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Commercial production of lowbush blueberry (Vaccinium angustifolium Aiton) in Maine 

relies primarily on managed honeybee hives; however, naturally occurring wild bees are more 

efficient pollinators of the crop. Wild bees have short foraging distances and must nest near crop 

fields to provide pollination services. After crop bloom, the surrounding landscape must provide 

sufficient forage to maintain wild bee populations for the remainder of the growing season. 

Lowbush blueberries in Maine are produced in a mixed-use landscape with two distinct 

landscape contexts. Here, we document bee communities and habitat resources (nesting and 

floral) in power line rights-of-way and eight land cover types including and surrounding lowbush 

blueberry fields. We assess landscape pattern surrounding crop fields in the two contrasting 

contexts and determine any effect of arrangement of habitat patches on wild bee abundance or 

diversity. Additionally, we use our field data to inform and validate predictions of wild bee 

abundance from a spatial model applied to the lowbush blueberry production landscape and 

assess any influence of landscape pattern on prediction accuracy. Finally, we describe a 

collaboration with lowbush blueberry growers to develop an interactive web mapping tool that 

provides maps of habitat resources and predicted wild bee abundance.  



 
 

 We documented 168 wild bee species across 72 study sites; three bee species had not 

been previously recorded in Maine. Power line rights-of-way had diverse and abundant bee 

communities owing to high habitat quality, especially within resource-poor landscapes near 

lowbush blueberry fields. We observed abundant floral resources in lowbush blueberry fields, 

forest edges, and small towns and found ample nesting resources in lowbush blueberry fields and 

shrubby wetlands. Bees were less abundant and diverse in a homogeneous landscape context; 

however, that homogeneity led to more accurate model predictions of bee abundance in crop 

fields. We improved prediction accuracy in a mixed-use landscape and produced accurate 

predictions in non-crop land cover types in a heterogeneous landscape context; however, we 

found that predictions of wild bee abundance in crop fields are influenced by landscape 

heterogeneity. The maps we share through the web tool aid growers and other stakeholders in 

developing pollination management and conservation plans.
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CHAPTER 1 

WILD BEE COMMUNITIES IN POWER LINE RIGHTS-OF-WAY IN MAINE’S 

LOWBUSH BLUEBERRY PRODUCTION LANDSCAPE 

1.1 Introduction 

 Lowbush blueberry (Vaccinium angustifolium Aiton) is a North American native plant 

that is commercially harvested in Maine, U.S.A., and eastern Canada. Managed honeybees (Apis 

mellifera L.) and sometimes bumble bees (Bombus impatiens Cresson) are used to pollinate 

lowbush blueberry in late spring (Drummond 2012; Hanes et al. 2015; Asare et al. 2017), though 

>100 wild bee species, some of which are more efficient pollinators (Kevan et al. 1990; Javorek 

et al. 2002; Drummond 2016), have been observed in blooming crop fields (Bushmann and 

Drummond 2015). Wild bees require floral resources pre- and post-crop bloom to sustain their 

populations. Many of the most abundant wild bee pollinators of lowbush blueberry are small 

bees with short foraging distances (Bushmann and Drummond 2015; Groff et al. 2016); 

therefore, additional floral resources must be located near crop fields to be beneficial. Field 

margins and planted floral strips have been explored as floral resources for lowbush blueberry 

pollinators beyond crop bloom (Venturini et al. 2017a; McCallum and McLean 2017; 

Drummond et al. 2017a); however, off-farm habitat surrounding crop fields may also provide 

these resources (Groff et al. 2016; Chapter 2, this dissertation).  

 There are 14,500 km of high-voltage power line rights-of-way (ROW) in New England 

(ISO New England 2019), which are managed as open, herb and shrub-dominated early-

successional habitat to prevent trees or tall shrubs from reaching power lines. Power line ROW 

provide nesting and floral resources for wild bees (Russell et al. 2005, 2018) and a source of bee 

habitat throughout New England’s closed canopy forest-dominated landscape (Lanham and 
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Whitehead 2010; Hill and Bartomeus 2016; Eldegard et al. 2017; Steinert et al. 2018). The plant 

communities within ROW create novel habitat comparable to semi-natural grasslands (Hill and 

Bartomeus 2016; Eldegard et al. 2017), though they are sensitive to environmental context, 

particularly site productivity (Eldegard et al. 2017; Steinert et al. 2018). Studies on butterfly 

communities in ROW reveal that less intensive vegetation management promotes diverse 

butterfly assemblages, including endangered species such as the Karner Blue (Lycaeides melissa 

samuelis Nabokov) and Frosted Elfin (Calloprhys irus Godast) along with threatened plant 

species (Smallidge et al. 1996; Swengel 1996, Forrester et al. 2005; Collins and Foré 2009; 

Leston and Koper 2016). Bumble bee communities (Bombus spp.) also thrive within ROW (Hill 

and Bartomeus 2016). Although ROW have been assessed as solitary bee habitat (Russell et al. 

2005, 2018; Wagner et al. 2014a,b; Sydenham et al. 2016, 2017), few studies exist of ROW as 

bee habitat relative to nearby crop fields.  

 In Maine’s lowbush blueberry production landscape, the late spring mass-flowering crop 

provides substantial forage for wild bees over a three week period every other year (Bushmann 

and Drummond 2015; Yarborough 2009). Mass flowering crops can promote the density and 

diversity of bumble bees and solitary bees (Westphal 2003; Diekotter et al. 2013; Holzschuh et 

al. 2013); however, other studies have found the opposite effect (Holzschuh et al. 2011, 2016; 

but see Magrach et al. 2018). Early-season mass flowering crops lead to greater bee abundance 

in both nearby semi-natural habitat and late season flowering crops when there is more semi-

natural habitat in the surrounding landscape (Diekotter et al. 2010; Riedinger et al. 2014) and 

enhance bee communities in the following year (Riedinger et al. 2015). The flowering crops can 

promote bee communities in semi-natural habitats that provide nesting habitat and floral 
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resources beyond crop bloom (Kovács-Hostyanski et al. 2013; Holzschuh et al. 2016); therefore, 

both local and landscape-scale effects determine how bees use habitat near crop fields.  

 We sought to reveal the role of power line ROW as semi-natural bee habitat relative to 

nearby mass flowering lowbush blueberries in Maine. Our study asks the following questions: 1) 

Do bee communities differ in power line ROW near to and isolated from mass flowering crop 

fields? 2) Do bee communities in power line ROW vary with landscape context? We expect bee 

communities to be more diverse and abundant in ROW near crop fields owing to population 

spillover, and we expect greater bee abundance and diversity in ROW within a landscape that 

provides few other sources of bee habitat. We also surveyed floral resources available in power 

line ROW to assess local-scale effects on bee communities. 

1.2 Methods 

1.2.1 Study area and spatial data 

The Maine lowbush blueberry production landscape covers approximately 750,000 ha of 

coastal Maine, U.S.A (44-45°N, 67.5-69.5°W), and consists of two major growing regions with 

contrasting landscape contexts (Fig. 1.1). The Downeast region contains the largest and most 

intensively managed lowbush blueberry fields in Maine (0.05-1800 ha, average field size 21.4 

ha) in a matrix dominated by managed coniferous forest. Non-blueberry agriculture and 

developed land cover are scattered and comprise little of this relatively homogeneous, rural 

landscape. In contrast, the Midcoast region is heterogeneous, containing smaller, less intensively 

managed crop fields (0.05-15.6 ha, average field size 8.26 ha) interspersed with other agriculture, 

including pasture, orchards, and small, diversified farms. Developed land in small towns is more 

prevalent in the Midcoast region than the Downeast region. The matrix in the Midcoast region is 

deciduous forest-dominant and less intensively harvested. 



4 
 

 

Figure 1.1. Extent of the Downeast and Midcoast growing regions within the Maine, USA, 

lowbush blueberry production landscape. Map insets display representative landscape contexts of 

the a) Downeast and b) Midcoast growing regions. Bar charts indicate proportion of eight land 

cover types in the Downeast (top) and Midcoast (bottom) growing regions. 
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We developed a land cover map of the Maine lowbush blueberry production landscape 

that combines the 2004 Maine Landcover Dataset 

(https://www.maine.gov/megis/catalog/metadata /melcd.html) with ancillary data on roads, 

railroads, and wetlands (Groff et al. 2016; Chapter 3; this dissertation). The prepared map has 10 

m pixel size and eight land cover classes representing different floral and nesting resources 

(Chapters 2 and 3, this dissertation) for wild bees: agriculture/pasture, consisting of small 

diversified farms, orchard crops, or pasture; lowbush blueberry fields; coniferous forest; 

deciduous/mixed forest; deciduous/mixed forest edge; emergent wetland, an aggregation of 

forested wetland and scrub-shrub land cover; wetlands/water; and urban/developed areas. 

1.2.2. Field sampling and site characteristics 

We used our land cover map to select potential field sites, then visited each site on the 

ground to confirm suitability for sampling. Access to the ROW sites was granted by the power 

companies (Central Maine Power; Emera Maine). We conducted surveys during the 2013-2015 

growing seasons. In 2013, we sampled six sites in the Downeast region; three were isolated from 

(≥1 km) and three were near (within 150-300 m) lowbush blueberry fields. In 2014 and 2015, we 

established six study sites in both growing regions (12 sites total each year) within power line 

ROW 30-40 m wide; in each region, three were isolated from and three were near lowbush 

blueberry fields. Sites were distributed within growing regions so that they could all be sampled 

on the same day, and all sites were at least 2.5 km apart (range 2.5-13.7 km, mean 6.1 km) to 

minimize overlap in bee communities. We sampled the same isolated sites in both growing 

regions in 2014 and 2015 and sampled different near sites if the nearby crop field was not in 

flower that year. We reestablished one isolated site Downeast owing to lost access between 2013 

and 2014. All three near sites sampled Downeast in 2013 were resampled in 2015 (Fig. 1.2).  

https://www.maine.gov/megis/catalog/metadata
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Figure 1.2. Power line ROW sampling site locations in the Downeast (top) and Midcoast (right) 

growing regions of the Maine, USA (left) lowbush blueberry production landscape. Many sites 

were sampled in multiple years from 2013-2015, as indicated by the map symbols.  
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We sampled sites in early (27 May-12 June), mid-(7-18 July), and late (7 Aug-21 Sept) 

season each year to capture seasonal variability in bee communities (Chapter 2, this dissertation). 

Sampling occurred on days that maximized bee activity with clear or bright cloudy skies with 

minimal wind and early morning temperatures >13°C (Bushmann and Drummond 2015). We 

surveyed bee diversity and abundance by placing a set of three cup traps (one each in fluorescent 

blue, yellow, and white; New Horizons Supported Services, Inc.) every 10 meters along a 150 m 

transect placed in the center of the ROW. Each cup contained approximately 85 ml of water and 

a drop of dish soap to break water tension (Droege 2015). Captured bees were collected from the 

bowl traps after 24 hours. We then walked along the transect for one hour, live netting foraging 

bees observed on flowers. We excluded honeybees from live netting owing to our interest in 

assessing wild bee communities, though honeybees were sometimes captured in bowl traps. 

Managed Bombus impatiens brought in for lowbush blueberry pollination could also have been 

present but were not differentiated; therefore, our collection may include specimens of B. 

impatiens from purchased quads. Using both bowl traps and live netting captures a more 

complete bee community (Wilson et al. 2008). All collected specimens were cleaned and stored 

in ethanol (bowl trapped) or frozen (live netted) until pinned. We identified pinned specimens to 

the lowest taxonomic level possible with reference to the keys of DiscoverLife.org and Haverty 

and Larder (1988), and obtained species-level verifications from Dr. Sara Bushmann, George 

Stevens Academy; Sam Droege, U.S. Geological Survey Native Bee Inventory and Monitoring 

Lab; Dr. Jason Gibbs, University of Manitoba; or Dr. Robert Jean, Environmental Solutions and 

Innovations, Inc. We gathered nesting preference, social habit, and body size of each species 

from the literature. 
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We established two 25 m long transects parallel to our bee sampling transect at 10 m and 

100 m to record floral resources. We conducted floral resource surveys after collecting bowl 

traps during each sampling period at all sites in 2014-2015. For each blooming patch intersecting 

a transect up to 1 m on either side, we recorded plant species, patch size in m2 and percent 

bloom. Reference specimens of each blooming plant species were collected and pressed to 

confirm species identification, and all identifications were confirmed by a botanist (Dr. Alison C. 

Dibble, University of Maine).  

We calculated landscape composition surrounding our ROW transects at four spatial 

extents: 100, 250, 500, and 1000 m, by measuring the percentage of each land cover type present 

(PLAND) in Fragstats 4.2 (McGarigal et al. 2012). Landscape variables at these spatial extents 

influence bee abundance and species richness (Steffan-Dewenter et al. 2002; Chapter 2, this 

dissertation). 

1.2.3. Statistical analyses 

We conducted all statistical analyses in R v.3.5.0 (R Core Team 2018). Honeybees 

captured in bowl traps were excluded from statistical analyses. We evaluated annual and 

seasonal differences in bee abundance and species richness with Kruskal-Wallis tests, then 

determined seasonal differences post-hoc with Dunn’s test of multiple comparisons with the 

package dunn.test (Dinno 2017). We tested for temporal autocorrelation with the Durbin-Watson 

test in the package car (Fox and Weisberg 2011). We tested for spatial autocorrelation with 

Mantel tests on bee abundance and species richness at all focal spatial scales (100, 250, 500, and 

1000 m) with the package ade4 (Dray and Dufour 2007).  

We compared landscape composition and floral resource availability at our sampling sites 

across growing regions and site types. We compared the percentage of all eight land cover types 

http://www.cran-r-proj.org/
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at our four spatial scales with Mann-Whitney U tests. Floral abundance was aggregated over the 

entire growing season. We multiplied patch size by percent bloom for each species, then summed 

those values for a cumulative value. Floral species richness is the total number of blooming plant 

species counted over the growing season. We used simple linear regression to model floral 

abundance and species richness by growing region and site type, as the floral data were normally 

distributed and homoscedastic.  

 We sorted bee species into four body size classes: small (<6 mm), medium (6-9 mm), 

large (9-12 mm), and extra-large (>12 mm) (Russell et al. 2018). We did not include males, 

specimens with an undetermined sex or species identification, or queens in our body size 

analyses. Bees were labeled as ground or cavity nesting, though we did not include Bombus spp. 

or bees with an undetermined species identification in our nesting habit analyses. Lastly, bees 

were labeled as social or solitary, and we did not include bees with an undetermined species 

identification in our sociality analyses. 

 We assessed differences in bee communities across growing regions and site types with 

generalized linear models (GLMs) calculated with the R package MASS (Venables and Ripley 

2002) and determined significant relationships with post-hoc analysis of deviance. We modeled 

the influence of site type, growing region, and a type x region interaction on bee abundance and 

species richness overall and with respect to nesting habit, sociality, and body size. Models of 

overall bee abundance and species richness had negative binomial error distributions owing to 

overdispersion, whereas, with the exception of solitary bee species richness, models of bee 

abundance and species richness by life history traits had Poisson error distributions. We then 

determined if landscape composition or floral resource availability across growing regions or site 

types influenced bee communities with GLMs and analysis of deviance. We targeted this series 
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of models to explain the overall and life history-associated bee community model results, only 

modeling the significant relationships they revealed. We modeled bee communities with percent 

of each land cover type at each spatial scale; solitary bees were modeled with negative binomial 

error, and all other models had a Poisson error distribution.  

1.3. Results 

1.3.1. Bee community summary 

 We collected 2,121 bee specimens representing six families, 27 genera, and 125 species 

(Table 1.1). In 2013, we collected 225 bees representing 52 species in the Downeast growing 

region. Sites near lowbush blueberry fields had 147 bees representing 39 species, and isolated 

sites had 78 bees representing 27 species. In 2014, we collected 847 bees from 92 species across 

both the Midcoast and Downeast growing regions, and in 2015, we collected 1,049 bees from 95 

species across both regions. Across all three sampling years, we collected 1,177 bees from 107 

species in sampling sites near lowbush blueberry fields and 944 bees from 98 species in sites 

isolated from lowbush blueberry fields.  

The most abundant bee species collected was the sweat bee Lasioglossum cressonii 

(Robertson) (535 individuals collected). Other common bees included the bumblebees Bombus 

ternarius (Say) (249) and Bombus vagans (Smith) (159) and the sweat bee Augochlorella aurata 

(Smith) (193). Uncommon bee genera included Colletes and Osmia, both of which contain 

species associated with lowbush blueberry. We collected two specimens of Macropis nuda 

(Provancher), a rare solitary bee that specializes on oils produced by Lysimachia spp., a plant 

group we found throughout our ROW sites in both growing regions. We also collected one new 

state record for Maine with one specimen of Melitta americana (Smith), a rare specialist of 

Vaccinium spp., particularly cranberry; this specimen was collected Downeast, where wild 
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cranberry (Vaccinium macrocarpon Aiton) is abundant (Jones et al. 2014). A complete list of bee 

species, their size class, and the site types and growing regions in which they were collected is 

presented in Table 1.1. 

We found annual differences in bee communities between 2013 and 2014 (Dunn’s test 

abundance Z=-2.14, p=0.01) and 2013 and 2015 (abundance Z=3.44, p<0.001, species richness 

Z=-2.40, p=0.001), with no differences between 2014 and 2015. Bee abundance was temporally 

autocorrelated when 2013 data were included in analyses (Durbin-Watson test statistic=1.36, 

p=0.03); however, species richness was not (D-W=1.77, p=0.28). As we only sampled Downeast 

at different times of the growing season in 2013, we conducted all bee community data analyses 

on specimens collected in 2014 and 2015. Bee abundance and species richness changed 

throughout the sampling season (Kruskal-Wallis abundance χ2=19.19, df=3, p<0.001, species 

richness χ2=23.30, df=3, p<0.001). Bees were less abundant (538 individuals) and species rich 

(62 species) in the late season than early (595 individuals, 63 species) or mid-season (976 

individuals, 88 species), with no significant differences in abundance or species richness between 

early and mid-season. We found no temporal autocorrelation in our data for bee abundance 

(DW=2.07, p=0.72) or species richness (DW=2.16, p=0.98) in 2014-2015. Further, we found no 

spatial autocorrelation within growing regions across sampling years (Mantel test: Midcoast 

abundance r=-0.12, p=0.79, species richness r=0.14, p=0.15; Downeast abundance r=-0.19, 

p=0.98, species richness r=-0.04, p=0.59). 
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Table 1.1. Bee species collected within power line rights-of-way in the Maine, USA lowbush 

blueberry production landscape, 2013-2015. Sites were located in rights-of-way near to (N) or 

isolated from (I) lowbush blueberry fields in the Downeast or Midcoast growing region. Species 

nomenclature was collected from DiscoverLife.org; introduced species are indicated with “(i)” 

(Dibble et al. 2017). Information on nesting habit, sociality, and body size was collected from the 

literature, though we did not gather this information for bees with an undetermined species 

identification; those specimens are marked “N/A”.  
Nesting 

habit 

Sociality Body 

size 

Downeast Midcoast Total 

Family Andrenidae 
   

N I N I 
 

Andrena alleghaniensis 

Viereck, 1907 

Ground Solitary Med 0 0 0 1 1 

Andrena braccata 

Viereck, 1907 

Ground Solitary X-Lg 3 0 1 1 5 

Andrena canadensis   

Dalla Torre, 1896 

Ground Solitary Med 5 0 0 0 5 

Andrena carlini  

Cockerell, 1901 

Ground Solitary X-Lg 2 1 6 1 10 

Andrena carolina  

Viereck, 1909 

Ground Solitary Med 1 6 4 1 12 

Andrena crataegi 

Robertson, 1895 

Ground Solitary/ 

   Communal 

Lg 4 1 1 7 13 

Andrena distans 

Provancher, 1888 

Ground Solitary Med 0 0 1 1 2 

Andrena forbesii 

Robertson, 1891 

Ground Solitary Lg 0 0 0 1 1 

Andrena frigida  

Smith, 1853 

Ground Solitary Lg 2 0 0 0 2 

Andrena hirticincta 

Provancher, 1888 

Ground Solitary Lg 4 2 1 2 9 

Andrena imitatrix  

Cresson, 1872 

Ground Solitary Lg 3 2 0 0 5 

Andrena integra  

Smith, 1853 

Ground Solitary Med 1 0 0 0 1 

Andrena miranda  

Smith, 1879 

Ground Solitary X-Lg 1 1 1 2 5 

Andrena nasonii 

Robertson, 1895 

Ground Solitary Lg 0 0 0 1 1 

Andrena nigrihirta 

Ashmead, 1890 

Ground Solitary Lg 0 0 1 1 2 

Andrena nivalis  

Smith, 1853 

Ground Solitary X-Lg 9 0 1 3 13 

Andrena nubecula  

Smith, 1853 

Ground Solitary Med 2 0 0 0 2 

Andrena nuda  

Robertson, 1891 

Ground Solitary Med 0 1 1 5 7 

Andrena personata 

Robertson, 1897 

Ground Solitary Sm 0 0 0 1 1 

.          
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Table 1.1 Continued.         

Andrena rufosignata 

Cockerell, 1902 

Ground Solitary Med 6 8 0 3 17 

Andrena rugosa 

Robertson, 1891 

Ground Solitary Med 1 0 0 3 4 

Andrena sigmundi 

Cockerell, 1902 

Ground Solitary Lg 5 3 0 1 9 

Andrena spiraeana 

Robertson, 1895 

Ground Solitary Lg 0 0 0 1 1 

Andrena thaspii 

Graenicher, 1903 

Ground Solitary Lg 4 0 1 1 6 

Andrena vicina  

Smith, 1853 

Ground Solitary X-Lg 1 0 0 1 2 

Andrena virginiana 

Mitchell, 1960 

Ground Solitary Med 3 3 0 0 6 

Andrena wilkella  

Kirby, 1802 (i) 

Ground Solitary Med 1 1 2 1 5 

Pseudopanurgus aestivalis  

Provancher, 1882 

Ground Solitary N/A 0 1 0 0 1 

Pseudopanurgus 

andrenoides  

Smith, 1853 

Ground Solitary N/A 0 1 0 0 1 

Pseudopanurgus sp. N/A N/A N/A 3 1 0 0 4 

Trachandrena sp. N/A N/A N/A 1 0 1 2 4 

Family Apidae 
        

Anthophora terminalis 

Cresson, 1869 

Cavity Solitary X-Lg 0 1 0 0 1 

Bombus bimaculatus 

Cresson, 1863 

N/A Eusocial X-Lg 1 0 5 7 13 

Bombus borealis  

Kirby, 1837 

N/A Eusocial X-Lg 2 3 2 5 12 

Bombus fernaldae 

Franklin, 1911 

N/A Eusocial X-Lg 2 0 0 0 2 

Bombus impatiens 

Cresson, 1863 

N/A Eusocial X-Lg 3 0 22 8 33 

Bombus perplexus 

Cresson, 1863 

N/A Eusocial X-Lg 2 3 12 7 24 

Bombus ternarius  

Say, 1837 

N/A Eusocial X-Lg 45 89 66 49 249 

Bombus terricola  

Kirby, 1837 

N/A Eusocial X-Lg 3 0 1 7 11 

Bombus vagans 

Smith, 1854 

N/A Eusocial X-Lg 73 52 16 18 159 

Ceratina calcarata 

Robertson, 1900 

Cavity Solitary Med 3 0 7 2 12 

Ceratina dupla  

Say, 1837 

Cavity Solitary Med 0 1 4 3 8 

Ceratina mikmaqi Rehan 

and Sheffield, 2011 

Cavity Solitary Med 9 0 12 6 27 
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Table 1.1 Continued.         

Epeolus scuttelaris  

Say, 1824 

Kleptoparasite Kleptoparasite Lg 7 1 0 0 8 

Eucera hamata  

Bradley, 1942 

Ground Solitary X-Lg 1 0 0 0 1 

Melissodes desponsa 

Smith, 1854 

Ground Solitary X-Lg 3 9 0 0 12 

Melissodes druriella 

Kirby, 1802 

Ground Solitary Lg 6 0 2 2 10 

Melissodes illata Lovell 

and Cockerell, 1906 

Ground Solitary X-Lg 0 2 1 0 3 

Melissodes subillata 

LaBerge, 1961 

Ground Solitary N/A 0 1 0 0 1 

Nomada denticulata 

Robertson, 1902 

Kleptoparasite Kleptoparasite Med 2 0 0 1 3 

Nomada luteoloides 

Robertson, 1895 

Kleptoparasite Kleptoparasite Med 0 0 0 1 1 

Nomada maculata 

Cresson, 1863 

Kleptoparasite Kleptoparasite Lg 1 0 2 0 3 

Nomada ovata  

Robertson, 1903 

Kleptoparasite Kleptoparasite N/A 2 0 1 0 3 

Nomada pygmaea 

Cresson, 1863 

Kleptoparasite Kleptoparasite Med 1 0 0 2 3 

Peponapis pruinosa  

Say, 1837 

Ground Solitary X-Lg 0 0 5 4 9 

Family Colletidae 
        

Colletes americanus 

Cresson, 1868 

Ground Solitary Lg 0 1 0 0 1 

Colletes consors  

Cresson, 1868 

Ground Solitary Lg 1 0 0 0 1 

Colletes simulans  

Cresson, 1868 

Ground Solitary Lg 2 3 7 2 14 

Hylaeus affinis  

Smith, 1853 

Cavity Solitary Sm 7 8 7 10 32 

Hylaeus annulatus 

Linnaeus, 1758 

Cavity Solitary Sm 0 2 0 1 3 

Hylaeus basalis  

Smith, 1853 

Cavity Solitary Sm 1 1 0 0 2 

Hylaeus mesillae 

Cockerell, 1896 

Cavity Solitary Sm 4 3 4 3 14 

Hylaeus modestus  

Say, 1837 

Cavity Solitary Sm 11 11 9 9 40 

Hylaeus verticalis 

Cresson, 1869 

Cavity Solitary Sm 0 0 1 1 2 

Family Halictidae 
        

Agapostemon texanus 

Cresson, 1872 

Ground Solitary Lg 0 0 2 0 2 

Agapostemon virescens 

Fabricius, 1775 

Ground Solitary Lg 0 0 16 11 27 
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Table 1.1 Continued.         

Augochlora pura  

Say, 1837 

Cavity Solitary Med 0 0 1 4 5 

Augochlorella aurata 

Smith, 1853 

Ground Eusocial* Sm 83 37 46 27 193 

Augochloropsis metallica 

fulgida Smith, 1853 

Ground Solitary Med 0 0 7 2 9 

Halictus confusus  

Smith, 1853 

Ground Eusocial Med 0 0 2 1 3 

Halictus ligatus  

Say, 1837 

Ground Eusocial Med 1 0 9 3 13 

Halictus rubicundus 

Christ, 1791 

Ground Eusocial Lg 16 16 6 3 41 

Lasioglossum abanci 

Crawford, 1932 

Ground Solitary Sm 1 0 0 0 1 

Lasioglossum acuminatum  

McGinley, 1986 

Ground Solitary Sm 12 3 3 3 21 

Lasioglossum admirandum 

Sandhouse, 1924 

Ground Eusocial Sm 0 3 0 0 3 

Lasioglossum albipenne 

Robertson, 1890 

Ground Eusocial Med 2 2 28 3 35 

Lasioglossum atwoodi 

Gibbs, 2010 

Ground Eusocial Sm 2 3 3 1 9 

Lasioglossum cinctipes 

Provancher, 1888 

Ground Eusocial Med 3 2 1 1 7 

Lasioglossum coriaceum 

Smith, 1853 

Ground Solitary Med 13 7 7 6 33 

Lasioglossum cressonii 

Robertson, 1890 

Cavity Eusocial Med 115 111 138 171 535 

Lasioglossum ephialtum 

Gibbs, 2010 

Ground Eusocial Sm 1 1 0 0 2 

Lasioglossum 

heterognathum 

Mitchell, 1960 

Ground Eusocial Sm 1 0 0 0 1 

Lasioglossum imitatum 

Smith, 1853 

Ground Eusocial Sm 0 0 0 1 1 

Lasioglossum inconditum 

Cockerell, 1916 

Ground Solitary N/A 0 1 0 0 1 

Lasioglossum laevissimum  

Smith, 1853 

Ground Eusocial Sm 1 0 0 1 2 

Lasioglossum leucocomum  

Lovell, 1908 

Ground Eusocial Sm 2 0 1 0 3 

Lasioglossum leucozonium 

Schrank, 1781 (i) 

Ground Solitary Med 1 2 4 4 11 

Lasioglossum lineatulum 

Crawford, 1906 

Ground Solitary Sm 0 1 2 1 4 

Lasioglossum 

macoupinense 

Robertson, 1895 

Ground Solitary Sm 0 0 3 0 3 
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Table 1.1 Continued.         

Lasioglossum nelumbonis 

Robertson, 1890 

Ground Solitary Med 0 0 1 0 1 

Lasioglossum nigroviride 

Graenicher, 1911 

Ground Solitary Med 2 1 1 1 5 

Lasioglossum pectorale 

Smith, 1853 

Ground Solitary Sm 17 2 18 4 41 

Lasioglossum pilosum 

Smith, 1853 

Ground Eusocial Sm 0 0 2 0 2 

Lasioglossum planatum 

Lovell, 1905 

Ground Eusocial Sm 9 1 2 7 19 

Lasioglossum quebecense 

Crawford, 1907 

Ground Solitary Med 2 1 1 1 5 

Lasioglossum smilacinae 

Robertson, 1897 

Ground Eusocial Sm 1 0 2 0 3 

Lasioglossum 

subviridatum  

Cockerell, 1938 

Ground Eusocial Sm 7 1 0 1 9 

Lasioglossum taylorae 

Gibbs, 2010 

Ground Eusocial Sm 7 0 1 6 14 

Lasioglossum tegulare 

Robertson, 1890 

Ground Eusocial Sm 3 0 4 0 7 

Lasioglossum truncatum 

Robertson, 1901 

Ground Eusocial Med 0 0 2 0 2 

Lasioglossum versans 

Lovell, 1905 

Ground Eusocial Sm 5 0 1 0 6 

Lasioglossum versatum 

Robertson, 1902 

Ground Eusocial Sm 0 16 34 15 65 

Lasioglossum viridatum 

Lovell, 1905 

Ground Eusocial Sm 0 1 4 0 5 

Lasioglossum zonulum 

Smith, 1848 (i) 

Ground Solitary Med 5 6 4 6 21 

Sphecodes cressonii 

Robertson, 1903 

Kleptoparasite Kleptoparasite N/A 0 0 0 1 1 

Sphecodes davisii 

Robertson, 1897 

Kleptoparasite Kleptoparasite N/A 2 0 0 0 2 

Sphecodes sp. Kleptoparasite Kleptoparasite N/A 5 0 0 1 6 

Family Megachilidae 
        

Coelioxys rufitarsis  

Smith, 1854 

Kleptoparasite Kleptoparasite X-Lg 0 0 1 0 1 

Heriades carinata 

Cresson, 1864 

Cavity Solitary Med 1 0 0 0 1 

Heriades variolosus/ 

leavitti 

Cavity Solitary Sm 0 1 0 0 1 

Hoplitis producta  

Cresson, 1864 

Cavity Solitary Med 1 1 3 2 7 

Hoplitis spoliata/ 

pilosifrons 

Cavity Solitary Med 1 0 0 0 1 

Megachile gemula 

Cresson, 1878 

Cavity Solitary X-Lg 7 6 3 1 17 
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Table 1.1 Continued.         

Megachile inermis 

Provancher, 1888 

Cavity Solitary X-Lg 1 0 0 1 2 

Megachile lapponica 

Thomson, 1872 

Cavity N/A Lg 1 0 0 0 1 

Megachile latimanus  

Say, 1823 

Ground Solitary X-Lg 5 1 2 1 9 

Megachile relativa 

Cresson, 1878 

Cavity Solitary Lg 4 1 1 3 9 

Osmia atriventris  

Cresson, 1864 

Cavity Solitary Med 2 0 3 2 7 

Osmia bucephala  

Cresson, 1864 

Cavity Solitary Lg 0 0 0 2 2 

Osmia inermis  

Zetterstedt, 1838 

Cavity Solitary Lg 1 0 0 1 2 

Osmia proxima  

Cresson, 1864 

Cavity Solitary Med 1 0 0 1 2 

Osmia pumila  

Cresson, 1864 

Cavity Solitary Med 1 1 0 0 2 

Osmia virga  

Sandhouse, 1939 

Cavity Solitary Med 1 0 0 0 1 

Family Melittidae 
        

Macropis nuda 

Provancher, 1882 

Ground Solitary Med 0 0 1 1 2 

Melitta americana  

Smith, 1853 

Ground Solitary N/A 1 0 0 0 1 

Total abundance 
   

601 452 578 490 2121 

Number of species 
   

86 58 72 80 125 

* A. aurata is partially eusocial in Maine (Packer 1990). 
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1.3.2. Floral resource availability 

 We observed 62 blooming plant species, 12 of which were non-native, in our ROW sites. 

Floral species richness was greater Midcoast, where we recorded 51 species, than Downeast, 

where we recorded 31 species (F(1,22)=13.11, p=0.001). There was no significant difference in 

floral abundance between growing regions, and no difference in floral abundance or species 

richness between ROW sites near to or isolated from lowbush blueberry fields. Eleven blooming 

plant species were recorded exclusively Downeast, whereas 31 occurred exclusively Midcoast. 

Downeast-exclusive species tended to be ericaceous and bog associated, including sheep laurel 

(Kalmia angustifolia L.), Labrador tea (Rhododendron groenlandicum (Oeder) Kron & Judd), 

and Rhodora (Rhododendron canadense (L.) Torr.). In contrast, Midcoast-exclusive species were 

often weedy or disturbance associated, including chickweed (Stellaria/Cerastium sp.), yellow 

clover (Trifolium arvense Pollich), hawkweed (Hieracium spp., 2 species), and evening primrose 

(Oenothera sp.). Common species in both growing regions were meadowsweet (Spiraea alba 

var. latifolia (Aiton) H.E. Ahles), creeping raspberry (Rubus spp.), bunchberry (Cornus 

canadensis L.), and goldenrods (Solidago spp., 3 species; Euthamia graminifolia (L.) Nutt.). We 

also frequently observed two species of native loosestrife, Lysimachia quadrifolia L. and L. 

terrestris (L.) Britton, Sterns, & Poggenb., in both growing regions. These species produce oils 

that attract rare bees in the genus Macropis. Uncommon observations included gaywings 

(Polygala paucifolia Willd) and turtlehead (Chelone glabra L.) in the Midcoast and fireweed 

(Chamerion angustifolium (L.) Holub) Downeast. A full list of blooming plant species and the 

growing region(s) in which they were observed is provided in Table 1.2. 
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Table 1.2. Blooming plant species observed in power line rights-of-way in two growing regions 

of the Maine, USA, lowbush blueberry production landscape, 2014-2015. Species nomenclature 

and non-native status was collected from the USDA PLANTS database (plants.usda.gov); family 

classification was collected from the ITIS database (itis.gov). 

