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GENERALIZED DISSOCIATING GAS FLOW 

By Paul D. Arthur* and Allen J. Schwalb** 
ABSTRACT 

A generalized approach to the one-dimensional 
flow of a dissociated gas is presented. The flow 
is characterized by the flow parameters F, G, H, 
and I, and the degree of dissociation, which are 
defined. The equation of state and the equations 
for the dynamic and thermodynamic properties of 
the gas are presented for the dissociating gas. 
Equations are presented which give the aerothermo
dynamic flow properties as a function of the de
gree of dissociation ~, the frozen flow Mach 
number MF, and the initial values of G, H, and I 
for any arbitrary given flight condition. These 
equations are solved for the limiting subsonic 
and hypersonic solutions for the flow variables as 
the frozen flow Mach number MF tends towards zero 
and infinity , respectively. Several aspects of 
the physical significance of these results are 
discussed from the point of view of atmospheric 
planetary entry of an aerospace vehicle. The 
generalized nondimensional flow function F is de
fined in terms of the flow parameters G, H, and I , 
and is also given as a function of MF, H, and a, 
in general. This functional relationship is dis
played in graphical form which is useful for de
termining various aspects of the resulting flow, 
and providing further insight into the flow 
process under consideration. Specifically, sev
eral flow regimes are delineated. 

Introduction 

During atmospheric entry the energy induced 
into the ·gas surrounding a vehicle,due to the 
vehicle ' s high kinetic energy , is large enough to 
dissociate gaseous molecules into atoms. There
fore, dissociation of the gas must be taken into 
account when predicting aerodynamic (perf ormance) , 
thermodynamic (beat transfer), or electromagnetic 
(communications) effects. This phenomenon occurs 
primarily in the plasma sheath surrounding the 
vehicle during entry into the atmosphereo 

In order to understand and take these dis
sociation effects into account, a generalized ap
proach to the analysis of the one-dimensional 
flow of a dissociating (chemically reacting) gas 
was considered. This flow is analogous to t he 
c l assical one-dimensional Rayleigh flow CJlow 
with heat addition), Fanno flow (flow with fric
tion), and shock wave flow . 
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Analysis 

Basic Eguations 

In general, one-dimensional flow is charac
terized by the flow parameters G, H, and I: the 
mass flow, total enthalpy, and stream thrust, re
spectively. These parameters are equivalent to 
the parameters, m, Hn, and P of Reference 1. In 
general, i.e., for a perfect (ideal) or real (dis
sociating) gas, the equations defining these 
parameters are the usual hydrodynamic conserva
tion equations (for example see Reference 1): 

Mass flow: G (1) 

Total enthalpy: H (2) 

Steam thrust: I (3) 

where p, p, h, and v are the gas pressure,density, 
enthal py, and ve locity, respectively. 

For ideal or dissociating Rayleigh flow with 
no mass addition, G and I are constant throughout 
the flow field, however H varies. Similarly for 
ideal or dissoc i ating Fanno flow with no mass ad
dit ions , G and Hare constant throughout the flow 
field, however I varies. For ideal or dissociat
ing shock wave flow with no mass addition, G, H, 
and I are all constant throughout the flow field 
(across the shock) . Thus, this type of flow is 
more amenable to analysis. 

Gas Mode l - Ideal Dissociating Gas 

The basic assumption of the gas model uti
lized , namely the ideal dissociating gas, is that 
one-half of the vibrational energy of the diatomic 
gas is excited. The gas considered is a binary 
mixture of diatomic molecules (of mass mm) and 
atoms (of mass ma)• 

The equation of state for the Lighthill ideal 
dissociating gas (see References 2-5) is: 

p = pRT (1 + a) (4) 

where p and p were defined previously, R is the 
undissociated specific gas constant, and T is the 
gas temperature. 

