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Lyme disease is caused by the bacterial spirochete Borrelia burgdorferi, which is 

transmitted through the bite of an infected blacklegged (deer) tick (Ixodes scapularis). 

Geographic invasion of I. scapularis in North America has been attributed to causes including 

20th century reforestation and suburbanization, burgeoning populations of the white-tailed 

deer (Odocoileus virginianus) which is the primary reproductive host of I. scapularis, tick-

associated non-native plant invasions, and climate change. Maine, USA, is a high Lyme disease 

incidence state, with a history of increasing I. scapularis abundance and northward range 

expansion. This thesis addresses the question: “To what extent has the range expansion of 

blacklegged ticks in Maine been associated with climate change, deer, and other factors?” using 

a long-term, passive surveillance dataset (1990-2013) of I. scapularis in Maine. 

Chapter 1 characterized temporal trends in I. scapularis submissions rate (an index of 

abundance) and phenology, in Maine’s northern (7 counties) versus southern (9 counties) tier. 

In the northern tier the I. scapularis submission rate and season duration increased throughout 

the duration of the time series, indicating I. scapularis was emergent but not established. By 

contrast, in the southern tier, submissions rate and season duration increased initially but after 



 

 

about 13 years leveled off, indicating I. scapularis was established by the mid-2000s. Winter 

and fall average minimum temperatures increased in the northern tier and summer relative 

humidity in both tiers increased. I. scapularis submission rates and phenological changes were 

correlated with relative humidity statewide. Generally, I. scapularis submission rates and 

phenological changes were correlated with winter warming, but predominantly in the northern 

tier and only the early half of the time series for the southern tier. Though northern tier climate 

appears to have become more permissive over time, current ecological suitability for I. 

scapularis in the northern tier may be limited due to low deer densities, which averaged ~5/mi2. 

In the southern tier, deer densities were higher and correlated with I. scapularis submissions 

rate. However, a number of other, unknown population-limiting mechanisms could have been 

operating to keep I. scapularis in the southern tier at a dynamic equilibrium since the mid-

2000s. Also observed was a correlation between Lyme incidence and I. scapularis in the 

northern but not southern tier. This may represent decoupling of reported disease incidence 

and entomological risk as measured simply by tick abundance and Borrelial infection 

prevalence. This discrepancy suggested that disease discovery had increased through greater 

clinician and patient awareness and testing effort, and/or that acarological risk may be a more 

nuanced function of diverse, variously virulent strain types in multiple pathogens borne by I. 

scapularis. 

Chapter 2 used a generalized additive mixed model (GAMM) to model linear and 

nonlinear relationships between nymphal I. scapularis abundance and predictors, while 

allowing for spatiotemporal dependencies within and among wildlife management districts. I. 

scapularis nymphs increased with increasing deer densities up to ~13 deer/mi2, but beyond this 



 

 

threshold tick abundance did not vary with deer density. This result corroborated the idea of a 

saturating relationship between I. scapularis and deer density. It was also consistent with 

empirical studies suggesting deer density must be lowered below ~8-13/mi2 to lower I. 

scapularis abundance enough to lower Lyme disease. The model also indicated that more ticks 

were associated with higher relative humidity, warmer minimum winter temperatures and 

more degree-day accumulation, and that without deer >4/mi2 warmer winters would not 

increase nymphal abundance. The Maine Department of Inland Fisheries and Wildlife northern 

tier goals range from 10-15/mi2 and southern tier goals from 15-20/mi2 for 2030 (MEIFW 2017). 

We recommended deer densities be kept to ≤10/mi2 in all of Maine’s northern tier to mitigate 

likely increases in ticks due to future warming. Suburbanization and presence of tick-associated 

non-native plants did not enter the model because they co-occurred with deer. 

Chapter 3 ascertained that Lyme incidences on the off-shore, unbridged islands of 

Maine have been above the statewide average and at least on par with those seen on other 

offshore islands in Massachusetts and Rhode Island. Increasing I. scapularis abundance and 

Lyme incidence have been attributed to high deer densities by some residents of these island 

communities. Burgeoning deer densities on some of these islands have led to various deer 

management histories along with a good deal of conflict on how to manage deer populations. 

We summarized the burden of Lyme disease, entomological risk, and deer management 

histories on these islands. We also polled island residents in 2016 to quantify the level of 

concern about the Lyme disease problem and assess the level of support for deer herd 

reduction on their islands. A 2016 survey of island residents indicated that other deer-related 

problems, namely vehicle collisions and garden and forest damage, motivated support for deer 



 

 

reduction as much as Lyme disease. We recommended efforts to keep deer density ≤15/mi2 

and to remove invasive plant species--particular Japanese barberry—from the landscape. The 

benefits of these measures will extend beyond vector tick control to improved deer and forest 

health. 
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CHAPTER 1. 

TRENDS IN QUESTING BLACKLEGGED TICK ABUNDANCE AND PHENOLOGY IN NORTHERN 

VERSUS SOUTHERN MAINE, USA 

1.1 Abstract  

Lyme disease is caused by the bacterial spirochete Borrelia burgdorferi, which is 

transmitted through the bite of an infected blacklegged tick (Ixodes scapularis). Maine, USA, is a 

high Lyme disease incidence state, with rising incidence of Lyme and other tick-borne illnesses 

associated with a history of increasing I. scapularis abundance, including range expansion to the 

north. Using a passive surveillance dataset (1990-2013), we characterized temporal trends in I. 

scapularis submissions rate (an index of abundance) and phenology, in Maine’s northern (7 

counties) versus southern (9 counties) tier. We also determined whether questing I. scapularis 

submissions rate and phenology were correlated with climatological variables and white-tailed 

deer (Odocoileus virginianus) density. In the northern tier the I. scapularis submissions rate and 

season duration increased throughout the duration of the time series, indicating I. scapularis 

was emergent but not established. By contrast, in the southern tier, submission rate and season 

duration increased initially but after about 13 years leveled off, indicating I. scapularis was 

established by the mid-2000s. Winter and fall average minimum temperatures in the northern 

tier, and fall average temperatures and summer relative humidity in both tiers increased. I. 

scapularis submission rates and phenological changes were correlated with relative humidity 

statewide. Generally, I. scapularis submission rates and phenological changes were correlated 

with winter warming, but predominantly in the northern tier and only the early half of the time 

series for the southern tier. Though northern tier climate appears to have become more 
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permissive over time, current ecological suitability for I. scapularis in the northern tier may be 

limited due to low deer densities, which averaged ~5/mi2. In the southern tier, deer densities 

were higher and correlated with I. scapularis submissions rate. However, a number of other, 

unknown population-limiting mechanisms could have been operating to keep I. scapularis in 

the southern tier at a dynamic equilibrium since the mid-2000s. Also observed was a correlation 

between Lyme incidence and I. scapularis in the northern but not southern tier. This may 

represent decoupling of reported disease incidence and entomological risk as measured simply 

by tick abundance and Borrelial infection prevalence. This discrepancy suggested that disease 

discovery had increased through greater clinician and patient awareness and testing effort, 

and/or that acarological risk may be a more nuanced function of diverse, variously virulent 

strain types in multiple pathogens borne by I. scapularis.  

 

1.2 Introduction 

1.2.1 Expansion of Lyme Disease 

Lyme disease is the most common tick-borne disease in the US, accounting for 69% of all 

tick- and mosquito-borne illness (Adams et al. 2016). Lyme disease is caused by the bacterial 

spirochete Borrelia burgdorferi, which is transmitted through the bite of an infected 

blacklegged tick (Ixodes scapularis) (Mead et al. 2015, Rosenberg et al. 2018). With >37,000 

cases reported to the Centers for Disease Control and Prevention (CDC) during 2013, Lyme 

disease ranks fifth among all nationally notifiable conditions (Mead et al. 2015). The number of 

reported Lyme disease cases has roughly tripled from 1992 to 2015 (Adams et al. 2016) and its 

geographic range has expanded (Fig. 1.1, CDC 2018a) in both the northeast and upper Midwest. 
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The first known case of Lyme disease in Maine was in 1986 (Rand et al. 2007) and the 

first reports of I. scapularis in Maine were published in the late 1980s (Anderson et al. 1987, 

Ginsberg and Ewing 1988). Maine has ranked among the top five states for Lyme incidence 

since 2008, with the highest 3-year average (2015-2017) incidence in the nation at 89.2 cases 

per 100,000 people (CDC 2018b). Case-counting is inexact (Cartter et al. 2018), but Maine is 

consistently a high-incidence state for reported Lyme disease with increases over time in every 

county (Fig. 1.2, MECDC 2018a). Incidence is the rate of occurrence of new cases and conveys 

information about the risk of contracting the disease. Lyme incidence has been above the 

statewide average in the southern coastal and interior counties (Androscoggin, Cumberland, 

Hancock, Kennebec, Knox, Lincoln, Sagadahoc, Waldo, and York), and below average in the 

more western and northern counties (Aroostook, Franklin, Oxford, Penobscot, Piscataquis, 

Somerset) and the easternmost county, Washington County, which includes what is known as 

the Downeast coast.  

Figure 1.1 Range expansion of Lyme disease cases in the US, 2001 versus 2015. 
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Based on whether counties have been above or below the statewide average for Lyme 

incidence from 2001 through 2017), we can define the southern tier as including nine counties: 

Androscoggin, Cumberland, Hancock, Kennebec, Knox, Lincoln, Sagadahoc, Waldo, and York 

and the northern tier as including the remaining seven (Fig. 1.3). The geographic expansion of 

Lyme incidence (cases/100,000) in Maine shown in Figure 1.4 (MECDC 2018a) allows a visual 

comparison of county-level incidence in 2008-2012 versus 2013-2017. Clearly, Lyme incidence 

has increased in the southern tier of the state and expanded into the northern tier. 

 

Figure 1.3 Maine divided into northern and southern 
tiers by county groupings. 
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1.2.2 Expansion of Ixodes scapularis 

Using data from a statewide tick identification program that began in 1989, Rand et al. 

(2007) demonstrated for Maine a strong spatial relationship between Lyme disease incidence 

and nymphal I. scapularis (n = 16 counties, R2 = 0.77) as well as a moderate temporal 

relationship over the years of the study (1989-2006, n = 18 years, R2 = 0.52). The study showed 

that I. scapularis emerged first along the coast, then advanced inland and northwards in Maine. 

Increases over time were clear for the south coastal portions of the state as well as inland. 

Comparison with macroscopically similar I. cookei (woodchuck tick) indicated a true increase in 

abundance over time of questing I. scapularis, not just increased activity on the part of 

blacklegged ticks or tick submitters. 

This statewide tick identification program, henceforth referred to as passive tick 

surveillance, continued through most of 2013. Appending the data collected since Rand et al. 

(2007) and it can be seen that the geographic range of I. scapularis in Maine continued to 

expand north and west (Fig. 1.5a,b) through the end of the passive surveillance program. 

Viewed as time series at the county level (Fig 1.6), I. scapularis submissions increased over time 

in the northern tier counties, especially Penobscot County. Meanwhile, submissions decreased 

in the southern tier, except for Hancock, which borders the northern tier. Given the universal 

increase in Lyme incidence in every county (Fig. 1.2), the decrease in I. scapularis in southern 

tier counties was counterintuitive. We thought that both the northward range expansion and 

the southern tier declines in I. scapularis submissions since Rand et al. (2007) merited 

investigation. 
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  Rate of Lyme Disease
by County, Maine 2003-2007

Rate of Lyme Disease
by County, Maine 2013-2017

Rate (per 100,000)

120.0
75.0
30.0

Rate (per 100,000)

120.0
75.0
30.0

Cross-hatched areas show where data were suppressed.
White indicates a value of zero (0).

Gray indicates that data are not releasable.
Figure A Figure B

About these figures

Figure A shows the incidence rate (per 100,000 people) of confirmed and probable cases of Lyme disease in the population. Beginning in 
2008, the case definition was expanded to include the classification of probable cases. Maine CDC’s Infectious Disease Program obtained 
these data through notifiable conditions surveillance based upon reports from healthcare providers, laboratories, and other healthcare 
partners. 
Figure B shows the incidence rate (per 100,000 people) of confirmed and probable cases of Lyme disease in the population. Beginning in 
2008, the case definition was expanded to include the classification of probable cases. Maine CDC’s Infectious Disease Program obtained 
these data through notifiable conditions surveillance based upon reports from healthcare providers, laboratories, and other healthcare 
partners. 
Different map colors are not based on statistical tests of difference.
To protect privacy as per Maine CDC Privacy Policy, data may be suppressed. Locations where data must be suppressed are represented by 
cross-hatching. Locations where data are not releasable (NR) are shaded gray.

Sources of these data

Maine CDC’s Infectious Disease Program collected and analyzed the data. Maine CDC used population data from the U.S. Census Bureau to 
calculate state and county rates of tickborne disease. Maine CDC used population data from the Maine Office of Data, Research, and Vital 
Statistics (ODRVS) to calculate town-level rates of tickborne disease. The Maine Environmental Public Health Tracking Program prepared the 
data display. Data updated: 04/21/2018. Display updated: 05/2018.

Generated at 8:44:59 AM on Feb 22, 2019 (ET) 

Figure 1.4 Lyme disease incidence (confirmed and probable cases per 100,000 people) 
by county in Maine, (a) 2003-2007 versus (b) 2013-2017. Maine CDC’s Infectious 
Disease Program obtained these data through notifiable conditions surveillance based 
upon reports from healthcare providers, laboratories, and other healthcare partners. 
Source: Maine Tracking Network (MECDC 2018a). 

a) b) 
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Figure 1.5 By-county counts of I. scapularis submitted to Maine Medical Center’s tick 
identification program; select years represented (a) 2000, (b) 2012. Source: Vector-borne 
Disease Laboratory, Maine Medical Center Research Institute, Scarborough, Maine. 

a) b) 
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1.2.3 The Life Cycle of I. scapularis 

To understand how climate and weather may affect I. scapularis in Maine, it is helpful to 

know its life cycle and the seasonality of life stage events in Maine. In northern New England, 

blood-fed, gravid, female I. scapularis lay eggs (oviposit) generally in May of Year 1 (Fig. 1.7). 

These eggs hatch in August to become questing larvae which are “naïve”, that is, not infected 

by the agent of Lyme disease, Borrelia burgdorferi. Larvae that find blood meals, typically from 

small mammal hosts such as white-footed mice (Peromyscus leucopus) or birds, will be 

nourished and molt to the nymphal stage. These nymphs will diapause, overwinter, and 

become active the following spring and summer of Year 2. July is the peak nymphal blood meal 

questing month for nymphs in Maine. Nymphs that find blood meals, typically from white-

footed mice and other rodents, as well as birds, will molt to become questing adults, with peak 

adult questing activity in Maine in late October into November (Year 2, Fig. 1.7). Those questing 

adults that find a blood meal—typically a white-tailed deer--in fall of Year 2 will diapause, 

overwinter, and lay eggs in May. Those adults that did not find a blood meal in fall of Year 2 will 

diapause, overwinter, and quest in the month of April and, if fed, lay eggs in May. Of course, 

through extended diapause, ticks may extend their life cycle across three or four years (Lindsay 

et al. 1998, Ogden et al. 2018). Thus, I. scapularis spends most of its time off-host, where 

survival, development, and questing (blood-meal seeking) are constrained by temperature and 

humidity (e.g., Ogden 2006, Ogden 2008, Parham et al. 2015, Ostfeld et al. 2015) at all stages of 

the two-year tick life cycle (Fig. 1.7). 
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Figure 1.7 Life cycle of the blacklegged tick. Warmer, longer falls would allow for 
longer questing seasons for larvae and adults (a), warmer/shorter winters would 
enhance overwinter survival of all stages (b), earlier, warmer springs would allow 
earlier questing of all stages, especially adults, and earlier accumulation of degree-
days would lead to earlier egg-laying and larval hatch (c), and sufficient humidity 
would rescue ticks from desiccation in summer (d). Life cycle figure used with 
permission from the University of Rhode Island TickEncounter Resource Center 
(www.TickEncounter.org). 

c) 

b) 

d) 

a) 
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1.2.4 Climate, Temperature, and Humidity Constraints on I. scapularis 

Eisen et al. (2016) summarized the expectation that there should be stronger linkages 

between Ixodes abundance and climate near the margins of their range where populations are 

emergent (southern Canada and US northeast and upper Midwest states) or receding (US 

southeast), as opposed to core areas where temperature and humidity are optimal and Ixodes 

are established. The northward range expansion of I. scapularis in Canadian provinces (Leighton 

et al. 2012, Clow et al. 2017) including and east of Ontario is likely driven in part by climate 

change (Ogden et al. 2006a, Ogden et al. 2008a) and this may be the case for all or part of 

Maine as well. Climate change has been accelerating in Maine during the 2000s and 2010s 

(Fernandez et al. 2015, Birkel and Mayewski 2018), manifesting as a shorter cold season (daily 

average ≤0°C), with warmer winters and falls, less snow and earlier ice-out, more hot, humid 

summer days, i.e., heat index >35°C (95°F), and more extreme rainfall events (>5cm within 

24hr) (Fernandez et al. 2015). Relative humidity has been increasing (Dai 2006, Lyon and 

Barnston 2017), and over the last decade, sea surface temperatures in the Gulf of Maine 

increased faster than 99% of the global ocean (Pershing et al. 2015). These changes are linked 

to global-scale changes such as more frequent moderate to strong El Niños and rapid decline of 

Arctic sea ice (e.g., Birkel and Mayewski 2018).  

Temperature and humidity are the key elements defining the climate suitability 

envelope of I. scapularis (Eisen et al. 2016). Both high and low temperature thresholds 

constrain questing activity, development duration, and survival of Ixodes ticks (e.g., Lindsay et 

al. 1995, Ogden et al. 2006a, Ogden et al. 2008a, Parham et al. 2015, Ostfeld et al. 2015, Linske 
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et al. 2019) at all stages of the two-year tick life cycle: egg, larva, nymph, and adult, and 

especially in summer and winter.  

Chilling injury and mortality in all stages of I. scapularis occur in the range of -18°C 

to -10°C (Burks et al. 1996, VanDyk et al. 1996, Brunner et al. 2012). Brunner et al. (2012) found 

that hazard of mortality in nymphs in soil core enclosures increased rapidly at temperatures 

below -13°C. Burks et al. (1996) found the threshold for direct chilling injury ranged from -10 to 

-14°C for all stages of three tick species examined, including I. scapularis. VanDyk et al. (1996) 

found for unengorged I. scapularis that LT50 (lethal temperature for 50% of ticks) at 2 hours 

exposure was -18°C for nymphs, -12°C for adults, and -11°C for larvae. This range (-18°C 

to -10°C) is common in northern Maine winters, at least in terms of air temperature above leaf 

litter and snow. But average winter temperatures have been rising in Maine, and relatively 

faster in the northern than southern tier (Fernandez et al. 2015, Fig. 1.8). Extended falls and 

earlier springs attend shorter, or “compressed” winters, which should allow adult ticks to quest 

longer into the fall before snow blankets the landscape, and begin questing earlier in spring 

upon snowmelt, leading to increased questing season duration for fall and spring adults. 

Temperatures >30°C increase direct mortality rates (Ogden et al. 2004) and indirect I. scapularis 

mortality rates through reduced host seeking (Vail and Smith 1998). Thus, high summer 

temperatures regulate I. scapularis at the southern edges of its US range, and low winter 

temperatures regulate I. scapularis at the northern edges and higher altitudes (Ogden et al. 

2004, Diuk-Wasser et al. 2010) by delaying development and decreasing survival. 

In addition to cold winters, I. scapularis is constrained at the northern margins of its 

range via insufficient accumulation of degree-days for eclosion (egg laying) and oviposition (egg 
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hatching) (Lindsay et al. 1995, Estrada-Pena 2002, Rand et al. 2004a, Ogden et al. 2005, Ogden 

et al. 2006a, Brownstein et al. 2003, Ogden et al. 2014). In Maine, Rand et al. (2004a) showed 

that for blacklegged tick females to lay eggs (in May), and for those eggs to hatch, about ~1,240 

( ± SD 143) degree-days (DD) >6°C (42.8°F) must accumulate. They mapped isolines of 1,240 

DD>6°C attained by the end of the months of August through December and found that the 

1,240 DD>6°C threshold was not attained in Maine’s northern tier by the end of August (Fig 

1.5). Few DD accumulated beyond August (Rand et al. 2004a). Light-mediated diapause (e.g., 

Ogden 2018) may preclude some larval questing beyond August, thus attainment of sufficient 

DD by summer’s end is important to completion of the lifecycle of I. scapularis. Interestingly, 

Rand et al. (2004a) compared 1,240 DD>6°C isolines for the decades 1971-1980 versus 1991-

2000 and found no decadal northward shift in the 1,240 DD>6°C isoline. Attendant to abrupt 

Figure 1.8. Difference map showing the increase in 
average winter temperature for 1990-1994 vs. 2010-2014, 
Maine, USA. Source: Climate Reanalyzer Climate Change 
Institute, University of Maine (http://cci-reanalyzer.org).  
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climate change, that 1,240 DD>6°C isoline (i.e., threshold) is now visibly shifting northward into 

the northern tier (Fig. 1.9). Years where 1,240 DD>6°C is achieved by the end of August should 

lead to larger larval cohorts in the same year, and larger nymphal and fall adult cohorts the   

following year, assuming a mild intervening winter. 

 

In addition to temperature, humidity (and its converse, vapor pressure deficit) 

constrains activity, development duration, and survival of Ix odes ticks (Yuval and Spielman 

1990, Needham and Teel 1991, Stafford 1994, Bertrand and Wilson 1996; Vail and Smith 1998, 

Lindsay et al. 1998, Eisen et al. 2002, Eisen et al. 2003, Perret et al. 2003, Schulze and Jordan 

2003, Gray et al. 2009, Estrada-Pena 2002, Diuk-Wasser et al. 2010, Berger et al. 2014a, Berger 

et al. 2014b, Eisen et al. 2016). Low humidity leads to mortality directly through desiccation or 

indirectly by preventing questing and reducing the likelihood of finding a blood meal (Eisen et 

Figure 1.9. Accumulation of degree-days >6°C by the end of August for the last and current 
decade. Source: PRISM (2004). 

2000 - 2009 2010 - 2016
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al. 2016). In the laboratory at 27°C, Stafford (1994) found 95% of larvae survived 28d at 100% 

RH and 43% at 93% RH, whereas for nymphs, survival was 100% at 149d at both 100% and 93% 

RH, but dropped substantially at ≤75% RH. In the field, Berger et al. (2014b) found nymphal 

abundance in Rhode Island declined where RH was <82% for at least 8hr. If not too hot, 

increasing average summer humidity should allow for increasing questing activity of nymphs, 

with earlier starts and later ends to the questing season leading to longer season duration.  

Taken together, the literature suggests that I. scapularis survival is more likely where I. 

scapularis are subject to sufficient degree-day accumulation (e.g., ~1,240 degree-days>6°C) to 

promote egg laying and hatching, with prevailing seasonal temperature averages between ~-

10°C and ~30°C and humidity ≥75% to promote increased questing activity and higher 

probability of survival. 

1.2.5 Variations in White-tailed Deer Density 

Against the backdrop of changing climate has been variation in Maine’s white-tailed 

deer (Odocoileus virginianus) population. The white-tailed deer is the primary host of adult I. 

scapularis within its US range (e.g., Telford 2017) and host larval and nymphal I. scapularis as 

well (Watson and Anderson 1976). Rand et al. (2003) found deer pellet group counts (a 

surrogate for deer density) were correlated with adult I. scapularis abundance in southern 

Maine, and that few ticks were collected at deer densities lower than ~18/ mi2 (<7/km2). To 

suppress I. scapularis ticks and Lyme disease, several investigators have posited that density of 

white-tailed deer should be lowered to below a threshold in the range of 8-13/mi2 (Telford 

1993, Telford 2002, Stafford et al. 2003, Stafford 2007, Kilpatrick et al. 2014, Telford 2017). 
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Over the past several decades deer densities in Maine’s southern tier have been above 8-

13/mi2 but below this threshold in the northern tier (MEIFW 2007, MEIFW 2017).  

1.2.6 Aims and Hypotheses 

Given decadal-scale shifts in seasonal temperature and humidity regimes in Maine, we 

expected that latent developmental responses (Ogden et al. 2014) would manifest as increases 

in the rate of submissions of I. scapularis to the passive surveillance program, as well as earlier 

weeks of first and peak weeks of submissions, later last weeks, and longer season duration, 

particularly in the northern tier of the state. We expected changes in submissions rates and 

phenology to differ between Maine’s northern versus southern tier (Fig. 1.3) given differing 

climate and deer host densities. Our aims were to 1) characterize northern versus southern tier 

temporal trends in I. scapularis submissions rate (an index of abundance) and phenology (first, 

peak, and last week of submission, and season duration); 2) compare trends in I. scapularis 

submissions rate versus juvenile I. scapularis burdens on birds and fall-flagged adult abundance 

from a field site in southern Maine; and 3) determine whether questing I. scapularis 

submissions rate and phenology were correlated with climatological variables, deer densities, 

and for nymphs, Lyme incidence. Our hypotheses were 

1. Submissions rate, first/peak/last week, and season duration of northern tier I. 

scapularis would trend up over time, whereas southern tier I. scapularis might show an early 

uptrend then level off, which could reflect establishment of stable I. scapularis populations in 

the southern tier;  

2. Submissions rate, first/peak/last week, and season duration would be correlated with 

annual DD>6°C attained by the end of August the previous year (nymphs, fall adults), average 
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minimum temperature of the current year (spring adults, nymphs, fall adults), summer average 

humidity of the current year (nymphs, fall adults), and fall average minimum temperature of 

the current year (fall adults). We hypothesized that these correlations might hold true for the 

northern tier across the duration of the time series, but possibly only for the early half of the 

time series for the southern tier, if I. scapularis appear to have stabilized in the southern tier. 

3. Nymphal and fall adult I. scapularis submissions rates would be correlated with 

annual deer density in the southern but not northern tier due to low deer densities in the 

latter.  

4. Lyme incidence would be correlated with nymphal I. scapularis in the northern but 

not southern tier due to ongoing increases in Lyme incidence in southern tier counties (Fig. 1.2) 

versus declining I. scapularis submissions (Fig. 1.6). 

In reality, a proportion of any cohort may not be questing due to weather-dependent 

quiescence or weather-independent, behavioral or developmental diapause (Eisen et al. 2016, 

Ogden et al. 2018). Here we assume that the submissions rate indexed annual abundance of 

questing I. scapularis, and captured latent developmental responses of I. scapularis to decadal-

scale shifts of seasonal temperature and humidity regimes and deer host density. 

 

1.3 Methods 

1.3.1 Study Area 

Maine, the most northeastern of the United States, encompasses 86,542 km2 and 4.5° 

latitude (42.97-47.46°N, 66.95-71.08°W), and 924 has minor civil divisions (towns), 512 of which 

are populated. With the exception of agricultural land along its eastern border with Canada, the 
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northern half of the state is mix of spruce and fir (Picea and Abies spp.) forests and hardwood 

stands, principally of maple and oak (Acer and Quercus spp.). A series of higher elevations (600-

1,600 m) occupies the northwestern half of the state. The majority of its human population of 

1.3 million resides in its southern half, generally within an 80-km-wide coastal plain with 

elevations <150 m (Rand et al. 2007). I. scapularis range from established on the coast to 

emerging in the northern tier, white-tailed deer densities range from moderate (moderate 

relative to states such as Connecticut and New York) to low in the northern tier, and local 

climates range from mild on the coast, to cold in the northern interior and higher elevations 

(Rand et al. 2007).  

We divided the state into northern and southern tiers (Fig. 1.3) using as guides both 

Lyme incidence (counties below/above state average as described above) and the pattern of 

degree-day accumulation (Fig. 1.9), and deer densities (low in the northern versus higher in the 

southern tier wildlife management districts, MEIFW 2017). Counties with Lyme incidence below 

the statewide average aligned well with counties where average 2000-2009 degree-day 

accumulation 19£1,240 degree-days by the end of August (Fig. 1.9). Although Washington 

County is coastal, the cooler climate is seen as a strip of green along the Downeast coastline.  

Birds and vegetation were sampled for ticks from within a 15-ha section of Laudholm 

Farm (42° 20' 00" N, 70° 32'45" W), a 175-ha wildlife sanctuary within the Wells National 

Estuarine Research Reserve in Wells, Maine. The study site borders the Atlantic Ocean and 

habitat comprised a second-growth forest of red maple, (Acer rubrum), yellow birch (Betula 

lutea) and white pine, (Pinus strobus) with a thick understory of honeysuckle (Lonicera 
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canadensis) and Japanese barberry (Berberis thumbergii), successional upland meadows, and 

mowed fields (Rand et al. 1998). 

1.3.2 Datasets 

1.3.2.1 Passive Tick Surveillance 

To meet our first aim (characterize northern versus southern tier trends in questing I. 

scapularis abundance and phenology), we used a passive tick surveillance dataset. Passive 

surveillance data index entomological risk (Johnson et al. 2004, Rand et al. 2007, Ripoche et al. 

2018) and reflect the seasonality of I. scapularis. From 1989-2013, a free-of-charge, statewide 

tick identification program was run at the Vector-borne Disease Laboratory at the Maine 

Medical Center Research Institute (Rand et al. 2007). In 1989, lab staff announced the 

identification service to the general public, clinicians, and veterinarians by way of lectures, 

newsletters, and media communications. Staff also targeted sparsely populated areas by 

contacting entities such as summer camps and hunting camps. Thereafter, ticks were passively 

submitted. Data collected from persons submitting ticks included date found and town where 

the tick was thought to have been acquired (not the tick submitter’s town of residence). 

Laboratory staff identified the species, stage, and engorgement level of the tick and returned 

this information to the tick submitter (Rand et al. 2007).  

The program was brand-new in 1989 and recruitment was active. The program end was 

announced at summer’s end in 2013, which likely biased fall adult I. scapularis submissions 

downward in 2013. Considering these potential biases (Clow et al. 2017), we dropped 1989 

from the final dataset and did not use 2013 data for the fall adult time series. Ninety-seven 

percent of I. scapularis hosts were humans, dogs, and cats. We excluded the 3% of submissions 
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where ticks were unknown or were found on livestock (cows, sheep, goats, horses) and wildlife 

species since livestock and wild animals did not necessarily have statewide representation (for a 

complete list of livestock and wild animal hosts see Rand et al. 2007). The granularity of the raw 

data was daily at the town level by I. scapularis cohort: spring adult, nymph, fall adult.  

To characterize I. scapularis abundance we summarized the daily date to annual number 

of submissions of spring adult, nymphal and fall adult I. scapularis by tier. We obtained annual 

census data by town (minor civil division) for the State of Maine from the U.S. Census Bureau 

(U.S. Census Bureau 2018), then summarized annual population by tier. We calculated annual 

spring adult, nymphal and fall adult I. scapularis submission rate by tier as  

tick count/population x 100,000 

to arrive at ticks submitted per 100,000, analogous to conversion of disease case counts to 

disease incidence (cases/100,000). Annual submission rate served as a proxy to size of the 

questing tick population, 1990-2013 (1990-2012 for fall adults).  

To characterize I. scapularis phenology we needed to define first, peak, and last week of 

submission by tier (northern/southern, Fig. 1.3). We summarized the daily data to the level of 

cohort by week/year by tier. We tried using second-order derivatives to locate first, last, and 

peak weeks, similar to the method of Moore et al. (2014), but found using the actual 

first/peak/last weeks a better job of identifying these phenological benchmarks. We defined 

spring adults as any submitted before or during week 34 and fall adults as those found after 

week 34. The cut point should have minimal effect on the analysis of phenology since the same 

cut point was used for all years, because few adults are found in the summer, and because 

extension of the spring and fall adult seasons would be due to earlier springs and later falls, 
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respectively. Using first and last week we calculated duration of season in number of weeks. 

This resulted in first/peak/last week and season duration for each year, 1990-2013 (fall adults 

1990-2012). 

1.3.2.2 Active (Field) Tick Surveillance: Subadult I. scapularis on Birds and Questing Fall-

flagged Adult I. scapularis 

Our second aim was to compare trends in I. scapularis from the passive surveillance 

dataset to trends in I. scapularis from active (field) surveillance. Each year from 1989, weekly 

bird-banding has been conducted from 15 May through 1 September (950 ± 10 net-hours per 

year) at Wells National Estuarine Research Reserve using mist nets opened at sites along forest 

edge and within the forest. All birds were identified to species and age recorded as hatch year 

(fledgling), or after-hatch year (>1 year old). Prior to release, each bird was closely examined, 

particularly around the head and neck, by using a head-mounted magnifying loupe (Rand et al. 