 

Species 

 

Family 

 

Downeast 

 

Midcoast 

Non-

native 

Achillea millefolium L. Asteraceae 
 

x x 

Apocynum androsaemifolium L.  Apocynaceae x x 
 

Arisaema triphyllum (L.) Schott Araceae x 
  

Aronia melanocarpa (Michx.) Elliott Rosaceae x 
  

Brassica sp. L. Brassicaceae 
 

x x 

Chamerion angustifolium (L.) Holub  Onagraceae x 
  

Chelone glabra L. Plantaginaceae 
 

x 
 

Clematis virginiana L. Ranunculaceae 
 

x 
 

Clintonia borealis (Aiton) Raf. Liliaceae 
 

x 
 

Cornus canadensis L. Cornaceae x x  

Diervilla lonicera Mill. Diervillaceae x x 
 

Doellingeria umbellata (Mill.) Nees Asteraceae x x 
 

Eriophorum sp. L. Cyperaceae x 
  

Eupatorium perfoliatum L. Asteraceae 
 

x 
 

Euthamia graminifolia (L.) Nutt.  Asteraceae x x 
 

Fragaria virginiana Duchesne Rosaceae x x 
 

Galeopsis tetrahit L. Lamiaceae 
 

x x 

Galium sp. L. Rubiaceae 
 

x x 

Hieracium aurantiacum L. Asteraceae 
 

x x 

Hieracium sp. L. Asteraceae 
 

x 
 

Houstonia caerulea L.  Rubiaceae x x 
 

Hypericum perforatum L. Hypericaceae 
 

x x 

Ilex verticillata (L.) A. Gray Aquifoliaceae 
 

x 
 

Impatiens capensis Meerb. Balsaminaceae 
 

x 
 

Kalmia angustifolia L. Ericaceae x 
  

Leucanthemum vulgare Lam. Asteraceae 
 

x x 

Lysimachia quadrifolia L. Primulaceae x x 
 

Lysimachia terrestris (L.) Britton, 

Sterns, & Poggenb. 

Primulaceae x x 
 

Maianthemum canadense Desf. Asparagaceae x x 
 

Moehringia lateriflora (L.) Fenzl Caryophyllaceae 
 

x 
 

Oenothera sp. L. Onagraceae 
 

x 
 

Persicaria sagittata (L.) H. Gross Polygonaceae  x  

Polygala paucifolia Willd. Polygalaceae 
 

x 
 

Potentilla simplex Michx. Rosaceae x x 
 

Prenanthes alba L. Asteraceae x 
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Table 1.2. Continued.     

Prunella vulgaris L. Lamiaceae 
 

x 
 

Prunus virginiana L.  Rosaceae 
 

x 
 

Pyrola elliptica Nutt. Ericaceae x x 
 

Ranunculus acris L. Ranunculaceae x 
  

Rhododendron canadense (L.) Torr. Ericaceae x 
  

Rhododendron groenlandicum 

(Oeder) Kron & Judd 

Ericaceae x 
  

Rubus sp. L. Rosaceae x x 
 

Rubus sp. L. (creeping) Rosaceae x x 
 

Rudbeckia hirta L.  Asteraceae 
 

x 
 

Scirpus sp. L. Cyperaceae 
 

x 
 

Sisyrinchium montanum Greene Iridaceae 
 

x 
 

Solidago bicolor L. Asteraceae x x 
 

Solidago canadensis L.  Asteraceae x x 
 

Solidago sp. (nemoralis Aiton hybrid)  Asteraceae x 
  

Spiraea alba var. latifolia (Aiton) 

H.E. Ahles 

Rosaceae x x 
 

Spiraea tomentosa L. Rosaceae x x 
 

Stellaria or Cerastium sp. L. Caryophyllaceae 
 

x x 

Symphyotrichum novi-belgii (L.) G.L. 

Nesom  

Asteraceae x 
  

Thalictrum pubescens Pursh Ranunculaceae x x x 

Trientalis borealis Raf. Primulaceae 
 

x 
 

Trifolium aureum Pollich Fabaceae 
 

x x 

Uvularia sessilifolia L. Colchicaceae 
 

x 
 

Vaccinium angustifolium Aiton Ericaceae x x 
 

Valeriana officinalis L. Valerianaceae 
 

x x 

Vicia cracca L. Fabaceae 
 

x x 

Viola cf. cucullata Aiton Violaceae 
 

x 
 

Total # of species 
 

31 51 12 

Unique species 
 

11 31 
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1.3.3. Landscape composition  

 We found more coniferous forest and wetland land cover at all spatial scales surrounding 

our ROW sites in the Downeast growing region than the Midcoast region (Appendix A, Table 

A.1). In contrast, we found more deciduous/mixed forest at 100, 500, and 1000 m, more urban 

land cover at 500 and 1000 m, and more deciduous/mixed forest edge and agriculture/pasture at 

all spatial scales around our ROW sites Midcoast than Downeast (Appendix A, Table A.1). Our 

ROW sites near lowbush blueberry fields were surrounded by more lowbush blueberry land 

cover at all spatial scales, and we also found more coniferous forest around our sites isolated 

from lowbush blueberry fields at 500 and 1000 m (Appendix A, Table A.1). We did not find a 

difference in the amount of lowbush blueberry surrounding our sites between growing regions.  

1.3.4. Bee communities by growing region and site type 

 In 2014-2015, we collected 820 individual bees from 84 species in the Downeast growing 

region and 1,076 bees from 97 species in the Midcoast growing region. We found significant 

differences in both bee abundance (df=1,21, deviance=3.94, p=0.05) and species richness 

(df=1,21, deviance=16.24, p<0.001) between the two growing regions. We collected 1,030 bees 

from 98 species in sites near lowbush blueberry fields and 866 bees from 92 species in sites 

isolated from lowbush blueberry fields; differences in bee communities across these site types 

were not significant. However, we found a significant type x region interaction for bee species 

richness (df=1,21, deviance=5.21, p=0.02). Bee species richness was significantly different 

between sites near to and isolated from lowbush blueberry in the Downeast growing region 

(df=1,10, deviance=7.24, p=0.007); however, we found no difference in bee species richness 

between site types in the Midcoast growing region (Table 1.3). 
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Table 1.3. Bee abundance and species richness (± standard error) in power line right-of-way sites 

near to and isolated from lowbush blueberry fields in Downeast and Midcoast Maine, USA, 

2014-2015. 

 

Abundance 

Near lowbush 

blueberry 

Isolated from 

lowbush blueberry 

Downeast 448 (±12.6) 372 (±6.8) 

Midcoast 582 (±12.6) 494 (±8.8) 

Species Richness 
  

Downeast ** 71 (±2.3) 47 (±1.6) 

Midcoast 76 (±2.6) 80 (±2.2) 

 

** = Significantly different at p<0.01 

 

1.3.5. Bee life history traits and ROW context across growing regions 

 We found significant differences in medium-bodied (df=1,21, deviance=15.10, p<0.001) 

and extra-large-bodied (df=1,21, deviance=14.59, p=0.008) bee species richness by growing 

region (Fig. 1.3). Medium-bodied bee species richness is associated with more deciduous/mixed 

forest edge (df=1,22, deviance=7.88, p=0.004) and less coniferous forest (df=1,22, 

deviance=8.65, p=0.003) surrounding ROW sites at 250 m. These relationships are also 

influenced by growing region, as there is less coniferous forest and more deciduous/mixed forest 

edge Midcoast (Fig. 1.4 a,b). In contrast, species richness of extra-large-bodied bees is associated 

with more agriculture/pasture (df=1,22, deviance=4.11, p=0.04) at 1000 m surrounding ROW 

sites with no influence of growing region (Fig. 1.5a). Additionally, we linked extra-large bee 

species richness to floral abundance within all ROW sites (df=1,22, deviance=17.79, p=0.04) 

(Fig. 1.5b). 



23 
 

 

Figure 1.3. Bee species richness by body size in power line ROW sites in two Maine, USA, 

lowbush blueberry growing regions, 2014-2015. Size classes are: small (<6 mm), medium (6-9 

mm), large (9-12 mm), and extra-large (>12 mm). ** = significant at p<0.01;  *** = significant 

at p<0.001. 

a)   b)  

Figure 1.4. Influence of the proportion of a) coniferous forest and b) deciduous/mixed forest 

edge in the 250 m surrounding power line ROW sites on medium-bodied (6-9 mm) bee species 

richness in the Midcoast (gray triangles) and Downeast (black circles) lowbush blueberry 

growing regions of Maine, USA, 2014-2015. 
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a)  b)  

Figure 1.5. Influence of the a) proportion of agriculture/pasture in the 1000 m surrounding and b) 

floral abundance within power line ROW sites on extra-large-bodied (>12 mm) bee species 

richness in the Midcoast (gray triangles) and Downeast (black circles) lowbush blueberry 

growing regions of Maine, USA, 2014-2015. 

  

We found significant differences in the species richness of social bees (df=1,21, 

deviance=7.12, p=0.007) and solitary bees (df=1,21, deviance=10.97, p<0.001) between growing 

regions. Solitary bee species richness was greater Midcoast, where it is associated with less 

coniferous forest and wetland and more agriculture/pasture and deciduous/mixed forest edge 

surrounding ROW sites (Fig. 1.6a; Appendix A, Table A.2). We found a significant site type by 

growing region interaction for the species richness of solitary bees (df=1,20, deviance=6.98, 

p=0.008) owing to an interactive effect of lowbush blueberry land cover surrounding our ROW 

sites at 250 (df=1,20, deviance=7.54, p=0.006), 500 (df=1,20, deviance=6.46, p=0.01), and 1000 

m (df=1,20, deviance=8.68, p=0.003). Lowbush blueberry had a negative association with 

solitary bee species richness Midcoast and a positive association Downeast (Fig. 1.7), though as 

a single variable, the amount of lowbush blueberry surrounding ROW sites did not significantly 

influence solitary bee species richness (Appendix A, Table A.2). Furthermore, we found that 
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greater floral abundance (m2 per transect) in ROW sites led to greater solitary bee species 

richness (df=1,22, deviance=6.62, p=0.01) (Fig. 1.8a). Social bee species richness was also 

greater Midcoast, increasing with less coniferous forest cover and more agriculture/pasture (Fig. 

1.6a; Appendix A, Table A.3) in the surrounding landscape.   

Ground nesting (df=1,21, deviance=9.98, p=0.001) and cavity nesting (df=1,21, 

deviance=4.45, p=0.034) bee species richness was greater in Midcoast ROW (Fig. 1.6b). Less 

coniferous forest and more agriculture/pasture influenced ground nesting bee species richness at 

multiple scales surrounding ROW, whereas more deciduous/mixed forest edge and urban area 

and less wetland were influential at small scales surrounding ROW (Appendix A, Table A.4). 

Greater floral abundance in ROW sites led to greater ground nesting bee species richness 

(df=1,22, deviance=7.93, p=0.004) (Fig. 1.8b). We found greater cavity nesting bee species 

richness in ROW sites surrounded by less coniferous forest and more deciduous/mixed forest 

edge at small scales and more wetland at 500 m (Appendix A, Table A.5).   

1.3.6. Bee life history traits and ROW context between isolated and near sites Downeast 

We found significant differences in bee species richness associated with body size 

(df=1,10, deviance=13.00, p=0.05), sociality (df=1,10, deviance=4.85, p=0.027; Fig. 1.9), and 

nesting habit (df=1,10, deviance=5.43, p=0.019; Fig. 1.10) between ROW sites near to and 

isolated from lowbush blueberry fields in the Downeast growing region. Large-bodied (500 m 

scale; df=1,10, deviance=4.73, p=0.03), solitary (all spatial scales; Appendix A, Table A.6), and 

ground nesting (all spatial scales; Appendix A, Table A.7) bee species richness were positively 

associated with surrounding blueberry land cover at sites near crop fields. Coniferous forest 

cover at 500 and 1000 m around sites near to or isolated from crop fields reduced ground nesting 

bee species richness, and deciduous forest at 1000 m near crop fields reduced solitary bee species
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Figure 1.6. Species richness of a) social and solitary bees and b) ground and cavity nesting bees 

in power line ROW sites in Downeast and Midcoast Maine, USA, 2014-2015.  

* = significant at p<0.05, ** = significant at p<0.01, and *** = significant at p<0.001. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Interactive effect of percent lowbush blueberry surrounding power line ROW sites at three spatial scales on solitary bee 

species richness in the Midcoast (gray triangles, dashed gray line) and Downeast (black circles, solid black line) growing regions of 

the Maine, USA lowbush blueberry production landscape, 2014-2015. 

2
7
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a)   

 

b)  

 

Figure 1.8. Influence of floral abundance (m2) within power line ROW sites on a) solitary and b) 

ground nesting bee species richness in Downeast (gray circles) and Midcoast (black triangles) 

Maine, USA, 2014-2015. 
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Figure 1.9. Species richness of social and solitary bees in power line ROW sites near to and 

isolated from lowbush blueberry fields in Downeast and Midcoast Maine, USA, 2014-2015.   

* = significant at p<0.05. 

 

 

 
Figure 1.10. Species richness of ground and cavity nesting bees in power line ROW sites near to 

and isolated from lowbush blueberry fields in Downeast and Midcoast Maine, USA, 2014-2015. 

* = significant at p<0.05. 
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richness. There was no effect of coniferous land cover on bee species richness at any spatial 

scale surrounding near sites (Appendix A, Tables A.6, A.7). Emergent wetland land cover at 

1000 m promoted ground nesting and solitary bee species richness. We found no significant 

differences in bee life history traits between site types in the Midcoast growing region. 

1.4. Discussion 

1.4.1. Bee community response to ROW  

We provide evidence that bee species richness, but not bee abundance, is affected by 

local and landscape scale characteristics of ROW sites. In studies conducted by Russell et al. 

(2005, 2018), bee species richness, but not abundance, was greater in ROW habitat than in 

nearby grasslands in a Maryland, USA, mixed-use landscape, though both bee abundance and 

species richness were influenced by ROW vegetation management. The contrasting response of 

bee species richness in ROW by growing region in Maine may be explained by landscape 

context (Holzschuh et al. 2007; Sardiñas and Kremen 2015). In the Downeast region where bee 

habitat is relatively scarce, ROW with abundant forage may provide food for more bee species 

than is available in the surrounding landscape. In contrast, the diverse bee community found in 

Midcoast ROW may reflect surrounding landscape diversity, where bee habitat is more 

prevalent. Bees may selectively forage in ROW with more abundant flowers or in other habitat 

types with ample floral resources, including agriculture/pasture, deciduous/mixed forest edge, 

and urban areas. Our findings support the intermediate landscape complexity hypothesis, which 

states that conservation efforts will be more beneficial in structurally simple landscapes over 

more complex landscapes (Batáry et al. 2011; Tscharntke et al. 2012; Scheper et al. 2013), 

especially if the conservation activity creates quality habitat (Kleijn and vanLangevelde 2006). 

Power line ROW in Maine are not managed for conservation purposes; however, the habitat 
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resulting from current management practices appears to have the same effect as conservation 

directed management techniques such as Integrated Vegetation Management (IVM; Russell et al. 

2005, 2018) by promoting bee diversity near lowbush blueberry fields Downeast that may be 

surrounded by less high quality bee habitat.  

1.4.2. Bee life history traits 

 We observed that species richness of solitary and ground nesting bees, but not social and 

cavity nesting bees, was influenced by floral resources and surrounding landscape composition. 

Our findings contrast with existing studies. When managed long term to maintain early-

successional habitat, cavity nesting bees were more diverse in Maryland, USA, ROW owing to 

nesting resources in dead wood and woody shrubs (Russell et al. 2018). Nesting habitat 

assessments of similar land cover types (emergent wetland, deciduous/mixed forest edge) in 

Maine suggest that dead wood and woody shrubs should be plentiful in ROW and that bare 

ground should be sparse (Chapter 3, this dissertation); however, the bee communities we 

observed in this study indicate the opposite. Further assessment of nesting resources within 

power line ROW may provide clarity on these relationships.  

Floral resources in ROW and other linear landscape features may support diverse social 

bee communities (Kallioniemi et al. 2017; Russell et al. 2018); however, our work links floral 

abundance to solitary bee species richness. Solitary bee species richness responded to more local 

and landscape scale habitat characteristics than all other life history traits. Social bee species 

vary widely in body size and therefore foraging range (Greenleaf et al. 2007), and larger social 

species can travel longer distances to obtain sufficient resources. In contrast, smaller solitary 

bees may be more dispersal-limited and thus more susceptible to limited resource availability 

(Sydenham et al. 2017); floral resources in ROW may be the only accessible forage after crop 
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bloom, particularly in the coniferous forest-dominant Downeast growing region. Additionally, 

social bees were far more abundant (1,495 individuals), but less diverse (34 species), than 

solitary bees (581 individuals, 77 species). Less species richness of social bees was expected 

because solitary species dominate the overall bee community in Maine (Dibble et al. 2017), but 

the greater abundance of social species as a group was not hypothesized when we designed the 

study. The number of singleton solitary species occurring in our study sites may contribute to the 

observed effects of local and landscape resources on solitary bee species richness (McGill et al. 

2007; Winfree et al. 2015).  Finally, species richness as a measure of diversity overlooks 

potential relationships between resources and bee communities. Further analyses using 

functional traits (McGill et al. 2006) (e.g., tongue length; Sydenham et al. 2015, 2016, 2017) 

may provide more insight into how bees use our study landscape. 

1.4.3. Floral resources 

Power line ROW provide a consistent source of floral resources for wild bees, 

provisioning bee populations post-lowbush blueberry bloom through the remainder of the 

growing season (mid-June through October). Floral resources are often correlated with bee 

species richness (Potts et al. 2003; Ebeling et al. 2008). We found greater species richness of 

both blooming plants and bees in ROW within the Midcoast region; however, this relationship 

was not significant. Instead, bee species richness in our ROW sites was influenced by floral 

abundance in both growing regions. Available forage in ROW may be comparable to grasslands 

(Hill and Bartomeus 2016), though in the Maine lowbush blueberry production landscape, ROW 

forage is more similar to wooded or emergent wetlands (Chapter 2, this dissertation). This 

creates a unique habitat type that may occur in ROW throughout New England (Wagner et al. 

2014a,b). Further, this unique habitat type supports rare wild bee species. We found two 
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specimens of the native loosestrife (Lysimachia spp.) specialist Macropis nuda (Provancher). 

Native loosestrifes in Connecticut power line ROWs were attributed to the rediscovery of one of 

North America’s rarest wild bees, Epeoloides pilosula (Cresson), which parasitizes Macropis 

spp. (Wagner and Ascher 2008).  

We found more herb-dominated plant communities Midcoast and more ericaceous-

dominated plant communities Downeast; a similar trend in ROW within Norway boreal forest 

suggests that herb-dominant communities promote wild bee diversity (Sydenham et al. 2016, 

2017).  However, the role of ericaceous-dominant early successional vegetation in ROW should 

not be overlooked. Ericaceous plant species have poricidal anthers with unique morphology that 

often prevents generalist bees from obtaining pollen (Bell et al. 2009). Additionally, certain 

suites of bee species are morphologically and behaviorally pre-adapted to extracting pollen from 

and pollinating ericaceous flowers (e.g., Andrena spp. and Bombus spp., Javorek et al. 2002; 

Drummond 2016); many of these bee species are florally constant on ericaceous flowers (Stubbs 

et al. 1992; Bushmann and Drummond 2015), and we collected many of these species in our 

ROW surveys. While our work recorded floral resources available to wild bees, quantifying all 

vegetation by type (trees, shrubs, herbs, grasses) and/or surveying nesting resources (tree snags, 

soft-pith stem resources, bare soil) would provide a more complete assessment of ROW habitat 

resources (Wagner et al. 2014b; Russell et al. 2018; Chapter 3, this dissertation). 

1.4.4. Landscape context and mass flowering crops 

 In both growing regions, we found that bee species richness decreased across sociality 

and nesting habits in ROW surrounded by coniferous forest, which offers little forage and has 

low bee abundance (Groff et al. 2016; Chapter 2, this dissertation). Differences in landscape 

composition between the Midcoast and Downeast growing regions explain many of our results. 
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Bee species richness increases in landscapes with more habitat (Steffan-Dewenter 2003; Ricketts 

et al. 2008) and greater heterogeneity (Holzschuh et al. 2007), and landscapes with a larger bee 

species pool such as Midcoast Maine will have greater bee diversity within ROW sites 

(Tscharntke et al. 2012; Chapter 2, this dissertation). In a mixed-use, primarily forested 

landscape, agricultural and urban land cover promote bee species richness (Winfree et al. 2007), 

as they do in Midcoast Maine. Additionally, urban and agricultural land cover in Maine contain 

different bee species than those in the forested matrix (Chapter 2, this dissertation), contributing 

to the greater species richness we observed in ROW in the Midcoast growing region. Urban land 

cover in Maine’s lowbush blueberry production landscape is generally classified as exurban 

along an urban-rural land use gradient (Kaminski et al., in review), meaning there is plenty of 

green space and natural area that provides bee habitat. Although we found more wetland land 

cover Downeast than Midcoast, we do not have evidence that wetlands influence Maine bee 

communities (Chapter 2, this dissertation). Rather, it is lowbush blueberry fields that have an 

important influence on bee communities in ROW Downeast, an effect that is amplified by the 

dominance of coniferous forest in the surrounding landscape.  

We found a positive influence of surrounding lowbush blueberry land cover on bee 

species richness in ROW near lowbush blueberry fields in the more homogeneous Downeast but 

not the heterogeneous Midcoast growing region. In fact, bee species richness decreased with 

increasing lowbush blueberry surrounding ROW sites Midcoast. In Sweden, a similar contextual 

response to a mass flowering crop has been observed on plant reproductive success associated 

with planted floral strips; reproductive success increased near planted strips in homogeneous 

landscapes, whereas it decreased near planted strips in heterogeneous landscapes (Herbertsson et 

al. 2018). Our work supports the growing consensus that linear landscape features (e.g., floral 
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strips, field edges, hedgerows, ROW) relative to a mass flowering crop have different bee 

communities based on landscape context. Previous work in California and southern England has 

assessed bee communities of hedgerows in agriculturally-intense landscapes (Sardiñas and 

Kremen 2015; Garratt et al. 2017); we reveal contextual influences in Maine on bee communities 

of power line ROW within heavily forested landscapes. The habitat resources provided by ROW 

and other linear features in homogeneous landscapes appear to be critical in supporting bee 

communities after the bloom of a mass flowering crop, regardless of the dominant land cover 

type. Further studies of other linear features, such as field edges, and more study of ROW would 

clarify these relationships, particularly in different crops and landscape contexts.  

1.4.5. Conservation value of power line ROW in Maine 

 Power line ROW in Maine’s lowbush blueberry production landscape lie within a forest-

dominant matrix. In the Midcoast Maine growing region, the forest is a transitional zone between 

the hardwood forests of southern New England and the boreal forest that dominates the 

Downeast Maine growing region. Our work reveals that the open habitat provided by ROW in 

Maine contains early-successional vegetation typical of boreal forest and transition zones, 

including ericaceous species that many lowbush blueberry pollinators can utilize pre- and post-

crop bloom. Forest harvesting throughout the lowbush blueberry production landscape 

temporarily creates early-successional habitat; however, these patches eventually mature and 

lose their habitat value. Owing to their constancy throughout Maine’s lowbush blueberry 

production landscape and the variety of floral resources found within, ROW may serve as refugia 

for both generalist and ericaceous-specialist pollinators. When managed for an early-

successional vegetation community, power line ROW may be a beneficial, but overlooked, 

source of wild bee habitat in forest-dominant landscapes. 
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CHAPTER 2 

NON-CROP HABITAT USE BY WILD BEES IN A MIXED-USE  

AGRICULTURAL LANDSCAPE  

2.1. Introduction 

Insect-mediated crop pollination is a necessary ecosystem service for two-thirds of global 

crops and 87% of all flowering plant species (Klein et al. 2007; Ollerton et al. 2011). Bees are 

the dominant insect pollinator, and crop pollination requirements are generally met using 

commercially managed honeybees (Apis mellifera L.). However, naturally occurring wild bee 

species supplement honeybee crop pollination services and are often more efficient crop 

pollinators (Garibaldi et al. 2013; Asare et al. 2017). Honeybee hives are typically placed within 

blooming crop fields to encourage pollination, though honeybees fly an average of 1.5 km, and 

often much farther, to find food (Steffan-Dewenter and Kuhn 2003). In contrast, wild bee species 

are generally small-bodied with a limited foraging range (Greenleaf et al. 2007), meaning a large 

proportion of crop pollinating wild bee species are nesting nearby. Habitat types in agricultural 

landscapes have been used to characterize crop pollinating bee communities, with a general trend 

of more natural or semi-natural habitat providing greater bee diversity and abundance (Ricketts 

et al. 2008). Further, wild bees use different habitat types in complement to find suitable nesting 

sites and obtain floral resources necessary for survival (Mandelik et al. 2012). 

Information on wild bee communities within non-crop habitat types remains sparse 

(Heinrich 1976), though such surveys are an emerging area of study (Harrison et al. 2017, 2018). 

A popular spatial model that predicts pollinator abundance throughout agricultural landscapes 

relies on expert opinion to parameterize resources available in non-crop land cover (Lonsdorf et 

al. 2009), and has been applied at local (Groff et al. 2016; Chapter 3, this dissertation), national 
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(Koh et al. 2016), and global (Kennedy et al. 2013) scales using expert opinion-informed 

parameters. Surveying bee communities within non-crop habitat may reduce bias and variability 

in expert opinion and provide a more accurate assessment of bee communities in agricultural 

landscapes (Groff et al. 2016). Furthermore, non-crop habitat likely has bee species not found in 

crop fields (Harrison et al. 2018; Neokosmidis et al. 2018). Non-crop habitat types may be scarce 

in a landscape with intensive agriculture and can contain rare plants and rare plant-pollinator 

interactions (Harrison et al. 2017; Chapter 1, this dissertation). Additionally, sampling bee 

communities in non-crop habitats provides baseline data for monitoring efforts in pollinator 

conservation (Bartomeus et al. 2013). 

Landscape composition, or the proportion of different habitat types, has often been used 

to predict bee abundance and diversity in blooming crop fields (Ricketts et al. 2008; Garibaldi et 

al. 2011). Landscape configuration, or the arrangement of habitat patches, has also been 

assessed, but with less consistent results (Kennedy et al. 2013; Joshi et al. 2016; Nicholson et al. 

2017; Neokosmidis et al. 2018). Bee response to composition and configuration changes with 

landscape scale, a relationship linked to varying life histories (Steffan-Dewenter et al. 2002). 

Landscape scales relevant to wild bees are determined by maximum foraging distance, which is 

estimated from the average intertegular distance, or the width between the wing bases, of 

individual bee species (Greenleaf et al. 2007). These foraging distances range from less than 100 

m up to 3 km depending on the size of the bee. Small, solitary wild bees generally respond to 

landscape context at small scales, whereas large-bodied, social bees respond at large scales 

(Steffan-Dewenter et al. 2002; Benjamin et al. 2014). This approach has been questioned, as 

foraging behavior studies demonstrate that large bees can fly much farther than the calculated 

maximum foraging distance (Jha and Kremen 2013); however, supporting evidence has been 
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presented for the limited spatial scales of small bees (Zurbuchen et al. 2010; Wright et al. 2015). 

Further, optimal foraging theory implies bees will not forage to their estimated maximum 

distance to obtain resources if they can gather those resources near their nest (Goulson 1999).  

The landscape of the northeastern United States supports many pollinator-dependent 

specialty crop production systems, notably apples (Malus domestica Borkh.; Blitzer et al. 2016), 

cranberries (Vaccinium macrocarpon Aiton; Loose et al. 2005), and lowbush blueberries 

(Vaccinium angustifolium Aiton; Bushmann and Drummond 2015). This heterogeneous mixed-

use landscape is forest dominated and interspersed with diversified agricultural, developed, and 

wetland land covers. Surveys in the northeastern US reveal diverse and abundant bee 

communities inconsistently associated with landscape context (Bartomeus et al. 2013; Bushmann 

and Drummond 2015; Joshi et al 2016; Tucker and Rehan 2017; Nicholson et al. 2017). These 

studies focus on bee communities in specialty crop habitat (but see Bartomeus et al. 2013); 

however, bee communities in surrounding non-crop habitat warrant further examination. 

Here, we assess bee communities throughout Maine’s mixed-use lowbush blueberry 

production landscape, in which crop fields are surrounded by natural habitat. We compare wild 

bee abundance and species richness across eight land cover types including and surrounding 

lowbush blueberry fields. We expect that each of these land cover types will offer distinct floral 

and nesting resources to wild bees, and we surveyed habitat resources (nesting and foraging) to 

confirm these relationships. We also assess the role of landscape composition and configuration 

in determining bee community composition by sampling in a homogeneous and a heterogeneous 

landscape context. We expect reduced wild bee abundance and species richness where dense, 

floral resource-poor coniferous forest cover predominates and more abundant and diverse bee 

communities where open, floral resource-rich cover types including urban areas, small 



39 
 

diversified farms, and deciduous forest edge are common. We also hypothesize that a landscape 

pattern with interspersed patches of multiple cover types will support more diverse and abundant 

wild bee communities, and that these relationships may change from local scales to landscape 

scales. Understanding how mixed-use landscapes influence wild bee abundance and species 

richness will help inform conservation and management practices broadly and establish a 

baseline for wild bee use of non-crop habitat surrounding crop fields. 

2.2. Methods 

2.2.1. Study area and spatial data 

The Maine lowbush blueberry production landscape covers approximately 750,000 ha of 

coastline (44-45°N, 67.5-69.5°W), and consists of two growing regions with distinct landscape 

contexts (Fig. 2.1). These growing regions fall into EPA Level IV ecoregions 58f (Downeast 

Coast; hereafter referred to as Downeast), 82h (Penobscot Lowlands), and 82b (Midcoast) 

(Omernik and Griffith 2014). The Downeast region contains the largest and most intensively 

managed lowbush blueberry fields (up to 1700 ha) in a matrix dominated by managed coniferous 

(spruce-fir) forest. Non-blueberry agriculture and developed land cover are scattered and 

comprise little of this landscape. In contrast, the Midcoast and Penobscot Lowlands (hereafter 

combined as Midcoast-Lowlands) region contains smaller, less intensively managed crop fields 

(up to 15.6 ha) interspersed with other agriculture including pastures, orchards, and small, 

diversified farms, and more small towns than the Downeast region. The matrix in the Midcoast-

Lowlands region is deciduous forest-dominant and managed with smaller, less frequent 

harvesting operations than in the Downeast region (Looze 2012). 
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Figure 2.1. Extent of the Downeast Coast, Midcoast, and Penobscot Lowlands Level IV 

ecoregions in Maine, USA. Map insets display representative landscape contexts of the a) 

Downeast and b) Midcoast-Lowlands ecoregions. Bar charts indicate proportion of eight land 

cover types in the Downeast (top) and Midcoast-Lowlands (bottom) ecoregions. 
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A raster-based land cover map was developed for the Downeast region by Groff et al. 

(2016). Land cover data were derived from the Maine Landcover Dataset 2004 (MeLCD; 

https://www.maine.gov/megis/catalog/metadata /melcd.html) with 5 m pixel size and 42 land 

cover classes. Groff et al. (2016) augmented the MeLCD with ancillary datasets, then resampled 

and reclassified the map for computational efficiency and ecological relevance. The prepared 

map has 10 m pixel size and eight land cover classes representing different floral and nesting 

resources for wild bees: Agriculture/pasture, consisting of small diversified farms, orchard crops, 

or pasture; lowbush blueberry fields; coniferous forest; deciduous/mixed forest; deciduous/mixed 

forest edge, 10 m from deciduous/mixed forest into the neighboring land cover type; emergent 

wetland, an aggregation of forested wetland and scrub-shrub land cover; wetlands/open water; 

and urban/developed areas. Land cover data for the Midcoast-Lowlands region were prepared for 

this analysis following the procedure for the eastern extent in Groff et al. (2016), including 

unsupervised and supervised classifications of a 10 m pixel size 3600 sq km SPOT image 

acquired in September 2012 (Airbus Defense and Space, http://www.geo-airbusds.com) in 

ArcGIS® version 10.2.2 (ESRI, Redlands, CA, United States) and hand-digitizing of omitted 

lowbush blueberry fields revealed through the SPOT classification. 

2.2.2. Field sampling 

We established seven distinct blocks comprised of eight sites each (56 total sampling 

sites) throughout Maine’s lowbush blueberry production landscape. Each block contained one 

site in each focal land cover type. Sites were grouped near each other within blocks so that all 

eight could be sampled in one day, with fewer than 15 sites less than 500 m apart (site distance 

range 0.05-10.8 km; mean distance between sites 2.3 km) to minimize overlap in bee 

communities. We used our land cover map to select sites by land cover type, then visited each 

https://www.maine.gov/megis/catalog/metadata
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site on the ground to confirm suitability for sampling. Each site consisted of one 100 m transect 

placed so that the focal cover type was dominant up to 100 m surrounding the transect; however, 

some sites did not meet this criterion owing to land cover heterogeneity and patch size 

irregularity. We sampled two blocks in 2014 and five blocks in 2015. Three survey blocks were 

in the Midcoast region (one sampled in 2014, two sampled in 2015), two Downeast (both 

sampled in 2015), and two blocks were established in the Penobscot Lowlands region (one 

sampled in 2014, one sampled in 2015). 

In each sampling year, sites were sampled in early (13 May-18 June), mid-(17-30 July), 

and late (30 Aug-25 Sept) season to capture variability in bee and blooming plant communities. 

