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Hydrogels are 3D polymeric networks with high water content and are widely being 

investigated for biomedical applications such as tissue engineering. Polysaccharides have been 

used to fabricate hydrogels due to their natural abundance, biocompatibility, and 

immunogeniety. Additionally, polysaccharide-based hydrogels can provide mechanical and 

biological cues similar to those of the natural environments. In this work, thiol-norbornene 

chemistry was used to fabricate polysaccharide-based hydrogels including hyaluronic acid (HA), 

carboxymethyl cellulose (CMC), and cellulose nanofibrils (CNFs). Hydrogels with tunable physical 

and mechanical properties were achieved. The properties of these hydrogels were 

spatiotemporally modified by photopatterning. Also, high stem cell viability was achieved when 

cells were encapsulated in these hydrogels.  
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CHAPTER 1 

INTRODUCTION 

1.1. Hydrogels 

Hydrogels are three-dimensional polymer networks that absorb large volumes of water and 

biological fluids, are widely used in biomedical applications. The water content of hydrogel varies 

upon the structure of polymer network and the environmental conditions such as pH, ionic 

strength and temperature (Figure 1.1).1 Hydrogels can be created through physical or chemical 

crosslinking of polymer precursors.2-4  Polymer entanglements and molecular self-assembly 

through hydrogen bonds and electrostatic interaction could form physically cross-linked gels or 

reversible hydrogels.1 Cellulose nanofibrils (CNF), cellulose derivatives such as methyl cellulose 

(MC) and hydroxymethyl cellulose (HMC), gelatin, and collagen form physical gels. To fabricate 

chemically cross-linked hydrogels, covalent bonds (through chemical reagents or radiations) 

between polymer chains are needed.5 In general, chemical hydrogels are more stable than 

physical gels against dilution, pH and temperature changes, and mechanical forces.   

 

Figure 1.1. Swelling of a cellulose based hydrogel. A cellulose-based hydrogel in its (a) original size 
and (b) after swelling due to water uptake.1 
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1.2. Hydrogels as extracellular matrix (ECM) mimics  

Because of their highly hydrated state and three dimensional structure, hydrogels closely 

mimic the physical properties of the extracellular matrix (ECM) and as a result they have been 

used for a wide range of biomedical applications. The ECM is the fibrillar hydrated gel-like 

structure that is produced by cells and fills the space between cells and tissues. This structure 

facilitates the fast diffusion of nutrients, biological molecules, and waste materials between cells 

and blood vessel. It has been proven that ECM not only provides the physical stability and 

mechanical strength for the cells, but also is involved in the regulation of the behavior of cells.  

Hydrogels derived directly from the ECM benefit from having bioactive sites and 

biodegradability, but they are not inert when they are used in-vivo. Therefore, it is possible that 

the immune system reacts to it. In addition, the purification difficulties and the complexity of 

these materials can cause the lack of reproducibility and the difficulties in interpretation of the 

observations.6 

To address these issues, hydrogels from synthetic biologically inert polymers with known 

chemistry have been investigated which can produce repeatable structure and provide the 

control over chemical and physical properties.7 However, these synthetic hydrogels should be 

modified to provide the requirements for cell growth and survival. Also, synthetic polymers suffer 

from the lack of biodegradability that makes the surgery inevitable to remove it where it is used 

in vivo, or requires complex processes to release the tissue that have been regenerated inside the 

hydrogel scaffold. For example, Matrigel (an ECM-derived hydrogel) that is usually used in 

biological studies, includes components that are not fully defined. So, it is not reproducible.  
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Another approach is to modify polymers from natural resources or make natural-synthetic 

hybrid hydrogels that benefits from the advantages of both categories while reducing the 

downsides.  

1.3. Polysaccharide-based hydrogels 

Hydrogels and biomaterials from natural sources such as polysaccharides and proteins are 

promising alternatives to synthetic materials because of their potential biodegradability, low 

toxicity, low inflammatory response, and low tissue adhesion properties.8-10 Additionally, their 

abundance, low cost, and ease of modification make natural-based biomaterials interesting 

targets for the future of regenerative medicine. 

1.3.1. Hyaluronic acid (HA) 

The alternating copolymer of D-glucuronic acid and N-acetyl-glucosamine monosaccharides is 

a naturally occurring anionic, unbranched polysaccharide called hyaluronic Acid (HA) or also 

hyaluronan. To form hyaluronic acid, D-glucuronic acid and N-acetyl-glucosamine are linked by β 

(1, 4) and β (1, 3) bonds (Figure 1.2).11 The glycoside bonds are susceptible to hydrolysis in both 

acidic and alkaline conditions and the latter one is much faster.12 Multiple different functional 

groups present in each repeat units of HA makes it possible to modify HA with desired reactive 

sites.13-17 At physiological conditions, hyaluronic acid is found as its sodium salt. The negative 

charge gives the hydrophilic character to hyaluronic acid which causes the formation of swelled 

structure.  
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Figure 1.2. The chemical structure of hyaluronic acid repeat unit. HA repeat unit is a disaccharide 
unit consist of D-glucuronic acid (blue) and N-acetyl-glucosamine (black).  
 

The major source for HA is extraction from rooster combs. Recombinant production using 

Streptococcus bacterium is another common resource for HA production. Hyaluronic acid 

constitutes the majority of extra cellular matrix (ECM) and is mostly found in skin, lung, intestine, 

and synovial liquid of vertebrates. Biological function of hyaluronic acid in the body covers a wide 

variety of activities such as cell migration, proliferation, adhesion, recognition, and tumor 

invasion. Its vital interference in morphogenesis and embryonic development shows its 

importance in the body and also its role in growth factor action, cartilage stability, and joint 

lubrication makes hyaluronan a much demanded target of study.18 

HA has viscoelastic properties caused by its high molecular weight (102-104 kDa), electrostatic 

repulsion of carboxylate ions, and intra molecular hydrogen bond.19 The pseudo-random coil 

configuration of HA is another reason for its viscoelastic properties. HA has high water affinity 

therefore it forms hydrogels when in contact with water. Due to its characteristics, HA is wildly 

used in cosmetic industry, dermal filler and anti-aging medicine, and wound healing.20 The 

application of HA as tissue engineering scaffolds was limited by its fast degradability and lack of 

mechanical strength. These issues can be fixed by modification of HA, cross-linking HA, and HA 

hybrid networks. Several groups have reported HA-based hydrogels to be used as scaffolds for 
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tissue regeneration. For example, Gunci-Unal et al. has shown that hybrid hydrogel of 

methacrylated gelatin with methacrylated HA has enhanced mechanical properties compare to 

each component individually.21 Additionally, it supports spreading of human umbilical cord vein 

endothelial cells and can be a candidate for vascular tissue regeneration. In another work done 

by Wu et al., human pluripotent stem cells were encapsulated in 3D methacrylated HA 

hydrogels.22 Aside from high cell viability of HA hydrogel, formation of 3D spheroids and neural 

differentiation was also observed. There are much more examples of HA-based hydrogels that 

show the broad applications of HA not only for tissue engineering, but also for many other 

biomedical applications.  

 1.3.2. Cellulose 

Cellulose derived from plants with its unique properties has shown the potential to be a 

popular material for many biomaterials and bioengineering applications. Its inherent 

biocompatibility and mechanical properties along with sustainable sources that are available in 

large volume are part of its advantages. Cellulose constitutes one third to one half of plant tissues 

and is known as the ECM of plant cells. Cellulose is the most abundant natural polymer and more 

10 tons of cellulose are produced by the photosynthesis process annually. Additionally, the human 

body does not possess the enzymes to degrade cellulose. Therefore, cellulose can be a natural 

replacement for the inert synthetic polymers. This non-degradability in the human body causes 

some compatibility issues, but it can be advantageous for some applications when both 

biocompatibility and non-biodegradability are required.23 For example, cellulose-based hydrogels 

were used to make artificial heart valves or menisci. Another advantage of non-degradability of 

cellulose in the human body is the orthogonal degradation of the cellulosic scaffold while the 

generated tissue remains intact.24 
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For the first time, in 1920, Staudinger suggested a polymeric structure for cellulose instead of 

small oligomers.25 Cellulose polymer is generated from β-D-glucose units (1000-1500 units) which 

are linked by β (1→4) bonds (Figure 1.3.A).5 These β (1→4) linkages are responsible for the linear 

structure of cellulose chains which cause cellulose to be highly crystalline and insoluble in water 

and most common solvents.5 In fact, three hydroxyl groups on each glucose unit form intra- and 

inter-molecular hydrogen bonds which are responsible for the chain tendency to arrange in 

parallel order into crystalline structure (Figure 1.3.B).25 

 

Figure 1.3. The chemical structure of cellulose repeat unit. A) The molecular structure of cellulose 
repeat units linked by β (1→4) linkages. B) An illustration of intra and inter molecular hydrogen 
bonds that hold cellulose chains together and are responsible for cellulose highly crystalline 
structure.  
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However, cellulose is not completely crystalized and there can be found some less ordered 

regions between highly ordered parts in which cellulose chains are arranged in a random 

fashion.25 While solvents and chemical reagents cannot pass into crystalline region without 

disrupting it, the amorphous region enables penetration of chemicals to reactive sites due to lack 

of hydrogen bonds.25 Figure 1.4 illustrates the ultrastructure of plant cellulose from fibers in cell 

wall to fibrils and crystal structure of cellulose chains. 

 

Figure 1.4. Picture of a wood cell wall. Cellulose exists as a system of fibrils.155 

Three hydroxyl groups for each glucose unit make cellulose a chemically active molecule. The 

one primary hydroxyl group which is located at C-6 is the most reactive OH group of cellulose and 

undergoes esterification reaction with anhydrides or carboxylic acids. Two secondary OH groups 

are located at C-2 and C-3 and C-2 hydroxyl is more reactive than C-3 hydroxyl. In general, the 

reactivity of hydroxyl groups depends on their intrinsic reactivity, steric effects of reagents and 

steric effects resulting from the supramolecular structure of cellulose.25 

Cellulose can be degraded through an enzymatic process by microorganisms (bacteria, fungi) 

present in air, water, and soil to the glucose units at the end of materials life.5 Therefore, replacing 

synthetic materials by cellulose-based products could also be environmentally beneficial.  
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1.3.2.1. CMC-based hydrogels 

The carboxymethyl group has been added to native cellulose to form a negatively charged, 

water soluble polymer that is commercially available in high purity and low cost.26-28 Additionally, 

carboxymethyl cellulose (CMC) is not degradable by human enzymes nor it is part of typical human 

cell signaling cascades; therefore, it can be an alternative for synthetic, biologically resistant 

polymers like polyethylene glycol (PEG). CMC has an advantage over PEG as it has numerous 

reaction points along its backbone that can be used to introduce significantly more cross-linking 

points, reactive sites, and biological activity in one molecule. 

Another valuable property of CMC biomaterials is that they can be orthogonally and selectively 

enzymatically degraded using cellulase, opening new routes in biotechnology. Since CMC is not 

part of the extracellular matrix (ECM) it can be post-cell culture degraded completely without any 

harm to the ECM produced by cultured cells. For example, Ko et al. reported a successful porcine 

aortic endothelia cell (PAEC) culture on a CMC-coated glass substrate with immobilized 

fibronectin followed by degradation by cellulase enzyme under physiological conditions.29 Cell-

cell connections were preserved in the PAEC sheet after treating with enzyme and the cell sheet 

was further transferred to a secondary cell culture dish. Sakai et al. reported similar results with 

L929 cell sheets on phenol-functionalized CMC hydrogels.10 This cell detachment process can be 

cell-type dependent.30 Though these studies showed the cytocompatibility of cellulase and the 

culture and release of cells in two dimensions, new chemistry and methods are needed so that 

these techniques can be used in 3D systems. 

Covalently cross-linked CMC hydrogels have been synthesized and demonstrated to support 

chondrogenic differentiation of hMSCs and to promote surface cell adhesion.31,32 These hydrogels 

were fabricated by cross-linking methacrylated CMC through the polymerization with UV light 
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irradiation or using a thermal radical initiator.33 Other CMC hydrogels have been covalently cross-

linked with an external cross-linker using methods such as thermal radical reactions and 

interpenetration network formation as well as sometimes requiring cytotoxic chemicals.34-38 

These chemically cross-linked CMC based materials have functioned as protein and drug carriers 

as well as physical bulking materials.39-45 However, many of these CMC-based hydrogels suffer 

from long gelation times and toxic gelation conditions that prevent them from being viable 

materials for 3D ECM mimics.46,47 New crosslinking methods are needed to create cytocompatible 

and robust CMC hydrogels where cells can be cultured within the 3D environment. 

1.3.2.2. CNF-based hydrogels 

Recently, cellulose nanofibrils (CNF) attracted much attention due to low cost and availability. 

CNF is a waste product of the wood pulp industry and can be used after mechanical grinding or 

chemical treatments.48 CNF can be found as individual and aggregated cellulosic fibers that hold 

together with strong intra- and inter-molecular hydrogen bonds along with entanglement of these 

aligned fibers. As a result, fibrils with diameters of 10-100 nm and 1 µm length are achieved that 

are comparable with of collagen fibrils in ECM with diameters of 10-300 nm. Because of these 

hydrogen bonding and the entanglements of long fibrils, CNF dispersion exhibits a gel-like 

character in aqueous media even at concentrations as low as 0.1 wt%. CNF suspensions have been 

utilized as scaffolds for tissue engineering because their fibril structure mimics the fibrous 

components of the extracellular matrix (ECM). Lou et al. reported spheroid formation of human 

pluripotent stem cells (hPSC) in a 3D plant derived CNF physical hydrogel at low concentration 

(0.5 wt%).49 In their work, CNF without any further treatment was used and no evidence of toxicity 

was observed. They showed that stem cells retain their pluripotency after 26 days of culture. 

Additionally, a 3D CNF hydrogel has been degraded using Cellulase enzyme and 3D hPSC spheroids 
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were recovered and used to direct differentiation to desired cell types. Bhattacharya et al. 

reported culture of HepaRG and HepG2 cells into 3D single component CNF hydrogels (0.1-1.2 wt 

%) and formation of spheroids was observed.50 No toxicity was observed for these cell types. 

These hydrogels were also injectable due to shear-thinning character of CNF. Malinen et al. also 

reported the same result with HepaRG cells.51 In another study, Mathew and coworkers 

introduced CNF as a replacement for ligament and tendons. It has been proven in this study that 

CNF supports cell adhesion and proliferation of both human ligament cells (HLC) and endothelial 

cells (HEC) and showed high cytocompatibility.52  

To improve the stability and mechanical properties of these materials, further physical or 

chemical cross-linking is necessary. For chemical cross-linking reactions, the addition of proper 

functional groups to CNF surface is needed. The presence of three hydroxyl groups on each 

cellulose repeat units provides a reactive surface on CNF that can be chemically modified and 

functionalized with diverse functional groups to adopt desired chemistry. Several surface 

modifications have been done on CNF, such as functionalization with carboxyl, azide, 

carboxymethyl, trimetylammonium, and aldehyde groups. These modifications usually take place 

in organic solvents and include toxic and harmful reagents. Moreover, they need a post-oxidation 

fibrillation step to produce modified fibrils. CNF itself is known as a biocompatible material, but it 

has been shown that surface modification can change the cytotoxicity of CNF.53 Although it has 

been proven that modified CNF exhibits less cytocompatibility compare to untreated CNF, in many 

cases this decrement is not remarkable. For example, carboxymethylated CNF has shown 

promising properties to replace nucleus pulposus.54 A physical gel of CNF and polyurethane has 

been used by Cherian and coworkers to fabricate blood vessel that has been implanted in a 26-

year old patient.55 There are examples of CNF-based materials with variety of applications such as 

drug delivery and wound healing.  
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1.4. Thiol-ene reaction to make hydrogels 

Synthetic methods used in biomaterials should be operable in mild physiological conditions 

and produce no or easily removable by-products. These factors are among the characteristics of 

click reactions. Because of these characteristics, click reactions are extremely used to fabricate 

and modify biomaterials. As introduced by Sharpless et al. in 2001, click reactions benefit from 

high yield, rapid reaction rate, chemo-selectivity, and insensitivity to ambient oxygen and 

moisture.56 A click reaction does not affect or is not affected by other chemical reactions in the 

system and function in bulk, solventless conditions, or in complex aqueous media. Furthermore, 

there should be a variety of compounds available that can react via a click reaction. There exist 

examples of reactions that have all or most of these criteria including copper-catalyzed azide-

alkyne reaction, strain-promoted azide-alkyne cycloaddition, Diels-Alder reaction between 

tetrazine and norbornene, nucleophilic ring opening, and thiol-ene reaction.57 

Copper-catalyzed azide-alkyne reaction was one of the most investigated click reactions. But 

because of the cytotoxicity of copper, other approaches attracted more attention in biomedical 

fields in recent years. Due to the enormous variety of thiol molecules such as cysteine-bearing 

proteins and peptides in biological systems, along with its almost quantitative conversion and fast 

(within few seconds) reaction rate under physiological pH and temperature, thiol-ene reaction is 

of interest in biomaterials synthesis.  

The thiol-ene reaction is a known chemistry and has been studied since 1900. It is simply a 

reaction between thiol molecules and reactive carbon-carbon double bonds (Figure 1.5). Thiol-

ene chemistry is not limited to alkyl thiols and examples of thiophenols, thiopropionates, and thiol 

glycolates have been reported to be reactive for thiol-ene reaction. Almost any terminal carbon-

carbon double bond (ene) that is not sterically hindered undergoes thiol-ene click reactions. If 
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thiols and enes are sterically hindered, thiol-ene reaction still may work, but it does not meet the 

criteria of a click reaction.58 When multifunctional thiols or enes are used, thiol-ene reaction 

produces a cross-linked polymeric network with high conversion. This technique has been utilized 

to form hydrogel networks for many biomedical applications such as cell encapsulation. 

 

Figure 1.5. The mechanism of free radical thiol addition to carbon-carbon double bond. A thioyl 
radical forms by the reaction of thiol and radical initiator. Thioyl radical then reacts with ene and 
the radical transfers to carbon (thioether radical). The thioether radical either completely forms 
the thioether molecule (product) or partially undergoes homopolymerization (by-product). 

Thiol-ene reaction can be through a free radical addition (when an electron rich carbon and an 

electron poor carbon are forming ene) or a catalyzed thiol Michael addition (when both carbons 

of ene are electron deficient). Both these approaches have the characteristics of click reactions. 

But in the radical-based reaction, when the ene moiety is electron rich (vinyl ether) or it is part of 

a strained ring (norbornene), the reaction is much faster than when an electron poor ene is 

involved.58  
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Figure 1.5 is a schematic illustration of the mechanism of free radical addition of thiol to ene. 

The first step is radical generation which can be promoted by light, heat, or chemicals. The radical 

will be transferred to the carbon after addition of thiol to ene. In an ideal thiol-ene reaction, a 

radical hydrogen will be added to the carbon and form the thiol-ene product and a thioyl radical 

which promotes more thiol-ene addition (step-growth of chain).58 Thiol addition to vinyl ether and 

norbornene are examples of an ideal thiol-ene. In some cases, for example when (meth)acrylates 

are used, the carbon radical undergoes uncontrolled homopolymerization and so, a 

heterogeneous mixture of products would be obtained (chain-growth). The homogeneity of the 

network influences the properties of a polymeric network. For example, Mũnoz et al. 

functionalized gelatin with norbornene (GelNB) and cross-linked it with dithiothreitol (DTT) using 

a visible-light initiator (lithium phenyl-2,4,6-trimethylbenzoyl phosphinate (LAP)) to encapsulate 

human mesenchymal stem cells (hMSCs).59 They observed that cell spreading in GelNB hydrogels 

is faster and more than in GelMA (methacrylated gelatin) hydrogels that are made through a 

chain-growth polymerization process. This proves that the uniform structure of the matrix 

improves cell-matrix interactions. 

Other examples of cell encapsulation in hydrogel formed via thiol-norbornene (thiol-NB) 

chemistry could be found in literature proving that it is a biologically benign reaction. McKinnon 

et al. has reported the successful encapsulation of embryonic stem cell-derived motor neurons 

(ESMNs) in poly(ethyleneglycol) (PEG) hydrogels using thiol-NB chemistry.60 They used a dithiol 

peptide sequence to cross-link 4-arm PEG by the irradiation of visible-light (Figure 1.6.A). ESMNs 

survived in the hydrogel after a week and extended axons were also observed. hMSC 

encapsulation and survival in PEG cross-linked resilin (an insect protein) has been reported by 

McGann et al (Figure 1.6.B).61 In their work, resilin was functionalized with norbornene and 4-arm 

PEG with a thiol at each terminus was used as cross-linker. Here LAP was used as the initiator.  
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Figure 1.6. Two examples of the hydrogel formation via thiol-ene reaction. A) between 4-arm 
norbornene functionalized PEG and a dithiol peptide sequence60, and B) between 4-arm thiol 
functionalized PEG with a norbornene functionalized peptide.61 

As mentioned before, there are different ways to generate thioyl radical, but photo-initiated 

thiol-ene reaction is of more interest. Photo-initiated processes benefit from the ability to be 

activated in a controlled fashion at the desired time and position. By adding this high control to 

the advantages of click-reaction, light-induced thiol-ene chemistry would be a powerful tool in 

applications such as modification of the substrate surfaces, functionalization of polymers, 

photolithography, fabrication of nanostructured networks, and light-induced cross-linking of 

functional polymers. For example, orthogonal patterning of HA hydrogels with different dyes 

using UV light (photpatterning) has been studied by Gramlich and coworkers.62 Norbornene 

functionalized hyaluronic acid (NorHA) was gelled via a UV-light initiated thiol-NB reaction using 

DTT as cross-linker. These hydrogels then were photopatterned by three different thiolated dyes 

in different patterns (Figure 1.7). Photomasks with different patterns have been used that allowed 

UV exposure in some regions and blocking UV in other regions. This photo-initiated thiol-NB 

reaction led to a method to spatiotemporally pattern hydrogels after they have been made.  
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Figure 1.7. Light-induced thiol-NB reaction enables spatiotemporal modification of already 
prepared hydrogels. A) Photopatterning strategy of NorHA hydrogels using photomask patterned 
with compounds that block light. The thiol-ene reaction will be activated only at UV exposed 
regions. B) Images NorHA hydrogels patterned with different dyes using photomasks with 
different shapes of UV-exposed regions. 

The advantages of click chemistry, the potentials of photo-initiated reaction, and the 

biologically benign nature made the thiol-NB reaction the perfect candidate for the work 

presented in this dissertation.  

1.5. Spatiotemporal modifications 

The focus of current work is to make hydrogels more adaptable and tunable to multiple 

applications - much like the natural systems that they mimic. Of particular interest is the 

spatiotemporal control of the physical and chemical properties to simulate the dynamic behavior 

of natural tissues. Spatiotemporal control requires robust and highly specific orthogonal 

chemistries such that “click” reactions have become the preferred method to impart these 

properties through an additive process.60,61,63-65 

Light initiated modifications to hydrogels are an ideal method to spatiotemporally control 

properties. Through light sensitive thiol-ene chemistry and photopatterning, removal of crosslinks 
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and molecules of interest have controlled physical and chemical properties as well as the 

subsequent direction of cell behavior.66-72 However, such subtractive processes are not designed 

to increase the modulus of the hydrogels that is needed for some applications. To 

spatiotemporally add in functionality, photopatterned thiol-ene reactions are attractive methods 

as these light induced click chemistries are highly specific and cytocompatible.72-75 Both allylic 

ethers and norbornene functionalities have been reacted with dithiol terminated crosslinkers to 

yield spatiotemporally modifiable natural and artificial hydrogel matrices.76 

1.6. Stimuli-responsiveness 

Spatiotemporal modifiable systems are just one aspect towards creating hydrogels with 

biologically relevant properties as the materials must also respond to stimuli. Such stimuli include 

enzymatic, temperature, and pH changes that are observed in the body due to a variety processes. 

Numerous biomaterials have used these stimuli to impart temporal changes to the material and 

chemical properties; however, significantly fewer examples exist of spatiotemporal changes to 

the extent that the material responds to such stimuli.2-4,77,78 Previous examples of spatiotemporal 

changes to stimuli response have typically removed the stimuli response.79 For example, such 

spatiotemporal changes have been achieved by arresting the enzymatic degradation of materials 

by adding a non-enzymatically degradable crosslinker.80 These current methods limit 

spatiotemporal changes to stimuli to only reducing the effect. To increase the available designs 

of biomaterials, methods are needed to add in stimuli response spatiotemporally after hydrogel 

formation. 

Hydrogels that respond to thermal stimuli have been utilized in a myriad of applications such 

as temperature induced drug delivery and injectable hydrogels.81-84 Many materials have used 

poly(N-isopropylacrylamide) (PNIPAM) (Figure 1.8.A) as the thermally responsive polymer in their 
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formulation as it has a lower critical solution temperature (LCST) around body temperature (32 

°C).85-87 Below its LCST, polymer is soluble in water. But when the polymer is heated up to 

temperatures above the LCST, a phase transition from soluble to insoluble (hydrophilic to 

hydrophobic) would occur. In this state, the intra molecular interactions are stronger than 

hydrogen bonds with water molecules. Because of these intra molecular interactions, polymer 

chains collapse which leads to a volume change in hydrogels and decrease in mass due to the 

repulsion of water. 

 

Figure 1.8. PNIPAM and thermo-responsiveness. A) Chemical structure of PNIPAM. PNIPAM has a 
LCST in water around physiological temperature. B) A diagram to illustrate the reversible response 
of thermo-responsive hydrogel to changes in temperature.  

Applications of thermally responsive PNIPAM-based hydrogels vary from temperature-

responsive cell culture dishes to microlenses and bioactuators.88-92 Some PNIPAM-based materials 

have thermally induced the release of proteins and several therapeutics such as heparin, 

ovalbumin, doxorubicin, mesalamine, and other model compounds.93-97 Self-propelling microjets 

made of 2D PNIPAM hydrogels have been studied to mimic the movement of biological swimmers 

triggered by changing temperature.91 Furthermore, patterned and functionalized PNIPAM 2D 

hydrogels have been used to fabricate cell culture dishes with dual cell adhesion properties. 

However, these hydrogels have typically been made from a majority of synthetic polymers. 
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Hydrogels that are a majority of biological polymers while retaining the thermo-responsive nature 

could open the door to new biomaterial applications. 

1.7. Mechanical properties of hydrogels 

The mechanical properties and moduli of hydrogels are just as important for biomaterial 

applications as the stimuli responsiveness. For example, stem cell fate is directed not only by 

chemical cues, but also by the stiffness of its environment. Many cellular activities such as stem 

cell spreading, proliferation, and differentiation are influenced by the mechanical properties of 

the extracellular matrix or substrate.98-105 As an example, human mesenchymal stem cells (hMSCs) 

cultured within a polyethylene glycol (PEG)-Silica 3D hydrogel, differentiated into neurons at 

lower modulus (7 kPa), while at higher modulus (25 kPa) underwent myogenic differentiation.106 

Additionally, living tissues have different moduli, due to their different functions, that vary from 

0.5-1.5 kPa for fat or bone marrow to several thousand kPa for cartilage and bone (Figure 1.9).102 

Tissue stiffness is dynamic and can change during biological processes such as embryonic 

development and diseases like cancer.101-103 New biomaterials should be tunable to this range of 

material properties to be biologically relevant. 

 

Figure 1.9. The elasticity of tissues. The diagram shows the wide range of elastic modulus of 
tissues that is necessary for its function. The stiffness of a hydrogel as scaffold for tissue 
engineering should be in the range of the stiffness of the tissue to be generated.107 
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1.8. The goal of this project 

Current thermo-responsive PNIPAM-based hydrogels can suffer from poor mechanical 

properties, they are not biodegradable, and in some cases they are cytotoxic limiting the 

applications of PNIPAM-hydrogels in biological aspects.108 To overcome these limitations, 

combining thermo-responsive PNIPAM with natural biodegradable polysaccharides and proteins 

and/or using peptide crosslinkers have attracted attention.109,110 These hydrogels are typically 

either robust synthetic materials with high modulus for the drug delivery systems or soft, 

physically crosslinked thermo-gelling materials that incorporate a biopolymer as a backbone 

material.111,112 A currently missing hydrogel from this field is a robust and tunable, thermally 

responsive hydrogel that consists of a majority of natural polymers. Such a material could be used 

for degradable drug delivery, shape memory physical bulking, and cell scaffolding applications. 