1998). All ticks were removed with forceps and transported to laboratory and identified to 

stage and species. Only larval and nymphal I. scapularis were found on birds. Sampling was 

consistent (weekly) through 2015. We used the same 17 ground-nesting or ground-feeding 

species listed in Rand et al. (1998) to calculate larval and nymphal burdens (ticks per bird). 

Each year from 1989, questing adult ticks have been collected at Wells National 

Estuarine Research Reserve at least once annually during the height of the fall adult questing 

season, October through early November. From this we calculated the number of ticks per hour 

as an index to tick abundance. It was of ancillary interest to see if there were trends in B. 

burgdorferi infection rates in these questing adult ticks, since B. burgdorferi may be expected to 

amplify in the zoonotic cycle as the vector tick becomes established (Ginsberg 1993) and might 
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increase even if tick densities are not increasing. As part of the long-term questing adult tick 

sampling a subset of ticks was dissected, and the midguts examined by a direct fluorescent 

antibody test, as per Donahue et al. (1987). From this the Borrelia sp. infection prevalence was 

calculated.  

1.3.2.3 Climatology, Deer Density, and Lyme Incidence 

To meet our aim, which was to determine whether questing I. scapularis submissions 

rate and phenology were correlated with climatological variables, deer densities, and Lyme 

incidence (nymphs only), we obtained data on climatology, deer, and Lyme incidence. 

We obtained climatology from Oregon State University’s Parameter elevation 

Regression on Independent Slopes Model (PRISM 2004). PRISM is the U.S. Department of 

Agriculture's climatological dataset and uses weather station point measurements with a 

weighted regression scheme to account for climate regimes associated with orography, rain 

shadows, temperature inversions, slope aspect, coastal proximity, and other factors (NCAR 

2015). Monthly reanalysis data were available at 2.5 arcmin (4 km) resolution for 1895 through 

present in NetCDF format. We downloaded monthly gridded NetCDF files for the continuous 

United States (CONUS) which included minimum, average, and dewpoint temperature at 2m in 

degrees Celsius (t2min, t2ave, t2dpt), total precipitation in cm (prcp), for 1990 through 2013. 

Using the National Center for Atmospheric Research Command Language (NCL 2017), and the 

Maine shapefile, we masked the CONUS data to Maine only, then aggregated the monthly 

gridded data to the year-month-county level.  

With the annual monthly climatology, we calculated annual number of degree-days >6°C 

attained by the end of August for each county using the formula (t2ave - 6°C) ´ 30.5. Then, 
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using the meteorological seasons of winter as December-January-February (DJF), summer as 

June-July-August, and fall as September-October-November, we then calculated annual 

seasonal averages for fall and winter t2min. Last, we calculated average monthly vapor 

pressure (VP) and saturated vapor pressure (SVP) in Pascals using t2ave, and from this, annual 

average monthly relative humidity (RH) by county. The formulas were: VP = 6.112 ´ e(17.62 

´ t2ave/243.12 + t2ave) ´ 100, SVP=6.112 ´ e(17.62 ´ t2dpt /243.12 + t2dpt)´100, and RH=SVP/VP ´ 100 (WMO 

2008, p. I.4–29). We then aggregated to the level of northern/southern tier (Fig. 1.3). 

We obtained deer data from the Maine Department of Inland Fisheries and Wildlife 

(MEIFW). During the hunting season (the regular firearms season is generally in November), 

MEIFW tracks hunter-killed deer at deer registration stations around the state, capturing 

information including sex, age, and town of kill. MEIFW uses deer registrations to calculate a 

buck kill index (BKI), which is the number of hunter-killed deer per 100 square miles. During the 

years 1987-2005 (n = 18 years), MEIFW used a variation of a sex-age-kill model to estimate 

deer/mi2 for each WMD, with inputs including BKI and hunter effort (MEIFW 2007). After 2005, 

MEIFW was no longer able to capture hunter effort. However, through a system of regression 

equations relating deer/mi2 to BKI (MEIFW 2007 Appendix A), MEIFW has produced estimates 

of deer/mi2 for years after 2005. We obtained equations from MEIFW to estimate deer/mi2 for 

each WMD for the years 1990-2013. In 2006, WMD 29 was reconfigured to no longer include 

the Downeast coast of Washington County (Fig. 1.3) which has relatively low deer density, but 

to include the offshore islands, most of which have high deer densities and were part of old 

WMD 25. To compensate for this, we used the equation for old WMD 25 to estimate deer 

density in new WMD 29 which probably resulted in conservative annual estimates for new 
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WMD 29. We downloaded the shapefile of Maine’s 30 Wildlife Management Districts (MEGIS 

2017), added the annual deer/mi2 to it, then used the zonal statistics tool in ArcGIS® (ESRI 2018)  

to aggregate annual deer densities to the level of northern/southern tier. 

We obtained town-level Lyme disease incidence (1993-2014) for all Maine towns from 

the Maine Center for Disease Control through a Memorandum of Understanding between 

MECDC and the author. In 2008 a new CDC case definition created a “probable” category. For 

consistency, we used only “confirmed” cases. We aggregated Lyme incidence to the level of 

tier. 

1.3.3 Analysis  

To visualize northern versus southern tier temporal trends in all the time series we used 

the SAS® statistical graphics procedure SGPLOT (SAS 2018) to fit locally weighted scatter plot 

smoothing (loess) curves to the time series (Cleveland et al. 1988). For each time series we 

accepted the default smoothing parameters supplied by SAS® SGPLOT®. Implicit in this 

approach for the I. scapularis time series was the a priori assumption that even in the presence 

of interannual variation, there were trends that reflect the emergence and establishment of the 

invasive vector tick, I. scapularis.  

Tick populations may reach a dynamic equilibrium once established (Ginsberg 1993, 

Ogden et al. 2007) and a way to characterize this was to check for evidence that I. scapularis 

might have initially increased during early years, then leveled off. We inspected the I. scapularis 

loess fits for breakpoints to visually identify the year or range of years where there might be 

changes in slopes—breakpoints—in the time series. To statistically assess breakpoints, we used 
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the SAS® procedure AUTOREG with the Chow test which compares equality of the subset 

regression slope coefficients, β1 and β2, on either side of yeari: 

y1 = β0 + β1X1 with n1 observations, year<yeari 

y2 = β0 + β2X2 with n2 observations, year≥yeari. 

Where the Chow test was significant, we followed with piecewise regressions on either side of 

the breakpoint (e.g., year < 2000, year ≥ 2000) to obtain the separate regression slopes. In the 

regressions there was no autocorrelation among residuals (Durbin-Watson tests not significant, 

all P > 0.05).  

To determine whether questing I. scapularis submissions rate and phenology were 

correlated with climatological variables, deer densities, and Lyme incidence (objective 3), we  

obtained Spearman correlation coefficients for the strength of association between the 

explanatory variables as described in the hypotheses. We used the one-year lag of DD>6°C 

because the current years’ nymphs and adults could be influenced by degree-day accumulation 

that influenced oviposition and eclosion the previous year. We used current, one-year, and 

two-year lags of deer density because all stages of I. scapularis feed on white-tailed deer and 

the cohort size of questing nymphal and fall adults could be related to deer blood meals they 

obtained in the current and prior years. According to Cohen (1988), a correlation > 0.5 is large 

and 0.5-0.3 moderate. Here, we thought that pairwise correlation coefficient ≥ 0.5  at P ≤ 0.05 

would offer sufficient biological insight into what factors could have influenced changes in I. 

scapularis submissions rate and phenology.  
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1.4 Results 

1.4.1 Summary Statistics 

During 1990-2013, the passive surveillance program received 19,506 I. scapularis, 

19,424 of which were identified to stage: 246 larvae, 1,903 nymphs and 15,725 females, and 

1,100 males. Among nymphs, 81%, 2%, and 15% were found on humans, dogs, and cats, 

respectively and among female ticks, 62%, 23%, and 11% were found on humans, dogs, and 

cats, respectively. From the northern tier, five larvae were submitted before 2000 and 2 after. 

Eighty-six and 153 larvae were submitted from the southern tier before 2000 and on or after 

2000, respectively. In the northern tier, submissions of nymphs were very low with only 0 to 4 

per year submitted 1990-1999, and 4 to 22 per year submitted 2000-2012.  

I. scapularis submissions rates were lower in the northern than southern tier for all tick 

stages. For spring adults, northern tier first week of submission was later, last week of 

submission was earlier, and duration of season was shorter (16.0 versus 25.4 weeks) than in the 

southern tier; also peak week was 2.4 weeks later (Table 1.1). Because of early low submissions, 

e.g., from zero to one or two submissions per year, we did not calculate phenological measures 

for nymphs in the northern tier. For fall adults, northern tier first week of submission was later, 

last week of submission was earlier, and duration of season was shorter (10.2 versus 13.4 

weeks) than in the southern tier, but peak weeks did not differ. The northern tier was cooler 

than the southern tier by all measures of temperature although relative humidity did not differ 

by tier (Table 1.1). Deer density was lower in the northern than southern tier as was Lyme 

incidence (Table 1.1). 
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Variable Type Variable Tier years mean SE min max P b

I. scapularis spring adults  from passive surveillance (1990-2013)
count N 24 43.0 7.90 3.0 132.0

S 24 239.9 28.43 62.0 653.0 <0.0001
submission rate (count per 100,000)a N 24 10.4 1.89 0.7 31.7

S 24 27.3 3.15 7.7 75.1 0.0001
week of first submission N 24 13.3 1.03 2.0 23.0

S 24 5.6 0.85 1.0 15.0 <0.0001
peak week of season N 24 19.0 0.48 13.0 25.0

S 24 17.6 0.36 14.0 20.0 0.05
week of last submission N 24 29.3 0.53 25.0 34.0

S 24 31.0 0.54 26.0 34.0 0.03
duration of season in weeks N 24 16.0 1.34 2.0 29.0

S 24 25.4 0.88 16.0 31.0 <0.0001
I. scapularis  nymphs from passive surveillance (1990-2013)

count (number submitted) N 24 5.5 1.14 0.0 22.0
S 24 69.8 10.67 16.0 250.0 <0.0001

submission rate (count per 100,000)a N 24 1.3 0.27 0.0 5.3
S 24 7.9 1.20 2.0 28.7 <0.0001

first week of season S 24 17.5 0.63 7.0 21.0
peak week of season S 24 25.4 0.52 20.0 33.0
last week of season S 24 40.3 0.77 29.0 46.0

season duration (in weeks) S 24 22.8 1.04 14.0 35.0
I. scapularis fall adults  from passive surveillance (1990-2012)

count N 23 59.7 9.70 5.0 223.0
S 23 341.3 30.44 112.0 648.0 <0.0001

submission rate (count per 100,000)a N 23 14.5 2.33 1.2 53.5
S 23 39.2 3.41 13.8 74.5 <0.0001

week of first submission N 23 38.4 0.38 35.0 43.0
S 23 37.3 0.26 35.0 39.0 0.04

peak week of season N 23 42.7 0.31 39.0 45.0
S 23 43.0 0.30 41.0 47.0 0.74

week of last submission N 23 48.7 0.37 46.0 52.0
S 23 50.7 0.30 48.0 53.0 0.002

duration of season in weeks N 23 10.2 0.62 3.0 15.0
S 23 13.4 0.35 10.0 17.0 0.001

I. scapularis  subadults from active surveillance: breeding birds (1990-2015)
larval burdens (ticks/bird) S 28 0.9 0.10 0.0 1.9

nymphal burdens (ticks/bird) S 28 1.7 0.18 0.2 3.9

I. scapularis  subadults from active surveillance: flag/drag sampling (1989-2017)
adults per hour S 26 73.4 6.61 11.1 150.9

Borrelia burgdoferi  infection % S 24 56.8 1.65 37.1 72.4

Climatology (1990-2017), deer (1990-2017), and Lyme incidence (1993-2015)
DJF_t2min N 28 -14.2 0.40 -17.9 -10.1

S 28 -10.5 0.36 -13.7 -7.1 <0.0001
JJA_t2max N 28 23.4 0.14 22.0 25.0

S 28 24.5 0.16 22.6 25.9 <0.0001
JJA_RH N 28 65.4 0.43 59.7 68.9

S 28 66.7 0.49 61.1 71.1 0.08
DD>6°C_Aug N 28 1180.5 14.46 1031.2 1322.5

S 28 1359.3 14.78 1205.8 1526.8 <0.0001
SON_t2min N 28 1.8 0.17 -0.1 3.5

S 28 3.8 0.15 2.4 5.4 <0.0001
Deer/mi2 (1990-2017) N 28 5.6 0.15 3.7 6.9

S 28 14.3 0.53 9.5 20.2 <0.0001
Lyme incidence N 22 7.3 1.45 0.0 21.9

S 22 53.9 11.85 2.4 185.3 0.0002
a(Count of ticks submitted/population) x 100,000
bWilcoxon rank-sum tests for differences between nothern and southern tier.

Table 1.1. Summary statistics for abundance and phenology of questing I. scapularis  (nymphs, fall and spring adults) 
acquired through passive surveillance (a tick identification program), 1990-2013, Maine. Also included are summary statistics 
for I. scapularis  subadult burdens on breeding songbirds, questing adult I. scapularis  per hour from flagging, climatological 
variables, white-tailed deer density, and Lyme disease incidence (cases per 100,000) in the northern (N) and southern (S) tiers 
of Maine, 1990-2017. Nymphal passive surveillance data were too sparse in the northern tier to obtain phenological metrics 
(season first/peak/last week and duration).
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1.4.2 Trends in Questing I. scapularis Submissions Rate and Phenology 

Consistent with our first hypothesis, northern tier I. scapularis submissions rates 

increased over time, (Figs. 1.8a, 1.9a, and 1.10a), but in contrast, I. scapularis submissions rates 

in the southern tier increased only through the early 2000’s (~2001-2003), then leveled off or 

possibly declined (Figs. 1.8b, 1.9b, and 1.10b).  

Partially consistent with our first hypothesis, phenological shifts in I. scapularis were 

seen not as earlier peak weeks (Figs. 1.8c, 1.9c, and 1.10c), but rather as longer seasons (Figs. 

1.8d, 1.9d, and 1.10d) by virtue of earlier and later weeks of submission (Figs. 1.8c, 1.9c, and 

1.10c). Increasing season length was seen in the northern tier for the duration of the time 

series but only in the early part of the southern tier series. 

1.4.2.1 Spring Adult I. scapularis 

In the northern tier the annual spring adult submissions rate increased over the years 

from 1990-2012 as described by the loess curve in (Fig. 1.10a) and a significant positive 

regression slope coefficient (β1 = 1.13, P < 0.0001, Table 1.2). Phenological changes over time 

were seen in the northern tier only, where season duration became longer by virtue of first 

week of submission earlier, week of last submission later (Figs 1.10c,e; Table 1.2).  

In the southern tier spring adults visually appeared to increase up to 2004 (Fig. 1.10b). 

Chow tests were significant at years 1999 through 2004 (Table 1.2), so we selected a break 

point of 2004 from the loess curve. Piecewise regression yielded a significant positive slope 

coefficient where year <2004 (Table 1.2) and no trend thereafter. 
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1.4.2.2 Summer Nymphal I. scapularis 

In the northern tier the annual nymph submission rate increased over the years during 

1990-2012 (Fig. 1.11a, left panel), and a significant positive regression slope coefficient (β1 = 

0.15, P < 0.0001, Table 1.2). With low volume of nymphal submissions in the northern tier we 

did not test phenology of nymphs, but the loess curve suggested duration of season  increased 

(Fig. 1.11c).  

In the southern tier the nymph submission rate increased up to 2001 then leveled off, as 

described by the change point of the loess curve at year 2001 (Fig. 1.11b), and Chow test 

significant at year 2001 (P = 0.02, Table 1.2). In the piecewise regressions (Table 1.2) there was 

a significant positive regression slope coefficient where year < 2001 (β1 = 1.90, P = 0.002) and 

no trend thereafter. Phenological changes over time in nymphs were seen in the southern tier, 

where season duration became longer by virtue of week of last submission later (Figs. 1.11d,f; 

Table 1.2), but only up to 2001 as suggested by the loess curve. Chow tests were significant at 

all years tested so we selected 2001 as the change point. Piecewise linear regression confirmed 

week of last nymphal submission later, and season duration longer, up to 2001 (Table 1.2).  

1.4.2.3 Fall Adult I. scapularis 

In the northern tier the annual fall adult I. scapularis submission rate increased over the 

years in the northern tier during 1990-2012 (Fig. 1.12a). Phenological trends were seen in the 

northern tier only, with season duration longer by virtue of first week of submissions earlier 

and last week later (Figs 1.12c,e; Table 1.2). Chow tests indicated a changepoint at 2003; season 

duration increased where year < 2003 and also ≥ 2003, but at a slower rate (Table 1.2). 
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In the southern tier fall adults increased up to 2001 as suggested by the loess curve (Fig. 

1.12b). All Chow tests were significant within the range tested 1999-2004 (Table 1.2), and 

piecewise regression significant where year <2001 (β1 = 4.97, P = 0.0005) indicating an increase 

in submissions, but not ≥ 2001 (β1 = -2.04, P = 0.08) indicating no trend, though at 0.05 ≤ P ≤ 

0.10 could be interpreted as a marginally significant downward trend.  

1.4.3  Feeding Subadult I. scapularis Burdens on Resident Breeding Birds and Questing Fall-

flagged Adult I. scapularis Abundance 

At the Wells National Estuarine Research Reserve, juvenile I. scapularis parasitizing birds 

as well as fall-flagged questing adult I. scapularis showed initial increases followed by leveling 

or declines (Figs. 1.13, 1.14). These time series mirrored the passive surveillance data although 

temporal alignment of the breakpoints was not perfect. Annual nymphal and larval I. scapularis 

burdens on breeding adult and juvenile songbirds increased up to 1999 then declined, as 

described by the loess curve in Fig. 1.13 and Chow tests significant at year = 1999, and 

piecewise regressions (Table 1.2). This mirrored the patterns seen in the passive surveillance 

data. We note the highest year for nymphal burdens on birds was in 2000 (Fig. 1.13a), 

coinciding with the spikes seen in nymphal and fall adult surveillance data in 2000. 

Fall-flagged adult I. scapularis collected per hour increased up to about 2004 then 

declined, as described by the loess curve in Fig. 1.14a, and piecewise regressions (Table 1.2). 

Chow tests were significant at all years (Table 1.2), so we based the piecewise regressions on a 

changepoint of 2004 (Table 1.2). We note 2003 was the highest year for adult ticks sampled per 

hour (Fig. 1.14a) unlike the year 2000 in the passive surveillance and bird burden data. There 

was no trend in Borrelia infection rate in the fall-flagged ticks (Fig. 1.14b). 
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Figure 1.10. Trends in annual spring adult I. scapularis abunance and phenololgy in the 
northern (left column) and southern (right column) tiers of Maine, 1990-2013. Plots (a) and 
(b) show abundance (rate of tick submissions), (c) and (d) show season start and end weeks 
(bottom/top of bars) and trends in peak week, and (e) and (f) show trends in season 
duration. Plots (a), (b), (e), and (f) include smooth curves (locally estimated scatterplot 
smoothing from the R package.) 
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Figure 1.11. Trends in annual nymphal I. scapularis abunance and phenololgy in the 
northern (left column) and southern (right column) tiers of Maine, 1990-2013. Plots (a) and 
(b) show abundance (rate of tick submissions), (c) and (d) show season start and end weeks 
(bottom/top of bars) and trends in peak week, and (e) and (f) show trends in season 
duration. Plots (a), (b), (e), and (f) include smooth curves (locally estimated scatterplot 
smoothing from the R package.) 
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Figure 1.12. Trends in annual fall adult I. scapularis abunance and phenololgy in the 
northern (left column) and southern (right column) tiers of Maine, 1990-2013. Plots (a) and 
(b) show abundance (rate of tick submissions), (c) and (d) show season start and end weeks 
(bottom/top of bars) and trends in peak week, and (e) and (f) show trends in season 
duration. Plots (a), (b), (e), and (f) include smooth curves (locally estimated scatterplot 
smoothing from the R package.) 
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Figure 1.13. Trends in summer nymphal (a) and larval (b) I. scapularis burdens 
(ticks per bird) on breeding adults and juvenile songbirds mist-netted at Wells 
National Estuarine Research Reserve, Wells, Maine, 1990-2015. 
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Figure 1.14. Trends in (a) fall adult I. scapularis flagged per hour and (b) B. 
ferrferi infection rate in those ticks, Wells National Estuarine Research 
Reserve, Wells, Maine, 1990-2017. 
 

0

50

100

150

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

ad
ul

ts
 p

er
 h

ou
r

a)

40

50

60

70

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

%
 in

fe
ct

ed

b)



 

 38 

1.4.4 Potential Correlates of I. scapularis Submissions Rate and Phenology 

1.4.4.1 Indicators of Changing Climate 

 Over 1990-2017, there was a significant positive trend in winter average minimum 

temperature in the northern tier (Fig. 1.15a). Summer average maximum temperature (Fig. 

1.16) did not rise, but summer average relative humidity increased in both tiers (Fig. 1.17). Fall 

average minimum temperature rose in both tiers (Fig. 1.18).  

Lack of trend in accumulation of degree-days >6°C by the end of August was attributable 

to high interannual variation, but in the 28-year series that 1,240 DD>6°C by the end of August 

was exceeded in only six years in the northern tier versus 26 years in the southern tier (Fig. 

1.19). 

1.4.4.2 White-tailed Deer 

White-tailed deer density averaged 5.5/mi2 in the northern tier, with a low of 3.7/mi2 

seen in 2009 (Fig. 1.20a, Table 1.1). Deer density in the southern tier averaged 14.3/mi2, 

ranging from 9.5/mi2 in 1990 in 20.2/mi2 in 2000 (Fig. 1.20b). This was followed by a decline to 

a local minimum of about 11-12/mi2 2009-2011 and a rise thereafter. 
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a) Northern Tier
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Figure 1.15. Trends in winter average minimum temperatures in the northern (a) 
and southern (b) tiers of Maine, 1990-2017. 

Figure 1.16. Trends in summer average maximum temperatures in the northern (a) and 
southern (b) tiers of Maine, 1990-2017. 
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Figure 1.17. Trends in summer average relative humidity in the northern (a) and 
southern (b) tiers of Maine, 1990-2017.  
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Figure 1.18. Trends in fall average minimum temperatures in the northern (a) and 
southern (b) tiers of Maine, 1990-2017.  
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Figure 1.19. Trends in accumulation of degree-days >6°C in the northern (a) and 
southern (b) tiers of Maine, 1990-2017.  
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Figure 1.20. Trends in white-tailed deer density (deer/mi2) in the northern (a) and 
southern (b) tiers of Maine, 1990-2017.  
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1.4.5 Correlations Among I. scapularis from Passive Surveillance and Climatological Indicators 

of Warming Climate, Deer, and Lyme Incidence 

Generally, most correlations between I. scapularis and temperature variables occurred 

in the northern tier during 1990-2013 or during the first decade in the southern tier (Table 1.3). 

Warmer winters corresponded with earlier appearance (both tiers) and longer season (northern 

tier) of spring adults. Consistent with our second hypothesis, warmer winters also 

corresponded with longer season duration of fall adults in the early series of the southern tier. 

Warmer falls corresponded with higher fall adult submission rates in the northern tier and 

longer season duration in the early series of the southern tier. Also consistent with our second 

hypothesis, higher relative humidity corresponded with higher submissions rates of nymphs in 

both tiers (Table 1.3). However, contrary to expectations, there were no correlations between 

any I. scapularis metrics and degree-day accumulation. 

Correlations between I. scapularis submission rates and deer density were seen in the 

southern tier only, consistent with our third hypothesis. In the full southern tier time series 

(1990-2012), fall adult submission rate was correlated with deer/mi2 in yeart-0, yeart-1, and yeart-

2 (0.48, 0.51, and 0.61, respectively, Table 1.4). In the early southern tier series (1990-1999), 

there were correlations between all I. scapularis stages and deer/mi2 in the current and lagged 

years and ranged from 0.65 to 0.85 (Table 1.4). Finally, consistent with our fourth hypothesis, 

Lyme incidence was correlated with nymph submission rate (0.74) in the northern but not 

southern tier.  
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Spring 

adults Nymphs

Fall 

Adultsb

Abundance/ 

Phenology Tier D
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>6
°C
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Northern and 
Southern tiers, all 
years submission rate Northern 0.43 0.47 0.70 0.64

Southern 0.69
first week of season Northern -0.60

Southern -0.53
peak week of season Northern

Southern 0.46
last week of season Northern

Southern
season duration Northern 0.58

Southern 0.46

Southern tier, first 
decade only submission rate Southern

first week of season -0.68
peak week of season
last week of season

season duration 0.62 0.60

Table 1.3. Spearman rank correlation coefficients (where P  < 0.05) between I. scapularis  spring adult, summer 

nymph, and fall adult submission rate and phenology versus climatological variables, in the northern and southern tiers 

of Maine, 1990-2013. Ticks were submitted to a passive surveillance program (tick identification service) at the Maine 

Medical Center. Nymphal data were too sparse in the nothern tier to test phenological metrics (first, peak, and last 

week of season, and season duration; cells in gray). 

aDJF_t2min and SON_t2min are average minimum temperature at 2m above ground, JJA_RH is summer relative 

humidity at 2m, DD>6°C_Augt-1 is cumulative degree-days>6°C by the end of August, one-year lag.
b1990-2012

Spring adults Nymphs Fall adultsa

Geographic Range Tier De
er

/m
i2 t-1
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/m
i2 t-2
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er

/m
i2 t-1

De
er

/m
i2 t-2

De
er

/m
i2 t-0

De
er

/m
i2 t-1

De
er

/m
i2 t-2

Northern and Southern 
tiers, all years Northern

Southern 0.48 0.51 0.61

Southern tier, first 
decade only Southern 0.75 0.68 0.66 0.76 0.65 0.85
a1990-2012

Table 1.4. Spearman rank correlation coefficients (where P  < 0.05) between I. scapularis 
spring adult, summer nymph, and fall adult submission rate versus white-tailed deer 
density in the current and past two years in the northern and southern tiers of Maine, 1990-
2013. Submission rate was (number of ticks submitted/population) x 100,000.
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1.5 Discussion 

With passive surveillance data for 1990-2013, we were available to compare trends in I. 

scapularis abundance and phenology in the warmer southern versus colder northern tier of 

Maine. Submissions of larval I. scapularis from the northern tier indicated the increase in I. 

scapularis in the northern tier was not just a result of long-distance avian dispersal (Smith et al. 

1996, Rand et al. 1998, Leighton et al. 2012, Ogden et al. 2006b, Ogden et al. 2008b).  

Consistent with our expectations, in the northern tier the I. scapularis submission rate 

and season duration increased, whereas in the southern tier these metrics increased during the 

first years of the time series but after about ~13 years leveled off. Assuming a true biological 

signal in the submissions data, ~13 years to establishment is in agreement with the 5-10 years 

to establishment scenarios Ginsberg (1993) observed empirically and Ogden et al. (2007) 

observed via simulation. I. scapularis submissions rates by the end of the time series in the 

northern tier were similar to those at the start of the series in the southern tier, suggesting the 

I. scapularis in the north were still emergent versus established in the southern tier. We did not 

see shifts to earlier peak weeks over time as seen in New York State (Levi et al. 2015); in this 

study the observed phenological shift was increased season duration. 

Consistent with our second set of expectations, I. scapularis submission rates and 

phenological changes were correlated with winter warming in the northern tier across the 

duration of the time series, but only the early half of the time series for the southern tier (with 

the exception of the correlation between spring adults and winter for the full southern tier 

series).Winter average minimum temperatures in the northern tier, and fall average 
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temperatures and summer relative humidity in both tiers increased significantly over the 1990-

2017 interval, which from a climate standpoint is a very short time.  

It was unexpected that degree-day accumulation was not correlated with I. scapularis 

submission rates and phenological metrics, but there could be several reasons for this. First, we 

note that in the 28-year degree-day time series 1,240 DD>6°C by the end of August was 

exceeded in only seven of the more recent years in the northern tier versus 26 years in the 

southern tier. Second, current-year climatological conditions may obfuscate effects of degree-

day accumulation the year before. Larvae were rarely submitted so we could not test for a 

correlation between larvae and degree-day accumulation. Third, a simple correlation analysis 

may not work well with threshold relationships.  

The relationship between increasing nymphal I. scapularis submissions rates and higher 

summer relative humidity (in both tiers) was consistent with I. scapularis’ need to avoid 

desiccation. We note that relative humidity was based on temperature at two meters and not 

RH at ground level under cover of leaves and duff. Berger et al. (2014b) developed an equation 

to relate ambient air RH to data loggers in leaf litter as RHlitter = 100/(1 + 7.2145e[−0.0559RHair]). 

Applying this equation to our RH summary data (Table 1.1) yielded RH 84.3 (range 79.6 to 86.7) 

for the northern tier and RH 85.2 (range 80.8 to 88.1) which would not challenge I. scapularis 

nymphs. 

Though northern tier climate suitability appears to have improved for I. scapularis and 

will likely continue to do so, current overall ecological suitability for I. scapularis in the northern 

tier may be limited due to low deer densities, which averaged ~5/mi2 (range 2-9/mi2). Where a 

suitable climate envelope exists for I. scapularis, tick abundance will depend on adequate host 
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densities and core woodland habitat (Eisen et al. 2016). In the southern part of the Province of 

Quebec (PQ), Canada, from 1990 to 2008, Ogden et al. (2010) attributed increasing I. scapularis 

populations to warming climate, because they considered habitat, and rodent and deer host 

densities non-limiting; deer densities were 7.4 to 10.7/km2 (19 to 28/mi2). But in Maine’s 

northern tier, low deer densities (2-9/mi2) may be limiting more rapid establishment of I. 

scapularis even as climate suitability has improved.  

Habitat and small mammal host populations are likely non-limiting in Maine’s northern 

tier. Maine has a mix of deciduous, mixed, and coniferous forest cover types. The white-footed 

mouse, a key host of juvenile I. scapularis reservoir of B. burgdorferi, has a broad North 

American distribution (19-49°N 64-112°W, Wang et al. 2009) that includes Maine. The deer 

mouse (P. maniculatus) ranges farther north but overlaps with the white-footed mouse in 

Maine, and is similar in terms of I. scapularis infestation, burdens, and B. burgdorferi reservoir 

competence (Rand et al. 1993, Garman et al. 1994, Oliver et al. 2006, Roy-Dufresne et al. 2013).  

Compared to the northern tier, Maine’s southern tier climate has been more suitable 

for I. scapularis and there have been more deer. During the emergent phase of I. scapularis in 

southern tier of Maine, average white-tailed deer density in the southern tier increased from 

9.5/mi2 in 1990 to 20.2/mi2 in 2000, a 113% increase over 11 years. The burgeoning deer 

population in southern Maine during the early 2000s led the Maine Department of Inland 

Fisheries and Wildlife (MEIFW) to significantly increase any deer permits to increase hunting 

pressure on does, and the number of ADPs issued generally declined starting in 2004, as 

population objectives were met (MEIFW 2017). Deer declined to a density of 11-12/mi2 in 2009-

2011. The rise and fall of deer coincided with the pattern of increase and decrease in I. 
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scapularis in the southern tier and was consistent with our expectation that I. scapularis and 

deer density in the current and past two years would be correlated. However, we emphasize 

that once I. scapularis has become established in an area, we would not expect to observe a 

decline in tick density unless deer density were lowered and held at or below the posited 8-

13/mi2 threshold (Telford et al. 2017) for several years, so the correlation may be spurious. 

Apart from deer, density-independent or density-dependent population regulation mechanisms 

(Fish 1993) could be keeping I. scapularis at a state of dynamic equilibrium.  

Density-independent weather mechanisms limiting tick development and survival in 

both winter and summer in Maine could be declining snow cover, increasing frequency of heat 

waves, and increasing extreme rainfall events. Snow is a ground insulator that improves tick 

survival (Eisen et al. 2016) and snowfall has been decreasing statewide (Fernandez et al. 2015). 

Lack of snow followed by an extended cold wave could make the southern tier more hostile 

than a more snow-covered northern tier. Extended heat waves may drive nymphal I. scapularis 

into the leaf litter even in Maine, as is typical at the southern edge of its range (Stromdahl and 

Hickling 2012, Arsnoe et al. 2015). Increasing relative humidity in the northeast (Lyon and 

Barnston 2017) may not compensate for high temperatures during heat waves. Heavy rain may 

suppress nymphal questing activity (Moore et al. 2014, Berger et al. 2014b), leading to indirect 

mortality. Density-dependent I. scapularis population-limiting mechanisms include grooming 

behavior by hosts such as white-footed mice (Levin and Fish 1998) and opossums (Keesing et al. 