Sampling was conducted on days that maximized bee activity with clear or bright cloudy skies, 

minimal wind, and early morning temperatures >13°C (Bushmann and Drummond 2015). We 

surveyed wild bee diversity and abundance by placing a set of three cup traps (one each in 

fluorescent blue, yellow, and white; New Horizons Supported Services, Inc.) every 10 meters 

along a 100 m transect. Each cup contained approximately 85 ml of water and a drop of dish 

soap to break water tension (Droege 2015). Captured bees were collected from the bowl traps 

after 24 hours. We then walked along the transect for 30 minutes and collected foraging bees 

observed on flowers with insect nets. We excluded honeybees from live netting owing to our 

interest in assessing wild bee communities, though honeybees were sometimes captured in bowl 

traps. Managed Bombus impatiens brought in for lowbush blueberry pollination could also have 

been present but were not differentiated; therefore, our collection may include specimens of B. 

impatiens from purchased quads. Using both bowl traps and live netting captures a more 

complete bee community (Wilson et al. 2008). All collected specimens were cleaned and stored 

in ethanol (bowl trapped) or frozen (netted) until pinned. We identified pinned specimens to the 
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lowest taxonomic level possible with reference to the keys of DiscoverLife.org and Haverty and 

Larder (1988), and obtained species-level verifications from Dr. Sara Bushmann, George Stevens 

Academy; Sam Droege, U.S. Geological Survey Native Bee Inventory and Monitoring Lab; Dr. 

Jason Gibbs, University of Manitoba; and Dr. Robert Jean, Environmental Solutions and 

Innovations, Inc.. We gathered nesting and foraging habits of each species from the literature and 

estimated flight distance for each species with published body size measures and the logarithmic 

equation from Greenleaf et al. (2007). 

We recorded floral abundance and species richness along the first 25 m of our bee 

sampling transect immediately after collecting bowl traps during each sampling period at all sites 

in 2015. For each blooming patch intersecting this sub-transect, we recorded plant species, patch 

size in m2 and percent bloom. We identified larger blooming shrubs or trees within 25 m from 

the floral transect by visual assessment. Reference specimens of each blooming plant species 

were collected and pressed to confirm species identification, and all identifications were 

confirmed by a botanist (Dr. Alison C. Dibble, University of Maine).  

2.2.3. Landscape pattern analysis 

We calculated metrics of landscape pattern using Fragstats 4.2 (McGarigal et al. 2012) at 

four spatial extents (250, 500, 1000, and 2000 m) around each study site. Landscape variables at 

these spatial extents influence bee abundance and species richness (Steffan-Dewenter et al. 

2002). Fragstats metrics that are not empirically or functionally redundant may still be correlated 

(Neel et al. 2004; Cushman et al. 2008). We assessed correlation among potential metrics using 

correlation matrices and chose the most biologically relevant metrics for further analysis when 

correlation coefficients (r) exceeded ± 0.7 (Li and Wu 2004). 
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We selected four configuration metrics that are independent and measure unique 

components of landscape pattern; three of these metrics have previously been linked to bee 

community composition (Kennedy et al. 2013; Joshi et al. 2016). The mean proximity index 

(PROX_MN) measures the distance between two patches of the same land cover type and has a 

positive relationship with bee abundance in apple orchards (Joshi et al. 2016). The mean 

perimeter-area ratio (PARA_MN) is a measure of shape complexity, and the interspersion-

juxtaposition index (IJI) measures patch mixing; both were used in a global meta-analysis that 

assessed the interactive effects of landscape pattern and composition on bee communities 

(Kennedy et al. 2013). We also measured the aggregation index (AI) to assess the influence of 

the large, aggregate patches that commonly occur throughout our study landscape. The AI was 

used only at the 1000 and 2000 m scales, as percolation theory dictates that aggregation is not 

detectable at small landscape scales (Gardner et al. 1987). We assessed landscape composition 

with the percentage of landscape metric (PLAND) of each cover type surrounding each site. 

2.2.4 Statistical analyses 

We conducted all statistical analyses in R v.3.5.0 (R Core Team 2018). Honeybees 

captured in bowl traps were excluded from statistical analyses. We evaluated annual and 

seasonal differences in bee and floral abundance and species richness with Kruskal-Wallis tests, 

then determined seasonal differences post-hoc with Dunn’s test of multiple comparisons in 

package dunn.test (Dinno 2017). We tested for spatial autocorrelation with Mantel tests on bee 

abundance and species richness at all focal spatial scales (250, 500, 1000, and 2000 m) with the 

ade4 package (Dray and Dufour 2007).  

We aggregated floral resources over the growing season for analysis. We sampled floral 

resources in only one of our study years, visiting each site just once per time period of the 

http://www.cran-r-proj.org/
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growing season. While this provides an initial data set to explore the floral resources unique to 

each of the eight land cover types we sampled, our experimental design does not have sufficient 

replication for powerful statistical analyses of seasonal effects of floral resources. We multiplied 

patch size by percent bloom for each species observed along our floral resource sub-transect, 

then summed those values across all sampling periods for an index of cumulative floral 

abundance. Floral species richness is the total number of blooming plant species observed over 

the growing season. We compared the influence of local-scale resources on bee communities by 

modeling the influence of floral abundance and species richness on bee abundance and species 

richness. We further modeled the influence of land cover type on floral communities by adding 

land cover as an interaction term. Models were generalized linear models with a negative 

binomial error distribution calculated in the package lme4 (Bates et al. 2015). We interpreted 

interactive effects of floral resources with regression plots using the package car (Fox and 

Weisberg 2011).  

We determined differences in bee community composition among land cover types and 

growing regions with non-metric multidimensional scaling (NMDS), then identified significant 

differences with permutation testing in the package vegan (Wilson et al. 2016; Oksanen et al. 

2017). We evaluated differences in bee abundance and richness across land cover type and 

growing region with generalized linear models. Models had a negative binomial error 

distribution owing to overdispersed data. We ran models with cover type, region, and their 

additive and multiplicative interaction terms and chose the best fitting model with AIC. We 

tested for significance of interaction terms, if included in the best fitting model, with likelihood 

ratio tests. We assessed the main effects of the best fitting models with analysis of deviance, and 

then conducted post-hoc comparisons of means with Bonferroni corrected Tukey contrasts with 
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the packages MASS and multcomp (Venables and Ripley 2002; Hothorn et al. 2008). These tests 

were conducted separately for bee abundance and species richness on land cover type by 

growing region, as these tests cannot reliably account for interaction terms (Hothorn et al. 2008).  

We assessed the influence of the eight land cover types on bee abundance and species 

richness with generalized linear mixed models (GLMMs) calculated in lme4. We modeled the 

proportion of each land cover type at each spatial scale (250, 500, 1000, and 2000 m), and we 

repeated this analysis by season (early, mid-, or late) and by bee body size (small; 4-10 mm, or 

large; >10 mm). Models had a negative binomial error distribution with the proportion of each 

land cover type as the fixed effect and cover type of the site sampled as a random effect. Initial 

models of bee abundance and species richness by proportion of land cover in the surrounding 

landscape revealed a strong influence of two sampling sites in the Downeast growing region with 

large sample sizes. At one of these sites, a lowbush blueberry field, we collected 168 bees of 35 

species. We collected 188 bees of 38 species at the other site, located in deciduous/mixed forest 

edge. Standard deviation of bee abundance including these sites was 37.4; removing them 

reduced the standard deviation to 26.1. Standard deviation of bee species richness including 

these sites was 9.1; after exclusion it was 8.1. Therefore, we removed these sites for final 

analyses.  

We also determined the influence of landscape pattern on bee abundance and species 

richness with GLMMs. Growing region, landscape metrics, and region x metric interactions were 

fixed effects, and cover type of the survey site was a random effect; models had a negative 

binomial error distribution. Initial models also revealed a strong influence of the two sampling 

sites with large samples (described above), therefore they were removed for final analyses. We 

selected the best model for each combination of scale and community metric with Akaike 
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Information Criteria corrected for small sample sizes (AICc) and AICc weights from the R 

package AICcmodavg (Mazerolle 2017). For models with AICc weights >2, we measured the 

variance explained by both the fixed and random effects with the R package piecewiseSEM 

(Lefcheck 2015), obtained confidence intervals with Wald tests, and assessed variance inflation 

factors (VIFs) of correlated interaction effects. Interaction effects in GLMMs are expected to be 

highly correlated; however, if the VIF is >10, the term can be retained in the model without 

influencing the output (Jaeger and Kuperman 2009). All of our interaction terms met this 

criterion and were therefore retained in the final models.  

2.3. Results 

2.3.1. Bee community summary 

We collected 2,094 bee specimens representing five families, 26 genera, and 135 species 

(Table 2.1). Lowbush blueberry fields had the greatest abundance of bees (484 total, mean 60.5 ± 

43.6 (se)), whereas deciduous/mixed forest edge had the most species rich bee communities (71 

total species, mean 13.6 ± 17.4). We found few bees in either coniferous or deciduous/mixed 

forest. We collected more bees in the Midcoast-Lowlands growing region (1,223) than the 

Downeast growing region (871); however, on average, we collected more bees per site Downeast 

(mean 54.3 ± 7.4) than in the Midcoast-Lowlands (mean 24.2 ± 4.9). The most abundant bee 

species collected was the orange-banded bumble bee, Bombus ternarius (Say) (379 total 

individuals collected). Other common bees included the sweat bees Agapostemon virescens 

(Fabricius) (153), Augochlorella aurata (Smith) (126), and Lasioglossum cressonii (Robertson) 

(116), and the bumble bee Bombus impatiens (Cresson) (91). Bombus ternarius was the most 

abundant species Downeast (248), and A. virescens was most abundant in the Midcoast-

Lowlands (144). The abundance of the genera Andrena and Lasioglossum led to capturing a 
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number of kleptoparasitic species, including Andrena-associated Nomada spp. and 

Lasioglossum-associated Sphecodes spp. We also collected one kleptoparasite of Colletes spp., 

Epeolus scutellaris (Say). We collected two new state records, Andrena personata (Robertson) 

and Lasioglossum platyparium (Robertson), both of which occur in the Mid-Atlantic US. These 

records are the farthest north either of these species has been recorded. A complete list of bee 

species, their size class, and the cover types and growing regions in which they were collected is 

shown in Table 2.1. 

We found no spatial autocorrelation of bee abundance (r=-0.074, p>0.91) or species 

richness (r=-0.065, p>0.88) at any of the four spatial scales. Over all cover types, bee abundance 

and species richness did not vary between sampling years, but did differ between sampling 

periods in the growing season (abundance χ2=12.89, df=2, p=0.001, richness χ2=12.77, df=2, 

p=0.001). Bee communities were more abundant (mean 22.5 bees/site ± 4.7) and species rich 

(mean 8.08 species/ site ± 2.24) mid-season, with no significant differences between the early 

(mean 13.01 bees/site ± 3.96; mean 6.6 species/site ± 2.37) or late season (mean 8.26 bees/site 

±2.42; mean 4.52 species/site ±1.66). 

2.3.2. Floral resources and bee communities 

We observed 86 blooming plant species, 26 of which were non-native, along the first 25 

m of the survey transects (Table 2.2). Common species were often either disturbance or forest-

associated, including bunchberry (Cornus canadensis L.), Canada mayflower (Maianthemum 

canadense Desf.), goldenrod (Solidago spp., 3 species), and clover (Trifolium spp., 4 species). 

We found the greatest blooming plant species richness in deciduous/mixed forest edge (28), 

emergent wetland (29), and wetland (31). Wetland land cover had the greatest number of unique 

species (16), including Bur marigold (Bidens sp.), blue flag iris (Iris versicolor L.), water  



 
 

Table 2.1. Bee species and size class collected from eight land cover types and two lowbush blueberry growing regions of Maine, 

USA, 2013-2015. Class indicates bee estimated maximum foraging distance: A (<250 m), B (250-500 m), C (500-1000 m), and D 

(>1000 m). Land cover types are abbreviated: Ag=agriculture/pasture, Blue=lowbush blueberry field, Con=coniferous forest, Dec= 

deciduous/mixed forest, Edge=deciduous/mixed forest edge, Emg=emergent wetland, Wet=wetlands/water, and Urb= urban/ 

developed. Growing regions are abbreviated: DE=Downeast, MC-L=Midcoast-Lowlands. 

 Class Ag Blue Con Dec Edge Emg Wet Urb Total DE MC-L 

Family Andrenidae  
           

Andrena alleghaniensis  

Viereck, 1907  

B 
       

1 1 
 

1 

Andrena bradleyi  

Viereck, 1907 

B 
 

1 
      

1 1 
 

Andrena canadensis 

Dalla Torre, 1896 

B 
     

6 
  

6 
 

6 

Andrena carlini  

Cockerell, 1901 

C 5 12 
 

2 2 3 
 

4 28 7 21 

Andrena carolina  

Viereck, 1909 

B 1 4 
  

2 3 1 
 

11 9 2 

Andrena crataegi 

Robertson, 1895 

B 
    

2 
   

2 
 

2 

Andrena cressonii 

Robertson, 1891 

B 
    

1 
  

2 3 
 

3 

Andrena hippotes  

Robertson, 1895 

B 
       

1 1 
 

1 

Andrena hirticincta  

Provancher, 1888 

C 
    

2 
 

2 1 5 3 2 

Andrena milwaukeensis 

Graenicher, 1903 

B 
    

1 
   

1 
 

1 

Andrena miranda  

Smith, 1879 

C 
      

1 
 

1 
 

1 

Andrena miserabilis 

Cresson, 1872 

B 
       

17 17 2 15 

Andrena nasonii 

Robertson, 1895 

B 
 

4 
     

9 13 2 11 

             

4
9
 



 
 

Table 2.1 Continued.             

Andrena nigrihirta 

Ashmead, 1890 

B 
   

3 
    

3 
 

3 

Andrena nivalis  

Smith, 1853 

C 2 5 6 6 4 5 1 1 30 11 19 

Andrena personata 

Robertson, 1897 

A 
 

1 
      

1 
 

1 

Andrena placate 

Mitchell, 1960 

B 
    

1 6 
  

7 1 6 

Andrena regularis  

Malloch, 1917 

C 
 

1 
      

1 
 

1 

Andrena rufosignata 

Cockerell, 1902 

B 
 

2 
      

2 2 
 

Andrena rugose 

Robertson, 1891 

B 
   

1 1 
   

2 1 1 

Andrena spireana 

Robertson, 1895 

B 
    

1 
   

1 
 

1 

Andrena thaspii 

Graenicher, 1903 

B 
     

1 
  

1 
 

1 

Andrena vicina  

Smith, 1853 

C 
     

1 
 

2 3 1 2 

Andrena virginiana 

Mitchell, 1960 

B 
 

1 
   

1 
  

2 
 

2 

Andrena wheeleri 

Graenicher, 1904 

B 1 
       

1 
 

1 

Andrena wilkella 

Kirby, 1802 

C 4 
   

1 
  

19 24 12 12 

Anthidium manicatum 

Linneaus, 1758 

C 
    

1 
   

1 
 

1 

Anthidium oblongatum 

Illiger, 1806 

C 
    

8 
  

7 15 
 

15 

Calliopsis andreniformis 

Smith, 1853 

A 
       

7 7 1 6 

Pseudopanurgus sp. A 
    

2 
   

2 2 
 

Trachandrena sp. A 
   

1 
    

1 
 

1 

             

5
0
 



 
 

Table 2.1 Continued.            

Family Apidae  
           

Anthophora terminalis 

Cresson, 1869 

C 
      

1 
 

1 
 

1 

Bombus bimaculatus 

Cresson, 1863 

D 6 4 
 

1 24 4 15 7 61 48 13 

Bombus borealis 

Kirby, 1837 

D 2 1 
  

5 7 1 5 21 2 19 

Bombus griseocollis  

De Geer, 1773 

D 
       

1 1 
 

1 

Bombus impatiens 

Cresson, 1863 

D 24 14 
 

6 18 9 8 12 91 11 80 

Bombus perplexus  

Cresson, 1863 

D 3 
  

4 3 4 1 1 16 5 11 

Bombus sandersoni  

Franklin, 1913 

D 1 
    

1 
  

2 1 1 

Bombus ternarius  

Say, 1837 

D 62 48 
 

2 45 57 25 140 379 248 131 

Bombus terricola 

Kirby, 1837 

D 3 3 
 

1 2 3 1 2 15 6 9 

Bombus vagans 

Smith, 1854 

D 11 15 1 2 27 13 7 9 85 29 56 

Ceratina calcarata 

Robertson, 1900 

A 
 

1 
  

1 
   

2 1 1 

Ceratina mikmaqi Rehan  

and Sheffield, 2011 

A 3 3 
  

3 1 
 

2 12 7 5 

Epeolus scutellaris 

Say, 1824 

B 
 

1 
      

1 
 

1 

Melissodes apicata Lovell  

and Cockerell, 1906 

C 1 
    

1 
  

2 1 1 

Melissodes desponsa 

Smith, 1854 

C 
 

2 
  

1 1 
 

1 5 3 2 

Melissodes druriella 

Kirby, 1802 

B 
 

1 
   

2 
 

3 6 1 5 

Melissodes illata Lovell  

and Cockerell, 1906 

C 1 1 
      

2 
 

2 

5
1
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Nomada articulata 

Smith, 1854 

B 
 

1 
      

1 
 

1 

Nomada bidentate group B 
 

1 
      

1 
 

1 

Nomada cressonii 

Robertson, 1893 

B 
 

2 
   

1 1 5 9 6 3 

Nomada denticulata 

Robertson, 1902 

B 
       

2 2 1 1 

Nomada depressa 

Cresson, 1863 

B 
   

1 
    

1 1 
 

Nomada illinoensis/sayi A 
       

1 1 
 

1 

Nomada inepta 

Mitchell, 1962 

A 
    

1 
   

1 1 
 

Nomada luteoloides 

Robertson, 1895 

B 
 

1 
     

4 5 1 4 

Nomada maculata 

Cresson, 1863 

B 
 

2 
     

2 4 1 3 

Nomada nr. imbricata 

Smith, 1854 

C 
       

1 1 
 

1 

Nomada perplexa 

Cresson, 1863 

B 
       

1 1 
 

1 

Nomada sayi 

Robertson, 1893 

C 
       

1 1 
 

1 

Peponapis pruinosa 

Say, 1837 

C 2 
   

1 2 4 7 16 
 

16 

Family Colletidae  
           

Colletes americanus 

Cresson, 1868 

C 
 

1 
      

1 
 

1 

Colletes simulans 

Cresson, 1868 

C 1 1 
  

4 1 
  

7 5 2 

Hylaeus affinis 

Smith, 1853 

A 3 6 
  

1 2 2 
 

14 7 7 

Hylaeus annulatus 

Linnaeus, 1758 

A 
   

1 1 1 2 
 

5 3 2 

Hylaeus mesillae 

Cockerell, 1896 

A 
    

3 1 1 
 

5 
 

5 

5
2
 



 
 

Table 2.1 Continued.             

Hylaeus modestus 

Say, 1837 

A 3 3 
 

1 
 

11 1 4 23 14 9 

Family Halictidae  
           

Agapostemon texanus 

Cresson, 1872 

B 
 

3 
  

1 
   

4 1 3 

Agapostemon virescens 

Fabricius, 1775 

B 20 13 
 

1 5 3 11 100 153 9 144 

Augochlora pura 

Say, 1837 

B 
   

1 
 

1 3 
 

5 
 

5 

Augochlorella aurata 

Smith, 1853 

A 9 58 
 

2 42 9 4 2 126 75 51 

Augochloropsis metallica  

fulgida Smith, 1853 

B 
 

1 
 

1 1 1 
  

4 
 

4 

Dialictus sp. A 
 

1 
      

1 1 
 

Halictus confusus 

Smith, 1853 

A 5 8 
 

1 3 
  

21 38 11 27 

Halictus ligatus 

Say, 1837 

A 9 7 
 

1 5 1 1 14 38 4 34 

Halictus rubicundus 

Christ, 1791 

A 9 7 
  

4 11 7 
 

38 13 25 

Lasioglossum abanci 

Crawford, 1932 

A 
      

1 
 

1 
 

1 

Lasioglossum acuminatum 

McGinley, 1986 

A 2 7 
  

3 2 1 
 

15 5 10 

Lasioglossum admirandum 

Sandhouse, 1924 

A 12 6 
 

1 
 

1 2 1 23 8 15 

Lasioglossum albipenne 

Robertson, 1890 

A 
 

3 
    

1 
 

4 1 3 

Lasioglossum anomalum 

Robertson, 1892 

A 
 

1 
      

1 
 

1 

Lasioglossum cinctipes 

Provancher, 1888 

A 
    

1 1 1 1 4 1 3 

Lasioglossum coriaceum 

Smith, 1853 

A 
 

2 1 2 1 2 1 2 11 3 8 

             

5
3

 



 
 

Table 2.1 Continued.             

Lasioglossum cressonii 

Robertson, 1890 

A 13 28 
 

4 24 15 19 13 116 58 58 

Lasioglossum ellisiae 

Sandhouse, 1924 

A 
 

4 
  

1 
   

5 4 1 

Lasioglossum ephialtum 

Gibbs, 2010 

A 
 

1 
 

3 1 1 
  

6 1 5 

Lasioglossum foxii 

Robertson, 1895 

A 
      

1 
 

1 
 

1 

Lasioglossum heterognathum 

Mitchell, 1960 

A 
 

3 
      

3 
 

3 

Lasioglossum hitchensi 

Gibbs, 2012 

A 
 

2 
     

4 6 2 4 

Lasioglossum imitatum 

Smith, 1853 

A 
       

2 2 
 

2 

Lasioglossum katherineae 

Gibbs, 2011 

A 
 

1 
      

1 1 
 

Lasioglossum laevissimum 

Smith, 1853 

A 
       

1 1 1 
 

Lasioglossum leucocomum 

Lovell, 1908 

A 1 62 
  

6 2 
 

1 72 45 27 

Lasioglossum leucozonium 

Schrank, 1781 

A 5 3 
  

5 4 
 

10 27 8 19 

Lasioglossum lineatulum 

Crawford, 1906 

A 
    

2 
  

2 4 
 

4 

Lasioglossum macoupinense 

Robertson, 1895 

A 
   

2 1 1 
 

1 5 3 2 

Lasioglossum nigroviride 

Graenicher, 1911 

A 1 
   

2 
 

1 
 

4 1 3 

Lasioglossum nymphaearum 

Cockerell, 1916 

A 2 
     

1 
 

3 
 

3 

Lasioglossum oblongum 

Lovell, 1905 

A 
 

1 1 2 1 2 2 
 

9 3 6 

Lasioglossum paradmirandum 

Knerer and Atwood, 1966 

A 
      

1 
 

1 1 
 

             

5
4

 



 
 

Table 2.1 Continued.             

Lasioglossum pectorale 

Smith, 1853 

A 
 

20 
  

15 
 

1 1 37 33 4 

Lasioglossum perpunctatum 

Ellis, 1913 

A 
 

6 
  

2 
   

8 8 
 

Lasioglossum pilosum 

Smith, 1853 

A 
 

2 
      

2 
 

2 

Lasioglossum planatum 

Lovell, 1905 

A 1 4 2 5 11 8 23 
 

54 24 30 

Lasioglossum platyparium 

Robertson, 1895 

A 
    

1 
   

1 
 

1 

Lasioglossum quebecense 

Crawford, 1907 

A 
   

1 1 
 

1 
 

3 
 

3 

Lasioglossum smilacinae 

Robertson, 1897 

A 
 

3 
      

3 3 
 

Lasioglossum subversans 

Mitchell, 1960 

A 
 

3 
      

3 3 
 

Lasioglossum subviridatum 

Cockerell, 1938 

A 
   

2 1 2 3 
 

8 1 7 

Lasioglossum tegulare 

Robertson, 1890 

A 
 

16 
  

1 
  

2 19 7 12 

Lasioglossum timothyi 

Gibbs, 2010 

A 
 

4 
  

2 
   

6 6 
 

Lasioglossum trigeminium 

Gibbs, 2011 

A 
     

2 
  

2 
 

2 

Lasioglossum truncatum 

Robertson, 1901 

A 
 

4 
  

2 
 

4 
 

10 2 8 

Lasioglossum versans 

Lovell, 1905 

A 1 
  

5 5 
 

1 
 

12 3 9 

Lasioglossum versatum 

Robertson, 1902 

A 7 37 
  

12 26 2 1 85 27 58 

Lasioglossum weemsi 

Mitchell, 1960 

A 1 
    

1 2 2 6 
 

6 

Lasioglossum zonulum 

Smith, 1848 

A 7 
   

2 3 15 8 35 9 26 

Sphecodes cressonii/atlantis A 
    

1 
   

1 
 

1 

5
5
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Sphecodes davisii 

Robertson, 1897 

A 
 

2 
  

3 
   

5 4 1 

Sphecodes sp. A 1 6 
 

1 
 

2 
 

3 13 5 8 

Family Megachilidae  
           

Heriades carinata 

Cresson, 1864 

A 
     

1 
  

1 
 

1 

Hoplitis producta 

Cresson, 1864 

A 
    

2 1 1 
 

4 2 2 

Megachile gemula 

Cresson, 1878 

C 
 

1 
  

6 1 
 

1 9 4 5 

Megachile inermis 

Provancher, 1888 

C 
    

4 
   

4 
 

4 

Megachile latimanus 

Say, 1823 

C 2 8 
   

1 1 
 

12 3 9 

Megachile melanophaea 

Smith, 1853 

C 
 

1 
      

1 1 
 

Megachile relative 

Cresson, 1878 

C 
    

3 1 1 2 7 2 5 

Megachile rotundata 

Cresson, 1878 

B 
    

3 
   

3 
 

3 

Osmia atriventris 

Cresson, 1864 

B 1 
   

2 1 1 
 

5 3 2 

Osmia bucephala 

Cresson, 1864 

C 
     

2 
  

2 1 1 

Osmia inermis 

Zetterstedt, 1838 

C 
 

1 
      

1 1 
 

Osmia inspergens Lovell  

and Cockerell, 1907 

B 
 

1 
      

1 
 

1 

Osmia lignaria Say, 1837 C 
    

1 
   

1 1 
 

Osmia pumila Cresson, 1864 C 
    

1 1 
  

2 
 

2 

Osmia virga Sandhouse, 1939 B 
     

1 
  

1 
 

1 

Total abundance 248 484 11 67 359 259 189 477 2094 871 1223 

Number of species 40 69 5 31 71 61 56 46 135 83 120 

Number of unique species 1 17 0 3 11 6 5 10 
 

14 51 

5
6
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hemlock (Cicuta maculata L.), and water plantain (Alisma subcordatum Raf.). Lowbush 

blueberry is associated with a number of plant species found within and bordering crop fields, 

including wood lily (Lilium philadelphicum L.), St. John’s Wort (Hypericum perforatum L.), and 

red sorrel (Rumex acetosella L.); we observed these and 20 other blooming plant species in crop 

fields over the growing season. A full list of blooming plant species and the cover type in which 

they were observed is provided in Table 2.2. 

Over all cover types, floral abundance did not vary across the growing season in 2015. 

However, floral species richness was significantly greater in the mid-season (χ2=10.05, df=2, 

p=0.01; mean 3.17 blooming species/site ± 0.34 (se)) with no significant differences between the 

early (mean 1.77 blooming species/site ± 0.31) or late season (mean 2.31 blooming species/site ± 

0.38). An increase in floral abundance resulted in a significant increase in bee abundance 

(z=2.27, p=0.023, r2=0.09); however, there was no effect on bee species richness (z=1.809, 

p=0.07, r2=0.06). Likewise, bee species richness (z=3.01, p=0.002, r2=0.15), but not abundance 

(z=1.81, p=0.07, r2=0.06) increased with floral species richness. We found significant interactive 

effects of deciduous/mixed forest edge and floral abundance on bee abundance (z=4.88, p<0.001, 

r2=0.79) and bee species richness (z=4.09, p<0.001, r2=0.77). The slopes of these relationships 

were much steeper for forest edge than the other cover types owing to a forest edge site in the 

Downeast region, where we found high bee abundance and species richness as well as high floral 

abundance and species richness (Fig. 2.2).   



 
 

Table 2.2. Blooming plant species observed in eight land cover types in the Maine, USA, lowbush blueberry production landscape, 

2015. Column labels are abbreviations: Ag=agriculture/pasture, Blue=lowbush blueberry field, Con=coniferous forest, Dec= 

deciduous/mixed forest, Edge=deciduous/mixed forest edge, Emg=emergent wetland, Wet=wetlands/water, and Urb=urban/ 

developed. Species nomenclature and non-native status was collected from the USDA PLANTS database (plants.usda.gov); family 

classification was collected from the ITIS database (itis.gov). 

 

Species Family Ag Blue Con Dec Edge Emg Wet Urb Non-native 

Achillea millefolium L. Asteraceae 
      

x 
 

x  

Agalinis sp. Raf. Orobanchaceae 
      

x 
  

Alisma subcordatum Raf. Alismataceae 
      

x 
  

Anaphalis margaritacea (L.) 

Benth. 

Asteraceae 
    

x 
    

Aronia melanocarpa (Michx.) 

Elliott 

Rosaceae 
 

x 
   

x x 
  

Bidens sp. L. Asteraceae 
      

x 
  

Calla sp.  Araceae 
      

x 
  

Cephalanthus occidentalis L. Rubiaceae 
      

x 
  

Cicuta maculata L. Apiaceae 
      

x 
  

Comptonia peregrina (L.) 

J.M. Coult. 

Myricaceae 
 

x 
       

Cornus canadensis L. Cornaceae 
 

x x x x x x 
  

Cypripedium acaule Aiton Orchidaceae 
  

x 
      

Daucus carota L. Apiaceae x 
  

x x 
  

x x 

Doellingeria umbellata (Mill.) 

Nees 

Asteraceae 
 

x 
  

x x x 
  

Erigeron annuus (L.) Pers. Asteraceae x 
        

Eupatorium perfoliatum L. Asteraceae 
    

x 
    

Galeopsis sp. L. Lamiaceae 
      

x 
 

x 

Galium mollugo L. Rubiaceae x 
   

x 
    

Hieracium aurantiacum L. Asteraceae x 
       

x 

Hieracium venosum L. Asteraceae x 
   

x 
    

Hosta sp. Tratt. Asparagaceae 
       

x x 

5
8
 



 
 

Table 2.2 Continued.           

Houstonia caerulea L. Rubiaceae x 
   

x 
    

Hudsonia ericoides L.  Cistaceae 
 

x 
    

x 
  

Hypericum perforatum L. Hypericaceae 
 

x 
  

x 
   

x 

Impatiens capensis Meerb. Balsaminaceae 
     

x 
   

Iris versicolor L. Iridaceae 
      

x 
  

Leucanthemum vulgare Lam. Asteraceae x 
   

x x 
  

x 

Lilium sp. L. (ornamental) Liliaceae 
       

x 
 

Lilium philadelphicum L. Liliaceae 
 

x 
       

Linum catharticum L. Linaceae 
      

x 
 

x 

Lotus corniculatus L. Fabaceae 
    

x x 
  

x 

Lupinus polyphyllus Lindl. Fabaceae x 
    

x 
  

x 

Lysimachia quadrifolia L.  Primulaceae 
    

x 
    

Lysimachia terrestris (L.) 

Britton, Sterns, & Poggenb. 

Primulaceae 
     

x x 
  

Lysimachia thyrsiflora L.  Primulaceae 
     

x 
   

Maianthemum canadense 

Desf. 

Asparagaceae 
 

x x x x 
 

x 
  

Matricaria discoidea DC. Asteraceae 
       

x x 

Monotropa uniflora L. Ericaceae 
   

x x 
    

Nuttallanthus canadensis (L.) 

D.A. Sutton 

Plantaginaceae 
 

x 
       

Oenothera biennis L. Onagraceae x 
  

x 
 

x 
   

Pisum sativum L. Fabaceae 
      

x 
 

x 

Plantago major L. Plantaginaceae x 
       

x 

Polygala sanguinea L. Polygalaceae 
      

x 
  

Persicaria pensylvanica (L.) 

M. Gómez  

Polygonaceae 
      

x 
  

Persicaria sagittata (L.) 

H. Gross 

Polygonaceae 
     

x x 
  

Potentilla simplex Michx. Rosaceae x x 
 

x 
 

x 
   

           

5
9
 



 
 

Table 2.2 Continued. 

Prenanthes alba L. Asteraceae 
     

x 
   

Prunella vulgaris L. Lamiaceae 
   

x x 
  

x 
 

Ranunculus sp. L. Ranunculaceae x 
    

x x 
  

Rhamnus cathartica L. Rhamnaceae 
      

x 
 

x 

Rhinanthus minor L. Orobanchaceae x 
        

Rhododendron canadense (L.) 

Torr. 

Ericaceae 
      

x 
  

Rosa sp. L. Rosaceae 
     

x 
  

? 

Rubus spp. L. Rosaceae 
   

x x x 
   

Rudbeckia hirta L. Asteraceae 
 

x 
      

x 

Rumex acetosella L. Polygonaceae 
 

x 
      

x 

Rumex crispus L. Polygonaceae x 
       

x 

Sambucus sp. L.  Adoxaceae 
     

x 
  

x 

Silene vulgaris (Moench) 

Garcke 

Caryophyllacea

e 

 
x 

      
x 

Sisyrinchium angustifolium 

Mill. 

Iridaceae 
 

x 
  

x 
    

Solanum dulcamara L. Solanaceae 
      

x 
 

x 

Solidago bicolor L. Asteraceae 
 

x 
   

x 
   

Solidago canadensis L. Asteraceae 
    

x x x 
  

Solidago hispida Muhl. ex 

Willd. 

Asteraceae 
 

x 
  

x x 
   

Solidago sp. L. Asteraceae x x 
 

x x x x 
  

Spiraea alba var. latifolia  

(Aiton) H.E. Ahles 

Rosaceae 
 

x 
  

x x x 
  

Spiraea tomentosa L. Rosaceae 
     

x 
   

Stellaria media (L.) Vill. Caryophyllacea

e 

x x 
 

x 
   

x x 

Symphyotrichum  novi-belgii 

(L.) G.L. Nesom  

Asteraceae 
    

x x x 
  

Symphyotrichum lateriflorum 

(L.) Á. Löve & D. Löve  

Asteraceae x 
  

x 
     

           

6
0
 



 
 

Table 2.2 Continued.           