The work presented here in chapter two addresses the above limitations by using a dithiol-

functionalized PNIPAM, synthesized through reversible addition-fragmentation chain transfer 

(RAFT) polymerization and subsequent aminolysis, to crosslink norbornene functionalized 

hyaluronic acid (NorHA) through a thiol-norbornene reaction. Through selection of the crosslinker 

and gelation conditions a range of thermo-response and mechanical properties could be 

controlled.  This crosslinking reaction was used not only to form hydrogels, but also to 

spatiotemporally change the stimuli response of the materials after the initial gelation as well as 

change the surface topology of hydrogels. Such materials demonstrate new methods to create 

spatiotemporally controlled stimuli response in hydrogels made from a majority of natural 

materials and serve as a platform for a variety of biomedical uses in future applications.    

To address the limitations of current CMC hydrogels towards creating spatiotemporally 

modifiable biomaterials, norbornene-functionalized CMC (NorCMC) was synthesized and used to 
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create hydrogels using several dithiol cross-linkers through the photoinitiated thiol-norbornene 

reaction. Thiol-NB reaction was previously applied, but CMC was functionalized with thiols and 

NB functionalized cross-linker was used to make hydrogels.47 One limitation of that system was 

unwanted cross-linking due to formation of disulfide bonds when the material is stored. Such a 

problem would not be an issue in NorCMC polymers because norbornene has no tendency to 

react with another norbornene group. Additionally, a larger selection of thiol cross-linkers 

including peptides are available. 

Chapter three focuses on development of CMC-based hydrogels. Several experiments have 

been designed to validate the capability of NorCMC to be applied in different aspects of 

biomaterials. Different hydrogel moduli were obtained by varying parameters such as the UV 

irradiation time, thiol to norbornene molar ratio (T/NB), polymer weight percent (wt%), and 

length of the cross-linker. The behavior of thermoresponsive NorCMC/PNIPAM hydrogels was 

explored as well as the spatiotemporal modification of NorCMC hydrogels. In addition, NorCMC 

was demonstrated to be cytocompatible and could be modified so that cells could adhere and 

spread in two and three-dimensions. These following results demonstrate that NorCMC is a robust 

and capable material that can be a natural alternative for next generation biomaterials. However, 

separate studies should be done in the future to investigate NorCMC hydrogels for specific 

applications. 

In chapter four, functionalization and chemical gelation of CNF will be discussed. Several cross-

linking strategies have been applied to form CNF hydrogels such as azide-alkyne click reaction, 

aldehyde-amine reactions, hydrogen bonding of carboxylates, and cationic metal interactions 

with carboxylate.113-116 Many of current cross-linking strategies suffer from long gelation time, 

using toxic compounds, and do not allow spatiotemporal modification.50,51 In this study, we 
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introduce a straightforward reaction to functionalize CNF with norbornene groups in aqueous 

media and room temperature. Norbornene functionalized CNF (nCNF) then can be chemically 

cross-linked using light induced thiol-ene click chemistry. This could benefit from the wide range 

of biocompatible thiolated cross-linkers including peptides and polymers. 

Methods to characterize functionality on CNF are limited to acid-base titration for anionic 

functional groups, AgNO3 titration for cationic functional groups, and, recently, quantitative solid 

state 13C-NMR spectroscopy.117 To our knowledge, however, 1H-NMR spectroscopy has never 

been done to characterize CNF because CNF and its derivatives are insoluble in common 1H-NMR 

solvents. Here for the first time we obtained the quantitative degree of functionality using 1H-

NMR spectroscopy. To do this, CNF was degraded into smaller soluble segments by cellulase 

enzyme and the resulting sugar units were dissolved in D2O for 1H-NMR spectroscopy. The extent 

of degradation along with the degree of functionalization were calculated. This straightforward 

and effective strategy opens the door to complete characterization of modified CNF. 

In this work, the CNF surface was modified with norbornene functional groups in a 

straightforward aqueous reaction and quantitatively characterized by 1H-NMR spectroscopy after 

enzymatic hydrolysis. Thiol-norbornene chemistry was applied to fabricate nCNF hydrogels 

varying cross-linkers type and amount. To investigate the mechanical properties of nCNF and its 

hydrogels, dynamic mechanical analysis and rheology were conducted. Human mesenchymal 

stem cell (hMSC) viability in these hydrogels was briefly studied. 

In order to apply our materials in real biological studies, methods of gelation and pre-gelation 

solution preparation should be developed. Any researcher with limited chemistry knowledge and 

skills should be able to use these materials. Therefore, the pre-gelation solution was prepared in 

a fashion that solutions could be stored for long time while retaining its reactivity. The gelation 
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protocol was as simple as mixing two solutions followed by either incubation at physiological 

conditions or UV light exposure.  
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CHAPTER 2 

THERMO-RESPONSIVE HYALURONIC ACID-POLY(N-ISOPROPYLACRYLAMIDE) HYDROGELS 

 

2.1. Introduction  

Current methods to spatiotemporally modify stimuli response in hydrogels are typically 

subtractive and lead to a decrease in response. To increase the breadth of hydrogel applications 

and biomedical systems, new formulations are needed that can introduce and increase stimuli 

response spatiotemporally in hydrogels. In this work, the light induced thiol-norbornene click 

chemistry reaction was used to modify the stimuli response of robust hyaluronic acid hydrogels 

through an additive process in spatiotemporal fashion, overcoming this limitation. These stimuli 

responsive hydrogels were made from norbornene functionalized hyaluronic acid (NorHA) cross-

linked with thermo-responsive dithiol-terminated poly(N-isopropylacrylamide) (DTPN). Varying 

cross-linker molecular weight and gelation conditions led to a range of compression modulus (5 

to 54 kPa) and mass loss (9 to 33%) upon heating to 37 °C while retaining a majority NorHA in the 

hydrogel. The thermo-response of these hydrogels could not only be controlled by the cross-link 

density, but also by heating to 55 °C to increase the dewatering of the hydrogels. The stimuli 

response of the hydrogels were temporally increased by introducing additional DTPN and UV-

initiator to an original hydrogel with subsequent irradiation. This modification was extended to 

spatiotemporally changing the stimuli response by photopatterning DTPN into a NorHA hydrogel, 

yielding a hydrogel that changed shape and topology through heating. Furthermore, human 

mesenchymal stem cells could adhere and proliferate on the DTPN patterned surface, 

demonstrating that the materials could be used for studies where cells are present. 
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2.2. Experimental 

2.2.1. Materials  

Chemicals were purchased from either Sigma-Aldrich or Fisher scientific and used without 

further purification unless otherwise noted. N-isopropyl acrylamide (NIPAm) was purified by 

recrystallization in hexanes prior to use. Alpha-omega hydroxyl-terminated ethylene glycol 

polyethylene oxide (EGPEO, Mn = 1700 g/mol) was purchased from Polymer Source Inc. 

Norbornene-functionalized hyaluronic acid (NorHA) was synthesized following a previously 

reported procedure at reference 62. All cell culture materials and assays were purchased from 

Life Technologies.  

 2.2.2. Synthesis of di-functionalized RAFT CTA (DiCTA) 

The RAFT chain transfer agent S-1-dodecyl-S-(α,α′-dimethyl-α′′-acetic acid)trithiocarbonate 

(mono-RAFT CTA) was synthesized following a modified literature procedure.118 In a 

representative synthesis, the mono-RAFT CTA (4.00 g, 10 mmol) was placed in a multi-necked 

round bottom flask connected to a bubbler. The flask was purged with nitrogen and then 4 mL 

anhydrous dichloromethane was added as solvent. A 10-fold molar excess (100 mmol) of oxalyl 

chloride was added by a syringe to the solution while stirring until gas generation stopped to 

synthesize the CTA acyl chloride. The unreacted oxalyl chloride and solvent were removed by 

pulling vacuum. In another round bottom flask under nitrogen atmosphere, triethylamine (1.03 

mL, 7.40 mmol) and 1,4-butanediol (0.32 mL, 3.70 mmol) were dissolved in 10 mL of 

dichloromethane and the mixture was cooled in ice bath. The CTA acyl chloride reaction was 

transferred into this flask by syringe and the mixture was stirred overnight at room temperature. 

The product was diluted with dichloromethane and washed once with DI water and once with 

brine solution. The organic phase was purified through a silica gel column using a 90:10 mixture 
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of hexane and ethyl acetate as the mobile phase. Solvent was removed by rotary evaporator to 

yield the final product. The DiCTA synthesis was confirmed by proton NMR (1H NMR) spectroscopy 

(Overall reaction 61% yield compare to mono-RAFT CTA ).1H NMR spectroscopy of mono-RAFT 

CTA (CDCl3, 400 MHz) δ 0.88 (t, J=8 Hz, -CH3 end group, 3H), 1.24-1.4 and 1.60-1.67 (m,-C10H20 alkyl 

chain, 20H), 1.68 (s, germinal –CH3s, 6H), 3.26 (t, J=4 Hz, -SCH2, 2H). 

1H NMR spectroscopy of DiCTA (CDCl3, 400 MHz) δ 0.87 (t, J=8 Hz, -CH3 end group, 6H), 1.25-

1.45 and 1.60-1.7 (m, -C10H20 and –CH2CH2 butanediol, 44H), 1.68 (s, geminal CH3s, 12H), 3.26 (t, 

J=8 Hz, -SCH2, 4H), 4.08 (t, J=4 Hz, -OCH2, 4H). 

2.2.3. Synthesis of DiCTA terminated poly(N-isopropyl acrylamide) (DCTAPN)  

DiCTA PNIPAM polymers with varying molecular weights were synthesized by RAFT 

polymerization by varying the NIPAm to DiCTA ratio. In a representative polymerization, NIPAm 

(3.00g, 26.5 mmol), DiCTA (0.46 gr, 0.59 mmol), and α,α′-azobisisobutyronitrile (AIBN) (0.4g, 0.24 

mmol) were dissolved in 5 ml of 1,4-dioxane and then transferred to a reaction vessel. The mixture 

were degassed by three cycles of freeze-pump-thaw method, the vessel was sealed, and the 

mixture was heated at 70 °C for 18 h while stirring. The solution was precipitated in diethyl ether 

from dioxane, reprecipitated from THF into diethylether, and vacuum dried for 48 hours. The 

product was analyzed by size exclusion chromatography (SEC) and 1H NMR spectroscopy. SEC was 

conducted using an Agilent 1260 infinity SEC system consisting of a series of three Phenogel 

columns with different pore sizes (Phenomenex Organic columns, 50A, 10E3A, 10E6A), an 

interferometric refractometer under the following conditions: DMF as eluent; injection volume of 

50 µL; flow rate of 1 mL/min; and oven temperature of 50 °C. All measurements were conducted 

based on calibration against polystyrene standards.  
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1H NMR spectroscopy of DCTAPN (CDCl3, 400 MHz) δ 0.86 (t, J=4 HZ, -CH3 end group, 6H), 1.12 (s, 

germinal CH3s of repeat unit, 12H), 1.24-2.3 (m, -C10H20, –CH2CH2 butanediol, geminal CH3s of CTA, 

and PNIPAM backbone, 3.32 (t, J=8 Hz, -SCH2, 4H), 3.98 (br, -NCH and –OCH2, 5H), 4.56 (very small, 

-SCH backbone, 2H), 6-6.7 (br, -NH, 2H). 

2.2.4. Synthesis of monoCTA terminated PNIPAM (MCTAPN) 

In a typical synthesis of a MCTAPN, mono-RAFT CTA (0.032 g, 0.088 mmol), NIPAm (0.5 g, 4 

mmol), and AIBN (150 µl, 0.009 mmol) were dissolved in 1 mL of 1,4-dioxane and solution was 

transferred to an ampule. The sample was degassed through three freeze-pump-thaw cycles 

before sealing the ampule. The solution was heated at 70 °C for 18 h, cooled, and the product was 

precipitated into diethyl ether followed by re-precipitation from THF into diethyl ether. Solvent 

was removed by purging nitrogen and pulling vacuum after filtration. The sample was 

characterized by 1H NMR spectroscopy and SEC. 1H NMR spectroscopy of MCTAPN (CDCl3, 400 

MHz) δ 0.85 (t, J=8 HZ, -CH3 end group, 3H), 1.11 (s, germinal CH3s of repeat unit, 6H), 1.12-2.49 

(m, -C10H20, geminal CH3s of CTA, and PNIPAM backbone (29H), 3.31 (t, J=8 Hz, -SCH2, 2H), 3.97 

(br, -NCH, 1H), 5.7-7 (br, -NH, 2H). 

2.2.5. Synthesis of thiol-terminated PNIPAM  

The dithiol-terminated PNIPAM (DTPN) cross-linkers and mono-thiol terminated PNIPAM 

(MTPN) were synthesized by aminolysis of the CTA-terminated PNIPAMs following a modified 

literature experiment.119 In a representative synthesis, DCTAPN (1 g, 0.13 mmol), 1-butylamine 

(0.088 g, 1.20 mmol) at a 10-fold excess of the trithiocarbonate moieties, and small amount of 

reducing agent tris(2-carboxyethyl)phosphine hydrochloride (TCEP) (0.14 g, 0.40 mmol) were 

dissolved in 10 ml THF and stirred for 1 h at room temperature under nitrogen atmosphere. The 

product was precipitated into diethyl ether twice and dried on vacuum overnight. The yield of 
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aminolysis reaction was 65%.  1H NMR and UV-vis spectroscopy (PerkinElmer UV-Vis 

spectrometer, 0.33 gml-1 solution of samples in THF, 250-600 nm wavelength range) were used to 

confirm removal of the trithiocarbonate group and the generation of the thiol. The products were 

stored in a fridge at 4 °C prior to use. Two DTPN were synthesized with Mn of 4 and 8 kg/mol (1H 

NMR calculated), labeled DTPN4 and DTPN8, respectively. A MTPN with a Mn of 8 kg/mol (MTPN8) 

was also synthesized by this method. Also the products were analyzed by SEC applying the same 

condition mentioned previously in this paper. Molecular weights of polymers were calculated via 

end group analysis using peak integrals. 1H NMR spectroscopy of DTPN (CDCl3, 400 MHz) δ 1.13 

(s, germinal CH3s of repeat unit, 12H), 1.2-2.7 (m, –CH2CH2 butanediol, geminal CH3s of CTA, and 

PNIPAM backbone (19H), 3.98 (br, -NCH, 1H), 6-7 (br, -NH, 2H). 

1H NMR spectroscopy of MTPN (CDCl3, 400 MHz) δ 1.12 (s, germinal CH3s of repeat unit, 6H), 

1.2-3 (m, geminal CH3s of CTA, and PNIPAM backbone, 3.98 (br, -NCH, 1H), 6-7 (br, -NH, 1H). 

2.2.6. Measurement of the LCST of DTPNs  

The LCST of the DTPNs was measured by dynamic light scattering (DLS) with a Malvern 

Nanoseries Zetasizer Zen 3600 instrument. Solutions of 0.01 wt % DTPN8 and 0.1 wt % DTPN4 

were prepared in HPLC grade submicron filtered water. Data were collected at 1 °C intervals using 

a temperature range of 10 to 65 °C. To ensure that the sample viscosity was equilibrated, a 5-

minute delay time was applied at each temperature before recording data. The mean count rate 

(kcps) and Z-average diameter (nm) were measured versus temperature (°C). 

 2.2.7. Synthesis of dithiol-terminated polyethylene glycol (DTPEO) 

DiCTA-terminated polyethylene glycol was synthesized following a procedure similar to that 

used to make the DTPNs. In a multi-neck round bottom flask connected to a bubbler, RAFT CTA (2 
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g, 5 mmol) was purged with nitrogen and followed by sequential addition of anhydrous 

dichloromethane (5 ml) and 10-fold molar excess of oxalyl chloride (4.7 ml, 50 mmol) to synthesize 

the RAFT CTA acyl chloride. After two hours, at the end of the reaction, solvent and unreacted 

oxalyl chloride were removed by vacuum. In a separate round bottom flask and under a nitrogen 

atmosphere, EGPEO (1.6 g, 0.917 mmol), triethylamine (0.250 ml, 2.5 mmol), and 

dichloromethane (6 ml) were added. This mixture was cooled in an ice bath and the RAFT CTA acyl 

chloride was added to it and allow to react for 18 h at room temperature. The product was 

precipitated into 10-fold excess hexane and dried under vacuum. 1H NMR spectroscopy confirmed 

formation of diCTA-functionalized PEO (DCTAPEO) (Figure S5). 1H NMR spectroscopy of DCTAPEO 

(CDCl3, 400 MHz) δ 0.82 (t, J=4 HZ, -CH3 end group, 6H), 1.19-1.31 (m, -C10H20, (40H), 1.68 (s, 

geminal CH3s, 12H), 3.20 (t, J=8 Hz, -SCH2, 4H), 3.4-3.8 (m, -CH2 PEO backbone, 4H), 4.19 (t, J=4 

Hz, -COOCH2, 4H). 

The DCTAPEO was transformed into DTPEO through subsequent aminolysis. In a typical 

reaction, DCTAPEO (0.6g, 0.280 mmol), 1-butylamine (1.11 ml, 11.2 mmol, 20 molar excess of 

amine to trithiocarbonate moiety), and TCEP (0.19g) were dissolved in 10 ml THF, following the 

procedure used to make DTPN. The product was precipitated into 10-fold excess hexanes. Greyish 

precipitant was then dissolved in THF, filtered through filter paper, and precipitated into 10-fold 

excess hexanes. The white precipitant was collected and dried under vacuum for 48 hours. 1H 

NMR spectroscopy and SEC measurements were conducted to calculate Mn and Đ for the product. 

SEC analysis used THF as eluent and oven temperature was 35 °C. All measurements were 

conducted based on calibration against polystyrene standards. 1H NMR spectroscopy of DTPEO 

(CDCl3, 400 MHz) δ 1.53 (s, germinal CH3s, 12H), 2.85 (br, -SH (2H), 3.4-3.7 (m, -CH2, PEO backbone, 

4H), 4.22 (t, J=4 Hz, -COOCH2, 4H). 
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2.2.8. Preparation of NorHA hydrogels 

NorHA hydrogels were prepared with various polymer concentrations, molar ratios of thiol to 

norbornene (XT/N), and cross-linkers. To prepare pre-hydrogel solutions, NorHA, cross-linker, and 

the radical initiator 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (I2959) (0.05 wt %)  

were dissolved in PBS by vortexing for 1 h. Air bubbles were removed by centrifuging for 10 

minutes at a speed of 6000 min-1. To synthesize hydrogels, 50 µl portions of solution were 

transferred to 1 mL syringes with the top cut off. The solution was covered with coverslip (0.22 

mm thickness) and irradiated with 365 nm light (Omnicure S1000 UV lamp filtered for 320-390 

nm) at 10 mW/cm2 power for various times (tir). The hydrogels were stored in 1 mL PBS for 24 

hours at 4 °C prior to subsequent testing. 

2.2.9. Measuring hydrogel thermal response 

The mass loss (ML) of hydrogels were measured as a function of temperature to characterize 

their thermal response. Hydrogels were synthesized as described above and incubated in PBS at 

4 °C for 24 h as an initial condition. Subsequently, hydrogels (n≥4) were incubated in PBS at either 

4, 37, or 55 °C for 24 h cycles. After each temperature cycle, the hydrogels were blotted with a 

Kimwipe to remove excess water and massed. Measurements were carried out in a cycle between 

4 and either 37 or 55 °C. The mass loss percentage (ML %) defined as: 

𝑀𝐿 =
𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −𝑊𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100                                       (Equation 2.1) 

Where Winitial is the mass of hydrogel after first 24 hours at 4 °C in PBS and Wmeasured is the mass 

of hydrogel at each temperature after 24 hours in PBS. 

The initial mass increase of the hydrogel after fabrication upon swelling in PBS at 4 °C (MIi) is 

defined as: 
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 𝑀𝐼𝑖 =
𝑊𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −𝑊𝑎𝑚

𝑊𝑎𝑚
× 100                                       (Equation 2.2) 

Where 𝑊𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the mass of the hydrogel after incubating for 24 h at 4 °C and 𝑊𝑎𝑚 is the 

mass of the hydrogel immediately after gelation.  

Experiments were conducted to find that 24 h of incubation was sufficient for hydrogels to 

reach to their equilibrium mass prior to measurements. In such an experiment, hydrogels were 

incubated in 4 °C and weighed in one hour intervals for 8 hours and then weighed after 24 and 72 

hours of incubation. Plotting the initial mass increase (MI) due to water uptake versus time (Figure 

2.1.a) showed the mass change plateau at 24 hours. A similar experiment was done at 37 °C to 

find the time to reach equilibrium during heating. In this case, mass loss was plotted versus time 

and 24 hours was found to be sufficient to reach to equilibrium mass (Figure 2.1.b).   

 

Figure 2.1. Equilibrium swelling of NorHA hydrogels. a) Initial swelling of PNIPAM cross-linked 

NorHA hydrogel at 4 ᵒC. Hydrogels (n=2) were massed for 8 hours with 1 hour intervals and after 

24 and 72 hours to find the equilibrium time. b) Swelling behavior of PNIPAM cross-linked NorHA 

hydrogels were studied at 37 ᵒC to find the best time interval between mass measurements. After 

24 hours it seems that hydrogels reached to the equilibrium mass (A: 6 wt%, XT/N=0.5, 45 s; B: 6 

wt%, XT/N=0.3, 45 s). 

2.2.10. Measure of compression modulus 

Prior to testing, hydrogels were incubated at 4 °C for 24 h. The compression moduli of the 

hydrogels were measured using a dynamic mechanical analyzer (DMA) (Q8000 Thermal Analysis) 
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with a compression fixture. The hydrogels (n≥3) were subjected to a constant compression strain 

rate experiment at 10% strain/min up to 30% total strain. Compression modulus was defined as 

the slope of strain-stress curve in the limit of 10 to 20% compressive strain.  

2.2.11. Additional cross-linking of NorHA/PNIPAM hydrogels 

NorHA hydrogels (n=4) were synthesized using the DTPN8 cross-linker, 6 wt % polymer in 

solution, a XT/N of 0.3, and a tir of 45 s following the procedure mentioned above. These hydrogels 

were incubated in a solution of PNIPAM (0.015 gml-1 concentration) and I2959 (0.05 wt %) in PBS 

right after gelation for 24 hours at 4 °C. These hydrogels were irradiated with 365 nm light at 10 

mW/cm2 for 5 minutes. Thermal and mechanical tests were conducted on these samples following 

the above procedures.  

2.2.12. Spatiotemporal modification of the stimuli response of NorHA hydrogels 

DTPEO was used to cross-link NorHA following the procedure described above (6 wt %, XT/N= 

0.3, and tir= 60 s) to form initially non-responsive hydrogels. These hydrogels were incubated in a 

solution of 20 mg/mL DTPN8 and 50 mg/mL I2959 in PBS for 24 hours at 4 °C. The hydrogels were 

removed from the solution and were irradiated with 365 nm light at 10 mW/cm2 for 5 minutes 

while were covered with a photomask of 200 µm solid stripes alternating with 200 µm blank 

stripes. Control hydrogels of DTPEO cross-linked NorHA were covered with the mask and 

irradiated as described above. Patterned hydrogels were placed in PBS and incubated at 4, 37, 

and 55 °C for 24 hours before imaging. Images were taken utilizing an inverted optical microscope 

(ZEISS.AXIO Observer.Z1) at 5x magnification immediately after removing the hydrogels from the 

incubator. Photopatterned dimensions as a function of temperature were measured using ImageJ 

software.  
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2.2.13. Cell adhesion on NorHA hydrogels 

The behavior of human mesenchymal stem cells (hMSC) on the wrinkled surface of 

NorHA/DTPEO/DTPN hydrogels was studied. NorHA/DTPEO hydrogels were made following 

abovementioned procedure (6 wt %, XT/N= 0.3, and tir= 60 s). The NorHA/DTPEO hydrogels were 

incubated in a solution of PNIPAM (0.02 gmL-1), RGD peptide (with the sequence GCGYGRGDSPG) 

(2 µM), RhodamineB-peptide with the sequence GCDDD-Rhodamine B (4.3x10-5 g.mL-1), and I2959 

(0.05 wt %) in sterile PBS (DPBS) for 24 hours at 4 ᵒC. The RGD-peptide sequence GCGYGRGDSPG 

has been used previously in another study.62 In general, any RGD-peptide sequence with cysteine 

that has a thiol functional group can be used in this method.  RhodamineB-peptide was 

synthesized previously in reference 62. As control experiments, NorHA/DTPEO hydrogels also 

were incubated in the following solutions: only DPBS without RGD-peptide and PNIPAM, a 

solution of 2 µM RGD-peptide and 0.05 wt% I2959 in DPBS without PNIPAM, and a solution of 

0.02 gmL-1 PNIPAM, 0.05 wt% I2959, and 4.3x10-5 g.mL-1 RhodamineB-peptide in DPBS without 

RGD-peptide. After incubating for 24 hours, all hydrogels were irradiated with 365 nm light for 5 

minutes while covered with a striped photomask (200 µm solid stripes alternating with 200 µm 

blank stripes) to make four different hydrogels: NorHA/DTPEO hydrogels, RGD patterned 

NorHA/DTPEO hydrogels, PNIPAM and RhodamineB patterned NorHA/DTPEO hydrogels, and 

PNIPAM, RGD, and RhodamineB patterned NorHA/DTPEO hydrogels. All hydrogels were 

incubated at 37 ᵒC and 5% CO2 incubator in cell culture media for 24 hours in a 24-well plate. 

One petri dish of passage 5 hMSCs were suspended in DPBS and added to each well (25000 

cell cm-2). Hydrogels were incubated for 24 hours at 37 ᵒC and 5% CO2 prior to fluorescence 

imaging using a ZEISS.AXIO Observer.Z1 microscope. For imaging, cells were first fixed using a 4 

wt% paraformaldehyde solution. To make 10 mL of a 4 wt % paraformaldehyde solution, 1 mL 
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deionized water and 10 µL NaOH 1N were added to 0.4 g of paraformaldehyde in a vial and heated 

at 80 ᵒC water bath for around 10 minutes. Then, 9 mL DPBS and 2 µL HCL 6N were added and 

mixed with the solution. This paraformaldehyde solution (1 mL) was added to each well and 

incubated for 15 minutes at room temperature. Afterward, hydrogels were washed with DPBS 

two times. The fixed hydrogels and cells were kept in 1 mL of 0.5 wt % solution of triton X-100 at 

room temperature for 20 minutes to permeabilize the cells. The hydrogels were washed with 

DPBS as least twice before staining the cells with DAPI and phalloidin. A solution of DAPI (300 nM) 

and phalloidin (2.5 v/v %) in DPBS was prepared in which hydrogels were incubated for 20 minutes 

at room temperature. Hydrogels were washed two times with DPBS prior to imaging. 

After imaging, the number of cells in each region (PNIPAM cross-linked and no-PNIPAM cross-

linked stripes) were counted using ImageJ software. Nuclei (blue dots) accompanied by ECM 

(green medium) were counted to find the number of cells and the ratio of numbers (number of 

cells in PNIPAM cross-linked stripe to the number of cells in no-PNIPAM cross-linked stripe) were 

calculated. Stripes were distinguishable by the red color of rhodamine B-peptide patterned along 

with PNIPAM. Technical replicates of each hydrogel formulation were evaluated by imaging three 

hydrogels of each condition that were fabricated from the same hydrogel stock solution and cell 

culture plate. An image was taken of each hydrogel and the number of cell nuclei in two PNIPAM-

containing stripes and two no-PNIPAM-containing stripes were counted for each replicate, 

yielding a total of 6 stripes for patterned and unpatterned regions per formulation. These regions 

were used to calculate average number of cells and standard deviation. 

2.2.14. Estimation of cross-link density 

Measured values for the modulus and degree of swelling were used to calculate theoretical 

effective cross-links at 4, 37, and 55 °C. The experimentally measured elastic modulus from the 



34 
 

uniaxial compression of a hydrogel sample (𝐸) was related to the cross-link density of the hydrogel 

through Equation 2.3,120  

𝐸 = 3𝜈𝑒𝜙𝑒

1
3𝑅𝑇 

 

(Equation 2.3) 

where 𝜈𝑒 is the effective cross-links per volume (i.e. cross-link density), 𝜙𝑒is the equilibrium 

volume fraction of polymer, 𝑅 is the gas constant, and 𝑇 is the temperature in degrees Kelvin. 

Given the modulus and volume fraction from DMA experimental data this equation can be 

rearranged to solve for the cross-link density (𝜈𝑒) at 4 °C as given in Equation 2.4. 