2009), immune resistance acquired by hosts (Wilson et al. 1990, Craig et al. 1996), or predators, 

parasites, and pathogens of ticks (Fish 1993). Host density-dependence may regulate I. 

scapularis as well (e.g., Fish 1993, Eisen et al. 2016, but see Hazler and Ostfeld 1995). 
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Quiescence and diapause (Eisen et al. 2016, Ogden et al. 2018) also may play a role in trends 

and fluctuations observed in I. scapularis.  

Two independently-obtained datasets from the southern tier—subadult I. scapularis 

burdens on breeding passerine birds, and questing fall adult ticks—demonstrated patterns of 

increasing I. scapularis through the early 2000s, followed by a leveling or decline. Although 

these data are from just one site, the Wells National Estuarine Research Reserve, they could be 

another line of evidence that I. scapularis may have reached a population asymptote in the 

southern tier. The Borrelia infection rate in the fall-flagged adults is also consistent with the 

idea of a dynamic equilibrium in Wells, a long-established site for I. scapularis. Ogden et al. 

(2007) predicted that I. scapularis populations should reach a stable cyclical equilibrium within 

10 years, assuming typical white-footed mouse densities and high deer densities. High I. 

scapularis host density and ideal tick habitat were characteristic of many parts of the research 

reserve in Wells.  

Amplification of B. burgdorferi is expected to follow increases in abundance and range 

of I. scapularis as the pathogen follows the vector (Ginsberg 1993). Partially consistent with our 

fourth hypothesis, annual Lyme incidence was correlated with nymphal I. scapularis 

submissions rates in the northern tier. However, Lyme incidence was not correlated with 

nymphal I. scapularis in the southern tier because Lyme incidence increased whereas 

submissions rates leveled off. This putative decoupling of disease incidence and entomological 

risk could be due in part to increased rate of discovery of tick-borne illness owing to increased 

clinician and patient awareness and testing effort (Elias et al. 2019). Another possibility is that 

an increasing proportion of virulent strains of B. burgdorferi and/or co-infections in I. scapularis 
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could be an emergent feature where I. scapularis are established (Brisson et al. 2011, 

MacQueen et al. 2012).  

1.5.1 Limitations of the Study 

We have performed simple univariate linear regressions and correlation tests with 

datasets that are subject to bias. Passive surveillance is not based on random sampling (Clow et 

al. 2017), and valid criticisms of the Maine tick identification program include submitter fatigue 

(possibly due to increased familiarity with ticks), and possible lack of familiarity with and in the 

program where there was lower entomological risk and/or distance from the program. We 

juxtaposed submissions of nymphal and adult I. scapularis, I. cookei (woodchuck ticks), which is 

macroscopically similar to I. scapularis, and Dermacentor variabilis (dog ticks) found on 

humans. Non-zero submissions of I. cookei and D. variabilis indicated some submitters in both 

tiers were aware of the program from its inception (Fig. 1.21). One might expect increasing 

public concern or submissions fatigue to respectively increase or decrease submissions of at 

least I. scapularis and I. cookei at the same rate, but such was not the case (Fig. 1.21). I. cookei 

nymphs were more commonly submitted in the early years in both tiers, whereas more I. 

scapularis were submitted in later years (Fig. 1.21a,b). These patterns in concurrent 

submissions of the three most common ticks (93% of submissions) suggested that despite 

biases there was a relevant biological signal from the Maine submissions data.  

Several passive surveillance programs outside of Maine have investigated 

correspondence between Lyme disease and passive I. scapularis submissions in time and space. 

At both the county and town levels in Rhode Island, USA, Johnson et al. (2004) found Pearson 
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correlation coefficients (r) ³0.92 between human Lyme disease cases and the number of 

submitted I. scapularis (stage not specified). At the town level in Quebec, Canada, Ripoche et al. 

(2018) modeled Lyme incidence as a function of population-adjusted number of passively 

submitted nymphal I. scapularis and a found a correlation coefficient of 0.93 between actual 

and predicted Lyme incidence. In Connecticut, USA, Shelton (2015) found moderate 

correlations between Lyme cases and passively submitted I. scapularis (stage not specified) at 

the town level across years, and on an annual basis across towns (both r ~ 0.50), however, 

Connecticut case reporting methods changed dramatically during the period used for analysis. 

In Rhode Island, Johnson et al. (2004) found no positive correlation between Lyme cases and 

passive I. scapularis submissions over time but the tick identification program at the time 

Figure 1.21. Number of submissions of I. scapularis, I. cookei, and D. variabilis 
nymphs and adults in the northern (a) and southern (b) tiers of Maine and adults 
in the northern (c) and southern (d) tiers of Maine, 1989-2013.  
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included testing for a fee. Thus, while bias is inherent in any passive surveillance program, these 

programs have successfully tracked geographic emergence of Lyme disease.  

Active (field) surveillance is subject to measurement error (Clow et al. 2018), and 

certainly the bird burden and flagged adult tick data used here came from one site only and 

were subject to variation due to weather and sample timing. These data cannot validate the 

passive surveillance data from the southern tier. But in ecological studies, the choice is usually 

between short-term sampling at many sites or long-term sampling at one or a few sites. Thus, 

we offer the field time series as lines of evidence which do not contradict the passive 

surveillance data. The deer density data were based on regression model predictions, 

introducing unknown error.  

Level of aggregation chosen also can introduce bias (e.g., Openshaw 1984, Dark and 

Bram 2007). Aggregation of tick, weather, and deer data into northern and southern tiers could 

have obscured spatial patterns at a finer spatial resolution, and certainly transitional conditions 

at the northern-southern tier boundary will be obscured by the necessity of conforming to 

county lines. Temporal aggregation of climatological variables to seasons will obscure 

temperature extremes, although I. scapularis are buffered from temperature and humidity 

extremes through time spent in the soil/leaf litter layer and exhibit latent developmental 

responses to seasonal changes (Odgen et al. 2014). Certainly, we know that there are focal 

areas of deer overabundance (MEIFW 2017) and that tick habitats vary in microclimate, 

vegetation, and rodent and host communities. Aggregation to the northern/southern tier levels 

was intended to be as objective as possible based differences in Lyme disease incidence, 

climate, and deer densities. Critically, characterizing phenological trends of I. scapularis 
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required enough data per tier to assess season duration and data were sparse for the northern 

tier. 

A number of tick-associated factors were not included in the correlation analysis. We 

did not include other landscape-scale conditions associated with I. scapularis such as forest 

fragmentation and suburbanization (Allan et al. 2003, Linske et al. 2018) and invasive plant 

species invasion (Lubelczyk et al. 2004, Elias et al. 2006, Williams and Ward 2010, Williams et al. 

2017), though these conditions co-occur with higher white-tailed deer densities. The 

relationship between a heat index and I. scapularis would probably be more instructive than 

temperature and humidity separately. Despite these limitations, the results reported here are 

biologically plausible and will guide future statistical ecological modeling that ascertains the 

joint contributions of factors driving emergence and regulation of I. scapularis in Maine. 

 

1.6 Conclusions 

Climate has likely been permissive for I. scapularis since before the 1990s in Maine’s 

southern tier, and has been less permissive for I. scapularis in the northern tier, but is 

improving. However, overall ecological suitability for I. scapularis in the northern tier may be 

limited due to low deer densities, which averaged ~5/mi2 during the study period and to this 

day. The joint effects of climate, deer, and landscape-scale habitat should be modeled to 

determine the relative contributions of these factors, and to ascertain to what degree impacts 

of climate change on I. scapularis, and thus disease transmission in the northern tier, could be 

mitigated through conservative deer density goals for the northern tier. Conversations over the 

merits of keeping deer herd density low may replace the usual debate over deer reduction. 
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In the southern tier, I. scapularis submissions rates and season duration trended up for 

~13 years then leveled to a possible dynamic equilibrium. Teasing out what if any population-

limiting mechanisms could be operating on I. scapularis and at what geographic scale will be a 

worthwhile challenge if it leads to ecological insights and tick control strategies.  

In Maine’s southern tier we may have demonstrated an instance decoupling of reported 

disease incidence and entomological risk. The challenge will be to tease apart the confounding 

effects of human diagnostic testing effort versus pathogen amplification and genetic 

diversification. Otherwise we will frustrate our expectations of lowered tick-borne disease 

incidence following carefully designed tick control interventions. Maine’s laboratory capacity 

for PCR-based testing has expanded since 2013 and includes the laboratories at the Maine 

Medical Center Research Institute, The Maine CDC’s Maine Health and Environmental Testing 

Laboratory, and the University of Maine’s Cooperative Extension Diagnostic and Research 

Laboratory. Climate change is exacerbating our problems with blacklegged ticks in Maine. 

Mapping patterns in strain diversity of the multiple pathogens that I. scapularis carry should 

improve our resilience as our changing environment facilitates invasion of tick and mosquito 

vectors into Maine. 
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CHAPTER 2. 

BLACKLEGGED TICK RANGE EXPANSION IN RELATION TO WHITE-TAILED DEER AND CLIMATE, 

IN MAINE, USA 

2.1. Abstract  

Lyme disease is caused by the bacterial spirochete Borrelia burgdorferi, which is 

transmitted through the bite of an infected blacklegged tick (Ixodes scapularis). Geographic 

range expansions of invasive I. scapularis populations over time in the US have been attributed 

to a mosaic of factors including 20th century reforestation followed by suburbanization, 

burgeoning populations of the white-tailed deer (Odocoileus virginianus) which is the primary 

reproductive host of I. scapularis, non-native plant invasions that provide ideal tick habitat, and, 

at the northern edge of I. scapularis’ range, climate change. Maine, a high Lyme incidence state, 

has been experiencing warmer and shorter winter seasons, and relatively more so in the 

northern tier. We used a passive tick surveillance dataset to index abundance of I. scapularis 

nymphs within Maine’s wildlife management districts, 1990-2013. We used a generalized 

additive mixed model (GAMM) to model linear and nonlinear relationships between nymphal I. 

scapularis abundance and predictors, while allowing for spatiotemporal dependencies within 

and among wildlife management districts. I. scapularis nymphs increased with increasing deer 

densities up to ~13 deer/mi2, but beyond this threshold tick abundance did not vary with deer 

density. This result corroborated the idea of a saturating relationship between I. scapularis and 

deer density. It was also consistent with empirical studies suggesting deer density must be 

lowered below ~8-13/mi2 to lower I. scapularis abundance enough to lower Lyme disease. The 

model also indicated that more ticks were associated with higher relative humidity, warmer 
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minimum winter temperatures and more degree-day accumulation, and that without deer 

>4/mi2 warmer winters would not increase nymphal abundance. The Maine Department of 

Inland Fisheries and Wildlife northern tier goals range from 10-15/mi2 and southern tier goals 

from 15-20/mi2 for 2030 (MEIFW 2017). We recommended deer densities be kept to ≤10/mi2 in 

all of Maine’s northern tier to mitigate likely increases in ticks due to future warming. 

Suburbanization and presence of tick-associated non-native plants did not enter the model 

because they co-occurred with deer. 

 

2.2 Introduction 

The blacklegged or deer tick (Ixodes scapularis) is the vector of agents causing Lyme 

disease, human babesiosis, and human granulocytic anaplasmosis (Spielman et al.1985, 

Spielman 1988, Bakken et al. 1994). Incidence and geographic ranges of Lyme borreliosis and 

other tick-borne diseases are rising and spreading in both North America and northern Europe, 

following northward range expansion of vector ticks, which has been partially attributed to 

climate warming (Parham et al. 2015). Lyme disease is the most common vector-borne illness in 

the US (Rosenberg et al. 2018) and is concentrated in the upper Midwest and New England. 

Formerly, Lyme disease incidence in the southern New England states eclipsed that of the 

northern New England states, but Maine, New Hampshire, and Vermont have caught up with 

the rest of the northeast (CDC 2018a).  

Lyme cases in Maine have risen dramatically since the first case in 1983, with record 

case numbers set each year since 2011, and increasing by 82.4% from 2011 to 2017 (from 1,013 

to 1,848 cases, MECDC 2018b). Maine had the highest incidence of Lyme disease cases in the 
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U.S. in 2016 and 2017 (86.4 and 106.6 cases/100,000 people, respectively) and has ranked in 

the top five states for Lyme incidence since 2008 (42.1 to 84.8; CDC 2018a). Case-counting is 

inexact (Cartter et al. 2018), but Maine is clearly a high-incidence state. Other tick-borne 

illnesses on the rise are anaplasmosis, babesiosis, B. miyamotoi disease, and Powassan virus 

neuroinvasive disease (Cavanaugh et al. 2017, MECDC 2018b, Smith et al. 2019a). 

Increasing Lyme disease incidence in Maine has been correlated with the range 

expansion of the blacklegged tick (Fig. 2.1). Reporting on 18 years’ worth of data (1989 through 

2006), Rand et al. (2007) showed that I. scapularis emerged first along the coast then advanced 

inland, and that submissions of nymphal I. scapularis were strongly correlated with reported 

Lyme disease cases in time and space. Comparison with submissions of macroscopically similar 

I. cookei (woodchuck tick) indicated an increase of I. scapularis, not just increased activity on 

the part of blacklegged ticks or tick submitters (Rand et al 2007).  

Geographic range expansion of invasive I. scapularis populations over time in the US has 

been attributed to a mosaic of factors including 20th century reforestation followed by 

suburbanization, burgeoning populations of the white-tailed deer (Odocoileus virginianus), 

which is the primary reproductive host of I. scapularis (e.g., Eisen et al. 2016, Telford et al. 

2017), non-native plant invasions that provide ideal tick habitat (Lubelcyk et al. 2004, Elias et al. 

2006, Williams and Ward 2010), and, at the northern edge of I. scapularis’ range, climate 

change (Leighton et al. 2012, Ogden et al. 2014 ). We describe known associations between I. 

scapularis, climate, deer, suburbanization, and tick-associated invasive plants in the next 

sections. 
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2.2.1 I. scapularis, Climate Suitability, and Climate Change in Maine  

Climate change in Maine has likely been an ally of I. scapularis over the past several 

decades (Chapter 1). Maine has warmed by about 1.7°C (3°F) between 1895 and 2014, and this 

warming has been felt most acutely in winter and in the northern part of the state (Chapter 1: 

Fig. 1.8; Fernandez et al. 2015). Since 1895, annual precipitation in Maine has increased by 15 

cm (13%), with most of the additional amount falling in summer and fall (Fernandez et al. 

2015). Among several climate scenarios for coastal Maine by 2030 (not all of which assume 

warming), Birkel and Mayewski (2018) described a moderate warming of 0.5°C, or abrupt 

warming of 1.7°C by 2030 due to Arctic sea ice collapse leading to further shrinkage of the 

Figure 2.1. Range expansion of the blacklegged tick in Maine, USA, 1990-2013, as measured 
by I. scapularis submitted to Maine Medical Center’s tick identification program. Source: 
Vector-borne Disease Laboratory, Maine Medical Center Research Institute, Scarborough, 
Maine. 

1990 2000 2013
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winter season and more total annual precipitation than the 2010s. A warmer, wetter climate 

future in Maine would likely further promote I. scapularis survival and questing activity and 

thus we are concerned that risk of tick bite and pathogen transmission will increase. 

The climate envelope for I. scapularis in Maine will be suitable in locations where I. 

scapularis are subject to sufficient degree-day accumulation (e.g., ~1,240 degree-days>6°C) to 

promote egg laying and hatching, with prevailing seasonal temperature averages between ~-

10°C and ~30°C and humidity ≥75% (Chapter 1). Survival, development, and questing (blood-

meal seeking) of Ixodes ticks are constrained by temperature and humidity at all stages of the 

two-year tick life cycle: egg, larva, nymph, and adult. In brief, temperature affects winter 

diapause (overwintering), length and timing of inactivity (phenology) and survival of adults and 

nymphs, summer questing activity (phenology) and survival of nymphs and larvae, and 

spring/summer phenology of oviposition (laying) and eclosion (hatch) of eggs; humidity 

modifies the desiccating effects of summer heat on nymphs and larvae (e.g., Lindsay et al. 1995, 

Rand et al. 2004a, Ogden 2006a, Ogden 2008a, Williams and Ward 2010, Leighton et al. 2012, 

Ostfeld et al. 2015, Parham et al. 2015, Linske et al. 2019).  

In Maine, Rand et al. (2004a) showed that for blacklegged tick females to lay eggs (in 

May), and for those eggs to hatch, about ~1,240 (± SD 143) degree-days >6°C (42.8°F) must 

accumulate by the end of August. Light-mediated diapause (e.g., Ogden 2018) may preclude 

some larval questing beyond August, thus attainment of sufficient degree days by summer’s 

end is important to completion of the lifecycle of I. scapularis. During the 1990s and 2000s 

1,240 degree-days >6°C (42.8°F) has not been attained in the northern tier but attendant to 

climate change, the line marking attainment of this threshold has shifted northward (Chapter 
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1:Fig. 1.9) and this shift may continue. Years where 1,240 DD>6°C is achieved by the end of 

August should lead to larger larval cohorts in the same year, and larger nymphal and fall adult 

cohorts the following year, assuming a mild intervening winter. We were interested in whether 

I. scapularis might show nonlinear and/or threshold relationships related to degree-day 

accumulation, mean winter low temperatures and other seasonal climatologies. 

2.2.2 I. scapularis and White-tailed Deer  

In the US, the white-tailed deer is the primary reproductive host of the adult I. 

scapularis (e.g., Telford 2017) by providing a mating site for adult ticks and blood meals to 

females and providing ~95% of blood meals to females (Wilson et al. 1990). In the northeastern 

US, larvae and nymphs also feed on deer (Watson and Anderson 1976, Anderson and 

Magnarelli 1980, Magnarelli et al. 1995, Garnett et al. 2011, Williams et al. 2018a), as well as on 

rodents and non-rodent small animals such as lizards (Piesman and Spielman 1979, Spielman et 

al. 1985, Oliver et al. 1993, Piesman 2002, Oliver et al. 2003, Brisson et al. 2008), and migratory 

birds (Smith et al. 1996, Rand et al. 1998, Ogden et al. 2008b). Conversely, adult blacklegged 

ticks feed on medium- to large-sized mammals but almost never on rodents and birds (e.g., 

Smith et al. 1996, Rand et al. 1998, Scharf 2004, Schulze et al. 2005, Elias et al. 2011). 

Integrated tick management combines strategies to lower tick abundance by killing ticks 

outright and to finding ways to interrupt the life cycle of the vector tick. Depriving adult I. 

scapularis of its primary blood meal host—white-tailed deer—is a strategy for long-term tick 

reduction that can be paired with short-term strategies (Telford 2017). 

Several studies have found correspondence between tick abundance and deer 

abundance (Wilson et al. 1988, Wilson et al. 1990, Deblinger et al. 1993, Rand et al. 2003, 
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Stafford et al. 2003, Kilpatrick et al. 2014), while others have not (Wilson et al. 1984, Jordan and 

Schulze 2007, Ostfeld et al. 2006). Six studies at seven sites ranging from New Jersey to Maine 

sought to reduce white-tailed deer densities enough to reduce I. scapularis (Kugeler et al. 

2016). Deer were reduced to 45-100% from pre-cull densities of 34-251/mi2 (13-97/km2) to 

post-cull densities of 0-65/mi2 (0-25/km2) (Kugeler et al. 2016). Fifty to 100% reduction in 

nymphal I. scapularis was achieved at six of the seven sites. The burden of Lyme disease was 

assessed pre- and post-cull at four of the sites. Where Lyme was possibly reduced, deer were 

reduced 50-100% from pre-cull densities of 34-118/mi2 (13-46/km2) to post-cull densities of 0-

13/mi2 (0-5/mi2) and where Lyme was not reduced post-cull deer densities remained high at 

47/mi2 (18/km2).  

The three deer reduction experiments connected with possible reductions in Lyme 

disease were on Great Island, Massachusetts, Monhegan Island, Maine, and Mumford Cove, 

Connecticut. On Great Island deer were reduced to <6/mi2 (2.3/km2) in 1982; nymphal I. 

scapularis declined by  >63% and cases declined from ~20 among 162 residents during the five-

year pre-cull period to two cases in the decade following (Telford, 1993, 2002). Monhegan 

islanders voted in 1995 to remove all 113 deer permanently; the number of I. scapularis larvae 

and nymphs on rats declined from 1 to 17 pre-removal to 0 post-removal (Rand et al. 2004a) 

and among the ~70-resident population, cases declined from 10 in the pre-cull decade to two in 

the two decades since. In Mumford, Kilpatrick et al. (2014) reported a 76% reduction in tick 

abundance and 80% reduction in cases of Lyme disease per 100 households in a Connecticut 

community where deer were reduced by 91%, from 142/mi2 (54/km2) to 13/mi2 (5/km2). The 

four studies on Monhegan Island, Maine, Great Island, Massachusetts, Mumford, Connecticut, 
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and Bernard Township, New Jersey provided empirical evidence that if the goal is to lower 

Lyme incidence, deer density should be lowered to the vicinity of 8-13/mi2 (3 to 5/km2) (Telford 

1993, Telford 2002, Stafford et al. 2003, Stafford 2007, Kilpatrick et al. 2014).  

Taken together, the deer reduction studies suggested the relationship between deer 

density and tick abundance is nonlinear, with a threshold deer density above which deer 

reduction does not reduce I. scapularis but below which deer reduction does lower tick 

abundance, with a time lag (Eisen and Dolan 2016). Kilpatrick et al. (2017) described this as a 

saturating relationship, with tick abundance increasing with increasing deer density up to a 

moderate but unknown deer density then showing little response as deer abundance increases 

further. A question we had was whether existing data on Maine I. scapularis and white-tailed 

deer in a model might statistically corroborate the empirically-derived 8-13/mi2 (3 to 5/km2) 

threshold.  

2.2.3. I. scapularis and Suburbanization  

The emergence of the blacklegged tick is tied to 20th and 21st century reforestation and 

suburbanization of the landscape (Telford 2017). Deciduous and mixed deciduous-coniferous 

forests are core forest habitat for I. scapularis (Eisen et al. 2016), and forest fragmentation as a 

result of residential development may lead to increased Lyme disease risk (Allan et al. 2003, 

Brownstein et al. 2005a, Brownstein et al. 2005b). Exposure to blacklegged ticks and risk of 

transmission seems to occur most typically in the peridomestic environment (Nicholson and 

Mather 1996, Linard et al. 2007, Zeman and Benes 2014). In Maine, many of the emerging 

suburbs that are currently experiencing rapid growth were rural areas 40 years ago (Richert 

2004). Expansion of service centers and transportation, along with increased development 
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pressure and zoning requirements for large lot sizes have led to the rapid conversion of land 

from traditional agricultural or timber uses to open, low, and medium-density suburban 

development (Richert 2004). We thus surmised that proportion of the landscape in deciduous 

and mixed forest cover in conjunction with proportion in residential development may serve as 

a good landscape-scale proxy to I. scapularis abundance and exposure. 

2.2.4 I. scapularis and Tick-Associated Non-native Plant Species Invasions 

Japanese barberry (Berberis thunbergii) is classified as invasive in twenty states and five 

Canadian provinces, and forms dense thickets that alter soil and site conditions, inhibiting 

forest regeneration and native herbaceous plant populations (Silander and Klepeis 1999). 

Japanese barberry is favored when overabundant white-tailed deer browse down native 

vegetation (Lubelczyk et al. 2004, Elias et al. 2006), and furthermore, it harbors white-footed 

mice and other small mammals and birds that host I. scapularis and serve as reservoirs for B. 

burgdorferi (Williams and Ward 2010). Japanese barberry infestations are favorable habitat for 

ticks because they provide a buffered microclimate that limits desiccation-induced tick 

mortality. High vapor pressure deficit (VPD) values are strongly related to tick mortality 

(Williams and Ward 2010). In Connecticut, control of Japanese barberry reduced the number of 

ticks infected with B. burgdorferi by nearly 60%, by reverting microclimatic conditions to those 

more typical of native northeastern forests, namely, lower relative humidity/higher vapor 

pressure deficit, and higher summer temperatures (Williams and Ward 2010). Forests infested 

with barberry can adversely affect human and pet health because they have greater tick 

abundance than native vegetation. Ticks also are associated with Japanese honeysuckle 

(Lonicera japonica) and oriental bittersweet (Celastrus orbiculatus) (Lubelczyk et al. 2004, Elias 
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et al. 2006). Though these plants have focal distributions, their tendency to invade whole 

landscapes led us to ask if sightings data might be predictive of I. scapularis abundance.  

2.2.5 Knowledge Gaps 

Numerous data modeling and simulation studies have supported the premise that 

Ixodes ticks and tick-borne disease have advanced northwards in response to warming climate 

(e.g., Ogden et al. 2008a, Ogden et al. 2008c, Leighton et al. 2012, Ogden et al. 2014) although 

Randolph (2014) and Ostfeld et al. (2015) cautioned that such models are incomplete without 

inclusion of non-climatic processes. Likewise, models of I. scapularis in relationship to deer and 

other landscape components be incomplete without consideration of climate. (Kilpatrick et al. 

2017) considered the relationship between tick density and low-to-moderate deer density 

while accounting for effects of cold on tick survival to be a knowledge gap. An advantage of a 

Maine study is that in the northern tier winters are colder and deer densities lower than in 

states to the south.  

Ideally, data on all climatic and non-climatic processes affecting Ixodes could be 

assembled into one model, but this is improbable. Still, several landscape-scale studies using 

combinations of field and remote-sensing data have incorporated climatic and some non-

climatic processes in the same models with ticks or tick-borne illness as the response (e.g., 

Khatchikian et al. 2012) . Robinson et al. (2015) found associations between Lyme incidence in 

Minnesota and degree-day accumulation and deciduous forest cover. Tagliapietra et al. (2011) 

found I. ricinis abundance was associated with saturation deficit and red deer density. Lyme 

incidence as an outcome in these types of models can be problematic due to increased disease 

discovery (Chapter 1; Elias et al. 2019). Fortunately, we had the benefit of a long-term passive 
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surveillance dataset (1989-2013) to model the statistical association between I. scapularis and a 

suite of factors known to be associated with I. scapularis. 

2.2.6 Aims and Hypotheses  

Our aim was to determine whether annual nymphal I. scapularis submissions rate could 

be modeled as linear or nonlinear smooth functions of deer density, seasonal climatology, and 

several landscape features, at the statewide scale. As described above, relationships between I. 

scapularis and predictors are not likely to be linear and may involve thresholds. Using nymphal 

I. scapularis submissions rate (ticks submitted adjusted for human population size) as an index 

to tick abundance, our hypotheses were that nymphal I. scapularis submissions rate in yeart and 

WMDi would be  

1. a nonlinear function of deer density at yeart-2 in WMDi, exhibiting a positive relationship 

initially, followed by threshold in the vicinity of 8-13/mi2, over which there would be no 

relationship between ticks and deer density. The rationale for yeart-2 is that the summer 

nymphal cohort in yeart would be the result of a yeart-2 adult cohort, most of which fed on 

deer in fall of yeart-2. Larvae (in yeart-1) and nymphs (in yeart-2) also could have obtained 

blood meals from deer, but typically would have fed on small mammals as well as birds. The 

rationale for the specific threshold is based on the 8-13/mi2 range posited for suppression 

of ticks and Lyme disease (Telford 1993, Telford 2002, Stafford et al. 2003, Stafford 2007, 

Kilpatrick et al. 2014);  

2. a nonlinear function of degree-day accumulation in yeart-1 of WMDi with a threshold in the 

vicinity of 1,240 degree-days >6°C because larval eclosion depends on accumulation of 

sufficient degree-days (Rand et al. 2004a, Leighton et al. 2012);  
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3. a positive nonlinear function associated with mean winter low temperature in yeart and 

WMDi, with a threshold in the vicinity of -18°C to -10°C (Burks et al. 1996, VanDyk et al. 

1996, Brunner et al. 2012) assuming warmer winters improve overwintering survival; 

4. a positive nonlinear or linear function of mean summer relative humidity and or mean 

summer maximum temperature in yeart and WMDi because greater nymphal activity and 

survival is associated with higher relative humidity (Williams and Ward 2010), but might be 

compromised in hot summers; 

5. a positive nonlinear or linear function of percentage of land area in, open, low and medium 

density development, percent of forest with deciduous or mixed cover type, and frequency 

of Japanese barberry, Japanese honeysuckle, and oriental bittersweet sightings in WMDi. 

We considered several other climatological variables closely associated with humidity 

(precipitation, vapor pressure deficit) and compressed winters (warmer falls, warmer springs). 

We expected the model would be improved by including time (year), because I. scapularis is an 

invasive species, dispersing into presumably suitable but previously unoccupied habitat (Byers 

et al. 2015). We also assumed that there would be temporal and spatial autocorrelation within 

and among WMDs, respectively, and that the models would be improved by incorporating 

random effects to represent these sources of variation. Adult I. scapularis do have a role in 

Lyme disease transmission in humans, but as human cases of Lyme disease peak in the summer 

months when nymphs are active (Schwartz et al. 2017), we selected nymphs as the 

representative stage.  
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2.3 Methods 

2.3.1 Study Area 

Maine, the most northeastern of the United States, encompasses 86,542 km2 and 4.5° 

latitude (42.97-47.46°N, 66.95-71.08°W), and has 924 minor civil divisions (towns), 512 of which 

are populated. With the exception of agricultural land along its eastern border with Canada, the 

northern half of the state is primarily commercial forests of spruce and fir (Picea and Abies spp.) 

being gradually supplanted by hardwood stands, principally of maple and oak (Acer and 

Quercus spp.). A series of higher elevations (600-1,600 m) occupies the northwestern half of 

the state. The majority of its human population of 1.3 million resides in its southern half, 

generally within an 80-km-wide coastal plain with elevations <150 m (Rand et al. 2007). Relative 

to other high Lyme incidence states in the northeastern US, Maine is unique. This is because 

tick populations range from established on the coast to emerging in the northern tier, white-

tailed deer densities range from moderate (moderate relative to states such as Connecticut and 

New York) to low in the northern tier, and local climates range from mild on the coast to cold in 

the northern interior and higher elevations (Rand et al. 2007).  

The Maine Department of Inland Fisheries and Wildlife (MEDIFW) manages deer and 

other game species within 30 Wildlife Management Districts (WMDs) numbered 0 through 29 

(Fig. 2.2). WMDs are based on similarities in geographical location, soils, forest cover types, 

seasonal temperature, rainfall and snowfall, and land use (MEIFW 2007). Currently, WMD-level 

deer abundances range from 2-5/mi2 (5-13 deer/km2) in the north, to 15-25/mi2 (39-65 

deer/km2) in central and southern areas (MEIFW 2007). WMD 29 is located along the mid- and 

southern coast and contains all islands with year-round residents not connected to the 
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mainland at low tide or by manmade structures; at times deer densities have exceeded 100/mi2 

on certain islands (MEIFW 2007, Rand et al. 2007). We note that no ticks were acquired in 

towns corresponding with WMD 0 (Baxter State Park) and WMD 4 and so these two WMDs are 

not part of the model. 
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Figure 2.2. Maine’s 16 counties (red outlines) superimposed 
over 30 Wildlife Management Districts (WMDs 0 through 29, 
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2.3.2 Datasets 

The data comprised nymphal blacklegged tick submission rates as response variables, 

and white-tailed deer abundance, climatological variables, and landscape characteristics as 

candidate explanatory variables (Table 2.1).  

2.3.2.1 Shapefiles 

We downloaded shapefiles of Maine towns (metwp24.shp) and WMDs 

(wildlife_mgmt_districts.shp) (Maine GeoLibrary 2017). We used these shapefiles to spatially 

aggregate and portray data on ticks, white-tailed deer, climatology, and landscape variables to 

the WMD level. 

2.3.2.2 Nymphal I. scapularis Submission Rate as an Index of Abundance 

The Vector-borne Disease Laboratory at the Maine Medical Center Research Institute 

ran a free-of-charge, statewide tick identification (i.e., passive surveillance) program in Maine, 

initiated in 1989, a year after the first I. scapularis were reported in the state (Rand et al. 2007). 

Members of the general public, health care providers, and veterinarians submitted ticks to the 

program from 1989 through 2013. In 1989, lab staff actively recruited tick submitters by way of 

lectures, phone calls, newsletters, and media communications. After 1989 there was no active 

recruitment, and in mid-2013 the lab announced the end of the program. Data collected from 

persons submitting ticks were: date found and town where the tick was thought to have been 

acquired, the species of “found-on” host (including age and gender if the host was human), the 

attachment site if bitten, and any related symptoms. Laboratory staff identified the species, 

stage, and engorgement level of the tick and returned this information to the tick submitter 

(Rand et al. 2007). Although passively collected, tick submissions data serve as a good if not 
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excellent index of entomological risk (Rand et al. 2007, Ripoche et al. 2018) and reflect the 

seasonality of I. scapularis. Humans could encounter nymphal and adult ticks carried into the 

region as larvae and nymphs by migratory birds and these encounters would not reflect an 

established tick population (Ogden et al. 2006b, Ripoche et al. 2018). But in these areas, tick 

submissions would be low as would Lyme incidence.  