Taraxacum officinale F.H. 

Wigg 

Asteraceae x 
      

x 
 

Trifolium arvense L. Fabaceae 
 

x 
      

x 

Trifolium aureum Pollich Fabaceae 
       

x x 

Trifolium pratense L. Fabaceae x 
   

x 
   

x 

Trifolium repens L. Fabaceae x 
   

x x x x x 

Unknown species 1 
 

x 
       

? 

Unknown species 2 
  

x 
      

? 

Vaccinium angustifolium 

Aiton 

Ericaceae 
 

x x 
 

x 
    

Verbena hastata L. Verbenaceae 
     

x 
   

Viburnum nudum L. Adoxaceae 
     

x 
   

Vicia cracca L. Fabaceae x x 
  

x 
 

x 
 

x 

TOTAL # of species 
 

21 23 3 11 26 26 29 10 26 

Unique species 
 

6 8 1 0 3 8 16 4 
 

6
1
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Figure 2.2. Regression relationships between floral abundance and a) bee abundance and b) bee 

species richness in eight land cover types of the Maine, USA, lowbush blueberry production 

landscape. Dots represent sites; colored lines indicate slope for each of eight land cover types. 
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2.3.3. Bee communities by growing region and land cover type 

We found significantly different bee communities among land cover types (p=0.001, 

r2=0.48) and between growing regions (p=0.008, r2=0.10) (NMDS stress=0.19). Urban and 

agricultural cover types had different bee species from forested cover types, while wetland 

associated bees were found in nearly all other cover types (Fig. 2.3a). The sand bee Andrena 

miserabilis (Cresson) (17 total individuals collected) was collected only in urban areas, whereas 

the congener A. nivalis (Smith) was one of two species collected in all eight land cover types 

(30). Bombus vagans (85) was also collected in all eight cover types, whereas most Bombus spp. 

were found in >4 cover types. Most specimens (62 of 72 and 16 of 19, respectively) of the 

important lowbush blueberry pollinators Lasioglossum leucocomum (Lovell) and L. tegulare 

(Robertson) (Bushmann and Drummond 2015) were collected within crop fields. All species that 

were unique to either wetland type (emergent or open water) were spatially rare or singletons. 

There was substantial overlap in bee communities between the two growing regions (Fig. 2.3b). 

Most common species were abundant in both growing regions, though abundance typically was 

greater in the Midcoast-Lowlands. We collected <5 individuals of many of the 51 species unique 

to the Midcoast-Lowlands, with one exception, the squash specialist Peponapis pruinosa (Say) 

(16), which is likely associated with small farms and urban gardens more common in that region. 

We found a significant difference in bee abundance (df=1,55, deviance=4.13, p=0.04), 

but not species richness (df=1,55, deviance=0.434, p=0.51), between growing regions. When 

pooled across growing regions, we found significant differences in both abundance (df=7,49, 

deviance=52.79, p<0.001) and species richness (df=7,49, deviance=41.99, p<0.001) among our 

eight land cover types. There was a significant interaction between land cover type and growing 

region on bee abundance (χ2=17.97, df=8,39, p=0.021), but not species richness (χ2=10.5,   
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Figure 2.3. Maine wild bee species by a) land cover type and b) growing region represented in an 

NMDS ordination. Labels are four letter species codes (Appendix B); dots occur where multiple 

species codes overlap. Ellipses are 95% confidence intervals characterizing bee communities in 

each land cover type surveyed. Permutation testing revealed these differences were significant 

(cover r2=0.48, p=0.001, region r2=0.1, p=0.008). 
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df=8,39, p=0.23). Post-hoc multiple comparisons indicated that the relationships between bee 

communities and land cover type varied between the growing regions. In the Downeast growing 

region, bee abundance was significantly greater in all other cover types (group B) than 

coniferous and deciduous forest (group A) (Fig. 2.4, top left). Species richness Downeast was 

greater in all cover types than coniferous forest (group A) except in deciduous/mixed forest 

(group C), and greater in lowbush blueberry, deciduous/mixed forest edge, and urban/developed 

areas (group C) than deciduous/mixed forest (group B) (Fig. 2.4, top right). Differences in bee 

abundance or species richness between non-forested cover types were obscured by two sites 

Downeast (described in Methods). In the Midcoast-Lowlands, bees were significantly more 

abundant in all cover types except deciduous forest and wetland (group C) than coniferous forest 

(group A) and in lowbush blueberry fields and urban/developed areas (group C) than 

deciduous/mixed forest (group B) (Fig. 2.4, bottom left). Bee species richness was greater in 

blueberry fields, emergent wetland, and urban areas (group B) than coniferous forest (group A) 

(Fig. 2.4, bottom right). 

2.3.4. Bee size and proportion of land cover in the surrounding landscape 

For small-bodied bees, coniferous forest was associated with low abundance (model 

parameter estimate=-0.436, p=0.031) and species richness (-0.423, p=0.01) at the 250 m scale in 

the early season. Abundance of small-bodied bees was also low in deciduous/mixed forest          

(-0.413, p=0.03) and deciduous/mixed forest edge (-0.374, p=0.016) at the 250 m scale mid-

season, but was high in agriculture/pasture (0.40, p=0.037) at the same scale and time. We found 

no significant effects of proportion of any land cover type on communities of small-bodied bees 

in the late season or over the growing season as a whole. Full results of these analyses are 

presented in Appendix C, Table C.1a. 
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Figure 2.4. Bee abundance and species richness by land cover type in the Downeast (top row) 

and Midcoast-Lowlands (bottom row) growing regions of the Maine, USA, lowbush blueberry 

production landscape, 2014-2015. X-axis labels are abbreviated land cover types: 

Ag=agriculture/pasture, Blue=lowbush blueberry field, Con=coniferous forest, 

Dec=deciduous/mixed forest, Edge=deciduous/mixed forest edge, Emg=emergent wetland, 

Urb=urban/developed, and Wet=wetlands/water. Letters above each plot indicate significant 

differences in bee communities between land cover types in each growing region after multiple 

comparisons. 
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Urban/developed area increased species richness of large-bodied bees at the 1000 m scale 

(0.217, p=0.02) over the entire growing season. In contrast, emergent wetland had low 

abundance and species richness of large-bodied bees at the 1000 (abundance -0.554, p=0.001; 

richness -0.298, p=0.007) and 2000 m (abundance -0.482, p=0.005; richness -0.275, p=0.013) 

scales over the entire growing season. Emergent wetland was negatively associated with large-

bodied bee abundance at the 1000 (-0.658, p=0.013) and 2000 m (-0.624, p=0.026) scales in mid-

season, and only at the 1000 m (-0.467, p=0.033) scale in the late season. The negative 

relationship between emergent wetland and abundance and species richness of large-bodied bees 

appears to be driven by two sites: one with an abundance of large-bodied bees but little emergent 

wetland in the surrounding landscape at 1000 and 2000 m, and one with few large-bodied bees 

but dominated by emergent wetland at 1000 and 2000 m. We found no seasonal effect of 

urban/developed area in the mid- or late season and no effect of the proportion of any land cover 

type on communities of large-bodied wild bees in the early season. Full results of these analyses 

are in Appendix C, Table C.1b.  

2.3.5. Influence of landscape pattern metrics on bee communities 

We found no significant effects of landscape pattern on bee abundance or species 

richness at the 250 m or 500 m scales. Most of the variance explained in these models came from 

the cover type of the survey site; variance explained by the landscape pattern metrics was ≤10% 

for all final models (Table 2.3). At larger scales (1000 and 2000 m), patch mixing (IJI) and the 

patch mixing by growing region interaction significantly influenced bee abundance and species 

richness (Table 2.3).  Variance explained by the landscape metrics was greater at larger scales 

than smaller scales. Correlations were high between the main effects and interaction terms; 

however, the variance inflation factors were less than 10, which is the threshold for variable 
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retention. Average patch mixing values were greater Downeast (range 60-79, average 70.5) than 

in the Midcoast-Lowlands (range 52-75, average 66.5) at larger scales, contributing to the 

interactive effect.  

2.4. Discussion 

2.4.1. Local scale resources 

 We observed a strong influence of local scale resource heterogeneity on bee abundance 

and species richness from different land cover types in the mixed-use lowbush blueberry 

production landscape. For example, there were few floral resources at our forested sites where 

we captured fewer bees and bee species. In contrast, though we did not find abundant or diverse 

floral resources in urban survey sites, these sites had greater bee abundance in the Midcoast-

Lowlands region. In urban areas, small, diverse patches of floral resources distributed across the 

landscape support diverse and abundant wild bee communities (Lowenstein et al. 2014, Davis et 

al. 2017, Simao et al. 2017); our visual assessments of additional floral resources surrounding 

sampled transects at our urban sites revealed diverse patches that likely support bee populations. 

Lowbush blueberry fields are associated with a variety of other plant species (Bushmann and 

Drummond 2015) that support abundant bee communities (Drummond et al. 2017a). The floral 

resources we observed along our sampled transects in crop fields likely contributed to the high 

bee abundance at these sites throughout the growing season. 

We sampled small, diversified farms to represent agriculture/pasture land cover and 

found abundant, but not diverse, floral resources at our sampling sites. Further, the bee 

communities we observed on small farms did not differ from those observed in large, mass-

flowering lowbush blueberry fields. This contrasts with other small, diversified farming systems, 

such as organic farming, where bee abundance and diversity are greater than in conventional 



 
 

Table 2.3: Influence of landscape pattern metrics on bee abundance and species richness by body size and spatial scale. Landscape 

metrics: PARA_MN = mean perimeter area ratio; IJI = interspersion/juxtaposition index. Body size: Sm = small-bodied (4-10 mm), 

can fly up to 500 m; Lg = large-bodied (>10 mm); can fly up to 2000 m. Models with the smallest AICc are listed, as are variance 

explained by the pattern metrics (fixed effects; marginal r2) and pattern metrics + cover type (fixed+random effects; conditional r2) 

Variation inflation factors (VIF; <10) indicate all interaction terms can be retained in final models. 

Body 

size 

Landscape 

size 

Predictors AICc Marginal r2 Conditional r2 Significant variables 

Abundance      

Sm 250 m Region*PARA_MN 429.7 0.04 0.91 N/A 

Sm 500 m Region*PARA_MN 424.7 0.09 0.93 N/A 

Lg 1000 m Region*IJI 394.7 0.29 0.86 IJI (p=0.014, confint: 0.17-1.54, VIF=6.02) 
      

Region:IJI (p=0.002, confint: -1.824--0.374,VIF=5.44) 

Lg 2000 m Region*IJI 393.3 0.28 0.86 IJI (p=0.001, confint: 0.302-1.258, VIF=3.56)  
      

Region:IJI (p=0.001, confint:-1.469--0.362, VIF=3.12) 

Species richness      

Sm 250 m Region*PARA_MN 343.0 0.03 0.68 N/A 

Sm 500 m Region*PARA_MN 338.9 0.1 0.74 N/A 

Lg 1000 m Region*IJI 276.4 0.13 0.49 IJI (p=0.053, confint:-0.007-0.951, VIF=8.08) 
      

Region:IJI (p=0.013, confint: -1.149--0.134, VIF=6.99) 

Lg 2000 m Region*IJI 277.2 0.13 0.47 IJI (p=0.023, confint: 0.059-0.801, VIF=4.89) 
      

Region:IJI (p=0.015, confint: -0.939--0.099, VIF=4.09) 
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farming systems owing to diverse floral resources (Kremen et al 2007; Kennedy et al. 2013). We 

suspect this results from a) the diversity of floral resources at the landscape scale in Maine’s 

mixed-use landscape (urban areas, forest edges) and b) the diversity of floral resources within 

and bordering lowbush blueberry fields (Drummond et al. 2017a).  

In emergent wetland, we attribute the inverse relationship we found between floral 

abundance and bee abundance and species richness to regional differences in landscape-scale 

resources. We observed greater floral abundance and lower bee abundance and species richness 

Downeast, whereas we saw lower floral abundance and greater bee abundance and species 

richness in the Midcoast-Lowlands. Emergent wetland may provide one of few sources of bee 

habitat Downeast (Chapter 1, this dissertation); however, the larger plant species pool in the 

Midcoast-Lowlands owing to greater overall resource availability (Tscharntke et al. 2012) leads 

to a larger bee species pool throughout that region. Wetlands had high floral abundance and the 

greatest floral diversity of any cover type; however, we found no strong association between 

these resources and bee communities. This is especially intriguing as we also found ample cavity 

nesting resources in wetlands (Chapter 3, this dissertation). There are few published examples of 

relationships between habitat resources and bee communities in wetlands (Moroń et al. 2008; 

O’Neill and O’Neill 2010, but see Vickruck et al. 2019); more research may reveal relationships 

between wetland habitat resources and wild bee communities. 

2.4.2. Landscape composition and configuration 

Our study differs from previously reported studies in that our survey sites were primarily 

located in non-crop habitat. However, our limited number of survey sites in each growing region 

may not have captured the landscape variation occurring around our focal non-crop habitats. For 

example, we found strong negative local scale effects of both coniferous and deciduous/mixed 
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forest on bee abundance and species richness; however, we were not able to corroborate the 

landscape scale findings of Groff et al. (2016). They found that the proportion of 

deciduous/mixed forest, deciduous/mixed forest edge, and urban areas were positively correlated 

with bee abundance in 40 Downeast lowbush blueberry fields, whereas the proportion of 

coniferous forest was negatively correlated with bee abundance in those crop fields (Groff et al. 

2016). The interplay between local and landscape scales has been extensively explored; however, 

this generally has been studied within agriculturally-intensive landscapes and with an emphasis 

on landscape composition over configuration (Ricketts et al. 2008; Garibaldi et al. 2011; but see 

Kennedy et al. 2013). Our study adds to a growing body of work on wild bee communities in 

mixed-use landscapes, which indicates that local scale habitat influences community 

composition; however, the influence of landscape scale habitat is inconsistent. Effects of 

landscape composition are similar across northeastern US crop systems. Isolation from natural 

areas reduces bee visitation in multiple northeast specialty crops (Connelly et al. 2015; Joshi et 

al. 2016; Nicholson et al. 2017); however, crop systems are not always isolated from natural 

areas (Winfree et al. 2008; this study). 

We found that patch mixing of non-crop cover types in the lowbush blueberry production 

landscape promoted communities of large-bodied bees, a group dominated by bumble bees 

(Bombus spp.) but also including solitary species such as Anthidium spp. Anthophora terminalis 

(Cresson), some Colletes spp., a few Megachile spp., a few Osmia spp., and some Andrena spp. 

These bees can fly longer distances and therefore may use the landscape differently than small-

bodied wild bee species (Steffan-Dewenter et al. 2002). The Downeast growing region, where 

the influence of patch mixing was significant, contains more coniferous forest, which is poor bee 

habitat; therefore patches of consistent, high quality bee habitat such as urban areas or power line 
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rights-of-way (Chapter 1, this dissertation) interspersed in this landscape play a strong role in 

maintaining wild bee communities. Our results contradict those of a global meta-analysis that 

found no effect of patch mixing in temperate biomes (Kennedy et al. 2013). Other studies of 

landscape configuration in northeastern US crop systems also reveal inconsistent influences on 

wild bee communities. For example, solitary bees respond positively to the mean proximity 

index at the 500 m scale surrounding apple orchards in Pennsylvania (Joshi et al. 2016); 

however, we found no effect of this metric on bees in Maine landscapes. Landscape 

configuration metrics of edge density and mean patch size did not affect bee communities in the 

Vermont highbush blueberry landscape (Nicholson et al. 2017), which resembles the Midcoast-

Lowlands region of Maine. More study of complex regional landscapes may lead to increased 

consistency of trends in effects of landscape pattern on bee communities. Further, using a 

common set of metrics to measure across systems, such as variation of nearest neighbor distance, 

mean perimeter area ratio, and patch mixing (Kennedy et al. 2013), may aid in detection of 

consistent effects of landscape configuration on bee communities. We evaluated these metrics, 

although we substituted the mean proximity index, a similar measure used by Joshi et al. (2016), 

as the nearest neighbor distance cannot be measured at small scales in complex landscapes.  

2.4.3. Habitat resources in non-crop cover types 

Recent studies in mixed-use landscapes indicates that forests have bee communities 

distinct from urban or agriculturally-dominant landscapes and are critical for supporting rare bee 

species that depend on resources found only in forests (Harrison et al. 2017, 2018). Forests offer 

floral and nesting resources along a vertical gradient from ground level herbaceous vegetation to 

canopy level blooming trees, though the amount of these resources and their associated bee 

communities are not well studied (Ulyshen et al. 2010). Forest covers 89% of Maine’s land area 
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(Huff et al. 2016). Maple (Acer spp.)/beech (Fagus grandifolia Ehrh.)/birch (Betula spp.) forest 

is dominant throughout the Midcoast-Lowlands region, whereas spruce (Picea spp.)/fir (Abies 

balsamea (L.) Mill) is more prevalent Downeast; typical forest harvesting patterns also differ 

between these regions (Looze 2012). The Downeast forest is a working forest, with harvests 

consisting of partial removal or patch cutting methods over large areas that leave many trees 

intact and lead to the dominance of mixed age stands; similar harvesting patterns occur less 

frequently and over smaller areas in the Midcoast-Lowlands forest (Noone 2010; Looze 2012). 

Spruce-fir forest contains ruderal plant species that provide pollen and especially nectar for wild 

bees (Kevan et al. 1993). Clearcutting practices in Sweden’s spruce-fir forest increased bee 

abundance 3-5 years post-harvest (Rubene et al. 2015); however, clearcutting is much less 

common in Maine owing to state legislation that restricts the maximum area of clearcut stands 

(114th Maine Legislature 1989; Legaard et al. 2015). The association between Maine forest 

harvesting patterns and wild bee communities warrants further exploration. 

In western Maine, Heinrich (1976) found that blooming plants in highly-disturbed 

hayfields, including clovers (Trifolium spp.) and wild carrot (Daucus carota L.), provide large 

amounts of nectar to bumble bees late in the growing season. Our study in coastal and central 

Maine revealed the strongest association of non-blueberry agriculture, which included hayfield 

sites, on small-bodied bees in mid-summer, perhaps providing floral resources between early 

summer specialty crops and late summer goldenrods and asters. The positive association of 

agriculture on abundance of small-bodied bees at the 500 m scale is driven by sites in the 

Midcoast-Lowlands growing region, where non-blueberry agriculture is more prevalent and is 

interspersed with small towns and lowbush blueberry fields. This is consistent with Öckinger et 

al. (2012), who found that bee species richness increased with area of arable land in a 
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forest/agricultural landscape, though this effect was reduced in sites surrounded by a greater 

amount of forest land cover. 

Emergent wetland sites in more heterogeneous landscapes contained more large-bodied 

bees. This suggests that bees may not seek out wetland shrubs for feeding and nesting when the 

surrounding landscape offers few resources; however, they may find such habitat suitable when 

there are complementary resources nearby. Bumble bee foraging habits through pastures, bogs, 

and woodlands in western Maine revealed bogs to be the most important habitat type, providing 

bloom throughout the growing season (Heinrich 1976). Wetlands similar to the Great Heath, a 

large wetland associated with lowbush blueberry fields in the Downeast growing region are 

interspersed with lowbush blueberry fields throughout Maine and may provide forage resources 

for bees following crop bloom. In fact, Downeast lowbush blueberry fields near the Great Heath 

have some of the highest bee species richness in the region (Drummond, pers. comm.). 

2.4.4. Conservation value of non-crop habitat in mixed-use landscapes 

In a mixed-use, forest-dominant landscape, wild bee communities are diverse and 

abundant in non-forested cover types, including diversified agriculture, shrubby wetland, and 

small towns. Surprisingly, they are comparably diverse and abundant in lowbush blueberry 

fields, indicating that bees in this agroecosystem are similarly supported by both crop and non-

crop habitat. These cover types together provide nesting and floral resources for wild bees that 

may or may not contribute to crop pollination. This supports the call to study bees and the 

landscapes they occupy for their conservation value, not solely for their well-recognized 

ecosystem service contribution (Kleijn et al. 2015). Global trends of the influence of landscape 

pattern on bee communities are contradictory at regional scales (Kennedy et al. 2013; 

Neokosmidis et al. 2018); this contradiction also occurs with the influence of bee diversity on 
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ecosystem service delivery (Kleijn et al. 2015; Winfree et al. 2018). More regional scale study, 

particularly in mixed-use landscapes such as those of the northeastern US, may inform 

management practices to conserve existing wild bee populations and inform predictive landscape 

modeling, which has been limited owing to complex landscape pattern and variability in expert 

opinion (Lonsdorf et al. 2009; Groff et al. 2016). This may lead to local strategies for wild bee 

conservation, which are important for implementation by land managers and would provide 

maximum benefit to bee communities.
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CHAPTER 3 

 INFLUENCE OF FIELD-BASED PARAMETER VALUES AND LANDSCAPE 

CONTEXT ON PERFORMANCE OF A SPATIALLY-EXPLICIT  

PREDICTIVE WILD BEE ABUNDANCE MODEL 

3.1. Introduction 

 Maine is the largest producer of lowbush blueberries (Vaccinium angustifolium Aiton) in 

the United States, harvesting 40-47 million kilograms annually since 2012 (Yarborough 2016).  

Lowbush blueberry is reliant on insect pollination to set fruit, and the most effective insect 

pollinators are naturally occurring wild bees (Drummond 2016; Yarborough et al. 2017). Despite 

the effectiveness of wild bees, most lowbush blueberry growers invest heavily in commercially 

managed honeybee (Apis mellifera L.) hives (Hanes et al 2015; Asare et al. 2017); depending on 

anticipated crop yield, the number of hives entering the state each May ranges from fewer than 

30,000 to more than 70,000 (J. Lund, Maine State Apiarist, pers. comm.). Rising demand for and 

increased risk in managing commercial honeybee hives (Aizen and Harder 2009; Kulhanek et al. 

2017) has led to greater interest in wild bee pollinators to provide pollination services for 

lowbush blueberry (Hanes et al. 2015). Crop growers can use on-farm habitat management 

techniques to enhance and promote wild pollination services (Venturini et al. 2017a,b); however, 

understanding the resources available to wild bees in the natural habitat surrounding crop fields 

allows growers to be more strategic when incorporating wild pollination services into their 

pollination management plans.  

 Wild bee habitat requirements consist of pollen and nectar from flowers, nesting 

substrate, and mating sites (Stubbs and Drummond 2001). Bees either nest underground in loose, 

sandy soil (Cane 1991) or in cavities found in hollow twigs or soft wood (O’Toole and Raw 
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1991). Foraging preferences vary widely; however, wild bees typically are central place foragers 

and therefore need access to sufficient forage within their physiological flight limit from their 

nests in order to feed themselves and provision their young (Goulson 1999). The location of wild 

bee nesting habitat determines a crop field’s potential wild pollination force; any nest within the 

flight limit to a crop field could provide pollination services to that field (Kremen and Chaplin-

Kramer 2007; Lonsdorf et al. 2009). However, bee habitat availability varies across landscapes 

and land cover types (Garibaldi et al. 2011; Kennedy et al. 2013; Dibble et al. 2018). 

Habitat resources and bee communities vary within mixed-use landscapes (Chapter 2, this 

dissertation), which may lead to difficulty determining consistent pollination services at 

landscape scales (Kennedy et al. 2013). Crop fields surrounded by natural habitat contain diverse 

and abundant bee communities and are pollinated more effectively, while simple, agriculturally-

dominant landscapes are associated with depauperate bee communities with lower pollination 

efficiency (Ricketts et al. 2008). For example, the intensively farmed Central Valley of 

California (Kremen et al. 2002) provides much less natural habitat for wild bees than is available 

in mixed-use landscapes such as the Maine lowbush blueberry production landscape (Groff et al. 

2016).  

 The InVEST Crop Pollination Model (Lonsdorf et al. 2009; hereafter referred to as the 

Lonsdorf model) is a spatially-explicit predictive model that estimates pollinator abundance 

across agricultural landscapes. The model combines parameter values describing nesting 

substrate suitability, floral resource availability, and bee life history traits with land cover data to 

predict relative pollinator abundance within each cell of an input land cover map. The model has 

been applied at global (Kennedy et al. 2013), national (Koh et al. 2016), and regional (Olsson et 

al. 2015; Groff et al. 2016; Kammerer et al. 2016; Graham et al. 2017) scales. Model output can 
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be used to assess potential wild pollination services in crop fields in terms of bee abundance, or 

with additional data, in terms of crop yield. The Lonsdorf model is also a powerful landscape 

conservation tool that can identify effective pollinator conservation or management sites (Davis 

et al. 2017; Nicholson et al. 2019).  

When applied to simple, agriculturally-dominant landscapes, the model describes up to 

80% of the variance in pollinator abundance in crop fields (Lonsdorf et al. 2009). However, the 

Lonsdorf model does not perform consistently in heterogeneous, mixed-use landscapes 

(Lonsdorf et al. 2009; Kennedy et al. 2013). Indeed, previous application of the Lonsdorf model 

to one of Maine’s two lowbush blueberry growing regions resulted in low prediction accuracy of 

bee abundance within crop fields (Groff et al. 2016). This was attributed to variation in model 

parameter values derived from differing expert opinions. Lonsdorf model parameter values 

typically are informed by expert opinion, as empirical estimation is labor-intensive (Lonsdorf et 

al. 2009; Kennedy et al. 2013; Koh et al. 2016). However, expert-based parameter values may 

not accurately account for the variation in nesting and foraging resources in mixed-use 

landscapes (Groff et al. 2016).  

 Field sampling potentially provides a more accurate assessment of pollinator habitat 

resource availability than expert opinion. Although labor intensive, sampling pollinator 

communities and habitat resources in mixed-use landscapes surrounding crop fields may lead to 

more accurate predictive parameter values for the Lonsdorf model while also providing field-

based assessments of how pollinators and their habitats vary across these landscapes. Providing 

accurate, field-based predictions of pollinator abundance may increase the likelihood that crop 

growers adopt new conservation or management practices that benefit pollinators (Hanes et al. 
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2018). Improving Lonsdorf model performance can also inform pollinator conservation and 

management efforts beyond agricultural applications. 

Our primary aim for this study is to improve Lonsdorf model prediction accuracy within 

Maine lowbush blueberry fields by creating parameter values informed by field assessments. We 

sampled eight land cover types across coastal Maine lowbush blueberry growing regions, 

assessing bee abundance and diversity, floral resource availability, and nesting suitability; full 

methods and results of this work are described in Chapter 2 of this dissertation. We then created 

and tested multiple sets of field data-based model parameter values and compared model 

predictions to those from expert opinion-based parameter values. We also assessed Lonsdorf 

model prediction accuracy outside of lowbush blueberry fields with a validation data set 

collected in non-crop cover types. Finally, by applying the Lonsdorf model to a second Maine 

lowbush blueberry growing region, we assessed model performance and any influence of 

landscape pattern on prediction accuracy in a more heterogeneous landscape context. 

3.2. Methods 

3.2.1 Study area  

The Maine lowbush blueberry production landscape covers approximately 750,000 ha of 

coastline (44-45°N, 67.5-69.5°W), and consists of two growing regions with contrasting 

landscape contexts (Fig. 3.1). The Downeast region contains the largest and most intensively 

managed lowbush blueberry fields (0.05 -1800 ha, average field size 21.4 ha) in a matrix 

dominated by coniferous forest managed for timber harvest. Non-blueberry agriculture and 

developed land cover are scattered and comprise little of this relatively homogeneous landscape. 

In contrast, the Midcoast region is heterogeneous, containing smaller, less intensively managed 

crop fields (0.05-15.6 ha, average field size 8.26 ha) interspersed with other agriculture, 
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including pasture, orchards, and small, diversified farms. Developed land in small towns is more 

prevalent in the Midcoast region than the Downeast region; however, in both growing regions, 

towns are classified as rural or exurban development along the common urban-rural development 

gradient (Kaminski et al., in review). The matrix in the Midcoast region is deciduous forest-

dominant and less intensively harvested. 

3.2.2. Lonsdorf model 

 The Lonsdorf model is freely available as the crop pollination model of the Integrated 

Valuation of Ecosystem Services and Tradeoffs (InVEST) model suite 

(https://naturalcapitalproject.stanford.edu/invest/). Our analyses were conducted with InVEST 

version 3.3.3 (Sharp et al. 2016). The model requires three pieces of input: 1) a cell-based land 

cover map; 2) a table of bee species and their respective life history trait parameter values, 

including active flight season, estimated maximum foraging distance, and preferred nesting 

substrate; and 3) a table of nesting suitability and floral resource availability parameter values for 

each land cover type within the study area. Parameter values can be populated with values 

generated from field data, expert opinion, or a combination of both (Lonsdorf et al. 2009). Model 

output is a map of relative pollinator abundance, with a predicted value in each cell of the input 

land cover map. Model predictions are based on the nesting and floral resources available in 

surrounding land cover to the extent of maximum foraging distance for all modeled bee species. 

3.2.3. Spatial data  

We used the land cover map developed by Groff et al. (2016) as one of the required 

inputs for the Lonsdorf model. This map covers the Downeast Maine lowbush blueberry growing 

region with 10 m spatial resolution and eight land cover classes representing different floral and 

nesting resources for bees: agriculture/pasture, consisting of small diversified farms, orchard   
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Figure 3.1. Extent of the Downeast and Midcoast lowbush blueberry growing regions in Maine, 

USA. Map insets display representative landscape contexts of the a) Downeast and b) Midcoast 

regions. Bar charts indicate proportion of eight land cover types in the Downeast (top) and 

Midcoast (bottom) regions. 
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crops, or pasture; lowbush blueberry fields; coniferous forest; deciduous/mixed forest; 

deciduous/mixed forest edge; emergent wetland, an aggregation of forested wetland and scrub-

shrub land cover; wetlands/water; and urban/developed areas (Fig. 3.1). We prepared a similar 

land cover map for the Midcoast region (Chapter 2, this dissertation) following the same 

procedures used by Groff et al. (2016).  

3.2.4. Field data collection 

 We visually assessed ground and cavity nesting suitability for bees at 40 sites (16 

Downeast, 24 Midcoast) distributed across Maine’s lowbush blueberry production landscape at 

the beginning of the growing season in May 2015. We surveyed five sites in each of the eight 

land cover types by ranking the amount and condition of standing dead wood, fallen dead wood, 

shrubs, and bare soil on a 1-5 scale (1=very little, poor condition to 5=very much, excellent 

condition). We determined the condition of standing and fallen dead wood as poor for cavity 

nesting if it was soft and mostly decomposed and excellent if it was recently dead, dried, and 

mostly intact. We assessed the condition of shrubs as poor for cavity nesting if they were alive 

with wet, green twigs and as excellent if they were mostly dead with dried hollow or soft pithy 

twigs. Lastly, we found bare soil in poor condition for ground nesting if it contained mostly clay 

and in excellent condition if it contained mostly sand. One surveyor conducted all nesting 

suitability assessments.  

We collected bee community and floral resource data in early (13 May-18 June), mid-

(17-30 July), and late (30 Aug-25 Sept) season to capture variability in bee and blooming plant 

communities. We captured bees along a 100 m transect with bowl traps and nets then recorded 

species and patch size of blooming plants along the first 25 m of the bee bowl transect at each 

site; full details are in Chapter 2 of this dissertation. 
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3.2.5. Generating field-based model parameter values 

A full set of Lonsdorf model parameter values includes: 1) bee life history traits for each 

modeled bee species, 2) nesting suitability rankings for each nesting substrate within each land 

cover type, and 3) floral resource availability rankings for each time period of the growing 

season within each land cover type. We generated 11 subsets of field-based parameter values in 

three categories: 1) five subsets directly informed by field survey data; 2) four subsets indirectly 

informed by bee community proxies; and 3) two subsets informed by potential sources of 

additional variation attributed to a) time periods in the growing season or b) land cover types 

(Fig. 3.2). We generated field-based bee life history parameter values describing active flight 

season (bee species presence during each sampling period); however, we used expert-based 

parameter values describing preferred nesting substrate and estimated maximum flight distance 

for 14 bee species found in our study area (Groff et al. 2016). These species are known to be 

effective and abundant pollinators of lowbush blueberry (Bushmann and Drummond 2015); our 

field survey data collected outside of lowbush blueberry fields throughout the growing season 

expands our knowledge of these species’ habitat associations and flight activity (Chapter 2, this 

dissertation).  

We generated nesting suitability parameter values describing ground and cavity nesting 

resources in each land cover type by averaging ranks over all sites from the visual assessments in 

each cover type. We rescaled averaged ranks from 1-5 to 0-1 to meet Lonsdorf model 

requirements. Bare soil was the sole ranked ground nesting parameter; averaged cavity nesting 

parameters included ranks for standing dead wood, fallen dead wood, and woody shrubs. We 

first assigned field-based nesting suitability parameter values for the Lonsdorf model following 

the top down method used by Groff et al. (2016), in which the land cover type with the greatest  
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Figure 3.2: Lonsdorf model parameterization and application approach to improve prediction 

accuracy in the Maine, USA lowbush blueberry production landscape. We generated 11 subsets 

of field-based parameter values (in gray boxes) in three categories and applied them individually 

and in combination (corresponding model scenarios listed in parentheses) to improve prediction 

accuracy over solely expert-based parameter values. All 19 model scenarios and their validation 

data sources are listed in Table 3.1. 
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averaged suitability rank was given a parameter value of 1.0 and all other land cover types were 

assigned parameter values relative to each subsequent rank’s relationship to the highest rank. We 

then assigned field-based nesting suitability parameter values reflecting the percentage of each 

cover type offering each nesting resource instead of a rank (Lonsdorf et al. 2009) based on our 

nesting suitability assessments. We tested for differences in field-based nesting suitability 

parameter values among land cover types with pairwise comparisons using Wilcoxon rank sum 

tests in R v.3.5.0 (R Core Team 2018).  

We used field data to create proportional indices of floral resources, assigning parameter 

values following the top down approach of Groff et al. (2016). We generated field-based floral 

resource parameter values by aggregating field-collected floral abundance and blooming plant 

species richness data in each land cover type at each time period of the growing season. We 

combined patch size measurements of observed blooming plant species over all sites in each land 

cover type, then divided by the total area of bloom over all sites to create field-based, floral 

abundance informed floral resource parameter values. We created field-based, floral species 

richness informed floral resource parameter values by adding all blooming plant species present 

in each land cover type then dividing by the total number of blooming plant species observed.  