𝜈𝑒 =
𝐸

3𝜙𝑒

1
3𝑅𝑇

 (Equation 2.4) 

 

Flory-Rehner theory also was applied to these systems to estimate the effective cross-links at 

different temperatures due to the collapse of the PNIPAM in the hydrogels.121 Using Equation 2.5, 

ln(1 − 𝜙𝑒) + 𝜙𝑒 + 𝜒𝜙𝑒
2 = 𝜈𝑒

�̂�1

𝑁𝐴𝑣
(

𝜙𝑒

2
− 𝜙𝑒

1 3⁄ ) (Equation 2.5) 

 

where 𝜒 is the Flory-Huggins interaction parameter, �̂�1 is the molar volume of the solvent, and 

𝑁𝐴𝑣 is Avogadro’s number. Using the expansion ln(1 − 𝜙𝑒)  ≈  −𝜙𝑒 − 𝜙𝑒
2 2⁄  and assuming that 

𝜙𝑒
1 3⁄ ≫ 𝜙𝑒 2⁄  Equation S5 can be simplified to Equation 2.6, 



35 
 

𝜙𝑒
5

3⁄ = 𝜈𝑒

�̂�1

𝑁𝐴𝑣

(0.5 − 𝜒)−1 (Equation 2.6) 

Or simply,  

𝜙𝑒
5

3⁄ = 𝐶𝜈𝑒 (Equation 2.7) 

 

assuming that 𝐶 =
�̂�1

𝑁𝐴𝑣
(0.5 − 𝜒)−1 is constant. For each sample, 𝐶 was calculated using the 

𝜈𝑒 calculated from modulus data at 4 °C. In turn, the 𝐶 value was used to calculate 𝜈𝑒 values at 37 

and 55 °C based off the measured 𝜙𝑒 as modulus data were not measured at the elevated 

temperatures. The primary limitation of the 𝐶 value is that its calculation assumes that 𝜒 varies 

little with temperature over the ranges tested. Additionally the 𝐶 value includes the non-idealities 

of the system that arise from the fact that the examined hydrogel system is a ternary (polymer-

polymer-solvent) mixture and not the binary mixture that this version of the Flory-Rehner theory 

depicts. Nevertheless, such assumptions result in 𝜈𝑒 values that can qualitatively describe the 

nature of cross-linking in the hydrogels.  
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2.3. Results and Discussion 

2.3.1. Synthesis of cross-linkers 

PNIPAM cross-linkers were synthesized via RAFT polymerization with subsequent aminolysis 

of the CTA to introduce thiols at both termini of the polymer chain as described in Section 2.2.2 

in detail (Figure 2.2). The cross-linkers were synthesized by first generating a di-trithiocarbonate 

functionalized CTA (DiCTA) that was subsequently used to polymerize NIPAM, yielding a di-

trithiocarbonate-terminated PNIPAM (DCTAPN) (Figure 2.3).  To generate DCTAPNs with different 

lengths, two different molar ratios of DiCTA to NIPAm were used in the synthesis, yielding 

polymers with chain lengths of 64 and 30 repeat units as measured by 1H NMR spectroscopic end 

group analysis (Table 2.1). SEC elution data for these CTA terminated polymers indicated a narrow 

dispersity (Đ) of 1.06 and 1.09 for the DCTAPNs of 8 and 4 kg/mol, respectively (Figure 2.4). 

Table 2.1.  Dispersity and number average Mn of cross-linkers. Number average molecular weight 
(Mn) calculated by 1H NMR spectroscopic end group analysis of DCTAPN before aminolysis and 
dispersity (Ð) calculated by SEC after aminolysis of thiol functionalized polymers used. 

 

 

Thiol Code Mn (g/mol) Đ  

DTPN8 8000 1.06 

DTPN4 4000 1.14 

DTPEO 1700 2.1 

DTT 154 --- 

MTPN8 8000 1.08 
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Figure 2.2. 1H-NMR spectra of RAFT agent and DiCTA. NMR spectra of synthesized RAFT agent 

(top, A) and DiCTA (bottom, B). Appearance of a new peak at 4.08 ppm confirms formation of 

ester bond. 
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Figure 2.3. Synthesis of DTPN. Synthesis of di-thiol-terminated PNIPAM (DTPN) was accomplished 
by the RAFT polymerization of NIPAM with a di-trithiocarbonate CTA (DiCTA) to yield a DiCTA 
terminated PNIPAM (DCTAPN). Aminolysis of the DCTAPN generated di-thiol-terminated PNIPAM 
(DTPN).  

 

Figure 2.4. SEC elution curves of synthesized PNIPAMs before and after aminolysis. Polymers listed 

in Table 2.1. Dashed lines represent polymers after aminolysis.  
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Subsequent aminolysis of the DCTAPN polymers yielded dithiol-terminated PNIPAM (DTPN) 

cross-linkers (Figure 2.3) as indicated by a visible disappearance of the yellow color indicative of 

the trithiocarbonate CTA. Complete removal of the CTA was confirmed by UV-vis spectroscopy 

(Figure 2.5) as the absorbance peak due to the CTA was no longer present in the product. 

Additionally, 1H NMR spectra of the DTPNs (Figure 2.6) confirm removal of the CTA as peaks 

associated with it are no longer present. The SEC elution curves of DTPN had a slight increase in 

dispersity (Đ) (Table 2.1) as compared to the DCTAPN that suggests some disulfide bonds formed 

(Figure 2.4), but this disulfide bond formation did not adversely affect the reactivity of the cross-

linkers to synthesize hydrogels such that all terminal thiols were assumed to be free for 

subsequent hydrogel synthesis. 

 

Figure 2.5. UV-Vis specta of DCTAPN and DTPN. a) Visual demonstration of successful removal of 

trithiocarbonate group (RAFT moiety) from DCTAPN through aminolysis. b) UV-Vis spectra of 

DCTAPN before (solid line) and after aminolysis (dashed line). The absorption peak at 300-340 nm 

belongs to trithiocarbonate group which disappeared after the aminolysis reaction. 

In addition to the DTPN, a mono-thiol-terminated PNIPAM (MTPN) with a number average 

molecular weight (Mn) of 8 kg/mol was synthesized following the DTPN synthesis procedure 

(Figure 2.7) to give a thiol-terminated PNIPAM that could be incorporated into the hydrogels 

without cross-linking. A non-thermo-responsive cross-linker was synthesized by coupling di-
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hydroxy-functionalized polyethylene oxide (PEO) with the CTA followed by aminolysis to yield a 

dithiol-terminated PEO (DTPEO) (Figures 2.8 and 2.9). A PEO with a Mn of 2 kg/mol was selected 

for the DTPEO to have nearly the same number of bonds along the polymer backbone as 

compared to DTPN8. With these control cross-linkers and DTPN, hydrogels were made to study 

how the cross-linker type affects properties.  

 

Figure 2.6. NMR spectra of DCTAPN (A) and DTPN (B). Peak labeled 1 at 3.27 ppm, which belongs 

to the alkyl chain of RAFT moiety, is removed in spectrum B and confirms formation of DTPN. 
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Figure 2.7.  1H NMR spectra of MCTAPN (A) and MTPN (B). The peak at 3.31 ppm which belongs 

to RAFT moiety is no longer present in the MTPN spectra, indicating CTA removal. 
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Figure 2.8. 1H NMR spectra of DCTAPEO (A) and DTPEO (B). The removal of methylene (marked as 

3) peak at 3.2 ppm and appearance of thiol proton peak at 2.85 ppm at spectrum B confirm 

successful alkyl end group removal. 
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Figure 2.9. SEC elution curves of EGPEO (dash, Đ = 1.9), DCTAPEO (dash dot, Đ = 1.9), and DTPEO 

(solid, Đ = 2.1). 

2.3.2. Fabrication of thermo-responsive hydrogels 

To create thermo-responsive hydrogels and control their response to temperature, NorHA and 

thiol-terminated cross-linkers were mixed at various ratios in phosphate buffered saline (PBS) 

with 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (I2959) as the UV-light sensitive 

radical initiator. UV-light was applied (365 nm, 10 mW/cm2) to generate radicals and initiate the 

thiol-norbornene reaction (Figure 2.10.a). This wavelength and initiator pair was chosen as it is 

cytocompatible and has been used previously to fabricate hydrogels and to encapsulate cells 

within 3D networks.62,64-66  



44 
 

 

Figure 2.10. Thermo-responsive hydrogel synthesis scheme. a) DTPN and norbornene-
functionalized hyaluronic acid (NorHA) were combined with the UV-sensitive radical initiator 
I2959 in PBS and irradiated with 365 nm light to generate hydrogels. b  

The cross-linking density and thermo-response were controlled by varying the molar ratio of 

thiol to norbornenes (XT/N), the chain length of cross-linker, and the irradiation time (tir) (Table 

2.2). By changing these parameters, the modulus at 4 °C (E) and the percent mass loss upon 

heating above 4 °C (ML) changed between formulations (Table 2.2). 
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Table 2.2 NorHA hydrogel formation under different conditions. NorHA hydrogel formulations, 
thermal properties, and physical properties at 6 wt % total polymer  

a XT/N = thiol to norbornene ratio, b tir = irradiation time, c MP/HA = ratio of the mass of cross-linker 
to mass of NorHA, d compression modulus, e MIi = percent mass increase due to initial swelling at 
4 °C, f ML37 = mass loss percentage of gels at 37 °C, * XT/N = 0.3 for DTPN8 (cross-linker) with 
MTPN8 added to reach MP/HA=0.9. 

ML was measured at elevated temperatures (37 and 55 °C) to track the thermo-response of 

these materials. Although thermo-response could be measured using compression or dynamic 

elastic modulus measurements, ML was preferred as it is an accepted method to measure stimuli 

response and it can be measured in a straightforward manner.78,122,123 In addition to the DTPN 

cross-linked hydrogels, NorHA was also cross-linked with the non-thermally responsive cross-

Formulation XT/N 
a tir

b (s) Cross-linker MP/HA
c Ed (kPa) MIi

e (%) ML37
f
 
 (%) 

0.3DTPN8-45 0.3 45 DTPN8 0.6 5.3±1.4 212.0±30.2 24.4±5.6 

0.3DTPN8-90 0.3 90 DTPN8 0.6 14.5±3.3 153.6±1.8 18.7±1.0 

M,D-TPN8-90 0.3* 90 DTPN8+ MTPN8 0.9 8.5±2.0 166.2±2.8 21.1±1.6 

0.5DTPN8-45 0.5 45 DTPN8 0.9 11.8±6.0 130.1±7.0 28.1±3.1 

0.5DTPN8-90 0.5 90 DTPN8 0.9 25.9±1.4 92.2±2.7 19.4±0.9 

0.5DTPN8-180 0.5 180 DTPN8 0.9 25.7±4.2 86.8±4.3 19.6±0.7 

0.5DTPN4-90 0.5 90 DTPN4 0.4 54.4±2.3 75.3±4.1 9.4±1.0 

0.7DTPN8-45 0.7 45 DTPN8 1.3 9.3±0.6 101.6±19.9 33.2±8.9 

0.7DTPN8-90 0.7 90 DTPN8 1.3 18.3±6.6 69.1±7.8 30.5±5.2 

0.5DTPEO-60 0.5 60 DTPEO 0.2 2.8±0.1 220.5±6.7 5.0±1.3 

0.5DTT-45 0.5 45 DTT --- 81.8±19.0 23.4±0.8 1.8±0.6 
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linkers dithiothreitol (DTT) and DTPEO. The properties of these two control hydrogels were 

measured at the same conditions as the NorHA/DTPN hydrogels to serve as representative non-

thermo-responsive hydrogels. 

2.3.3. Reversibility of thermo-response 

NorHA/DTPN8 and control NorHA/DTT hydrogels were synthesized and subjected to thermal 

cycling between 4 °C and either 37 or 55 °C (Figure 2.11 and 2.12) while incubating in excess PBS. 

Incubating the 0.5DTPN8-45 hydrogel at 37 °C lead to a significant ML which was recovered upon 

cooling to 4 °C. The mass loss was due to PBS expulsion from the hydrogel at temperatures above 

the LCST. Incubating the hydrogels in PBS for 24 hours at temperatures below the LCST (for 

example 4 ᵒC), the hydrogels recover the mass lost due to PBS re-uptake. As expected, the DTT 

hydrogel did not have a significant change in ML due to heating. Interestingly, repeated heating 

and cooling cycles for the DTT hydrogel yielded an increased uptake of water (Figure 2.12), which 

suggests degradation of the cross-links occur upon heating. Successive heating/cooling cycles for 

the DTPN8 cross-linked hydrogel did not demonstrate the same behavior (Figure 2.11), suggesting 

that the DTPN8 cross-links are more stable towards degradation. The lack of ML hysteresis for the 

DTPN cross-linked hydrogels upon heating/cooling cycles suggest that these materials could be 

used as thermal shape memory materials. 
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Figure 2.11. Mass loss (ML) percentages of 0.5DTPN8-45 hydrogels cycling between 4 °C and 
either 37 or 55 °C cycles (n=4). 

 

 

Figure 2.12. Mass loss (ML) percentages of DTT cross-linked NorHA hydrogels cycling between 4 
°C and either 37 or 55 °C cycles (n=4). The results indicate that the NorHA/DTT hydrogel is not 
thermo-responsive. The negative ML values means  that the mass of hydrogels increases after 
sequential heating  which indicates that the hydogels were degrade. 
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2.3.4. Controlling thermo-responsive properties  

Several parameters were investigated as methods to control the thermo-response of 

hydrogels cross-linked with DTPN. Hydrogels with different total weight percent of polymer used 

(2, 4, and 6 wt %) were synthesized with the DTPN8 cross-linker (XT/N = 0.5, tir = 45 s) and found to 

have ML37 values (Table 2.3) around 30%. Though the ML37 values for these samples were 

relatively similar, the relative initial mass increase (MIi) upon swelling the 50 µL hydrogel in PBS 

at 4 °C was significantly different for all samples (Figure 2.13). The MIi increased with increasing 

total weight percent of polymer as the higher concentrations of hydrophilic polymer (NorHA) 

intensified hydration. Such results indicate that the total weight percent of polymer can be used 

to control fluid uptake, while the DTPN cross-linker could be used to cycle between release and 

uptake of this fluid upon heating and cooling (Appendix A, Figure A.1- A.2).    

Table 2.3. Thermal response and compression modulus of NorHA/DTPN8 hydrogels at different 
polymer concentrations. 

a wt (%) polymer concentration as weight percent, b XT/N = thiol to norbornene ratio, c  tir (s) = 
radiation time, d MP/HA = ratio of the mass of cross-linker to mass of polymer, e E= compression 
modulus, f MIi = mass increased due to initial swelling at 4 ᵒC, g ML37 = mass loss percentage of 
hydrogels at 37 ᵒC. 

 

Formulation wta (%) XT/N
b tir

c (s) Cross-linker MP/HA
d Ee (kPa) MIi

f (%) ML37 
g (%) 

2DTPN8-45 2 0.5 45 DTPN8 0.9 3.1±0.8 49.3±13.0 30.1±1.5 

4DTPN8-45 4 0.5 45 DTPN8 0.9 6.1±1.7 92.6±4.4 27.4±0.9 

0.5DTPN8-45 6 0.5 45 DTPN8 0.9 11.8±6.0 130.1±7.0 28.1±3.1 
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Figure 2.13. Initial water uptake (MIi) for NorHA/DTPN8 hydrogels with 2 (solid), 4 (weaved), and 
6 (striped) wt % polymer concentration. 

Both the modulus (E) and ML could be controlled varying only the irradiation time (XT/N = 0.5, 

wt % =6, DTPN8) as both properties were significantly increased when irradiation time was 

increased from 45 to 90 s (Table 2.2, Figure 2.14.a). Further increasing the irradiation time from 

90 to 180 s does not yield an observable difference in the modulus and ML37, suggesting that the 

degree of cross-linking plateaus before 90 s.  

Using Flory-Rehner theory,121 an estimated effective cross-link density was calculated (Table 

2.4) which confirmed that the cross-link density did not change by increasing the irradiation time 

from 90 to 180 s (Figure 2.15). The higher modulus and lower MIi values observed with an 

increased irradiation time are consistent with a more cross-linked network (Table 2.2, Table 2.4). 

Additionally, more DTPN cross-linkers should be incorporated into the hydrogel with longer 

irradiation provided that unreacted DTPN remain. With more DTPN incorporated into the 

hydrogel, the ML37 could be expected to increase due to the greater PNIPAM content, but the 

opposite was observed. The hydrogels with a longer irradiation time have a greater cross-link 



50 
 

density (Table 2.4) so they absorb less water in the initial swelling.  As a result, the hydrogels expel 

less water relative to their mass as compared to a loosely cross-linked hydrogel. Such results 

suggest that balancing cross-link density and desired thermal response is required to target a 

specific hydrogel behavior. 

 

Figure 2.14. Controlling thermao-response of NorHA hydrogels. Control over the ML37 for 
NorHA/DTPN hydrogels by varying the a) irradiation time (tir), b) cross-linker chain length, c) XT/N 
at tir = 45 s, d) XT/N at tir = 90 s . Error bars indicate one standard deviation (n ≥ 4).  
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Table 2.4. The estimated equilibrium effective cross-linking density (𝜈𝑒) of various NorHA/PNIPAM 

hydrogels at 4 °C ( 𝜈𝑒4), 37 °C (𝜈𝑒37), and 55 °C (𝜈𝑒55). 

Formulation 𝝂𝒆𝟒 (x 10-6 mol/mL) 𝝂𝒆𝟑𝟕 (x 10-6 mol/mL) 𝝂𝒆𝟓𝟓 (x 10-6 mol/mL) 

0.3DTPN8-45 3.1 ± 0.8 5 ± 2 10 ± 5 

0.3DTPN8-90 8  ± 2 11 ± 3 18 ± 5 

0.5DTPN8-45 6 ± 3 11 ± 2 20 ± 10 

0.5DTPN8-90 13 ± 1 18 ± 1 35 ± 4 

0.5DTPN8-180 13 ± 2 18 ± 3 31 ± 7 

0.5DTPN4-90 27 ± 1 31 ± 2 33 ± 2 

0.7DTPN8-45 4.6 ± 0.3 9 ± 2 18 ± 5 

0.7DTPN8-90 9 ± 3 16 ± 7 30 ± 10 

2DTPN8-45 2.0 ± 0.5 4 ± 1 11 ± 4 

4DTPN8-45 3 ± 1 6 ± 2 19 ± 7 
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Figure 2.15. Effective cross-link density (𝜈𝑒) at various temperatures for the 0.5DTPN8 hydrogel 

formulations with different irradiation times. Error bars are from the standard deviations of the 

measurements propagated through the calculations. 

Aside from the irradiation time, another variable that had a significant effect on the thermal 

properties of the hydrogels was the cross-linker chain length. With all variables held constant (XT/N 

= 0.5, tir = 90 s, wt % = 6), a shorter cross-linker (DTPN4) halved the ML37 of the NorHA hydrogel 

(Figure 2.14.b). Using the DTPN4 cross-linker in place of DTPN8 also doubled the modulus of the 

material (54 versus 26 kPa). Such a result could be expected as the modulus is inversely 

proportional to the molecular weight between cross-links and using DTPN4 instead of DTPN8 

would halve this value. The calculated estimated effective cross-link density confirms this result 

as the value for DTPN4 cross-linked hydrogels is double that of the DTPN8 hydrogels (Table 2.4, 

Figure 2.16). Additionally, the tighter network has a lower MIi as the DTPN4 cross-linker cannot 

stretch to the same extent as DTPN8 when the hydrogel reaches an equilibrium initial swelling 

due to the increased cross-link density (Table 2.4). The ML results suggest that upon heating the 

DTPN4 comes out of solution and collapses (Figure 2.17) pulling the NorHA half the distance that 

DTPN8 would, which is consistent with the lengths of the two cross-linkers. 



53 
 

 

Figure 2.16. Effective cross-link density (𝜈𝑒) at various temperatures for the 0.5DTPN-45 hydrogel 

formulations with different length cross-linkers. Error bars are from the standard deviations of 

the measurements propagated through the calculations. 

 

 

2.17. Schematic of NorHA/DTPN hydrogel thermo-response. Heating the NorHA/DTPN hydrogels 
causes a reversible collapse of the DTPN due to passing the lower critical solution temperature 
(LCST), resulting in the expulsion of water, a decrease in hydrogel volume, and mass loss. 

Another parameter in this hydrogel system that can be used to control physical properties is 

the ratio of thiols to norbornenes (XT/N). The ML37 increased when we increased the XT/N values at 

irradiation times of 45 (Figure 2.14.c) and 90 s (Figure 2.14.d). Higher XT/N values are expected to 

increase both cross-linking and the mass ratio of PNIPAM cross-linker to NorHA in the hydrogels 

(MP/HA) as more reactants are available to form cross-links.  As observed with increasing the 

irradiation time, the MIi decreased while increasing XT/N (Table 2.2). However, unlike the results 
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for varying the irradiation time, the effective cross-link density when XT/N is varied does not 

significantly change (Table 2.4, Figure 2.18) with all hydrogels having statistically the same cross-

link density. When the XT/N was increased, the ML37 values also increased (Figure 2.14.c and 

2.14.d). This behavior is expected as the higher XT/N values result in a greater PNIPAM fraction in 

the hydrogel relative to NorHA. Since PNIPAM dewaters upon heating, more of it present in the 

hydrogel will lead to a higher mass of water lost relative to total mass. These results suggest that 

controlling the MP/HA of the hydrogel through varying XT/N can be used as another variable to target 

a desired ML.  

 

Figure 2.18. Effective cross-link density (𝜈𝑒) at various temperatures for the DTPN8-45 hydrogel 

formulations with different XT/N. Error bars are from the standard deviations of the measurements 

propagated through the calculations. 

To further explore how the degree of cross-linking and MP/HA affected the physical properties 

of the hydrogels, a mono-thiol functionalized PNIPAM (MTPN8) was synthesized and used along 

with the di-thiol functionalized DTPN8 in hydrogel fabrication. Since MTPN8 had one terminal 

thiol, it could covalently attach to the NorHA hydrogel network as a pendant group via the thio-

ene reaction, but not cross-link. Thus, MTPN8 should still be incorporated into the hydrogel to 



55 
 

change the MP/HA value, but not change the degree of cross-linking. A hydrogel was synthesized 

(M,D-TPN8-90) with a XT/N value of 0.3 using the DTPN8 cross-linker and MTPN8 was added to 

yield a MP/HA similar that to a hydrogel with a XT/N of 0.5 (MP/HA = 0.9). At an irradiation time of 90 

s, the degree of cross-linking of M,D-TPN8-90 appeared to be similar to its DTNP8 only counterpart 

(0.3DTPN8-90) as both the MIi and modulus values were similar (Table 2.2). The ML37 values of 

M,D-TPN8-90 and 0.3DTPN8-90 as well as 0.5DTPN8-90 (the hydrogel with MP/HA equivalent to 

M,D-TPN8-90) are similar, suggesting that the MTPN8 did not appreciably affect the thermal 

behavior. Such results suggest that PNIPAM needs to be incorporated into the cross-links of these 

hydrogels to affect thermo-response. 

The ML55 was also measured to observe the thermo-response of the hydrogels above the 

literature reported LCST for PNIPAM (32 °C). For all hydrogels, a higher ML was observed at 55 °C 

as compared to 37 °C (Table 2.5 and Appendix Figures A.2.1-A.2.2). As the NorHA hydrogels with 

the non-thermo-responsive cross-linkers did not demonstrate this response to temperature, the 

variable thermo-response as a function of temperature appeared to be due to the nature of the 

DTPN cross-linkers. Dynamic light scattering (DLS) analysis of the DTPNs (Figure 2.19) suggested a 

broad LCST transition as opposed to the typically sharp transition around 32 ᵒC for typical 

PNIPAMs. As the Đ for the DTPN were narrow, suggesting a rather homogeneous molecular 

structure, a clear cause for the broad LCST in these DTPN is not apparent. Possibly the di-thiol-

termination and CTA residue in the middle of the polymer affect the thermodynamics that drive 

the LCST in these molecules, but more a more in depth analysis at a later date is needed to 

ascertain the direct cause. Since the thermo-responsiveness of the NorHA/DTPN hydrogel system 

is a function of temperature, the amount of water expulsion from a particular formulation could 

also be controlled by changing temperature.  



56 
 

Table 2.5. Mass loss percentage of DTPN cross-linked NorHA hydrogels at 55 ᵒC. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19. DLS digram of DTPN4 and DTPN8. Temperature trend diagram obtained by DLS for 

DTPN4 (dashed line) and DTPN8 (solid line). In both cases, a range of transition temperature is 

observed which means that different thermo-responsiveness is observed at different 

temperatures. Z.average represents the average size of a particle size distribution. The particle 

size increases upon heating due to the aggregation of insoluble particles. 

Formulation ML55 
 (%) Formulation ML55 

 (%) 

0.3DTPN8-45 48.5±6.2 0.5DTPN4-90 12.6±0.9 

0.3DTPN8-90 38.5±3.3 0.7DTPN8-45 55.0±7.9 

M,D-TPN8-90 40.2±3.9 0.7DTPN8-90 49.6±2.6 

0.5DTPN8-45 52.9±3.1 2DTPN8-45 63.3±1.4 

0.5DTPN8-90 44.7±2.2 4DTPN8-45 63.5±1.9 

0.5DTPN8-180 41.2±3.7   
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This temperature dependence of ML could be used to thermally trigger drug delivery or use 

these materials for shape-memory applications in the future.89,93,94 For example, different thermo-

responsiveness at higher temperatures than the LCST can be useful in photothermal drug release 

in the body to treat inflammation and cancer. External triggers such as near-infrared light passing 

through tissue to induce surface plasmon resonance on gold nano-particles could simultaneously 

release drugs and photothermally treat cancer. Examples in literature exist of sustained release 

of methylene blue, ovalbumin, and bovine serum albumin from PNIPAM-based hydrogels at 50 ᵒC 

and using carbon nanotubes and gold nano-particles to heat with near-infrared light.96,124-129 

Future studies could utilize these biopolymer based NorHA/DTPN hydrogels for similar 

applications where a bioactive scaffold could be necessary such as wound repair after the 

photothermal treatment. 

2.3.5. Control of hydrogel modulus 

The stiffness or modulus of hydrogels is controlled by the cross-link density of the network. 

Typically, cross-link density for thiol-ene hydrogels is controlled by the ratio of a fixed length cross-

linker to the reactive group of the matrix polymer or otherwise the XT/N. With the DTNP cross-

linkers, the length of the cross-linker is an additional parameter that can be used to control the 

modulus of the hydrogel. The effective cross-link density was calculated for all hydrogels and an 

increased cross-link density mirrored the observed increase in modulus (Table 2.4). Using XT/N, 

irradiation time, and the cross-linker length the modulus could be controlled from ca. 5 to 50 kPa 

(Table 2.2), which covers the modulus of most soft tissues.  For example, the elastic moduli of 

kidney tissue (5-10 kPa), cardiac tissue (10-15 kPa), and intestine tissue (20-40 kPa) are within the 

range of modulus of the NorHA/DTPN hydrogels.108 Such results suggest that modulus of these 

hydrogels could be targeted for any desired biomaterial application. 
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2.3.6. Temporal modification of hydrogel stimuli response 

The light induced thiol-norbornene cross-linking process enables the modification of hydrogel 

properties with additional cross-linking. Figure 2.20 demonstrates methods for additional cross-

linking and photopatterning where the hydrogel is initially cross-linked with the desired molecule 

and as long as norbornenes remain, additional cross-linking is possible. If the second cross-linker 

is stimuli responsive, the stimuli response should be modified.  

 

Figure 2.20. a) Schematic to modify NorHA hydrogels after gelation by introducing the hydrogel 
to a solution of cross-linker and UV-initiator with subsequent UV exposure.  

To confirm this behavior, NorHA/DTNP8 hydrogels were synthesized (XT/N = 0.3, tir = 45 s, wt % 

= 6) and incubated at 4 °C. At this formulation, if all the thiols reacted with the norbornenes, 70% 

of the norbornene groups would remain, providing synthetic handles for subsequent reaction. 

