effect on 

flight altitudes. Therefore, while herons flew higher at higher elevations, if the increase in 

elevation was steep, they flew closer to the ground than over gradual elevation increases. 

Another study has supported that birds adjust their flight heights for changes in elevation 

and additional obstacles on the ground, such as wind turbines, the first ones being as 

early as Osborne and Dieter et al. 1998. Our findings imply that herons are more likely to 

fly higher rather than diverting their path to avoid obstacles such as that presented by a 

change in elevation. Due to this behavior, herons may avoid wind turbines, which are 

often placed at locations with higher elevation, by virtue of increased altitude.  

      While our study did not examine mortality rates for these herons or explicitly 

evaluate collision risk, our results imply that herons may be at risk of collision during 

foraging flights, according to the range of altitudes we observed. The five great blue 

herons in this study flew at heights that ranged from 1 m to 446 m, with an average of 

118 m. Today, the average height of commercial wind turbines is approximately 80 

meters (EIS 2017). In Maine, the approximate average height of turbines that have been 

constructed is 130 m (MDIFW). The suggested minimum turbine height in the state is 

around 24 m and the maximum height that has been constructed is approximately 156 m 

(MDIFW and WEF guidebook). This broad range intersects with 43% of heron flight 

altitudes we observed within Maine. While turbine height varies across different sites, the 
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average height seems to be increasing. Prior to 2006, the highest wind turbines seen were 

80 m tall, but since 2012, that height has become the commercial average (EIS 2017). 

Increasing turbine height may pose a future risk for herons and other birds if constructed 

along their flight paths, depending on elevation and the slope of the area they are flying 

over. The highest height seen on applications for wind energy projects in Maine is 180 m, 

and so it is likely wind turbines height could increase upwards of 200 m in the near future 

(MDIFW). Furthermore, studies have shown that migrating birds are able to detect 

whether or not turbine blades are rotating and alter their flight height or adjust their flight 

path accordingly (Osborne and Diet et al. 1998). While our study only focused on local 

foraging flights, herons and other migrating birds may generally be better equipped to 

deal with obstacles such as turbines, but other bird species, such as residential passerines, 

may have a greater risk of collision (Osborne and Diet et al. 1998). Other studies that 

have shown that the presence of wind farms affects the presence and flight paths of birds 

and could have a negative impact on habitat availability (Marques et al. 2019, Larsen and 

Guillemette 2007). Our findings indicate that herons may be capable of flying higher to 

avoid ground obstacles, but limited quantifiable mortality rates in the literature suggest 

that the birds are more likely to avoid an area with wind turbines or that additional studies 

on bird mortality due to turbine collision is needed. In practice, additional wind farms in 

Maine may contribute to reduced habitat availability for great blue herons.  

 While our results provide insight on what affects the height of a heron during a 

foraging flight, we acknowledge several limitations in our study. First, we focused 

exclusively on foraging flights, and our findings should not be extrapolated to migration 

flight patterns, as these longer flights may occur at different altitudes. Second, we worked 
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with a modest sample size of 5 herons, with a specific spatial distribution in Maine, 

which may make it difficult to interpret our results as representative of Maine herons 

more generally. Third, our study area was also restricted to only where these herons have 

lived and foraged, and did not occur in close proximity with any current operating wind 

farms. As a result, our findings allow predictions of how the heights of wind turbines 

may intersect with foraging flights of herons, but are not direct measures of risk. These 

caveats notwithstanding, the advanced technology used in our study gives us the most 

informative data on great blue heron foraging and flight behavior in Maine to date, as 

well as expanding from previous information that only focused on coastal populations. 

With continued technological advancements, future studies can include a more 

representative sample size from a greater range of colonies across Maine and examine 

additional influences on flight height like wind, temperature, and weather, and the energy 

costs of foraging flights. Further studies can also expand their focus to migration flights 

and comparing the range of altitudes, speeds, and energy costs during longer flights. 