Nesting suitability and floral resource availability have been found to be correlated with 

bee abundance and species richness in general (Potts et al. 2003, 2005) and also in lowbush 

blueberry landscapes (Drummond et al. 2017a,b; Venturini et al. 2017b); therefore we used these 

bee community metrics to create proxy nesting suitability and floral resource availability 

parameter values for each land cover type. We developed bee community proxy nesting 

suitability parameter values by counting the abundance and species richness of bees that nest in 

the ground or in cavities collected in each land cover type and dividing those values by the total 
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collected abundance or species richness of ground or cavity nesting bees. We developed bee 

community proxy floral resource parameter values by counting the abundance and species 

richness of bees collected in each land cover type and dividing those values by the total 

abundance and species richness of collected bees. We compared all subsets of field-based 

parameter values to corresponding expert-based parameter values provided by Groff et al. (2016) 

with Spearman’s rank correlation coefficients and calculated percent difference between pairs of 

parameter values in R v.3.5.0. 

Lastly, we created two subsets of parameter values describing potential sources of 

additional variation in our study system that had not been incorporated into our applications of 

the Lonsdorf model. The first subset added a time period to the beginning of the growing season 

to account for early season resource availability. We assigned floral resource parameter values 

for the additional time period between the early summer and late summer based on author 

experience (Appendix D, Table D.1) and distributed bee life history scores across the time 

periods based on their collection in field surveys (Chapter 2, this dissertation; Appendix D, Table 

D.2). The second subset included two new land cover types: mixed forest, which separated the 

existing deciduous/mixed forest cover type into separate classes of deciduous and mixed forest, 

and open water, which separated the existing wetlands/water cover type into water bodies and 

wetlands. Parameter values for these cover types were informed by the authors’ expertise and 

field-collected data. Parameter values for open water were all 0, as this cover type offers neither 

floral nor nesting resources to bees. Mixed forest nesting suitability parameter values were the 

same as coniferous and deciduous forest; however, we assigned floral resource parameter values 

between those of coniferous and deciduous forest (Appendix D, Table D.3).   
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3.2.6 Model application and validation  

We tested whether field-based parameter values would lead to more accurate model 

predictions than expert-based parameter values with a forward stepwise selection process to 

replace expert-based values with their field-based counterparts. We first ran model scenarios (1-

4; Table 3.1) with field-based parameter values informed by 1) bee life history, 2) nesting 

suitability, 3) floral abundance, and 4) floral species richness field data to compare expert-based 

bee life history, nesting suitability, or floral resource (abundance and species richness) parameter 

values used by Groff et al. (2016). We followed these with seven scenarios (5-11; Table 3.1) 

using bee community proxy parameter values for nesting suitability and floral resource 

availability. Scenarios 5-8 featured substitutions of expert-based parameter values with field-

based values; scenarios 9-11 incorporated combinations of field-based parameter values for bee 

life history, floral resources, and nesting suitability to obtain the greatest predictive accuracy. We 

ran three scenarios (11-13; Table 3.1) with percentage-informed field survey based nesting 

suitability parameter values to find the floral resource values with the greatest predictive 

accuracy. We then determined if model predictions were improved by adding greater detail with 

two additional scenarios: scenario 14 added one time period to the growing season, and scenario 

15 added two additional cover types to the land cover map (Table 3.1). Model scenarios 1-15 

were applied to the Downeast growing region (Figure 3.1); resulting predictions were validated 

with simple linear regression and Pearson’s product moment correlation coefficients using data 

collected in 40 Downeast Maine lowbush blueberry fields from 2010-2012 by Bushmann and 

Drummond (2015) (Table 3.1).  
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Table 3.1. Lonsdorf model scenarios assessed for prediction accuracy of wild bee abundance in 

the Maine, USA, lowbush blueberry production landscape. Output from scenarios 1-19 were 

compared to output from two scenarios from Groff et al (2016), which are listed in the top two 

rows. Validation data sources are A) Bushmann and Drummond (2015) or B) Chapter 2, this 

dissertation. 

  

 

Scenario 

Source of parameter value  

Validation 

data source 

 

Pearson’s 

r (p) 

 
Bee life 

history 

Floral resource  Nesting 

suitability  
Expert-based 

model (Groff et al 

2016) 

Expert Expert Expert A 0.34 

(0.03) 

 
Informed 

optimization 

(Groff et al 2016) 

Expert Expert, 

optimized 

Expert, 

optimized 

A 0.48 

(0.001) 

1 Bee life history Field Expert Expert A 0.45 

(0.003) 

2 Nesting 

suitability 

Expert Expert Field (survey) A 0.42 

(0.006) 

3 Floral resource 

abundance 

Expert Field (floral 

abundance 

survey) 

Expert A 0.16 

4 Floral resource 

richness 

Expert Field (floral 

diversity 

survey) 

Expert A 0.2 

5 Nesting 

suitability: 

abundance proxy 

Expert Expert Field (bee 

abundance 

proxy) 

A 0.08 

6 Nesting 

suitability: 

richness proxy 

Expert Expert Field (bee 

diversity 

proxy) 

A 0.18 

7 Floral resources: 

abundance proxy 

Expert Field (bee 

abundance 

proxy) 

Expert A 0.03 

8 Floral resources: 

richness proxy 

Expert Field (bee 

diversity proxy) 

Expert A 0.06 

9 All field-based, 

floral bee 

abundance proxy 

Field Field (bee 

abundance 

proxy) 

Field (survey) A 0.01 

10 Scenario 9, with 

expert-based bee 

life history values 

Expert Field (bee 

abundance 

proxy) 

Field (survey) A 0.02 

11 Scenario 9, with 

percentage-

informed nesting 

parameter values 

Field Field (bee 

abundance 

proxy) 

Field (survey, 

%-informed) 

A 0.06 

12 Scenario 11, with 

floral abundance 

field survey 

values 

Field Field (floral 

abundance 

survey) 

Field (survey, 

%-informed) 

A 0.23 
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Table 3.1 Continued. 

13 Percentage-

informed nesting 

parameters, final 

Field Expert Field (survey, 

%-informed) 

A 0.43 

(0.005) 

14 Add'l time of 

growing season 

Field, four 

seasons 

Expert, 

modified for 

four seasons 

Field (survey, 

%-informed) 

A 0.42 

(0.006) 

15 Add'l land cover 

types 

Field Expert, 

modified for 2 

more land cover 

types 

Field (survey, 

%-informed) 

A 0.28 

16 Midcoast, crop 

fields 2014-2015 

Field Expert Field (survey, 

%-informed) 

B, 14 crop 

fields 2014-

2015 

0.16 

17 Midcoast, crop 

fields 2015 

Field Expert Field (survey, 

%-informed) 

B, 8 crop fields 

2015 

0.3 

18 Midcoast, non-

crop sites only 

Field Expert Field (survey, 

%-informed) 

B, 17 non-crop 

field sites 

0.65 

(0.005) 

19 Midcoast, crop 

fields and non-

crop sites 

Field Expert Field (survey, 

%-informed) 

B, 31 field sites 0.32 

 

We applied the best performing set of parameter values from the Downeast growing 

region to the Midcoast growing region. We validated model predictions in the Midcoast region 

with simple linear regression and Pearson’s product moment correlation coefficients. Each 

Midcoast model scenario featured a different validation data set derived from bee community 

survey data collected in: 16) 14 crop fields during 2014-2015, 17) eight crop fields in 2015, 18) 

17 non-crop land cover sites during 2014-2015, and 19) a full set of all 31 crop and non-crop 

Midcoast sites (Table 3.1).  

Lonsdorf et al. (2009) used the variance to mean2 ratio (Arnold and Wade 1984) to 

measure model performance in a complex heterogeneous landscape. This ratio standardizes 

variance and allows comparisons of groups that differ in mean values. Small standardized 

variance values indicate a lack of variance to explain in a system, i.e., pollinator communities 

vary too little to be accurately predicted by the Lonsdorf model. We applied this ratio to field-  
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collected bee abundance and species richness in 40 Downeast crop fields, 14 Midcoast crop 

fields, and 17 Midcoast non-crop sites.  

3.2.7. Landscape pattern assessment 

 We measured four landscape metrics (location of validation site within each crop field, 

field size, perimeter area ratio, and the proportion of lowbush blueberry in the surrounding 

landscape) at four scales (250, 500, 1000, and 2000 m) surrounding all 54 crop field validation 

sites to assess the influence of landscape pattern on Lonsdorf model predictions. Metrics were 

measured in Fragstats version 4.2 (McGarigal et al. 2012). We used general linear models 

(ANOVA for site location, simple linear regression for the others) and Pearson product moment 

correlation analysis to describe relationships. We conducted these assessments separately by 

growing region to compare effects of landscape context. All data met assumptions of linear 

models except the perimeter-area ratio Downeast, which was log-transformed to achieve 

normality.  

 We further assessed the influence of proportion of non-blueberry land cover types 

surrounding the 14 Midcoast lowbush blueberry fields following a similar assessment by Groff et 

al. (2016) of the 40 Downeast crop fields. We assessed the influence of land cover type on field-

collected bee abundance, bee species richness, and Lonsdorf model predictions. All assessments 

were made with simple linear regression and Pearson product moment correlation analysis in R 

v.3.5.0. All assumptions underpinning these statistical models were met by our data. 

3.3. Results 

3.3.1. Nesting suitability survey 

 Ground nesting suitability varied among the eight land cover types. Lowbush blueberry 

fields had more bare soil than in all cover types except urban/developed areas; additionally, soil 
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in lowbush blueberry fields was more suitable for nesting than soil in agriculture/pasture, 

coniferous forest, and both wetland cover types. Wetlands had less bare soil than 

agriculture/pasture, lowbush blueberry fields, and urban/developed areas; further, there was less 

soil suitable for nesting in wetland land cover than in all other cover types except emergent 

wetland, deciduous/mixed forest edge, and coniferous forest. Urban/developed ground nesting 

resources were ranked second greatest overall, with more bare soil than in both wetland cover 

types and more soil in suitable condition than found in agriculture/pasture, coniferous forest and 

both wetland types. Availability and suitability of ground nesting resources in agriculture/pasture 

and forest cover types did not significantly differ from most other cover types (Table 3.2; 

Appendix D, Table D.4).  

Table 3.2. Average (+standard deviation) rank from 1 to 5 of nesting resources available in eight 

land cover types of the Maine, USA, lowbush blueberry production landscape. Condition of 

resources was ranked from poor to most suitable: wet, clay soils to dry, sandy soils; live, green 

twigs to hollow, dead twigs; fully decayed to intact but soft enough for cavities; and 

falling/disintegrating to upright with hollow cavities. 

  
Bare soil Woody shrubs Fallen dead wood Standing dead 

wood 

Land cover Amount Condition Amount Condition Amount Condition Amount Condition 

Deciduous/mixed 

forest edge 

2.4 

(1.3) 

2.8  

(1.0) 

2.8 

(1.3) 

2.0  

(0.7) 
3.6 

(0.8)* 

2.2  

(0.4) 
3.0 

(0.6)* 

2.6  

(0.5) 

Urban/developed 3.2 

(0.7)* 

3.8 

(0.5)* 

1.4 

(0.5) 

1.0  

(0) 

1.0  

(0) 
1.0  

(0)* 

1.0  

(0) 
1.0  

(0)* 

Coniferous forest 2.4 

(1.0) 

1.8  

(0.4) 

1.8 

(0.7) 

1.6  

(0.8) 
4.0 

(0.6)* 

2.6  

(0.8) 
3.0 

(0.9)* 

2.2  

(0.7)  

Deciduous/mixed 

forest 

2.6 

(1.2) 

2.8  

(0.7) 

1.6 

(0.5) 

1.4  

(0.5) 
5.0 

(0)* 

3.0  

(1.1) 
3.4 

(1.3)* 

2.2  

(0.7) 

Emergent wetlands 1.5 

(0.5) 

1.5  

(0.5) 
4.0 

(1.0)* 

3.0 

(1.0)* 

1.8 

(0.4) 

2.8  

(1.3) 

2.0 

(1.0) 

1.8  

(0.4) 

Wetlands/water 1.4 

(0.5)* 

1.4 

(0.5)* 

4.0 

(0.9)* 

2.8 

(1.0)* 

2.4 

(1.0) 

3.4  

(1.0) 

2.4 

(1.2) 

2.6  

(1.3) 

Agriculture/pasture 2.8 

(0.4) 

2.4  

(0.5) 

1.6 

(0.8) 

1.3  

(0.4) 

1.2 

(0.4) 
1.0  

(0)* 

1.2 

(0.4) 
1.0  

(0)* 

Lowbush blueberry 

fields 
4.4 

(0.8)* 

4.0 

(0.7)* 

1.8 

(0.7) 

1.8  

(0.8) 

2.3 

(0.4) 

2.4  

(0.5) 

1.4 

(0.5) 

1.8  

(0.7) 

 

* indicates significant difference(s) with other land cover types (p<0.05); for a more detailed 

assessment of results see Appendix D, Table D.4. 
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Similarly, cavity nesting suitability also varied among land cover types. Wetlands and 

emergent wetlands had significantly more woody shrubs than all other cover types with more 

hollow or soft pithy twigs suitable for nesting cavities than observed in agriculture/pasture, 

deciduous forest, and urban/developed areas. Coniferous and deciduous/mixed forest provided 

more fallen dead wood than in nearly all other cover types, and fallen dead wood was in poor 

condition for nesting in agriculture/pasture and urban/developed areas. Standing dead wood was 

more prevalent in forested cover types than in lowbush blueberry, agriculture/pasture, and 

urban/developed areas; further, the condition of standing dead wood was unsuitable for nesting 

in agriculture/pasture and urban/developed areas (Table 3.2, Appendix D, Table D.4).  

3.3.2. Comparison of field-based and expert-based model parameter values 

3.3.2.1. Bee life history parameter values 

 Field-based life history parameter values describing bee active flight season were more 

evenly distributed over the growing season than expert-based parameter values (Table 3.3). 

Field-based parameter values were not correlated with expert-based parameter values in the early 

summer or mid-summer; however, they were correlated in the late summer (Spearman’s 

rho=0.72, p=0.003). Field-based values for bee active flight season in the late summer were less 

than expert-based values (Table 3.3, Appendix D, Table D.5).  Bee species that are abundant in 

early lowbush blueberry bloom, including Osmia inspergens (Lovell and Cockerell) and O. 

atriventris (Cresson) (Bushmann and Drummond 2015) were also abundant in our non-crop field 

surveys in the early summer period but not later. 
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Table 3.3.  Lonsdorf model field-based bee life history parameter values of 14 important bee 

species in the Maine, USA lowbush blueberry production landscape. Field data was collected for 

Chapter 2 of this dissertation. Percent difference from expert-based bee life history parameter 

values from Groff et al. (2016) (Appendix D, Table D.5) is in parentheses. Bold text indicates 

field-based parameter values are significantly correlated (p<0.05) with expert-based parameter 

values. 

  
Preferred nesting 

substrate 
Active flight season 

 

Species Ground Cavity 

Early 

summer 

Mid-

summer 

Late 

summer 

Maximum 

foraging 

distance (m) 

Andrena carlini  1 0 0.33 (0) 0.33 (0) 0.33 (0) 598 

Andrena carolina  1 0 0.5 (100) 0.5 (0) 0 (-100) 246 

Andrena vicina  1 0 0.33 (0) 0.33 (0) 0.33 (0) 569 

Augochlorella 

aurata  

1 0 0.33 (94) 0.33 (0) 0.33 (-34) 60 

Colletes 

inaequalis 

1 0 0.33 (0) 0.33 (0) 0.33 (0) 1091 

Halictus ligatus  1 0 0.33 (-23) 0.33 (14) 0.33 (-13) 148 

Lasioglossum 

acuminatum  

1 0 0.33 (94) 0.33 (0) 0.33 (-34) 186 

Lasioglossum 

cressonii  

0 1 0.33 (14) 0.33 (14) 0.33 (-23) 63 

Lasioglossum 

heterognathum  

1 0 0.33 (94) 0.33 (0) 0.33 (-34) 16 

Lasioglossum 

leucocomum  

1 0 0.33 (14) 0.33 (14) 0.33 (-23) 31 

Lasioglossum 

pectorale 

1 0 0.33 (14) 0.33 (14) 0.33 (-23) 81 

Lasioglossum 

versatum  

1 0 0.33 (14) 0.33 (14) 0.33 (-23) 79 

Osmia atriventris  0 1 0.5 (100) 0.5 (0) 0 (-100) 186 

Osmia inspergens  0 1 1 (100) 0 (-100) 0 (0) 495 
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3.3.2.2. Floral resource availability parameter values 

3.3.2.2.1. Field-based floral resource availability parameter values 

 Floral resource availability parameter values directly informed by field surveys were 

generally less than expert-based values, and parameter values informed by floral abundance field 

data were less than those informed by field data on floral species richness (Table 3.4). Parameter 

values informed by early season floral species richness were significantly correlated with early 

season expert-based floral resource parameter values (rho=0.74, p=0.04); no other field-based 

parameters informed by floral abundance or species richness data were correlated with their 

expert-based counterparts. Field-based floral resource parameter values for lowbush blueberry 

fields differed from expert-based values owing to a seasonal offset in field surveys and expert 

opinion; that is, field surveys were conducted in June, July, and August, whereas expert opinion 

estimated floral resources in April/May, June/July, and August/September (Table 3.4).  

3.3.2.2.2. Field-based bee community proxies, floral resource availability parameter values 

 Floral resource availability parameter values indirectly informed by field-collected bee 

abundance or species richness data had two consistent trends. First, lowbush blueberry and 

deciduous/mixed forest edge had larger parameter values resulting from greater field-collected 

bee abundance and species richness. Second, coniferous forest and deciduous/mixed forest had 

smaller parameter values associated with lower field-collected bee abundance and species 

richness throughout the growing season. In the mid-season, parameter values informed by field-

collected bee species richness were significantly correlated with their corresponding expert-

based parameter values (rho=0.909, p=0.001). Bee species richness proxy values were less than 

expert-based floral resource values in urban/developed areas and greater in wetlands, with no 

difference in valuation in lowbush blueberry fields and emergent wetlands (Table 3.4). 



 
 

Table 3.4. Sets of field-based Lonsdorf model floral resource availability parameter values for application to the Maine, USA lowbush 

blueberry production landscape. Percent difference from expert-based values (Groff et al. 2016) is in parentheses. Bold text indicates 

the set of field-based parameter values is significantly correlated (p<0.05) with the corresponding set of expert-based parameter 

values.  
Expert-based Floral abundance Floral species 

richness 

Floral abundance 

proxy 

Floral species 

richness proxy  
Spring  Early 

summer  

Late 

summer  

Early 

summer  

Mid-

summer  

Late 

summer  

Early 

summer  

Mid-

summer  

Late 

summer  

Early 

summer  

Mid-

summer  

Late 

summer  

Early 

summer  

Mid-

summer  

Late 

summer  

Deciduous/mixed 

forest edge 
0.9 0.9 1.0 0.5  

(-44) 

0.1  

(-89) 

0.5  

(-50) 
0.7  

(-22) 

0.5  

(-44) 

0.6  

(-40) 

0.97 

(8) 

0.76 

(-16) 

0.91 

(-9) 

0.74 

(-18) 
0.92 

(2) 

0.75 

(-25) 
Urban/developed 1.0 0.9 1.0 0.1 

(-90) 

1 

(11) 

0.1  

(-90) 
0.7  

(-30) 

0.8  

(-11) 

0.6  

(-40) 

0.34 

(-66) 

1.0 

(11) 

0.36 

(-64) 

0.7  

(-30) 
0.48 

(-47) 

0.58 

(-42) 
Coniferous forest 0.1 0.1 0.1 0.1  

(0) 

0.1 

(0) 

0.1 

(0) 
0.2 

(100) 

0.1 

(0) 

0.1 

(0) 

0.03 

(-70) 

0.01 

(-90) 

0.01 

(-90) 

0.07 

(-30) 
0.01 

(-90) 

0.01 

(-90) 
Deciduous/mixed 

forest  
0.7 0.5 0.4 0.2  

(-71) 

0.1  

(-80) 

0.1  

(-75) 
0.4 

(-43) 

0.2  

(-60) 

0.1  

(-75) 

0.07 

(-90) 

0.04 

(-92) 

0.06 

(-85) 

0.11 

(-84) 
0.16 

(-68) 

0.08 

(-80) 
Emergent 

wetlands  
0.7 0.6 0.6 0.2  

(-71) 

0.2  

(-67) 

0.5  

(-17) 
0.5  

(-29) 

0.9 

(50) 

1.0 

(67) 

0.21 

(-70) 

0.34 

(-43) 

0.91 

(52) 

0.37 

(-47) 
0.68 

(13) 

0.5  

(-17) 
Wetlands/water 0.3 0.2 0.5 0.6 

(100) 

0.2 

(0) 

1.0 

(100) 
0.6 

(100) 

1.0 

(400) 

0.7 

(40) 

0.12 

(-60) 

0.43 

(115) 

0.96 

(92) 

0.26 

(-13) 
0.76 

(280) 

0.67 

(34) 
Agriculture/ 

pasture 
0.9 0.7 0.9 1.0 

(11) 

1.0 

(43) 

0.1  

(-89) 
1.0 

(11) 

0.7 

(0) 

0.4  

(-56) 

0.21 

(-77) 

0.46 

(-34) 

1.0 

(11) 

0.37 

(-59) 
0.6  

(-14) 

0.33 

(-63) 
Lowbush 

blueberry 

fields 

0.4 1.0 0.5 0.6 

(50) 

0.3  

(-70) 

0.2  

(-60) 
0.5 

(25) 

0.8  

(-20) 

0.5 

(0) 

1.0 

(150) 

1.0  

(0) 

0.96 

(92) 

1.0 

(150) 
1.0  

(0) 

1.0 

(100) 

9
5
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3.3.2.3. Nesting suitability parameter values 

3.3.2.3.1. Field-based nesting suitability parameter values  

 Field-based ground nesting suitability parameters assigned using the top-down method 

from Groff et al. (2016) were significantly correlated with their expert-based counterparts 

(rho=0.95, p>0.001). Field-based, percentage-informed nesting suitability parameter values, 

which reflected the percentage of each cover type offering each nesting resource, decreased 

lowbush blueberry ground nesting suitability from the expert-based value of 1.0 (100% of 

lowbush blueberry fields provided ground nesting habitat) to 0.5 (50%). The field-based 

parameter value for ground nesting suitability in emergent wetland was greater than its expert-

based counterpart, while the field-based parameter value for wetlands was less than its expert-

based counterpart. Cavity nesting suitability for lowbush blueberry, agriculture/pasture, and 

deciduous forest and both ground and cavity nesting parameter values for forest cover types 

decreased to reflect the percentage of nesting habitat provided by these cover types (Table 3.5). 

Field-based, percentage-informed ground nesting suitability parameter values remained 

significantly correlated with expert-based parameter values (rho=0.72, p=0.04). 

3.3.2.3.2. Field-based bee community proxies for nesting suitability parameter values 

 Ground nesting suitability parameter values indirectly informed by field-collected bee 

abundance and species richness data were not different from expert-based parameter values, 

whereas cavity nesting parameter values for lowbush blueberry were greater (Table 3.5). Proxy 

values informed by the species richness of ground nesting bees were significantly correlated with 

expert-based ground nesting suitability parameters (rho=0.79, p=0.01), owing to similarities in 

values for lowbush blueberry fields and deciduous/mixed forest edge (Table 3.5).  



 
 

Table 3.5. Sets of field-based Lonsdorf model nesting suitability parameter values for application to the Maine, USA lowbush 

blueberry production landscape. Percent difference from expert-based values (Groff et al. 2016) is in parentheses. Bold text indicates 

the set of field-based parameter values is significantly correlated (p<0.05) with the corresponding set of expert-based parameter 

values. 

  
Expert opinion Nesting assessment Nesting abundance 

proxy 

Nesting species 

richness proxy 

Nesting assessment 

%-informed  
Ground 

nesting 

Cavity 

nesting 

Ground 

nesting 

Cavity 

nesting 

Ground 

nesting 

Cavity 

nesting 

Ground 

nesting 

Cavity 

nesting 

Ground 

nesting 

Cavity 

nesting 

Deciduous/mixed 

forest edge 

0.9 1.0 0.7  

(-22) 

0.8  

(-20) 

0.54  

(-40) 

1.0 

(0) 
0.9  

(0) 

0.88  

(-12) 
0.4  

(-56) 

0.8  

(-20) 

Urban/developed 0.9 0.6 0.7  

(-22) 

0.5  

(-17) 

0.16  

(-82) 

0.39  

(-35) 
0.48  

(-47) 

0.5  

(-17) 
0.7  

(-22) 

0.5 

 (17) 

Coniferous forest 0.5 0.6 0.4  

(-20) 

0.8  

(33) 

0.01  

(-98) 

0.01  

(-98) 
0.06  

(-88) 

0.01  

(-98) 
0.3  

(-40) 

0.6  

(0) 

Deciduous mixed 

forest  

0.6 0.9 0.6  

(0) 

1.0  

(11) 

0.04  

(-93) 

0.01  

(-99) 
0.16  

(-73) 

0.01  

(-99) 
0.3  

(-50) 

0.6  

(-33) 

Emergent wetlands  0.2 0.4 0.3  

(50) 

0.8 

(100) 

0.13  

(-35) 

0.71 

(78) 
0.35 

(75) 

1.0 

(150) 
0.4 

(100) 

0.8 

(100) 

Wetlands/water 0.1 0.1 0.4 

(300) 

0.8 

(700) 

0.15 

(50) 

0.43 

(330) 
0.35 

(250) 

0.88 

(780) 
0.2 

(100) 

0.8 

(700) 

Agriculture/pasture 0.7 0.2 0.6  

(-14) 

0.4 

(100) 

0.13  

(-82) 

0.29 

(45) 
0.39  

(-44) 

0.5 

(150) 
0.6  

(-14) 

0.2  

(0) 

Lowbush blueberry 

fields 

1.0 0.4 1.0  

(0) 

0.5  

(25) 

1.0 

 (0) 

1.0 

(150) 
1.0 

 (0) 

0.75 

(88) 
0.5  

(-50) 

0.2  

(-50) 

9
7
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3.3.3. Model runs and validation 

 The Lonsdorf model prediction accuracy of bee abundance in 40 Downeast lowbush 

blueberry fields increased with field-based bee life history parameter values (observed v. 

predicted bee abundance Pearson’s r=0.45, p=0.003); therefore, we used field-based values in all 

model scenarios. Field-based nesting suitability parameter values (r=0.42, p=0.006) also 

increased prediction accuracy compared to expert-based results (r=0.34, p=0.03) (Table 3.1). 

Model scenario 13, which used field-based, percentage-informed nesting parameter values and 

expert-based floral resource parameter values, performed best (r=0.43, p=0.005). Incorporating 

floral abundance field survey or bee abundance proxy-informed floral resource parameter values 

led to loss of predictive capability (Table 3.1, Scenarios 11-13). Therefore, we retained the field-

based, percentage-informed nesting suitability parameter values and expert-based floral resource 

availability parameter values to predict bee abundance. Scenarios that incorporated additional 

sources of variation (i.e., two additional land cover classes and an early time period of the 

growing season) had mixed results. Dividing the growing season into four time periods resulted 

in nearly the same predictive accuracy as three time periods; therefore, for simplicity, we 

retained three periods of the growing season. Adding two land cover types (mixed forest and 

open water) did not improve prediction accuracy over expert-based results (Table 3.1, Scenarios 

14-15). Our best-performing model run for the Downeast growing region (scenario 13), with 

field-based bee life history parameter values, field-based, percentage-informed nesting suitability 

parameter values, and expert-based floral resource parameter values, was a 26% improvement 

over models parameterized solely with expert-based values (Fig. 3.3). 
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Figure 3.3. Lonsdorf model predictions for 40 Downeast Maine, USA, lowbush blueberry fields 

with expert-based (top line, in red) and field-based, percentage-informed nesting suitability 

parameter values (bottom line, in black) validated with simple linear regression. 

When we applied the best performing set of parameter values from the Downeast 

growing region to the Midcoast growing region, the model was unable to accurately predict bee 

abundance in lowbush blueberry fields in three of our four Midcoast scenarios (Table 3.1, 

Scenarios 16-19; Fig. 3.4). Validating model predictions with 14 crop fields surveyed in 2014-

2015 (Scenario 16), eight crop fields surveyed in 2015 (Scenario 17), and 31 crop and non-crop 

field sites (Scenario 19) did not lead to predictive capability. However, the Lonsdorf model was 

able to accurately predict wild bee abundance in 17 non-crop field sites (Table 3.1, Scenario 18). 

Midcoast model predictions were not significantly correlated with bee species richness within or 

outside of lowbush blueberry fields.  
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Figure 3.4. Lonsdorf model predictions for four Midcoast Maine, USA, application scenarios 

validated with simple linear regression. Scenarios are: a) 14 lowbush blueberry fields sampled in 

2014-2015, b) eight lowbush blueberry fields sampled in 2015, c) 17 non-crop land cover sites 

sampled in 2014-2015, and d) 31 crop and non-crop sites sampled in 2014-2015. 
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3.3.4. Landscape pattern assessment 

 We found no significant relationship between field size, perimeter-area ratio, survey site 

location (center, edge, or midfield) within the crop field, or proportion of blueberry in the 

surrounding landscape (at 250, 500, 1000, and 2000 m) and model predictions of bee abundance 

within 40 crop fields in the Downeast growing region. In the Midcoast growing region, we found 

no significant influence of field size or proportion of lowbush blueberry in the surrounding 

landscape. However, we found a significant influence of perimeter-area ratio (r2=0.24, p=0.04, 

F(1,12)=5.16, Fig. 3.5) and survey site location (r2=0.59, p=0.002, F(2,11)=10.53, Fig. 3.6). Model 

predictions of bee abundance were greater in fields with a greater perimeter-area ratio and 

greater along field edges than they are in the field center.  

 Assessment of the influence of non-crop land cover surrounding Midcoast crop fields 

revealed significant correlations between model predictions of bee abundance and the amount of 

agriculture/pasture (250 m, Pearson’s r=0.64, p=0.01; 500 m, r=0.67, p=0.007) and 

deciduous/mixed forest edge (250 m, r=0.65, p=0.01; 500 m, r=0.62, p=0.01) at small scales 

(Table 3.6). The amount of emergent wetland at the 2000m scale was also significantly 

correlated with model predicted bee abundance (r=0.53, p=0.05). This does not corroborate with 

field-collected data, as observed bee abundance was positively correlated with the amount of 

coniferous forest at 2000 m (r=0.55, p=0.04) and emergent wetland at 1000 m (r=0.53 p=0.05), 

and observed bee species richness was correlated with the amount of urban/developed land cover 

at 250m (r=0.61, p=0.02, Table 3.6).  
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Figure 3.5. Simple linear regression for Lonsdorf model predictions in 14 Midcoast Maine, USA, 

lowbush blueberry fields and field perimeter-area ratio (PARA) as measured in Fragstats 4.2. 

 

 

Figure 3.6. Analysis of variance of Lonsdorf model predictions in 14 Midcoast Maine, USA, 

lowbush blueberry fields by survey transect location within sampled fields. 
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Table 3.6. Average (+ standard deviation) proportions of land cover classes surrounding lowbush 

blueberry crop fields (n=14) at four spatial scales in Midcoast Maine, USA. 

 

Land cover 250m 500m 1000m 2000m 

Deciduous/mixed forest edge 0.08 (0.03)a 0.08 (0.02)a 0.07 (0.01) 0.07 (0.01) 

Urban/developed 0.04 (0.02)d 0.03 (0.01) 0.04 (0.01) 0.05 (0.02) 

Coniferous forest 0.005 (0.005) 0.02 (0.02) 0.03 (0.02) 0.04 (0.04)c 

Deciduous mixed forest  0.41 (0.18) 0.46 (0.19) 0.50 (0.17) 0.50 (0.10) 

Emergent wetlands  0.07 (0.08) 0.07 (0.08) 0.08 (0.07)c 0.09 (0.04)a 

Wetlands/water 0.03 (0.08) 0.05 (0.11) 0.05 (0.09) 0.05 (0.03) 

Agriculture/pasture 0.09 (0.10)a 0.09 (0.07)b 0.09 (0.07) 0.08 (0.04) 

Lowbush blueberry fields 0.24 (0.09) 0.16 (0.07) 0.09 (0.05) 0.06 (0.03) 

 

a=significant relationship with Lonsdorf model predictions at p<0.05 and >0.01 

b=significant relationship with Lonsdorf model predictions at p≤0.01 

c=significant relationship with bee abundance at p<0.05 

d=significant relationship with bee species richness at p<0.05 

 

3.4. Discussion 

 

3.4.1. Comparison of parameterization methods 

Field-based bee life history parameter values (specifically active flight season) improved 

prediction accuracy over expert-based values. Model sensitivity to active flight season has not 

been evaluated, although sensitivity to flight distance has been assessed (Lonsdorf et al. 2009). 

Groff et al. (2016) found greater prediction accuracy in the Downeast Maine growing region 

with smaller-bodied wild bees. Small bees encounter less land cover variation over shorter flight 

distances, decreasing the chance of prediction error. Our field-based, percentage-informed 

nesting suitability parameter values, particularly in lowbush blueberry, coniferous forest, and 

deciduous/mixed forest, led to a 26% increase in prediction accuracy over expert-based 

parameter values, specifically by reducing predictions in lowbush blueberry fields with few bees 

(Fig. 3.3). Groff et al. (2016) found the Lonsdorf model sensitive to the ground nesting 

parameter in deciduous/mixed forest, a dominant land cover type across the study landscape, and 
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in lowbush blueberry fields, a dominant land cover surrounding the validation sites. Our work 

confirms these relationships.  

Our improvements in prediction accuracy from field-based parameter values, however, 

did not outperform the best scenario from Groff et al. (2016), who achieved greatest prediction 

accuracy with nesting suitability and floral resource parameter values generated through an 

informed optimization process, whereby the parameter values were changed ±0.2 based on the 

results of a parameter sensitivity analysis (Table 7 in Groff et al. 2016). Those values reduced 

nesting and floral resource suitability of lowbush blueberry and coniferous forest compared to 

expert-based values; however, they increased suitability of deciduous/mixed forest and 

deciduous/mixed forest edge. Our field surveys suggest low suitability of deciduous/mixed 

forest, suggesting that the informed optimization parameter values of Groff et al (2016) may be 

inflated.   