Thermal analysis of this initial hydrogel gave ML values of 20.4 and 46.2% at 37 and 55 °C, 

respectively (Figure 2.21). These initial hydrogels were incubated in a solution of DTPN8 (0.015 

g/mL) and I2959 (0.05 wt %) at 4 °C for 24 h prior to irradiating with UV light for 5 min. The 

temporally modified hydrogels ML significantly increased to 40.0% at 37 ᵒC and 67.4% at 55 ᵒC 

(Figure 2.21) which follows the trend observed for the hydrogels that underwent initial cross-

linking. The observed bulk temporal modification demonstrates that a DTPN cross-linker can be 
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used to change the stimuli response when needed. Such a result has not been reported for 

physically cross-linked PNIPAM-grafted HA hydrogels.111,112 The thermal cross-linking of PNIPAM-

grafted HA requires that the materials are heated to body temperature and gelation does not 

occur at temperatures below the LCST. The light induced covalent thiol-ene cross-linking 

overcomes this limitation to fabricate stable hydrogels at ambient temperature as well as 

provides further modification of hydrogels properties as shown here. 

 

Figure 2.21. Mass loss percentage of hydrogel after additional cross-linking. ML at 37 and 55 °C of 
NorHA/DTPN8 hydrogels initially cross-linked at XT/N = 0.3 (solid bars, tir = 45 s, wt % = 6) and after 
incubating the hydrogels in a DTPN8 (15 mg/mL) and I2959 (0.05 wt %) solution for 24 h and 
irradiating for 5 min (striped bars). Error bars represent one standard deviation (n = 4). 
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2.3.7. Spatiotemporal modification of stimuli response 

To investigate spatiotemporal modification of stimuli response, initial NorHA hydrogels were 

made using the non-thermo-responsive cross-linker DTPEO to give a non-stimuli responsive initial 

NorHA/DTPEO hydrogel. Light microscopy at 4 °C indicated a smooth hydrogel surface (Figure 

2.22.a). The DTPEO hydrogel was incubated in a solution of DTPN8 (0.015 g/mL) and I2959 (0.05 

wt %) in PBS for 24 h at 4 °C. Afterwards, a striped photo mask (200 µm alternating stripes) was 

used to cover hydrogels during a 5 minute UV light exposure (Figure 2.20). Regions exposed to 

UV-light had DTPN8 cross-link NorHA further, introducing thermo-responsiveness in particular 

regions as well as increasing the cross-link density. No cross-linking occurred in the regions 

blocked by the mask and thus these regions were composed of the initial NorHA/DTPEO hydrogel. 

The photopatterning of DTPN8 is visible at 4 °C (Figure 2.22.b) as the less-cross-linked 

NorHA/DTPEO only regions swell more than the NorHA/DTPEO/DTPN regions. These stripes are 

visible even with naked eye due to the different texture as a result of higher degree of cross-

linking.  

Control DTPEO cross-linked NorHA hydrogels were also synthesized as a control experiment 

by irradiating the NorHA/DTPEO hydrogels with UV-light for 5 minutes while covered by the same 

photomask without additional cross-linker. The ML values of the DTPN patterned bulk hydrogels 

as compared to the control hydrogels confirm that thermo-response was added through the 

photopatterning process (Figure 2.23.a). The substantial increase in mass loss percentage after 

introducing PNIPAM to the hydrogels suggests that thermal properties of NorHA/DTPEO/DTPN 

hydrogels are a result of PNIPAM cross-linker. PEO has no significant response to changing 

temperature. 
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Figure 2.22. Bright field optical images (5x magnification) of hydrogels. Images of an a) 
unpatterned NorHA/DTPEO and images of the hydrogel surface patterned with DTPN8 cross-
linker at b) 4 °C and sequentially incubated for 24 h at c) 37 °C, d) 55 °C, e) 65 °C, and f) 4 °C. Scale 
bars are 100 µm.  

The spatiotemporal stimuli response to temperature changes was observed by imaging the 

surface of the hydrogels with optical microscopy (5x magnification) after incubating for 24 h in 

PBS in cycles at 4, 37, 55, 65 and 4 °C. The width of each stripe was measured using ImageJ 

software and result is shown in Figure 2.23.b. Initially at 4 °C, the line widths of the two 

compositions are similar with the more cross-linked NorHA/DTPEO/DTPN regions being slightly 
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narrower due to the reduced swelling from the higher degree of cross-linking. Heating the 

hydrogels to 37, 55, and 65 °C sequentially caused the widths of both regions to decrease with 

the DTPN cross-linked regions decreasing to a greater extent as evidenced by their thermo-

response. The reduction in line width of the DTPEO regions upon heating is likely due to the stress 

applied to those regions from the dewatering of the adjacent DTPN cross-linked regions as the 

DTPEO cross-linked hydrogels alone should not be thermo-responsive.  Cooling the hydrogels back 

to 4 °C increases the width of both regions (Figure 2.23.b), but some hysteresis is present as the 

DTPN hydrogels do not return to their original size. Qualitatively, the boundary between the 

DTPN/DTPEO and DTPEO only cross-linked region looks different and is suggestive of hydrogel 

damage due to the stress experienced (Figure 2.22.f). Such results suggest that when patterned, 

the reversibility of heating and cooling may be limited due to the internal stresses placed on the 

hydrogel. Nevertheless, these results demonstrate that spatiotemporal modification of stimuli 

response are possible with this hydrogel system.  

 

Figure 2.23.  Thermo-responsivity of NorHA hydrogels with DTPN and DTPEO cross-linkers. a) Solid 

bars show mass loss percentages of DTPEO cross-linked NorHA hydrogels. Striped bars show mass 

loss percentages of the same PEO cross-linked NorHA hydrogels after being patterned with DTPN 

cross-linker. b) Domain widths were measured with ImageJ to calculate their average width as a 

function of cycle. Solid bars represent width of only PEO cross-linked regions and striped bars 

belong to regions cross-linked by DTPEO and DTPN8. Error bars are the standard deviation of 5 

measurements. 
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2.3.8. Cell culture on NorHA/DTPN hydrogels 

Human mesenchymal stem cells (hMSCs) were seeded on top of NorHA hydrogels to confirm 

that these hydrogels could be used as biomaterials and possibly to control cell behavior with 

wrinkled surface patterns.104,130 As demonstrated in Figure 5, the surface of a DTPN8 patterned 

hydrogel has wrinkles due to shrinkage of PNIPAM cross-linker at 37 °C. To investigate the cell-

surface interactions, a NorHA/DTPEO hydrogel was synthesized and patterned with DTPN8. A 

cysteine functionalized cell adhesion peptide (RGD) to promote hMSC adhesion and a cysteine-

functionalized rhodamine B to visualize the pattern were included during patterning, following a 

previously reported method.62 Fluorescence microscopy imaging on day 1 (24 h after seeding) 

demonstrated that hMSCs attached to both the wrinkled surface of DTPN8/RGD patterned 

NorHA/DTPEO hydrogels and to the NorHA/DTPEO hydrogel with RGD peptide present (Figure 

2.24.A). No cell adhesion was observed when the RGD peptide was not patterned with the DTPN8, 

confirming that the RGD peptide was patterned and affected cell adhesion (Figure 2.24.B). For the 

NorHA/DTPEO/DTPN8 hydrogels, cell nuclei were counted to see whether they were on the RGD 

patterned stripes or the RGD free regions. Technical replicates were done by counting cell nuclei 

on a total of six stripes for each PNIPAM and no-PNIPAm regions from three individual hydrogels 

made from the same solution and cells from the same culture plate. The cell nuclei were 1.7±0.3 

times more likely to be found on the RGD/DTPN8 patterned regions than the non-patterned 

regions, suggesting that hMSCs still preferred to adhere to the RGD patterned regions when 

DTPN8 was present. Moreover, imaging at day 7 shows that hMSCs proliferated and covered the 

hydrogel surface (Figure 2.24.C), confirming that cells can be grown on these materials and that 

the system can be used in future biomedical studies.  
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Figure 2.24. Fluorescence microscopy images (ZEISS.AXIO OBSERVER.Z1, 5x magnification) of 

hMSCs seeded on the surface of hydrogels: A) the surface of NorHA/DTPEO/RGD and DTPN/RGD 

patterned NorHA/DTPEO hydrogels, B) the surface of NorHA/DTPEO and PNIPAM patterned 

NorHA/DTPEO hydrogels without RGD protein, and C) the surface of RGD and PNIPAM patterned 

NorHA/DTPEO hydrogels at day 7 of seeding. hMSCs proliferated and covered the surface which 

is an indicative of hydrogel cytocompatibility. Nuclei of the cells were stained by DAPI shown in 

blue. Phalloidin (green) stained actin. DTPN patterned regions are indicated by the red color of 

cysteine-functionalized RhodamineB, 
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2.4. Conclusions 

The spatiotemporal modification of thermal properties of thermo-responsive NorHA hydrogels 

was achieved using the UV-light initiated thiol-ene cross-linking reaction with DTPN cross-linkers. 

The ML of the hydrogels upon heating could be controlled by varying the cross-link density of the 

hydrogels and the amount of DTPN cross-linking the hydrogel. This ML also could be changed as 

a function of temperature, indicating that additional stimuli response is observed above 37 °C. 

Additionally, using one NorHA and DTPN the modulus of the material could be controlled over an 

order of magnitude. Spatiotemporal modification of the stimuli response was achieved by 

photopatterning of hydrogels with DTPN such that this hydrogel system can be used for 

spatiotemporal modification of topology and shape memory behavior. Since the hydrogel system 

was suitable for cell culture and the stimuli response can be spatiotemporally modified, these 

results demonstrate that it could be used in future work to elucidate cell behavior. Furthermore, 

this study demonstrates that significant stimuli control can be imparted through stimuli 

responsive cross-links while retaining a majority of natural component such that future studies 

can explore other stimuli responsive cross-linkers in similar thiol-ene hydrogels. 
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 CHAPTER 3 

SYNTHESIS AND SPATIOTEMPORAL MODIFICATION OF BIOCOMPATIBLE AND STIMULI 

RESPONSIVE CARBOXYMETHYL CELLULOSE HYDROGELS USING THIOL-NORBORNENE 

CHEMISTRY 

 

3.1. Introduction  

Carboxymethyl cellulose (CMC) was functionalized with norbornene groups to undergo thiol-

norbornene cross-linking reactions. Hydrogels synthesized from a single norbornene modified 

carboxymethyl cellulose (NorCMC) via a light initiated thiol-ene cross-linking reaction with a 

variety of dithiol cross-linkers yielded hydrogels with a tunable compression modulus ranging 

from 1.7 to 103 kPa. Additionally, thermoresponsiveness was spatiotemporally imparted to 

NorCMC hydrogels by photopatterning a dithiol-terminated poly(N-isopropyl acrylamide) 

(PNIPAM) cross-linker, enabling swelling and topological control of the hydrogels as a function of 

incubation temperature. NorCMC hydrogels were cytocompatible as the viability of encapsulated 

human mesenchymal stem cells (hMSCs) was greater than 85% after 21 days while using a variety 

of cross-linkers. Moreover, hMSCs could remodel, adhere, and spread in the NorCMC matrix 

cross-linked with a matrix metalloproteinase (MMP) degradable peptide, further demonstrating 

the utility of these materials as a tunable biomaterial.  
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3.2. Experimental 

3.2.1. Materials 

Chemicals were purchased from either Sigma-Aldrich or Fisher Scientific and used without 

further purification unless otherwise noted. All cell culture materials were purchased from Life 

Technologies. Human mesenchymal stem cells were purchased from Lonza (1 mL vial containing 

≥750,000 cells). Ethanolamine and 5-norbornene-2-methylamine were purchased from Alfa Aesar 

and TCI America, respectively. Peptides were purchased from Genscript and used without further 

purification.  

3.2.2. Synthesis of norbornene functionalized carboxymethyl cellulose (NorCMC) 

In a representative functionalization reaction, 0.25 g (1.2 mmol of repeat units) of sodium CMC 

(NaCMC, 90 kg/mol) was dissolved in 25 mL deionized water to make a 1 wt% NaCMC solution. 

To this solution, 0.148 g (0.77 mmol) of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC HCl), 0.089 g (0.77 mmol) of N-hydroxysuccinamide (NHS), and 0.1 mL (0.8 

mmol) of 5-norbornene-2-ethylamine (NA) were added sequentially. After adding the NA, the 

solution became cloudy and was left to stir for 18 h at room temperature. Sodium chloride (0.75 

g) was added to the mixture prior to precipitation in 250 mL ice-cold acetone. The solution was 

added to acetone dropwise, stirred for an hour, and then acetone was decanted to yield a white 

precipitant. The precipitant was dissolved in 22 mL of deionized water and dialyzed for three days 

prior to removing water by lyophilization and obtaining pure norbornene functionalized CMC 

(NorCMC). NorCMC was characterized by 1H-NMR spectroscopy to confirm functionalization and 

determine the degree of functionalization. Different degrees of functionalization could be 

achieved by varying the molar ratios of reagents to NaCMC. To calculate the degree of 

functionalization, the integrations of the peak at 3-4.5 ppm and 5.8-6.07 ppm were normalized to 
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the number of corresponding hydrogen atoms (8.4 and 2 hydrogen atoms for backbone hydrogen 

and norbornene double bond hydrogen atoms respectively). The value 8.4 was obtained regarding 

70% carboxymethyl functionalization on the CMC and represents the average number of 

hydrogen atoms per repeat unit. The percentage of the ratio of normalized values of norbornene 

double bond to backbone hydrogen atoms were reported as degrees of functionalization. 

1H-NMR spectroscopy of NorCMC (D2O, 400 MHz): δ (ppm) = 0.35-3 (m, CHs and CH2s of 

endo/exo norbornene amine, 9 H), 3-4.5 (m, Hs of CMC backbone), 5.8-6.07 (m, alkene CHs of 

endo/exo norbornene amine, 2 H). 

Size exclusive chromatography (SEC) was conducted before and after the functionalization 

reaction, using an Agilent 1260 infinity SEC system consisting of a Phenomenex PolySep-GFC guard 

column, two analytical columns (Phenomenex PolySep-GFC P3000 and P5000) in series, and 

aqueous solution of 0.1 M sodium nitrate and 5 mM (in HPLC grade H2O) as eluent. Polymer 

relative retention time and dispersity of CMC and NorCMC (Ɖ=3.22 and Ɖ=3.33, respectively) 

showed no significant change as compared to polyethylene oxide calibration standards (RI 

detector), suggesting that the functionalization reaction was not destructive to the CMC polymer 

chains. 

3.2.3. Fabrication of 3D NorCMC hydrogels 

NorCMC hydrogels were prepared by UV irradiation of a pre-polymer solution containing 

NorCMC, dithiol cross-linker, and the radical initiator 2-hydroxy-4'-(2-hydroxyethoxy)-2-

methylpropiophenone (I2959) (0.05 wt%) dissolved in PBS. The solution was vortexed for an hour 

and air bubbles were removed by centrifugation. To form hydrogels, 50 µL portions of solution 

were transferred to a 1 mL syringe with the top cut off, sealed with a coverslip (0.22 mm 

thickness), and exposed to 365 nm UV light at 10 mW/cm2 power (Omnicure S1000 UV lamp 
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filtered for 320-390 nm) for various times. The resulting hydrogels were stored in 1 mL of PBS in 

a 24-well plate at 4 °C for 24 hours prior to subsequent testing. Several formulations of hydrogels 

were prepared varying polymer weight percent (wt%), molar ratios of thiol to norbornene (T/NB), 

irradiation time, and type of cross-linker molecule. 

3.2.4. Fabrication of 2D NorCMC hydrogels 

Thin hydrogels (approximately 200 µm thick) were synthesized adhered to coverslips for cell 

culture and photopatterning experiments. Glass coverslips (No. 2, 22 x 22 mm) were plasma 

cleaned by a Tesla coil (Electro-Technic Products, BD-50E heavy duty generator, 115V) that was 

applied for 30 to 45 s on each coverslip. The cleaned coverslips were placed on an aluminum tray, 

covered with (3-mercaptopropyl)trimethoxy silane, and heated for 1 h at 100 °C. Heating was 

continued for additional 10 minutes at 110 ᵒC to yield thiolated coverslips that were removed 

from heat and cooled. Prior to use, coverslips were washed with acetone, methanol, and dried by 

blowing nitrogen. Activated coverslips were stored under nitrogen atmosphere and used in less 

than 24 h after activation. 

A solution of NorCMC, dithiothreitol (DTT) (4 wt% total polymer, T/NB=0.5), and 0.05 wt% 

I2959 was prepared in PBS and placed on a coverslip (glass No.1, 45 x 55 mm) while four coverslips 

(glass No. 2, 22 x 22 mm, 200 µm) were used at the edges to support the solution. Then, the 

solution was covered with an activated coverslip with the thiolated side down on the solution. 

The solution was irradiated 90 s with UV light (365 nm, 10 mW/cm2) from the thiolated coverslip 

side. The coverslip adhered to the 200 µm thick 2D hydrogel was removed from the bottom 

coverslip and then stored in a 6-well plate with 3 mL of PBS at 37 ᵒC prior to cell culture or 

photopatterning. 
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3.2.5. Measuring the compression modulus of 3D hydrogels 

Compression experiments were conducted on 3D hydrogels at 10%/min strain rate up to 30% 

total strain using a dynamic mechanical analyzer (DMA) (Q8000 Thermal Analysis, TA Instruments) 

with a compression fixture at room temperature. The slope of strain-stress curve in the 10 to 20% 

compressive strain limit was defined as the compression modulus (Appendix B, Figure B.1-B.4). 

Hydrogels (n ≥ 9 for each condition) were incubated in PBS at 4 ᵒC for 24 h prior to testing to reach 

to equilibrium. This condition was applied for all hydrogels to keep the results consistent with 

PNIPAM experiment which underwent volume change at room temperature. Hydrogels were kept 

cool until testing. 

3.2.6. Measuring the thermoresponse of NorCMC/PNIPAM hydrogels 

Three-dimensional hydrogels of NorCMC were made using a dithiol-terminated PNIPAM 

(DTPN) cross-linker that was synthesized following a previously reported procedure (Chapter 2, 

Section2.2.9) The hydrogel formulation consisted of 6 wt% polymer, 60 s UV irradiation, a variable 

T/NB, and 0.05 wt% I2959 in PBS. Hydrogels (n=5) were incubated in PBS at 4 ᵒC for 24 h and then 

were massed (Winitial). Subsequently, hydrogels were incubated at either 4, 37, or 55 ᵒC in PBS for 

24 h and massed after each temperature cycle (Wmeasured) as described in Chapter 2 Section 2.2.9. 

The relative mass loss (ML) was calculated as defined in Equation 3.1. 

𝑀𝐿 =
𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −𝑊𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100                                                        (Equation 3.1) 

3.2.7. Photopatterning of NorCMC hydrogels 

3.2.7.1.  2D hydrogels  

The fabricated 2D hydrogels were incubated at 37 ᵒC for 24 h in a solution of 0.05 wt% I2959 

and 1 mg/mL of rhodamine B peptide (with the sequence GCDDD-rhodamine B) in PBS, 
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synthesized following a previously reported procedure.62 Hydrogels were exposed to UV light (365 

nm, 10 mW/cm2) for 90 s while covered with a photomask with 200 µm dark stripes alternating 

with 200 µm blank stripes. The unreacted dye was removed from the patterned hydrogels by 

incubating them in PBS for 24 h at 37 ᵒC prior to fluorescence imaging with a Zeiss.Axio 

Observer.Z1 microscope. 

3.2.7.2.  3D hydrogels 

NorCMC hydrogels cross-linked with dithiol-terminated poly(ethylene glycol) (DTPEG) were 

fabricated from a 4 wt% polymer solution with a T/NB of 0.3, 0.05 wt% I2959, and 60 s irradiation 

time. The hydrogels were incubated in a solution of PNIPAM (4000 g/mol, 8.5 mg/mL) and I2959 

(0.05 wt%) in PBS for 24 h at 4 ᵒC. Hydrogels (n=3) were stored in only PBS and I2959 (0.05 wt%) 

as control experiment. After incubation, the hydrogels were exposed to UV light (320-390 nm, 10 

mW/cm2) for 5 minutes while covered with a photomask with 200 µm masked stripes alternating 

with 200 µm blank stripes. Hydrogels were placed in 1 mL of PBS for one hour prior to imaging by 

optical microscopy (Zeiss.Axio Observer.Z1).  

3.2.8. Cell encapsulation and viability  

3.2.8.1.  Preparation of pre-gelation solution 

NorCMC, cross-linker, and equipment were sterilized by germicidal/sterilization UV light (254 

nm) for 5 minutes and I2959 stock solution was sterile filtered (Santa Cruz Biotechnology, PVDF 

membrane, pore size 0.22 µm) prior to use. Pre-gelation solutions were prepared containing 

NorCMC, dithiol cross-linker (4 wt% polymer, T/NB=0.5), and 0.05 wt% I2959. Hydrogels were 

created either with a DTT cross-linker or a peptide cross-linker with the highly MMP-sensitive 

sequence GCRDGPQGIWGQDRCG (MMP-deg).131 To prevent aggregation of the MMP-deg in 

solution, it was buffered with 0.02 v/v% ethanolamine to a pH of 8-8.5. For each cross-linker, 
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hydrogels were prepared with and without the cell adhesion peptide GCGYGRGDSPG (RGD) at a 

2 mM concentration.  

3.2.8.2.  Cell culture 

Passage five human mesenchymal stem cells (hMSCs) from Lonza were cultured in 90% low 

glucose Dulbecco’s modified eagle serum (DMEM) with GlutaMAX and sodium pyruvate 

containing 9% fetal bovine serum (FBS), 1% antibiotic-antimycotic (100x), and 5 µL fibroblast 

growth factor until 90% confluency (day 6). Cells then washed with DPBS and trypsinized prior to 

encapsulation as follows. Warm (37 o C) 0.05% trypsin/EDTA (3 mL) was added to the 100 mm petri 

dish and swirled around until all cells were covered.  The dishes were incubated at 37 ᵒC and 5% 

CO2 for 5-8 minutes. Warm media (37 ᵒC, 7 mL) was added to the dish and this suspension was 

transferred into a conical tube. Cells were spun down, the media was removed, and cells were 

suspended in 1 mL of media, and spun down again.  

3.2.8.3.  3D Cell encapsulation  

After removing this media, hMSCs were suspended in sterile pre-gelation solution (4 wt% total 

polymer, T/NB=0.5) at a density of 1.6×105 cell per 400 µL of pre-gelation solution. The suspension 

(50 µL) was transferred to a syringe tip, sealed with a sterile coverslip, and exposed to 60 s UV 

irradiation (320-390 nm) at 10 mW/cm2. Hydrogels were placed in a 24-well plate with 1 mL of 

cell culture media and incubated at 37 ᵒC and 5% CO2 for various periods of time.  

3.2.8.4. 2D cell encapsulation 

2D hydrogels with and without RGD peptide (sequence GCGYGRGDSPG) were made as 

described in the main manuscript (4 wt% total polymer, T/NB=0.4, 0.05% I2959, 90 s UV 

irradiation) and placed in a 6-well plate. Passage five hMSCs were suspended in sterile PBS (DPBS) 
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and 3 mL of suspension was added to each well (100,000 cell cm-2). Hydrogels were incubated for 

24 hours at 37 ᵒC and 5% CO2 prior to fluorescence imaging using a ZEISS.AXIO Observer.Z1 

microscope. Before imaging, cells were fixed using a 4 wt% paraformaldehyde solution that was 

prepared by adding 1 mL deionized water and 10 µL NaOH (1N) to 0.4 g of paraformaldehyde in a 

vial, heating it at 80 ᵒC in water bath for 10 minutes, and then adding 9 mL DPBS and 2 µL HCL 

(6N) to the solution (for each 10 mL of 4 wt% paraformaldehyde solution). This paraformaldehyde 

solution (3 mL) was added to each well and incubated for 15 minutes at room temperature. 

Afterward, hydrogels were washed with DPBS twice. The fixed hydrogels and cells were kept in 3 

mL of 0.5 wt% solution of triton X-100 at room temperature for 20 minutes to permeabilize the 

cells. The hydrogels were washed with DPBS at least twice before staining the cells with DAPI and 

phalloidin. A solution of DAPI (300 nM) and phalloidin (2.5 v/v %) in DPBS was prepared in which 

hydrogels were incubated for 20 minutes at room temperature. Hydrogels were washed twice 

with DPBS prior to imaging. 

3.2.8.5. Cell imaging 

Florescence microscopy was conducted for hydrogels at days 3, 7, 10, 17, and 21 using a 

ZEISS.AXIO Observer.Z1 microscope. Hydrogels (n=4 for each formula at each day) were stained 

for 40 minutes with a LIVE/DEAD viability assay (Life Technologies) (0.25 µl of calcein and 1 µL of 

Ethidium homodimer-1 in 1 mL of sterile PBS for each hydrogel) prior to imaging. Live (green) and 

dead (red) cells were counted using ImageJ software and the ratio of live cells to total cells was 

defined as cell viability. The aspect ratio of the cells was calculated to study cell spreading and 

growth in 3D hydrogels over 21 days. ImageJ was use to take straight-line measurements along 

the longest axis of cells and the axis perpendicular to it. The aspect ratio was defined as ratio of 

the long axis to short axis.  
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3.3. Results and Discussion 

3.3.1. Norbornene functionalization of CMC (NorCMC) 

Norbornene-functionalized CMC (NorCMC) was synthesized using an EDC coupling reaction 

between CMC and norbornene amine (Figure 3.1). Through precipitation in acetone, dialysis, and 

lyophilization, the product was obtained at a 70% overall yield. The norbornene functional group 

provides reactive sites on the CMC backbone that can undergo the thiol-norbornene click reaction 

to form cross-linked hydrogels.  

 

Figure 3.1. Functionalization of CMC with norbornene groups via EDC coupling reaction.  

 

The 1H-NMR spectrum of the product that is shown in Figure 3.2 confirmed norbornene 

functionalization as new broad peaks at 5.9-6.1 ppm and 3-4.5 ppm were visible. SEC 

chromatograms showed no significant change in molecular weight dispersity and a minimal 

decrease in relative molecular weight of the CMC before and after the functionalization reaction 

(Figure 3.3). Since the chemistry is not expected to degrade the CMC, this minor change in 

molecular weight can be a result of a change in hydrodynamic radius. Several degrees of 

functionality were obtained by varying the molar ratios of norbornene amine, NHS, and EDC 

relative to CMC (Table 3.1). For example, increasing molar ratios of NA, EDC, and NHS to repeat 

units from 0.7 to 1.4, increased the functionalization percentage from 9 to 15.  NorCMC with 18% 
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of the repeat units functionalized was used throughout these studies as this degree of 

functionalization provided numerous reaction points per polymer chain (56 NB groups per one 

CMC polymer chain on average that was sufficient for this work), while not noticeably altering its 

water solubility. Overall, these results demonstrated that this functionalization reaction can yield 

NorCMC at high yields and a sufficient degree of functionalization. 

 

Figure 3.2. NMR spectra of CMC and NorCMC. Representative 1H NMR spectra of (a) CMC and 
(b) NorCMC. Appearance of peaks at 6 ppm and in the range of 0.5- 3 ppm confirms that CMC 
was functionalized with norbornene amine. 
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Figure 3.3. SEC elusion curves of CMC and NorCMC. SEC elugram curves for CMC-90K (solid) and 
NorCMC (dashed) indicating that functionalization reaction was not destructive to CMC. Ɖ= 3.22, 
Mn=42 kg/mol for CMC and Ɖ= 3.33, Mn=36 kg/mol for NorCMC. (Measurements were conducted 
against PEO standards).  

Table 3.1. Functionalization parameters and degrees of functionality of CMC-90K with 
Norborneneamine (NA) via EDC coupling. 

Sample NaCMC 
Mass NaCMC 

(mg) 

Mole ratio to CMC 
RU 

Mole ratio to 
EDC HCl    

EDC 
HCl NHS NA NHS NA Time (hr) 

% 
funct. 

1 90k 250 0.27 3.50 7.00 5.02 10.03 18 3.5 
2 90k 250 0.70 0.70 0.70 1.00 1.01 18 9.0 
3 90k 250 1.40 1.40 1.41 1.00 1.01 18 15.0 
4 90k 4500 0.70 0.70 0.70 1.00 1.00 18 18.0 

 

3.3.2. Fabrication of NorCMC hydrogels with tunable moduli 

To fabricate NorCMC hydrogels, various amounts of NorCMC and dithiol cross-linker were 

mixed in phosphate buffered saline (PBS) with a UV-light sensitive radical initiator (I2959) (Figure 

3.4). Irradiation of the mixture with UV-light (320-390 nm, 10 mW/cm2) generated radicals from 

the I2959 to initiate the radical thiol-norbornene reaction. This particular UV wavelength and 
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radical initiator pair has been shown to be cytocompatible and has been used in gel formation 

and cell encapsulation previously.8,9,64-67 In addition, this system enables forming testable 

materials with irradiation time as little as 12 s for some formulations. Since this method is light 

induced, cross-linking can be stopped simply by removing UV irradiation. This control is 

advantageous as moduli can be targeted and unreacted norbornene (NB) can be used for further 

functionalization or additional cross-linking. In addition to the duration of UV exposure, the 

mechanical properties of thiol-ene hydrogels can be tuned by varying the polymer weight percent 

(wt%), molar ratio of thiol to norbornene (T/NB), and cross-linker molecule. 