Among 1,903 I. scapularis identified by the submissions program, 81%, 2%, and 15% of 

hosts were found on humans, dogs, and cats, respectively (Chapter 1). We excluded the 3% of 

submissions where ticks were unknown or found on livestock and wildlife species (Rand et al. 

2007) since livestock and wild animals did not necessarily have statewide representation and 

wildlife do not represent peridomestic risk. We summarized the number of nymphal I. 

scapularis by town and year. To index annual abundance of questing I. scapularis nymphs, we 

obtained annual census data by town (minor civil division) for the State of Maine from the U.S. 

Census Bureau (U.S. Census Bureau 2018), then divided the number of ticks submitted per town 

by year by (population x 100,000) to arrive at ticks submitted per 100,000, i.e., the tick 

submissions rate. This was analogous to conversion of disease case counts to disease rate or 

incidence (cases/100,000), which allows for comparisons across time and areal units. We did 

adjust for the “small numbers problem” wherein small changes in case numbers in a geographic 

unit with a small population can cause wild swings in incidence and cause high disease rates to 

appear to cluster in areas with small populations (Pringle 1996, Roquette et al. 2018). For this 

reason, we calculated “tick rates” only where town populations were at least 50, following the 

lead of the Maine CDC which considers cases in towns with populations under 50 “non-

reportable” (MECDC 2018a).  
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Using ArcGIS® (ESRI 2018), we joined the year-by-town dataset (now with tick 

submission rate), with the Maine town-level shapefile. We then used the zonal statistics tool in 

conjunction with the WMD shapefile to summarize tick submission rate to the year-by-WMD 

level (Table 2.1). The choice of spatial data aggregation level was nontrivial as different 

aggregation levels can lead to different results; this is the Modifiable Areal Unit Problem or 

MAUP (e.g., Openshaw 1984, Dark and Bram 2007, Roquette et al. 2018). One reason to 

aggregate to the WMD level was that we could have more confidence in the tick submission 

rate at the WMD level than at the town level. A second reason is that the WMD is the basic 

management unit for big game species including white-tailed deer. 

2.3.2.3 Deer Density 

During the hunting season (the regular firearms season is generally in November), the 

Maine Department of Inland Fisheries and Wildlife (MEIFW) Maine tracks hunter-killed deer at 

deer registration stations around the state, capturing information including sex, age, and town 

of kill. MEIFW uses deer registrations to calculate a buck kill index (BKI), which is the number of 

hunter-killed deer per 100 square miles. 

Through 2005, MEIFW used a variation of a “sex-age-kill” model, called “HARPOP”, to 

arrive at estimates of deer/mi2 for each WMD. HARPOP required a number of inputs including 

BKI and an index to hunting pressure, called hunter-days of effort/mi2. HARPOP density 

estimates corresponded well with those based on pellet group surveys conducted in the 1980’s 

as ground-truthing (MEIFW 2007). Discontinuation of hunter surveys meant loss of hunter 

effort data and use of HARPOP ended after 2005. However, to express deer density estimates in 

public forums on deer management goals, MEIFW regressed HARPOP deer/mi2 on BKI for each 
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WMD using the years 1987-2005 (n = 18 years). The best-fitting of several candidate regression 

models (linear, exponential, or power) was selected for each WMD and used to predict 

deer/mi2 for years after 2005 (mean R2 = 0.81, range 0.52 to 0.96, Appendix A). From MEIFW 

we obtained annual BKI and the equations for each WMD, then estimated annual deer/mi2 for 

each WMD, 1990-2013 (Table 2.1). At the end of 2005, a handful of WMDs’ boundaries were 

shifted with the notable change being WMD 29. The former WMD 29 included areas with both 

higher (WMD 25) and lower (Downeast) deer densities but the new WMD 29 included the 

offshore islands with historically much higher deer densities: Monhegan Island Plantation, 

~114/mi2 in 1996 (Rand et al. 2004b), Islesboro, ~48 to 62/mi2 in 2011 and 2012 (Town of 

Islesboro Deer Reduction Committee 2018). We used the equation for WMD 25 for the new 

WMD 29. This resulted in conservative estimates of deer density in the new WMD 29, which we 

thought preferable to losing an experimental unit. 

2.3.2.4 Climatology 

Oregon State University’s Parameter elevation Regression on Independent Slopes Model 

(PRISM 2004) is the U.S. Department of Agriculture's climatological dataset. PRISM uses 

weather station point measurements with a weighted regression scheme to account for climate 

regimes associated with orography, rain shadows, temperature inversions, slope aspect, coastal 

proximity, and other factors (NCAR 2015). Monthly and daily reanalysis data are available at 2.5 

arcmin (4 km) resolution for 1895 through present in NetCDF format. We downloaded monthly 

gridded NetCDF files for the continuous United States (CONUS) which included minimum, 

maximum, average, and dewpoint temperature at 2m in degrees Celsius (t2min, t2max, t2ave, 

t2dpt), and total precipitation in cm (prcp). Using the National Center for Atmospheric Research 
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Command Language (NCL 2017), and the WMD shapefile, we masked the CONUS data to Maine 

only, then aggregated the monthly gridded data to the WMD level for 1989-2013.  

We calculated the number of degree-days >6°C attained by the end of August for each 

year-WMD using the formula (t2ave - 6°C) x 30.5 with the monthly PRISM data (Table 2.1). 

Using t2ave, we calculated average monthly vapor pressure (VP) and saturated vapor pressure 

(SVP) in Pascals, and from this, average monthly relative humidity (RH) and vapor pressure 

deficit (VPD), by WMD. The formulas were: VP = 6.112 ×  exp [17.62 × t2dpt/(243.12+ t2dpt)], 

SVP=6.112 ´ exp [17.62 × t2ave/(243.12 + t2ave)], and RH=SVP/VP ´ 100, and VPD=1 SVP-VP 

(WMO 2008, p. I.4–29). For each year and WMD, we summarized monthly climatology to obtain 

average seasonal climatology pertaining to minimum and maximum temperature and degree-

day accumulation by the end of August, and precipitation, relative humidity, and vapor 

pressure deficit (Table 2.1). Climatological time trends were difficult to interpret in map 

multiples so we presented them as time series.  

2.3.2.5 Suburban and Forest Land Cover  

National Land Cover Database (NLCD) contains classes of land cover associated with 

development, which we aggregated to represent suburban land cover. The NLCD is the primary 

source of land cover data in the United States (Wickham et al. 2010, MRLC 2018) and is a 

thematic land cover map for the United States based on Landsat images for the years (2001, 

2006, 2011), with 20 classes of land cover with a spatial resolution of 30m (the 2011 NLCD 

includes changes in land cover classes from 2001 and 2006). We used the Evaluation, 

Visualization, and Analysis (EVA) Tool on the MRLC website (MRLC 2018) to select and 

download the 2011 land cover raster for Maine.  
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Using the zonal statistics tool in ArcGIS and the WMD shapefile to define zones, we 

summarized percent coverage by cover type for each WMD. We aggregated across the classes 

“Developed, Open Space”, “Developed, Low Intensity”, and “Developed, Medium Intensity”, to 

create a single new class of open, low, and medium density suburban development. We 

repeated this for percent forest cover type (deciduous, mixed, evergreen) and added the 

deciduous and mixed types to create percent deciduous/mixed forest cover (Table 2.1).  

2.3.2.6 Tick-associated Invasive Plant Presence 

The Maine Natural Areas Program (MNAP), Maine Department of Agriculture, 

Conservation and Forestry, coordinates a mapping system called iMapInvasives 

(www.imapinvasives.org). iMapInvasives is an online, GIS-based, mapping and data 

management tool for invasive species monitoring and management. Data are received from 

partners through quality-controlled, online submissions and iMapInvasives provides confirmed 

data points with high confidence in species identification and positional accuracy (Nancy 

Olmstead, personal communication 2017). Through a Data Use Agreement with the Maine 

Natural Areas Program, Maine Department of Agriculture, Conservation and Forestry, we 

downloaded iMapInvasives shapefiles (NAD83 Datum: NAD83 UTM Zone 19N) with spatial 

point locations of Japanese barberry, Japanese honeysuckle, and oriental bittersweet.  

Using ArcGIS, we joined shapefile attribute tables for each of the three species 

(Japanese barberry, Japanese honeysuckle, and oriental bittersweet), with the town shapefile, 

and scored the occurrence of any of one of these three species as “tick-associated invasive 

plant species present”. Using ArcGIS and the WMD shapefile to define zones, we summarized 

presence counts for each WMD and divided by total hectares of the WMD (Table 2.1).  
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2.3.3 Statistical Methods  

2.3.3.1 Summary Statistics and Visualizations 

To characterize and visualize the variables used in the Maine model, we tabulated 

summary statistics for the northern and southern tiers of the state (Fig. 2.2) and produced 

maps (I. scapularis, deer, landscape) and time series (climatology). 

2.3.3.2 Nymphal I. scapularis Model 

 Generalized additive models (GAMs) extend generalized linear models (GLMs) by using 

smooth functions to define nonlinear relationships between the response and explanatory 

variables, and by combining predictor variables additively (Wood 2017). A generalized additive 

mixed model (GAMM) has the form 

g(µi) = Xiq + f1(x1i) + f2(x2i) + fp(xpi) + . . . Zib +  ei 

where g is a link function that links the expected value to the predictor variables, µi ≡ E(Yi), the 

expected value of Yi, and Yi ∼ is a response from the exponential family distribution, i=1,…,n are 

n observations; for the parametric part, if any, Xi is a row of the parametric effects model 

matrix and q is the corresponding parameter vector (usually with an intercept, β0); for the 

smooth components of the model, fj are smooth functions of the covariates, x1,…,xp (Wood 

2001, Wood 2017). For the random part of the model, Zi is a row of a random effects model 

matrix; b ∼ N(0, Y) is a vector of random effects coefficients with unknown positive definite 

covariance matrix Y (Wood 2006) and ε ∼ N(0, L) is a residual error vector, with ith element εi 

and covariance matrix L, which is usually assumed to have some simple pattern (Wood 2006). 

A generalized additive model (GAM) is a special case of GAMM (Wood 2006) without the 
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random part, Zib, with ei i.i.d. N(0, σ2) random variables. Further details on GAMs can be found 

in Appendix B. 

We implemented s generalized additive mixed models (GAMM) using the mgcv gam 

package R Core Team (2018). We used the square root transform on nymphal submission rate 

to reduce leverage of a large outlier (very high tick submission rate in WMD 29) and stabilize 

the mean-variance relationship (Wood 2017). Using the 2-year lag of deer density meant that 

the years 1990 and 1991 were not part of the model, and we eliminated 2013 as submissions 

could have been biased by announcement of the end of the tick identification program that 

year. Thus n = 614 (28 WMDs x 22 years, 1992-2013).  

The Tweedie distribution (Candy 2004; Dunn and Smyth 2008) is a family of distributions 

that incorporates the normal, Poisson, and gamma distributions. The mean(μ)-variance (V) 

relationship is given by V(μ) = μp  for some p, the index parameter, where p = 0, p = 1, and p = 2 

are normal, Poisson, and gamma distributions, respectively (Arcuti et al. 2013). A Tweedie 

model can be thought of as having mixed distributions with a positive mass at zero and non-

negative real numbers, i.e., zero-inflated data with 1 < p < 2. Our response variable, nymph 

abundance (submission rate), included many zeros. Using the R function tweedie.profile (Dunn 

2013) we determined 1 < p < 2 for the response distributions. The Tweedie model uses the log 

link by default, which ensures predicted values are positive (Wood 2017). When using the 

Tweedie distribution, the method for smooth parameter estimation in mgcv gam defaults to 

restricted maximum likelihood (REML) rather than generalized cross validation criteria (CGV). 
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The starting main effects nymphal model was: 

Yj = f1(yeartj) + f2(deer_lag2tj) + f3(DD_lag1tj) + f4(SON_t2_min_lag1tj) + f5(DJF_t2_mintj) + 

f6(MAM_t2_mintj) + f7(JJA_RHtj) + f8(JJA_VPDtj) + f9(JJA_prcptj) + f10(pctDEVELtj) + 

f11(pctDECID_MIXEDtj) + f12(INVASIVEtj) +  etj  

with t indexing years and j indexing WMDs. 

Concurvity is the GAM analogue of collinearity in a GLM setting and occurs when a 

smooth term in a model could be approximated by one or more other smooth terms in the 

model (including smoothers in the random part of the model). Concurvity smooth main effects 

and a random spatial effect is likely to occur when all effects are at the same scale (Hodges and 

Reich 2010, Paciorek 2010, Hughes and Haran 2013, Hughes 2014, Hanks et al. 2015).  

In an iterative process, we checked for concurvity among candidate explanatory 

variables, then tested each variable for significance as a main effect, either smooth or linear. If 

a main effect was concurve with one or more others, we substituted until we found the best 

predictor. Significance of smooth terms is based on Wald tests of smoothing parameter, βk = 0. 

i.e., not different from a simple linear relationship. Wald test P-values for smooth terms provide 

only rough guidance (Wood 2017) and should be used in combination with other fit guidance, 

e.g., smooth plots and residuals analysis. If a variable was not significant as a smooth main 

effect, we tested it for significance as a linear main effect. The chosen linear and smooth main 

effects were predictor variables that were not concurve with any other predictor and provided 

the best fit. We did not find guidance that described a concurvity score that should trigger 

concern, and concurvity can be tolerated in some models (Wood 2008). However, in our 

models it was clear that concurvity scores of ~≥0.30 in the spatial dimension destabilized the 
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smooth terms as seen through changes in the smoothing parameters, wider confidence 

intervals and counter-intuitive smooths (e.g., ticks negatively related to temperature) (Mur 

2008). We note that concurvity scores among the explanatory variables were the same 

regardless of correlation structure. We tested model fit given four candidate correlation 

structures (R code is in Appendix B):  

1. Temporal “factor smooth” random effect. This random effect was a year × spatial unit 

interaction (i.e., a tensor product) that imposed a temporal correlation structure arising from 

repeated measurements on the spatial units (WMDs) but did not impose a spatial correlation 

structure. To specify this, the term f2(yeartj, WMDtj) was added to the main effects equations 

above. In the GAMM context the smooths of WMD over time are allowed to have smooths that 

vary from the overall main (global) effect of year.  

2. Spatial Markov random field random effect. This random effect imposed a global 

Markov random field (mrf) smooth allowing a single spatial correlation structure among the 

neighboring areal units across years. The term f1(WMDj) using a queen neighbor structure for 

the WMDs (Wood 2017) was added to the main effects equations above. 

3. Additive temporal-spatial random effect. This random effect imposed, additively, the 

correlation structures of both the temporal factor smooth and global spatial Markov random 

field smooth. The term f2(WMDtj, yeartj) + f3(WMDj)  was added to the main effects equations 

above. 

4. Interacting temporal-spatial random effect. This model differed from Model 3 in that 

the correlation structure allowed the mrf spatial smoothing among the neighboring areal units 

(WMDs) for each year of the form. The term f(WMDtj, yeartj) was added to the main effects 
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equations above and f1(yeartj) was omitted. This was because in the R mccv package, the “te” 

function that specifies this random effect includes the main effects, so a main time effect would 

not be separately specified, as would be main effects in an ANOVA (Wood 2017). 

We checked for concurvity among the candidate explanatory variables and four 

candidate random effects. Our primary interest was ecological mechanisms explaining the 

observed increases in I. scapularis over time and space versus pure prediction. Thus, we 

selected ecological predictors over purely temporal and/or spatial covariance structures that 

predicted as well or even better than the biological factors.  

We assessed the appropriateness of model terms based on measures of fit: residuals 

plots striving for etj ∼ N(0, σ2), i.e., normal residuals without remaining correlations or patterns, 

Aikake information criterion (AIC), dispersion, deviance explained, adjusted R2, and the 

autocorrelation statistic (acf). The adjusted R2 is approximately square of the correlation 

between the observed and fitted values, with an adjustment for degrees of freedom. Through 

this iterative process, we arrived at a final, parsimonious model, selected on the basis of model 

fit and explanatory value. For reference, we also ran an intercept-only model.  

We wanted to assess the proportion of deviance explained by each explanatory variable 

in the final multivariate model. For each variable, we ran a reduced model missing the variable 

of interest (enforcing the same smoothing parameters as the full model), then subtracted the 

percent deviance explained by the reduced model from the percent deviance explained by the 

final model. Unfortunately, in a multivariate model where covariates are not strictly orthogonal, 

proportion of deviance explained by individual covariates does not add up to proportion of 

deviance explained by the full model. Therefore, we divided the proportion of deviance 
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explained by each variable by the sum of percent deviance explained from the reduced models. 

This approximated the relative contribution of each variable to the proportion of explained 

deviance. We multiplied this by percent deviance explained in the full final model to 

approximate proportion of total deviance explained. 

2.3.3.3 Validation and Prediction 

We set the nymph submission rate to missing for 2012, and used the gam.predict 

function in conjunction with the final model to output predicted nymph submission rate. We 

examined the spearman correlation coefficient, Rho (rS) between actual and predicted values 

for the nymph submission rate and considered correlations strong where rS ³0.7 (Cohen 1988).  

We wanted to predict the joint effect of anticipated climate warming and deer herd 

management on nymph submission rate. We selected an intermediate climate warming 

scenario of 1.0°C based on the two warming scenarios (moderate 0.5°C, abrupt 1.7°C) of Birkel 

and Mayewski (2018). To do this, we established a contemporary baseline (“current” situation), 

and a scenario with warmer climate, and a scenario with warmer climate and more deer. We 

established a five-year baseline for all variables (Table 2.1) by averaging across 2008-2012, 

calling this our “current” situation for the 28 WMDs. We selected a five-year average to 

represent the current situation because a five-year average for climatology smooths over 

extremes and is preferable to a shorter span for a baseline (Birkel S., University of Maine 

Climate Change Institute personal communication 2015). Assuming continued faster winter 

warming in the northern tier relative to the southern tier (Fig. 2.2), we then added 1.0°C to the 

“current” seasonal climatology for winter minimum temperature to each WMD for the 

northern tier and 0.5°C to the southern tier. We also added 100 to the number of degree-days 
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accumulated by the end of August to all northern tier WMDs and 50 to southern tier WMDs. 

We then tested the effect of warming, plus increases in northern tier deer density to 

hypotheticals of 10/mi2 and 15/mi2. We left deer densities in the southern tier at the 

contemporary values and set year to arbitrarily to 2018 since we were not predicting a specific 

year at which the warming would occur. This was to mimic MEIFWs deer density targets in both 

tiers. We kept values of other predictors in the model constant. 

 

2.4 Results 

2.4.1 Summary Statistics and Visualizations 

The south-to-north spatial gradient was strong for nearly all variables, with higher 

nymph submission rates, white-tailed deer densities, warmer climate, along with the time-

invariant landscape variables residential development and tick-associated invasive plant 

sightings characteristic of the southern tier of the state (Table 2.2, Figs. 2.3, 2.4, 2.5). Percent 

land cover in deciduous and mixed forest cover type varied, but not along a latitudinal gradient 

(Fig. 2.5b). Consistently higher deer densities can be seen the central WMDs and especially 

WMD 29, which encompassed the unbridged, off-shore islands, but in the temporal dimension 

the years 1996 to 2002 marked the period of highest deer densities in the southern tier (Fig. 

2.4). Temporal uptrends can be seen for winter, spring, and fall, and degree-day accumulation, 

particularly in the northern tier (Fig. 2.6a,b,d,e), which appeared to be “squeezing” up towards 

values in the southern tier. This is consistent with the relatively faster warming in the northern 

tier depicted in Fig. 1.8 (Chapter 1). The slight downtrend in mean maximum summer 

temperature was apparent (Fig. 2.6c), which could reflect increased precipitation. Among the 
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moisture variables, uptrends in summer precipitation and relative humidity, could be seen (Fig. 

2.6f,g). As the converse of relative humidity, a slight downtrend in vapor pressure deficit could 

be seen in Fig. 2.6h.  

 

  

Statistic
Common name Abbreviation Tier mean SE min max P

nymphs nyrate Northern 0.8 1.10 0 71.9
Southern 14.1 13.25 0 606.8 ***

√nymphs sqrt(nyrate) Northern 0.2 0.21 0 8.5
Southern 2.7 0.79 0 24.6 ***

deer/mi2 deermi2 Northern 4.1 0.74 0 18.2
Southern 17.3 1.64 5.4 35.9 ***

degree-days/end August ddgt6endaug Northern 1185.3 27.44 884.5 1488.4
Southern 1382.6 34.15 1085.8 1689.7 ***

average winter min temp DJF_t2min Northern -14.1 0.66 -20.2 -6.5
Southern -10.2 0.71 -16.7 -4.7 ***

average spring min temp MAM_t2min Northern -2.3 0.42 -6.6 2.7
Southern 0.3 0.42 -3.3 4.0 ***

average summer max temp JJA_t2max Northern 23.5 0.28 20.6 26.2
Southern 24.6 0.41 19.8 27.6 ***

average fall min temp SON_t2min Northern 1.8 0.32 -1.2 5.7
Southern 3.9 0.36 1 7.4 ***

average summer total precip JJA_prcp Northern 10.6 0.71 5.1 20.6
Southern 9.7 0.93 4.1 18.6 **

average summer relative humidity JJA_RH Northern 65.5 0.68 57.4 75.1
Southern 66.5 1.02 59.9 77.2 ***

average summer vapor pressure deficit JJA_VPD Northern 449.3 8.14 353.8 530.6
Southern 485.9 13.34 336.0 575.5 ***

% residential development pctDEVEL Northern 1.7 0.28 0.1 3.6
Southern 8.9 1.91 0.3 26.9 ***

% decid or mixed forest pctDecMix Northern 45.9 2.67 12.0 64.0
Southern 40.1 4.29 0.5 54.3

invasive plant sightings/ha INVASIVE Northern 14.9 10.87 0 180.5
Southern 301.9 68.70 0 758.1 ***

Table 2.2. Summary statistics for variables used in a model of nymphal I. scapularis  submission rate. There were 28 Wildlife 
Management Districts (WMDs) used for the summaries (17 in the northern tier, 11 in the southern tier, across 23 years (1990-
2013), thus n  = 644). Significant differences for northern vs.southern tier means are denoted as *** (P  < 0.001),  ** (P  < 0.01), * 
(P  < 0.05), Wilcoxon rank-sum tests.
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1991 1992 1993

1994 1995 1996 1997

1998 1999 2000 2001

2002 2003 2004 2005

2006 2007 2008 2009

2010 2011 2012 2013

1990

0 – 1 1 – 50 50 –150 150 – 300 no people
nymph submission rate 

Figure 2.3. Nymphal submission rate for 28 wildlife management 
districts (WMDs) in Maine, 1990-2013. Two WMDs had no human 
population. 
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Figure 2.4. Estimated white-tailed deer per square mile in 29 (in some 
years 28) wildlife management districts (WMDs) in Maine, 1990-2013. 
WMDs in gray indicate no data.  
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Figure 2.5. Landscape characteristics in 30 wildlife 
management districts in Maine. Characteristics were taken 
from the National Landcover Database, 2011 (a, b), and 
from Maine’s iMapInvasive program, 2018 (c). 
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Figure 2.6. Annual average seasonal climatologies in Maine’s northern and 
southern tiers, 1990-2013. Plots are (a) winter minimum temperature, (b) spring 
minimum temperature, (c) summer maximum temperature, (d) fall minimum 
temperature, (e) degree-day accumulation by the end of August, (f) summer 
precipitation, (g) summer relative humidity, and (h) summer vapor pressure 
deficit.  
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2.4.2 Nymphal I. scapularis Model 

Nymphal I. scapularis submission rate was best predicted by summer relative humidity 

and nonlinear smooths of deer density at a 2-year lag, degree-day accumulation >6°C by the 

end of August at a one 1-year lag, and average winter minimum temperature (Table 2.3). In 

addition, the model contained a temporal correlation structure arising from repeated 

measurements (Table 2.3). In a manner analogous to generalized linear modeling, where main 

effects are conditional on the higher-order interaction, we left the lower order effect (year) in 

the model as a smooth main effect. Deviance explained = 74% and R2 = 0.72 (Table 2.3). 

Variables not included were concurve with and less predictive than variables remaining in the 

model including the three candidate random spatial autocorrelation structures (Table 2.4). I. 

scapularis were associated percent residential development and invasive plant sightings per 

hectare, but were concurve with deer and thus not included.  

The selected model maximized ecological explanatory value. Although it performed 

third best in terms of AIC and second best in terms of deviance explained (Table 2.3), it did not 

suffer concurvity issues as did the models with spatial random effect structures (Table 2.4). 

Approximate proportion of total deviance explained by each variable was deer 30%, degree-day 

accumulation 2%, average winter minimum temperature 9%, summer relative humidity 

contributing 14% (thus 25% explained by climatology), and time–accounting for varying time 

trends in wildlife management districts–19%. 
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Patterns in the residuals indicated reasonable fit (Wood 2017). The Q-Q (quantile-

quantile) plot (Fig. 2.7a) shows deviance residuals lying close to the straight line which 

represents deviance residuals of the theoretical distribution; this indicated the Tweedie 

distribution was a reasonable choice of response distribution. A handful of outliers (Fig. 2.7a, 

top right corner) coincided with various WMAs with higher-than-expected predictions of nymph 

submission rate but there was no basis to exclude them. In the residuals versus linear predictor 

plot (Fig. 2.7b) the smooth line of residuals in the lower left of the plot was caused by response 

values of zero and expected when response values contain a mixture of zeros and positive 

values (Wood 2017). The pattern above the smooth line suggested, apart from outliers at the 

top of the plot, that variance was approximately constant as the mean increased (Fig. 2.7b). The 

histogram of residuals (Fig. 2.7c) approached normality though a long right tail represented the 

outliers. The plot of response against fitted values (Fig. 2.7d) showed a positive linear 

relationship albeit with scatter and outliers (upper right). Compared to the intercept-only and 

main effects models, the low acf score and patterns in the residuals were a substantial 

improvement (Table 2.3, Fig. 2.8a-c). Spatial data may be over dispersed (𝞂2/𝝻 ≫ 5) but 

dispersion in the chosen model was well under 5 and in the neighborhood of 1 (𝞂2/𝝻 =1.18, 

Table 2.3) as recommended by Zar (2010). In the model validation, correlation between the 

actual and predicted values for nymph submission rate in arbitrarily selected 2012 was strong 

(Spearman  r = 0.72). 

Consistent with our first hypothesis, there was a positive relationship between I. 

scapularis nymphs and deer up to a threshold deer density, which we visually assessed as 13 

deer/mi2 (Fig. 2.9a). Using second derivatives along the smooth we confirmed with 95% 
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confidence (Simpson 2014) that the rate of change in nymph submission rate was non-zero 

where £13 deer/mi2 and zero where >13 deer/mi2. Response variables in GAMs are zero-mean 

centered on the y-axis and a smooth plot is read as the relationship between the response and 

the covariate of interest while keeping other covariates at constant at their means. In Fig. 2.9a 

horizontal line drawn from 0 on the yaxis intersected the curve at the point corresponding with 

~6 deer/mi2 on the x-axis, indicating nymph submission rate was below average where deer 

density was <~6/mi2.  

Our second and third hypotheses were that nymphal I. scapularis would be a nonlinear 

function of degree-day accumulation with a threshold in the vicinity of 1,240 degree-days >6°C, 

and a threshold in the vicinity of -18°C to -11°C. The nonlinear increasing functions showed no 

thresholds per se, but nymphal submission rate was above average where at least ~1,320 

degree-days >6°C had accumulated by the end of the previous August (Fig. 2.9b), and where 

average winter low temperatures were above about -13°C (Fig. 2.9c).  

Consistent with our fourth hypothesis, there was a positive (linear) relationship 

between nymphs and mean summer relative humidity (Table 2.3). The model predicted a one 

unit increase in average summer relative humidity would result in a 2% increase in nymph 

submission rate (obtained by back-transforming the coefficient; 0.162 = 0.02).  

Also consistent with our expectations was a global trend of increasing nymphal I. 

scapularis over the years (Fig. 2.9d). The global time trend was essentially linear and slightly 

increasing, though the smooths of nymphal I. scapularis year for individual wildlife 

management districts differed substantially. Generally the smooths of nymphs over time 

increased in the northern tier wildlife management districts and decreased in the southern tier 
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wildlife management districts. Therefore, while the random smooths of year helped explained 

temporal variation in nymphal submissions rate, the statistical relationships between nymphal 

I. scapularis and the deer and climatology predictors ran strongly in the spatial dimension.  

Three-dimensional plots (Fig. 2.10a,b) of the final nymphal tick GAM illustrate the 

additive effects of two covariates on the response (Wood 2017). We constrained prediction 

surfaces not to extend beyond 10% of the data to avoid prediction where data were sparse or 

in covariate spaces that were unrealistic (e.g., we did not have high deer densities in the cold, 

northern WMDs), resulting in the plots’ jagged appearance. Higher nymph submission rate was 

associated with warmer winters and degree-day accumulation (positive rather than flat trend 

line seen) but only where ~≥4 deer/mi2. The threshold at ~1,320 DD in the univariate smooth 

plot (Fig. 2.9c) is seen also in the 3D plot but only where ~≥5 deer/mi2 (Fig. 2.10b). 

Fig. 2.11a is a map of the five-year average, current (as close to current as allowed by 

the data, 2008-2012) distribution of nymph submission rate. Fig. 2.11b shows the predicted 

effect of climate warming only. Fig. 2.11c shows the predicted effect of warming and deer 

management to 10/mi2 in the northern tier.  

In the warming scenario, predicted nymph submission rate increased 1.4-fold (2.0 to 

2.7) in the northern tier and 1.3-fold (15.0 to 19.9) in the southern tier. On top of the warming 

scenario, increasing northern tier deer density from the current five-year average of 3.6 to 10 

deer/mi2 increased nymph submission rate five-fold (2.0 to 10.0) and increasing deer to and 15 

deer/mi2 increased submission rate eleven-fold (2.0 to 22.0). Meanwhile southern tier tick 

submissions rate stabilized at 20. Thus, under the scenario of warming and deer managed to 15 

deer/mi2 in the northern tier, nymphal abundance in the northern tier caught up with that of 
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the southern tier. This was consistent with the leveling-off pattern seen in southern tier I. 

scapularis in Chapter 1 (Figs.1.11b, 1.13a). However, confidence in these predictions was better 

for the 10/mi2 scenario than the 15/mi2 scenario on the basis of a narrower bivariate 

confidence intervals where deer density <13/mi2 (Fig. 2.12). 

In summary, I. scapularis nymph submission rate was statistically associated in the 

temporal dimension with year, and in the spatial dimension linearly with increasing summer 

humidity, and nonlinearly with deer densities up to ~13 deer/mi2,  increasing degree-day 

accumulation, and warmer winters.  

Figure 2.7. Fit diagnostics for the model of nymphal I. scapularis submission rate. Plots 
are (a) a Q-Q (quantile-quantile), (b) residuals vs. linear predictor (c) histogram of 
residuals and (d) response against fitted values. 
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Figure 2.8. Autocorrelation function plots for GAM models of nymphal 
I. scapularis submission rate. Plot (a) is an intercept-only model, plot 
(b) a model with main effects only (no random effects), and plot (c) 
the final model with main effects and a temporal random effect. 
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Figure 2.9. Two-dimensional smooth plots allowing univariate visualization of effects of 
deer and climate on nymphal I. scapularis submission rate. In plot (a) nymphs were above 
average where deer >7/mi and exhibited a response to deer between 0 and ~13 deer/mi, 
but not above the threshold of ~13 deer/mi; in (b) nymphs were above average where 
annual degree-day accumulation >6°C by the end of August was over ~1,300; in (c) 
nymphs were above average where mean winter minimum temperature >~-13°C;  and in 
(d) there was a global upward trend (red lines) but nymphal abundance varied by wildlife 
management district (southern tier with black lines, northern tier in gray lines). 

c) 

b) 
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Figure 2.10. Three-dimensional contour plots allowing visualization of pairwise additive 
effects of explanatory variables on nymphal I. scapularis submission rate. Plot (a) 
shows the joint effect of average minimum winter temperature and deer density, and 
plot (b) shows the joint effect of degree-day accumulation and deer density. 