Field-based floral resource parameter values were much less than expert-based parameter 

values, leading to under-prediction in crop fields with high bee abundance. Expert-based 

parameter values likely generalized the patchiness of floral resource availability we recorded 

across our study landscape, leading to greater model prediction accuracy; however, this 

heterogeneity is a source of expert uncertainty (Koh et al. 2016). We acknowledge that this 

tradeoff in uncertainty and observed variability between estimating and quantifying resource 

heterogeneity in land cover types is difficult to balance.  

Bee community proxy parameter values were consistently smaller in deciduous/mixed 

forest and larger in lowbush blueberry. Model scenarios informed by these values led to reduced 

prediction accuracy, though the results varied with landscape context. These scenarios over-

predicted bee abundance in crop fields when there was a greater proportion of lowbush blueberry 
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in the surrounding landscape. In contrast, they under-predicted bee abundance in crop fields 

surrounded by deciduous/mixed forest and little lowbush blueberry. The model is sensitive to 

changes in expert-based parameter values for these two dominant land cover types (Groff et al. 

2016), and indirectly informing these parameter values with bee community proxies did not 

improve prediction accuracy over directly informing these parameter values with nesting 

suitability and floral resource availability field data.   

When we attempted to more accurately describe heterogeneity in our study system by 

characterizing additional land cover types or time periods in the growing season, model 

performance did not improve, indicating that the expert-based models sufficiently described real-

world conditions in lowbush blueberry agriculture. Introducing additional sources of variation 

may create more avenues for inaccurate model predictions and may be more successful in small, 

more homogeneous landscapes (Olsson et al. 2015; Kammerer et al. 2016).  

3.4.2. Lonsdorf model performance across landscape contexts 

 Landscape configuration is not consistently correlated with bee abundance (Kennedy et 

al. 2013); however, here we link Lonsdorf model prediction accuracy to configuration metrics in 

a heterogeneous landscape. Prediction accuracy in the heterogeneous Midcoast region crop fields 

is reduced owing to complex field shapes (measured with the perimeter-area ratio) and local 

influence of non-crop land cover. Lonsdorf model predictions decrease dramatically with 

distance into crop fields from field edges (Kammerer et al. 2016); Midcoast crop fields may be 

too small and complex in shape for the model to include their resource suitability values in its 

predictions. Further, the Midcoast region contains more agriculture/pasture and deciduous/mixed 

forest edge than the Downeast region. These cover types have more diverse and abundant bee 

communities than the forested cover types that are dominant Downeast (Chapter 2, this 
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dissertation) and were significantly positively correlated with Lonsdorf model predictions at 

small scales (Table 3.6). Including forest edge as a unique land cover class improves Lonsdorf 

model prediction accuracy (Kammerer et al. 2016), as the field/forest transition contains floral 

resources that benefit wild bee communities (Drummond et al. 2017a).  

We found no correlation between coniferous forest and predicted bee abundance 

Midcoast, contrary to the negative correlation that Groff et al. (2016) found Downeast, nor did 

we find the positive correlation between bee abundance and deciduous/mixed forest that they 

report. Coniferous forest is relatively rare in the Midcoast, whereas deciduous/mixed forest is 

abundant and widely distributed among other more suitable cover types. We did find a 

significant positive correlation between proportion of urban/developed area and bee species 

richness at the 250 m scale Midcoast, which Groff et al. (2016) did not find Downeast. There is 

more urban land cover Midcoast than Downeast, and urban land cover has been linked to greater 

bee species richness at small scales (Simao et al. 2017). Global and national applications of the 

Lonsdorf model (Kennedy et al. 2013; Koh et al. 2016) have highlighted the need to assess 

model performance in varying habitat types and landscape contexts with parameter values 

informed by field data; our work indicates that these all influence prediction accuracy and are 

important to consider in future studies. 

The variance to mean2 ratio in Midcoast lowbush blueberry fields was 0.29 for field-

collected bee abundance (r2 of Lonsdorf model=-0.05) and 0.18 for bee species richness 

(r2=0.007), whereas the ratios were 0.15 for abundance (r2=0.164) and 0.07 for species richness 

(r2=0.13) in Downeast crop fields. Ratios from the complex, heterogeneous landscape in 

Lonsdorf et al. (2009) were below 0.5 (r2=0.04), suggesting that lowbush blueberry fields had a 

pollinator community with low variance, which could be a reason for low prediction accuracy. 
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Outside of lowbush blueberry fields in the Midcoast region, the ratios increase to 0.76 for 

abundance (r2=0.31) and 0.36 for species richness (r2=0.008), suggesting that there is greater 

variation in the bee community in non-crop land cover, though the Lonsdorf model explains little 

of the variance in bee species richness in the Maine lowbush blueberry production landscape. 

This supports the potential for broader applications of the model (Chapters 4 and 5, this 

dissertation), which can inform conservation planning at landscape scales beyond crop fields.  

3.4.3. Caveats and improvements to Lonsdorf model prediction accuracy 

One caveat of the Lonsdorf model is that it has been applied at too coarse of a spatial 

resolution (e.g., >30 m) to reflect fine scale nesting and floral resources in heterogeneous, mixed-

use landscapes (Lonsdorf et al. 2009; Kennedy et al. 2013). Reducing the grain size of maps used 

in the Lonsdorf model may not lead to improved predictions in such landscapes (Groff et al. 

2016; Nicholson et al. 2019). The Lonsdorf model has made accurate predictions of bee 

abundance in apple orchards in heterogeneous landscapes when the spatial resolution was very 

fine (1.5 m) and the landscape scale of application was limited to 500 m from the center of the 

orchard (Kammerer et al. 2016). However, applying the model at regional landscape scales with 

such fine spatial resolution is computationally intensive; therefore, this approach is not feasible 

for our application. Indeed, Kammerer et al. (2016) struggled to incorporate site to site 

variability in their model application, which was influenced by landscape context, as was the 

case in our study system.  

By relying on distance from nesting locations to predict bee abundance, the Lonsdorf 

model overlooks local heterogeneity in resource availability. Incorporating patch forage quality 

and bee dispersal behavior improves model performance, particularly in complex landscapes 

(Olsson et al. 2015; Nicholson et al. 2019). However, this is a data-intensive approach and is 
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more appropriate for application to smaller landscapes. While the model is sensitive to dominant 

land cover at field and regional scales, this is less of a problem in simple, homogeneous 

landscapes, but leads to inaccurate predictions in heterogeneous, mixed-use landscapes (Groff et 

al. 2016). One solution is to apply weights to dominant cover types that generally have low bee 

abundance though habitat suitability is relatively high, such as forest (Kammerer et al. 2016). 

Although forests can be rich in nesting resources, they are often poor in floral resources, leading 

to lower bee abundance (Chapter 2, this dissertation). 

The Lonsdorf model makes deterministic predictions based on static estimates of 

resource availability, but bee abundance and species richness vary dramatically in the lowbush 

blueberry agroecosystem from one season to the next (Drummond et al. 2017b). The model, in 

its current form, does not account for annual fluctuation in resource availability or incorporation 

of other variables that may influence these changes in the bee community. These fluctuations in 

bee abundance year over year can influence model validation data, potentially causing 

mismatches between model predictions and field-collected bee abundance. Relying solely on 

resource availability to predict bee abundance ignores other influential variables (Lonsdorf et al. 

2009; Koh et al. 2016). Lowbush blueberries are managed on a biennial cycle, in which a fruiting 

year, with abundant floral resources during a three week crop bloom, is followed by severe 

pruning and a vegetative regrowth year, with far fewer floral resources (Yarborough 2009). Wild 

bee communities are influenced by burning as a prune technique, which increases the abundance 

of Andrenid bees (Venturini et al. 2017b), and isolated lowbush blueberry fields on a single 

production cycle have fewer bees than fields that are split (fruiting and regrowth sections in the 

same field) (Venturini et al. 2017b).  Further, density dependent (disease, predators) and density 

independent factors (such as weather) regulate bee populations in lowbush blueberry (Dibble et 
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al. 2017). Pesticide exposure appears to be less important to the entire community (Bushmann 

and Drummond 2015), but there is a negative effect on mason bees (Osmia spp., Stubbs and 

Drummond 2001).   

The Lonsdorf model is sensitive to nesting parameters, particularly in dominant cover 

types (Groff et al. 2016). Mechanics of the model support this; the nesting habitat present in a 

pixel is the assigned parameter value for the land cover type the pixel represents, whereas the 

floral resource value for that pixel is a weighted sum influenced by distance from the pixel. 

Predicted pollinator abundance per pixel is the nesting suitability value multiplied by the floral 

resource value (Lonsdorf et al. 2009), therefore the amount of floral resources available in each 

cover type has less importance than nesting suitability in determining pollinator abundance per 

pixel. This means that increasing the nesting suitability parameter values may artificially inflate 

baseline bee populations and reduce prediction accuracy (Nicholson et al. 2019). Additionally, 

nesting suitability is a key source of uncertainty in expert-based parameter values (Koh et al. 

2016). Recent work on the role of nesting suitability in pollinator communities suggests it is 

highly dependent on crop system context (Sardiñas et al. 2015, 2016a,b). More field assessments 

of nesting habitat, particularly in non-crop land cover, would reduce uncertainty regarding 

habitat availability and improve model predictions. 

3.4.4. Conservation value of the Lonsdorf model 

When applied at national (Koh et al. 2016) and global (Kennedy et al. 2013) scales, the 

Lonsdorf model provides critical assessments of bee abundance that inform national and global 

pollinator management strategies (White House Pollinator Task Force 2015; IPBES 2016).  

These applications are crucial from a conservation perspective, and their methods are sound 

given the available data and the large spatial scales, but they overlook regional heterogeneity that 
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is revealed in regional scale applications (Lonsdorf et al. 2009; Groff et al. 2016; Kammerer et 

al. 2016). Describing this regional heterogeneity with more targeted model applications reduces 

uncertainty associated with larger scale applications and creates more reliable conservation tools 

(Chapters 4 and 5, this dissertation).  

Using field data collected on wild bee communities and habitat resources outside of crop 

fields throughout the growing season improved predictions of the Lonsdorf model across 

Maine’s lowbush blueberry production landscape. Crop pollination is no longer the sole 

argument for pollinator conservation (Kleijn et al. 2015), and this work demonstrates the larger 

benefit of exploring wild bee communities beyond crop fields. Assessing bee communities 

outside of crop fields is especially crucial in mixed-use landscapes, where bees are rarely 

isolated from natural habitat (Winfree et al. 2008). Further, bees in mixed-use landscapes can 

rely more on local resources instead of mass-flowering crops and supplemental plantings and 

may require resources outside the crop field to persist until the next crop bloom period. When 

combined with the Lonsdorf model, field data from a mixed-use landscape provides more 

accurate predictions of bee abundance at regional scales. 
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CHAPTER 4 

PARTICIPATORY DEVELOPMENT OF A POLLINATION MANAGEMENT 

DECISION SUPPORT TOOL FOR LOWBUSH BLUEBERRY GROWERS 

4.1. Introduction 

 Pollination security for specialty crops such as berries and nuts is at risk owing to threats 

to honeybee health (Kulhanek et al. 2017) and wild bee habitat (Kremen et al. 2002). Specialty 

crop growers are facing changes in pollination management as demand for commercially 

managed honeybee hives increases and the role of wild bees in crop pollination is clarified 

(Aizen and Harder 2009; Pettis and Delaplane 2010; Breeze et al. 2011; Garibaldi et al. 2011, 

2013). Agricultural decision support systems (AgDSS), computer based tools that translate 

science to practitioners, may be used to aid crop growers in management decisions during times 

of rapid change and uncertainty (Matthews et al. 1999; McCown 2002a). Though many AgDSS 

face problems of implementation (McCown 2002b; Matthews et al. 2008), increasing emphasis 

on participatory development (Carberry et al. 2002; Jakku and Thorburn 2010) and simplifying 

available tools (Bergez et al. 2012; Clavel et al. 2012) may lead to greater end use by target 

audiences. Participatory development involves members of a target audience—in this case, crop 

growers—through the conceptualization, design, and implementation of a DSS (Carberry et al. 

2002; Jakku and Thorburn 2010). Kates (2001) suggests internet-based tools to bridge the gap 

between scientists and practitioners, with participation from both parties during development.  

This process allows co-production of knowledge (Kates 2001), building consensus on important 

issues (Costanza and Ruth 1998), and ultimately wider dissemination of research results to 

practitioners (Mitter et al. 2014). 
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 Crop pollination by wild animals, mostly bees (family Apoidea), is an ecosystem service 

that provides 35% of global crop production and is necessary for 66% of global crops (Klein et 

al. 2007). Ecosystem services (ES) are natural processes that benefit people (Daily 1997), and 

their provision can shift as a result of land use change (Polasky et al. 2011).  Land use change 

that maximizes one output, such as intensifying crop production, will likely lead to a decline in 

ecosystem services (Millennium Ecosystem Assessment 2005). Efforts to incorporate ecosystem 

services into agriculturally-intense landscapes (e.g., pollinator plantings; Blaauw and Issacs 

2014, Venturini et al. 2017a) seek to change perceptions and practices to preserve natural 

resources, but knowledge of social processes in these social-ecological systems is needed to 

achieve that goal (Tscharntke et al. 2005; Guerry et al. 2015). There are multiple decision 

support tools for assessing ecosystem services and creating management plans incorporating 

various services, each providing mapped output displaying ES provision across landscapes 

(Nelson et al. 2009; Villa et al. 2009; Peh et al. 2013). Communicating ES across landscapes 

through maps illustrates geographic variation in supply and demand for them, making maps 

useful decision support tools for ES management (Crossman et al. 2013). 

Lowbush blueberry (Vaccinium angustifolium Aiton) is a North American native plant 

that has been cultivated by crop growers into open fields through vegetation management 

(Yarborough 2015). Maine is the world's largest producer of lowbush blueberries, harvesting 40-

47 million kilograms annually since 2012 (Yarborough 2016).  The plant is highly dependent on 

insect pollination to set fruit and is most effectively pollinated by wild bee species capable of 

buzz pollination (Javorek et al. 2012; Drummond 2016). Despite the effectiveness of wild bees, 

most lowbush blueberry growers invest heavily in commercially managed honeybee hives 

(Hanes et al. 2015; Asare et al. 2017). The number of honeybee hives entering the state each 
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May ranges from fewer than 30,000 to more than 70,000 depending on anticipated crop yield (J. 

Lund, Maine State Apiarist, pers. comm) in an effort to circumvent the inefficiency of honeybee 

pollination with a high number of flower visits. However, wild bees are abundant and diverse 

during crop bloom and can contribute up to 30% of fruit set (Bushmann and Drummond 2015; 

Drummond 2016; Asare et al. 2017).  

Structure of the surrounding landscape affects wild bee communities in crop fields 

(Kennedy et al. 2013, Bushmann and Drummond 2015). There are two blueberry growing 

regions in Maine with contrasting landscape contexts. The Downeast region contains the largest 

and most intensively managed lowbush blueberry fields in a matrix dominated by coniferous 

forest managed for timber harvest. Non-blueberry agriculture and developed land cover are 

scattered and comprise little of this relatively homogeneous landscape. In contrast, the Midcoast 

region is heterogeneous, containing smaller, less intensively managed crop fields interspersed 

with other agriculture, including pasture, orchards, and small, diversified farms. Developed land 

in small towns is more prevalent in the Midcoast region than the Downeast region; however, in 

both growing regions, towns are classified as rural or exurban development along the common 

urban-rural development gradient (Kaminski et al., in review). The matrix in the Midcoast region 

is deciduous forest-dominant and less intensively harvested. Wild bee communities differ 

between these growing regions owing to these differences in landscape context (Chapters 1 and 

2, this dissertation). Additionally, these growing regions differ in human and social capital 

(Collum 2016). Human dimensions research into pollination is relatively new; what research 

exists shows that social factors influence pollination practices (Hanes and Waring 2018). 

Landscape-scale studies of pollinator behavior indicate that pollinator species richness 

and abundance, along with pollination efficiency, decline in agricultural fields with distance 
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from natural habitat that contains nesting substrate and floral resources (Steffan-Dewenter et al. 

2002, Kremen et al. 2004; Ricketts et al. 2008; Garibaldi et al. 2011). The Integrated Valuation 

of Environmental Services and Tradeoffs (InVEST) Crop Pollination Model is a spatially-

explicit predictive model that estimates pollinator abundance across agricultural landscapes 

(Lonsdorf et al. 2009; hereafter referred to as the Lonsdorf model). The model combines 

parameter values describing nesting substrate suitability, floral resource availability, and bee life 

history traits with land cover data to predict relative pollinator abundance within each cell of an 

input land cover map. The output is a map predicting wild bee abundance across a landscape.  

We applied the Lonsdorf model across Maine’s lowbush blueberry production landscape to 

estimate wild bee populations surrounding crop fields (Groff et al. 2016; Chapter 3, this 

dissertation). Crop growers are aware of the potential contribution natural habitat surrounding 

crop fields may provide to wild bee populations, but they may overestimate the effect (Hanes et 

al. 2015). Maps such as those created by the Lonsdorf model allow a landscape-level approach in 

translating the model predictions to growers, which can lead to a more holistic view of the role 

wild bees have in crop pollination (Tscharntke et al. 2005; Sandker 2010). Maps allow 

stakeholders to make decisions without needing to plug in farm-based information and are 

considered “bio-decisional” tools (Clavel et al. 2012). Such tools are intuitive and simple to use.  

InVEST is a suite of ecosystem service models, many of which have been used in 

decision-making processes (Ruckelshaus et al. 2015; Sharp et al. 2016), but to our knowledge 

this is the first effort to translate output from the Lonsdorf model directly to crop growers. We 

created a collaboration between natural scientists, social scientists, technical developers, and 

crop growers to develop a multi-scale agricultural decision support system called BeeMapper to 

aid Maine lowbush blueberry growers in pollination management. We synthesized literature on 
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sustainability science, agricultural decision support systems, and functional agrobiodiversity to 

provide theoretical context for our work. 

4.2 Literature review 

4.2.1 Using heuristics to overcome uncertainty 

 Lowbush blueberry growers face high uncertainty around crop pollination from wild bees 

in part owing to difficulty assessing wild bee populations in the field (Hanes et al. 2018). This 

motivates reliance on honeybee hive rentals and resistance to rapidly changing pollination 

management practices—in other words, lowbush blueberry growers follow a “muddling 

through” (Lindblom 1959, 1979) approach to pollination management decision making (Hanes et 

al. 2018). Understanding the abundance of wild bees in the landscape surrounding crop fields is 

one solution to reduce this uncertainty. When faced with high uncertainty, farmers will turn to 

“quick and simple” decision approaches—called heuristics—instead of more detailed, elaborate 

approaches (Ohlmer et al. 1998; Walker 2002).  One heuristic lowbush blueberry growers use is 

an estimate of total wild bee pollination as one hive of honeybee pollination per acre (Hanes et 

al. 2018). There is a method to calculate wild bee populations in crop fields during bloom 

(https://www.youtube.com/watch?v=rgVav2byI8o), but it involves active monitoring of 

pollinating wild bees and knowledge of different groups of wild bees. BeeMapper provides a 

simple heuristic—a series of maps—that displays information on land cover type and predicted 

wild bee abundance in and around crop fields. It provides an incremental step in our 

understanding of wild bee contribution to lowbush blueberry crop yield. Small, incremental 

changes reduce uncertainty in complex systems and encourage adoption of new information 

(Lindblom 1979); interviews with crop growers indicate this incremental approach has largely 

informed their pollination management strategies over time (Hanes et al. 2018). 

https://www.youtube.com/watch?v=rgVav2byI8o
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4.2.2. Iterative, participatory development: synthesizing sustainability science and DSS 

literature 

 Many case studies on decision support systems highlight a participatory development 

process, in which end users are involved in the conception, design, and prototype testing of a 

DSS (Walker 2002; Van Meensel et al. 2012; Valls-Donderis et al. 2014). Jakku and Thorburn 

(2010) explain how to incorporate participatory development into AgDSS. We aim to synthesize 

this literature with the broader principles of sustainability science (Clark and Dickson 2003). To 

translate science effectively to practitioners, it needs to be defined and framed so that all 

stakeholders involved can understand and use the science in practice. Stakeholders are more 

likely to view science effectively for policy and management if it is credible, salient, and 

legitimate (Cash et al. 2003). Credibility encompasses the quality of the science. Many examples 

of participatory DSS development begin with the introduction of a team of experts who will be 

working on the problem to establish basic credibility from the outset. Demonstrating accurate 

results from simple models early in the process also establishes credibility (Carberry et al. 2002). 

Saliency is the relevance of the science to the targeted decision makers. Farmers will not 

implement tools that have no practical value to them (McCown 2002a,b). Assessing stakeholder 

acceptance of a proposed DSS before development begins establishes saliency, and incorporating 

feedback collected during DSS development keeps the process salient to stakeholders (Andrews 

et al. 2003). The advancement of sustainability science is based on the co-production of 

knowledge and social learning around a salient central issue (Kates et al. 2001). This process is 

deemed legitimate if stakeholders perceive that their ideas, knowledge, and concerns have been 

addressed by scientists respectfully, genuinely, and without bias (Cash et al. 2003). Asking for 

input from stakeholders early in the DSS development process establishes legitimacy; continuing 
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active communication throughout the process maintains legitimacy (Andrews et al. 2003; 

Sandker 2010). Assumptions about technical abilities of stakeholders cause legitimacy failures: 

by presenting stakeholders with an end product that they may not be able to use, the lack of 

consideration of the stakeholders needs indicates a lack of legitimacy of the development process 

(Bergez et al. 2012). 

 Boundary work, in which scientists and practitioners establish clear roles that utilize their 

respective expertise, promotes collaboration and co-learning among stakeholders in DSS 

development (Cash et al. 2003; Clark et al. 2011). This work can center on a boundary object 

(Jakku and Thorburn 2010), which integrates science and practice through a material 

representation to facilitate the exchange of knowledge and promote action (White et al. 2010). 

The boundary object in a participatory development process combines knowledge, ideas, and 

perspectives of stakeholders into a final product developed through shared learning (Jones et al. 

2009; Voinov et al. 2016). Examples of boundary objects include collaboratively produced maps, 

working prototypes of tools, and written documents (Clark et al. 2011; Voinov et al. 2016). By 

focusing on the boundary object and being cognizant of stakeholder roles at the boundaries 

between their knowledge, successful participatory modeling processes can advance sustainability 

science (Cash et al. 2003; Clark et al. 2011).  

 An iterative, participatory development process with regular, active communication is 

critical for the success of an agricultural DSS (Walker 2002; Cash et al. 2003; Jakku and 

Thorburn 2010). Presenting early but accurate “throw-away” models kickstarts an iterative 

development process (Sandker 2010; Voinov and Bousquet 2010). Participatory development of 

a DSS is not enough to ensure uptake by users; active communication through multiple platforms 

may be needed to reach a wider audience and ultimately reduce uncertainty in decision making 
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(Carberry et al. 2002; Walker 2002; Bijlsma et al. 2011). Face to face communication is more 

effective in participatory development than emails or surveys (Mitter et al. 2014). Our 

collaboration and communication with crop growers throughout the iterative, participatory 

development of BeeMapper involved boundary work, with BeeMapper as the boundary object. 

Our affiliation with Cooperative Extension, which is viewed by growers as credible and 

legitimate owing to their work on problems salient to crop production (Cash 2001; Hanes and 

Waring 2018), provided us an open, favorable environment for tool development.  

4.2.3. Lowbush blueberry industry background, grower perceptions, and learning 

outcomes 

There are more than 350 lowbush blueberry growing enterprises in Maine (Rose et al. 

2013). Lowbush blueberry growers are mostly male, over the age of 55, and have some college 

education (Rose et al. 2013; Hanes et al. 2015; Collum 2016). The crop is managed following 

four pest management strategies: conventional, Integrated Pest Management (IPM), no-spray, or 

certified organic. Most growers practice IPM, manage >40 ha of fields, and operate their 

blueberry farms on a part-time basis (Rose et al. 2013; Hanes et al. 2015; Collum 2016). Organic 

lowbush blueberry production rapidly expanded in the early 2000s (Drummond et al. 2012); in a 

2015 survey, 23% of growers practiced certified organic or no-spray management (Collum 

2016). 

Lowbush blueberry growers perceive wild bee habitat around their crop fields to be 

plentiful (Hanes et al. 2015). Research conducted throughout the lowbush blueberry landscape 

indicates that growers may be overly optimistic (Bushmann and Drummond 2015; Groff et al. 

2016; Chapters 1, 2, and 3; this dissertation). These are incongruent technological frames (Jakku 

and Thorburn 2010); growers and scientists hold disparate assumptions, beliefs, and expectations 
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regarding wild bee communities and pollination of lowbush blueberry. However, though growers 

overestimate bee abundance surrounding their crop fields, they accurately perceive the 

contribution of wild bee pollination to lowbush blueberry fruit set (~25%; Hanes et al. 2015, 

Asare et al. 2017). Scientists have been collecting and sharing knowledge on wild bee pollination 

of lowbush blueberry for years (Drummond 2016); however, information on bee habitat outside 

of crop fields is newer knowledge (Groff et al. 2016; Dibble et al. 2018; Chapters 1, 2, and 3; 

this dissertation). BeeMapper and its development process promote co-learning between growers 

and scientists; they share ideas, provide feedback, and learn from each other (McCown 2002a,b). 

Participatory development leads to greater adoption by end users. The number of end users is 

typically the measure of success of DSS, but there are multiple outcomes for learning through 

this process (Jakku and Thorburn 2010). Growers obtain value regarding what DSS have to offer 

by simply hearing about them or being involved in prototype testing (Thorburn et al. 2011). 

4.2.4. Functional agrobiodiversity at multiple scales 

 Emerging research focusing on functional agrobiodiversity calls for a landscape 

perspective to fully understand the effects of field-scale management and surrounding non-

managed habitat types on landscape-scale diversity of plants, insects, and soils (Bianchi et al. 

2013; Gonthier et al. 2014). Functional agrobiodiversity combines functional diversity, the 

number of functional roles species represent (Tilman et al. 1997) with agrobiodiversity, the biota 

in and around farms that provides ecosystem services (Jackson et al. 2012). This is based on the 

idea that agricultural land use does not always negatively affect natural habitat; for wild bees, 

agriculture provides a mass-flowering floral resource, benefitting bees in the surrounding 

landscape (Westphal et al. 2003; Chapter 1, this dissertation), and the surrounding landscape can 

provide nesting and foraging resources before and after crop bloom (Kremen et al. 2002, 2004; 
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Ricketts et al 2008; Chapters 2 and 3, this dissertation). The functional significance of field-scale 

biodiversity will only appear at larger spatial and temporal scales, therefore managing for 

diversity at the landscape scale requires cooperation and collaboration among crop growers in 

the target landscape (Tscharntke et al. 2005; Jackson et al. 2012; Bianchi et al. 2013; Gonthier et 

al. 2014). The conservation of diversity in agroecosystems is associated with local knowledge 

and its exchange (Jackson et al. 2012); lowbush blueberry growers seek out local knowledge and 

exchange it through industry gatherings (Hanes et al. 2018). However, integration of functional 

agrobiodiversity requires multiple components: the understanding of elements that support 

ecosystem services, translation of that knowledge into farm/landscape management practice, and 

involvement from various scientific disciplines and collaboration between stakeholder groups 

(Bianchi et al. 2013). Growers achieve much of this already at the farm level (Hanes et al. 2018), 

but formal landscape level knowledge is lacking. By providing information on wild bee 

abundance, important blueberry pollinating species, and habitat resources available in and 

around lowbush blueberry fields at multiple spatial scales, BeeMapper promotes the 

incorporation of functional agrobiodiversity into pollination management plans. 

4.3. Methods 

4.3.1 Spatial data  

BeeMapper contains two maps: a land cover map and a predicted wild bee abundance 

map that cover the Downeast and Midcoast growing regions of Maine’s lowbush blueberry 

production landscape. The land cover map has 10 m pixel size and eight land cover classes 

representing different floral and nesting resources for wild bees: Agriculture/pasture, consisting 

of small diversified farms, orchard crops, or pasture; lowbush blueberry fields; coniferous forest; 

deciduous/mixed forest; deciduous/mixed forest edge; emergent wetland, an aggregation of 
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forested wetland and scrub-shrub land cover; wetlands/water; and urban areas. We applied the 

Lonsdorf model to this map (Groff et al. 2016; Chapter 3, this dissertation) to create the 

predicted wild bee abundance map. We classified the predicted wild bee abundance map into 

five classes from Low to High and provided each class with an estimated number of wild bees 

present during pollination and their contribution to fruit set (Table 4.1).  

Table 4.1. Predicted wild bee abundance classes in BeeMapper. Estimates of bee abundance and 

contribution to fruit set are provided by Frank Drummond from a long-term data set collected in 

blooming lowbush blueberry fields in Maine, USA. 

 

Abundance class Number of bees (per 10 minutes) Contribution to fruit set 

Low 1 12% 

Low-Medium 2 18% 

Medium 3 20% 

Medium-High 4 25% 

High 5-10 30% 

 

We prepared these data for use in a web-based GIS tool; tool design and technical support were 

provided by the University of Maine Faculty Development Center and Advanced Computing 

Group. Full technical development details, including spatial data preparation and software 

framework, are described in Chapter 5 of this dissertation. 

4.3.2. Grower participation  

4.3.2.1. Large group participation 

We proposed the idea for BeeMapper at a large growers meeting in July 2014. Growers 

were interested in developing the tool, therefore we made an open invitation for interested 

growers to work with us on tool development. We then presented an initial prototype of the tool 

to members of the Maine Lowbush blueberry Commission Advisory Board and Committee in 

November 2014. This audience included ~20 lowbush blueberry growers, advocates, and 

researchers. During this presentation, we asked for ideas regarding tool features, appearance, and 

utility. We incorporated feedback from the Advisory Board into the first working iteration of the 
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tool. We held an open demonstration of the first iteration of the tool at a large growers meeting 

in March 2015, during which growers were able to sit down and try the tool on their crop fields. 

This generated excitement about the tool among growers and a productive dialogue between 

growers and scientists. Updates to tool development were presented to a large growers meeting 

in July 2015. Lastly, we presented the second iteration of the tool at two large growers meetings 

in March 2016. Through these presentations, we invited growers to visit the BeeMapper website, 

explore the tool on their own time, and submit feedback either through the BeeMapper feedback 

form or via email. Total attendance at both meetings was approximately 60 growers; we received 

feedback from three growers after the meetings via email. 

4.3.2.2. Individual or small group participation 

We tested the first iteration of BeeMapper through six interviews with growers practicing 

a range of management practices in March and April 2015 and tested the second iteration 

through a second round of five grower interviews in February 2016 (Table 4.2; Appendix E). We 

selected growers via purposive sampling to obtain variation in farm management strategies: 

high-, medium-, or low-input, or organic/no-spray (Yarborough and Cote 2014). Owing to 

concurrent spatial data development (Chapters 2 and 3, this dissertation), all interviews were 

conducted with growers in the Downeast growing region. We conducted four interviews at farm 

offices, six interviews in growers’ homes, and one interview over the phone. Five interviews 

included multiple growers working on the same farm; two interviews were with spousal pairs, 

and three interviews were with 2-4 farm employees. Interview locations needed to have internet 

access; we brought one laptop and an external mouse to standardize the hardware growers used 

for tool testing. However, the grower interviewed over the phone used their personal computer. 
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Interviews were roughly one hour long, and all but the phone interview were recorded with 

growers’ permission. Growers were compensated $75 for their time (Appendices F and G).  

Table 4.2. Farming strategies of lowbush blueberry growers interviewed to test BeeMapper. 

2015 Input level Area managed (ha) 

1 High >50 

2 High >50 

3 Medium 10-20 

4 Low 5-10 

5 Organic <5 

6 Organic 5-10 

2016 
  

7 High 20-50 

8 Medium 10-20 

9 Medium 10-20 

10 Medium 5-10 

11 Low <5 

 

We took a passive role during the interviews. Growers independently used the tool to 

assess pollinator habitat around (a) crop field(s) they manage and described their thought process 

as they worked through the tool. We asked growers a series of preliminary questions regarding 

their current pollination management strategies before opening the tool, then compared model 

predictions with grower perceptions as we examined the maps around a crop field. Growers also 

provided feedback on ease of use and data interpretation of the tool. We used feedback from the 

initial six interviews to extensively revise the tool into a second working iteration. In the second 

round of interviews, growers worked with the second iteration of the tool and were asked to 

independently navigate through the tool using a draft of the User’s Guide (Appendix H). The 

purpose of these sessions was twofold: to test the updated iteration of BeeMapper and to evaluate 

the User’s Guide. We asked growers for feedback on word choice and intuitiveness of the User’s 

Guide and data interpretation of the updated tool. 



124 
 

4.3.3. Lonsdorf model refinement 

While developing BeeMapper, we concurrently refined Lonsdorf model output in the 

Maine lowbush blueberry production landscape (Chapter 3, this dissertation). The model was 

initially informed by expert opinion; this opinion varied widely among experts and led to high 

variation in model output (Groff et al. 2016). We conducted field surveys across this landscape 

in 2014 and 2015 to assess wild bee communities, nesting resources, and floral resources 

throughout the growing season (Chapter 2, this dissertation). By informing the model with field-

collected data, we sought more accurate predictions and ultimately better information for 

growers regarding wild bee abundance in the landscape surrounding their crop fields. We were 

transparent with growers about our model refinement work, which allowed us to discuss the 

uncertainty surrounding model output. Furthermore, refining the model output while working 

with growers allowed us to incorporate grower feedback on map inaccuracies during this 

process, leading to greater credibility and relevancy in the final product.  