 

Figure 3.4. Schematic of a NorCMC hydrogel fabrication through light initiated thiol-norbornene 
reaction. The dithiol molecule covalently cross-links NorCMC chains. 

Furthermore, the properties of cross-linker (stimuli responsiveness, enzymatic degradation, 

reactivity, etc.) can be imparted to the hydrogel by this cross-linking process.62 In general, any 

molecule with at least two thiol groups could potentially be used to cross-link NorCMC. To 

investigate whether these thiol-norbornene hydrogel characteristics held true for the NorCMC 

hydrogels, a variety of dithiol cross-linkers with different lengths were explored (Figure 3.5). 
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Figure 3.5. Various dithiol cross-linkers. The dithiol cross-linkers investigated to form NorCMC 
hydrogels. Dithiothreitol (DTT), 2,2'-(ethylenedioxy)diethanethiol (DTDEG), dithiol-terminated 
poly(ethylene glycol) (DTPEG), dithiol-terminated poly(N-isopropyl acrylamide) (DTPN), and a 
peptide with a matrix metalloproteinase (MMP) degradable sequence (MMP-deg) were used in 
this study to cross-link NorCMC. 

The modulus of a hydrogel has an inverse relationship to the molecular weight between cross-

links and as a result, controlling the formation and density of these cross-links can be used to 

target the stiffness of the hydrogel. To explore this behavior for NorCMC hydrogels, the UV 

irradiation time, polymer content, T/NB, and cross-linker type were varied one at a time while 

keeping all other parameters constant (Table 3.2). 
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Table 3.2. NorCMC hydrogels cros-linked with several dithiols at different conditions and their 
corresponding compression modulus. 

Code Cross-linker Wt %a T/NBb 
Irradiation time 

(s) 
E (kPa)c 

NorCMC-DTT-12 DTT 4 0.5 12 16.0±5.1 

NorCMC-DTT-15 DTT 4 0.5 15 26.9±4.2 

NorCMC-DTT-25 DTT 4 0.5 25 32.8±4.4 

NorCMC-DTT-30 DTT 4 0.5 30 30.3±3.1 

NorCMC-DTT-60 DTT 4 0.5 60 36.4±8.0 

NorCMC-DTT-120 DTT 4 0.5 120 42.2±5.9 

NorCMC-DTT-0.1 DTT 4 0.1 60 5.3±3.1 

NorCMC-DTT-0.3 DTT 4 0.3 60 12.6±3.4 

NorCMC-DTT-0.7 DTT 4 0.7 60 76.9±13.4 

NorCMC-DTT-1 DTT 4 1 60 103.0±14.4 

NorCMC-DTT-1.2 DTT 4 1.2 60 40.3±2.4 

NorCMC-DTT-1.5 DTT 4 1.5 60 32.3±2.7 

NorCMC-DTT-2 DTT 2 0.5 60 11.2±3.1 

NorCMC-DTT-3 DTT 3 0.5 60 20.1±1.7 

NorCMC-DTT-5 DTT 5 0.5 60 66.0±6.8 

NorCMC-DTT-6 DTT 6 0.5 60 89.2±15.5 

NorCMC-MMP-deg MMP-deg 4 0.5 60 7.8±1.2 

NorCMC-DTDEG DTDEG 4 0.5 60 29.0±9.8 

NorCMC-DTPEG DTPEG 4 0.5 60 9.0±4.6 

NorCMC-DTPN-0.5 

NorCMC-DTPN-0.2 

DTPN 

DTPN 

4 

4 

0.5 

0.2 

60 

60 

4.7±1.2 

1.7±0.9 

a total polymer weight percent, b molar ratio of thiol to norbornene groups, and c compression 

modulus. 
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 Using DTT as the cross-linker (T/NB=0.5 and 4 wt% polymer), stable hydrogels could be formed 

with a modulus of 16 kPa in just 12 s of UV irradiation as shown in Figure 3.6.a. Irradiation times 

less than 12 s failed to form a testable hydrogel under these conditions. Rheological study on 

norbornene functionalized gelatin (GelNB) hydrogel cross-linked by DTT through a light induced 

thiol-ene reaction done by Lin et al. showed a gel point at 12 s of irradiation which proves the fast 

nature of thiol-norbornene system.59 However, in NorCMC-DTT 12 s of irradiation led to a 

dimensionally stable and mechanically testable hydrogel. The modulus could be tuned from 16 

kPa to 32 kPa by irradiating the solutions for 25 s, demonstrating that varying the irradiation over 

this short window could be used to control the modulus of the hydrogels. After 25 s, the modulus 

appeared to plateau, suggesting that most of the DTT had reacted causing the modulus change as 

a function of irradiation time to become significantly slower. This observed behavior due to UV 

irradiation is consistent with other thiol-norbornene systems.[30]  

 

Figure 3.6. Compression modulus of NorCMC hydrogels. Compression modulus of NorCMC 
hydrogels as a function of (a) UV irradiation time (4 wt%, T/NB=0.5), (b) polymer weight percent 
(wt%) (T/NB=0.5, 60 s UV irradiation), (c) thiol to norbornene molar ratio (T/NB) (4 wt%, 60 s UV 
irradiation), and (d) cross-linker type (6 wt%, T/NB=0.5, 60 s UV irradiation), where the chemical 
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structures of the cross-linkers are given in Figure 2. Error bars represent standard deviations for 
measurements (n ≥9). 

Figure 3.6.b shows the effect of polymer wt% on the modulus of the hydrogels where 

hydrogels with 2, 3, 4, 5, and 6 wt% were formed and studied (T/NB=0.5, 60 s UV irradiation, DTT 

cross-linker). The range of explored polymer wt% were limited to these values as stable hydrogels 

were not possible below 2 wt% and above 6 wt% the solution was too viscous to pipette. 

Increasing polymer content from 2 to 6 wt% led to an increase in compression modulus from 11 

to 89 kPa. In a defined volume and when all the other parameters are kept constant, more 

polymer content provides more reactive sites available for cross-linking and thus a higher cross-

link density. These results demonstrate that polymer wt% is another parameter that can 

straightforwardly be used to tune modulus and is in agreement with the results of previous study 

on GelNB-DTT hydrogels.[53] The most significant modulus change ranged from 5 to 103 kPa when 

the T/NB was varied from 0.1 to 1 (Figure 3.6.c). The more available thiols (higher T/NB) led to 

more cross-linking reactions and stiffer hydrogels. For T/NB ratios higher than 1, an expected 

modulus decrease was observed as the number of thiols exceeds the available NB groups and 

saturate the NB groups without forming effective cross-links.[30] This was demonstrated by 

calculating the concentration of cross-linker in final hydrogel volume and comparing it to the 

effective cross-link densities (Figure 3.7). Effective cross-link density was calculated using 

measured modulus and hydrogel volume after swelling and described previously in Chapter 2 

Section 2.2.14. The measured moduli cover those of most soft tissues such as kidney and nucleus 

pulposus tissues (5-10 kPa), cardiac tissues (10-15 kPa), and muscle tissue (20-40 kPa), 

demonstrating that NorCMC hydrogels can mimic the stiffness of many soft tissues.[9,13,54,55]   
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Figure 3.7. Cross-linker concentration and effective cross-link density with different T/NB. Error 
bars represent the tandard deviation for n≥5). a) Cross-linker density at hydrogel volumes after 
swelling for hydrogels with different T/NB (4 wt% total polymer, 60 s UV irradiation). b) Effective 
cross-link density calculated using obtained modulus values and hydrogel volumes after swelling 
for hydrogels with different T/NB (4 wt% total polymer, 60 s UV irradiation). 

The modulus of hydrogels was also affected by the type of cross-linker used to form the 

hydrogel. In this study, four cross-linkers with different molecular weights (MW) were used: DTT 

(154 g/mol), DTDEG (182 g/mol), DTPEG (1500 g/mol), and DTPN (7000 g/mol). As shown in Figure 

3.6.d, as the MW of the cross-linker increased, the compression modulus of the hydrogels 

decreased. By varying the cross-linkers at the same gelation conditions, moduli as high as 36.4 

kPa could be achieved with DTT, while with DTPN a modulus of 4.7 kPa was obtained. In general, 

the stiffness of a hydrogel is inversely related to the MW between cross-links. At the same 

polymer content, if a cross-linker with high MW is used (DTPEG and DTPN), the MW of cross-linker 

adds in MW between cross-links and decreases the modulus. But the extent of modulus decrease 

is also dependent on the swelling of the hydrogel and concentration of cross-linker at the final 

hydrogel volume.it seems that a combination of different factors determines the stiffness of the 

material. As shown in Figure 3.8, lower cross-linker concentration in swelled hydrogel volume led 

to lower compression modulus and effective cross-link density.  
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Figure 3.8. Cross-linker concentration and effective cross-link density with different cross-linkers. 
Error bars represent the tandard deviation for n≥5). a) Cross-linker density at hydrogel volumes 
after swelling for hydrogels with different cross-linkers (T/NB=0.5, 60 s UV irradiation). b) Effective 
cross-link density calculated using obtained modulus values and hydrogel volumes after swelling 
for hydrogels with different cross-linkers (T/NB=0.5, 60 s UV irradiation). 

When long polymer chains were used as cross-linkers, to keep the total polymer content (4 

wt%) and T/NB (0.5) constant, the NorCMC content would be less compared to when DTT and 

DTDEG are used. That also decreases the number of cross-links in a defined volume. Although the 

moles of DTT and DTDEG are the same, the cross-link density of NorCMC-DTDEG hydrogels are 

higher due to lower volume of hydrogel after swelling. Based on the obtained modulus and 

calculated cross-link densities, the stiffness of NorCMC hydrogels would be affected by several 

factors such as MW of the cross-linker, the extent of swelling, and the polymer content. In total, 

all the hydrogel fabrication parameters explored yielded moduli that spanned two orders of 

magnitude (2 – 103 kPa) while using the same NorCMC. This range of compression modulus is 

comparable with NorHA hydrogels that was reported previously.62 This highly selectable nature of 

the modulus for NorCMC hydrogels can be used to target the wide range of soft tissue stiffness. 

3.3.3. Fabricating thermo-responsive hydrogels 

NorCMC was cross-linked with PNIPAM to create thermoresponsive hydrogels and 

demonstrate that stimuli response can be introduced through cross-linker selection. PNIPAM has 
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a lower critical solution temperature (LCST) around 32 ᵒC above which the PNIPAM becomes 

insoluble in water and aggregating in the hydrated medium of a hydrogel (Figure 3.9.a).28,97,80,133 

This collapse into aggregates results in expulsion of the water content of the hydrogel.134 

Thermoresponsive NorCMC hydrogels were generated using a dithiol end-functionalized PNIPAM 

(DTPN, Figure 3.5) cross-linker with a Mn of 7000 g/mol (58 repeat units). This molecular weight 

of DTPN was chosen to ensure that the NorCMC is the major component of the hydrogel. Lower 

molecular weight DTPN may suffer from lower water solubility or low thermoresponsiveness at 

smaller T/NB. Unlike previous studies where chemical cross-linking of PNIPAM with an external 

cross-linker molecule have been applied, here PNIPAM itself was used as a dithiol molecule to 

cross-link NorCMC polymer chains to form gels that reduces the hazard of external cross-linkers. 

In addition, compare to physically gelled PNIPAM through temperature dependent self-assembly 

mechanisms, these chemically cross-linked hydrogels are stable at all temperatures. These 

NorCMC-PNIPAM hydrogels preserve their shape and cross-link density and only undergo 

reversible isotropic volume change in response to change in temperature. This method permits 

forming hydrogels with different thermoresponsiveness and mechanical properties without 

changing the length of PNIPAM or the number of functional groups on matrix (NorCMC). 

Moreover, this process allows to photopattern the thermoresponsiveness using a photomask that 

is discussed later in this paper. To demonstrate the tenability of this system, two formulations of 

hydrogels were synthesized with different T/NB (T/NB=0.2 and 0.5) at the same total polymer 

content of 6 wt% after 60 s of UV irradiation (10 mW/cm2 and 0.05 wt% I2959). To measure the 

thermoresponse, the percent of hydrogel mass (water) lost upon heating relative to 4 °C (ML) was 

measured at 37 and 55 °C for the two formulations (Figure 3.9.b).  ML values at 37 °C for T/NB of 

0.2 and 0.5 were 10.8 and 39.6%, respectively, and significantly different (α= 0.05), confirming 
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that DTPN content can control the thermoresponse in NorCMC in a manner similar to previous 

work with norbornene functionalized hyaluronic acid as discussed in Chapter 2.  

Figure 3.9. Thermoresponsivity of NorCMC/DTPN hydrogels. a) Schematic of a hydrogel cross-
linked with DTPN below the LCST of PNIPAM (left) and the collapse of PNIPAM into globules at 
temperatures above the LCST (right), causing contraction of the hydrogel mesh. b) NorCMC/DTPN 
hydrogel mass loss upon heating (ML) at 37 and 55 °C for NorCMC-DTPN-0.5 (solid, T/NB=0.5, 6 
wt%, 60 s) and NorCMC-DTPN-0.2 (crosshatched, T/NB=0.2, 6 wt%, 60 s) hydrogels. Error bars 
represent one standard deviation (n = 5). ** denotes a significant difference (α= 0.05) between 
values for different T/NB at the same temperature (37 °C) and * denotes a significant difference 
(α= 0.05) between values for the same T/NB but at different temperatures. 

Previous work with hyaluronic acid hydrogels made with these DTPN cross-linkers has 

demonstrated that the degree of thermoresponse was a function of temperature (Chapter 2). 

Similar results were observed for the NorCMC/DTPN hydrogels when heated to 55 °C as indicated 

by significant ML increase as compared the values at 37 °C (Figure 3.9.b, marked by *). The ML as 

a function of temperature is likely due to the DTPN cross-linkers having a broad LCST.135 

Additionally, the thermoresponse was reversible as cooling the hydrogels back to 4 ᵒC in PBS 

caused solution uptake and decreased ML (Figure 3.10). Some hysteresis was evident in this 

experiment, indicating that some permanent deformation or degradation may have occurred 

upon heating.  
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Figure 3.10. Mass loss percentage of NorCMC/DTPN hydrogels. Percent mass loss (ML) of 
NorCMC/DTPN (6 wt% polymer, T/NB=0.5, 60 s UV irradiation, DTPN = 7000 g/mol) hydrogels at 
different temperatures. Error bars represent standard deviations (n=5). 

Interestingly, as shown in Figure 3.11, NorCMC/DTT hydrogels demonstrated some 

thermoresponse when heated, but to a significantly lesser extent as compared to the 

NorCMC/DTPN hydrogels, confirming that DTPN inclusion gives the significant stimuli response. 

The exact cause of the minor NorCMC/DTT thermoresponse is not clear, but some functionalized 

celluloses are known the exhibit LCST behavior so the norbornene functionality may contribute 

to this behavior.136 Since stimuli response can be controlled by selecting an appropriate cross-

linker, these NorCMC materials with DTPN cross-linkers could be used for drug delivery 

applications.32,33,41,44 
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Figure 3.11. Mass loss (ML) percentage upon heat/cool cycles of NorCMC/DTT and NorCMC/DTPN 
hydrogels (4 wt% polymer, T/NB=0.5, 60 s UV irradiation). Error bars represent standard 
deviations (n≥ 4). 

3.3.4. Spatiotemporal modification of hydrogels 

The spatial modification of NorCMC hydrogels was investigated by photopatterning thin (2D) 

hydrogels with a thiol-terminated fluorescent dye. The 2D hydrogels were made by 90 s of UV 

irradiation on a solution of NorCMC (4 wt%), DTT cross-linker (T/NB=0.5), and I2959 (0.05 wt%) in 

PBS to cross-link and attach it to a thiol-coated coverslip. Since the formulation had a T/NB of 0.5, 

unreacted NB groups remained after gelation and were available for further functionalization with 

thiol-terminated rhodamine B (Figure 3.12.a). The 2D hydrogels were incubated with a solution 

of 1 mg/mL of this rhodamine B-peptide and 0.05 wt % radical initiator (I2959) in PBS. After 24 

hours at 4 ᵒC, the hydrogels were exposed to UV light for 60 s while covered with a photomask 

with alternating 200 µm stripes. Unreacted dye (rhodamine B-peptide) was washed out prior to 

fluorescence imaging by incubating for 24 h at 37 ᵒC in 1 mL of PBS. Patterned red stripes in the 

fluorescence images (Figure 3.12.b) demonstrated that NorCMC could be photopatterned using a 

method similar to previous studies.71 The widths of the stripes were measured using ImageJ 
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software (192 ± 8 µm for the black stripes and 202 ± 8 µm for the red stripes) and were similar to 

the photomask stripes (200 µm), demonstrating the precision of the photopatterning process.  

 

Figure 3.12. Spatiotemporal modification of 2D NorCMC hydrogels. Spatiotemporal modification 
of 2D NorCMC hydrogels through a light induced thiol-norbornene reaction to photopattern small 
molecules and additional cross-links. a) The chemical structure of the thiol-terminated rhodamine 
B dye (peptide with the sequence GCDDD-rhodamine B) and b) a representative fluorescence 
image (Zeiss.Axio Observer.Z1 microscope at 5X magnification) of a 2D NorCMC/DTT hydrogel (4 
wt%, T/NB=0.5, 90 s UV irradiation) photopatterned (200 µm line photomask) with the rhodamine 
B peptide. Scale bars represent 100 µm. 

The spatiotemporal patterning of stimuli response was investigated by patterning DTPN into a 

NorCMC hydrogel cross-linked with DTPEG (4 wt% polymer, T/NB=0.3, 60 s UV irradiation). A 

representative optical image of the 3D NorCMC/DTPEG hydrogel surface (Figure 3.13.a) 

demonstrates the smooth surface of the original hydrogel. Since the NorCMC/DTPEG hydrogel 

was synthesized with NB groups remaining, DTPN and radical initiator (8.5 mg/mL of DTPN and 

0.05 wt% I2959) were introduced to it and photopatterned only in regions that were exposed to 

UV light through a 200 µm striped photomask. Figure 3.13.b and 3.13.c shows a representative 

image of the patterned hydrogels at 4 ᵒC (below the LCST of PNIPAM). The DTPN regions appear 

as depressions in the hydrogel surface due to the increased level of cross-linking.  
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Figure 3.13. Spatiotemporal modification of 3D NorCMC hydrogels. Spatiotemporal modification 
of 3D NorCMC hydrogels through a light induced thiol-norbornene reaction to photopattern 
polymers and additional cross-links. Representative optical images (Zeiss.Axio Observer.Z1 
microscope at 5X magnification) of a) an unpatterned 3D NorCMC/DTPEG hydrogel (4 wt%, 
T/NB=0.3, 60 s UV irradiation), b) a DTPN patterned NorCMC/DTPEG hydrogel at 4 ᵒC, and c) a 
DTPN patterned NorCMC/DTPEG hydrogel at 37 ᵒC and d) a graph that shows the difference 
between the width of DTPEG cross-linked regions and DTPEG/DTPN cross-linked stripes (distance 
between alternating stripes) measured by ImageJ software at room temperature (RT) and at 37 
ᵒC are shown. The statistically significant (α = 0.05) decreased width of PNIPAM patterned stripe 
(marked by *) upon heating confirms addition of thermoresponsiveness to the hydrogel via 
photopatterning. Optical images (Zeiss.Axio Observer.Z1, 10X magnification) of NorCMC/DTPEG 
hydrogel surface. e) Surface of another initial NorCMC/DTPEG hydrogel, and f) surface of the same 
hydrogel after 5 minutes UV irradiation through a striped photomask with 0.05 wt% I2959 present 
after incubation for 24 h are shown as the control experiment. Scale bars represent 100 µm. 
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Measurements of the line widths (Figure 3.13.d) for the DTPEG only cross-linked regions 

indicate that stripe width is nearly the width of stripes of the photomask (200 µm), while DTPN 

cross-linked regions are significantly narrower due to the increased cross-linking and therefore 

reduced swelling. Upon heating above the LCST (37 ᵒC), the DTPN cross-linked stripes significantly 

shrunk (Figure 3.13.c and 3.13.d) due to the phase transition of PNIPAM. As a control experiment, 

NorCMC/DTPEG hydrogels were incubated at 4 °C in a solution of I2959 (0.05 wt%) in PBS for 24 

hours and then exposed to UV light for 5 minutes while covered with the photomask. Optical 

images of the resulting hydrogels do not show any patterns (Figure 3.13.e and 3.13.f), confirming 

that these patterns appear because of additional cross-linking with DTPN.  

This thermoresponse demonstrates that stimuli response can be spatiotemporally patterned 

into NorCMC hydrogels, which could be used in future applications to change surface topology, 

direct drug delivery, and affect cell behavior. This experiment was a demonstration of the ability 

of the NorCMC to be photopatterned by a variety of thiol functionalized molecules including 

peptides, or dithiol cross-linkers including stimuli responsive polymers. Specific experiments can 

be designed to investigate the applications of this system in cell related studies.   

3.3.5. Encapsulation of hMSC into NorCMC hydrogels 

As NorCMC was introduced as a potential biomaterial, the cytocompatibility of the NorCMC 

hydrogels was investigated with several different cross-linkers. The viability of hMSCs 

encapsulated in NorCMC/DTT and NorCMC/MMP-deg hydrogels (4 wt%, T/NB=0.5, 60 s UV 

irradiation) was studied over 21 days. The cysteine-functionalized cell adhesion peptide 

GCGYGRGDSPG (RGD) was included in another set of hydrogels with the same cross-linkers to 

examine whether it affected the viability.  Live/Dead staining of the hMSCs for all hydrogel 

formulations showed a high level of cytocompatibility of these materials with and without RGD 
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(Figure 3.14). At day 3 of cell culture, almost 100% of the hMSCs survived and after 21 days still 

93% and 85% of cells were alive in NorCMC/DTT and NorCMC/MMP-deg hydrogels, respectively.  

 

Figure 3.14. Viability of hMSCs in NorCMC/DTT and NorCMC/MMP-deg hydrogels over 21 d of 
incubation. All hydrogel formulations had higher than 85% viability after 21 days of culture. To 
generate these data, ImageJ software was used to count live (stained green) and dead (stained 
red) cells from fluorescence images and the percentage of live cells to total cells was reported as 
viability. Error bars represent standard deviations (n≥9). 

In another study, NorCMC hydrogels that were cross-linked with DTPN had 73% hMSC viability 

at day 7 of encapsulation as shown in Figure 3.15. The lower viability in the NorCMC/DTPN 

hydrogels may be due to the coil collapse of the DTPN tightening the polymer network so that 

nutrients cannot easily reach the hMSCs. Overall, the high hMSC viabilities observed over several 

weeks confirm that the NorCMC matrix and encapsulation procedure are biocompatible. 
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Figure 3.15. Cytotoxicity of NorCMC hydrogels cross-linked with DTPN. a) Fluorescence imaging 
(5x magnification) of hMSCs encapsulated in NorCMC/DTPN hydrogel (6 wt%, T/NB= 0.5, 60 sec. 
UV irradiation, DTPN with 64 repeat units) at day 7 (Scale bar represents 200µm). b) Live/dead 
cell counts at days 1, 3, 5, and 7 after encapsulation based on fluorescence images and using 
ImageJ software. The graph shows 85% viability at day 1 and 75% at day 7 suggesting that the 
DTPN cross-linker is relatively cytocompatible despite its thermoresponsivity and hydrophobicity 
at 37 °C. Error bars represent standard deviations (n=3). 

 To further demonstrate the utility of these hydrogels as extracellular matrix mimics, spreading 

and remodeling were investigated with hMSCs in NorCMC hydrogels cross-linked by a non-

degradable (DTT) and an enzymatically degradable (MMP-deg) cross-linkers over 21 days. 

Fluorescence microscopy analysis of the hMSCs (Figure 3.16) indicated that the cross-linkers 

affected cell behavior. Aspect ratio measurements of the hMSCs at Day 3, 7, 10, 17, and 21 of 

encapsulation (Figure 3.17) show that hMSCs cells preserved their round shape in the non-

degradable (DTT cross-linked) hydrogel as approximately 40% of the hMSCs had an aspect ratio 

of 1-1.2. When the MMP-deg cross-linker was used, hMSCs could cleave the peptide and remodel 

their environment to spread, yielding aspect ratios greater than 2 for more than 60% of the cells 

after 10 days and increased at days 17 and 21 with longer incubation times.138] Although in MMP-

degradable hydrogels the cell spreading changes in response to matrix moduli, but it has been 



93 
 

shown that in non-degradable 3D hydrogels, mMSC morphology is not affected by the matrix 

mechanical properties and spherical shape is preserved regardless to cell fate .138 This suggest 

that for cell spreading, degradability of the matrix is essential. It must be mentioned that this fact 

is in contrast with findings in 2D hydrogels where cell morphology and fate is determined by the 

substrate stiffness.138  

 

Figure 3.16. Representative fluorescence microscopy images of hMSCs encapsulated in NorCMC 
hydrogels cross-linked by DTT or MMP-deg and with or without RGD peptide over 21 days 
(Zeiss.Axio Observer.Z1, 5X magnification). The small number of cells in some pictures could be a 
result of uneven mixing and cell suspension in the pre-gelation solution (Scale bars represent 
100µm). 
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Figure 3.17. Aspect ratio histogram of hMSC Culture in 3D NorCMC Hydrogels at days 3, 7, 10, 17, 
and 21 of hMSC culture. 

Interestingly, the average aspect ratio of the MMP-deg+RGD formulation (Figure 3.18) gave a 

decreasing trend after day 10, suggesting that the cell spreading and cell behavior may have 

begun a different phase. With the hMSCs able to remodel their microenvironment and the 
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demonstrated spatiotemporal control over physical and chemical properties, these NorCMC 

hydrogels should be viable materials for biomaterials and cell differentiation experiments. 

 

Figure 3.18. The average of aspect ratios over 3 weeks. The average of aspect ratios over 3 weeks 
of hMSC culture in NorCMC 3D hydrogels cross-linked with different cross-linkers with/without 
RGD adhesion peptide. Error bars represent standard deviations (n≥9). 

Native cellular adhesion to NorCMC hydrogels without the RGD cell adhesion peptide was also 

investigated. In one experiment, hMSCs were cultured on 2D NorCMC/DTT hydrogels with and 

without RGD included in the formulation. In both formulations, fluorescence microscopy images 

(Figure 3.19) indicated that hMSCs adhered to the surface regardless of RGD content and no 

discernable difference in cell structure was observed.  
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Figure 3.19. Fluorescence images (Zeiss.Axio Observer.Z1, 10X magnification) of hMSCs on the 
surface of 2D NorCMC/DTT hydrogels obtained at day 3 of incubation. Representative images are 
of a) a hydrogel that contains RGD adhesion peptide and b) a hydrogel without RGD adhesion 
peptide. Cell adhesion and spreading were observed on both hydrogel surfaces, suggesting that 
NorCMC/DTT hydrogels have cell adhesion properties in the absence of RGD. 