 

 97 

  

Figure 2.11. Current and predicted nymphal I. scapularis submission rate by 
wildlife management district, Maine. Map (a) is the current five-year average 
(2008-2012), (b) represents average minimum winter temperatures warmer by 
1°C, and map (c) assumed winters warmer by 1°C and white-tailed deer are 
managed from current <5/mi to 10/mi in the northern tier districts. Two WMDs in 
northern Maine are blank because there is no human population to submit ticks. 
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2.5 Discussion 

We used a passive tick surveillance dataset to index abundance of I. scapularis nymphs 

within Maine’s wildlife management districts, 1990-2013, and a generalized additive mixed 

model to characterize statistical relationships between nymphal I. scapularis submissions rate 

and white-tailed deer, climatological, and landscape predictors. The model covered the extent 

of Maine, with Maine’s 29 wildlife management districts as the experimental unit.  

I. scapularis nymphal abundance was a nearly linear function of  deer densities when 

densities ranged from 0 to ~13 deer/mi2 whereas above 13 deer/mi2 there was no relationship 

Figure 2.12. Three-dimensional contour plot showing the joint effect 
of average minimum winter temperature and deer density on nymph 
submission rate. The upper and lower 80% confidence limits widen at 
deer densities >13/mi. 
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between nymphs and deer. This was consistent with the idea of a saturating relationship 

between I. scapularis and deer density (Kilpatrick et al. 2017). The findings of 13 deer/mi2 

threshold and below-average nymphal submission rates at <6 deer/mi2 were consistent with 

empirical studies that suggested to lower I. scapularis abundance and hence Lyme disease, 

density of white-tailed deer should be lowered to below a threshold somewhere in the range of 

8-13/mi2 (Telford 1993, Telford 2002, Stafford et al. 2003, Stafford 2007, Kilpatrick et al. 2014). 

We emphasize that this study did not test the effect of lowering (or raising) deer density over 

time, but rather characterized a statistical association between nymphs and deer that was 

driven mainly by the south-to-north spatial gradient in deer density, in the presence of only 

moderate temporal changes in deer density in the southern tier (Chapter 1). 

Our approach allowed us to consider the relationship between tick density and low-to-

moderate deer density while accounting for effects of cold on I. scapularis abundance. The 

generalized additive model indicated that warmer winters and earlier degree-day accumulation 

conferred a slight increase in I. scapularis only where there were ~≥4-5 deer/mi2 and maximum 

effect where deer densities ≥10 deer/mi2 (Fig. 2.10). As suggested in Chapter 1, low deer 

densities in the northern tier may have served as a check on gains in survival advantage 

conferred by climate change.  

Our finding that nymph submission rate was above average where average winter low 

temperatures were above approximately -13°C was consistent with studies of cold hardiness, 

which showed increased lethality for I. scapularis below -18°C for nymphs (Burks et al. 1996, 

VanDyk et al. 1996, Brunner et al. 2012). Even though ambient temperatures are harsher than 

those under leaf litter and snow where I. scapularis would sequester during cold waves, we 
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think -13°C is proxy to conditions that challenge I. scapularis at the cold end of their climate 

suitability envelope. Our finding that nymph submission rate was above average where at least 

~1,320 degree-days >6°C had accumulated by the end of August was quite close to the average 

of 1,240 days to eclosion (SD 143.3, range 1,029 - 1,532) reported by Rand et al. (2004a) and 

confirms the importance of degree-day accumulation for larval eclosion. In the northern tier, in 

only 6 of the last 28 years >1,240 degree-days have been attained by the end of August 

(Chapter 1), indicating climate in the northern tier was still marginal for completion of the life 

cycle of I. scapularis, at least through the duration of the study (1990-2013).  

Despite temporal uptrends in minimum winter temperature, degree-day accumulation 

and relative humidity in Maine, temporal variation in I. scapularis was best modeled through 

smooths of individual wildlife management districts over time. Temporal increases in I. 

scapularis were seen for the most part only in the northern districts, possibly representative of 

biological invaders moving into suitable (or marginally suitable) but unoccupied habitat.  

In the northern tier, I. scapularis abundance was predicted to increase 1.2-fold given 1°C 

warming versus 5-fold given 1°C warming, deer managed to 10/mi2 from the current ~5/mi2. 

Due to uncertainties in the model this prediction should be construed qualitatively as “higher 

deer densities in the northern tier will likely result in more abundant I. scapularis than if we 

were subject to climate change alone.”  

2.5.1 Limitations of the Study 

With regard to explanatory variables that did not enter the model, we note that lack of 

inclusion does not infer lack of importance. For example, longer, warmer falls in Maine were 

correlated with extension of I. scapularis’ questing season later into fall (Chapter 1). Spring and 
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fall minimum temperature did not enter the model, but warmer springs and falls co-occur with 

warmer, shorter winters, and greater tick abundance is associated with lengthening questing 

seasons (Chapter 1). Also, insignificance of forest cover type in the model reflected the fact that 

there is substantial forest cover in the northern tier of Maine that is deciduous or mixed. 

Suburbanization and presence of tick-associated invasive plants did not enter the models 

because they were concurve with deer, i.e., they co-occured with deer at the spatial scale used, 

but at the scale of the forest stand or old field the presence of tick-associated invasive plants 

are a key determinant of tick host abundance, tick abundance, and B. burgdorferi infection 

prevalence (Williams and Ward 2010). We think that the scale selected for this analysis was 

appropriate for deer and climate, but a multi-scale model might capture more tick-associated 

variables. Also, model validation could be improved by testing the model against an 

independent passive tick surveillance dataset. 

One might argue that any model of I. scapularis abundance is incomplete without 

information on the full suite of blood meal hosts, including passerine birds, as they are long-

distance dispersers of ticks (Smith et al. 1996, Rand et al. 1998, Ogden et al. 2005, Ogden et al. 

2006a,b, Ogden et al. 2008b, Clow et al. 2017, Leighton et al. 2012), and white-footed mice, as 

they are the most common rodent hosts of subadult I. scapularis and also highly reservoir 

competent for B. burgdorferi (e.g., Mather et al. 1989, Brunner et al. 2008). However, long-term 

datasets in Maine (2+ decades) are restricted to just two sites for birds (Rand et al. 1998, Elias 

et al. 2011) and two for small mammals (Rand et al. 1998, Elias et al. 2004, Wang et al. 2009, 

Ogawa et al. 2017). Still we know the white-footed mouse  has a broad North American 

distribution (19-49°N 64-112°W, Wang et al. 2009, Bedford and Hoekstra 2015) including 
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Maine. The deer mouse (P. maniculatus) ranges farther north than but overlaps with the white-

footed mouse in Maine, and is similar in terms of I. scapularis burdens, and B. burgdorferi 

reservoir competence (Rand et al. 1993, Garman et al. 1994, Oliver et al. 2006, Roy-Dufresne et 

al. 2013). The ubiquity of Peromyscus and other rodent hosts suggests small mammal blood 

meals are not a limiting factor in either the intact forest or peridomestic environments. In any 

case, adult I. scapularis do not feed on small mammals or birds, again highlighting the role of 

deer.  

We thought that not including moose in the model could be problematic, but moose 

densities in Maine range from 0.2-0.6/mi2 in the southern tier to 1.0-1.7/mi2 in the northern 

tier (Wattles and DeStefano 2011), much lower than even the lowest deer densities in the 

northern WMDs. Also, while infestation of moose by winter ticks (Dermacentor albipictus) is an 

area of active research (e.g. Jones et al. 2018), in a literature search we could find no reports on 

I. scapularis burdens on moose in North America. 

Snow is a ground insulator that may promote I. scapularis survival, and Huntington et al. 

(2004) found that the ratio of snow to rain in northern New England has been declining in the 

months of December and March. Linske et al. (2019) found that snow cover may promote 

survival of I. scapularis during extreme cold, but due to variation in accumulation and duration, 

snow cover was an inconsistent insulator compared to leaf litter. Since deciduous and mixed 

deciduous-coniferous forests are core forest habitat for I. scapularis (Eisen et al. 2016), leaf 

litter may have a greater long-term, latent effect on emergence of I. scapularis than snow. 

Snow was not part of the PRISM gridded monthly dataset we used, but models that take timing 

of snowfall and snow depth into account would be an improvement. 
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Ecologists are motivated to capture meaningful spatial relationships while avoiding 

pseudo-replication (Hurlbert 1984), yet as Hodges and Reich (2010) warned “adding spatially 

correlated errors can mess up the fixed effect you love”. Consistent with Wood (2017), we 

found high concurvity between the spatial random effect (the Markov random field) and spatial 

explanatory variables because they were at the same scale and so dropped the spatial random 

effect. The R package ngspatial (Hughes 2014), alleviates spatial confounding, so that a random 

spatial effect will account only for spatial variation not already explained by a covariate. We 

would like to have tried this, but ngspatial (at the time of this writing) did not allow a Tweedie 

response or the spatio-temporal covariance structures that mgcv gam did. Doubtless these 

issues will be resolved with development and refinements to modeling packages.  

Notwithstanding limitations of the study, we think that the model’s alignment with 

known relationships from the literature impart credibility to the findings.  

 

2.6 Conclusions 

In Lyme-endemic areas it is fair to ask whether we are promoting a healthy or 

pathogenic landscape (Lambin et al. 2010) through our land use policies and practices. The 

invasion of I. scapularis northward in Maine is partly a consequence of climate change and we 

may be able to mitigate this to some degree through balanced deer herd management. The 

Maine Department of Inland Fisheries and Wildlife northern tier goals for 2030 range from 10-

15/mi2 and southern tier goals from 15-20/mi2 (MEIFW 2017). If the gist of this study is correct, 

in the northern tier of Maine there may be a unique opportunity to mitigate increases in I. 

scapularis due to climate change by keeping deer densities ≤10/mi2.  
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A recommendation to lower deer densities to ≤10/mi2 in the southern tier might not be 

reasonable given expectations for hunting opportunities, lands posted against hunting, and 

firearms bans in some towns, but we do suggest a goal of ≤15/mi2 for the southern tier. Even if 

15/mi2 versus 20/mi2 had no discernable effect on tick abundance and Lyme incidence, 

reduction of vehicle collisions, damage to landscaping, crops, and forests, and improved deer 

health (MEIFW 2017) would be beneficial.  

The recommendation to cull deer has been met with the argument that even if deer 

reduction could measurably lower entomological risk, reduction to 8-13 deer/mi2 is socially 

infeasible in most places, and logistically feasible only on islands and peninsulas (Jordan et al. 

2007, Levi et al. 2015, Kugeler et al. 2016). However, as Telford (2017) has recommended, deer 

reduction as a tool should not be discarded wholesale because there are communities that may 

be in a position—culturally and geographically—to implement deer reduction. We can employ a 

number of other strategies to reduce ticks as well, such as mechanical reduction of tick habitat. 

Miller and McGill (2019) attributed moderate to severe tree regeneration debt in the southern 

and central, mid-Atlantic, and south regions of eastern US forests, to invasive plants and deer 

overabundance, and land use. Integrated tick management including deer and tick-associated 

invasive plant management will help prevent this future for Maine.  

Other tick and tick-borne pathogen control strategies include acaricide application to 

tick habitat or tick hosts (e.g., Eisen and Dolan 2016, White and Gaff 2018), and host 

vaccination (Richer et al. 2014) and genetic modification (Eaves 2018). A human Lyme vaccine 

(Comstedt et al. 2017) should be available within several years, and anti-tick vaccines are in 
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development. Even with some or all of these strategies in place, there is still no downside to 

managing the deer herd to a healthy level.  
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CHAPTER 3. 

VIEWS ON LYME DISEASE AND DEER REDUCTION FROM THE OFFSHORE, UNBRIDGED ISLANDS 

OF MAINE, USA 

3.1 Abstract  

Lyme disease is caused by the bacterial spirochete Borrelia burgdorferi, which is 

transmitted through the bite of an infected blacklegged tick (Ixodes scapularis). Maine, USA, is a 

high Lyme disease incidence state, with rising incidence of Lyme and other tick-borne illnesses 

associated with a history of increasing I. scapularis abundance, including range expansion to the 

north. Lyme incidences on the 15 off-shore, unbridged islands of Maine are above the 

statewide average and at least on par with those seen on other offshore islands in 

Massachusetts and Rhode Island. Increasing I. scapularis abundance and Lyme incidence have 

been attributed to high deer densities by some residents of these island communities. 

Burgeoning deer densities on some of these islands have led to various deer management 

histories along with a good deal of conflict on how to manage deer populations. We 

summarized the burden of Lyme disease, entomological risk, and deer management histories 

on these islands. We also polled island residents in 2016 to quantify the level of concern about 

the Lyme disease problem and assess the level of support for deer herd reduction on their 

islands. A 2016 survey of island residents indicated that other deer-related problems, namely 

vehicle collisions and garden and forest damage, motivated support for deer reduction as much 

as Lyme disease. We recommended efforts to keep deer density ≤15/mi2 and to remove 

invasive plant species--particular Japanese barberry—from the landscape. The benefits of these 

measures will extend beyond vector tick control to improved deer and forest health. 
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3.2 Introduction 

Lyme disease is the most common tick-borne illness in the US, accounting for 69% of all 

tick- and mosquito-borne disease (Adams et al. 2016). Lyme disease is caused by the bacterial 

spirochete Borrelia burgdorferi, which is transmitted through the bite of an infected 

blacklegged tick (Ixodes scapularis) (Mead et al. 2015, Rosenberg et al. 2018). The first known 

case of Lyme disease in Maine was in 1986 (Rand et al. 2007) and the first reports of I. 

scapularis in Maine were published in the late 1980s (Anderson et al. 1987, Ginsberg and Ewing 

1988). The increase in Lyme disease in Maine has been correlated in space and time with the 

range expansion of I. scapularis (Rand et al. 2007, Chapter 2: Fig. 2.1). The US Centers for 

Disease Control and Prevention define a high Lyme disease incidence state as average incidence 

of at least 10 confirmed cases per 100,000 persons for the previous three reporting years. 

Maine’s three-year average incidence (2015-17) was 89.2 (range 74.7 – 106.6) and highest in 

the nation. 

Maine has 15 unbridged, offshore islands with year-round communities; seven of these 

were coextensive with towns and had reportable Lyme case numbers across 2013-17. The 

seven-island, 2013-17 Lyme incidence average was 1,062 and ranged from 0 on the Cranberry 

Isles and Frenchboro to 3,972 on Islesboro (MECDC 2018a) compared to the statewide average 

of 89.2. Over the past three decades, several of Maine’s offshore island communities have been 

interested in quantifying I. scapularis abundance and B. burgdorferi infection rates in I. 

scapularis on their islands. Beginning with Monhegan Island in 1989, representatives from 

various islands have invited our staff at the Maine Medical Center Research Institute’s Vector-

borne Disease Laboratory to collect ticks at sites around their islands. 
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Part of islanders’ motivation for assessing entomological risk—density of infected I. 

scapularis—has been to inform their decisions about management of white-tailed deer 

(Odocoileus virginianus). On some of New England’s offshore islands such as Monhegan Island 

in Maine, Block Island in Rhode Island, and Martha’s Vineyard and Nantucket Island in 

Massachusetts, High Lyme incidence has been attributed to high densities of I. scapularis 

supported by hyper-abundant white-tailed deer (e.g., Rand et al. 2004b, RIDEM 2013, Greer et 

al. 2014). The white-tailed deer is the primary host of adult I. scapularis within its US range 

(e.g., Telford 2017), and is host to larval and nymphal I. scapularis as well (Watson and 

Anderson 1976). Following bans on white-tailed deer hunting on Maine’s unbridged islands 

from the 1930’s, several islands reinstituted a regular firearms season in the 1950’s. Other 

islands maintained hunting bans, however, and deer numbers burgeoned in the absence of 

pressure from natural predators and hunting.  

By the 1990s, deer densities of approximately 100 per square mile reached or exceeded 

island residents’ tolerance for damage to vehicles, gardens, the landscape, and most recently, 

Lyme disease (Moore 2002). The Maine Department of Inland Fisheries and Wildlife (MEIFW) 

reported that white-tailed deer populations on the offshore islands were much higher than the 

15/mi2 goal called for by MEIFW (Lavigne 1997). In setting population goals for the state’s 29 

wildlife management districts, the MEIFW takes into consideration public demand for deer 

hunting and viewing, concerns over vehicle collisions, tick-borne disease, health of the deer, 

and damage to landscaping, orchards, and forests (MEIFW 2017). When deer densities in 

southern and central Maine exceeded 20/mi2 during 1999-2001, MEIFW adjusted numbers back 

down through issuance of any deer permits (ADPs) during the regular firearms season (MEIFW 
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2017). However, MEIFW is unable to apply this approach in urban and suburban settings and on 

many of the offshore islands, where firearms discharge bans, safety concerns, and posted land 

have precluded firearms hunting.  

In 2000, the Maine State Legislature granted authority to MEIFW to open islands 

previously closed by statute to deer hunting, which provided a formal mechanism for MEIFW 

and municipalities to coordinate controlled hunts. Thus, in cooperation MEIFW, those offshore 

islands without a regular firearms season have implemented controlled hunts to reduce (cull) 

deer numbers. However, ongoing debate over the need for further deer reduction and/or 

increased hunting pressure are part of the fabric of life on these islands (Rand 2017).  

At the Vector-borne Disease Laboratory part of our mission is–through entomological 

surveys and invited outreach–to assist communities through the process of planning for 

integrated tick management. Over the years we have provided island communities with annual 

summaries of entomological data, but these data, as well as data on Lyme incidence and deer 

management history, and island residents’ opinions on ticks and deer, have been available only 

through scattered sources.  

Thus, our first aim was to review Lyme incidence, entomological risk, and history of 

white-tailed deer management on Maine’s unbridged islands, from the late 1980s to present. 

The first aim provided an historical context for our second aim, which was to quantify islanders’ 

support for deer reduction, through a survey we opened in 2016.  

To understand bases of support for deer herd reduction, we asked islanders if they 

agreed, disagreed, or were neutral on whether Lyme disease was problematic on their islands. 

We then related the level of agreement to self-reported burden of tick bites and tick-borne 
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disease, i.e., “burden of bite/TBD”. We graded burden of bite/TBD from high to low as 

self/extended family had acquired TBD, self only bitten (no TBD), and self never bitten. We also 

related degree of personal protection behaviors to burden of bite/TBD, to see if the degree to 

which Lyme was considered problematic and degree of health behaviors aligned. Then, we 

assessed the level of support for deer herd reduction in relation to problems associated with 

deer overabundance, including risk of Lyme disease. Our hypotheses were:  

1. Odds that respondents will agree Lyme disease is a problem on their island will depend 

on the burden of tick bite/TBD, that is, be highest for those burdened by tick-borne 

disease (self/extended family), vs. intermediate for those only bitten (and never 

contracting TBD) vs. lowest for those never bitten.  

2. Odds that respondents will use a given personal protection behavior will depend on the 

burden of tick bite/TBD, that is, be highest for those burdened by tick-borne disease 

(self/extended family), vs. intermediate for those only bitten (and never contracting 

TBD) vs. lowest for those never bitten.  

3. Odds that respondents will agree that deer should be reduced on their island will be 

higher for those who attribute increased risk of Lyme disease to deer overpopulation on 

their island vs. those who have no problems with deer, and for those who experience 

additional problems with deer (increased risk of vehicle collisions, damage to yard, 

damage to forest) on their island vs. those who have no problems with deer.  

We expected that the main variables of interest might interact with respondents’ 

demographics. For example, gender and age could modify personal protection behaviors, as 

seen in a Nantucket Island study where females and older people were more likely to take 
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measures to prevent tick bites than men and younger people (Phillips et al. 2001). Also, support 

for deer reduction year-round versus seasonal residency and hunting tradition could modify 

support for deer herd reduction. For example, a year-round resident who hunts annually might 

view deer herd reduction as detrimental to her chances of obtaining venison for the freezer. 

Following the central question on support for deer herd reduction we asked islanders 

for their views on methods of deer reduction, who should be responsible for tick control, and a 

question about pesticide application. To inform our outreach, we asked islanders if they felt 

they needed more information about tick control, about their trust in information about tick 

control from scientists and government, and what factors they thought were contributing to an 

increase in ticks in Maine. This last question was of interest because in the years leading up to 

and including 2016 there was substantial media coverage of white-footed mice and climate 

change as drivers of TBD, but little to no attention on the association between certain invasive 

plant species and tick abundance and B. burgdorferi infection prevalence. This led to our last 

hypothesis:  

4. Given four choices of factors causing the tick problem in Maine (deer, rodents, climate 

change, invasive plants), significantly more respondents would omit than include 

invasive plants as a cause. 

The historical summary and survey may help each island community see how it fits into 

an overall island narrative of tick control and deer herd management, and to draw the attention 

of a broader audience to Maine’s offshore island communities as they grapple with these 

challenges.  
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3.3 Methods 

3.3.1 Study Area 

Maine, the most northeastern of the United States, encompasses 86,542 km2 and 4.5° 

latitude (42.97-47.46°N, 66.95-71.08°W), and has 924 minor civil divisions (towns), 512 of which 

are populated. The majority of its human population of 1.3 million resides in its southern half, 

generally within an 80-km-wide coastal plain with elevations <150 m (Rand et al. 2007). I. 

scapularis range from established on the coast to emerging in the north.  

The 15 unbridged, offshore Maine islands with year-round communities are depicted in 

Figure 3.1. These islands are accessible by boat (or aircraft) only and contain municipal centers 

focused around the town landing piers, as well as scattered rural distribution of homes. 

Successional upland meadows, and mowed fields (Rand et al. 1998) were scattered across 

generally forested landscapes. These forests were maritime spruce-fir (Picea and Abies spp.) 

forests and mixed, generally second-growth forests of red oak (Quercus rubra), red maple, (Acer 

rubrum), yellow birch (Betula lutea) and white pine, (Pinus strobus). The islands were variously 

infested with invasive honeysuckle (Lonicera canadensis), Japanese barberry (Berberis 

thumbergii), and oriental bittersweet (Celastrus orbiculatus). White-tailed deer densities have 

ranged from 0 to 114/mi2 (Rand et al. 2004b). Coastal climate in summer is cooler and more 

humid, but warmer with less snow in winter than Maine’s inland. 
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Figure 3.1. Maine’s unbridged, offshore islands with year-round residents fall within 
Maine Department of Inland Fisheries and Wildlife administrative Regions A-C. 
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MEIFW regional deer biologists oversee deer herd management in eight administrative 

wildlife management regions (MEIFW 2007). Region A includes the Casco Bay islands of 

Chebeague Island (formerly part of the Town of Cumberland), Long Island (formerly part of the 

City of Portland) and Cliff Island, Great Diamond Island, and Peaks Island (City of Portland); 

Region B includes Islesboro, North Haven, Matinicus Isle Plantation, Monhegan Island 

Plantation, and Vinalhaven; Region C includes the Cranberry Isles, Frenchboro, Swans Island, 

and Isle-au-Haut (Fig. 3.1). Of the 15 unbridged Matinicus Isle Plantation, 23 miles offshore, 

never had deer; whereas Monhegan Island Plantation, 11 miles offshore, removed its white-

tailed deer during the years 1997-1999 (Rand et al. 2004b). Many island towns include 

numerous smaller islands (Fig. 3.1), but data on Lyme incidence, ticks, and deer apply to the 

main island, where is found the municipal pier, the concentration of municipal buildings, and 

most of the human population. Within the town of Cranberry Isles there are two main islands, 

Great Cranberry and Islesford, where data refer to both islands collectively.  

3.3.2 Datasets 

3.3.2.1 Lyme Disease Incidence  

We obtained cumulative Lyme disease case counts, cumulative population, and five-

year incidence for the period 2013-17 from the Maine Center for Disease Control’s Maine 

Tracking Network (MECDC 2018a). Seven of Maine’s 15 unbridged, offshore islands were 

coextensive with towns and had reportable Lyme case numbers across 2013-17. Where 

cumulative population ≤2,000 and cases were between 1 and 5, MECDC reported “<6”, so we 

assumed one cases and calculated a minimum incidence as 1/cases x 100,000. Cases are 

attributed to patients’ home town and state. Thus, cases for island towns will not include cases 
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acquired by summer residents. Island health centers keeping track of cases independently of 

the Maine CDC may or may not keep records for summer residents, but these data are 

generally not easily obtainable and may not meet CDC case definitions. Thus for 

standardization, we report only the cases reported by Maine CDC. 

3.3.2.2 Questing Adult I. scapularis Abundance and B. burgdorferi Infection Prevalence 

We collected ticks from transects averaging ~100m long at established (long-term) sites 

on the islands. These sites included hiking trails through forests, playing fields, the edges of 

school grounds, and private properties. We used 1m2 flags consisting of light-colored corduroy 

attached to a 150cm pole, dragged over leaf litter and brush in the adult season (October- early 

November) when temperatures exceeded 10° C and vegetation was dry along transects at 

established sites on each island (e.g., Elias et al. 2006). Flags were inspected at approximately 5 

min intervals, and ticks were placed in plastic vials for transportation to the laboratory for 

identification. After enumerating field-sampled ticks we calculated the number of adults per 

hour as an index to tick abundance. Flagging efficiency is higher for adult I. scapularis (Dantas-

Torres et al. 2013) so our flagging produced far fewer nymphs during June/July than adults in 

October/November. To allow for comparisons across islands and years we therefore reported 

ticks per hour and infection rates for fall-flagged adults only.  

Subsets of ticks from some samples were tested for B. burgdorferi. From 1989 through 

2015 we tested for Borrelia by direct fluorescent antibody (DFA) as per Donahue et al. (1987). 

From 2016 through 2018 we tested for B. burgdorferi by polymerase chain reaction (PCR) using 

PCR primers targeting the OspA coding region as designed by Persing et al. (1990). PCR was 

performed using 2µL of sample DNA, 12.5µL of Platinum™ Green PCR 2x Master Mix 
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(Invitrogen, Waltham, MA), 1µL each of forward and reverse primers and 9µL of ultrapure 

water. Cycling conditions were 94°C for 3 minutes followed by 35 cycles of 94°C for 30, 55°C for 

30 seconds and 72°C for 30 seconds and finally an infinite hold at 4°C. After testing we 

calculated B. burgdorferi infection prevalence (positive/tested).  

3.3.2.3 Deer Management History 

We described deer management history for each island by identifying, to the extent 

possible, the year or years of a controlled hunt (if applicable), the number of deer or deer 

density before the hunt, the number of deer taken in the controlled hunt, and the number of 

deer and deer density currently.  

Historically, the Maine Department of Inland Fisheries and Wildlife (MEIFW) has used a 

sex-age-kill model to estimate deer/mi2 for each of 29 wildlife management districts (WMDs), 

with inputs including a buck kill index and hunter effort (MEIFW 2007). This calculation has only 

rarely been used at the town level as there are insufficient numbers of deer harvested in any 

given town. Thus, other sampling methods were needed to estimate deer density on islands.  

Census methods included aerial surveys and pellet group counts (MEIFW 2007). 

Islesboro has had two aerial surveys and one pellet group count; we obtained results from the 

town’s website. Maine’s news outlets have followed deer herd management across the 

decades, and reporters have contacted people “in the know” for their stories. These people 

may be the hunters holding permits to take deer during special hunts, the deer biologists for 

the districts in which the islands fall, and other on-island personnel (such as island health 

officers). We searched for these articles on island deer herd management on the internet. We 

also asked MEIFW biologists for their historical and current knowledge of deer herd 
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management. Where an estimate of deer numbers was known, we used the island’s land area 

to calculate deer/mi2; if the estimate was given as deer/mi2, then we back-calculated the 

number of deer. Deer densities and numbers were rough estimates. 

3.3.2.4 Survey  

We administered a 43-question survey using Qualtrics© web-based survey software 

(Table 3.1). Human subjects research was approved by the Maine Medical Center’s Institutional 

Review Board (IRB #4789, Stakeholder Views on Deer Herd Reduction as a Method to Prevent 

Lyme Disease among Residents of Unbridged Maine Islands). We refer to the survey henceforth 

as the Island Survey. Year-round and seasonal residents alike were asked to participate. 

Seasonal (typically summer) residents own property and have a role in municipal policy 

formation. Questions pertaining to the aims and hypotheses of the study are listed in Table 3.1. 

Generally, questions about beliefs were scored on a 3-point Lickert scale (e.g., Agree, Disagree, 

Neutral). We opted for  3-point scale over a 5-point or higher scale because 1) our primary 

interest was in direction of response rather than intensity (Jacoby and Matell 1971), 2) we 

expected a modest number of respondents would require any scale >3 to be collapsed to three, 

a common situation that does not compromise reliability (Jacoby and Matell 1971), and 3) we 

wanted to avoid respondent fatigue and non-response (Lehmann and Hurlbert 1972). This 

latter consideration was key for the islands, which do not enjoy universal broadband internet 

and cell phone service (Tilson 2015). 
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Category Question Options
Demographics What island do you live on? name of island

What is your age? 18-24, 25-34, 35-44, 45-54, 55-64, 65+
What is your gender? male/female/oher

What is your approximate household income?
<$25K, $25K to <$40K, $40K to <$55K, $55K to < $65K, $65K to 
$100K, >$100K

What is the highest level of education you have completed?
some high school , high school/GED, some college, college, 
graduate/professional

Are you a year-round or seasonal resident? year-round, seasonal
How long do you typically reside on the island? days to a week, up to a month, more than a month

Importance of Lyme Is Lyme disease a problem on your island? agree, disagree, neither agree nor disagree
Burden of ticks How many times have you been bitten by a deer tick on your island? 0, 1, 1 to 5, >5, not sure but more than once, don’t know
  and tick-borne
  disease Do you find deer ticks on your dog or cat? yes, no, does not apply

Have you been treated for a tick-borne disease?
Lyme disease yes, acquired on-island/yes, acquired off-island
anaplasmosis yes, acquired on-island/yes, acquired off-island
babesiosis yes, acquired on-island/yes, acquired off-island
other yes, acquired on-island/yes, acquired off-island

Has anyone in your extended family been treated for a tick-borne disease?
Lyme disease yes, acquired on-island/yes, acquired off-island
anaplasmosis yes, acquired on-island/yes, acquired off-island
babesiosis yes, acquired on-island/yes, acquired off-island
other yes, acquired on-island/yes, acquired off-island

Preventive health How often would you say you protect yourself against tick bites when ticks are out?
  behaviors avoid tick habitat always, sometimes, never

use personal repellent (bug spray) always, sometimes, never
tuck my pants into my socks always, sometimes, never
wear light-colored clothing always, sometimes, never
check myself for ticks after being outside always, sometimes, never

Policy Support Do you think there is a need to reduce the number of deer on your island? agree, disagree, neither agree nor disagree

Deer values Do you ever have problems with the deer on your island?
too many, Increased risk of a car collision, eat my garden plants 
and/or yard plantings, over-browse forest vegetation, increased 
risk of Lyme disease

How do you benefit from the deer on your island? I enjoy seeing deer, I value knowing deer are part of the 
landscape, I hunt deer, My family and/or friends hunt deer

Deer hunting Do you approve of deer hunting?
  approval in general agree, disagree, neither agree nor disagree

on your island agree, disagree, neither agree nor disagree
Methods of To what extent do you agree or disagree with the following approaches to reducing deer on your island?
  reducing deer more doe permits agree, disagree, neither agree nor disagree

expanded archery season agree, disagree, neither agree nor disagree
expanded firearms season agree, disagree, neither agree nor disagree
a professional sharp-shooter agree, disagree, neither agree nor disagree
allow off-islanders to hunt only if family of islanders agree, disagree, neither agree nor disagree
allow any off-islanders to hunt agree, disagree, neither agree nor disagree

What would be acceptable ways to pay for a sharp-shooting program to reduce the deer herd?
state or federal funds, town budget, private funds 

Responsibility Who do you think should be responsible for tackling the issue of tick-borne disease on your island? 
U.S. government agree, disagree, neither agree nor disagree
state government agree, disagree, neither agree nor disagree
town government agree, disagree, neither agree nor disagree
non-profit organizations agree, disagree, neither agree nor disagree
communities agree, disagree, neither agree nor disagree
small groups of individuals, or individuals agree, disagree, neither agree nor disagree

Information How do you rate your knowledge of how to prevent tick bites? none, some, a lot
  seeking Do you think you need to learn more about how to prevent tick bites? agree, disagree, neither agree nor disagree
Trust Do you trust information on tick control given to you by scientists? agree, disagree, neither agree nor disagree

Do you trust information on tick control given to you by your town government? agree, disagree, neither agree nor disagree
Causes What would you say is causing the increase in deer ticks in some parts of Maine?
of the climate change agree, disagree, neither agree nor disagree
Tick deer overpopulation agree, disagree, neither agree nor disagree
Problem rodents agree, disagree, neither agree nor disagree

invasive plants agree, disagree, neither agree nor disagree
Pesticide Would you apply a pesticide on your property to kill ticks if the pesticide was harmless to other animals and people?

agree, disagree, neither agree nor disagree

Table 3.1. Questions asked in the 2016 Island Tick Survey.  Respondents were year-round and seasonal residents of Maine's unbridged, off-shore islands. Respondents were 
not required to answer all questions so total number responding per question varied.
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Surveys could be taken via smart device, computer, or paper. We allowed more than 

one response from the same IP address to allow more than one response per household and 

per public (e.g., library) computer. We found no duplicates, i.e., where the same IP address 

appeared two or three times the respondents using the same computer had differing responses 

and appeared to be legitimate household members rather than one individual taking the survey 

twice. Advertising was through paper and an online news story in the Maine Island Institute’s 

Working Waterfront (Groening 2016), island Facebook and website pages, by word-of-mouth, 

by laminated posters at ferry terminals, and by paper surveys left at town offices and libraries. 