 With the expansion of wind energy in the United States, controversy surrounding 

the construction and design of wind farms will continue to grow at a federal and state 

level. Maine, being an eco-friendly state located along the coast, can expect continued 

discussion and legislation concerning growing wind farms. An ecological concern that 

MDIFW has addressed for the past decade and continues to is the potential impact on the 

wildlife in Maine, especially the birds and bats (MDFIW). Great blue herons, being a 

species of special concern and one that travels a variety of distances within and across 

Maine for foraging and wintering may need to play a role in policy decisions for future 

wind farm construction. The Maine Department of Inland Fisheries and Wildlife 
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(MDIFW) already has forest management guidelines to minimize disturbances around 

great blue heron colonies during the breeding season. While we observed that these birds 

were able to fly higher in response to increased elevation and distances from certain land 

cover types, the increased flight speed that is associated with higher flight altitudes likely 

pose additional threats. Visibility and turbulence could become issues if herons need to 

fly higher in order to avoid increased numbers of wind turbines or taller turbines if 

turbine heights begin to exceed 156 m in Maine. Our study supports the guidelines issued 

by MDIFW for forestry practices that ensure minimal disturbance to heron colonies and 

their habitats, and the similar considerations enforced for wind energy developments. 

Currently, guidelines promoted by MDIFW are merely suggested and are not enforced 

for any wind energy development project (MDIFW). While companies or businesses 

looking to construct a development must submit an application including specific 

information on wind turbine numbers and dimensions that must be approved, followed by 

an assessment of the site location, the companies themselves choose the size and 

dimensions of the turbines and blades and the location of the site without limits being 

enforced. Greater buffers surrounding wetlands and open water may be needed for wind 

farm construction to account for lower flight altitudes flying to and from these habitats 

that could increase collision risk. Our model would allow for the prediction of heron 

flight altitude at a particular site and therefore could assess collision risk for future 

construction (Table 2). In order to conserve maximum suitable habitat for herons, 

considerable buffers between wetlands and other bodies of water are required for any 

construction of future wind farms.  
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Table 1. AIC scores and degrees of freedom for each landscape variable affecting flight height of 

great blue herons, sampled 2016-2018 

 

Variable df AIC ΔAIC 

Speed 4 28596.48 0 

Wetlands 4 28641.37 44.89 

Low urban development (345m) 4 28645.29 48.81 

Low urban development (690m) 4 28648.04 51.56 

Low urban development (175m) 4 28648.28 51.80 

Low urban development (520m) 4 28649.17 52.69 

Variety of land cover types 4 28652.00 55.52 

Elevation 4 28656.78 60.30 

Slope 4 28660.21 63.73 

Null 3 28661.41 64.93 

Forest (175m) 4 28662.11 65.63 

Open water 4 28662.86 66.38 

Forest (345m) 4 28663.10 66.62 

Forest (520m) 4 28663.12 66.64 

Forest (690m) 4 28663.40 66.92 
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Table 2.  Calculated 95% confidence intervals, beta coefficients, and standard error for each 

landscape variable affecting flight height of great blue herons, sampled 2016-2018 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Variable 

Beta 

Coefficient 

Standard 

Error 

Lower Confidence 

Interval 

Upper Confidence 

Interval 

Elevation 1.41 3.25 -4.96 7.78 

Speed 17.37 1.94 13.57 21.17 

Wetland 9.47 2.33 4.90 14.03 

Open water 5.57 2.09 1.47 9.66 

Low intensity urban 

development (345m) 6.70 2.27 2.25 11.14 

Forest (345m) 3.03 2.27 -1.42 7.47 

Variety of land cover types 6.67 2.36 2.04 11.29 
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Figure 1. Boxplot of the flight altitudes for each individual great blue heron, sampled in 

Maine 2016-2018. The blue lines represent the lower and upper range of wind turbine 

heights, with the average height represented by the red dashed line. 

 

 

 

 

 

Figure 2. Histogram of the range of flight altitudes of great blue herons sampled in 

Maine 2016-2018. The blue lines represent the lower and upper range of wind turbine 

heights, with the average height represented by the red dashed lines. 
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Figure 3. Predicted flight altitudes of great blue herons based on landscape variables, 

sampled in Maine 2016-2018 
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