In the 3D hydrogels, cell spreading was observed with the MMP degradable cross-linkers 

without RGD present (Figure 3.16) to a lesser extent as compared to the hydrogel with RGD (Figure 

3.18), indicating that RGD is not necessarily required for spreading, but that RGD does help 

promote it. Similar observations have been reported by Mahoney and Anseth in 3D PEG-based 

hydrogels where a neural tissue had been grown in the hydrogel.47 After 16 days of encapsulation, 

they observed fibronectin production, suggesting that in the absence of RGD, cells can produce 

fibronectin to adhere to their culture medium. For hMSCs to spread in 3D hydrogels, in addition 

to the protease degradability, cell adhesion (e.g. through an integrin-RGD binding) is also 

required.59,139 In the present study, hMSCs can spread in just 3 days after encapsulation without 

RGD in NorCMC hydrogels suggesting that RGD-bearing proteins such as fibronectin and 

vitronectin may be produced by the hMSCs to promote cell adhesion; however, further 

experiments are needed to investigate this observation.  
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3.4. Conclusion 

CMC was successfully functionalized with norbornene groups via an EDC coupling reaction to 

create NorCMC. A light induced thiol-norbornene reaction was used to cross-link NorCMC with 

dithiol molecules to fabricate hydrogels with highly tunable compression moduli ranging from 2 

to 103 kPa. The hydrogel modulus could be controlled by varying the UV irradiation time, T/NB, 

polymer wt%, and cross-linker. Temperature-responsive hydrogels could be created by using 

DTPN as the cross-linker and this stimuli response could be spatiotemporally introduced into the 

hydrogel through photopatterning. Both 2D hydrogels and 3D hydrogels could be patterned with 

molecules through this strategy. In addition, hMSCs could be encapsulated in and on hydrogels 

with and without RGD adhesion peptide while retaining high cell viability. By selecting a MMP 

degradable cross-linker, hMSCs could remodel their microenvironment and significantly spread, 

further demonstrating that NorCMC as a promising versatile biomaterial for a variety of 

biomedical applications. 
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CHAPTER 4 

FUNCTIONALIZATION AND CHEMICAL GELATION OF CELLULOSE NANOFIBRILS (CNF) VIA THIOL-

NORBORNENE REACTION 

 

4.1. Introduction 

CNF hydrogels have been reported previously as scaffolds for tissue engineering because their 

fibrillar structure mimics the fibrous components of the extracellular matrix (ECM). Physically 

cross-linked CNF hydrogels lack stability and mechanical strength. Therefore, covalent cross-

linking is need to provide the required stiffness and stability to the hydrogel. Current methods to 

covalently cross-link CNF suffer from either low cell viability or long gelation time. Also, these 

methods do not allow for spatiotemporal modification of the scaffold. Regarding these issues, 

CNF was functionalized with norbornene groups (nCNF) followed by thiol-norbornene cross-

linking reaction to form hydrogels with controllable mechanical properties. Chemically cross-

linked nCNF hydrogels were dimensionally stable in aqueous media for months without falling 

apart. Rheological studies on CNF hydrogels was conducted showed the shear-thinning behavior 

of CNF after functionalization and chemical gelation. The viability of stem cells in CNF-based 

hydrogels were also studied to show the potential applications of these materials in biomedical 

studies.  
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4.2. Experimental 

4.2.1. Materials 

Cellulose nanofibrils (CNFs) were produced at the University of Maine Process Development 

Center from softwood bleached kraft pulp as an aqueous dispersion with 3 wt% solid content. To 

determine the average diameter of cellulose fibers, diluted CNFs (0.04 wt% in deionized water) 

were first evaporated on a copper grid. Then uranyl acetate was used as a negative dye and 

images of the grid sample were collected using transmission electron microscopy (TEM) (CM10, 

Philips) and the Gatan microscopy software (v2.31). ImageJ software was used to measure the 

diameter of fibers which was determined to be 124±25 nm in average. 5-norbornene-2,3-

dicarboxylic anhydride (NB) was purchased from TCI. 2-Hydroxy-4'-(2-hydroxyethoxy)-2-

methylpropiophenone (I2959), 2,2’-(ethylenedioxy)diethanethiol (DEG), poly(ethylene 

glycol)dithiol Mn=1500 g/mol  (DTPEG 1.5k), poly(ethylene glycol)dithiol Mn=3400 g/mol (DTPEG 

3k), and N,N,N’,N’-tetramethylethylenediamine (TEMED) were purchased from Sigma-Aldrich. 

Ammonium persulfate (APS) was purchased from Acros Organics. Cellulase (recombinant 

hydrolase enzymes) from Tricoderma Reesei was purchased from Sigma-Aldrich in aqueous 

solution form with ≥700 units/g activity and 1.10-1.30 g/mL density. All other reagent were 

purchase from Fisher Scientific and used without further purification. 

4.2.2. Synthesis of norbornene functionalized CNF (nCNF) 

In a representative synthesis, 33 g of 3 wt% CNF (6 mmol of anhydroglucose repeat units) was 

dispersed in 67 mL of deionized water to obtain 1 wt% CNF dispersion. To this dispersion, 19.73 g 

of 5-norbornene-2,3-dicarboxylic anhydride (120 mmol, 20 molar excess to anhydroglucose 

repeat units) was added which caused the pH to drop to 4. Sodium hydroxide (NaOH) 10 M 

solution was added dropwise in 10 second intervals to bring up to and keep the pH between 9.5-



100 
 

10.5 throughout the reaction. The pH decrease slowed down as reaction completed and stopped 

after 2.5 hours. The product was washed with DI water five times via centrifugation at 7000 rpm 

for 15 minutes using a SORVALL RC-6 PLUS centrifuge (Thermo Electron Corporation) with a SLA-

1500 rotor. The final product, norbornene functionalized CNF (nCNF), was at 2.7 wt% after the 

fifth wash. This synthesis was repeated varying the concentration of 5-norbornene-2,3-

dicarboxylic anhydride (0.13, 0.3, 0.6, and 1.2 M) to obtain nCNF with several degrees of 

functionalization. Infrared (IR) Spectroscopy (PerkinElmer UATR Two, Diamond/ZnSe crystal, KBr 

windows, LiTaO3 detector) was used to prove the presence of norbornene (NB) functional groups 

on CNF and obtain the relative functionalization degree. The relative functionalization degree 

refers to the ratio of the area under the three bands of the functional group (Figure 4.1, blue) to 

the area under backbone C-O stretch band (Figure 4.1, red) from the IR absorbance spectrum. The 

red area is constant for all nCNF samples that are made from the same CNF because it corresponds 

to the backbone C-O stretch. The blue area varies by changing the number of norbornene groups 

present on nCNF. The higher functionalization, the higher band area of functional group, and the 

higher ratio of bands. The nCNF dispersion was lyophilized prior to IR spectroscopy. 
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Figure 4.1. Example of an IR absorbance spectrum of nCNF. The red shaded area is the area under 
the C-O stretch band of the backbone and the blue shaded band area belongs to the functional 
group and contains C=O stretch of carboxylate, C=O stretch of ester, and C=C stretch of 
norbornene. The ratio of blue to red gives the relative amount of functionalization assuming that 
the red area is constant for all nCNF samples from the same CNF source. 

 

4.2.3. Quantitative determination of functionalization degree of nCNF 

4.2.3.1. CNF and nCNF Enzymatic Degradation 

CNF or nCNF dispersion was diluted using sodium acetate/acetic acid buffered solution (pH 5) 

to prepare 1 mL of 1 wt% CNF or nCNF dispersion. In a representative experiment, 0.27 g of 3.7 

wt% CNF was diluted in 730 µL NaOAC/HOAC buffer. To this, 10 µL of cellulase enzyme was added 

to the dispersion and incubated at 50 °C after vortexing for few seconds. The second dose of 

enzyme (10 µL) was added after 18 hours and incubated for more 2 hours. The mixture then was 

freeze-dried and re-dispersed in 0.65 mL of D2O for 1H-NMR spectroscopy. 

 1H NMR spectroscopy of CNF (D2O , 400 MHz) δ 1.73 ppm (Acetate -CH3, Singlet, 3H), 3-4 ppm 

(Glucose backbone, broad), 4.46 ppm (Anomeric H (β) doublet, 1H), 5.05 ppm (Anomeric H (α) 

doublet, 1H) 
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To degrade nCNF, 0.33 g of 2.7 wt% nCNF was dispersed in 670 µL of NaOAc/HOAc buffered 

solution at pH 5 (to make 1 mL of 1 wt% nCNF) and incubated at 50 °C after 10 µL of enzyme was 

added. After 18 hours, the second dose of enzyme (10 µL) was added to the dispersion and 

incubated for two more hours. Degraded sample was freeze-dried and then was dissolved in 0.65 

mL of D2O for 1H-NMR spectroscopy run.  To degrade hydrogels, 1 mL of sodium acetate buffer 

was added to a 50 µL-hydrogel. The rest of the procedure was the same as mentioned above. 

1H NMR spectroscopy of nCNF (D2O , 400 MHz) δ 1.17 ppm ( Norbornene bridge -CH2, Triplet, 

2Hs) 1.73 ppm (Acetate -CH3, Singlet, 3Hs), 2.90 ppm (Norbornene ester -CH, Singlet, 1H), 3-4 ppm 

(Glucose backbone, broad), 4.46 ppm (Anomeric H (β) doublet, 1H), 5.05 ppm (Anomeric H (α) 

doublet, 1H), 6.03 ppm (Norbornene double bond, singlet, 2Hs). 

4.2.3.2. Calculating the degree of functionalization using 1H-NMR spectroscopy 

The acetate peak at 1.7 ppm was used as internal standard peak to obtain the cellulose 

degradation extent. From the integration of a known amount of acetate, integration for 1 mole 

of protons was calculated. This value was used to obtain the number of moles of anomeric protons 

from the overall integration of anomeric hydrogen peaks at 4.46 and 5.25 ppm (X). The initial 

moles of anomeric hydrogen was obtained from the known solid content in CNF or nCNF samples 

(Y). The degradation degree would be calculated as below: 

Degradation degree= (X/Y)*100                                                                                    (Equation 4.1) 

The overall integration of anomeric hydrogen peaks and the integration of norbornene double 

bond peak at 6.03 ppm was used to calculate the degree of functionalization. The overall 

integration of anomeric hydrogen would be normalized for one hydrogen and norbornene double 

bond integration would be normalized for two hydrogen atoms. The calculation is shown below: 
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 (Integration of Hα + Integration of Hβ)/1 H = A                                          

Integration of norbornene double bond protons/2 = B 

Percentage of functionality assuming 100% degradation = (B/A) x 100               (Equation 4.2) 

The calculated value from Equation 4.2 is based on the assumption that nCNF was 100% 

degraded. If hydrogel was not completely degraded, the calculated value from Equation 4.2 must 

be multiplied by degradation extent (calculated from acetate peak as described earlier) to be 

corrected. 

Percentage of functionality = (Percentage of functionality assuming 100% degradation) x 

(degradation extent) 

4.2.4. Chemical cross-linking of nCNF 

nCNF (2.7 wt%) was centrifuged at 7000 rotations per minute (rpm) for 10 minutes to remove 

water (supernatant) until 4 wt% nCNF was obtained. nCNF hydrogels were formed at various 

molar ratios of thiol to norbornene (T/NB), cross-linker, and radical generating compounds. To 

prepare pre-gelelation dispersion, 4 wt% nCNF and various amount of cross-linker were mixed by 

vortexing for 20 minutes followed by mechanical stirring. The radical initiator 2-hydroxy-4'-(2-

hydroxyethoxy)-2-methylpropiophenone (I2959) (0.05 wt %) was added and mechanically mixed 

with the dispersion. Then, 50 µl portions of solution were transferred by a spatula to 1 mL syringes 

with the top cut off. The solution was covered with coverslip (0.22 mm thickness) and irradiated 

with 365 nm light (Omnicure S1000 UV lamp filtered for 320-390 nm) at 10 mW/cm2 power for 

20 minutes. The hydrogels were stored in 1 mL PBS for 24 hours at 4 °C prior to subsequent 

testing. 
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For thermal gelation, to the 4 wt% nCNF/cross-linker dispersion, APS and TEMED were added. 

The concentration of APS and TEMED were 10 mM at the final dispersion. After vortexing and 

mixing with a spatula, 50 µl portions of the dispersion were transferred to the syringes with the 

top cut off and sealed with glass coverslips and incubated at 37 °C for 180 minutes. The hydrogels 

were stored in 1 mL PBS for 24 hours at 4 °C prior to subsequent testing. 

4.2.5. Measure of compression modulus 

A dynamic mechanical analyzer (DMA) (Q8000 Thermal Analysis) with a compression fixture 

was used to measure the compression moduli of the hydrogels. The hydrogels (n≥4) were 

subjected to a constant compression strain rate experiment at 10% strain/min up to 30% total 

strain. Compression modulus was defined as the slope of strain-stress curve in the limit of 10 to 

20% compressive strain.  

4.2.6. Rheology measurements 

 The maximum storage modulus of dispersions were obtained from rheological experiment 

using a TA Discovery HR-2 rheometer with a 40 mm aluminum cone-plate geometry with a 2° 

angle. CNF (4 wt%), nCNF (4 wt%), or 4 wt% nCNF/DEG dispersion with 10 mM of APS and TEMED 

(for thermal radical generation) with total volume of 620 µL were transferred to an aluminum 

pelletier plate at 37 °C. The fixture was lowered to the geometry gap (60 µm). Water droplets 

were placed around the geometry and covered with a plastic cup to keep the surrounding humid 

to assure that hydrogels are not drying during the run.  

Time sweep measurements was run at 37 °C, 1 Hz oscillatory frequency, and 1% oscillatory 

strain for one hour. Oscillatory strain sweep (0.05% – 250%) was conducted at 37 °C and 1 Hz 

oscillatory frequency. Modulus recovery after shear-thinning test was done at 37 °C and a 
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constant oscillatory frequency (10 Hz) and alternating amplitude of oscillatory strain between 

0.5% strain and 250% strain. After dispersion was transferred to the pelletier plate, time sweep 

at 0.5% strain was run for 5 minutes. After the initial low strain run, high strain (250% strain) was 

applied for 2 minutes followed by a low strain (0.5% strain) run for 2 minutes. Two more cycles of 

this alternating high/low strain was done. 

4.2.7. Cell culture into 3D nCNF hydrogels 

Passage 5 human mesenchymal stem cells (hMSCs) were expanded and grown a week to 90% 

confluency in DMEM cell culture media (90% low glucose DMEM containing 9% fetal bovine serum 

(FBS), 1% Antibiotic-Antimycotic (100x), and 5 µL fibroblast growth factor). hMSCs then were 

washed with sterile PBS (DPBS) twice prior to trypsinizing. Warm (37 ᵒC) 0.05% trypsin/EDTA (3 

mL) was added to the 100 mm petri dish and swirled around until all cells were covered. The 

dishes were incubated at 37 ᵒC and 5% CO2 for 5-8 minutes. Warm media (37 ᵒC, 7 mL) was added 

to the dish and this suspension was transferred into a conical tube. Cells were centrifuged (5 

minutes at 200 rpm), the media was removed, and cells were suspended in 1 mL of media, and 

centrifuged again to creat a cell pellet. 

4.2.7.1. Method 1- suspending cells in dilute nCNF dispersion 

Diluted nCNF (1 wt%) was added to the hMSCs in a microcentrifuge tube and cells were 

redispersed into the dispersion with pipetting several times. The resulted dispersion was 

centrifuged (at 200 rpm for overall 30 minutes) and the extra water was removed to reach 4 wt% 

polymer. Portions (50 µL) of this dispersion (DEG at T/NB=1, 0.05 wt% I2959, UV irradiation at 10 

mW/cm-2) were irradiated for 10 minutes to gel. Hydrogels were placed in a 24-well plate with 1 

mL of media in each well and incubated at 37 ᵒC and 5% CO2 for 1 and 7 days. Every other day, 

media was removed and 1 mL fresh media was added. 
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4.2.7.2. Method 2- Seeding cells to nCNF-DEG aerogels 

nCNF-DEG hydrogels (4 wt% nCNF, T/NB=1, 0.05 wt% I2959, 10 min UV irradiation at 10 

mW/cm2) were made in 50 µL molds and stored in -20 °C freezer for 24 hours. Frozen hydrogels 

were lyophilized for two days to remove water and prepare nCNF-DEG freeze/dried gels. hMSCs 

were suspended in warm DMEM (1 mL per each freeze-dried gel) at the concentration of 30000 

cells/mL. Freeze-dried gels were placed in 24-well plate and 1 mL of hMSC suspension was added 

to each well and then were incubated at 37 ᵒC and 5% for 1, 3, and 7 days prior to imaging. As a 

control experiment, an aerogel was soaked in 1 mL DMEM without any cells suspended.  

4.2.8. Fluorescence imaging 

 Hydrogels (n=3 for each day) were stained for fluorescent imaging using Live/Dead viability 

assay (Life technologies, 0.25 µl of calcein and 1 µL of Ethidium homodimer-1 in 1 mL of sterile 

PBS for each hydrogel) for 40 minutes at room temperature. A ZEISS-AXIO Observer.Z1 

microscope was used to take z-stack images (25 stacks) of cells inside the gels. Three gels for each 

day were imaged and number of cells in two stacks from each gel (stacks 13 and 21, overall 6 

stacks) were counted using ImageJ software. Red dots (Nucleai DNA) and green dots (ECM) were 

counted to find the number of dead and live cells respectively. 
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4.3. Results and Discussion 

4.3.1. Functionalization of CNF 

The norbornene functional group was successfully added to CNF through an esterification 

reaction between the available hydroxyl groups on the surface of CNF and the anhydride of 5-

norbornene-2,3-dicarboxylic anhydride in aqueous dispersion (Figure 4.2).  Once added to the 

dispersion, the anhydride readily reacts with free hydroxyl groups of CNF to form the ester linkage 

and also a free carboxylic acid. This carboxylic acid formation accompanied by unwanted 

hydrolysis of anhydride by water molecules, which generates norbornene-2,3-dicarboxylic acid 

and contributes to a dramatic pH drop from neutral to pH 4. To adjust the pH, 10 M NaOH was 

added dropwise constantly for at least two hours. If too much NaOH was added at once (pH 13 or 

more), all the anhydrides would be hydrolyzed and therefore no reaction would take place. At the 

beginning of the reaction, because the concentration of anhydride is high, the esterification and 

hydrolysis reactions are fast and pH drops very quickly. So, NaOH should be added every 5 seconds 

to keep pH at the desired range. After around two hours, the reaction slowed down indicated by 

slower pH change. The reaction was considered complete when no more pH drop was observed 

over 30 minutes (around 4 hours after adding anhydride). For this reaction, molar excess of 

anhydride was added due to its low solubility in aqueous media and unwanted hydrolysis reaction. 

The reaction of CMC and norbornene-2,3-dicarboxylic anhydride was conducted at different pH 

ranges and the higher functionality was obtained at the range of 9.5-10.5.140 Therefore, the same 

pH range (9.5-10.5) was chosen for CNF functionalization. To prevent a significant change in the 

volume of solution by adding NaOH, 10 M NaOH solution was used because each time only one 

drop of it was enough to bring the pH back to 10 very quickly.  
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Figure 4.2-A schematic of surface functionalization of cellulose nanofibrils with 5-norbornene-2,3-
dicarboxylic anhydride in aqueous media and at controlled pH.   

Since nCNF is not soluble in water and the only impurity is water soluble norbornene-2,3-

dicarboxylic acid from undesired hydrolysis of anhydride, purification was accomplished by five 

washes with deionized water using centrifugation at 7000 rpm for 15 minutes. This redisperse-

centrifige-decant cycle was repeated until all the impurities were removed indicated by infrared 

(IR) spectroscopy. After each wash, a 1 mL sample of dispersion was collected and freeze-dried 

for IR spectroscopy. As shown in Figure 4.3, in IR spectrum of freeze-dried nCNF three 

distinguished new bands appeared at 1560, 1630, and 1720 cm-1 that belong to carboxylate (blue), 

norbornene double bond (red), and ester (green) groups respectively. The ratio of areas under 

the carboxylate (blue) to the ester band (green) of functional group was used to determine 

whether washing steps were effective. Because the trapped norbornene-2,3-dicarboxylic acid (by-

product) also involves in carboxylate band area, while ester band is found in the nCNF. Each time 

dispersion was redispersed and washed, more norbornene-2,3-dicarboxylic acid were transferred 

to the supernatant and therefore, the carboxylate/ester band area decreased. When all the 

trapped norbornene-2,3-dicarboxylic acid were removed, the carboxylate/ester band area stayed 

constant after the fifth wash suggesting that five washes were enough to remove unreacted 

molecules.  More and less washing were also tried but it appeared to be either not efficient or 
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extra based on (IR) spectroscopy. This purification strategy is advantageous because water is the 

only material used and it yields the purified product in an aqueous dispersion. Redispersion of 

freeze-dried nCNF in water is challenging because of the formation of irreversible hydrogen 

bonding known as hornification.141,142 Therefore, obtaining nCNF in dispersion form eliminates the 

difficulties along with redispersing freeze-dried nCNF in water.  

 

Figure 4.3. Infrared (IR) spectroscopy of CNF and nCNF-The Structure of nCNF Repeat Unit. IR 
Spectroscopy of CNF before (dash) and after (solid) functionalization with norbornene groups 
(nCNF) and the chemical structure of nCNF. Each band corresponds to functional group with the 
same color: green for ester (e), red for norbornene double bond (d), and blue for carboxylate(c). 
The spectra were normalized for the C-O stretch band of the backbone (1030 cm-1). 

 

The degree of functionality of nCNF was controlled by varying the molarity of added anhydride 

and changes to it could be inferred by IR spectroscopy (Figure 4.4 gray rectangular points). As 

shown in the graph, the functional group to the backbone band area ratio (as discussed in Section 

4.2.2) increased from 3 to 10 as anhydride concentration increased from 0.13 M (2 molar excess) 

to 1.2 M (20 molar excess). The higher band ratio shows that the relative concentration of 

functional group on nCNF increased. This result suggests that the number of functional groups on 

CNF can be controlled by anhydride concentration. However, the error bar at 1.2 M of anhydride 

was very large and covers a wide range of band ratios. This could be explained if we assume that 
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at 1.2 M of anhydride, all the available surface hydroxyl groups were functionalized. Since the 

number of available surface hydroxyl groups could vary from sample to sample, different 

functionalization extents were obtained. 

 

Figure 4.4. The relation between anhydride concentration and functionalization on CNF. The black 
circles represent the quantitative degree of functionalization obtained by 1H-NMR spectroscopy 
and the grey rectangles represent the relative functionality based on IR band ratios. The error 
bars represent the standard deviation of three samples (α<0.05). 

 

4.3.2. Quantifying the degree of functionalization 

4.3.2.1. Enzymatic degradation of CNF and nCNF 

The information obtained using infrared spectroscopy is relative and qualitative. Since the 

molar ratio of norbornene groups on the CNF backbone to cross-linker should be known to control 

the degree of cross-linking, the degree of functionality of nCNF must be quantitatively determined 

by 1H NMR spectroscopy. However, CNF and nCNF are not soluble in common NMR solvents. Solid 
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state NMR spectroscopy of CNF also gives qualitative information.117 To address this issue, we 

degraded CNF and its derivatives into water soluble sugar units using a mixture of enzymes 

(cellulase) that hydrolyze glycoside bonds. Enzymatic hydrolysis of CNF has been reported in 

several literatures using variety of enzymes. However, the characterization was limited to 

solubility studies, mass spectroscopy, and inverse gas chromatography while 1H-NMR 

spectroscopy on solubilized sugar has not been reported. In this work, 1H-NMR spectra of CNF and 

nCNF was obtained and used to determine the degree of functionalization quantitatively. For this, 

CNF was first degraded to water soluble segments by enzymatic treatments as shown in Figure 

4.5.a. Recombinant hydrolase enzymes (Cellulase) from Ticoderma Reesei are used in this study 

which are mixture of enzymes with different target sites including β-glucanase units. The product 

of enzyme treatment would be glucose, cellobiose, and glucose oligomers as mentioned by the 

manufacturer. Enzymatic degradation has been reported to be most effective at pH 5 and a 

temperature range of 40-60°C.143 However, above 60 °C enzymes lose their activity upon being 

denatured. Elevated temperature and acidic media is essential for the activity of enzymes 

responsible for degrading the crystalline regions. While in case of soluble single chain structures 

like carboxymethyl cellulose (CMC), degradation could be done at physiological temperature and 

pH (37°C, pH 7).144,145 To find out the optimum time and enzyme concentration for degradation, 

cellulase at the various concentrations was added to 1 wt% CNF dispersions at sodium acetate 

buffered solution at pH 5 and incubated at 50°C. Incubation time and number of doses of enzyme 

were also varied and shown in Table 4.1. After degradation, samples were freeze-dried and 

dissolved in D2O for 1H-NMR measurements. However, samples did not completely dissolve in D2O 

and contained some floating solid segments. This solid content varied based on the time period 

that samples were allowed to degrade as sample was almost all solid after 1h incubation, but was 

almost a clear solution after 20h.  
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Figure 4.5- Schematic of enzymatic degradation of CNF and 1H-NMR of degraded Sample. a) 
Schematic of enzymatic degradation of cellulose to glucose units in both anomeric forms, and b) 
1H-NMR spectrum of CNF after enzymatic treatments. 1 wt% CNF at NaOAc/HOAc buffered 
solution at pH 5 and 50 °C. Degradation was done by adding two doses of 10 µL cellulase over 20 
h. Anomeric protons appeared at 4.46 and 5 ppm, backbone hydrogens at 3-4 ppm, and acetate 
hydrogens at 1.7 ppm. 
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Table 4.1. CNF enzymatic degradation to glucose units under different conditions and the 

resulted conversions. Data obtained from 1H-NMR spectroscopy.  

CNF 

Buffer 

(pH 5) 

(µL) 

Enzyme 

(µL) 

Time (h) 

(dose1 + dose 2) 

Degradation 

(%) 

(Acetate std) 

Degradation 

(%) 

(Maleic std) 

C
o

m
m

en
ts 

 

1 wt % 730 10 20 81   

1 wt % 730 10+10‡ 18+2 86  

1 wt % 730 50 20 81  

1 wt % 730 10 5 75  

1 wt %  

freeze-dried 

984 10 20 83  

1 wt % 730 10 1 31  80 * 

1 wt % 730 10 2 44  73 * 

1 wt % 730 10 3 50   

1 wt % 730 10 4 60 58  

1 wt % 730 10 5 68 71 95 * 

1 wt % 730 10+10 6+14 85 90  

1 wt % 730 10+10 18+2 83   

1 wt % 730 10+10 15+22 87   

‡10+10 means that 10 µL was added (dose 1) at the beginning of the experiment and 10 µL was 

added (dose 2) after certain time. *after a week at room temperature in D2O after initial 1H-NMR 

spectroscopy, using acetate peak as standard 

As shown in Figure 4.5.a, produced glucose was found in both anomeric forms (α- and β-D-

glucose). As shown at Figure 4.5.b, the anomeric hydrogen appears at two chemical shifts (Hα at 

5 ppm and Hβ at 4.5 ppm) with slightly higher relative integration for Hβ (57% to 43%). The rest of 

the hydrogen atoms of glucose (6 hydrogen) showed up as a multiplet at 3-4 ppm range. The peak 
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at 1.7 ppm (Ha, Figure 4.5.b) belongs to three hydrogen atoms of acetate which was added to the 

system as sodium acetate buffered solution. Since acetic acid (bp 118.1 °C) sublimed with water 

in the lyophilizer, only sodium acetate contributes to this peak integration. By knowing the exact 

amount of sodium acetate added to the degradation mixture, this acetate peak was used as 

internal standard to find the degree of degradation by 1H-NMR spectroscopy. The overall 

integration of anomeric hydrogen peaks at 4.46 and 5 ppm was normalized for 1 mole of protons 

and then, the moles of anomeric protons in a degraded sample was obtained. The moles of 

anomeric hydrogen atoms, if completely degraded, was calculated from the solid content of CNF 

sample. The ratio of calculated moles from 1H-NMR to the expected number of moles of glucose 

gave the degradation value. As shown in Table 4.1, the maximum degradation was achieved (≥ 

85%) when two 10 µL doses of enzyme was added to 1 mL of dispersion over 20 hours at 50 °C. 

To further validate the results, known amount of maleic anhydride was added to the CNF NMR 

samples as external standard and consistent results were obtained compare to the results from 

acetate (Figure 4.6 and Table 4.1). Therefore, the standard method for degrading our samples was 

introduced as adding two 10 µL doses of enzyme to 1 mL of 1 wt% CNF (nCNF) dispersion over 20 

hours at 50 °C. The same conversion was achieved when nCNF samples were treated with 

cellulase under the same condition (Figure 4.7). 
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Figure 4.6. Representative 1H-NMR spectrum of 1 wt% CNF degraded with 10 µL enzyme for 5 
hours at 50 °C. Sodium acetate and maleic anhydride were considered as internal and external 
standards, respectively. CNF was degraded 68% (based on acetate peak at 1.7 ppm) and 71% 
(based on maleic peak at 6.2 ppm). 

Interestingly, it was observed that when samples were sitting for a week in D2O in an NMR 

tube at room temperature, all the solid segments disappeared and a clear solution was remained. 