The survey opened on May 1st, 2016 and closed December 31st, 2016.  

The Island Survey was a convenience sample, a research strategy that allows people to 

opt-in, meaning that respondents self-select. Much survey research relies on convenience 

sampling due to the expense of population-based sampling (Mullinix et al. 2015). Convenience 

sampling can be biased, but allows for data collection over a short period of time at minimal 

expense compared to often infeasible population-based sampling. Rather than forgo any 

sampling at all, convenience sampling can generate data that can be interpreted in the 

presence of bias, where the bias can be described and inference can be constrained to the 

demographic of the sample (Kelley et al. 2003, Mullinix et al. 2015). 

3.3.3 Analysis  

We used SAS® (SAS 2018) for all analyses. We cross-tabulated categorical responses and 

reported frequencies of responses of island residents overall and by individual island. We used 

logistic regression models to address each of the three categories of hypotheses. The 

hypothesis 1 model tested level of agreement that Lyme disease was a problem (agree vs. 
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neutral/disagree) as a function of the burden of tick bites and disease. With regard to the 

response variable, very few respondents (n = 21, 3%) responded “disagree”, which resulted in 

cell counts as low as 2, violating the “rule of ten” and resulting in poorly estimated variances 

and confidence intervals (Hosmer and Lemeshow 2000), thus we pooled “disagree” with 

“neutral” so the model had a binomial response.  

The series of hypothesis 2 models tested the nominal level (always vs. sometimes vs. 

never) of five specific behaviors to protect against tick bite as a function of the burden of tick 

bites and disease. We used a generalized logit to accommodate nonproportional odds in the 

multinomial models.  

In the hypothesis 3 model, we tested the level of agreement that deer numbers should 

be reduced (agree, neutral, disagree) as a function of the predictor variable “increased risk of 

Lyme disease” plus a composite predictor variable “other deer problems”. Regarding the 

“increased risk of Lyme disease” few respondents (n = 32, 4%) responded “disagree”, which 

resulted in cell counts as low as 3, thus we pooled “neutral” and “disagree” resulting in two 

levels: “agree” and ”otherwise”. Among the non-Lyme deer problems there was some degree 

of internal agreement (Cronbachs alpha = 0.43) and, analogous to the situation of collinearity 

among continuous predictors, equally important predictors were pushing each other out of the 

model. We created a new composite predictor “other deer problems”. We scored the value 

“agree” if respondents answered “agree” to at least one of the variables “car collision”, “eat my 

garden”, “over-browse the forest”, otherwise we designated the response “otherwise”. This 

also resolved the problem of where some situations are non-issues, e.g., if a person doesn’t 

garden then garden destruction is a non-issue. Thus “other deer problems” was a measure of 
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whether a respondent had at least one problem with deer not related to ticks. We used a 

generalized logit to accommodate the nonproportional odds in this multinomial model.  

All models included the control variables gender, age class, education, and resident 

status (year-round or seasonal). The support for deer reduction model also contained hunting 

tradition (self and/or family/friends hunt) as a control variable. We tested for significant two-

way interactions in all models between the main effect(s) of interest and these control 

variables. Because 97 respondents did not answer the income question, we did not include 

income as a control variable. Respondents were asked to write in their occupations if desired. 

As an approximation of risk of tick encounter, we categorized fishing, landscaping, gardening, or 

property management as outdoor. As 8.3% of respondents (n = 73) had outdoor occupations vs. 

69.5% indoor vs. 22.2% unknown, we did not include occupation type as a control variable. 

Differences of opinions by island relative to the overall opinions were of interest but, 

due to sparse data from islands with very small populations, we could not use island as a 

control variable in the logistic regression models. Further, no one island could logically serve as 

a reference island. Instead, we calculated the significance of the difference between the 

percent agreeing on an individual island versus the across-island percent agreeing for the two 

main outcome variables of interest (is Lyme disease a problem, is there a need for deer 

reduction) to serve as a reference to parties interested in the individual island responses.  

To test whether significantly more respondents would omit than include invasive plants 

as a cause of the tick problem (hypothesis 4), we tallied the number of respondents that agreed 

to at least one cause among the choice of deer, rodents, and climate change, but not plants, vs. 
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those who included plants as a cause. We ran a chi-square test for equal proportions (1-3 

causes not including plants vs. 1-4 causes including plants).  

Our main interest was across-island results. But for the two major questions of the study 

(Is Lyme disease a problem on your island, is there a need to reduce deer on you island), we 

calculated the difference between the individual island percent agreeing versus the overall 

percent agreeing (vs. otherwise) and tested for significance (chi-square test for equal 

proportions, to see if any islands stood out relative to the overall averages.  

 

3.4 Results 

3.4.1 Island Summaries of Lyme incidence, Entomological Risk, and Deer Management History 

Estimated minimum Lyme disease incidence across all of Maine’s unbridged islands, 

2013-17, was 848 cases per 100,000 (Table 3.2) and ranged from 0 to 3,972. The Cranberry Isles 

and Frenchboro had 0 reported cases. It can be seen for Isle au Haut, Matinicus, and Monhegan 

that the 5-year populations did not sum to a population that allowed reporting of the exact 

number of cases, so assuming at least one case, a minimum incidence for the 5-year period for 

these three islands ranged from 270 to 277. Three Casco Bay islands fall within the City of 

Portland and island-level case data thus were not available (Table 3.2). 
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Entomological data in Table 3.3 show that sampling effort over the years has varied 

substantially. Of the 15 islands, we have collected ticks on ten. There remain five islands on 

which we have not yet collected adult ticks in fall: Great Diamond, North Haven, the Cranberry 

Isles, and Frenchboro. Sampling has typically been done on an ad hoc basis in response to a 

request for assistance as there has been no comprehensive sampling program or funding 

beyond short-term grants for minimum surveillance. The exceptions were Monhegan and Isle 

au Haut, which were sampled frequently during the 1990s and 2000s given the intense interest 

in tick control on Monhegan and funding to conduct research on efficacy of control options (Isle 

au Haut was a reference island).  

As seen on a decadal basis, adult tick abundance has increased on the islands. The 

exception was  Monhegan, where deer were removed from 1997-99 and tick abundance and 

infection rates decreased (Rand et al. 2004b). Increases in B. burgdorferi infection prevalence 

can be seen as well (again excepting Monhegan). Cliff Island, Islesboro, and Swan’s Island best 

illustrate increases in entomological risk over the years, with fall-flagged adults per hour 

increasing on Cliff Island from 10 to 37 (2000s to 2010s), on Islesboro from 0 to 37 to 43 (1990s 

to 2000s to 2010s), and Swans Island from <1 to 6 to 33 (1990s to 2000s to 2010s). Infection 

rates also increased: Cliff Island from 29 to 42% (2000s to 2010s), on Islesboro from <1 to 3 to 

31 (1990s to 2000s to 2010s), and Swans Island from 0 to 19 to 25 (1990 s to 2000s to 2010s). In 

general, the entomological data in Table 3.3 should be interpreted with caution as number of 

years sampled per decade was as low as one in some cases, e.g., Chebeague Island. We note 

that since 1989, we have conducted outreach on all islands other than Great Diamond, 

Cranberry Isles, and Frenchboro. 
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Table 3.4 shows known deer management histories on the islands. Four of the 14 islands 

that ever had deer never had culls: Chebeague, North Haven, and Vinalhaven, which have 

regular firearms seasons, and Isle au Haut, which includes part of Acadia National Park and has 

no deer hunting. Ten of the 14 islands that ever had deer had culls: the first known occurring 

1992-95 on Great Diamond and the most recent 2012-14 on Islesboro. Pre- and post-cull deer 

density estimates were available for only four islands and were >85/mi2 to 10-13/mi2 for 

Cranberry Isles, were 60/mi2 to 50/mi2 for Islesboro, >100/mi2 to 21-25/mi2 for Peaks Island, 

and 114/mi2 to 0 for Monhegan Island.  

Monhegan was the one island that completely removed its deer herd (technically 

complete removal is not a cull). In 1959, for subsistence hunting, Monhegan islanders brought 6 

white-tailed deer across 12 miles of water from the mainland to Monhegan (Rand 2017). By the 

early 1990s, deer had reached a density of 141/mi2. The island became known for its high 

population of deer, blacklegged tick infestation, and what seemed a disproportionate number 

of human and canine Lyme disease cases. In 1995, islanders voted to remove all 113 deer 

permanently. Number of ticks per hour was reduced from 8 to 15/hour pre-removal to <1/hour 

post-removal, and number of larvae and nymphs on rats from 1 to 17 pre-removal to 0 post-

removal (Rand et al. 2004b). As of this writing, permitted, special regulations hunts to control 

deer currently occur on five of the islands. Known, current deer densities ranged from 10 to 60 

(Table 3.4). 
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3.4.2 Island Survey 

3.4.2.1 Demographics 

A total of 829 island residents responded with776 (93.6%) online responses and 53 

(6.4%) paper responses (Table 3.5). Among respondents 70% were female, 72% were age 55+, 

and 76% percent had a 4-year college degree or higher (Table 3.5). Incomes were distributed 

evenly among <$55,000; $55,000 to 100K and >$100,000. The split between year-round and 

seasonal residents was close to 50/50, with slightly more year-round residents (54%). 

Demographics of paper and online responses were not significantly different for gender, age, 

education, and income (chi-square test for equal proportions, all P ≥ 0.41, and  ($55K up to 

100K, >$100K pooled due to low n for paper in each group). Excluding Monhegan (which had 

one respondent despite lack of deer on the island), percent of the year-round population 

responding ranged from 1% (Frenchboro) to 19% (Peaks Island). Responses from Frenchboro, 

the Cranberry Isles, Cliff, and Great Diamond were sparse as would be expected from islands 

with very small populations. The remainder of the results pertain to across-island summaries, 

but by-island responses can be found in Appendix C.  
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3.4.2.2 Burden of Tick Bites and Tick-borne Disease 

Eighty-three percent of island residents agreed that Lyme disease was a problem on 

their island whereas only 3% disagreed (Table 3.6). Twenty-three percent of islanders reported 

that they had contracted at least one case of Lyme disease on-island; and 27% of islanders 

reported that at least one extended family member had contracted Lyme disease on-island.  

Our first hypothesis was that odds of respondents agreeing Lyme disease was a problem 

would depend on burden of bite/TBD. Among respondents, 58% reported themselves or family 

having had a tick-borne disease, 15% reported themselves bitten but not contracting a tick-

borne disease, and 26% reported self not bitten. Bite/TBD burden was the only significant 

predictor of agreement that Lyme disease was a problem (n = 789, df = 2, Wald chi-square =  

64.6, P <.0001, Table 3.7). Odds of respondents considering Lyme disease a problem on their 

island were nearly six times greater (OR 5.8, 95% CI 3.7-9.0) for those who had experienced 

tick-borne disease (through self, family, or friends) than those never bitten by a tick, and nearly 

four times greater (OR 3.8, 95% CI 2.1-7.0) for those bitten (but never ill) than those never 

bitten by a tick. There was no difference in odds between those experiencing TBD and bitten 

only (OR 1.5, 95% CI 0.8-2.9; Table 3.7). Control variables (gender, age class, education level) 

were not significant as main effects or as interactions with the effect of interest, bite/disease 

burden. 
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Table 3.6. Responses to the 2016 Island Survey of residents of Maine's unbridged, off-shore islands, 2016. An asterix denotes chi-square test for equal 
proportions P  ≤ 0.05.

Category Question
Importance of Lyme Is Lyme disease a problem on your island? Agree Disagree Neutral P

680 (83%) 21 (3%) 118 (14%) *
Burden of ticks Have you been bitten by a deer tick on your island? No Yes
  and tick-borne 421 (51%) 400 (49%) NS
  disease Have you been treated for a tick-borne disease/where acquired? Off-island On-island Both N/A

Lyme disease 44 (5%) 187 (23%) 15 (2%) 575 (70%) *
anaplasmosis 4 (0%) 5 (1%) 1 (0%) 811 (99%) *
babesiosis 5 (1%) 11 (1%) 1 (0%) 804 (98%) *
other 2 (0%) 11 (1%) 2 (0%) 806 (98%) *

Has anyone in your extended family been treated for a tick-borne disease? Off-island On-island Both N/A
Lyme disease 115 (14%) 223 (27%) 31 (4%) 452 (55%) *
anaplasmosis 10 (1%) 10 (1%) 2 (0%) 799 (97%) *
babesiosis 16 (2%) 12 (1%) 2 (0%) 791 (96%) *
other 4 (0%) 4 (0%) 3 (0%) 810 (99%) *

Preventive health How often do you protect yourself against tick bites when ticks are out? Always Never Sometimes *
  behaviors avoid tick habitat 210 (26%) 150 (19%) 448 (55%) *

use personal repellent (bug spray) 180 (22%) 199 (25%) 425 (53%) *
tuck my pants into my socks 131 (16%) 349 (44%) 322 (40%) *
wear light-colored clothing 109 (14%) 171 (21%) 521 (65%) *
check myself for ticks after being outside 483 (60%) 27 (3%) 297 (37%)

Policy Support Do you think there is a need to reduce the number of deer on your island? Agree Disagree Neutral *
483 (61%) 99 (12%) 211 (27%) *

Deer issues/values Do you ever have problems with the deer on your island? Agree Disagree Neutral
vehicle collisions 321 (41%) 219 (28%) 244 (31%) *
garden damage 548 (69%) 116 (15%) 128 (16%) *
overbrowse the forest 301 (38%) 167 (21%) 317 (40%) *
risk of Lyme disease 653 (82%) 33 (4%) 108 (14%) *

How do you benefit from the deer on your island? Agree Disagree Neutral
enjoy seeing deer 467 (59%) 153 (19%) 177 (22%) *
value deer presence 384 (48%) 191 (24%) 217 (27%) *

Deer hunting Do you approve of deer hunting? Agree Disagree Neutral
  approval/tradition in general 622 (78%) 55 (7%) 118 (15%) *

on your island 584 (74%) 102 (13%) 108 (14%) *
I hunt 48 (6%) 625 (80%) 108 (14%) *
My family/friends hunt 301 (38%) 387 (49%) 99 (13%) *

Methods of Agreement with the following approaches to reducing deer on your island? Agree Disagree Neutral
  reducing deer more doe permits 306 (62%) 69 (14%) 119 (24%) *

expanded archery season 295 (60%) 101 (20%) 97 (20%) *
expanded firearms season 193 (39%) 167 (34%) 132 (27%) *
a professional sharp-shooter 312 (63%) 104 (21%) 79 (16%) *
allow off-islanders to hunt only if family of islanders 144 (29%) 198 (40%) 147 (30%) *
allow any off-islanders to hunt 69 (14%) 315 (64%) 108 (22%) *

Acceptable ways to pay for a sharp-shooting program to reduce the deer herd? Any Private State/Federal Town
14 (4%) 28 (9%) 175 (54%) 108 (33%) *

Responsibility Responsibility for tackling the issue of tick-borne disease on your island? Agree Disagree Neutral
U.S. government 308 (40%) 253 (33%) 210 (27%) *
state government 553 (71%) 114 (15%) 115 (15%) *
town government 615 (79%) 68 (9%) 97 (12%) *
non-profit organizations 267 (35%) 210 (27%) 288 (38%) *
communities 267 (35%) 231 (30%) 270 (35%) NS
small groups of individuals, or individuals 510 (66%) 98 (13%) 163 (21%) *

Information How do you rate your knowledge of how to prevent tick bites? A lot None Some
  seeking 403 (50%) 12 (1%) 394 (49%) *

Do you think you need to learn more about how to prevent tick bites? Agree Disagree Neutral *
388 (48%) 143 (18%) 277 (34%) *

Agree Disagree Neutral
Trust Do you trust information on tick control given to you by scientists? 598 (76%) 35 (4%) 150 (19%) *

Agree Disagree Neutral
Do you trust information on tick control given to you by your town government? 449 (57%) 83 (11%) 249 (32%) *

Causes What would you say is causing the increase in deer ticks in some parts of Maine? Agree Disagree Neutral
of the climate change 368 (48%) 77 (10%) 329 (43%) *
Tick deer overpopulation 622 (79%) 44 (6%) 125 (16%) *
Problem invasive plants 206 (27%) 146 (19%) 414 (54%) *

rodents 483 (62%) 41 (5%) 255 (33%) *
Agree Disagree Neutral

Pesticide Would you apply a pesticide on your property to kill ticks if otherwise harmless? 475 (59%) 172 (21%) 157 (20%)
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Table 3.7 Logistic regression models relating importance of Lyme disease and personal protective behaviors taken versus burden of tick bite and tick-borne disease, 
and support for deer herd reduction versus issues with deer, asked in a survey of residents of Maine's unbridged, off-shore islands, 2016.

Type 3 Analysis of Effects
Significant Wald Odds Ratio Estimates

Category Model  Effect(s) DF Chi-Sq P Contrasts OR LCL UCL
Importance of Is Lyme disease a problem on your island? (agree, neutral/disagree) n  = 789
  Lyme disease burden 2 64.6 <.0001 TBD vs. bitten only 1.5 0.8 2.9
  in response to TBD vs. not bitten 5.8 3.7 9.0
  burden of bitten only vs. not bitten 3.8 2.1 7.0
  ticks/TBD
Behavioral Check myself for ticks after being outside (n  = 773)
  response to burden 2 23.48 <.0001 Tick check always: TBD vs. only bitten 1.5 1.0 2.3
  burden of Tick check always: TBD vs. not bitten 2.3 1.7 3.3
  ticks/TBD Tick check always: only bitten vs. not bitten 1.5 1.0 2.4

gender 1 9.4 0.002 Tick check always: female vs. male 1.7 1.2 2.3
resident 1 4.7 0.03 Tick check always: seasonal vs. year-round 1.4 1.0 1.9

How often would you say you protect yourself against tick bites when ticks are out?  (always, sometimes, never)
Avoid tick habitat (n  = 756)

gender 2 32.2 <.0001 AvoidHab Always: Female vs Male 3.9 2.4 6.3
AvoidHab Sometimes: Female vs Male 2.2 1.5 3.3

Use personal repellent (n  = 775)
resident 2 36.9 <.0001 Use repellent always: seasonal vs. year-round 3.9 2.5 6.1

Use repellent sometimes: seasonal vs. year-round 1.9 1.3 2.8

Tuck my pants into my socks (n  = 776)
burden 4 10.5 0.03 Tuck pants always: TBD vs only bitten 2.2 1.0 4.5

Tuck pants sometimes: TBD vs only bitten 1.0 0.6 1.5
Tuck pants always: TBD vs not bitten 1.0 0.6 1.7
Tuck pants sometimes: TBD vs not bitten 1.5 1.0 2.2
Tuck pants always: only bitten vs. not bitten 0.5 0.2 1.1
Tuck pants sometimes: only bitten vs. not bitten 1.5 0.9 2.6

gender 2 28.2 <.0001 Tuck pants always: female vs. male 3.2 1.9 5.4
Tuck pants sometimes: female vs. male 2.1 1.5 2.9

age 2 15.2 0.0005 Tuck pants always: >55 vs. 18-≤55 3.3 1.8 6.0
Tuck pants sometimes: >55 vs. 18-≤55 1.2 0.9 1.8

resident 2 6.2 0.04 Tuck pants always: seasonal vs. year-round 1.5 1.0 2.4
Tuck pants sometimes: seasonal vs. year-round 1.4 1.0 2.0

Wear light-colored clothing (n  = 759)
gender 2 23.5 <.0001 Light-colored always: female vs. male 3.2 1.8 5.7

Light-colored sometimes: female vs. male 2.1 1.4 3.0
age 1 9.4 0.002 Light-colored pants always: >55 vs. 18-≤55 2.0 1.1 3.7

Light-colored pants sometimes: >55 vs. 18-≤55 1.5 1.0 2.2
resident 1 4.7 0.03 Light-colored always: seasonal vs. year-round 2.6 1.6 4.4

Light-colored sometimes: seasonal vs. year-round 1.5 1.0 2.2

Policy support Do you think there is a need to reduce the number of deer on your island? (n  = 760)
  in relation to risk of Lyme 4 72.5 <.0001 Reduce deer agree: Lyme risk agree vs. otherwise 13.5 7.1 25.5
  problems with Reduce deer neutral: Lyme risk agree vs. otherwise 3.1 1.8 5.3
  deer additional 4 87.9 <.0001 Reduce deer agree: other deer problems agree vs. otherwise 13.5 7.4 24.6

deer issues Reduce deer neutral: other deer problems agree vs. otherwise 2.1 1.2 3.7
resident 2 7.8 0.02 Reduce deer agree: resident seasonal vs. year-round 1.5 0.9 2.7

Reduce deer neutral: resident seasonal vs. year-round 2.1 1.2 3.6
Reduce deer agree: no hunting tradition vs. hunting 2.3 1.3 4.0
Reduce deer neutral: no hunting tradition vs. hunting 1.7 1.0 2.8
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3.4.2.3 Personal Protective Behaviors 

Among behaviors to protect against tick bite, the tick check was the one always 

performed by more than half the respondents (60%) and was always/sometimes performed by 

97% of respondents (Table 3.6). In contrast, always/sometimes use of other protective 

measures ranged from 56% (tuck pants into socks) to 81% (avoid tick habitat).  

Bite/disease burden was a significant predictor of always/sometimes tick checks (n = 

773, df = 2, Wald chi-square = 12.1, P = 0.002, Table 3.7). Odds of respondents who had 

experienced tick-borne disease (through self, family, or friends) were higher than those who 

had bitten only or never bitten (OR 1.5, 95% CI 1.0-2.3; OR 2.3, 95% CI 1.7-3.3, respectively, 

Table 3.7) However, respondents bitten but never ill were no more likely to conduct a tick 

check than those never bitten by a tick. Thus our results were only partially consistent with 

hypothesis 2., because we expected bitten respondents to be more likely than non-bitten 

respondents to conduct tick checks. Odds of women performing tick checks were greater than 

for men (OR 1.7, 95% CI 1.2-1.9), as were odds of seasonal residents compared to year-round 

residents (OR 1.4, 95% CI 1.0-1.9).  

Women were more likely to avoid tick habitat than men, both always and sometimes 

(OR 3.9 95% CI 2.5-6.3; OR 2.2 95% CI 1.5-3.3, respectively). Seasonal residents were more likely 

to use personal repellent than year-round residents, both always and sometimes (OR 3.9 95% CI 

2.5-6.1; OR 1.9 95% CI 1.2-3.8, respectively). Respondents were more likely to always tuck their 

pants into their socks if they had experienced TBD, female, >55 years of age, and seasonal 

residents, and more likely to always or sometimes wear light-colored clothing if they were 

female, >55 years of age, and seasonal residents (ORs ranging from 1.4 to 3.3, Table 3.7). In 
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summary, only the tick check was both universally adopted and associated with bite/disease 

burden. 

3.4.2.4 Support for Deer Herd Reduction 

Sixty-one percent of respondents agreed there was a need to reduce deer on their 

island, compared to 12% who disagreed and 27% who were neutral (Table 3.6). Agreement with 

various deer problems ranged from increased risk of Lyme (82%) to eat my garden plants (69%) 

to too many, car collision, and over-browse forest vegetation (55%, 41%, 38%, respectively, 

Table 3.8). There was agreement with positive values as well: enjoy seeing deer (59%), value 

presence (48%). Only 6% of respondents hunted themselves but 38% had friends/family that 

were hunters.  

Consistent with hypothesis 3., odds respondents supported deer herd reduction were 

13 times higher for those who agreed that deer overabundance increased risk of Lyme disease 

(OR 13.5 95% CI 7.1-25.5) than for those who were neutral or disagreed (Table 3.7). Even those 

neutral on deer herd reduction were more likely to agree deer overabundance increased risk of 

Lyme disease (OR 3.1 95% CI 1.8-5.3).  

Also consistent with hypothesis 3., Odds of respondents supporting deer herd reduction 

were 13 times higher for those who agreed overabundant deer caused at least one other 

problem (apart from Lyme disease) than for those who disagreed (OR 13.5 95% CI 7.4-24.6, 

Table 3.7). Even those neutral on deer herd reduction were more likely to agreed deer 

overabundance caused at least one other problem (OR 2.1, 95% CI 1.2-3.7).  

Odds of neutrality on deer herd reduction were higher for seasonal residents than for 

year-round residents (OR 2.1, 95% CI 1.2-3.6, Table 3.7). Odds of support for deer herd 
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reduction where higher for those who did not hunt and had no family and friends who hunted 

(OR 2.3 CI 1.3-4.1). Removal of Islesboro respondents did not change these patterns. There 

were no interactions among effects in the deer herd reduction support model. 

3.4.2.5 Methods of Deer Herd Reduction  

Seventy-eight percent of respondents approved of deer hunting in general (island detail 

is in Appendix C) and 74% approved of deer hunting on their islands (Table 3.6). Sixty-two 

percent approved of doe permits and 60% of an expanded archery season as hunting methods 

to reduce deer. Only 39% of respondents approved of an expanded firearms season to reduce 

deer. Sixty-three percent of respondents approved of sharpshooting as a method of deer 

reduction.  

More islanders disagreed (40%) than agreed (29%) that off-islanders should be allowed 

to hunt on-island if family. Across islands, more disagreed (64%) than agreed (14%) that anyone 

should be allowed to hunt on island; more islanders thought sharpshooting should be paid for 

by state or federal funds (54%) than town (33%) or private funds (9%).  

3.4.2.6 Responsibility for Municipal Tick Control 

In terms of who should be responsible for managing tick control, more respondents 

agreed the town had responsibility (79%) with the state following in 2nd (71%) and the 

community (i.e., unit smaller than the town, such as a neighborhood) in third (66%). Percent 

agreeing that responsibility lie with the federal government, non-governmental organizations, 

or individuals ranged from 35 to 40%. Fifty-nine percent of respondents agreed they would 

apply a pesticide to control ticks if it were harmless to other animals and people.  
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3.4.2.7 Causes of the Tick Problem 

Seventy-nine percent of respondents attributed increased tick abundance to deer, 62% 

to rodents, 48% to climate change, and 27% to invasive plant species (Table 3.6). Among 744 

respondents agreeing to one or more factors contributing to increased tick abundance, 22.0% 

(n = 169) agreed to one, 40.3% (n = 300) to two, 23.7% (n = 176) to three, and 13.3% (n = 99) to 

all four factors. Few picked just deer 13.4% (n = 100), just rodents 3.5% (n = 27), just climate 

change, 5.0% (n = 37) or just invasive plants 0.7% (n = 5). Consistent with hypothesis 4., three 

times as many respondents agreed to 1-3 causes not including invasive plants 72.0% (n = 536) 

than did those agreeing to 1-4 causes including invasive plants (28%, n = 208, df = 1, chi-square 

=150.0, P < 0.0001).  

 3.4.2.8 Individual Island Opinions on Lyme Disease and Deer 

Differences between individual island percent agreeing versus the overall percent 

agreeing Lyme disease is a problem (83.6%) and overall percent agreeing there is a need to 

reduce the number of deer (60.8%) are found in Table 3.8. Great Diamond Island, the Cranberry 

Isles and Frenchboro stood out has having below 50% agreement on Lyme disease as a problem 

though only Great Diamond and the Cranberry Isles fell below 50% agreement on deer 

reduction. Reponses for each island by question are in Appendix C, Tables C.1-C.7. 
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3.5 Discussion 

The intent of this study was two-fold: first, to assemble data on Lyme incidence, 

entomological risk, and deer herd management history for the unbridged islands of Maine, and 

second, to poll the residents of the islands to quantify their perceptions of Lyme risk and 

support for deer herd reduction on their islands. On Maine’s offshore islands, deer densities 

have episodically exceeded social carrying capacity for deer, and the Island Survey indicated 

that risk of Lyme disease, in conjunction with other deer-related problems, were motivators of 

support for deer reduction at the time of the 2016 survey. 

3.5.1 Island Lyme Incidence, Entomological Risk, and Deer Management History 

The offshore islands of Massachusetts and Rhode Island are known for their burdens of 

tick-borne diseases (TBDs), and this study brings the collective burden of TBD on Maine’s 

offshore islands into a similar focus. During 2010-14, incidences on the islands of Martha’s 

Vineyard (coextensive with Dukes County) and Nantucket Island (coextensive with Nantucket 

County), MA, were 318 and 495 cases per 100,000, respectively compared to the five-year state 

Table 3.8. Differences between individual island percent agreeing versus the overall percent agreeing Lyme
disease is a problem (83.6%) and overall percent agreeing there is a need to reduce the number of deer (60.8%). 

Is Lyme disease a problem? Need to reduce deer?
Island All islands (%) % differenceLyme P All islands (%) % differencedeer P
Cliff 83.7 100.0 16.3 * 60.8 61.9 1.1
Long 83.7 99.0 15.3 * 60.8 81.3 20.5 *

Swans 83.7 96.0 12.3 * 60.8 57.5 -3.3
Isle 83.7 95.9 12.3 * 60.8 54.5 -6.2

Chebeague 83.7 93.3 9.7 * 60.8 56.7 -4.1
Vinalhaven 83.7 90.0 6.3 60.8 75.4 14.6 *
Islesboro 83.7 86.7 3.0 60.8 69.3 8.5

North 83.7 78.2 -5.5 60.8 61.5 0.8
Peaks 83.7 68.4 -15.2 * 60.8 54.4 -6.4
Great 83.7 42.9 -40.8 * 60.8 18.2 -42.6 *

Frenchboro 83.7 40.0 -43.7 * 60.8 60.0 -0.8
Cranberry 83.7 30.8 -52.9 * 60.8 15.4 -45.4 *
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average of 62 (MADPH 2018). Incidence was 590 in Block Island (Town of New Shoreham, RI) 

compared to the statewide average of 87 (RIDPH 2018). In comparison, 2013-17 Lyme incidence 

in Maine’s island municipalities averaged 848 (range 0 to 3,972) compared to the state average 

of 89 cases/100,000. Where available, our entomological data showed decadal shifts from 

lower to higher I. scapularis density and infection rates. The exception was on Monhegan 

Island, where deer were eliminated during 1997-1999.  

We could not reconstruct pre- and post-cull deer density estimates for most islands, but 

agency and media reports indicated overabundance led to the culls (Lavigne 1997, Moore 2003, 

Edgecombe 2003, Leath 2004, MEIFW 2007, Billings 2016, Fleming 2017, MEIFW 2017). Over 

the years, the print media have documented the narrative of deer abundance exceeding social 

carrying capacity for deer on the islands. The following observations of MEIFW biologists and 

islanders on impact of deer overabundance is illustrated through quotes from several news 

articles:  

 

Maine Department of Inland Fisheries and Wildlife biologist Gerry Lavigne: “In the 1980s 

people on Cranberry and Swan’s Island began to complain about too many deer…island 

people probably got comfortable with having a lot of deer around, perhaps even 

growing accustomed to not having a garden and not seeing native vegetation, because it 

was a gradual change. Then Lyme Disease changed all that…It wasn’t until the 

emergence of Lyme disease as a human risk that people began thinking seriously about 

controlling deer…It’s why people on Monhegan, and Casco Bay island residents, voted 

to reduce their deer herds” (Moore 2002). 
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MEIFW biologist Thomas Schaeffer: “They [deer] decimate everything in sight…Native 

grasses and wildflowers disappeared, ornamentals disappeared. You go out there and it 

seems like a prison – everything is in an enclosure just to protect it from deer…Going 

from one end of Great Cranberry to another, it wasn’t unusual to see 50 deer standing 

on lawns” (Moore 2002). 

 

Randy Billings, Portland Press Herald writer: “when Peaks Island became overrun with 

deer…The deer herds were so large that deer were starving to death and island 

residents could not maintain gardens” (Billings 2016). 