4.3.4. BeeMapper final version and tool launch 

 The final version of BeeMapper resides on a website (https://umaine.edu/beemapper) that 

provides a prominent link to the tool, multiple web pages of supporting documentation, a 

printable User’s Guide, and access to the open source web mapping architecture (Chapter 5, this 

dissertation). We were unable to test website layout with growers owing to time constraints; 

however, we incorporated grower feedback from all previous testing sessions and presentations 

into the site design. The site pages correspond to sections of the printable User’s Guide and 

function as an online guide to using and understanding the tool. Information displayed on the 

pages include large, clear pictures, and concise, simple text, which were repeatedly requested by 

growers throughout BeeMapper development.  

https://umaine.edu/beemapper
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 We launched BeeMapper in July 2017 during the annual lowbush blueberry growers’ 

field day at the University of Maine Cooperative Extension’s Blueberry Hill Farm. This annual 

meeting is the largest Extension event held for lowbush blueberry growers, with 200-300 

growers attending each year. We gave a short presentation to a large group of growers that 

included a walkthrough of how to use the tool, descriptions of tool and website features, and 

suggestions on using the data provided by the tool. After the presentation, we handed out printed 

User’s Guide pamphlets for growers to take home and reference if they chose not to print out the 

long form User’s Guide on the website. Finally, we held an open workshop over the lunch hour 

for growers to try BeeMapper and talk to the scientists who worked on the tool. This workshop 

had six laptops available and three scientists present, and approximately 40 growers, most of 

whom were not involved in the 1:1 testing sessions, attended. Concluding the BeeMapper 

development process with a participatory session between developers and end users allowed 

another opportunity for feedback from end users and for developers to maintain credibility with 

the end users. 

4.4. Outcomes  

4.4.1. Grower feedback 

Growers were interested and engaged with BeeMapper throughout the development 

process. Positive interactions with entomologists over time (Hanes and Waring 2018; Hanes et 

al. 2018) may have encouraged growers to participate in BeeMapper development and increased 

their confidence in its output. During the testing sessions, growers found the maps easy to 

interpret, and they made the connection between land cover type and wild bee abundance. Some 

described how the tool could be used to make decisions about pollination management, including 

how many beehives to rent and where the hives should be placed. Some growers said they would 
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use the tool to minimize risk to existing wild bee habitat—for example, they would not spray 

pesticides in the direction of abundant areas. The interviews suggested that growers would use 

the tool to assess their wild bee habitat, but would not change their current pollination practices 

unless they become unsustainable. The growers we interviewed were all frequent attendees of 

Cooperative Extension events; these growers are often early adopters of new scientific 

knowledge (Hanes et al. 2015) and may have biased the perceptions and feedback we received. 

Additionally, all interviewed growers operate farms in the Downeast Maine lowbush blueberry 

growing region, which contains more high-input farms (Rose et al. 2013) and fewer sources of 

high quality wild bee habitat (Chapter 2, this dissertation) than the Midcoast growing region. 

Much of the feedback centered on the disparity between grower perception and model 

prediction of wild bee abundance. The values of estimated number of bees in fields during bloom 

and contribution to fruit set we provided in the legend of the predicted wild bee abundance map 

(Table 4.1) were generally accepted by growers. However, when the predicted wild bee 

abundance map was displayed, every grower interviewed said the model predictions were too 

low—growers see many wild bees in natural habitat patches or blooming crop fields, and the 

numbers provided by the model did not match their field-based experience. Growers know what 

kinds of habitat provide forage resources for bees, as many of them mentioned the presence of 

wildflowers in field edges and nearby wetlands. While these habitat types commonly occur 

around lowbush blueberry fields, growers are overly optimistic about their prevalence and the 

number of wild bees they contain. This could result from the time scale associated with grower 

perception. Growers are observing bees in crop fields during pollination, when the mass 

flowering crop is in bloom and likely the best available food source in the landscape. Wild bees 

are abundant and diverse in crop fields during bloom (Bushmann and Drummond 2015). The 
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values in the map legend describe this time period, therefore they align with grower perception. 

The predicted wild bee abundance map provides a season-long prediction; while bee 

communities appear robust during crop pollination, over the entire growing season that number 

is much lower. This is new information for growers and may take time to be accepted. 

Growers also corrected a number of inaccuracies in the land cover data provided in 

BeeMapper. BeeMapper is meant to be used at field scales; however, our land cover data was 

generated at a statewide scale and issued with caution regarding field-scale interpretation (Maine 

Office of GIS; https://www.maine.gov/megis/catalog/metadata/melcd.html). This was an 

unanticipated benefit of the participatory development process and led to a subsequent effort to 

improve land cover accuracy. Public participation GIS is an emerging field of study in which 

participants familiar with a target landscape identify features for developers; this can empower 

stakeholders to better understand conservation priorities and ecosystem service delivery in their 

region (Brown 2012; Fagerholm et al. 2012; Voinov et al. 2016). 

Testing prototypes of web tools with growers can lead to a total overhaul of the tool 

(Clavel et al. 2012), and that was our experience. We were given many suggestions on how to 

make the tool more user-friendly and interpretable. The color scheme of the abundance map was 

adjusted multiple times based on grower feedback. We added navigational aids to help growers 

locate their fields using roads, rivers, and lakes. During the 1:1 interviews, the most consistent 

request was to provide a concise summary of the map data around a crop field through a simple 

chart. We implemented this by displaying a series of pie charts when the target field is clicked on 

(Fig. 4.1). Growers suggested we provide full documentation including background on the 

spatial data used and the Lonsdorf model both directly on the website and in print form; we 

complied with these requests. 
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Figure 4.1. Summary of predicted wild bee abundance and land cover maps around a Maine, 

USA, lowbush blueberry field in BeeMapper for small bees (250 yd linear buffer distance from 

the focal field edge) and large bees (1000 yd linear buffer distance from the focal field edge). 

The pie chart display was suggested by crop growers through testing sessions to provide a simple 

interpretation of the information provided by BeeMapper. 

 

4.4.2. Tool use despite uncertainty 

We prioritized discussing the uncertainty of the predicted wild bee abundance map in 

BeeMapper with growers throughout the development process, emphasizing that the wild bee 

abundance map displayed predictions from a model and was not absolute. Further, although they 

contain field-realistic predictions, the results we obtained from the Lonsdorf model do not have 

high explanatory power (Groff et al. 2016; Chapter 3, this dissertation). However, growers 

revealed during testing sessions that they are accustomed to uncertainty in farming. Moreover, 

growers are aware of uncertainty in agricultural science. Lowbush blueberry growers have 

worked with Cooperative Extension scientists for nearly a century, and historically have 

vocalized a need for and incorporated findings from agricultural science conducted by Extension 
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researchers, even with reported uncertainty (Hanes and Waring 2018; Hanes et al. 2018). The 

greatest source of uncertainty in BeeMapper is the generalization of habitat resources available 

in non-blueberry land cover types. Compared to similar pollination ecosystem service models, 

the Lonsdorf model uses more information about wild bee habitat, but is highly general in 

characterizing land cover quality (Vorstius and Spray 2015). This generality likely ignores 

patchiness in forested areas, for example, which are prevalent in Maine’s lowbush blueberry 

landscape and could provide small refuge areas for wild bees. Porous and non-porous surfaces in 

urban landscapes also came up multiple times during interviews; though developed land is 

relatively scarce throughout the lowbush blueberry production landscape (Chapter 2, this 

dissertation), the habitat resources provided are generalized across urban green space and paved 

surfaces in the predicted wild bee abundance map. 

4.4.3. Tool use and public engagement 

 We relied on WordPress statistics to count the number of website visits and list which 

pages and links users visited while on the BeeMapper website. We anticipated greater use of 

BeeMapper in early winter, when growers are making pollination management plans for the 

following growing season. Instead, we found the greatest number of page views immediately 

following launch in late July and early August 2017, which coincided with the start of the crop 

harvest. However, we attribute many of those views as a response to press coverage and interest 

outside of lowbush blueberry growers. Since then, we have observed cycles in BeeMapper site 

visits that align with our expectations, with few visits during the 2018 growing season and more 

visits in the off-season months (November-March) of 2018 and 2019 (Fig. 4.2). Given that there 

are ~350 growing enterprises in the state (Rose et al. 2013), we are encouraged by the 
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consistency and number of site visits. Without a formal tool use evaluation process in place, 

however, we cannot explicitly determine how the tool is being used.  

 

Figure 4.2. BeeMapper website visits from June 2017 to March 2019 via WordPress.com. With 

the exception of tool launch in July 2017, site visits generally follow a pattern of fewer visits in 

the growing season and more visits off-season.  

 

The BeeMapper launch was accompanied by a University of Maine press release that was 

picked up by local television, public radio, and newspaper outlets and also ran in the Associated 

Press, leading to multiple national news briefs. Additionally, BeeMapper received local press 

coverage throughout the development process, primarily via University of Maine public 

relations. We presented two seminars at the University of Maine in 2016 that were open to the 

public and announced via email listservs; following these announcements, we were contacted by 

four local community groups to present our work with BeeMapper and more generally, bee 

habitat use. Three of these groups were beekeeping clubs and the fourth was a pollinator 

conservation group. These groups followed up after the release of BeeMapper, and one 

beekeeping group reported using BeeMapper to site new apiaries. Additionally, the Maine office 

of the U.S. Fish and Wildlife Service is considering using maps such as those in BeeMapper to 

locate potential habitat for the federally endangered rusty-patched bumble bee (Bombus affinis 
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Cresson), which was last recorded in the Maine lowbush blueberry production landscape in 

2009.  

4.4.4. Implementation problems 

As with other DSS, BeeMapper faces hurdles to reaching widespread use among lowbush 

blueberry growers. The tool must be practical and address pollination management as completely 

as possible to have value to growers (McCown 2002a,b). Natural habitat for wild bees is one 

piece of pollination management, and growers indicated throughout the development process that 

if there were more management components involved in BeeMapper, they would be more likely 

to use the tool long-term. We received requests to incorporate ongoing work in lowbush 

blueberry pollination management, including pollinator plantings, on-farm monitoring of wild 

bee populations, and valuation of pollination services. For example, growers asked for the 

capability to create habitat enhancement scenarios and receive updated Lonsdorf model 

predictions on their farms. Owing to the dynamic nature of this information and the static 

architecture behind BeeMapper (Chapter 5; this dissertation), we were unable to accommodate 

these requests. However, the Lonsdorf model can be used to incorporate habitat enhancement 

scenarios (Nicholson et al. 2019), and a national scale tool exists that forecasts outcomes of these 

scenarios along with providing economic valuation of wild bee pollination services (Pollination 

Mapper BETA, www.pollinationmapper.org). Pollination services from wild bees may change 

with landscape context (Sardiñas and Kremen 2015); therefore, with our ongoing work in 

lowbush blueberry, we could incorporate these capabilities into BeeMapper in the future to 

provide context-relevant information. Pollination management is closely linked with integrated 

pest management (IPM), which is widely practiced in lowbush blueberry. A similar set of 

management strategies targeted at pollinator conservation on farms has recently emerged, called 
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Integrated Crop Pollination (ICP, Issacs et al. 2017). Following ICP and IPM principles, we can 

connect current knowledge of pollinator conservation strategies with existing chemical and non-

chemical pest management strategies to provide more information for pollination management 

decisions and make BeeMapper more relevant to growers. 

BeeMapper requires internet access and experience with using maps online. Downeast 

Maine is rural and can lack reliable internet, but this generally was not a problem. Growers were 

largely comfortable operating the web tool; presenting it to them as similar to widely used online 

mapping websites made BeeMapper more approachable. Back-end technical support will be 

provided by the development team for the immediate future, but long term support and 

maintenance needs to be determined. This is a common fate for AgDSS, but it can be overcome 

by remaining live on the internet and receiving incremental support (Voinov and Bousquet 

2010). We also experienced time delays and gaps in communication between stakeholders 

throughout the development process. There are few opportunities to communicate with large 

groups of growers, so regular communication about tool progress was difficult; however, we 

made presentations at many meetings and venues to keep growers informed about BeeMapper 

development, and holding a large launch event was key to maintaining the awareness we aimed 

for throughout the process.  

4.5. Conclusions 

Though BeeMapper was not a grower-generated idea, growers were interested, involved, 

and engaged in its development, and we worked to ensure the tool was credible, legitimate, and 

salient to their needs. Active engagement techniques resulted in more feedback and more useful 

feedback than any passive technique we tried. Crop growers and Cooperative Extension 

researchers are interested in pursuing additional components to BeeMapper, including dynamic 
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management simulations, chemical inputs, weed management, disease transmission and 

prevention, and economic effects. Linking BeeMapper to a new field-based lowbush blueberry 

pollination simulation model (Qu and Drummond 2018) could provide growers a detailed, multi-

scale perspective on crop pollination mechanics and encourage incorporating functional 

agrobiodiversity into pollination management plans. 

BeeMapper provides lowbush blueberry growers with a map-based, landscape-scale 

perspective on wild bee abundance surrounding their crop fields. The maps are supported by 

rigorous field sampling and extensive spatial analysis to display the most accurate information. 

Although uncertainty remains, our participatory development process gave growers more 

confidence in the data as well as the ability to independently operate BeeMapper and interpret 

the information it provides. Pollinator interactions with the surrounding landscape are context-

dependent (Kennedy et al. 2013; Chapters 1, 2, and 3, this dissertation). The methodology we 

provide here, along with the adaptable open-source web architecture behind BeeMapper (Chapter 

5, this dissertation), can be used to create similar AgDSS in other pollinator-dependent crop 

systems or other ecosystem service-based web mapping tools.
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CHAPTER 5 

BEEMAPPER: AN ONLINE AGRICULTURAL DECISION SUPPORT SYSTEM WITH 

AN ADAPTABLE OPEN SOURCE WEB MAPPING ARCHITECTURE 

5.1. Introduction  

Crop pollination is an essential ecosystem service required by nearly 75% of the world’s 

crops (Klein et al. 2007). Globally, crop pollination by bees is valued at $391 billion 

(Lautenbach et al. 2012). Lowbush blueberry (Vaccinium angustifolium Aiton) is grown 

commercially in Maine (USA), Quebec (CA) and the Canadian Maritime Provinces. Fruit set is 

highly dependent on insect pollination, and wild bees are the most efficient and effective 

pollinators of the crop (Javorek et al. 2002; Asare et al. 2017). Pollination is primarily provided 

by rented honeybee (Apis mellifera L.) hives, making it one of the greatest input costs for 

lowbush blueberry growers (Asare et al. 2017). Growers are keen to reduce costs and maintain 

pollination services (Hanes et al. 2015; Hanes et al. 2018). Grower willingness to increase 

reliance on wild bee pollination services, however, is dependent on accurate information about 

wild bee populations and availability of nesting and foraging resources in the lowbush blueberry 

production landscape. Visualizing the resources available for wild bees in the landscape 

surrounding lowbush blueberry fields can aid growers in making pollination management 

decisions.  

Multiple ecosystem service (ES) tools predict and map pollination resources at landscape 

scales (Bagstad et al. 2013; Crossman et al 2013), and we chose the InVEST Crop Pollination 

model (Lonsdorf et al. 2009) to apply to Maine’s lowbush blueberry production landscape (Groff 

et al. 2016; Chapter 3, this dissertation).  The model output is a map of predicted pollinator 

abundance presented as pixel values across the input map extent. This map output is intuitive to 
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share with growers, and we distributed it broadly to Maine lowbush blueberry growers through a 

collaboratively-developed online framework. 

We developed BeeMapper, an interactive online agricultural decision support system 

(agDSS) that allows lowbush blueberry growers to spatially explore and assess the wild bee 

habitat resources and predicted wild bee abundance in the landscape surrounding their crop fields 

(Chapter 4, this dissertation). Other online agDSS exist (Tayyebi et al. 2016); however, ours 

targets a specific set of decisions made by growers (i.e., pollination management) as an 

introduction to the application of these tools in our crop system. There are two other web map-

based pollination agDSS (Pollination Mapper BETA, www.pollinationmapper.org; and 

Beescape, beescape.org); however, our tool is specific to the lowbush blueberry crop system, and 

here we provide the open source web mapping architecture behind our tool. BeeMapper allows 

growers to interact with various maps and map components; however, the maps cannot change or 

receive inputs from the growers. Thus, the tool meets the information needs of growers with a 

development approach that is practical for developers. The final version is a product of multiple 

grower-tested iterations that incorporates extensive grower feedback on tool features and design. 

Grower involvement in agDSS development promotes greater engagement with finished tools 

(Carberry et al. 2002; Chapter 4, this dissertation).  

BeeMapper was developed with free and open-source software (FOSS) programs. 

Increased availability of FOSS-based GIS and web mapping programs has made developing web 

mapping tools more accessible (Steiniger and Hunter 2013; Smith 2016). By using FOSS, we 

created a flexible approach for an interactive web tool that can be adapted for use with maps 

created for other applications. This architecture is especially suited to projects in which access to 

proprietary software and advanced programming skills may be limiting, though a programmer is 
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necessary to adapt the architecture to new tools. BeeMapper is a highly specific application of 

one model within the free and open-source InVEST model suite, comprising 18 ES models 

(Sharp et al. 2016). Most InVEST models and other ES models produce spatial data output 

appropriate for display and interaction through an online tool. Here we detail development of 

BeeMapper and the FOSS web mapping architecture that can be applied to other systems. 

5.2. Methods 

5.2.1 Spatial data preparation 

BeeMapper displays three maps that depict bee habitat resources to lowbush blueberry 

growers: 1) the InVEST Crop Pollination model output (hereafter referred to as the predicted 

wild bee abundance map), 2) a land cover map with eight land cover classes (Groff et al. 2016; 

Chapter 2, this dissertation; this is the land cover map used to generate the predicted wild bee 

abundance map), and 3) a shapefile of lowbush blueberry fields created from the land cover map, 

on-screen digitizing, and GPS-tracks of the field perimeters. We reclassified the predicted wild 

bee abundance map from a continuous raster (values 0-1) to a thematic raster with five 

abundance classes with Natural Breaks (Jenks). We summarized predicted wild bee abundance in 

areas around each blueberry field that represent the wild bee source habitat for each field for 

small bees that fly up to 250 m (represented as yds in the tool) and large bees that fly up to 1000 

m (or yds) (Greenleaf et al. 2007) (Fig. 5.1). We used a custom Python script (Kaszas 2012) to 

calculate the percent buffer area of each category of land cover (Fig. 5.1a) and predicted wild bee 

abundance (Fig. 5.1b). 
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Figure 5.1. Maps presented in BeeMapper: a) land cover map; b) predicted wild bee abundance 

map. Additional information about the BeeMapper user interface is provided in Figure 5.3.  

 

5.2.2 Web tool architecture 

By using easily accessible FOSS, BeeMapper is both economically feasible and readily 

assembled, and its architecture can be adapted to build web mapping tools for other applications. 

BeeMapper is built on established software, including QGIS, MapProxy, and OpenLayers (Fig. 

5.2), and the architecture follows common web development practices (reviewed in Smith 2016). 

QGIS (www.qgis.org) is a FOSS geographic information system (GIS) application that supports 

the viewing, editing, and analysis of geospatial data. An adapted version of QGIS, QGIS Server, 

served as our map server for BeeMapper. The map server is responsible for holding the raster 

data that will be displayed to end users. QGIS Server implements web map service (WMS) and 

web feature service (WFS) standard protocols to exchange GIS data via common web protocols 

such as HTTP (QGIS Development Team, 2009). QGIS offers a streamlined interface to access 

and modify GIS data that are displayed in the web application. Unlike other existing GIS 

applications such as GeoServer or MapServer, QGIS provides an interface to edit data in a “what  
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Figure 5.2. Architecture of the BeeMapper open source web mapping framework. The 

BeeMapper Virtual Server is hosted by the Advanced Computing Group at the University of 

Maine; the client (a person operating an internet-connected device) interacts with BeeMapper 

through a web browser to prompt the processes listed on the right using the programs listed on 

the left.  
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you see is what you get” (WYSIWYG) fashion. This approach increases the clarity of the data to 

developers, allowing them to preview and tweak styles on the fly (QGIS Development Team, 

2009). 

QGIS core development is not focused towards serving as a general networked mapping 

service, resulting in a rendering performance bottleneck when rapidly zooming or panning 

portions of the map in quick succession. However, because the raster data stored within QGIS 

are static, it is possible to cache generated map tiles for a significant improvement in 

performance. Use of a caching mechanism allows dynamically generated map sections to be 

saved for future use. If another end user looks at a cached portion of the map, the map server is 

skipped and the map tiles are directly loaded from memory and served. Caching is a well-

established technique and is best used in situations where data are relatively static (MapProxy 

Development Team, 2017). 

The FOSS MapProxy (https://mapproxy.org) software was selected as a map cache, as 

QGIS does not natively support caching for web map services. Within the BeeMapper 

architecture, the map cache receives web requests directly from end users and either a) performs 

a cache lookup and returns any cached data, or b) queries the QGIS server for new map data and 

caches the result (Fig. 5.2). If data are saved into the map cache, the map server is not queried 

again until either the data are updated or the cache is deleted. This leads to improved tool 

performance (i.e., faster load times) as more end users navigate the map, consequently caching a 

greater number of map sections. This benefit does have the drawback that it uses more space, as 

generated data need to be saved locally on the server. In our analysis, we found that caching the 

most frequently observed map views consumes roughly 1 GB of data for BeeMapper. It is also 

possible to pre-cache portions of the map to bootstrap the server to increase initial performance, 
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though pre-caching tiles above level 8 can take days to compute, ultimately consuming more 

memory than available on the virtual server. 

The Javascript framework OpenLayers (https://openlayers.org) powers the front-end of 

BeeMapper. OpenLayers is a well-established FOSS framework for developing modern GIS web 

applications. OpenLayers provides a developer abstraction to directly consume GIS data from 

the QGIS server and MapProxy cache. This lessens the developer burden of working with GIS 

data so that building a reactive interface to visualize the datasets is the focus (OpenLayers 

Development Team, 2017). 

Several optimizations were required to address the performance and latency issues of 

providing end users a responsive interface rich with data. Using MapProxy to cache map tiles 

decreased the average tile rendering time for displaying the raster data sets. We used multiple 

techniques to optimize performance for the vector data sets. One technique involved reducing 

and pre-compressing the blueberry field and surrounding buffer shapefiles. First, each coordinate 

within the data was set to the minimum amount of significant digits needed to accurately 

represent its spatial location. Second, each vector dataset was pre-compressed with Apache’s 

mod_gzip module to decrease the amount of data transferred to end users. Finally, necessary 

information from the attribute table of each vector data set was aggregated to a separate, 

shapeless, dataset. Partitioning the data into spatial and tabular components allows BeeMapper to 

load the minimum amount of data necessary to render the map, thus giving the appearance of a 

very responsive interface.  

5.3. Results 

The home screen of BeeMapper (Fig. 5.3) displays the full spatial extent of the tool and a 

series of navigational icons. Users navigate to a lowbush blueberry field and click on it. 
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Navigation occurs by either: 1) directly visually locating a crop field on the geographic base 

map, 2) entering the latitude and longitude coordinates of the field, or 3) by entering in a street 

address and/or postal code (U.S. = zipcode). When clicked, a window pops up displaying four 

pie charts that summarize the predicted wild bee abundance map and the land cover map in the 

source habitat for small and large bees surrounding the selected crop field (Fig. 5.3). Hovering 

over each slice of the pie reveals the name and percent of the corresponding class within each 

buffer area. This interactive screen is the fundamental output of the tool. 

Users can view the source maps by clicking the “Abundance” and “Land Cover” buttons 

in the lower left corner. Once selected, map transparency is adjustable with a slider below the 

land cover or abundance map buttons. A legend appears in the upper right corner, and users can 

hover over each map class for a short description. The land cover map describes habitat quality 

for wild bees (Groff et al. 2016; Chapter 2, this dissertation), and the predicted wild bee 

abundance map describes estimated contribution to fruit set in any nearby lowbush blueberry 

field (Asare et al. 2017). These interactive legends and pie charts were requested by growers as 

part of the iterative development process. 
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Figure 5.3. Summary of predicted wild bee abundance and land cover maps around a Maine, 

USA, lowbush blueberry field in BeeMapper for small bees (250 yd linear buffer distance from 

the focal field edge) and large bees (1000 yd linear buffer distance from the focal field edge). 

Annotations in white boxes have been added for clarity.  

 

A printable User’s Guide is available on the BeeMapper website 

(http://www.umaine.edu/beemapper/users-guide) for reference while navigating through the tool, 

or instructions may be accessed by toggling browser tabs. Additional resources available on the 

BeeMapper website include information on wild bee diversity and habitat resources, application 

of the InVEST Crop Pollination model to Maine’s lowbush blueberry production landscape 

(Groff et al. 2016), and implementation of pollinator conservation practices. 

5.4. Discussion  

Here we describe the development of BeeMapper, an interactive online agricultural 

decision support system that aids Maine lowbush blueberry growers in decision making 

regarding pollination management, particularly with respect to more efficient wild bee 
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pollinators. BeeMapper allows Maine lowbush blueberry growers to connect the habitat 

resources in the production landscape to the estimated wild bee abundance and contribution to 

fruit set in crop fields. Providing ES data to stakeholders via web tools such as BeeMapper 

connects science and practice and encourages sustainable management techniques (Kates et al. 

2001; Chapter 4, this dissertation).  

BeeMapper was developed with free and open-source software to create a flexible 

approach that can be implemented to place spatial output of ecosystem service analyses into 

practitioner-focused web tools. Many ES modeling programs, including InVEST, ARIES, and 

LUCI, produce spatial output (Bagstad et al. 2013). The InVEST model suite has a demonstrated 

record of knowledge production and application development in diverse stakeholder groups 

(Ruckelshaus et al. 2015), and contains multiple models relevant to agriculture including habitat 

quality, water retention, and nutrient retention (Terrado et al. 2014, 2016; Hamel et al. 2016). 

Additionally, although there are general trends, pollination services vary widely across crop 

systems (Ricketts et al. 2008), therefore the possibility exists for BeeMapper to be replicated in 

other agricultural landscapes. 

Future directions for BeeMapper include incorporating economic valuation of wild bee 

pollination services. The InVEST Crop Pollination model ultimately produces a map of 

pollinator supply, a measure we can translate to lowbush blueberry crop yield from wild bee 

pollination based on field data (Asare et al. 2017). Adding dynamic capability to allow input of 

landscape change from users is a future avenue of development. BeeMapper provides simple 

pollinator habitat assessments that are easily obtainable and quick to interpret, which was the 

target outcome of the tool’s development. 
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5.5. Software availability 

The open source web mapping architecture for BeeMapper was developed by Robert 

Powell (powellrw7@gmail.com) and can be accessed at (https://bitbucket.org/beduclos/ 

beemapper). The architecture uses FOSS programs OpenLayers, MapProxy, and QGIS Server 

and is written in the programming languages Javascript and PHP. The architecture is free to use 

and available under the terms of the GNU Public License Version 3 

(https://www.gnu.org/licenses/gpl-3.0.html). 

https://bitbucket.org/beduclos/
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APPENDIX A: SUPPLEMENTARY MATERIAL, CHAPTER 1 

Table A.1. Mann-Whitney U tests comparing percentage of land cover types surrounding ROW 

sites. All p-values are presented. If significant, median values of percentage of each land cover 

type are also presented for ROW sites in the Downeast (D), or Midcoast (M) growing region that 

are isolated from (I) or near to (N) lowbush blueberry fields. W=Mann-Whitney-Wilcoxon test 

value. N=12 for each type compared. 

Coniferous Region Type 

100m D=19.49, M=0, W=137, p>0.001 0.412 

250m D=9.55, M=0, W=131.5, p>0.001 0.206 

500m D=15.66, M=4.77, W=110.5, p=0.028  I=12.67, N=3.34 W=127,p=0.001 

1km D=22.36, M=9.21, W=116, p=0.012  I=16.58, N=9.12, W=110, p=0.03    

Blueberry Region Type 

100m 0.3828 I=0, N=0.1, W=36, p=0.007 

250m 0.7813 I=0, N=9.82, W=0, p>0.001 

500m 0.6884 I=0, N=16.14, W=0, p>0.001 

1km 0.3988 I=0.15, N=14.17, W=0, p>0.001    

Deciduous Region Type 

100m D=20.58, M=46.63, W=37, p=0.044 0.3777 

250m D=35.73, M=55.25, W=42, p=0.088 0.3777 

500m D=36.32, M=49.24, W=18, p=0.001 0.5137 

1km D=37.04, M=54.13, W=22, p=0.002 0.6707    

Edge Region Type 

100m D=10, M=16.42, W=9, p>0.001 0.5635 

250m D=7.17, M=13.07, W=6, p>0.001 0.5137 

500m D=7.18, M=10.59, W=18, p=0.001 0.16 

1km D=5.62, M=8.95, W=10, p>0.001 0.1432    

Agriculture Region Type 

100m D=0, M=1.45, W=39.5, p=0.027 0.1038 

250m D=0, M=4.26, W=17, p=0.001 0.5335 

500m D=0.04, M=6.23, W=22, p=0.003 0.6625 

1km D=0.43, M=9.74, W=12, p>0.001 0.1748    

Emergent Region Type 

100m 0.1409 0.4024 

250m 1 0.099 

500m 0.3707 0.2854 

1km 0.1432 0.2189 
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Table A.1 Continued.  

Wetland Region Type 

100m D=0, M=0, W=102, p=0.016 0.1129 

250m D=1.24, M=0,W=115, p=0.009 0.008 

500m D=3.49, M=0.15, W=131, p>0.001 1 

1km D=6.08, M=0.35, W=134, p>0.001 0.6649    

Urban Region Type 

100m 0.1421 0.8339 

250m 0.1885 0.074 

500m D=1.57, M=5.55, W=30, p=0.014 0.1782 

1km D=1.18, M=6.29, W=19, p=0.002 0.6649 



 
 

Table A.2. Solitary bee species richness influenced by land cover types surrounding ROW sites in the Maine, USA, lowbush blueberry 

production landscape across growing regions. 
 

100 m 250 m 500 m 1000 m 

Agriculture/pasture 
 

df=1,22, dev=4.41, p=0.03 
 

df=1.22, dev=1,22, 

p=0.002 

Lowbush blueberry 

fields 

df=1,22, dev=1.54, p=0.21 df=1,22, dev=1.32, p=0.25 df=1,22, dev=1.66, p=0.19 df=1,22, dev=1,22, p=0.27 

Coniferous forest df=1,22, dev=8.74, 

p=0.003 

df=1,22, dev=10.14, 

p=0.001 

df=1,22, dev=7.22, 

p=0.007 

df=1,22, dev=7.08, 

p=0.007 

Deciduous/mixed 

forest 

    

Deciduous/mixed 

forest edge 

df=1,22, dev=4.78, p=0.02 df=1,22, dev=4.91, p=0.03 
  

Emergent wetland 
    

Wetland df=1,22, dev=4.86, p=0.02 df=1,22, dev=4.99, p=0.03 df=1,22, dev=5.75, p=0.01 
 

Urban 
    

 

Table A.3. Social bee species richness influenced by land cover types surrounding ROW sites in the Maine, USA, lowbush blueberry 

production landscape across growing regions. 
 

100 m 250 m 500 m 1000 m 

Agriculture/pasture 
 

df=1,22, dev=5.70, p=0.01 
  

Lowbush blueberry 

fields 

    

Coniferous forest df=1,22, dev=5.67, p=0.01 df=1,22, dev=5.45, p=0.01 df=1,22, dev=4.90, p=0.02 df=1,22, dev=5.75, p=0.01 

Deciduous/mixed 

forest 

    

Deciduous/mixed 

forest edge 

    

Emergent wetland 
    

Wetland 
    

Urban 
    

 

1
6
5

 



 
 

Table A.4. Ground nesting bee species richness influenced by land cover types surrounding ROW sites in the Maine, USA, lowbush 

blueberry production landscape across growing regions. 
 

100 m 250 m 500 m 1000 m 

Agriculture/pasture 
 

df=1,22, dev=8.11, p=0.004 df=1,22, dev=3.98, p=0.04 df=1,22, dev=5.74, p=0.01 

Lowbush blueberry 

fields 

    

Coniferous forest df=1,22, dev=10.36, p=0.001 df=1,22, dev=10.93, 

p<0.001 

df=1,22, dev=10.84, 

p<0.001 

df=1,22, dev=12.61, 

p<0.001 

Deciduous/mixed 

forest 

    

Deciduous/mixed 

forest edge 

df=1,22, dev=4.30, p=0.03 df=1,22, dev=4.98, p=0.02 
  

Emergent wetland 
    

Wetland df=1,22, dev=4.22, p=0.04 df=1,22, dev=4.25, p=0.04 
  

Urban df=1,22, dev=3.61, p=0.05 
   

 

Table A.5. Cavity nesting bee species richness influenced by land cover types surrounding ROW sites in the Maine, USA, lowbush 

blueberry production landscape across growing regions. 
 

100 m 250 m 500 m 1000 m 

Agriculture/pasture 
    

Lowbush blueberry 

fields 

    

Coniferous forest df=1,22, dev=4.04, p=0.04 df=1,22, dev=4.62, p=0.03 
  

Deciduous/mixed 

forest 

    

Deciduous/mixed 

forest edge 

df=1,22, dev=4.25, p=0.04 
   

Emergent wetland 
    

Wetland 
  

df=1,22, dev=4.27, p=0.04 
 

Urban 
    

 

1
6
6

 



 
 

Table A.6. Solitary bee species richness influenced by land cover types surrounding ROW sites in the Downeast Maine, USA, 

lowbush blueberry growing region. 
 

100 m 250 m 500 m 1000 m 

Agriculture/pasture 
    

Lowbush blueberry 

fields 

df=1,10, dev=6.56, p=0.01 df=1,10, dev=8.94, p=0.002 df=1,10, dev=9.29, p=0.002 df=1,10, dev=10.27, p=0.001 

Coniferous forest 
    

Deciduous/mixed 

forest 

   
df=1,10, dev=3.57, p=0.05 

Deciduous/mixed 

forest edge 

    

Emergent wetland 
   

df=1,10, dev=6.10, p=0.01 

Wetland 
    

Urban 
    

 

Table A.7. Ground nesting bee species richness influenced by land cover types surrounding ROW sites in the Downeast Maine, USA, 

lowbush blueberry growing region. 
 

100 m 250 m 500 m 1000 m 

Agriculture/pasture 
    

Lowbush blueberry 

fields 

df=1,10, dev=4.17, p=0.04 df=1,10, dev=5.12, p=0.02 df=1,10, dev=6.30, p=0.01 df=1,10, dev=7.07, p=0.007 

Coniferous forest 
  

df=1,10, dev=4.93, p=0.02 df=1,10, dev=6.82, p=0.008 

Deciduous/mixed 

forest 

    

Deciduous/mixed 

forest edge 

    

Emergent wetland 
   

df=1,10, dev=3.75, p=0.05 

Wetland 
    

Urban 
    

 

 

1
6
7
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APPENDIX B. FOUR LETTER BEE SPECIES CODES 

Table B.1. Four letter species codes for all 168 bee species collected in the Maine lowbush 

blueberry production landscape, 2013-2015. Codes are presented alphabetically by scientific 

name. 