1H-NMR spectroscopy was done on these samples again and higher degrees of degradation (up to 

95%) was achieved, suggesting that the cellulase enzyme survived during freeze-drying and 

retains its activity. Data reported in Table 4.1 suggest that there is a fast step of degradation (68 

to 75% after 5h) to degrade amorphous parts of CNF and then a slower step to break down the 

crystalline parts (95% after a week).146,147 

4.3.2.2. Calculating the degree of functionality on nCNF 

Using the defined standard method mentioned in Section 4.3.2.1, samples were degraded to 

quantitatively calculate the degree of functionality by 1H-NMR spectroscopy (Figure 4.7). Enzyme 

breaks down the nCNF into α- and β-D-glucose units while the ester linkages between cellulose 
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and norbornene group is hydrolyzed under acidic condition (pH 5). The 1H-NMR spectrum of 

degraded nCNF is compared to CNF at Figure 4.8. The presence of three new peaks at 1.17 ppm, 

2.9 ppm, and 6 ppm confirms the presence of functional group on nCNF (peaks are assigned at 

Figure 4.8). The rest of the protons of functional group are overlapped by glucose backbone 

protons.  

The degree of functionalization was calculated using the integration of norbornene double 

bond peak at 6 ppm from functional group and anomeric proton at 4.46 and 5.05 ppm of degraded 

backbone at Equation 4.2 (Section 4.2.3.2). The acetate peak at 1.7 ppm was also used as internal 

standard to determine the degradation degree (Equation 4.1). The calculated functionalization 

degree was corrected by multiplying by degradation percentage. Synthesized nCNF samples at 

different concentrations of anhydride that were previously analyzed by IR spectroscopy 

qualitatively in Section 4.3.1, were degraded by enzyme to determine their quantitative 

functionalization degree. Functionalization degree was defined as the number of functional 

groups per anhydroglucose repeat unit of nCNF. Results are shown in Figure 4.4 (black circle). As 

earlier understood from IR spectroscopy data, increasing the concentration of anhydride would 

increase functionality on nCNF. The functionalization degree at the 0.13, 0.3, 0.6, and 1.2 M of 

anhydride was determined to be 2.8%, 5.3%, 9.6%, and 10.1% respectively. From 0.13 M to 0.6 

M, the functionalization degree doubled as the molarity of anhydride doubled. However, this 

trend was not observed from 0.6 M to 1.2 M and the degree of functionality plateaued at 0.6 M 

suggesting that the free hydroxyl groups on the surface of CNF were saturated when 10 molar 

excess of anhydride to repeat unit was added. The nCNF used throughout this study was 14% 

functionalized that was the highest functionality obtained in these experiments. The higher 

functionality leads to more cross-linking which increases the stability and modulus of resulting 

hydrogels. 
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Figure 4.7. Schematic of enzymatic degradation of nCNF under acidic condition and elevated 
temperature. Glucose units (both anomers) produced by enzyme treatment and 5-norbornen-2,3-
dicarboxylic acid is produced because of the hydrolysis of ester bond at acidic condition. 

 

Figure 4.8. Representative 1H-NMR spectra of degraded nCNF compare to CNF.  1H-NMR spectra 
of CNF before and after functionalization (nCNF) for comparison and the structure of produced 5-
norbornen-2,3-dicarboxylic acid. Three peaks related to functional group appeared in nCNF 
spectrum. 
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Methods to characterize functionality on CNF has been limited to acid-base titration for 

anionic functional groups, AgNO3 titration for cationic functional groups, and recently quantitative 

solid state 13C-NMR spectroscopy.117 But to our knowledge, 1H-NMR spectroscopy has never been 

done to characterize CNF because CNF and its derivatives are insoluble in common 1H-NMR 

solvents. Here for the first time we discussed obtaining the degree of functionality based on the 

quantitative 1H-NMR spectroscopy. To do this, CNF was degraded into smaller soluble segments 

by Cellulase enzyme and resulting sugar units were dissolved in D2O for 1H-NMR spectroscopy. 

We were able to calculate the extent of degradation along with the degree of functionalization. 

This straightforward and effective strategy opens the door to complete characterization of 

modified CNF. 

4.3.3. Hydrogel fabrication with tunable mechanical properties 

Chemically cross-linked nCNF hydrogels were made to increase the stability of CNF-based 

hydrogels in aqueous media using thiol-ene cross-linking reaction.  nCNF (2.7 wt% dispersion) was 

centrifuged to remove water to obtain a 4 wt% nCNF dispersion. 2,2’-

(ethylenedioxy)diethanethiol) (DEG) at various thiol to norbornene ratios (T/NB) from zero DEG 

to T/NB of 4.2 was added to the dispersion and mixed by vortex and mechanical stirring followed 

by addition of radical initiator (I2959) at 0.05 wt% and mechanical mixing. The final dispersion was 

transferred to 50 µL molds and sealed using glass coverslips. UV irradiation at 10 mW/cm-1 for 20 

minutes resulted in hydrogels with different degrees of cross-linking (Figure 4.9). The cross-linking 

reaction occurs between the norbornene groups on the surface of different nCNF bundles and the 

thiol moiety of DEG.  
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Figure 4.9. Schematic of chemical cross-linking between fibrils of nCNF via thiol-norbornene 
reaction to fabricate nCNF hydrogels. Hydrogen bonds between fibrils is not shown here for 
simplification. 

 

To investigate whether a chemical reaction occurred, hydrogels at T/NB of 1 were made and 

incubated at 4 °C in PBS for 24 hours for unreacted cross-linker to diffuse out of the gel. The 

hydrogel was degraded by enzyme using the above procedure and the products were redissolved 

in D2O for 1H-NMR spectroscopy after being freeze-dried. Interestingly, as shown in Figure 4.10, 

the norbornene double bond peak at 6 ppm disappeared due to thiol-norbornene reaction while 

the peaks of the thiol-norbornene reaction product appeared at the region between 1 ppm to 3 

ppm confirming that the chemical reaction between thiol and norbornene occurred. This 

experiment also showed that the nCNF hydrogels are degradable by enzyme. 
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Figure 4.10. Representative 1H-NMR spectrum of nCNF-DEG hydrogel (4 wt%, T/NB=1, 20 min UV 
irradiation) degraded with two doses of 10 µL enzyme for 20 hours at 50 °C. Sodium acetate was 
considered as an internal standard. The norbornene double bond peak at 6 ppm disappeared and 
peaks of thiol-norbornene product appeared (between 1 ppm and 3 ppm) in the spectrum. 

The ability to tune the modulus of hydrogels was investigated by varying the amount of the 

cross-linker added. A dynamic mechanical analyzer (DMA) with a compression fixture was used to 

measure the compression modulus of hydrogels. Hydrogels were incubated at 4 °C in PBS for 24 

hours prior to DMA measurements. The non-cross-linked hydrogels (no DEG added) failed to resist 

against compression stress and were mostly untestable which is common when modulus is lower 

than 3 kPa. As demonstrated at Figure 4.11.A, by increasing the amount of DEG, the compression 

modulus increases to 6 kPa at its maximum (for T/NB=1.2) and then decreases at higher thiol to 

norbornene ratios. Because at higher T/NB than 1, the number of thiols exceeded the number of 

norbornenes and saturates NB groups without forming effective cross-links. The maximum 

modulus was expected at T/NB=1, while it was observed at T/NB=1.2. This can be as a result of 

the long distance between norbornene groups on the surface of fibrils, so, cross-linking might not 
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occure. By adding more thiols, longer cross-linkers would form through disulfide bond formation 

that can form effective cross-links.  

Unexpectedly, the same moduli were obtained when polymer cross-linkers with two different 

molecular weights were used to make hydrogels under the same conditions (Figure 4.11.B). 

Dithiol-polyethylene glycol (DTPEG) at Mn of 1.5 kg/mol and 3 kg/mol were used at the same range 

of T/NB as DEG. Theoretically, the compression modulus of a hydrogel is inversely related to the 

MW between cross-links.121 Therefore, using DTPEG-1.5k as cross-linker expected to decrease the 

compression modulus significantly compare to where DEG is used. Such a trend was not observed 

with DTPEG-1.5k, also it was not observed when a higher MW cross-linker (DTPEG-3k) was used 

for gelation. One explanation for this result could be the fibrillar structure of nCNF. The cross-

linking between fibrils was not as effective as between single polymer chains as a result of the 

distance between fibrils. Additionally, because of the insolubility of nCNF in water and its 

dispersion form, mixing could be not sufficient and thus cross-linkers were not homogenously 

dispersed. Additionally, because of high MW of nCNF fibrils and the long distance between cross-

links, the MW between cross-links is already high, so it is not significantly changed by the 

difference of MW of cross-linkers.  
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Figure 4.11. Compression modulus of nCNF hydrogels. A) Compression modulus of nCNF-DEG 
hydrogels at various T/NB (4 wt% nCNF, T/NB=0. 0.3, 0.5, 0.7, 1, 1.3, 2.2, 4.3) made by light 
initiated (triangle) and thermal initiated (round) gelation system. B) Compression modulus of 
nCNF-DTPEG 1.5k (round) and nCNF-DTPEG 3k (triangle) hydrogels at several T/NB (4 wt% nCNF). 
Error bars are standard deviations for 5 measurements. 

Another probable reason for small modulus changes after cross-linking is the scattering of UV 

light by CNF fibrils so the power of UV light is lower than what it supposed to be. To investigate if 
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this data is a result of UV light scattering in the nCNF dispersion and therefore insufficient cross-

linking, thermal radical initiation was explored. In this case, hydrogels with the same range of 

T/NB were made with 10 mM APS/TEMED by incubating at 37 °C for 3 hours. These samples were 

transferred to 1 mL of PBS and stored at 4 °C for 24 hours prior to mechanical testing. Compression 

modulus of these samples were slightly higher than UV-initiated samples. This slight increase in 

modulus suggests that low modulus is not related to UV-light scattering by the dispersion (Figure 

4.11.A).  

Rheological measurements of storage modulus of thermally gelled samples also showed that 

varying T/NB does not significantly change the modulus.  Time sweep experiments at 1% strain 

and 1 Hz at 37 °C were done for 4 wt% nCNF mixed with DEG at different T/NB and 10 mM 

APS/TEMED. CNF and nCNF without any cross-linker also were tested. The storage modulus of 4 

wt% CNF was around 14 kPa which reduced to 7 kPa upon functionalization (nCNF). The addition 

of norbornene groups to the surface of nanofibrils interrupts the hydrogen bonds between fibrils 

and therefore reduces the modulus. When DEG was added to nCNF dispersion, chemical cross-

linking via the thiol-ene reaction increased the storage moduli to 13-15 kPa (for a range of T/NB) 

(Figure 4.12). However, the storage modulus of hydrogels at different T/NB appeared to be in a 

same range (13-15 kPa) that shows that varying T/NB does not influence the mechanical 

properties significantly. 
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Figure 4.12. Storage modulus of nCNF hydrogels. Storage modulus of CNF and nCNF-DEG 
hydrogels (4 wt%, T/NB=0. 0.3, 0.5, 0.7, 1, 1.3, 2.2 and 10 mM APS/TEMED) obtained from time 
sweep rheological measurements at 1% strain, 1 Hz oscillatory frequency, and 37 °C using a 40 
mm cone geometry.  

Although varying T/NB did not provide highly tunable mechanical properties, the dimensional 

stability of hydrogels increased compare to non-cross-linked samples due to replacement of 

hydrogen bonds between fibrils with the stronger covalent bonds and resulted in materials with 

the same modulus as CNF but stable toward dilution in water compare to CNF.  Figure 4.13 

demonstrates the effect of cross-linking on the dimensional stability of hydrogels, the non-cross-

linked gels broke apart after one day in PBS at 37 °C, while cross-linked samples were still stable 

after three weeks. It is not presented here, but these gels are kept at 4 °C until now (for a year) 

without breaking apart.  
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Figure 4.13. Images of nCNF-DEG hydrogels at different T/NB after 20 days in PBS at 37 °C. 

Cross-linked hydrogels are shown dimensional stability while non-cross-linked gels were almost 

broken apart completely.  

Another approach to control modulus of hydrogels is by varying the nCNF content. As shown 

in Figure 4.14, 1 wt% decrease in nCNF content (from 4 wt% to 3 wt%) led to an order of 

magnitude decrease in storage modulus of hydrogels which is the consequence of a 25% 

reduction of cross-linkable sites (norbornene groups). The decrease of modulus as a result of 

lower solid content was also shown in strain sweep measurements of 3 and 4 wt% samples of 

CNF, nCNF, and nCNF-DEG hydrogels (Appendix, Figure C.1-C.3). The storage and loss modulus of 

nCNF dispersion increased two orders of magnitude with increasing concentration. This 

observation is in agreement with general trend that has been reported for viscoelastic 

dispersions.148 
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Figure 4.14. Time sweep rheological measurements of CNF dispersion at 4 wt% (Black circle) and 
3 wt% (gray triangle) at 1% strain and 1 Hz angular frequency at  37 °C using a 40 mm cone 
geometry.  

 

4.3.4. Shear-thinning behavior 

CNF aqueous dispersion is classified as shear-thinning material.148,149 The viscosity of a Shear-

thinning material decreases when shear strain increases. This characteristic is very important for 

biomaterials. Materials with shear-thinning behavior have been used as injectable scaffolds for in 

situ cell culture and as bioink for 3D printing.53,150 For example, Kuzmenko et al reported 3D-

printed CNF-based scaffold for neural tissue engineering.150 Neural cells successfully adhered to 

the scaffold and proliferated. Shear-thinning characteristic is reported in physical gels. In this 

study, the shear-thinning behavior and the ability to recover the mechanical properties of three 

samples (4 wt% CNF, nCNF, and nCNF-DEG with T/NB=1) was explored by oscillatory strain step 

experiments (Figure 4.15).  A strain sweep was run first to determine the yield strain that was 

shown to be around 37% (Appendix, Figures A.4.1-A.4.3). Based on the yield strain, a lower and a 

higher strain than 37% were selected for modulus recovery test.  Strain was altered between 0.5 
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and 250% every two minutes after initial 5 minutes run at lower amplitude and the storage and 

loss modulus was recorded. All three samples exhibit a shear-thinning character and the modulus 

reduced three orders of magnitude after applying higher amplitude oscillatory strain (Figure 4.15). 

The initial moduli of CNF (29 kPa) and nCNF (16.7 kPa) were 40% recovered (to 12 kPa for CNF and 

6.6 kPa for nCNF) at lower amplitude. But this reduced modulus was fully recovered at next cycles 

of alternating amplitudes. This initial recovery was around 27% for nCNF-DEG hydrogel (from 25.4 

kPa to 6.8 kPa) but the complete recovery at next cycles was also observed for nCNF-DEG sample.  

 

Figure 4.15. Strain step rheological measurements of CNF, nCNF, and nCNF-DEG hydrogel. Strain 
step rheological measurements of CNF, nCNF, and nCNF-DEG hydrogel to demonstrate the shear 
thinning behavior and modulus recovery. Oscillatory strain step at 10 Hz and alternating low 
(0.5%) and high (250%) strain for a) 4 wt% CNF, b), 4 wt% nCNF and c), 4 wt%  nCNF-DEG hydrogel 
(T/NB=1, 10 mM APS/TEMED) is shown. Each step was 2 minutes long after an initial 5 min-long 
step. 

 

In all samples, after shear was removed the recovery of modulus was quick and it took less 

than 20 seconds to reach to 90% of the maximum modulus. The shear thinning character and the 
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rapid recovery of modulus can be explained by the entanglement of fibrils. Under shear stress, 

nanofibrils align in line with the flow which causes a decrease in viscosity.148 The recovery of nCNF 

and nCNF-DEG modulus also showed that functionalization and even thiol-norbornene cross-

linking did not fully change the dynamicity of the interactions between fibrils. The initial reduction 

of storage modulus could be as a result of hydrogen bond formation between aligned fibrils that 

is broken with the initial shear.148 When nanofibrils are aligned under high shear stress, hydrogen 

bonds could form between fibrils, causing fibrils to stay aligned even after shear is removed. This 

alignment of fibrils could decrease the resistance against strain and reduce the modulus of the 

dispersion. The shear thinning behavior and the recovery of mechanical properties was also 

observed at lower solid content (3 wt%) (Appendix, Figure A.4), confirming the viscoelastic 

behavior of nCNF dispersion. 

4.3.5 Human mesenchymal stem cell viability in nCNF 3D hydrogels 

Modified CNF has been used for tissue regeneration and exhibited acceptable 

cytocompatibility (references). In this study, the hMSC viability using our gelation process was 

explored. Dispersing cells into polymer solutions usually is done through pipetting which was not 

possible in this case due to high viscosity of 4 wt% nCNF. Therefore, cells were dispersed via 

pipetting in a diluted nCNF (1 wt%) followed by water removal through centrifugation to reach to 

a 4 wt% cell-containing nCNF dispersion. Radical initiator (I2959) was also added prior to cell 

dispersion at the 0.05 wt% concentration. DEG (T/NB=1) was added to the dispersion after 

centrifugation. Hydrogels with encapsulated hMSC were made by 10 minutes UV irradiation at 10 

mW/cm2 in 50 µL molds covered with coverslip and incubated at 37 ᵒC and 5% CO2 in cell culture 

media (DMEM). A shorter irradiation time (10 mins vs. 20 mins) was chosen to reduce the time 

that cells were out of DMEM. Encapsulated hMSCs were imaged at days 1 and 7 of encapsulation 
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(Figure 4.16). Cells were stained prior to imaging using Live/Dead assay with calcein to stain actin 

of cytoplasm of live cells (green) and ethidium homodimer-1 to stain the DNA of dead cells (red). 

Imaging was followed by cell count using ImageJ software and  24% and 50% cell viability was 

achieved for day 1 and 7 respectively (three gels for each day). 

 

Figure 4.16. Fluorescent images of hMSC encapsulated in nCNF-DEG hydrogels (ZEISS-AXIO 
Observer.Z1 microscope, 5X magnification) (4 wt%, T/NB=1, 10 min UV irradiation at 10 mW/cm2 

at A) day 1 and B) day 7. Live/Dead assay was used to stain cells. Green is representing actin of 
live cells and red representing dead cells. The viability was determined to be 24% and 50% at day 
1 and 7 of encapsulation respectively. The scale bars represent 100 µm.  

Low cell viability could be the consequence of the harsh condition of mixing. Mechanical 

stirring after centrifigation to redisperse cells and even the long process of centrifugation could 

possibly burst most of the hMSCs before making hydrogels. Dead cells that were trapped in nCNF 

hydrogel slowly diffused out of the hydrogel over time. This slow dead cell diffusion can explain 

the lower viability of hMSCs at day 1 compare to day 7 where most of the dead cells were diffused 

out.   

To resolve the difficulties of cell dispersion in nCNF, seeding hMSCs in already made nCNF-DEG 

hydrogels were examined. Hydrogels with 4 wt% nCNF and DEG (T/NB=1, 0.05 wt% I2959, and 20 

min. UV irradiation at 10 mW/cm-1) were made and stored in 1 mL of PBS overnight to let I2959 
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and unreacted DEG diffuse out of hydrogels. Hydrogels then were lyophilized to remove water 

from the system and then placed in 24-well plate. Passage 5 hMSC was dispersed in cell culture 

media (30000 cells/mL) and 1 mL of this dispersion was added to each gel and incubated at 37 °C 

and 5% CO2 for 1,3, and 7 days. Live/Dead assay was used to stain cells which then were imaged 

by a fluorescent microscope (Figure 4.17.a, b, and c). Hydrogels soaked in media without cells 

were also imaged as control experiment (Figure 4.17.d). Interestingly, it was observed that the 

nCNF bundles got stained red by ethidium homodimer-1 that suggests that ethidium homidimer-

1 could be adsorbed by cellulose nanofibrils (Figure 4.17.d). This phenomena was reported where 

other fluorescent dyes such as FITC were mixed with CNF.151  

The morphology of re-swelled gels would be altered due to freeze-drying and would be 

different from hydrogels that are directly made from a dispersion. The comparison of the 

compression modulus of re-swelled freeze-dried gels with the modulus of initial hydrogels 

showed that the stiffness of gels increased after freeze-drying (Figure 4.18).  The change in 

modulus due to freeze-drying should be considered when material is used for cell culture. Because 

cell behavior is affected by the mechanical properties of the matrix they are encapsulated in. The 

altered properties of the gels could be explained by a phenomena called ice templating. When a 

dispersion is freezing, formation of ice crystals pushes away the particles at the freeze front and 

concentrates them between ice crystals. Sublimation of ice leaves a more compact structure 

behind.152 When nCNF was packed between ice crystals, irreversible hydrogen bonds between 

fibrils was formed through hornification. Therefore, freeze-dried gels keep their compact 

structure after reswelling in aqueous media. At the constant volume, more compact fibrils widen 

the pores between the fibrils which facilitates the diffusion of molecules and cells into and out of 

the gel. Therefore, live cells penetrated into the gels and adhered to the nCNF-DEG in one day 

after seeding as shown in Figure 4.17.a. Since dead cells could also diffuse out of the structure, 



131 
 

dead cells were not observed even at day 7 of seeding. Cell viability could not be calculated 

because the number of dead cell was unknown. However, the presence of live hMSCs after a week 

of seeding in an elongated form demonstrates that cells adhered to the structure successfully and 

could survive. Although more straight forward methods should be developed for cell 

encapsulation in chemically cross-linked nCNF hydrogels, these materials showed promising low 

cell toxicity and can be further examined for cell culture and tissue regeneration studies. 

 

Figure 4.17. Fluorescent images of hMSC seeded in nCNF-DEG hydrogels (ZEISS-AXIO Observer.Z1 

microscope, 5X magnification) (4 wt %, T/NB=1, 20 min. UV irradiation) at A) day 1, B) day 3, and 

C) day 7 after seeding. Live cells are stained green (Calcein, Invitrogen Live/Dead assay). D) nCNF-

DEG hydrogel without cells as control experiment was stained red by ethidium homodimer-1 

(Invitrogen Live/Dead assay). Scale bars are 100 µm.   

 

Figure 4.18. Compression modulus of freeze-dDried nCNF-DEG hydrogel before and after freeze-
dring. The compression modulus of nCNF-DEG hydrogels (4 wt%, T/NB=1, 10 min UV irradiation 
at 10 mW/cm2) before and after freeze-drying. Hydrogels were frozen at -20°C for 24 hours and 
lyophilized for two days. Error bars represent standard deviation (n≥4).  
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4.4. Conclusion 

CNF was successfully functionalized with norbornene groups (nCNF). Esterification reaction 

between surface hydroxyl groups of CNF and 5-norbornene-2,3-dicarboxylic anhydride in aqueous 

media was completed in two hours. Purification through centrifugation produced nCNF in 

dispersion form which facilitated re-dispersing of material. nCNF was successfully degraded by 

Cellulase enzyme to soluble glucose units. Degraded samples were characterized using 1H-NMR 

spectroscopy to obtain the quantitative degree of functionality. With our knowledge, the 

quantitative 1H-NMR spectroscopy was done for the first time. A light and thermal-induced thiol-

norbornene reaction were used to cross-link nCNF with DEGl to fabricate hydrogels with 

dimensional stability. The modulus of cross-linked hydrogels are higher than nCNF, but the 

hydrogel modulus slightly changes with changing T/NB. The same range of modulus was observed 

when DTPEG was used as cross-linker. Therefore, mechanical properties of nCNF hydrogels are 

not highly tunable. However these hydrogels showed dimensional stability in aqueous media.  It 

was observed that nCNF and nCNF-DEG hydrogel show shear-thinning behavior. In addition, 

hMSCs was seeded in nCNF-DEG hydrogels and survived for 7 days showing that nCNF can be 

potentially used in cell culture studies. 
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CHAPTER 5 

DEVELOPING PRACTICAL METHODS TO USE CELLULOSE-BASED HYDROGELS IN REAL 

APPLICATIONS  

5.1. Introduction 

The potential of norbornene functionalized cellulose-based hydrogels cross-linked by thiol-

norbornene reaction as scaffolds in biomedical application was introduced in previous chapters. 

To have these systems to be applied in real applications, new methods should be developed to 

make stable solutions that can be stored and reused whenever it is needed. Also, this new method 

should be simple and straightforward so everyone can use it. Matrigel is currently used for 3D cell 

culture and tissue regeneration studies. But it suffers from the lack of mechanical strength that is 

needed for specific experiments. Therefore, chemically cross-linked cellulose-based hydrogels 

with controllable modulus can be a potential alternative for Matrigel. To develop our method, we 

are collaborating with a research group in Jackson lab in Bar harbor, Maine, to use our materials 

and gelation systems for explant encapsulation. 

Light-initiated hydrogel formation is a fast and straightforward gelation system. But, because 

our collaborators did not have the light source (365 nm, 10 mW/cm2) in their lab, thermal gelation 

was chosen for this study. Thermal gelation with APS/TEMED (discussed in Chapter 4) is widely 

used in biological studies due to its activity at physiological conditions which was needed for 

explant encapsulation and its low toxicity.153,154 In our previous works, all the components 

(backbone polymer, cross-linker, radical initiator) were dissolved in PBS and then heated or 

irradiated to form gels. The pre-gelation solution would gel even at room temperature in less than 

30 minutes and must be prepared fresh each time.140 Therefore, this system should be modified 

in order to be stable, stored, and be easily used by other researchers. Furthermore, in our 
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previous works, different amount of cross-linker was added to the pre-gelation solution to control 

the modulus. So, it was needed to find a practical method to control mechanical properties of the 

hydrogels in the new system. 

To address all these issues, a two-solution approach was designed. One solution contained the 

backbone polymer and the other solution contained the cross-linker. With this approach, 

norbornene functionalized cellulose and the dithiol cross-linker was mixed right before the 

gelation and the modulus of gels were controlled by varying the amount of dithiol-containing 

solution. To prevent radical generation before mixing, APS and TEMED were separately stored in 

either solutions. Also, both solutions were made in cell-culture media (DMEM) to provide 

nutrients for explants or cells while gel is forming. The two-solution method was studied in the 

laboratory and under sterile conditions and the application of this method in explant 

encapsulation was studied by our collaborators.  
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5.2. Experimental 

5.2.1. Materials 

Chemicals were purchased from either Sigma-Aldrich or Fisher Scientific and used without 

further purification unless otherwise noted. The compounds 5-norbornene-2,3-dicarboxylic 

anhydride and 5-norbornene-2-methylamine were purchased from TCI America. Ammonium 

persulfate (APS) was purchased from Acros Organics. Peptides were purchased from Genscript 

and used without further purification. NorCMC was synthesized as described in Chapter 3, Section 

3.2.2. The mold used throughout this study was cut from a rubber sheet (1 mm thickness) and 

punched in the middle to make a hole. The volume of the hole was determined to be 11 µL by 

adding water from a micropipette.  

5.2.2. Synthesis of Carbic Functionalized CMC (cCMC) 

Targeting 30% functionalization, 5 g of NaCMC 90,000 g/mol was dissolved in 495 mL of 

deionized water to obtain 1 wt% NaCMC solution. NaOH 10 M was added until pH 12 was 

obtained. To this solution, 36.30 g of 5-norbornene-2,3-dicarboxylic anhydride (carbic anhydride, 

0.22 mol, 10 molar excess to NaCMC repeat units) was added which caused the pH to drop to 8.5. 

More NaOH 10 M solution was added dropwise in 10 second intervals to bring up to and keep the 

pH between 9.5-10.5 throughout the reaction. The pH decrease slowed down after 2 hours and 

pH stayed at 9.4 for an hour without change indicating the completion of reaction. Another 

indication of the end of the reaction was disappearance of carbic anhydride as it was insoluble in 

water and remained as a white precipitant in the solution which was getting dissolved as it was 

hydrolyzed.  
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After the reaction, 15 g NaCl was added to improve separation. Then, the solution was added 

to 3 L of ice-cold acetone dropwise and over an hour for more efficient precipitation. The carbic 

functionalized CMC (cCMC) was separated from impurities as a white precipitant and through 

filtration. The precipitant was dissolved in 250 mL DI water and dialyzed for four days prior to 

freeze-drying. The final product was 3.4 g and the yield of the reaction was around 56%. The 

functionalization was confirmed and the degree of functionality was calculated to be 30% by 1H-

NMR spectroscopy (Figure 5.1).  

1H-NMR spectroscopy of cCMC (D2O , 400 MHz) δ 1.17 ppm ( Norbornene bridge -CH2, Triplet, 

2Hs) 2.90 ppm (Norbornene ester, -CH, Singlet, 1H), 3-4 ppm (Glucose backbone, broad), , 6.07 

ppm (Norbornene double bond, singlet, 2Hs). 