 

Whereas the residents of Monhegan ultimately were able to agree on a deer herd 

management program (elimination in this case), Islesboro has followed a much different 

trajectory. A group of Islesboro residents formed a tick control committee in the mid-2000s, 

and the town spent $20,000 out of the town budget to census deer (65/mi2 in 2012). A 

reduction program from 2012-14 resulted in little reduction of numbers (50/mi2 in 2015). A 

group consisting mostly of summer residents (Concerned Citizens of Islesboro) offered to put 

$350,000 towards deer reduction by sharpshooter (Town of Islesboro Deer Reduction 

Committee 2018), but in 2015 the town voted down the sharpshooting option 2 to 1 against. In 

2016 the town voted against going to a regular firearms season from the current expanded 

archery season. The community became polarized and the tick control committee was 

dismantled (Fleming 2017): 
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Sandy Oliver, Islesboro Board of Selectmen: “The problem is everywhere. And it’s 

incredibly divisive. It’s pitted some of the summer population against some of the year-

round residents” (Fleming 2017). 

 

Linda Gillies, Islesboro Deer Reduction Committee (defunct): “In 2014 and 2015 when 

the sharpshooting option came up, the community was fractured…People took sides 

and didn’t speak to each other” (Fleming 2017).  

 

Thus, for Islesboro a workable formula has not been developed yet.  

On Swans Island, the 2001-03 reduction hunt that took nearly 270 deer may have been 

temporarily successful but in 2018 some residents and officials began to discuss another special 

reduction hunt. In 2018, our lab conducted a pellet group count and estimated 15 deer/mi2, 

certainly not as high as numbers on Islesboro, but perhaps still high enough to raise concern 

among residents. As of this writing Swans Island may reinstate an expanded firearms season to 

special permit holders (S. Bard, MEIFW wildlife biologist, email communication, January 2019). 

The City of Portland islands (Cliff, Great Diamond, and Peaks) as well as Long Island have special 

hunts to apply downward pressure to deer numbers, but rather high densities (~21 to 60) 

suggest goals are not being met. In summary, most islands with deer have either regular or 

special hunts, and most are struggling to some extent to keep deer numbers down.  

Without accurate data on island-acquired cases of Lyme disease and deer density it 

would not be appropriate to attempt to correlate Lyme incidence with entomological risk and 
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deer density. However, it can be noted that on the Cranberry Isles and Frenchboro, the culls of 

1999-2001 with subsequent hunting pressure apparently have maintained deer at levels 

satisfactory to residents. Evidence for this is 1) very few survey responses compared to islands 

with similar populations, 2) survey results indicating well below average concern over Lyme and 

deer, and 3) lack of news articles compared to the other islands.  

The emphasis of this study was not to show that deer densities on islands increased 

ticks and TBD on Maine’s offshore islands, but rather that deer densities have episodically 

exceeded social carrying capacity for deer. The Island Survey indicated that risk of Lyme disease 

has been a primary motivator for deer reduction in conjunction with other deer-related 

problems.  

3.5.2 Island Survey 

In the Island Survey, 83% of island residents agreed that Lyme disease was a problem on 

their island whereas only 3% disagreed. Hypothesis 1. was that odds island residents would 

consider Lyme a problem would be greater for those who had experienced TBD followed by 

those bitten only, followed by those not bitten, i.e., TBD > bitten only > not bitten. Instead, we 

found TBD = bitten only > not bitten. Odds of respondents agreeing Lyme disease was a 

problem on their island were at least four times higher for those who had experienced tick-

borne disease (self/family) or tick bite (self/family) versus those never bitten. We interpret this 

to mean a tick bite elevated perception of risk of contracting Lyme disease to the same level as 

actually having contracted the disease. None of the control variables--gender, age class, 

education level—was a significant predictor, suggesting a lack of discrimination on the part of 

the vector tick based on these demographics. Finding a tick crawling or attached to oneself, 
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family, member, or even pet may immediately shift a person’s subjective assessment of risk, 

i.e., perception of risk, from low to high. Affective reactions to a hazard are fast and automatic 

(Bodemer and Gaissmaier 2015). Certainly immediate feelings of disgust and fear may attend 

discovery of a tick on one’s body. During and soon after a tick encounter, for most people there 

may no longer be room for optimistic bias (“it won’t happen to me”, Bodemer and Gaissmaier 

2015, p. 7). 

Among protective behaviors, the tick check was by far the most commonly used 

behavior, compared to avoidance of tick habitat, use of tick repellent, and clothing strategies 

(tucking pants into socks, wearing light-colored clothes). The tick check was the only protective 

behavior unequivocally associated with burden of TBD, however, people only bitten were no 

more likely to perform a tick check than by those never bitten. This was contrary to our 

expectations (hypothesis 2.) and out of alignment with the result of the first model, which 

showed bitten-only persons felt Lyme disease was a problem on their island to the same extent 

as those who had experienced TBD.  

Misalignment between knowledge of risk and health behaviors is to be expected and is 

the topic of a massive body of research on health-related behavior (e.g., Kelly and Barker 2016). 

What might appear to be an irrational decision might be rational given the social, economic, 

and political context of the decision (Kelly and Barker 2016). For example, one might not want 

to go about looking rather silly with one’s pants tucked into one’s socks. Or, skipping a 

protective behavior could be a manifestation of optimism bias, whereby personal risk is 

discounted, to deliver in the moment a feeling of being safe (Weinstein 1989, Bodemer and 

Gaissmaier 2015). For example, a person going out to the garden might think they are too far 
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from the woods to get a tick. A return of optimistic bias is probably inevitable as time since the 

last tick encounter increases, since people’s perceptions of risk appear to decrease most rapidly 

during the initial phase of a crisis and then begin to level off (Burns et al. 2012). Alternatively, 

optimistic bias could manifest if tick encounters are frequent but rapid tick removal has 

prevented TBD transmission.  

Health behaviors varied by certain demographics. Women, people 55 years of age and 

over, and seasonal residents had a greater propensity to perform behaviors to protect against 

tick bites than men, younger people, and year-round residents. The gender difference was 

consistent with the study of Phillips et al. (2001) of residents of Nantucket Island, 

Massachusetts in which females practiced protective behaviors more frequently.  

The behavior unique to seasonal residents was the use of personal repellent. Seasonal 

residents may arrive at their summer homes with a heightened awareness of the potential for a 

tick encounter, whether or not they come from a high Lyme incidence state. Initially at least, 

seasonal residents may find the hazard of TBD more proximal than year-rounders but can 

improve their sense of control over the risk (Slovic 1987) by applying repellents. This is only 

conjecture, however.  

It was noteworthy that the tick check was the only protective behavior associated with 

having had TBD or a tick bite. Other protective behaviors were associated with individual 

demographics but not exposure. Similarly, Slunge and Boman (2018) found a strong positive 

association between exposure and tick checks but a weak association between exposure and 

other protective measures. It may be that people feel the tick check is the only effective (or the 



 

 144 

best) protective measure (Connally et al. 2009), while those who have lowest tolerance for risk 

are those who take the extra measures.  

In the 2016 Island Survey, 61% of respondents agreed there was a need to reduce deer 

on their island. By contrast, in a 2016 random telephone poll of Maine residents conducted on 

behalf of MEIFW, only 8% of the general population (n = 301) and 5% of hunters (n = 131) 

supported a decrease in deer abundance in the southern Maine area (Responsive Management 

2016) where deer density is highest (MEIFW 2017). Indeed, 13% and 23% of the general 

population and hunters, respectively, supported an increase in deer abundance. A salient issue 

is by definition prominent, i.e., of notable significance or relevance. If an issue appears 

“unrelated to any immediate, obvious personal difficulties” there is no incentive to act; people 

will pay more attention to pressing issues such as “family, finances, or localized environmental 

issues” (Yang et al. 2014, p. 301). This study indicated that deer overabundance is a salient 

localized environmental issue for many Maine islanders. High salience leads to policy support 

(Yang et al. 2014). Clearly, survey respondents’ policy support for deer reduction was much 

stronger than that of mainlanders’. Still, mainlanders’ support for deer reduction increased 

when negative ecological consequences included poorer deer health and wildlife habitat 

quality, and increased risk of Lyme disease (Responsive Management 2016). This was consistent 

with a study of New Jersey residents that found support for deer reduction to prevent negative 

ecological consequences of not reducing deer (Johnson 2014).  

Those with no hunting tradition (self/family/friends) were more likely to support deer 

herd reduction. It may be that non-hunters feel the only solution is a cull, whereas some 

hunters maybe believe regular hunting pressure is sufficient to keep deer numbers in check. It 
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also could mean that people with a hunting tradition may prefer higher deer densities for more 

productive hunting. Stafford et al. (2017) and Williams et al. (2018b) found that a hunter group 

in Connecticut successfully campaigned against a proposed deer cull as part of a larger 

integrated tick management (ITM) program that would have brought numbers down below 

13/mi2 (5/km2) (Williams et al. 2018b). Demographic nuances certainly have and will continue 

play a role in policy making from one island to the next.  

Those opining on deer reduction methods favored, not surprisingly, doe permits and 

expanded archery over expanded firearms. Take of does is more effective in population control 

than buck-only take (MEIFW 2007), and archery probably is considered safer on islands than 

firearms, although four islands do have regular firearms seasons at this time. While these are 

good options for deer herd reduction, the trick is to apply enough hunting pressure, since most 

islanders prefer not to bring in even off-island family to increase hunting pressure. Islanders 

seem comfortable with special permitees, but getting enough of these permitees remains the 

challenge. Support for sharpshooters was over 50%, but sharpshooters cost money and there 

was little enthusiasm for taking that from town budgets. Nevertheless, respondents felt 

responsibility for tick control fell to the town for the most part, ostensibly in partnership with 

the state. As for who should be responsible for tick control, responses represented a middle 

ground with respondents feeling federal government should not bear much responsibility, nor 

should the individual. This is reasonable since even if an individual could treat her or his yard, it 

would fall to the town to treat trails, school grounds, and other common lands. This and the 

formation of various tick and deer control committees on various islands indicate a sense of a 

shared responsibility for community health improvement (LaBonte 1988, IOM 1997).  
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Many respondents felt they knew a lot about ticks, and desire to learn more was 

perhaps less than enthusiastic or at least middle-of-the-road. This was not surprising given that 

I. scapularis have been invading the islands since at least the early 1990s, that many islands 

have received entomological data and outreach from our lab. Certainly, the media has 

produced a disproportionately high volume of articles on ticks and TBD over the years 

compared to disease conditions that cause more hospitalizations and deaths, such as seasonal 

influenza, HIV, hepatitis B and C (Smith et al. 2019b). It may be that the best information for 

islanders (and the public at large) is cutting-edge information integrated with older information 

in a way that is balanced, holistic, and to the extent possible, based on scientific studies that are 

locally applicable. 

We were interested in the relative importance islanders ascribed to four factors 

influencing distribution of I. scapularis abundance in Maine, especially the extent to which 

islanders emphasized one cause, or omitted invasive plant species as a cause. Interestingly, only 

22% ascribed the tick problem to any one cause, and only 13% ascribed the tick problem to just 

deer. Considering the focus of the survey was deer herd reduction, we thought it significant 

that 64% selected two or three causes. This showed a majority of islanders ascribed Maine’s 

tick problem to multiple causes. 

On the other hand, and consistent with our 4th and last hypothesis, only 27% ascribed 

the tick problem to invasive plant species, with nearly three times as many respondents 

agreeing to 1-3 causes not including invasive plants vs. agreeing to 1-4 causes including invasive 

plants. One reason could be lack of media attention to the association between blacklegged 

ticks and invasive plants. A Nexis Uni® database search of media coverage between January 1, 
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2010 and December 31, 2018 that included the key phrases “Maine” and “deer ticks” resulted 

in 161 articles. Adding the key phrase “Japanese barberry” resulted in one article (Curtis 2018) 

and was the result of an interview with the author. The first evidence I. scapularis abundance 

was elevated in dense growths of Japanese barberry, Asiatic bittersweet and Japanese 

honeysuckle in Maine was published in the mid-2000s (Lubelczyk et al. 2004, Elias et al. 2006). 

Soon thereafter in Connecticut, Ward et al. (2009), and Williams and Ward (2010) confirmed 

higher I. scapularis abundance and B. burgdorferi infection prevalence in Japanese barberry 

than in native vegetation. Williams et al. (2017) have demonstrated that Japanese barberry can 

be suppressed with aggressive management. As Japanese barberry is invading many island and 

mainland landscapes, this is a key component to include in outreach on tick ecology and 

integrated tick management.  

The “One Health” concept holds that human, veterinary, and wildlife health depend on 

the health of the landscape (CDC 2018c). We think the more the townspeople can be 

encouraged to take an ecosystem-based view of a vector-borne infectious disease system 

(Lambin et al. 2010), the more they can customize integrated tick management solutions for 

their own towns. A mosaic of characteristics contributes to high densities of I. scapularis in a 

given landscape, including distribution and abundance of suitable deer and rodent hosts, and 

presence of suitable tick and host habitat, and warming average climate change at the northern 

edge of the I. scapularis range (Eisen et al. 2014). This survey has given us impetus to think 

about using the One Heath concept as a framework for holistic communication about tick-

borne disease risk (e.g., Decker et al. 2011). Residents would benefit their communities by 

becoming adept at diagnosing the health of the landscape in which they live. There exists a 
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wide array of tools in the integrated pest management (IPM) toolbox (Stafford et al. 2017) 

available to communities for tick control. Even if people inadvertently have created a mosaic of 

policies that optimize landscape pathogenicity, they might be able to restore their landscapes 

to health. Holistic, One Health thinking (e.g., Stafford et al. 2017) may help communities mired 

in controversy over deer reduction to think of alternative ITM strategies. 

3.5.3 Shortcomings of the Study 

Challenges in this study included 1) assessment of the burden of Lyme disease, 2) 

incomplete data on entomological risk, 3) incomplete data on deer herd management histories, 

and 4) unknown bias associated with convenience sample.  

First, a major challenge is assessing the true burden of tick-borne disease for towns with 

small populations. When the population of an island is, for example, 70, just one case of Lyme 

disease attributed to the island municipality raises the incidence from zero to 300, over the 

three times the state average, notwithstanding travel history of the case. Nevertheless, by 

aggregating across years and islands we had reasonable confidence in the figures from the 

Maine Center for Disease Control.  

Second, due to the vagaries research funding, and it was not possible to accrue 

consistent entomological data over time for most islands. But by summarizing to the decadal 

level, we were able to provide reasonable evidence that I. scapularis and B. burgdorferi 

infection prevalence have increased over time (with the exception of Monhegan Island).  

Third, deer management histories were partial, but the summary we assembled was 

deemed reasonably complete by MEIFW biologists (N. Bieber, and K. Kemper, email 
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communication, December 2018; S. Lindsay, H. Jones, S. Bard, email communication, January 

2019).  

Fourth, the island survey was a convenience sample. In the 2016, Maine Inland Fisheries 

and Wildlife conducted a random sample survey of Maine residents’ opinions on big game 

management by telephone. Demographics of respondents were 52% women,  37% 55+ years of 

age, and 42% with college degrees or higher, and 14% with post-graduate degrees (Responsive 

Management 2016). By contrast, in the Island  survey respondents were 70% women, 72% 55+ 

years of age, 76% with college degrees or higher, and 42% with post-graduate degrees. It may 

be that we heard from more women than men because women are more likely to be health 

care managers of the household (Grant et al. 2004, U.S. Department of Labor 2005), and the 

focus of our survey was on health risk, not big game management. Perhaps older women with 

more education and household income had more time and opportunity to take surveys. 

Twenty-one percent of respondents were females age 55+ with a post-graduate degree and 

incomes $55,000 or higher. When we ran the models without this group, odds ratios varied 

slightly from the original models, but the relationships did not change, e.g., odds of 

respondents agreeing Lyme disease was a problem on their island higher for those who had 

experienced tick-borne disease (self/family) or tick bite (self/family) versus those never bitten. 

Still, people who don’t have problems with ticks or no time for surveys were probably less likely 

to take the survey and we recognize this as a source of bias. Despite the survey’s biases, the 

deer herd management history of the islands corroborated the survey finding that Lyme disease 

and deer overabundance are salient issues on most islands. Furthermore, even a random 
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sample would have represented a snapshot in time. The best up-to-date metric of public 

opinion is the town vote. 

3.5.4 Recommendations 

First, we recommend that island communities keep tabs on their deer densities by way 

of censuses, perhaps every five years. Aerial census is expensive, but deer pellet group counts 

can be done for less money or even by volunteer effort. That way, if a community commits to a 

cull followed by an aggressive maintenance plan, effectiveness of the program can be assessed. 

What should be the target deer density? In 2002, MEIFW biologist Gerry Lavigne stated “If you 

really want the complete mix of native flora, you have to keep deer below 20. Not many have 

that low a density.” Moore (2002). To suppress I. scapularis and Lyme disease, it has been 

suggested that density of white-tailed deer should be lowered to below a threshold in the range 

of 8-13/mi2 (Telford 1993, Telford 2002, Stafford et al. 2003, Stafford 2007, Kilpatrick et al. 

2014, Telford 2017, Chapter 2). MEIFW expresses deer density goals in increments of five, with 

current goals of 10/mi2, 15/mi2, 20/mi2, for the northernmost, southernmost, and central 

wildlife management districts (WMDs), respectively (MEIFW 2017). We recommend that deer 

density goals not exceed 15/mi2 on the islands and that islanders consider goals below this 

where culturally acceptable. Deer density estimates are only one way to assess deer abundance 

and measurable goals. Systems that measure deer and landscape health could corroborate or 

supplant deer censuses.  

The second recommendation is that communities organize efforts to inventory and 

remove invasive plant species associated with ticks, namely, oriental bittersweet, and Japanese 

honeysuckle, and especially, Japanese barberry. Peaks Island has conducted at least two rounds 
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of invasive plant species removal to restore native vegetation, and the Town of Falmouth has a 

budget to remove its invasive plants (Town of Falmouth 2018). If deer herd reduction is a 

polarizing issue, as it was in Islesboro, a community might focus on other tick control methods. 

Invasive plant species removal is never easy, but is relatively non-controversial, and actionable 

on a community and individual level, which is empowering (Witte 1994). Invasive plant removal 

is money and time well spent, because it allows restoration of native plants and wildlife species 

in addition eliminating I. scapularis habitat. The sale of Japanese barberry and other invasive 

plants was banned in Maine in 2017; information on identification, removal, and replacement 

can be found with the Maine Invasive Species Network 

(https://extension.umaine.edu/invasivespecies) and the Maine Natural Areas Program 

(https://www.maine.gov/dacf/mnap/features/invasive_plants/invasives.htm).  

The third set of recommendations is for communicators involved in outreach on tick 

ecology and integrated tick management. Communicators can be town officials, natural 

resource managers, vector ecologists, public health officials, lay persons, and others. First, 

communicators will benefit from a fundamental knowledge of risk communication principles. 

For an overview of psychological underpinnings and methods of risk communication we 

recommend Bodemer and Gaissmaier (2015). The style of outreach should gain trust, establish 

common values, be procedurally fair, and empowering (Slovic 1993, Witte 1994, Siegrist and 

Cvetkovich 2000, Poortinga and Pidgeon 2006, McComas et al. 2007, Besley and McComas 

2013, Webler 2013). Second, communicators should have a thorough, current, and holistic 

grasp of the body of research findings and the array of integrated tick management options. 

Here we have emphasized deer and invasive plant management, but other current (e.g., rodent 
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bait boxes) or future ITM options (e.g., commercially available entomopathogenic fungus, 

Metarhizium spp.) may be feasible. Communicators also should be sensitive to the locale, 

history and culture(s) of their audiences. For example, in a coastal fishing community, deer 

reduction might be feasible, but pesticide application may be completely out of the question, 

whereas the opposite could be true inland. Outreach also needs to apply research findings with 

awareness of where the research was conducted. For example, the ecology of Lyme disease in a 

state such as New York may differ from a state such as Maine because of the varying cultural 

and ecological contexts, leading to differing policy solutions. Third, communicators should 

consider framing their outreach in terms of landscape health, i.e., use the One Health 

framework. This requires awareness of what the current media focus is, and ability to steer 

stakeholders away from single-issue thinking. A case in point was the Washington Post article 

“Why this adorable mouse is to blame for the spread of Lyme disease” (Bever 2017). This article 

focused solely on mice without addressing the larger ecological context of Lyme disease and it 

also failed to mention how important mice are as prey to many species of wildlife. As Dr. 

Alessio Mortelitti, University of Maine Professor of Wildlife Ecology has said: “small mammals 

are the sandwiches of the forest”. Unfortunately, the Bever (2017) article took a “blame 

wildlife” stance (Roh et al. 2015). Lu et al. (2016) found that acknowledging the benefits of bats 

(insect control) along with the health risks (rabies) led to greater intentions on the part of 

national park visitors to report odd bat behavior to park rangers. In conversations about the 

role of native wild mammal and bird species in the ecology of Lyme disease, we suggest 

communicators balance discussions by including the benefits of these species. Healthy balance 

is the essence of the OneHealth concept. 
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3.6 Conclusions 

Communities and natural resource management agencies and public health institutions 

have wrestled with the controversial issue of deer reduction to control ticks, reduce vehicle 

collision rates and damage to orchards and peridomestic landscaping, and to improve forest 

health and health of the deer herd (e.g., Beguin et al. 2009, McShea 2012, Telford 2017). The 

process of deciding on how to control ticks, including deer herd management, can be lengthy, 

difficult, and divisive for a community. Our motivation was to assist by providing information to 

island residents and their collaborators, such as town and city administrators, natural resource 

managers, public health officials, and vector-borne disease ecologists. As a matter of public 

policy, MEIFW already considers the relationship between deer and I. scapularis important 

when setting goals for big game species in Maine’s wildlife management districts (MEIFW 

2017). Since Maine islands have a tradition of awareness of deer overabundance and deer herd 

management strategies, we think the role of the scientific and public health community is to 

affirm these efforts and assist with specific recommendations, when requested. 

Recommendations should suit local environmental conditions and cultural norms. Our bottom-

line recommendation for the island communities is to keep deer ≤15/mi2 and remove invasive 

vegetation. Even when Lyme vaccine and anti-tick vaccines come to market, deer herd 

management and invasive plant species removal will have benefits that extend beyond vector 

tick control.   
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APPENDIX A: CONVERSION OF BUCK KILL INDEX TO DEER PER SQUARE MILE 

  

WMD Equation Equation type R
2

1 0.2225*(BKI^0.9722) curvilinear 0.63

2 (0.0044*(BKI^2))+(0.1365*BKI)+0.0296 polynomial 0.96

3 (0.1726*BKI)-0.1351 linear 0.79

4 0.4344*(BKI^0.7761) curvilinear 0.87

5 0.2409*(BKI^0.9677) curvilinear 0.93

6 (0.0127*(BKI^2))-(0.3202*BKI)+4.2234 polynomial 0.87

7 0.2022*(BKI^0.9796) curvilinear 0.82

8 (-0.0026*(BKI^2))+(0.2789*BKI)-1.2221 polynomial 0.83

9 (0.0039*(BKI^2))-(0.0622*BKI)+3.2201 polynomial 0.59

10 0.3617*(BKI^0.7469) curvilinear 0.86

11 (0.0023*(BKI^2))-(0.0546*BKI)+4.5121 polynomial 0.93

12 0.0921*(BKI^1.1448) curvilinear 0.87

13 (0.1816*BKI)-2.0124 linear 0.90

14 2.9123*EXP(0.018*BKI) curvilinear 0.52

15 2.0846*EXP(0.0171*BKI) curvilinear 0.92

16 0.0128*(BKI^1.4442) curvilinear 0.92

17 0.3932*(BKI^0.7984) curvilinear 0.75

18 0.5174*(BKI^0.663) curvilinear 0.73

19 (0.0042*(BKI^2))-(0.082*BKI)+3.0274 polynomial 0.82

20 0.0065*(BKI^1.5654) curvilinear 0.58

21 0.039*(BKI^1.1482) curvilinear 0.95

22 0.0083*BKI^1.4992 curvilinear 0.92

23 (0.171*BKI)-10.466 linear 0.74

24 0.0295*(BKI^1.2001) curvilinear 0.83

25 (0.1629*BKI)-6.5855 linear 0.73

26 (0.1759*BKI)-7.3442 linear 0.88

27 0.2004*(BKI^0.906) curvilinear 0.78

28 (-0.0011*(BKI^2))+(0.1674*BKI)+0.8594 polynomial 0.70

29 0.2083BKI^.8289 power 0.78

Average R
2
: 0.81

Table A.1 Regression equations used by the Maine Department of Inland Fisheries and Wildlife to 

convert buck kill index (BKI) to deer per square mile for each wildlife management district (WMD).
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APPENDIX B: DETAILS OF GENERALIZED ADDIVITE MODELS 

Nonlinear smoothing of covariates is a major aspect of GAMMs. A second major aspect 

of GAMMs is they combine the results of each predictor variable additively (Fig. B.1), although 

terms for interaction can also be added and tested for significance in a way analogous to 

ANOVA (Wood 2017). 

A GAMM (or GAM) reflects a prior belief that the appropriate model structure would 

describe the response as a smooth, rather than linear, function of one or more predictors 

(Wood 2001). A smooth function f is composed by the sum of its basis functions b and their 

corresponding regression coefficients β, written as: 

𝑠(𝑥) = *𝑘𝑏𝑘(𝑥
-

./0

) 

where k is the basis dimension (Wood et al. 2016). A way to think of this is that for any 

predictor variable, a number of basis functions are combined to make one overarching smooth 

function. Generally, GAMs divide the data into sections with knots at the ends of the sections. A 

low order spline function is fit to the data in the section, with the derivative of the function at 

Figure B.1. Generalized additive models combine the results of each 
predictor variable additively. That is, the additive effect of 𝒔(𝒙) + 𝒔(𝒙) leads 
to 𝒔(𝒙) + 𝒔 (𝒙) (Larsen 2015). 
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the knots constrained to be the same for sections sharing a knot to ensure a smooth and 

continuous line.  

The smooth function is estimated by minimizing the penalized sum of squares  

∑
4/0

5
(𝑦4 − 𝑓(𝑥4))9 + 𝜆∫ (𝑠==(𝑥))9 

where the residual sum of squares term (left of the + sign) ensures fit while the penalty term 

(right of the + sign) ensures smoothness. The penalty term imposes smoothness by calculating 

the integrated square of the second derivatives. Since the second derivative measures the 

slopes of the slopes, a wiggly curve will have large second derivatives, while a straight line will 

have second derivatives of 0; adding up the squared second derivatives measures the 

wiggliness of the curve.  

Integrated derivatives of the smooth can be written as βTSβ, where S is the penalty 

matrix. The wigglyness (βTSβ) of the smooth, i.e., closeness to the data, is penalized through a 

smoothing parameter, λ, thus λβTSβ represents a trade-off between wiggliness and smoothness 

that maximizes the likelihood (Wood et al. 2016, Wood 2017).  

Figure B.2 illustrates the choice of smooth on the best value of λ versus no penalty (λ = 

0) versus a complete smooth (λ ³ 1), with the correct smooth in blue and the effect of lambda 

in dark gray. With no penalty (λ = 0), the smooth resembles a very high order polynomial, goes 

through nearly every data point, and is excessively “wiggly”, whereas a straight line (λ ³ 1) over-

smooths. GAMs have degrees of freedom depending on number of knots, i.e., effective degrees 

of freedom. GAMs attempt parsimony by balancing the minimal residual deviance on the 

fewest possible degrees of freedom.  



 

 178 

GAMMs allow treatment of “autocorrelation and repeated measures situations” (Wood 

2006). In a study with repeated measurements on subjects (in this case, WMDs), subjects’ 

individual smooths may vary from the global smooth trend over time. Subject random effects 

may be incorporated into a GAMM by allowing a “factor smooth interaction”, which allows a 

separate temporal smooth for each factor (i.e., subject), and informs the model that there are 

repeated measures on n subjects. 

With areal spatial data, values for the response can be correlated with values in 

neighboring units. Areal spatial correlation can be modeled as smooth random spatial effect 

known as a Markov random field (MRF).  The smooth has a coefficient, gi for region i. The 

neighboring areal units of each unit are identified, and a quadratic penalty constructed. If Ni is 

the set of neighbors of unit i, then the penalty is  

∑
4
( ∑
>∈@A

(𝛾4 − 𝛾>))9 

 
Figure B.2. Effect of choice of smoothing parameter, λ, on wiggliness of smooth (Miller 
2016). In all plots, a blue line represents the smooth where λ is just right. Where λ is too 
“wiggly” the smooth (black line, midde panel) essentially connects the data points and 
where λ is infinity the smooth (black line, right panel) is a straight line. 
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The MRF defines a spatial effect such that the effect of the MRF for any unit varies 

smoothly over the neighbors of that unit. Smoothness depends on the rank of the MRF. A full-

rank (number of knots = the number of spatial units) MRF would result in a “wiggly” or “rough” 

smooth with essentially one coefficient per unit whereas a low-rank MRF (knots < number of 

spatial units) the results in a smoother field. For a fully spatiotemporal random effects model, 

the MRF is allowed to vary over time.  

The R code (using “nymphs” as shorthand for nymph submission rate) was as follows: 

1. Temporal “factor smooth” random effect 

gam(sqrt(nymphs) ~ s(year) + [additional main effects] + 

  ti(year, WMD, bs = c("fs"), m = 1), 

  family=tw(), data=data) 

where the “ti” syntax specifies the tensor product, bs="fs" requested the factor smooth, and 

m=1 allowed for more flexibility of the random smooths over the default of m=2 (Sóskuthy 

2017, Baayen et al. 2018).  

2. Spatial Markov random field random effect 

gam(sqrt(nymphs) ~ [main effects] + 

  s(WMD, bs = "mrf", list(nb = neighborlist)), 

  family=tw(), data=data) 

where “mrf” specified the smoothing basis for the spatial autocorrelation, and “nb” specified 

the object “neighborlist” with a queen neighbor structure for the WMDs (Wood 2017). 

3. Additive temporal-spatial random effect 

gam(sqrt(nymphs) ~ s(year) + [additional main effects] + 

  ti(year, WMD, bs = c("fs"), m = 1) + 
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  s(WMD, bs = "mrf", list(nb = neighborlist)), 

  family=tw(), data=data). 