 

Scientific name Code 

Agapostemon texanus AGTX 

Agapostemon virescens AGVS 

Andrena alleghaniensis ANAG 

Andrena braccata ANBR 

Andrena bradleyi ANBD 

Andrena canadensis ANCN 

Andrena carlini ANCL 

Andrena carolina ANCO 

Andrena crataegi ANCT 

Andrena cressonii ANCR 

Andrena distans ANDI 

Andrena forbesii ANFO 

Andrena frigida ANFR 

Andrena hippotes ANHP 

Andrena hirticincta ANHI 

Andrena imitatrix ANIM 

Andrena integra ANIN 

Andrena milwaukeensis ANML 

Andrena miranda ANMI 

Andrena miserabilis ANMS 

Andrena nasonii ANNA 

Andrena nigrihirta ANNG 

Andrena nivalis ANNV 

Andrena nubecula ANNB 

Andrena nuda ANND 

Andrena personata ANPE 

Andrena placata ANPL 

Andrena regularis ANRG 

Andrena rufosignata ANRF 

Andrena rugosa ANRU 

Andrena sigmundi ANSI 

Andrena spiraeana ANSP 

Andrena thaspii ANTH 

Andrena vicina ANVC 

Scientific name Code 

Andrena virginiana ANVG 

Andrena wheeleri ANWH 

Andrena wilkella ANWI 

Anthidium manicatum ADMA 

Anthidium oblongatum ADOB 

Anthophora terminalis ATTE 

Augochlora pura ACPU 

Augochlorella aurata ALAU 

Augochloropsis metallica 

fulgida APMF 

Bombus bimaculatus BOBI 

Bombus borealis BOBO 

Bombus fernaldae BOFE 

Bombus griseocollis BOGR 

Bombus impatiens BOIM 

Bombus perplexus BOPE 

Bombus sandersoni BOSA 

Bombus ternarius BOTN 

Bombus terricola BOTR 

Bombus vagans BOVA 

Calliopsis andreniformis CLAN 

Ceratina calcarata CECA 

Ceratina dupla CEDU 

Ceratina mikmaqi CEMQ 

Coelioxys rubitorsis CXRU 

Colletes americanus COAM 

Colletes consors COCO 

Colletes simulans COSI 

Dialictus species DISP 

Epeolus scutellaris EPSC 

Eucera hamata EUHA 

Halictus confusus HACO 

Halictus ligatus HALI 

Halictus rubicundus HARU 
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Table B.1 Continued.   

Heriades carinata HECA 

Heriades variolosus/leavitti HEVA 

Hoplitis producta HPPR 

Hoplitis spoliata/pilosum HPSP 

Hylaeus affinis HYAF 

Hylaeus annulatus HYAN 

Hylaeus basalis HYBA 

Hylaeus mesillae HYME 

Hylaeus modestus HYMO 

Hylaeus verticalis HYVE 

Lasioglossum abanci LAAB 

Lasioglossum acuminatum LAAC 

Lasioglossum admirandum LAAD 

Lasioglossum albipenne LAAL 

Lasioglossum anomalum LAAN 

Lasioglossum atwoodi LAAT 

Lasioglossum cinctipes LACI 

Lasioglossum coriaceum LACO 

Lasioglossum cressonii LACR 

Lasioglossum ellisiae LAEL 

Lasioglossum ephialtum LAEP 

Lasioglossum foxii LAFO 

Lasioglossum heterognathum LAHE 

Lasioglossum hitchensi LAHI 

Lasioglossum imitatum LAIM 

Lasioglossum inconditum LAIN 

Lasioglossum katherineae LAKA 

Lasioglossum laevissimum LALA 

Lasioglossum leucocomum LALC 

Lasioglossum leucozonium LALZ 

Lasioglossum lineatulum LALI 

Lasioglossum macoupinense LAMA 

Lasioglossum nelumbonis LANE 

Lasioglossum nigroviride LANI 

Lasioglossum nymphaearum LANY 

Lasioglossum oblongum LAOB 

Lasioglossum 

paradmirandum LAPA 

Lasioglossum pectorale LAPC 

Lasioglossum perpunctatum LAPP 

  

Lasioglossum pilosum LAPI 

Lasioglossum planatum LAPL 

Lasioglossum platyparium LAPY 

Lasioglossum quebecense LAQU 

Lasioglossum smilacinae LASM 

Lasioglossum subversans LASV 

Lasioglossum subviridatum LASD 

Lasioglossum taylorae LATA 

Lasioglossum tegulare LATE 

Lasioglossum timothyi LATY 

Lasioglossum trigeminium LATG 

Lasioglossum truncatum LATM 

Lasioglossum versans LAVS 

Lasioglossum versatum LAVT 

Lasioglossum viridatum LAVI 

Lasioglossum weemsi LAWE 

Lasioglossum zonulum LAZO 

Macropis nuda MANU 

Megachile gemula MEGE 

Megachile inermis MEIN 

Megachile lapponica MELP 

Megachile latimanus MELT 

Megachile melanophaea MEME 

Megachile relativa MERE 

Megachile rotundata MERO 

Melissodes desponsa MLDE 

Melissodes druriella MLDR 

Melissodes illata MLIL 

Melissodes subillata MLSU 

Melissodes apicata MLAP 

Melitta americana MTAM 

Nomada articulata NOAR 

Nomada bidentate group NOBI 

Nomada cressonii NOCR 

Nomada denticulata NODT 

Nomada depressa NODP 

Nomada illinoensis/sayi NOIL 

Nomada nr. imbricata NOIM 

Nomada inepta NOIN 

Nomada luteoloides NOLU 
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Table B.1. Continued.  

Nomada maculata NOMA 

Nomada ovata NOOV 

Nomada perplexa NOPE 

Nomada pygmaea NOPY 

Nomada sayi NOSY 

Osmia atriventris OSAT 

Osmia bucephala OSBU 

Osmia inermis OSIN 

Osmia inspergens OSIP 

Osmia lignaria OSLI 

Osmia proxima OSPR 

Osmia pumila OSPU 

Osmia virga OSVI 

Peponapis pruinosa PEPR 

Pseudopanurgus aestivalis PSAE 

Pseudopanurgus andrenoides PSAN 

Pseudopanurgus species PSSP 

Sphecodes cressonii SPCR 

Sphecodes davisii SPDA 

Sphecodes species SPSP 

Trachandrena species TRSP 
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APPENDIX C. SUPPLEMENTARY MATERIAL, CHAPTER 2 

 

Table C.1.  Model estimates of abundance and species richness of bees associated with the 

proportion of eight land cover types in the Maine, USA, lowbush blueberry landscape. a) Small 

bees have a maximum foraging distance of up to 500 m and b) large bees with a maximum 

foraging distance of 500-2000 m. P-values are reported in parentheses; bold values are 

statistically significant (p<0.05), and N/As represent models that did not converge. 

 

a) SMALL 

BEES 

Ag Blue Con Dec Edge Emg Urb Wet 

All Abundance 
        

 
250m -0.13 

(0.593) 

0.367 

(0.159) 

-0.164 

(0.591) 

-0.204 

(0.447) 

-0.119 

(0.507) 

0.132 

(0.6) 

0.089 

(0.707) 

-0.047 

(0.832)  
500m -0.233 

(0.317) 

0.396 

(0.081) 

0.055 

(0.808) 

0.002 

(0.99) 

0.032 

(0.87) 

-0.237 

(0.367) 

0.037 

(0.87) 

-0.101 

(0.662)  
Richness 

        

 
250m -0.099 

(0.633) 

0.172 

(0.41) 

-0.116 

(0.658) 

-0.018 

(0.935) 

0.064 

(0.686) 

-0.094 

(0.658) 

0.058 

(0.777) 

-0.039 

(0.833)  
500m -0.174 

(0.374) 

0.234 

(0.216) 

-0.01 

(0.95) 

0.112 

(0.564) 

0.124 

(0.446) 

-0.234 

(0.281) 

0.032 

(0.87) 

-0.081 

(0.674) 

Early Abundance 
        

 
250m 0.158 

(0.45) 

-0.005 

(0.98) 
-0.436 

(0.031) 

0.0001 

(0.999) 

-0.233 

(0.179) 

-0.001 

(0.99) 

0.191 

(0.405) 

0.054 

(0.744)  
500m 0.10 

(0.609) 

-0.204 

(0.318) 

-0.108 

(0.519) 

-0.005 

(0.975) 

-0.107 

(0.487) 

-0.045 

(0.808) 

0.114 

(0.581) 

0.112 

(0.512)  
Richness 

        

 
250m -0.049 

(0.774) 

0.06 

(0.704) 
-0.423 

(0.01) 

0.065 

(0.694) 

-0.122 

(0.366) 

-0.067 

(0.672) 

0.218 

(0.132) 

-0.017 

(0.9)  
500m -0.075 

(0.639) 

-0.102 

(0.546) 

-0.074 

(0.61) 

0.038 

(0.788) 

-0.057 

(0.659) 

-0.188 

(0.228) 

0.195 

(0.186) 

0.045 

(0.747) 

Mid Abundance 
        

 
250m 0.40 

(0.037) 

0.213 

(0.269) 

-0.176 

(0.402) 
-0.413 

(0.03) 

-0.374 

(0.016) 

-0.058 

(0.775) 

0.185 

(0.434) 

-0.142 

(0.461)  
500m 0.297 

(0.105) 

0.084 

(0.679) 

0.094 

(0.548) 

N/A -0.283 

(0.07) 

0.063 

(0.765) 

-0.001 

(0.99) 

0.016 

(0.921)  
Richness 

        

 
250m 0.202 

(0.123) 

0.188 

(0.144) 

-0.235 

(0.117) 

-0.14 

(0.322) 

-0.135 

(0.256) 

-0.144 

(0.308) 

0.057 

(0.688) 

-0.043 

(0.746)  
500m 0.098 

(0.467) 

N/A 0.026 

(0.833) 

-0.147 

(0.264) 

-0.12 

(0.309) 

-0.078 

(0.583) 

-0.004 

(0.97) 

0.063 

(0.601) 

Late Abundance 
        

 
250m -0.13 

(0.593) 

0.367 

(0.159) 

-0.164 

(0.591) 

-0.204 

(0.447) 

-0.119 

(0.507) 

0.132 

(0.6) 

0.089 

(0.707) 

-0.047 

(0.832)  
500m -0.233 

(0.317) 

0.396 

(0.081) 

0.055 

(0.808) 

0.002 

(0.99) 

0.032 

(0.87) 

-0.237 

(0.367) 

0.037 

(0.87) 

-0.101 

(0.662)  
Richness 

        

 
250m -0.099 

(0.633) 

0.172 

(0.41) 

-0.116 

(0.658) 

-0.018 

(0.935) 

0.064 

(0.686) 

-0.094 

(0.658) 

0.058 

(0.777) 

-0.039 

(0.833)  
500m -0.174 

(0.374) 

0.234 

(0.216) 

-0.01 

(0.95) 

0.112 

(0.564) 

0.124 

(0.446) 

-0.234 

(0.281) 

0.032 

(0.87) 

-0.081 

(0.674) 

          

          



172 
 

Table C.1 Continued. 

b) LARGE 

BEES 

Ag Blue Con Dec Edge Emg Urb Wet 

All Abundance 
        

 
1000m 0.173 

(0.317) 

-0.059 

(0.707) 

0.2508 

(0.095) 

-0.085 

(0.568) 

-0.185 

(0.185) 
-0.554 

(0.001) 

0.252 

(0.162) 

-0.223 

(0.173)  
2000m 0.0611 

(0.738) 

0.012 

(0.644) 

0.217 

(0.133) 

-0.093 

(0.495) 

-0.079 

(0.581) 
-0.482 

(0.005) 

0.124 

(0.463) 

-0.085 

(0.416)  
Richness 

        

 
1000m 0.103 

(0.307) 

-0.052 

(0.595) 

0.058 

(0.524) 

-0.052 

(0.594) 

-0.011 

(0.899) 
-0.298 

(0.007) 

0.217 

(0.02) 

-0.087 

(0.384)  
2000m 0.111 

(0.251) 

-0.005 

(0.716) 

0.048 

(0.583) 

-0.014 

(0.873) 

0.061 

(0.498) 
-0.275 

(0.013) 

0.147 

(0.111) 

-0.145 

(0.427) 

Early Abundance 
        

 
1000m 0.014 

(0.939) 

-0.13 

(0.598) 

0.098 

(0.552) 

0.053 

(0.728) 

-0.276 

(0.158) 

-0.216 

(0.33) 

-0.06 

(0.724) 

0.06 

(0.709)  
2000m 0.06 

(0.724) 

0.023 

(0.527) 

0.029 

(0.861) 

0.123 

(0.457) 

-0.08 

(0.625) 

-0.383 

(0.096) 

-0.094 

(0.607) 

-0.039 

(0.85)  
Richness 

        

 
1000m 0.029 

(0.852) 

-0.163 

(0.387) 

0.155 

(0.269) 

-0.154 

(0.307) 

-0.262 

(0.106) 

-0.114 

(0.527) 

0.09 

(0.487) 

0.07 

(0.631)  
2000m 0.07 

(0.624) 

0.007 

(0.797) 

0.137 

(0.334) 

-0.118 

(0.456) 

-0.157 

(0.306) 

-0.238 

(0.214) 

0.037 

(0.805) 

0.009 

(0.954) 

Mid Abundance 
        

 
1000m 0.247 

(0.346) 

-0.018 

(0.936) 

0.401 

(0.076) 

-0.201 

(0.354) 

-0.276 

(0.163) 
-0.658 

(0.017) 

0.369 

(0.201) 

-0.407 

(0.128)  
2000m 0.024 

(0.932) 

0.021 

(0.608) 

0.385 

(0.067) 

-0.197 

(0.274) 

-0.18 

(0.374) 
-0.624 

(0.026) 

0.162 

(0.534) 

-0.173 

(0.512)  
Richness 

        

 
1000m 0.092 

(0.569) 

0.027 

(0.849) 

0.134 

(0.352) 

-0.170 

(0.262) 

-0.112 

(0.407) 

-0.275 

(0.125) 

0.233 

(0.115) 

-0.139 

(0.397)  
2000m 0.082 

(0.617) 

0.01 

(0.659) 

0.135 

(0.323) 

-0.134 

(0.314) 

-0.046 

(0.733) 

-0.262 

(0.145) 

0.159 

(0.275) 

-0.083 

(0.605) 

Late Abundance 
        

 
1000m 0.285 

(0.162) 

-0.006 

(0.971) 

0.114 

(0.507) 

-0.189 

(0.321) 

0.046 

(0.777) 
-0.467 

(0.033) 

0.38 

(0.054) 

-0.303 

(0.107)  
2000m 0.209 

(0.322) 

-0.013 

(0.633) 

0.106 

(0.527) 

-0.14 

(0.423) 

0.106 

(0.523) 

-0.243 

(0.267) 

0.31 

(0.091) 

-0.31 

(0.125)  
Richness 

        

 
1000m 0.213 

(0.098) 

-<0.001 

(0.99) 

-0.042 

(0.74) 

0.015 

(0.907) 

0.095 

(0.41) 

N/A 0.172 

(0.204) 

-0.117 

(0.38)  
2000m 0.204 

(0.101) 

-0.016 

(0.419) 

-0.039 

(0.742) 

0.062 

(0.618) 

N/A -0.136 

(0.335) 

0.155 

(0.203) 

-0.224 

(0.102) 
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APPENDIX D: SUPPLEMENTARY MATERIAL, CHAPTER 3 

Table D.1. Field-based Lonsdorf model parameter values including an additional period of the 

growing season for application to the Maine, USA lowbush blueberry production landscape. 

  
Nesting resources Floral resources  

Ground  Cavity  Spring  Early 

summer  

Mid-

summer  

Late 

summer  

Deciduous/mixed forest edge 0.4 0.8 0.9 0.9 1.0 1.0 

Urban/developed 0.7 0.5 1.0 0.9 0.9 1.0 

Coniferous forest 0.3 0.6 0.1 0.1 0.1 0.1 

Deciduous mixed forest  0.3 0.6 0.7 0.5 0.4 0.4 

Emergent wetlands  0.4 0.8 0.7 0.6 0.6 0.6 

Wetlands/water 0.2 0.8 0.3 0.2 0.4 0.5 

Agriculture/pasture 0.6 0.2 0.9 0.7 0.7 0.9 

Lowbush blueberry fields 0.5 0.2 0.4 1.0 0.7 0.5 

 



 

Table D.2. Lonsdorf model bee life history parameter values including an additional period of the growing season for the Maine, USA 

lowbush blueberry production landscape.  

  
Preferred nesting 

substrate 

Active flight season 
  

Species Ground Cavity Spring Early 

summer 

Mid-summer Late 

summer 

Maximum 

foraging 

distance (m) 

Andrena carlini  1 0 0.25 0.25 0.25 0.25 598 

Andrena carolina  1 0 0.5 0.5 0 0 246 

Andrena vicina  1 0 0.25 0.25 0.25 0.25 569 

Augochlorella aurata  1 0 0.25 0.25 0.25 0.25 60 

Colletes inaequalis  1 0 0.33 0.33 0.33 0 1091 

Halictus ligatus  1 0 0.25 0.25 0.25 0.25 148 

Lasioglossum acuminatum  1 0 0.25 0.25 0.25 0.25 186 

Lasioglossum cressonii  0 1 0.25 0.25 0.25 0.25 63 

Lasioglossum heterognathum  1 0 0.25 0.25 0.25 0.25 16 

Lasioglossum leucocomum  1 0 0.25 0.25 0.25 0.25 31 

Lasioglossum pectorale  1 0 0.25 0.25 0.25 0.25 81 

Lasioglossum versatum 1 0 0.25 0.25 0.25 0.25 79 

Osmia atriventris  0 1 0.5 0.5 0 0 186 

Osmia inspergens  0 1 1.0 0 0 0 495 

 

 

 

 

  

1
7
4
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Table D.3. Field-based Lonsdorf model parameter values including two additional land cover 

types for the Maine, USA lowbush blueberry production landscape. 

  
Nesting 

resources 

Floral resources 

 
Ground  Cavity  Early 

summer  

Mid-

summer  

Late 

summer  

Deciduous/mixed forest edge 0.4 0.8 0.9 0.9 1.0 

Urban/developed 0.7 0.5 1.0 0.9 1.0 

Coniferous forest 0.3 0.6 0.1 0.1 0.1 

Deciduous mixed forest  0.3 0.6 0.7 0.5 0.4 

Emergent wetlands  0.4 0.8 0.7 0.6 0.6 

Wetlands 0.2 0.8 0.3 0.2 0.5 

Agriculture/pasture 0.6 0.2 0.9 0.7 0.9 

Lowbush blueberry fields 0.5 0.2 0.4 1.0 0.5 

Mixed Forest  0.3 0.6 0.4 0.3 0.2 

Open Water 0 0 0 0 0 



 
 

Table D.4. Wilcoxon rank sum pairwise comparisons test values of ground and cavity nesting resource amount and condition for eight 

land cover types in the Maine, USA lowbush blueberry production landscape. P-values are in parentheses. Bold entries are significant 

at p<0.05. 

 

a) Ground: Exposed bare soil   
Lowbush 

blueberry 

fields 

Agriculture/

pasture 

Coniferous 

forest 

Deciduous/

mixed forest 

Deciduous/

mixed forest 

edge 

Emergent 

wetlands 

Wetlands

/water 

Agriculture/ 

pasture 

Amount 2 (0.02)  
      

Condition 1 (0.03) 
      

Coniferous forest Amount 2 (0.03)   9 (0.49)  
     

Condition 0 (0.01) 6 (0.12) 
     

Deciduous/mixed 

forest 

Amount 3.5 (0.05)  7 (0.24)  13 (1.0 )     
    

Condition 3 (0.09) 16 (0.48) 21 (0.05) 
    

Deciduous/mixed 

forest edge 

Amount 3 (0.05) 10.5 (0.74) 12 (1.0)     10 (0.65)  
   

Condition 3.5 (0.11) 17 (0.36) 20.5 (0.10) 13.5 (0.91) 
   

Emergent 

wetlands 

Amount 1 (0.02)  0 (0.01)  5 (0.24)  4 (0.10)  7 (0.51)  
  

Condition 0 (0.02) 3 (0.07) 7 (0.45) 2 (0.05) 3 (0.09) 
  

Wetlands/water Amount 0 (0.009)  1 (0.01)  5.5 (0.14) 4 (0.05) 8 (0.36)  9 (0.88) 
 

Condition 0 (0.01) 3 (0.04) 7.5 (0.27) 2 (0.02) 3 (0.06) 9 (0.88)  
 

Urban/developed Amount 4 (0.08)  16.5 (0.40)  18 (0.27)  18 (0.26)  16.5 (0.44)  19 (0.03)  24 (0.01)  

Condition 8.5 (0.79) 23(0.02) 25 (0.009) 20 (0.12) 19 (0.17) 20 (0.01) 25 (0.01) 

b) Cavity: Woody shrubs   
Lowbush 

blueberry 

fields 

Agriculture/

pasture 

Coniferous 

forest 

Deciduous/

mixed forest 

Deciduous/

mixed forest 

edge 

Emergent 

wetlands 

Wetlands

/water 

Agriculture/ 

pasture 

Amount 10.5 (0.73)  
      

Condition 5.5 (0.50) 
      

Coniferous forest Amount 12.5 (1.0)  14.5 (0.73)  
     

Condition 9 (0.89) 12 (0.66) 
     

1
7
6

 



 
 

Table D.4 Continued. 

Deciduous/mixed 

forest 

Amount 11 (0.81)  13.5 (0.90)  11 (0.81)  
    

Condition 8 (0.68) 11.5 (0.76) 13.5 (0.90) 
    

Deciduous/mixed 

forest edge 

Amount 18 (0.27)  19 (0.18)  18 (0.27)  19.5 (0.15)  
   

Condition 9.5 (0.76) 12.5 (0.20) 13 (0.51) 14.5 (0.28) 
   

Emergent 

wetlands 

Amount 19 (0.03)  19 (0.03)  19 (0.03) 20 (0.01)  15 (0.24)  
  

Condition 13 (0.17) 15 (0.04) 17 (0.09) 18 (0.04) 12 (0.27) 
  

Wetlands/water Amount 24 (0.01)  24 (0.01) 24 (0.01) 25 (0.01)  19 (0.19)  10 (1.0)     
 

Condition 15.5 (0.19) 18.5 (0.03) 20.5 (0.10) 22 (0.04) 14 (0.34) 9 (0.88) 
 

Urban/developed Amount 9 (0.48) 11.5 (0.90)  9 (0.48)  10 (0.63) 4.5 (0.10)  0 (0.01)  0 (0.01)  

Condition 5 (0.13) 7.5 (0.37) 7.5 (0.17) 7.5 (0.17) 2.5 (0.04) 0 (0.01) 0 (0.006) 

c) Cavity: Fallen dead wood 
  

Lowbush 

blueberry 

fields 

Agriculture/

pasture 

Coniferous 

forest 

Deciduous/

mixed forest 

Deciduous/

mixed forest 

edge 

Emergent 

wetlands 

Wetlands

/water 

Agriculture/ 

pasture 

Amount 1.5 (0.03)  
      

Condition 0 (0.01) 
      

Coniferous forest Amount 19.5 (0.02)  25 (0.008)  
     

Condition 13.5 (0.90) 20 (0.01) 
     

Deciduous/mixed 

forest 

Amount 20 (0.009)  25 (0.005) 22.5 (0.02)  
    

Condition 18 (0.27) 18 (0.04) 16 (0.51) 
    

Deciduous/mixed 

forest edge 

Amount 18.5 (0.03)  25 (0.008) 8.5 (0.43) 2.5 (0.02)  
   

Condition 10 (0.60) 20 (0.01) 9.5 (0.51) 6 (0.18) 
   

Emergent 

wetlands 

Amount 4.5 (0.25) 15.5 (0.15)  0 (0.01)   0 (0.009)   0 (0.01) 
  

Condition 11.5 (0.79) 14 (0.06) 10.5 (1.0) 9.5 (1.0) 12 (0.68) 
  

Wetlands/water Amount 10.5 (1.0)  21 (0.07)  3 (0.05)  0 (0.007)  5 (0.12)  13.5 (0.41)  
 

Condition 19.5 (0.14) 20 (0.01) 18 (0.27) 14 (0.82) 21 (0.07) 12.5 (0.61) 
 

Urban/developed Amount 0 (0.009)  10 (0.42)  0 (0.006)  0 (0.003)  0 (0.006)  2.5 (0.03)  2.5 (0.02)  

Condition 0 (0.006) 10 (N/A) 0 (0.006) 2.5 (0.02) 0 (0.005) 2.5 (0.04) 0 (0.007) 
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Table D.4 Continued. 

d) Cavity: Standing dead wood   
Lowbush 

blueberry 

fields 

Agriculture/

pasture 

Coniferous 

forest 

Deciduous/

mixed forest 

Deciduous/

mixed forest 

edge 

Emergent 

wetlands 

Wetlands

/water 

Agriculture/ 

pasture 

Amount 10 (0.60)  
      

Condition 4 (0.10) 
      

Coniferous forest Amount 23 (0.02)  24 (0.01)  
     

Condition 16 (0.50) 18 (0.04) 
     

Deciduous/mixed 

forest 

Amount 23 (0.02)  24 (0.01) 14.5 (0.74)  
    

Condition 16 (0.50) 18 (0.04) 12.5 (1.0) 
    

Deciduous/mixed 

forest edge 

Amount 4 (0.01)  24.5 (0.01) 12.5 (1.0)  11.5 (0.91) 
   

Condition 19.5 (0.14) 20 (0.01) 16 (0.48) 16 (0.48) 
   

Emergent 

wetlands 

Amount 13 (0.49)  14 (0.30) 5 (0.25)   5 (0.25)  5 (0.22)  
  

Condition 10 (1.0) 14 (0.06) 6.5 (0.41) 6.5 (0.41) 3 (0.07) 
  

Wetlands/water Amount 18 (0.26)  19 (0.15)  9 (0.51) 8 (0.39)  9.5 (0.57)  12 (0.68)  
 

Condition 16.5 (0.44) 16 (0.10) 15 (0.66) 15 (0.66) 13.5 (0.91) 13 (0.52) 
 

Urban/developed Amount 7.5 (0.17) 10 (0.42)  0 (0.007)   0 (0.007)  0 (0.006)  5 (0.12) 5 (0.07)  

Condition 5 (0.07) 10 (N/A) 2.5 (0.02) 2.5 (0.02) 0 (0.006) 2.5 (0.03) 5 (0.07) 
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Table D.5. Expert-based Lonsdorf model bee life history parameter values assigned by Groff et al. (2016). 

  
Preferred nesting 

substrate 

Active flight season 
 

Species Ground Cavity Early summer Mid-summer Late summer 

Maximum 

foraging 

distance (m) 

Andrena carlini  1 0 0.33 0.33 0.33 598 

Andrena carolina  1 0 0.25 0.5 0.25 246 

Andrena vicina  1 0 0.33 0.33 0.33 569 

Augochlorella aurata  1 0 0.17 0.33 0.5 60 

Colletes inaequalis 1 0 0.33 0.33 0.33 1091 

Halictus ligatus  1 0 0.43 0.29 0.38 148 

Lasioglossum acuminatum 1 0 0.17 0.33 0.5 186 

Lasioglossum cressonii  0 1 0.29 0.29 0.43 63 

Lasioglossum heterognathum  1 0 0.17 0.33 0.5 16 

Lasioglossum leucocomum  1 0 0.29 0.29 0.43 31 

Lasioglossum pectorale  1 0 0.29 0.29 0.43 81 

Lasioglossum versatum  1 0 0.29 0.29 0.43 79 

Osmia atriventris  0 1 0.25 0.5 0.25 186 

Osmia inspergens  0 1 0 1.0 0 495 

 

1
7
9
 



180 
 

APPENDIX E: IRB APPROVAL FOR BEEMAPPER DEVELOPMENT
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APPENDIX F: INFORMED CONSENT FOR BEEMAPPER TESTING SESSIONS 

Project Title: Participatory Development of a Bee Habitat Assessment Tool for Maine Blueberry Grower  

 

Project Description: You are invited to participate in a research project being carried out by Brianne Du Clos, 

a graduate student at the University of Maine working with Dr. Cyndy Loftin, Dr. Frank Drummond, and Dr. 

Samuel Hanes. The project is funded by the US Department of Agriculture and Mitchell Center for 

Sustainability Solutions. The purpose of this research is to enlist growers’ help in designing an online tool 

showing the quality of wild bee habitat around blueberry fields. 

 

What Will You Be Asked To Do: If you agree to participate, Ms. Du Clos will show you a demonstration version 

of the tool and ask you questions about how to make it more useful. Here are a few sample questions: What 

would you change about the way you find your fields? Do the terms in the habitat key make sense or should 

we reword them? How might we do this? How could we make this tool more useful for small growers? We 

estimate your participation will take between twenty minutes and one hour. Interviews will be recorded. 

 

Confidentiality: Du Clos will keep your participation confidential. Du Clos will not tell anyone that she has 

talked to you, with the exception of her graduate advisors. No one else will know that you participated and 

no identifying information will be published. Du Clos will keep the audio recording of this interview on her 

password protected computer for five years before deleting it. 

 

Benefits and Risks: With the exception of your time and inconvenience, there are no risks to you from 

participating in this study. The project expects to improve a tool the can help growers better assess their wild 

bee habitat. This is likely to benefit Maine blueberry growers.  

Compensation: You will be compensated $75 for your time. 

 

Voluntary: Your participation is completely voluntary and you are free to withdraw at any point. You are 

always free skip any question or to end participation altogether. You will receive full compensation if you 

withdraw immediately prior to or during the interview. 

Contact Information: If you have any questions, concerns, or additional comments, please contact the Principal 

Investigator: 

Brianne Du Clos 

5755 Nutting Hall, room 244 

Orono, Maine 04469 

207-581-2939 

brianne.duclos@maine.edu 

 

If you have any question about your rights as a research participant, you may contact Gayle Jones, Assistant to 

the University of Maine’s Protection of Human Subjects Review Board, 207-581-1498, 

<gayle.jones@umit.maine.edu>. 
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APPENDIX G: INTERVIEW PROTOCOL FOR BEEMAPPER TESTING SESSIONS 

Du Clos Interview Protocol 

 

Project Title: Participatory Development of a Bee Habitat Assessment Tool for Maine Blueberry 

Grower  

 

1.) What do you think is good bee habitat? 

 

2.) This tool is meant to show you what the bee habitat is like around your blueberry field. Does this 

information interest you? How do you think you could use this information? 

  

3.) This is a web-based tool. Can you tell us about your experience or comfort level with the internet? 

  

4.) How do you think we can make this tool more accessible to growers?  

  

5.) Can you find your field(s) in the web tool? Are you able to navigate through the available data once 

you find your field(s)? 

 

6.) Does the way the data is displayed (colors, labels, arrangement) make sense to you? If not, how do 

you think we can improve it? 

 

7.) What does each data layer mean to you? What do you think this means for bees? Specifically, let’s 

look at these buffers around the field(s). How do you interpret this distance? Can you connect what the 

maps show within the buffers to bees? If not, what kind of information can we provide to make that 

connection clearer? 

 

8.) Are you interested in the data sources we used and/or the model used to make the abundance map? 

 

9.) Since this is a predictive model using satellite-collected land cover data and expert opinion, there are 

multiple sources of uncertainty in these maps. How likely is incorrect information going to affect your 

use and interpretation of this tool? Why/why not? 

 

10.) Looking at these maps, how does the data affect your perspective of bee habitat around your 

field(s)? 

 

11.) Any other comments, questions, or ideas regarding the web tool?  
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APPENDIX H: BEEMAPPER USER’S GUIDE 

 

 

http://www.umaine.edu/beemapper
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http://www.umaine.edu/beemapper
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http://www.maine.gov/megis/catalog/metadata/melcd.html
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http://www.discoverlife.org/mp/20p?see=I_YORKU65&res=640
http://www.discoverlife.org/mp/20p?see=I_YORKU67&res=640&flags=subgenus
http://www.discoverlife.org/mp/20p?see=I_YORKU254&res=640&flags=subgenus
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http://www.discoverlife.org/mp/20p?see=I_YORKU332&res=640&flags=subgenus
http://www.discoverlife.org/mp/20p?see=I_YORKU511&res=640&flags=subgenus
http://www.discoverlife.org/mp/20p?see=I_YORKU639&res=640&flags=subgenus
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http://www.discoverlife.org/mp/20p?see=I_YORKU734&res=640&flags=subgenus
http://www.discoverlife.org/mp/20p?see=I_YORKU768&res=640&flags=subgenus
http://www.discoverlife.org/mp/20p?see=I_YORKU793&res=640
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http://www.discoverlife.org/mp/20p?see=I_YORKU811&res=640&flags=subgenus
http://www.discoverlife.org/mp/20p?see=I_YORKU859&res=640
http://www.discoverlife.org/mp/20p?see=I_YORKU917&res=640
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http://www.discoverlife.org/mp/20p?see=I_YORKU1159&res=640
http://www.discoverlife.org/mp/20p?see=I_YORKU1205&res=640
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http://www.maine.gov/megis/catalog/
http://www.maine.gov/megis/catalog/
http://www.maine.gov/megis/catalog/
http://www.fws.gov/wetlands/NWI/Index.html
http://nassgeodata.gmu.edu/CropScape/
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http://data.naturalcapitalproject.org/invest-releases/3.3.3/userguide/croppollination.html
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https://extension.umaine.edu/blueberries/factsheets/bees/
https://www.youtube.com/watch?v=rgVav2byI8o
https://www.youtube.com/watch?time_continue=120&v=aY9GKAH231I
https://www.youtube.com/watch?v=J1kFxmiYncA
https://doi.org/10.1093/ee/nvv082
http://digitalcommons.library.umaine.edu/etd/2112/
https://doi.org/10.1016/j.envsoft.2016.01.003
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