 

Figure 5.1. The 1H-NMR spectrum of cCMC. Norbornene protons (6.07 ppm) and bridge protons 
(1.17 ppm) are labeled. The rest of the carbic protons and CMC backbone protons are between 
2.9-4 ppm. 
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5.2.3. cCMC/DEG Hydrogel Formation 

CT/DA Combination: For 50 µL CT solution, 0.004 g cCMC was dissolved in 47.4 µL of DMEM 

along with 0.5 µL of TEMED (2 M). For 50 µL DA solution, 0.4 µL DEG and 0.5 µL of APS (2 M) were 

dissolved in 47.4 µL of DMEM. To make hydrogels with 4 wt% cCMC, T/NB=1, and 10 mM 

APS/TEMED, 5.5 µL of each solution were transferred to the mold and mixed using pipette tip. 

The mold was sealed with coverslip and incubated at 37 °C for 20 minutes for complete gelation.  

CA/DT Combination: To make hydrogels in 11 µL molds, solutions were made as cCMC/APS 

(CA) and Dithiol cross-linker/TEMED (DT). CA solution (500 µL) was prepared by dissolving 0.0225 

g of cCMC in 474.7 µL of cell culture media (DMEM). Afterward, 2.8 µL APS (2 M) was added and 

mixed. For DT solution (100 µL) preparation, 4 µL of DEG and 5 µL of TEMED (2 M) were added to 

91 µL of PBS and vortexed.  

To have hydrogels with 4 wt% cCMC, T/NB=1, and 10 mM APS/TEMED, 10 µL of CA was added 

to the mold and then 1 µL of DT was added and mixed by pipette tip. The mold was sealed with 

coverslip and incubated at 37 °C for 20 minutes for complete gelation. The volume of DT solution 

added could vary to change T/NB and therefore modulus of hydrogels.  

For rheology measurements, CA solution was prepared as 0.028 g of cCMC was dissolved in 

598.5 µL of DMEM. APS (3.5 µL of 2 M solution in DI water) was added and vortexed right before 

transferring to the rheometer plate. To prepare DT, 2.8 µL of DEG and 3.5 µL of TEMED (2 M) were 

added to 63.8 µL PBS and vortexed. CA (630 µL) was transferred to rheometer plate first and then 

DT (70 µL) was added and mixed using pipette tip. This combination contains 4wt% cCMC, T/NB=1, 

and 10 mM APS/TEMED.  
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5.2.4. NorCMC/DEG Hydrogel Formation 

To make hydrogels in 11 µL molds, solutions were made as NorCMC/APS (CA) and DEG/TEMED 

(DT). CA solution (100 µL) was prepared by dissolving 0.0045 g of NorCMC (22% functionalized) in 

95 µL of DMEM. Then, 0.65 µL of APS (2 M) was added and mixed. For DT solution (100 µL) 

preparation, 4 µL of DEG and 5 µL of TEMED (2 M) were added to 91 µL of PBS and vortexed.  

To have hydrogels with 4 wt% NorCMC, T/NB=1, and 10 mM APS/TEMED, 10 µL of CA was 

added to the mold and then 1 µL of DT was added and mixed by pipette tip. The mold was sealed 

with coverslip and incubated at 37 °C for 20 minutes for complete gelation. The volume of DT 

solution added could vary to change T/NB and therefore modulus of hydrogels.  

For rheology measurements, CA solution (630 µL) was made by dissolving NorCMC (0.028 g) in 

595 µL of DMEM followed by adding 7 µL of APS (1 M) and DT (70 µL) was prepared by dissolving 

2 µL of DEG and 3,5 µL of TEMED (2 M) in 64.5 µL PBS. CA (630 µL) was transferred to rheometer 

plate first and then DT (70 µL) was added and mixed using pipette tip. This combination contains 

4wt% NorCMC, T/NB=1, and 10 mM APS/TEMED.  

5.2.5. NorCMC/MMP-deg Hydrogel Formation 

In a representative experiment for hydrogel fabrication in 11 µL molds, separate CA and DT 

solutions were prepared and mixed in the molds.  To prepare CA solution (360 µL), 0.0177 g 

NorCMC (22% functionalized) was dissolved in 226.8 µL DMEM. Then, 110.1 µL of RGD 

(GCGYGRGDSPG peptide sequence) solution (10 mg RGD/mL of DMEM,) was added and mixed. At 

the end, 5.4 µL of APS (1 M in DI water) was added. The DT solution (82.5 µL) was prepared by 

dissolving 0.015 g MMP sensitive peptide (MMP-deg) (GCRDGPQGIWGQDRCG peptide sequence) 

in 43 µL of PBS. TEMED (25 µL of 1 M solution in DI water) was added and vortexed to mix withDEG 
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and. To make a hydrogel, 9 µL of CA first was transferred to a 11 µL mold and then 2 µL of DT 

solution was added. Two solutions were mixed using a pipette tip to be homogenous. A glass 

coverslip was used to seal the mold. Molds were transferred to the incubator at 37 °C for 20 

minutes for complete gelation. With this combination, the final gel would be at 4 wt% NorCMC, 

T/NB=1, and 10 mM APS/TEMED.  

For rheology measurements, CA solution was prepared as 0.025 g of NorCMC (22% 

functionalized) was dissolved in 262 µL of DMEM. RGD (127 µL of 10 mg/mL solution in DMEM) 

and APS (3.5 µL of 2 M solution in DI water) were added and vortexed right before transferring to 

the rheometer plate. To prepare DT, 0.01 g of MMP-deg and 3.1 µL of TEMED (2 M) were dissolved 

in 197 µL of PBS and vortexed. CA was transferred to rheometer plate first and then DT was added 

and mixed using pipette tip. This combination contains 4wt% NorCMC, T/NB=0.5, 2 mM RGD and 

10 mM APS/TEMED.  

5.2.6. Rheology measurements 

Maximum storage modulus of solutions were obtained from a rheological time sweep 

experiment (TA Discovery HR-2 rheometer) using a 40 mm aluminum cone-plate geometry with a 

2° angle. CA (630 µL) and DT (70 µL) were transferred to an aluminum Pelletier plate at room 

temperature. The fixture was lowered to the geometry gap (60 µm). Water droplets were placed 

around the geometry and covered with a plastic cup to keep the surrounding humid to assure that 

hydrogels are not drying during the run. Time sweep measurements was run at 37 °C, 1 Hz 

oscillatory frequency, and 1 % oscillatory strain for 1500 seconds.  
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5.2.7. Sterilization of materials and equipment 

The final solutions to be used for explant encapsulation must be sterilized. The preparation of 

solutions was done under sterile biosafety cabinet (Labconco). NorCMC, cCMC, and all the 

equipment used to prepare solutions for Jackson lab were sterilized by 10 minutes 

germicidal/sterilization UV light (254 nm) irradiation prior to use. APS solution, TEMED solution, 

and DEG were sterilized by passing through sterile filters filtered (Santa Cruz Biotechnology, PVDF 

membrane, pore size 0.22 µm) prior to use. MMP degradable peptide and RGD adhesion peptide 

were purchased sterile.  
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5.3. Results and Discussion 

5.3.1. CT/DA or CA/DT combination for Hydrogel Formation  

Two combinations were possible for pre-gelation solutions as cCMC could be mixed with either 

TEMED or APS and the cross-linker could be mixed with the other one (APS or TEMED). Both 

combinations were investigated to find the better approach. The third possible combination was 

to mix cCMC, cross-linker, and either APS or TEMED. But based on previous studies, cCMC and 

cross-linker gelled at room temperature even if no initiator was present (Autogelation).140 

Therefore, cCMC and cross-linker should be stored separately. All combinations used in this study 

are summarized in Table 5.1. Also a schematic of how to prepare and mix solutions is shown in 

Figure 5.2.  

 

 

Figure 5.2. Schematic of solution preparation and gel Formation in small molds. A) Schematic of 
how solution A and solution B were prepared separately and mixed in the rubber mold. B) The 
image shows a) the 11 µL molds in a glass slide. b) Resulting hydrogels (after mold was removed) 
on the second glass slide that was used to seal the mold.  
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Table 5.1. The combinations of solution A and solution B used throughout this study are 
summarized.  

 

 Components     

Exp. 
Solution 

A 
Solution 

B 
A:B 

Minimum Gel Time 
(min) 

Stability Freeze/Thaw 

1 

CT 

cCMC 

TEMED 

Media 

DA 

DEG 

APS 

Media 

50:50 10 

DA was 
cloudy 

 

DA precipitated 

2 

CT 

cCMC 

TEMED 

Media 

DA 

DEG 

APS 

PBS 

90:1 10 

DA was 
cloudy 

 

Longer gel time (20 min.) 

3 

CT 

NorCMC 

TEMED 

Media 

DA 

DEG 

APS 

PBS 

90:10 Not gelled 
DA was 
cloudy 

--- 

4 

CA 

cCMC 

APS 

Media 

DT 

DEG 

TEMED 

PBS 

90:1 10 

CA and DT 
clear 

 

Two cycles of F/T Gelled at 
10 min 

 

5 

CA 

NorCMC 

APS 

Media 

DT 

DEG 

TEMED 

PBS 

90:10 5 

CA and DT 
clear 

 

Three cycles of F/T 

Gelled at 5 min 

6 

CA 

NorCMC 

APS 

RGD 

Media 

DT 

MMP-
deg. 

TEMED 

PBS 

80:20 5 

CA and DT 
clear 

 

Three cycles of F/T 

Gelled at 5 min 
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Since the targeted application of this gelation system was to encapsulate an explant, 

physiological conditions (37°C and pH 7.4) for gelation and cell culture media (DMEM) were 

essential. Moreover, showing the similar reactivity after freeze/thaw cycles was important to 

confirm the stability of the solutions for storage. At first, 50:50 volume ratio of two solutions in 

DMEM were considered. The amount of cCMC, DEG, and APS/TEMED needed for 100 µL of pre-

gelation solution (4 wt% cCMC T/NB=1, 10 mL APS/TEMED) were calculated. This combination 

gelled after 20 minutes incubation at 37 °C. However, it was observed that after 2 hours, the 

solution of DEG in DMEM got cloudy and after freeze/thaw it completely precipitated. One 

hypothesis could be the formation of disulfide bonds between thiols of DEG and thiols of proteins 

presented in DMEM. Therefore, dissolving DEG into PBS was considered. But to increase the ratio 

of DMEM to PBS at the final pre-gelation solution, the higher CT to DA ratio (90:10 of CT:DA) was 

used. This mixture also gelled after 20 minutes incubation at 37 °C. After two hours of being 

stored, the solution of cCMC and TEMED in DMEM (CT) was clear, but a decrease in clarity of the 

solution was observed when DEG was mixed with APS. Even at room temperature, APS 

decomposes to form radicals. At the presence of these radicals, the formation of disulfide bonds 

between DEG molecules is probable which leads to a decrease in number of free thiols. Also, 

disulfide bonds between DEG molecules could form dithiols with molecular weights twice or three 

times (or more) higher than DEG.  Less crosslink points and higher MW between cross-links lower 

the storage modulus of final hydrogel. Rheology measurements showed that the storage modulus 

decreased (50%) when solutions were at room temperature for 2 hours compare to when 

solutions were tested immediately after preparation (Figure 5.3). This result shows the low 

stability of CT/DA solutions. 
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Figure 5.3. Time sweep rheology of CT/DA combination. Time sweep (1 Hz, 1 % strain, 37 °C) 
rheology measurements of the storage modulus of hydrogels made from mixing two solutions CT 
(630 µL) and DA (70 µL) when CT/DA solutions were tested as made (black circle) and after 2 hours 
sitting separately at RT (gray triangle). The mixed solution was at 4 wt% cCMC, T/NB=1, and 10 
mM APS/TEMED.  

Due to lack of stability, the combinations of DEG with TEMED and therefore cCMC with APS 

were investigated. Mixing these two solutions (10:1 of CA:DT) led to hydrogel formation after 20 

minutes of incubation at 37 °C. CA and DT solutions were frozen at -20 °C for 24 hours and then 

thawed at room temperature. The gelation procedure was repeated and stiff hydrogels were 

obtained. This freeze/thaw cycle was repeated three times and after each cycle gels were formed 

indicating the stability of CA/DT solutions and the ability of being stored and reused. Autogelation 

(gelation without any radical initiator added) was tested for two solution systems but no gel 

formed. Rheology measurements of the maximum storage modulus of hydrogels made of fresh 

CA/DT and 2-hour-old CA/DT were compared with fresh CT/DA combination. Figure 5.4 shows 

that the modulus of resulting hydrogel when solutions are mixed and tested immediately after 
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preparation are very similar and even higher modulus was observed for hydrogels from resting 

solutions (opposite of what was observed for CT/DA). The modulus of CA/DT combination is more 

than twice of when the CT/DA was used and shows the higher stability of CA/DT compare to 

CT/DA.  The higher storage modulus for CA/DT combination as compared to CT/DA combination 

confirms that CA/DT is the desired combination for this gel formation system. In a constant 

polymer wt%, T/NB, and initiator concentration, the higher modulus indicates that more free 

thiols and norbornenes were available to react. In CA solution also APS decomposes to radicals, 

but norbornene double bonds have a very low tendency to polymerize so the reduction of number 

of reactive groups is not an issue as it happened for DEG. Therefore, the CA/DT combination was 

used for studies. 

 

Figure 5.4. Time sweep rheology of CA/DT combination (1 Hz, 1 % strain, 37 °C). Rheology 
measurements of the storage modulus of hydrogels made from mixing two solutions CA (630 µL) 
and DT (70 µL) when CA/DT solutions were tested as made (light gray rectangle) and after 2 hours 
sitting separately at RT (dark gray triangle) and the freshly tested CT/DA combination (black 
circles) for comparison. The mixed solution was at 4 wt% cCMC, T/NB=1, and 10 mM APS/TEMED.  
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5.3.2. Controlling the Modulus of Hydrogels 

Since the stiffness of the hydrogel has a major impact on the behavior of encapsulated cells, 

the control over mechanical properties of the hydrogels by changing the amount of DEG added 

was studied. The maximum storage modulus was measured by time sweep rheological 

measurements. The CA solution formulations were the same for all the samples but DT solutions 

were prepared varying the amount of DEG added to reach different T/NB ratios. As shown in 

Figure 5.5, the maximum storage modulus increased by increasing the amount of DEG added with 

a more remarkable jump from T/NB=0.3 to 0.5 (0.48 kPa and 2.2 kPa respectively). No gelation 

was obtained when T/NB was 0.1. The highest modulus was obtained was 5.1 kPa for T/NB=2. The 

storage modulus increased two order of magnitude when T/NB changed from 0.2 to 0.5. Also it 

did not decrease for T/NB higher than 1 suggesting that a portion of thiols (DEG) are consumed 

by disulfide bond formation with DMEM proteins. In real applications, hydrogels with desired 

modulus for a specific experiment can be made by simply adding different volumes of DT 

solutions. 
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Figure 5.5. Time sweep rheology of CA/DT combination varying T/NB. Time sweep (1 Hz, 1 % 
strain, 37 °C) rheology measurements of the storage modulus of hydrogels made from mixing two 
solutions CA (630 µL in DMEM) and DT (70 µL in DMEM) when CA/DT solutions were tested as 
made at different T/NB. The mixed solution was at 4 wt% cCMC, and 10 mM APS/TEMED for all 
samples.  

The increasing trend of modulus from T/NB=0.2 to 1 was expected as the number of cross-

links increases. At T/NB higher than 1, the modulus is expected to decrease because the number 

of thiols exceeds the number of norbornenes and saturates NB groups without forming effective 

cross-links. Unexpectedly, the increasing trend in modulus was observed when T/NB was 2. On 

the other hand, compression modulus obtained for cCMC/DEG hydrogels at T/NB of 0.5 and 1 for 

thermally gelled samples are significantly lower compare to UV-irradiated gels.140 UV-initiated 

cCMC/DEG (4 wt% cCMC, 0.05 wt% I2959, 1 minute UV irradiation at 10 mW/cm2) gel formation 

in PBS at T/NB of 0.5 and 1 has been done previously, the compression moduli of 75 and 80 kPa 

were reported for these gels, respectively.140 The compression modulus of cCMC/DEG hydrogels 

at T/NB of 1 in DMEM (4 wt% cCMC, 10 mM APS/TEMED, 20 minutes incubation at 37°C) was 

measured to be 7.6±2.0, which is almost an order of magnitude lower. This modulus is even lower 
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than the modulus of cCMC/DEG (4 wt% cCMC, T/NB=1, in PBS) hydrogels made without any 

radical initiation system (Autogel) which was reported to be around 30 kPa.140 The thermally 

gelled cCMC/DEG hydrogels at T/NB of 0.5 in DMEM were not stiff enough to be measured by 

DMA. Although all these abovementioned DMA experiments were done based on one-solution 

gelation and cannot be directly applied for the data obtained from two-solution method, this 

comparison suggests that using DMEM instead of PBS has a significant negative impact on the 

modulus of cCMC/DEG hydrogels. One reason for this lower modulus is the formation of disulfide 

bonds between thiols of DEG and thiols of cysteine of proteins presented in DMEM. As a result of 

disulfide bond formation, the moles of available DEG would be lower than what was added. This 

assumption explains the higher storage modulus of cCMC/DEG hydrogels when T/NB was higher 

than 1 (Figure 5.5 and Table 5.1).  

5.3.3. NorCMC/MMP-deg hydrogels  

Since low cell viability was reported from collaborators at Jackson lab for cCMC/DEG, NorCMC 

was used to replace cCMC. The viability of NorCMC was previously studied in Chapter 3 and 

showed to be acceptable (85%) after 21 days of study. Thermal gelation and stability after 

freeze/thaw cycles of CA/DT system using NorCMC and DEG were tested using 11 µL molds and 

under the same conditions as described for cCMC/DEG hydrogels (4 wt% NorCMC, T/NB=1, 10 

mM APS/TEMED, and 37 °C). The mixture gelled after 5 minutes of incubation, but they were 

incubated for 20 minutes to ensure the complete gelation. Solutions were frozen at -20 °C and 

thawed at room temperature and tested again. The NorCMC/DEG hydrogel formed again after 5 

minutes of incubation at 37 °C. This freeze/thaw cycle was repeated two more times and the same 

gel formation was observed after each cycle. This showed that NorCMC is an appropriate polymer 

to replace cCMC. 
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The storage modulus of NorCMC/DEG hydrogels made of mixing CA/DT solutions (freshly made 

solutions and after freeze/thaw process) were measured from time sweep rheological 

experiments (1 Hz, 1% strain, and 37 °C). As shown in Figure 5.6, the modulus of resulting hydrogel 

when solutions are frozen and thawed are even higher than the modulus was observed for 

hydrogels from fresh solutions (9 kPa and 7 kPa respectively) showing the stability of NorCA/DT 

solutions for storing.  

 

Figure 5.6. Time sweep rheology of CA/DT combination after fFreeze/thaw. Time sweep (1 Hz, 1 
% strain, 37 °C) rheology measurements of the storage modulus of NorCMC/DEG hydrogels made 
from mixing two solutions CA (630 µL) and DT (70 µL) when CA/DT solutions were tested as made 
(black circles) and after being frozen (at -20°C) and thawed at RT (for 30 minutes) separately (blue 
triangle).  The mixed solution was at 4 wt% NorCMC, T/NB=1, and 10 mM APS/TEMED.  

To improve the properties of the hydrogels, other than replacing cCMC with NorCMC, we also 

tried to use a degradable cross-linker (MMP-deg) instead of the non-degradable DEG. Also, RGD 

peptide added to enhance cell adhesion to the matrix. RGD has a cysteine in its sequence and 

MMP-deg has two cysteine at both ends of its sequence that could react with norbornene double 

bond. Thermal gelation and stability of solutions after freeze/thaw was studied and same results 

was observed as compare to NorCMC and DEG CA/DT solutions. Again, the autogelation (gelation 
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when no initiator is present) after mixing solutions did not occur with these solutions. To 

investigate the effect of adding RGD peptide on the modulus of final hydrogels, the storage 

modulus of NorCMC/DEG hydrogels with RGD (4 wt%, 2 mM RGD, 10 mM APS/TEMED) and 

without RGD (4 wt%, 10 mM APS/TEMED) at T/NB of 0.5 and 1 was compared from rheology time 

sweep experiments (1 Hz, 1% strain, and 37 °C).  

As shown in Figure 5.7, for both T/NB of 0.5 and 1, presence of RGD reduced the storage 

modulus of hydrogels. This can be explained by the competition between RGD and cross-linker to 

react with norbornene groups as T/NB for RGD is 0.1 in the solution. The storage modulus of 

NorCMC hydrogels cross-linked by MMP degradable peptide at the presence of RGD was also 

obtained by rheology (Figure 5.7). The storage modulus of NorCMC/MMP-deg was 1.3 kPa which 

is lower than the modulus of NorCMC/DEG hydrogel (3 kPa) under the same condition (4 wt% 

NorCMC, T/NB=0.5, 2 mM RGD, 10 mM APS/TEMED, 37°C). The modulus of hydrogel has an 

inverse relation with the MW between cross-links. So, because the MW of MMP-deg is higher 

than MW of DEG, this lower modulus for NorCMC/MMP-deg hydrogel was expected. The thiol to 

norbornene ratio for NorCMC/MMP-deg hydrogels was chosen to be 0.5 because MMP-deg 

peptide has a high molecular weight (1704.85 g/mol) and therefore higher T/NB than 0.5 leads to 

hydrogels in which NorCMC is no longer the major component (matrix). 
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Figure 5.7. Time sweep rheology of CA/DT combination using MMP-deg cross-linke. Time sweep 
(1 Hz, 1 % strain, 37 °C) rheology measurements of the storage modulus of NorCMC/DEG 
hydrogels made from mixing two solutions CA (630 µL) and DT (70 µL) with and without RGD 
adhesion peptide at T/NB of 0.5 and 1. The mixed solution was at 4 wt% NorCMC, 10 mM 
APS/TEMED, 0 or 2 mM RGD.  
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5.4. Conclusion 

The properties of NorCMC hydrogels and cCMC hydrogels was previously studied and it has 

been shown that norbornene functionalized CMC is a promising candidate for applications in cell 

culture scaffolds.140 For application of these materials in actual experiments by biomedical 

research groups such as explant encapsulation, a product should be provided that can be shipped 

and stored, be stable over time, and be easy to use. For this, pre-gelation solution was divided 

into two separate solutions each of them contains either matrix polymer or cross-linker. NorCMC 

or cCMC were dissolved into DMEM as one solution and the dithiol cross-linkers (DEG or MMP-

deg.) were dissolved in PBS as the second solution. Hydrogels were made successfully with two-

solution approach using CA/DT combination and also it was shown that hydrogels still form after 

three cycles of freezing/thawing solutions. The observed gelation was supported by rheology 

experiments. Gelation was not observed when radical initiators were not present (Failed to 

autogel). This study will be continued using portable UV lamp (365 nm, 10 mW/cm2) at the 

presence of UV-based radical initiator (I2959). 
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APPENDICES 

 

APPENDIX A: SUPPLEMENTARY FIGURES FOR CHAPTER 2 

 

 

Figure A.1. Mass loss percentages of 2DTPN8-45 hydrogels (n=4) made from a solution of NorHA 

and DTPN8 with 2 wt% of polymer, XT/N=0.5, and 45 s UV irradiation at 4, 38, and 55 °C cycles.  
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Figure A.2. Mass loss percentages of 4DTPN8-45 hydrogels (n=4) made from a solution of NorHA 

and DTPN8 with 4 wt% of polymer, XT/N=0.5, and 45 s UV irradiation at 4, 38, and 55 ᵒC cycles. 

 

 

 



168 
 

 

Figure A.3. Mass loss percentages of 0.5DTPN8-45 hydrogels (n=4) made from a solution of NorHA 

and DTPN8 with 6 wt% of polymer, XT/N=0.5, and 45 s UV irradiation at 4, 38, and 55 ᵒC cycles. 
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Figure A.4. Mass loss percentages of 0.7DTPN8-45 hydrogels (n=4) made from a solution of NorHA 

and DTPN8 with 6 wt% of polymer, XT/N=0.7, and 45 s UV irradiation at 4, 38, and 55 ᵒC cycles. 
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Figure A.5. Mass loss percentages of 0.3DTPN8-45 hydrogels (n=4) made from a solution of NorHA 

and DTPN8 with 6 wt% of polymer, XT/N=0.3, and 45 s UV irradiation at 4, 38, and 55 ᵒC cycles. 
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Figure A.6. Mass loss percentages of 0.5DTPN8-90 hydrogels (n=4) made from a solution of NorHA 

and DTPN8 with 6 wt% of polymer, XT/N=0.5, and 90 s UV irradiation at 4, 38, and 55 ᵒC cycles. 
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Figure A.7. Mass loss percentages of 0.5DTPN8-180 hydrogels (n=4) made from a solution of 

NorHA and DTPN8 with 6 wt% of polymer, XT/N=0.5, and 180 s UV irradiation at 4, 38, and 55 ᵒC 

cycles. 
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Figure A.8. Mass loss percentages of 0.3DTPN8-90 hydrogels (n=4) made from a solution of NorHA 

and DTPN8 with 6 wt% of polymer, XT/N=0.3, and 90 s UV irradiation at 4, 38, and 55 ᵒC cycles. 
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Figure A.9. Mass loss percentages of 0.7DTPN8-90 hydrogels (n=4) made from a solution of NorHA 

and DTPN8 with 6 wt% of polymer, XT/N=0.7, and 90 s UV irradiation at 4, 38, and 55 ᵒC cycles. 

 

 

 

 



175 
 

 

Figure A.10. Mass loss percentages of 0.5DTPN4-90 hydrogels (n=4) made from a solution of 

NorHA and DTPN4 with 6 wt% of polymer, XT/N=0.5, and 90 s UV irradiation at 4, 38, and 55 ᵒC 

cycles. 
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Figure A.11. Mass loss percentages of M,D-TPN8-90 hydrogels (n=4) made from a solution of 

NorHA and DTPN8 and MTPN8 with 6 wt% of polymer, XT/N=0.3 for cross-linker, and 90 s UV 

irradiation at 4, 38, and 55 ᵒC cycles. 
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APPENDIX B: SUPPLEMENTARY FIGURES FOR CHAPTER 3 

 

 

Figure B.1. Representative stress/strain curves obtained by DMA for NorCMC-DTT hydrogels made 
at different UV irradiation times (4 wt% polymer, T/NB=0.5). The reported values are an average 
of n≥9 measurements for each condition. 
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Figure B.2. Representative stress/strain curves obtained by DMA for NorCMC-DTT hydrogels made 
at different thiol to norbornene ratios (4 wt% polymer, 60 s UV irradiation). The reported values 
are an average of n≥9 measurements for each condition. 
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Figure B.3. Representative stress/strain curves obtained by DMA for NorCMC-DTT hydrogels made 
at different polymer wt% (T/NB=0.5, 60 s UV irradiation). The reported values are an average of 
n≥9 measurements for each condition. 
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Figure B.4. Representative stress/strain curves obtained by DMA for NorCMC hydrogels cross-
linked by different dithiol cross-linkers (4 wt% polymer, T/NB=0.5, 60 s UV irradiation). The 
reported values are an average of n≥9 measurements for each condition. 
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APPENDIX C: SUPPLEMENTARY FIGURES FOR CHAPTER 4 

 

Figure C.1. Strain sweep from 0.05% to 250% at 1 Hz for CNF at 4 wt% (black circle) and 3 wt% 

(gray triangle). 

 

 

 

Figure C.2. Strain sweep from 0.05% to 250% at 1 Hz for nCNF at 4 wt% (black circle) and 3 wt% 

(gray triangle). 
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.   

Figure C.3. Strain sweep from 0.05% to 250% at 1 Hz for nCNF-DEG hydrogel (10 mM 

APS/TEMED, 37 °C) at 4 wt% (black circle) and 3 wt% (gray triangle). 
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Figure C.4. Strain step rheological measurements of CNF, nCNF, and nCNF-DEG hydrogel to 
demonstrate the shear thinning behavior and modulus recovery. Oscillatory strain step at 10 Hz 
and alternating low (0.5%) and high (250%) strain for a) 3 wt% CNF, b), 3 wt% nCNF and c), 3 wt%  
nCNF-DEG hydrogel (T/NB=1, 10 mM APS/TEMED) is shown. Each step was 2 minutes long. 
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