4. Interacting temporal-spatial random effect 

gam(sqrt(nymphs) ~ [main effects] + 

  te(year, WMD, bs = c("fs", "mrf"), 

  xt = list(year = NULL, id = list(nb = neighborlist))), 

  family=tw(), data=data. 
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APPENDIX C. ISLAND SURVEY RESULTS BY ISLAND 

 

 

Table C.1. Responses to questions about the importance of Lyme disease and burden of tick bites and tick-borne disease (TBD) asked in a survey of residents of Maine's
unbridged, off-shore islands, 2016. An asterix denotes chi-square P  ≤ 0.05.
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Importance Is Lyme disease Agree 680 (83%) 4 (40%) 4 (31%) 72 (96%) 47 (96%) 91 (87%) 43 (78%) 104 (68%) 63 (90%) 98 (93%) 21 (100%) 15 (43%) 98 (99%)
  of Lyme   a problem on Disagree 21 (3%) 5 (38%) 4 (4%) 2 (4%) 4 (3%) 1 (1%) 4 (11%) 1 (1%)
  Disease   your island? Neutral 118 (14%) 6 (60%) 4 (31%) 3 (4%) 2 (4%) 10 (10%) 10 (18%) 44 (29%) 6 (9%) 7 (7%) 16 (46%)

* NS NS * * * * * * * . * *
Burden of Ever bitten N 421 (51%) 9 (90%) 11 (85%) 49 (65%) 10 (20%) 46 (44%) 21 (38%) 98 (64%) 32 (46%) 50 (47%) 12 (57%) 25 (71%) 45 (45%)
  tick bites by a tick? Y 400 (49%) 1 (10%) 2 (15%) 26 (35%) 39 (80%) 59 (56%) 34 (62%) 55 (36%) 38 (54%) 56 (53%) 9 (43%) 10 (29%) 54 (55%)

NS * * * * NS NS * NS NS NS * NS
Burden of Dx Lyme off-island 44 (18%) 1 (100%) 3 (21%) 5 (24%) 6 (16%) 3 (17%) 11 (28%) 8 (32%) 4 (12%) 1 (10%) 1 (25%)

tick-borne on my island 187 (76%) 1 (100%) 10 (71%) 15 (71%) 29 (76%) 15 (83%) 27 (69%) 15 (60%) 28 (82%) 7 (70%) 3 (75%) 29 (91%)
  disease Both 15 (6%) 1 (7%) 1 (5%) 3 (8%) 1 (3%) 2 (8%) 2 (6%) 2 (20%) 3 (9%)

* . . * * * * * * * * NS *
Dx Anaplamosis off-island 4 (40%) 1 (100%) 1 (50%) 1 (100%) 1 (33%)

on my island 5 (50%) 1 (50%) 1 (33%) 3 (100%)
Both 1 (10%) 1 (33%)

NS . NS . NS .
Dx Babesiosis off-island 5 (29%) 1 (100%) 1 (100%) 3 (75%)

on my island 11 (65%) 1 (50%) 1 (100%) 1 (25%) 4 (100%) 2 (100%) 2 (100%)
Both 1 (6%) 1 (50%)

* NS . . . NS . . .
Dx other TBD off-island 2 (13%) 1 (50%) 1 (25%)

on my island 11 (73%) 1 (100%) 2 (67%) 1 (100%) 1 (100%) 1 (50%) 3 (75%) 1 (100%)
Both 2 (13%) 1 (100%) 1 (33%)

* . . NS . . NS NS .
Dx Lyme - Family off-island 115 (31%) 3 (75%) 11 (34%) 4 (13%) 9 (17%) 5 (19%) 38 (66%) 13 (41%) 14 (29%) 4 (57%) 10 (20%)

on my island 223 (60%) 1 (25%) 21 (66%) 23 (77%) 37 (70%) 21 (78%) 18 (31%) 17 (53%) 28 (57%) 7 (64%) 3 (43%) 37 (74%)
Both 31 (8%) 3 (10%) 7 (13%) 1 (4%) 2 (3%) 2 (6%) 7 (14%) 4 (36%) 3 (6%)

* NS NS * * * * * * NS NS *
Dx Anaplamosis - Family off-island 10 (45%) 1 (50%) 1 (100%) 1 (20%) 2 (100%) 4 (100%) 1 (33%)

on my island 10 (45%) 1 (50%) 3 (60%) 1 (33%) 4 (100%)
Both 2 (9%) 1 (20%) 1 (33%)

NS NS . NS . . NS .
Dx Babesiosis - Family off-island 16 (53%) 3 (100%) 6 (86%) 2 (100%) 4 (44%)

on my island 12 (40%) 1 (100%) 1 (50%) 1 (14%) 4 (44%) 1 (100%) 3 (100%)
Both 2 (7%) 1 (50%) 1 (11%)

* . NS . NS . NS . .
Dx other TBD - Family off-island 4 (36%) 1 (100%) 1 (50%) 2 (67%)

on my island 4 (36%) 1 (50%) 1 (33%) 1 (100%)
Both 3 (27%) 1 (100%) 1 (50%) 1 (50%)

NS . . NS NS NS .
Burden of Tick-borne disease 480 (58%) 4 (40%) 2 (15%) 42 (56%) 37 (76%) 71 (68%) 31 (56%) 76 (50%) 40 (57%) 69 (65%) 16 (76%) 9 (26%) 63 (64%)
  tick bites   only bitten 127 (15%) 1 (8%) 12 (16%) 10 (20%) 12 (11%) 12 (22%) 21 (14%) 13 (19%) 16 (15%) 2 (10%) 7 (20%) 17 (17%)
 and disease   not bitten 214 (26%) 6 (60%) 10 (77%) 21 (28%) 2 (4%) 22 (21%) 12 (22%) 56 (37%) 17 (24%) 21 (20%) 3 (14%) 19 (54%) 19 (19%)

* NS * * * * * * * * * * *

Table C.2 Responses to questions about personal behaviors taken to prevent ticks bites, asked in a survey of residents of Maine's unbridged,
off-shore islands, 2016.
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How often Avoid tick habitat Always 210 (26%) 1 (10%) 2 (17%) 10 (14%) 8 (17%) 35 (33%) 10 (19%) 52 (34%) 10 (14%) 30 (29%) 10 (48%) 10 (29%) 28 (28%)
would you Never 150 (19%) 3 (30%) 6 (50%) 19 (26%) 8 (17%) 20 (19%) 9 (17%) 30 (20%) 16 (23%) 15 (14%) 2 (10%) 7 (21%) 12 (12%)
say you Sometimes 448 (55%) 6 (60%) 4 (33%) 45 (61%) 31 (66%) 50 (48%) 35 (65%) 69 (46%) 43 (62%) 59 (57%) 9 (43%) 17 (50%) 59 (60%)
protect yourself * NS NS * * * * * * * NS NS *
against tick Use repellent Always 180 (22%) 1 (10%) 1 (8%) 14 (19%) 17 (35%) 26 (25%) 10 (19%) 31 (21%) 16 (24%) 22 (21%) 1 (5%) 6 (18%) 29 (30%)
bites when Never 199 (25%) 2 (20%) 4 (33%) 18 (24%) 8 (17%) 30 (29%) 18 (34%) 37 (25%) 16 (24%) 30 (29%) 6 (29%) 11 (32%) 15 (15%)
ticks are out? Sometimes 425 (53%) 7 (70%) 7 (58%) 42 (57%) 23 (48%) 49 (47%) 25 (47%) 82 (55%) 35 (52%) 52 (50%) 14 (67%) 17 (50%) 54 (55%)

* * NS * * * * * * * * NS *
Tuck pants into socks Always 131 (16%) 1 (10%) 1 (8%) 9 (12%) 10 (21%) 16 (15%) 8 (15%) 23 (15%) 16 (24%) 18 (17%) 2 (10%) 3 (9%) 17 (17%)

Never 349 (44%) 7 (70%) 7 (58%) 35 (47%) 20 (43%) 54 (52%) 31 (58%) 67 (45%) 23 (34%) 38 (36%) 8 (38%) 21 (62%) 31 (32%)
Sometimes 322 (40%) 2 (20%) 4 (33%) 30 (41%) 17 (36%) 34 (33%) 14 (26%) 59 (40%) 28 (42%) 49 (47%) 11 (52%) 10 (29%) 50 (51%)

* * NS * NS * * * NS * * * *
Wear light-colored clothing Always 109 (14%) 1 (9%) 7 (9%) 10 (21%) 18 (17%) 8 (15%) 17 (11%) 8 (12%) 16 (15%) 2 (10%) 4 (12%) 15 (15%)

Never 171 (21%) 4 (40%) 3 (27%) 14 (19%) 7 (15%) 20 (19%) 18 (35%) 39 (26%) 13 (20%) 18 (17%) 4 (19%) 9 (26%) 16 (16%)
Sometimes 521 (65%) 6 (60%) 7 (64%) 53 (72%) 31 (65%) 67 (64%) 26 (50%) 93 (62%) 45 (68%) 71 (68%) 15 (71%) 21 (62%) 67 (68%)

* NS NS * * * * * * * * * *
Perform a tick check Always 483 (60%) 2 (20%) 5 (38%) 39 (53%) 40 (83%) 63 (60%) 31 (57%) 70 (47%) 47 (70%) 68 (65%) 11 (52%) 16 (47%) 70 (71%)

Never 27 (3%) 2 (20%) 2 (15%) 1 (1%) 3 (3%) 14 (9%) 2 (3%) 1 (1%) 2 (6%)
Sometimes 297 (37%) 6 (60%) 6 (46%) 34 (46%) 8 (17%) 39 (37%) 23 (43%) 65 (44%) 18 (27%) 36 (34%) 10 (48%) 16 (47%) 29 (29%)

* NS NS * * * NS * * * NS * *
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Table C.3. Responses to questions about the need to reduce white-tailed deer and deer-related issues and values, asked in a survey of residents of Maine's unbridged,
off-shore islands, 2016.
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Policy Is there a need to Agree 483 (61%) 6 (60%) 2 (15%) 42 (58%) 24 (55%) 70 (69%) 32 (62%) 81 (54%) 52 (75%) 59 (57%) 13 (62%) 6 (18%) 78 (81%)
  support   reduce deer on Disagree 99 (12%) 8 (62%) 9 (12%) 3 (7%) 11 (11%) 3 (6%) 30 (20%) 3 (4%) 13 (13%) 1 (5%) 10 (30%) 4 (4%)

  your island? Neutral 211 (27%) 4 (40%) 3 (23%) 22 (30%) 17 (39%) 20 (20%) 17 (33%) 38 (26%) 14 (20%) 32 (31%) 7 (33%) 17 (52%) 14 (15%)
* NS NS * * * * * * * * NS *

Deer car collision Agree 321 (41%) 3 (33%) 41 (57%) 17 (38%) 69 (68%) 37 (71%) 32 (22%) 43 (65%) 40 (39%) 1 (5%) 2 (6%) 20 (21%)
  values Disagree 219 (28%) 3 (33%) 12 (92%) 7 (10%) 8 (18%) 9 (9%) 3 (6%) 70 (48%) 4 (6%) 27 (26%) 12 (57%) 26 (79%) 33 (34%)

Neutral 244 (31%) 3 (33%) 1 (8%) 24 (33%) 20 (44%) 24 (24%) 12 (23%) 43 (30%) 19 (29%) 35 (34%) 8 (38%) 5 (15%) 43 (45%)
* NS * * NS * * * * NS * * *

eat my garden plants/ Agree 548 (69%) 10 (100%) 7 (54%) 51 (71%) 36 (80%) 77 (75%) 42 (81%) 79 (53%) 53 (79%) 68 (65%) 15 (71%) 11 (33%) 82 (85%)
  yard plantings Disagree 116 (15%) 2 (15%) 8 (11%) 6 (13%) 9 (9%) 3 (6%) 41 (28%) 7 (10%) 18 (17%) 3 (14%) 11 (33%) 5 (5%)

Neutral 128 (16%) 4 (31%) 13 (18%) 3 (7%) 16 (16%) 7 (13%) 28 (19%) 7 (10%) 18 (17%) 3 (14%) 11 (33%) 10 (10%)
* . NS * * * * * * * * NS *

over-browse Agree 301 (38%) 4 (44%) 2 (17%) 26 (37%) 21 (47%) 55 (54%) 17 (33%) 61 (41%) 20 (31%) 29 (28%) 8 (38%) 10 (30%) 38 (40%)
  forest vegetation Disagree 167 (21%) 7 (58%) 18 (25%) 6 (13%) 13 (13%) 5 (10%) 45 (30%) 14 (22%) 27 (26%) 3 (14%) 13 (39%) 12 (13%)

Neutral 317 (40%) 5 (56%) 3 (25%) 27 (38%) 18 (40%) 34 (33%) 29 (57%) 43 (29%) 31 (48%) 47 (46%) 10 (48%) 10 (30%) 46 (48%)
* NS NS NS * * * NS * * NS NS *

increased risk of Agree 653 (82%) 6 (67%) 6 (46%) 64 (86%) 41 (91%) 77 (75%) 43 (83%) 115 (77%) 60 (91%) 87 (84%) 19 (90%) 20 (61%) 92 (94%)
  Lyme disease Disagree 33 (4%) 1 (8%) 2 (3%) 1 (2%) 7 (7%) 1 (2%) 14 (9%) 2 (2%) 4 (12%) 1 (1%)

Neutral 108 (14%) 3 (33%) 6 (46%) 8 (11%) 3 (7%) 18 (18%) 8 (15%) 20 (13%) 6 (9%) 15 (14%) 2 (10%) 9 (27%) 5 (5%)
* NS NS * * * * * * * * * *

too many Agree 438 (55%) 8 (80%) 2 (15%) 35 (49%) 27 (60%) 66 (65%) 36 (69%) 66 (44%) 45 (66%) 49 (48%) 15 (71%) 9 (27%) 63 (65%)
Disagree 142 (18%) 9 (69%) 13 (18%) 5 (11%) 10 (10%) 3 (6%) 46 (31%) 5 (7%) 20 (19%) 3 (14%) 16 (48%) 7 (7%)
Neutral 212 (27%) 2 (20%) 2 (15%) 23 (32%) 13 (29%) 26 (25%) 13 (25%) 37 (25%) 18 (26%) 34 (33%) 3 (14%) 8 (24%) 27 (28%)

* NS * * * * * * * * * NS *
enjoy seeing Agree 467 (59%) 5 (63%) 10 (83%) 43 (58%) 22 (47%) 55 (55%) 29 (55%) 85 (56%) 34 (50%) 66 (63%) 12 (57%) 29 (85%) 60 (62%)

Disagree 153 (19%) 2 (25%) 1 (8%) 11 (15%) 12 (26%) 21 (21%) 7 (13%) 39 (26%) 15 (22%) 17 (16%) 6 (29%) 2 (6%) 18 (19%)
Neutral 177 (22%) 1 (13%) 1 (8%) 20 (27%) 13 (28%) 24 (24%) 17 (32%) 27 (18%) 19 (28%) 21 (20%) 3 (14%) 3 (9%) 19 (20%)

* NS * * NS * * * * * * * *
value presence Agree 384 (48%) 4 (44%) 8 (67%) 38 (51%) 19 (40%) 49 (49%) 28 (53%) 77 (52%) 31 (46%) 48 (48%) 10 (48%) 23 (68%) 34 (35%)

Disagree 191 (24%) 2 (22%) 1 (8%) 15 (20%) 14 (30%) 24 (24%) 10 (19%) 45 (30%) 17 (25%) 22 (22%) 8 (38%) 4 (12%) 25 (26%)
Neutral 217 (27%) 3 (33%) 3 (25%) 21 (28%) 14 (30%) 26 (26%) 15 (28%) 27 (18%) 20 (29%) 31 (31%) 3 (14%) 7 (21%) 38 (39%)

* NS * * NS * * * NS * NS * NS
I hunt deer Yes 48 (6%) 1 (11%) 5 (42%) 7 (10%) 1 (2%) 5 (5%) 5 (10%) 2 (1%) 2 (3%) 8 (8%) 6 (6%)

No 625 (80%) 8 (89%) 6 (50%) 60 (83%) 36 (77%) 73 (75%) 38 (73%) 130 (88%) 57 (88%) 81 (81%) 18 (86%) 32 (94%) 70 (73%)
Neutral 108 (14%) 1 (8%) 5 (7%) 10 (21%) 19 (20%) 9 (17%) 16 (11%) 6 (9%) 11 (11%) 3 (14%) 2 (6%) 20 (21%)

* * NS * * * * * * * * * *
My friends/family Yes 301 (38%) 3 (33%) 11 (85%) 32 (44%) 21 (45%) 39 (40%) 34 (65%) 19 (13%) 24 (36%) 49 (48%) 8 (38%) 6 (18%) 42 (43%)
  hunt deer No 387 (49%) 6 (67%) 2 (15%) 34 (47%) 19 (40%) 40 (41%) 9 (17%) 116 (79%) 33 (50%) 42 (41%) 10 (48%) 26 (76%) 40 (41%)

Neutral 99 (13%) 6 (8%) 7 (15%) 19 (19%) 9 (17%) 12 (8%) 9 (14%) 11 (11%) 3 (14%) 2 (6%) 16 (16%)
* NS * * * * * * * * NS * *

Table C.4 Responses to questions about approval and methods of deer hunting, asked in a survey of residents of Maine's unbridged, off-shore islands, 2016.
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Deer hunting General Agree 622 (78%) 9 (90%) 11 (85%) 61 (82%) 35 (78%) 85 (83%) 44 (85%) 94 (63%) 54 (78%) 85 (83%) 15 (71%) 25 (76%) 81 (84%)
  approval Disagree 55 (7%) 1 (8%) 3 (4%) 2 (4%) 4 (4%) 2 (4%) 26 (17%) 6 (9%) 2 (2%) 5 (15%) 3 (3%)

Neutral 118 (15%) 1 (10%) 1 (8%) 10 (14%) 8 (18%) 13 (13%) 6 (12%) 29 (19%) 9 (13%) 15 (15%) 6 (29%) 3 (9%) 13 (13%)
* * * * * * * * * * * * *

On my island Agree 584 (74%) 9 (90%) 11 (85%) 57 (78%) 33 (73%) 86 (84%) 43 (83%) 73 (49%) 55 (81%) 80 (78%) 15 (71%) 20 (61%) 84 (86%)
Disagree 102 (13%) 1 (8%) 4 (5%) 5 (11%) 3 (3%) 3 (6%) 50 (34%) 6 (9%) 6 (6%) 2 (10%) 8 (24%) 8 (8%)
Neutral 108 (14%) 1 (10%) 1 (8%) 12 (16%) 7 (16%) 13 (13%) 6 (12%) 25 (17%) 7 (10%) 17 (17%) 4 (19%) 5 (15%) 6 (6%)

* * * * * * * * * * * * *
Methods of doe permits Agree 306 (62%) 6 (100%) 3 (43%) 31 (72%) 11 (46%) 51 (75%) 29 (88%) 19 (24%) 43 (75%) 44 (72%) 7 (58%) 5 (83%) 48 (61%)
  reducing deer Disagree 69 (14%) 1 (14%) 1 (2%) 5 (21%) 3 (4%) 38 (48%) 4 (7%) 4 (7%) 3 (25%) 1 (17%) 5 (6%)

Neutral 119 (24%) 3 (43%) 11 (26%) 8 (33%) 14 (21%) 4 (12%) 23 (29%) 10 (18%) 13 (21%) 2 (17%) 26 (33%)
* . NS * NS * * * * * NS NS *

expanded archery Agree 295 (60%) 6 (100%) 5 (71%) 20 (47%) 9 (38%) 54 (79%) 27 (84%) 18 (23%) 33 (57%) 46 (75%) 3 (25%) 4 (67%) 58 (74%)
Disagree 101 (20%) 2 (29%) 9 (21%) 6 (25%) 6 (9%) 44 (55%) 11 (19%) 6 (10%) 7 (58%) 2 (33%) 6 (8%)
Neutral 97 (20%) 14 (33%) 9 (38%) 8 (12%) 5 (16%) 18 (23%) 14 (24%) 9 (15%) 2 (17%) 14 (18%)

* . NS NS NS * * * * * NS NS *
expanded firearms Agree 193 (39%) 6 (100%) 3 (43%) 20 (47%) 3 (13%) 38 (56%) 16 (48%) 6 (8%) 22 (40%) 32 (52%) 3 (23%) 5 (83%) 32 (41%)

Disagree 167 (34%) 3 (43%) 8 (19%) 10 (42%) 14 (21%) 9 (27%) 53 (66%) 21 (38%) 15 (25%) 7 (54%) 1 (17%) 21 (27%)
Neutral 132 (27%) 1 (14%) 15 (35%) 11 (46%) 16 (24%) 8 (24%) 21 (26%) 12 (22%) 14 (23%) 3 (23%) 25 (32%)

* . NS NS NS * NS * NS * NS NS NS
sharpshooter Agree 312 (63%) 2 (33%) 1 (14%) 26 (60%) 12 (50%) 53 (78%) 14 (42%) 72 (89%) 29 (51%) 37 (61%) 10 (77%) 6 (100%) 41 (53%)

Disagree 104 (21%) 3 (50%) 6 (86%) 8 (19%) 4 (17%) 13 (19%) 11 (33%) 5 (6%) 15 (26%) 13 (21%) 1 (8%) 21 (27%)
Neutral 79 (16%) 1 (17%) 9 (21%) 8 (33%) 2 (3%) 8 (24%) 4 (5%) 13 (23%) 11 (18%) 2 (15%) 16 (21%)

* NS NS * NS * NS * * * * . *
allow off-islanders Agree 144 (29%) 3 (50%) 1 (14%) 17 (40%) 4 (17%) 26 (39%) 14 (42%) 5 (6%) 9 (16%) 21 (35%) 2 (17%) 38 (49%)
  if family Disagree 198 (40%) 3 (50%) 2 (29%) 14 (33%) 13 (54%) 13 (20%) 4 (12%) 65 (80%) 18 (32%) 23 (38%) 9 (75%) 4 (67%) 21 (27%)

Neutral 147 (30%) 4 (57%) 11 (26%) 7 (29%) 27 (41%) 15 (45%) 11 (14%) 29 (52%) 16 (27%) 1 (8%) 2 (33%) 19 (24%)
* NS NS NS NS NS * * * NS * NS *

allow any off-islander Agree 69 (14%) 2 (33%) 7 (16%) 1 (4%) 23 (34%) 4 (12%) 2 (2%) 13 (23%) 7 (11%) 7 (9%)
Disagree 315 (64%) 4 (67%) 4 (57%) 25 (58%) 18 (75%) 24 (36%) 18 (55%) 69 (85%) 25 (44%) 40 (66%) 12 (100%) 5 (83%) 57 (74%)
Neutral 108 (22%) 3 (43%) 11 (26%) 5 (21%) 20 (30%) 11 (33%) 10 (12%) 19 (33%) 14 (23%) 1 (17%) 13 (17%)

* NS NS * * NS * * NS * . NS *
how to pay Any 14 (4%) 3 (17%) 2 (3%) 6 (15%) 3 (8%)
  sharpshooter Private funds 28 (9%) 1 (4%) 1 (8%) 15 (28%) 2 (3%) 3 (8%) 1 (3%) 1 (10%) 2 (5%)

State or federal funds 175 (54%) 2 (100%) 1 (50%) 17 (63%) 5 (42%) 18 (34%) 11 (61%) 45 (65%) 22 (56%) 22 (59%) 4 (40%) 3 (50%) 20 (49%)
Town budget 108 (33%) 1 (50%) 9 (33%) 6 (50%) 20 (38%) 4 (22%) 20 (29%) 8 (21%) 11 (30%) 5 (50%) 3 (50%) 19 (46%)

* . NS * NS NS * * * * NS NS *
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Table C.5. Responses to questions about who should be responsible for tick control, asked in a survey of residents of Maine's unbridged, off-shore islands, 2016.
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Responsibility U.S. government Agree 308 (40%) 2 (20%) 2 (15%) 26 (37%) 19 (42%) 37 (38%) 16 (33%) 59 (42%) 43 (65%) 45 (44%) 8 (38%) 8 (24%) 31 (32%)
Disagree 253 (33%) 5 (50%) 11 (85%) 25 (36%) 12 (27%) 42 (43%) 10 (21%) 46 (33%) 9 (14%) 24 (23%) 6 (29%) 20 (61%) 37 (39%)
Neutral 210 (27%) 3 (30%) 19 (27%) 14 (31%) 19 (19%) 22 (46%) 35 (25%) 14 (21%) 34 (33%) 7 (33%) 5 (15%) 28 (29%)

* NS * NS NS * NS * * * NS * NS
State government Agree 553 (71%) 4 (40%) 3 (23%) 47 (67%) 30 (67%) 64 (63%) 33 (67%) 108 (74%) 60 (90%) 83 (80%) 15 (71%) 17 (52%) 67 (70%)

Disagree 114 (15%) 3 (30%) 9 (69%) 11 (16%) 7 (16%) 23 (23%) 5 (10%) 19 (13%) 1 (1%) 9 (9%) 2 (10%) 13 (39%) 11 (11%)
Neutral 115 (15%) 3 (30%) 1 (8%) 12 (17%) 8 (18%) 14 (14%) 11 (22%) 18 (12%) 6 (9%) 12 (12%) 4 (19%) 3 (9%) 18 (19%)

* NS * * * * * * * * * * *
Town Agree 615 (79%) 3 (30%) 7 (54%) 61 (86%) 35 (78%) 85 (84%) 35 (69%) 104 (74%) 58 (85%) 86 (83%) 16 (76%) 24 (73%) 80 (84%)

Disagree 68 (9%) 1 (10%) 6 (46%) 4 (6%) 6 (13%) 5 (5%) 2 (4%) 21 (15%) 3 (4%) 8 (8%) 1 (5%) 5 (15%) 5 (5%)
Neutral 97 (12%) 6 (60%) 6 (8%) 4 (9%) 11 (11%) 14 (27%) 16 (11%) 7 (10%) 9 (9%) 4 (19%) 4 (12%) 10 (11%)

* NS NS * * * * * * * * * *
Non-governmental Agree 267 (35%) 1 (10%) 3 (25%) 20 (29%) 20 (45%) 41 (41%) 15 (31%) 35 (25%) 33 (51%) 41 (41%) 10 (48%) 9 (27%) 30 (32%)
  organization Disagree 210 (27%) 3 (30%) 6 (50%) 18 (26%) 11 (25%) 19 (19%) 12 (25%) 48 (34%) 14 (22%) 24 (24%) 5 (24%) 14 (42%) 30 (32%)

Neutral 288 (38%) 6 (60%) 3 (25%) 30 (44%) 13 (30%) 40 (40%) 21 (44%) 57 (41%) 18 (28%) 36 (36%) 6 (29%) 10 (30%) 35 (37%)
* NS NS NS NS * NS NS * NS NS NS NS

Individuals Agree 267 (35%) 3 (30%) 5 (38%) 26 (38%) 18 (41%) 41 (41%) 14 (30%) 29 (21%) 22 (33%) 43 (42%) 8 (38%) 14 (42%) 33 (35%)
Disagree 231 (30%) 1 (10%) 7 (54%) 18 (26%) 11 (25%) 28 (28%) 10 (21%) 63 (45%) 20 (30%) 25 (24%) 8 (38%) 8 (24%) 28 (29%)
Neutral 270 (35%) 6 (60%) 1 (8%) 25 (36%) 15 (34%) 31 (31%) 23 (49%) 47 (34%) 24 (36%) 35 (34%) 5 (24%) 11 (33%) 34 (36%)

NS NS NS NS NS NS NS * NS NS NS NS NS
Community Agree 510 (66%) 5 (56%) 8 (62%) 51 (73%) 28 (64%) 79 (78%) 29 (59%) 76 (54%) 48 (72%) 68 (67%) 17 (81%) 21 (64%) 64 (68%)

Disagree 98 (13%) 4 (31%) 5 (7%) 5 (11%) 7 (7%) 7 (14%) 34 (24%) 5 (7%) 11 (11%) 1 (5%) 4 (12%) 13 (14%)
Neutral 163 (21%) 4 (44%) 1 (8%) 14 (20%) 11 (25%) 15 (15%) 13 (27%) 30 (21%) 14 (21%) 23 (23%) 3 (14%) 8 (24%) 17 (18%)

* NS NS * * * * * * * * * *

Pesticide Apply pesticide Agree 475 (59%) 4 (40%) 4 (31%) 47 (64%) 28 (60%) 57 (56%) 30 (57%) 90 (60%) 36 (53%) 66 (63%) 11 (52%) 23 (68%) 64 (65%)
if not Disagree 172 (21%) 3 (30%) 7 (54%) 13 (18%) 8 (17%) 23 (23%) 13 (25%) 34 (23%) 15 (22%) 19 (18%) 5 (24%) 8 (24%) 17 (17%)
harmful Neutral 157 (20%) 3 (30%) 2 (15%) 14 (19%) 11 (23%) 22 (22%) 10 (19%) 27 (18%) 17 (25%) 19 (18%) 5 (24%) 3 (9%) 18 (18%)

* NS NS * * * * * * * NS * *

Table C.6. Responses to questions about interest in more about the ecology of Lyme disease and level of trust in scientiests and government, asked in a survey of residents of 
Maine's unbridged, off-shore islands, 2016.
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Information- My knowledge A lot 403 (50%) 4 (40%) 6 (46%) 33 (45%) 31 (65%) 72 (69%) 20 (38%) 51 (34%) 35 (51%) 59 (56%) 9 (43%) 9 (26%) 61 (62%)
  seeking   about tick bite None 12 (1%) 3 (4%) 1 (1%) 2 (4%) 2 (1%) 2 (2%) 1 (3%)

  prevention Some 394 (49%) 6 (60%) 7 (54%) 38 (51%) 17 (35%) 31 (30%) 31 (58%) 98 (65%) 34 (49%) 44 (42%) 12 (57%) 24 (71%) 38 (38%)
* NS NS * * * * * NS * NS * *

Want to learn Agree 388 (48%) 3 (30%) 5 (42%) 32 (43%) 19 (40%) 34 (33%) 28 (53%) 86 (57%) 36 (52%) 57 (54%) 12 (57%) 18 (53%) 42 (42%)
  more about tick Disagree 143 (18%) 1 (10%) 3 (25%) 15 (20%) 15 (31%) 30 (29%) 9 (17%) 17 (11%) 11 (16%) 12 (11%) 1 (5%) 6 (18%) 19 (19%)
 bite prevention Neutral 277 (34%) 6 (60%) 4 (33%) 27 (36%) 14 (29%) 40 (38%) 16 (30%) 48 (32%) 22 (32%) 36 (34%) 8 (38%) 10 (29%) 38 (38%)

* NS NS * NS NS * * * * * * *
Trust Scientists Agree 598 (76%) 7 (70%) 8 (62%) 50 (69%) 35 (78%) 74 (73%) 38 (76%) 116 (81%) 52 (76%) 75 (74%) 21 (100%) 29 (88%) 74 (77%)

Disagree 35 (4%) 2 (15%) 4 (6%) 3 (7%) 6 (6%) 2 (4%) 5 (3%) 4 (6%) 6 (6%) 2 (2%)
Neutral 150 (19%) 3 (30%) 3 (23%) 18 (25%) 7 (16%) 22 (22%) 10 (20%) 22 (15%) 12 (18%) 21 (21%) 4 (12%) 20 (21%)

* NS NS * * * * * * * . * *
Town government Agree 449 (57%) 4 (40%) 4 (31%) 34 (47%) 23 (51%) 57 (56%) 29 (58%) 80 (56%) 38 (56%) 59 (58%) 13 (62%) 24 (73%) 70 (74%)

Disagree 83 (11%) 5 (38%) 14 (19%) 7 (16%) 17 (17%) 2 (4%) 15 (11%) 3 (4%) 6 (6%) 1 (5%) 1 (3%) 8 (8%)
Neutral 249 (32%) 6 (60%) 4 (31%) 24 (33%) 15 (33%) 28 (27%) 19 (38%) 47 (33%) 27 (40%) 37 (36%) 7 (33%) 8 (24%) 17 (18%)

* NS NS * * * * * * * * * *

Table C.7. Responses to questions about what are thought to be causes of increased deer tick abundance and a question about pesticide use, asked in a survey of residents of
Maine's unbridged, off-shore islands, 2016.
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Causes climate change Agree 368 (48%) 3 (33%) 4 (36%) 27 (37%) 17 (38%) 34 (35%) 25 (47%) 78 (54%) 37 (59%) 54 (53%) 16 (76%) 17 (53%) 42 (44%)
of the Disagree 77 (10%) 1 (9%) 12 (16%) 3 (7%) 15 (15%) 7 (13%) 10 (7%) 6 (10%) 8 (8%) 12 (13%)
Tick Neutral 329 (43%) 6 (67%) 6 (55%) 34 (47%) 25 (56%) 48 (49%) 21 (40%) 57 (39%) 20 (32%) 39 (39%) 5 (24%) 15 (47%) 42 (44%)
Problem * NS NS * * * * * * * * NS *

deer Agree 622 (79%) 5 (56%) 7 (58%) 60 (81%) 38 (81%) 72 (72%) 44 (83%) 108 (73%) 59 (89%) 84 (82%) 19 (90%) 17 (52%) 87 (88%)
Disagree 44 (6%) 3 (25%) 5 (7%) 9 (9%) 3 (6%) 13 (9%) 1 (2%) 3 (3%) 3 (9%) 2 (2%)
Neutral 125 (16%) 4 (44%) 2 (17%) 9 (12%) 9 (19%) 19 (19%) 6 (11%) 26 (18%) 6 (9%) 15 (15%) 2 (10%) 13 (39%) 10 (10%)

* NS NS * * * * * * * * * *
invasive plants Agree 206 (27%) 6 (60%) 8 (11%) 7 (16%) 40 (41%) 9 (17%) 44 (31%) 12 (20%) 34 (34%) 5 (24%) 7 (21%) 27 (28%)

Disagree 146 (19%) 2 (20%) 23 (32%) 14 (31%) 13 (13%) 11 (21%) 23 (16%) 18 (31%) 10 (10%) 1 (5%) 4 (12%) 22 (23%)
Neutral 414 (54%) 9 (100%) 2 (20%) 41 (57%) 24 (53%) 44 (45%) 32 (62%) 77 (53%) 29 (49%) 55 (56%) 15 (71%) 22 (67%) 48 (49%)

* . NS * * * * * * * * * *
rodents Agree 483 (62%) 3 (33%) 6 (50%) 46 (63%) 36 (77%) 72 (72%) 32 (62%) 66 (46%) 30 (49%) 73 (73%) 11 (52%) 20 (59%) 75 (76%)

Disagree 41 (5%) 1 (8%) 6 (8%) 2 (4%) 5 (5%) 2 (4%) 10 (7%) 1 (2%) 2 (2%) 1 (5%) 2 (6%) 8 (8%)
Neutral 255 (33%) 6 (67%) 5 (42%) 21 (29%) 9 (19%) 23 (23%) 18 (35%) 67 (47%) 30 (49%) 25 (25%) 9 (43%) 12 (35%) 16 (16%)

* NS NS * * * * * * * * * *
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