The degree of dissociation a is defined as 
the mass fraction of the dissociated gas ma/ 

(mm+ ma), i.e., the ratio of the mass of the dis
sociated atoms Cma) to the total mass of the gas 
(References 2-5). The value of a can vary from 
zero (undissociated gas) to unity (completely 
dissociated gas). The variation of a in the flow 
causes variations in all of the thermodynamic and 
dynamic variables in the flow field. Therefore it 
is advantageous to derive a set of equations which 
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gives the flow properties directly as a function 
of the degree of dissociation a, the frozen flow 
Mach number MF, and the flow parameters G, H, and 
I. These equations are presented in the follow
ing section and are based upon two further defini
tions and equations for the thermodynamic 
properties for the ideal dissociating gas (i.e., 
enthalpy and sound speed as follows (Reference 
3)): 

The static enthalpy (per unit mass) is given 
by the equation : 

h = (4 + a) RT + a.D , 

where D is the dissociation energy of the specific 
gas. 

The sound speed (frozen) is given by the 
equation : 

af = t_4 + a ) (1 + a) RT/31 }11 • 

Ba.sic Equations for the Present Gas Model 

(6) 

Using Equations (1)-(6) and the definition of 
the frozen Mach number, MF = v/af, the following 
equations were developed which give the aero
thermodynamic flow variables p, p, T, v, af, and 
h, as a function of a, MF, and the initial values 
G, H, and I for any given flight condition: 

I (J2 A 12 B 1 
p = A ' p = r- B ' T = ~ ~ R (1 + O.) (7) 

G -A 

v 
I B 1 
GA MF ' h 

where: 

A ·1 4+o.-.? 
+ 3 MF (8) 

B 4 +a~ 
3 F • 

(Note: B=A-1.) 

Limiting Conditions and Solutions 

An analysis of these equations was carried 
out for hypersonic (M>>l) and subsonic (MF< 1) 

Mach numbers. The resulting equations for the 
subsonic case become simply the set of equations 
(7) where A is set identically equal to one . 
Therefore , for example, at very low Mac h numbers 
(subsonic), the pressure pis simply equal to the 
value of I. For hypersonic Mach numbers, the set 
of equations (7) can be expanded in a series . 
Using these two sets of resulting equations, 
limiting values for the aerothermodynamic flow 
variables were determined in the limit of subsonic 
Mach numbers (M -+O) and hypersonic Mach numbers 
(M-+ oo ). These results are shown in Table I. 

TABLE I 

Subsonic and Hypersonic Limiting Values 

Variable Subsonic Flow H::rnersonic Flow 
(M_-+ O) CM-- 00 ) 

p I 0 
G2 

p 00 r-
T 0 0 

0 
I 

v a 
a 0 0 

_(~~-h H H -
1 
2 

' 2 

a H/D H/D (1 - ~) 
. 2 G H 

- .. - ···· 

These limiting values are useful for defining 
the extremes of Mollier charts for dissociating 
gases more clearly, and, for predicting numerical 
results at these limits . 

In order to determine the limiting value of a 
associated with (consistent with) the limiting 
values of the thermodynamic variables presented in 
Table I, the concept of the generalized flow func
tion F was utilized (Reference 6). The generalized 
nondimensional flow function F is defined as a 
function of the mass flow parameter G, the total 
enthalpy H, and the stream thrust (impulse) I, by 
the equation: 

F (9) 

which represents the only possible nondimensional 
grouping of G, H, and I (Reference 6). This flow 
function F also can be presented as a function of 
the frozen Mach number MF, the degree of dissoci
ation of the gas o., and the ratio of the total 
enthalpy of the gas H to the dissociation energy 
of the gas D (i.e., H/D). This relationship is 
easily derived by straightforward application 
(continuous direct substitution) of Equations 
(1)-(6) presented previously. The desired result 
is: 

F 

where: 

c 

E 
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(1 + o.)/6 

(4 + o.)/3 

(10) 

•' 
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To determine the limiting value of a for (1) 
the limiting subsonic case and (2) the limiting 
hypersonic case, the following approach was used. 
The corresponding values of MF, zero and infinity , 
respectively, were substituted into Equation (10) 
above. For case (1) where MF approaches zero, a. 
must be equal to H/D, as indicated in Table I, to 
ensure that F will remain finite (although in
determinate from Equation (10~. For case (2), 
where Mp approaches infinity , a. is found to be 
equal to H/D (1 - l/2F), which, using Equation 
(9), yields the value H/D (1 - I2/2 G2H), as in
dicated in Table I. It is interesting to note 
that in both cases the limiting value of a. is 
simply h/D (the ratio of the static enthalpy of 
the gas to the dissociation energy of the gas). 
This can be seen easily from the definition of h, 
h = (4 + a) RT + aD, since in both limiting cases 
the static · temperature T is zero (i.e., T 0 in 
both the subsonic and hypersonic limit). 

The physical interpretation and significance 
of these two cases (or sets of conditions) is as 
follows. For the shock wave flow considered here, 
the limiting hypersonic case represents the free
stream conditions in front of the shock wave 
(hypersonic flight),and the limiting subsonic case 
represents the corresponding flow conditions be
hind the shock wave. 

It is also interesting to note that for 
highly hypersonic flight conditions through a 
partially dissociated gas (such as is found in the 
atmosphere above 150,000 feet), the gas will (in 
this limit) dissociate to a greater degree behind 
the shock wave (in the vicinity of the aerospace 
vehicle) by a factor of (1 - l /2F). 

General Case 

For the general case Cother than the t wo 
limiting cases presented above), i.e., for any 
arbitrary free-stream ( flight) Mach number, Equa
tion (10) is useful for determining the entire 
flow process in terms of Mp and a. as described 
below. This functional relationship is displayed 
by useful curves of F as a functi on of MF for 
several values of a. and H/D (Figures 1-5). These 
curves provide insight into the flow processes 
under consideration here. Specifically, several 
special flow regimes are delineated. 

For example, in Figure 1, for an initial 
value of H/D = 100, the flow cannot exist in the 
Mach number and a. regimes indicated, i.e., above 
the highest curve Ca. = 0) or below the lowest curve 
(a = 1). Also, for any particular value of the 
flow function F (which is constant throughout the 
flow), the curves define the Mach number and de
gree of dissociation ranges for the flow. 

Discussion of Results 

A numerical example will now be given to il
lustrate the utility of such a diagram. For a 
flight Mach number of 3.5, a free-stream degree of 
dissociation a. of 0.5, and an H/D of 100, the 

point can be located on the graph of H/D = 100 
(see Figure 1) . This condition represents the 
free-stream conditions in front of the shock wave. 
Then since the flow function, F, equal to 0.6, is 
constant throughout the flow field, one moves 
horizontally across the graph in the direction of 
decreasing Mach number (to the left) until the 
desired a. curve is located in the subsonic (M < 1) 
flow regime. For the case given here it is as
sumed that the flow was frozen*,and thus the final 
a. is equal to 0.5 (i.e., a. does not change across 
the shock wave). Therefore, one can locate the 
resulting point on the graph (at a. = 0.5 and 
F = o.6), on the subsonic side of the graph, rep
resenting the flow properties behind the shock 
wave. The value of the Mach number at this point 
can then be read on the abscissa. For the present 
case the Mach number is found to be 0.5. 

Once MF and a. have been determined using 
either the preprepared curves or Equation (10), 
the other aerotherrnochemical properties of the 
flow field can be obtained easily using the set of 
equations (7), which give these properties as a 
function of MF and a. 

Note, that in moving to the left, a. was in
creasing, i .e., the gas was dissoc i ating until 
a. = 1.0. At that point the shock wave was en
countered and a jump was made from a supersonic to 
a subsonic Mach number which is characteristic of 
a shock wave. In the subsonic region, the gas 
recombines back to the final degree of dissocia
tion as determined by the type of chemical reac
tion (frozen, nonequilibrium or equilibrium). In 
this case a. = O. 5. This is a consequence of the 
fact that F is inversely proportional to a. How
ever, this is not always the case, since at lower 
values of H/D the curves of constant a cross and 
reverse their order. As the value of H/D is de
creased, this crossover occurs at lower Mach num
bers as shown in Figures 2 and 3. In fact, at 
values of H/D less than or equal to one (i.e., 
H/D ::s l.O), Fis directly proportional to a. 
Therefore, for this situation, the gas recombines 
to a. = O, and then the gas dissociates to the 
final value of a.. 
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