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Abstract 

Visualization and interpretation of big data poses new and unique challenges. As engineering 

students enter the work force, many will be tasked with analyzing increasingly large and complex 

data sets with which they have little experience. This paper presents simple heat map and multi-line 

plotting techniques used to select critical spectral attributes produced from data mining a 

hyperspectral satellite image for bathymetry mapping. Additionally, good graphic design practices

regarding color choice and reducing visual distraction are suggested in order to more quickly and 

clearly communicate information to an audience. These techniques can be applied to all types of 

data visualization as an effective way of communicating data. 

Introduction

Modern technology, such as social network sites or airborne and satellite remote sensing,

produces a massive amount of data. And with 50 times more data expected to exist in 2020 compared 

to 2010, demands for individuals with big data analysis skills are growing rapidly (UMUC, 2015). 

Big data consists of not only social information gathered on users by companies like Facebook or 

Google, but also consists of sensor data used to monitor factors from environmental changes to 

stresses in airframes and the sequence of DNA. Although engineering students will frequently 

encounter two or three variable relationships in their classes, few are exposed to high dimensional 

and extremely large data. Unfortunately, the tools and techniques that work for visualizing a few 

variables does not carry over to more complex data sets.

In order to demonstrate the challenges and techniques of visualizing high dimensional data, 

data mining of a hyperspectral image is presented as a case study. The image data used in this project 

is from the Hyperspectral Imager for the Coastal Ocean (HICO) on the International Space Station 

and was obtained February 28, 2014 over the Indian River Lagoon (IRL) on the Atlantic coast of 

Florida. HICO provided 87 spectral bands in the visible through near infrared wavelengths. The 

image area was covered by about 34,000 target pixels each of which is 90m x 90m.
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Methods

Spectral features which appeared to be strong predictors of water depth were determined by

data mining the hyperspectral image and ground-truth sonar data of the same area. Rather than 

directly using the raw light intensity (pixel value) in every spectral band, several attributes were 

produced for each sample pixel combination: slope, average, ratio, log ratio, and log slope of every 

combination of the intensities over the spectra range. This results in a total of about 10,000 

individual attributes. Dissecting the intensity curves along the spectra in this way facilitates the 

identification of physically meaningful features of the spectra.

By definition, big data cannot be analyzed using conventional data visualization and analysis

techniques. There are simply too many data points or dimensions for standard scatter plots or bar 

graphs to effectively reveal patterns and relationships among variables. In order to understand the 

10,000 dimensional data extracted from the HICO image, binned correlation matrix graphics and 

multi-line plots were implemented. We present these simple visualization methods alongside 

information visualization theory that dictates good practice for the design and presentation of 

information in graphics.

Information Visualization

Information Visualization Theory (InfoVis Theory) is the science of quantification, coding, 

and communication of information (Chen, 2010). InfoVis Theory includes objective measures, such 

as the proportion of ink used on a graphic for non-redundant data (Ink-Data Ratio), to evaluate how 

effectively data is presented based on cognitive psychology. The goal of InfoVis Theory is to make 

data interpretation easier and more efficient through minimization of redundant features and 

effective use of visual elements. Cleveland and McGill (1985) empirically verified a general 

hierarchical taxonomy of basic visual properties in human perception.  Humans most accurately 

perceive the orientation and length of data visuals while least accurately perceiving the color, 

volume and density of data visuals. Although the brain has a stronger response to color and volume, 

these attributes can potentially add undesired dimensionality to a simple graphic. 

To demonstrate the effects dimensionality has on graphics, two plots of the Indian River 

Lagoon bathymetric distributions were created for comparison. Each graph shows the distribution 

of sampled depths, which is useful in identifying sampling bias. If a depth is under represented in 

the training data, our model cannot accurately predict that depth from the hyperspectral image. The 

binned depths are shown in Figures 1 and 2. 

Figure 1 uses color and volume as unnecessary features that distract the viewer from 

interpreting the data. These extra flashy features are known as �chartjunk�. The use of different 

colors is chartjunk since it is an unused dimension of the visual. Extra color adds ambiguity to the 

data which increases the chances of a subjective interpretation from the observer. For example, the 
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Figure 1. A visual with excessive dimensionality. The color and volume give no additional 

information about the bathymetric distribution which distracts the viewer from the objective 

of the graph.

Figure 2. A visual that uses color and volume effectively. One color was used since the data 

was obtained from the same place. One color was used since the data was obtained from the 

same place. The numbers on top of the histograms remove ambiguity from the true value of 

the binned depths.
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different colors could suggest the depths used in the analysis come from different bodies of water, 

when in fact all of the depths were collected in the same geographic extent. Volume of the bars is 

also chartjunk in Figure 1 since it does not help describe the representation of depths. Based on 

Figure 1, the number of instances for the depths cannot be clearly determined. The 8-ft sampled 

depth appears to have less than 600 instances due to the three-dimensional effects.

In order to create a better visual, the typeface, color, volume, and graph design were taken 

into consideration. Figure 2 shows a clearer representation of the binned depths. The typeface was 

chosen as a sans-serif because it is more legible and removes style which could be distracting. The 

volume and color over dimensionality from Figure 1 was removed in Figure 2. The number of 

instances is displayed over the bar graph which provides exact values without comprising the trend 

of the graph. These changes were made so that the viewer can quickly observe the trend of the data, 

gather as much information as quickly as possible with the least amount of confusion. 

InfoVis theory differs with larger data sets.  During the analysis of HICO hyperspectral 

profiles, it was known a priori that reflected light intensity decreases with depth due to increasing 

light attenuation through the water column. In order to test the proposed hypothesis 200 water depths 

between 4 and 8 feet were sampled from the thousands of measured spectral curves. Figures 3 and 

4 provide another example of how data can become unclear with improper use of graphic elements

and how InfoVis Theory can be used to form a clearer visual. The line color variation in Figure 3 

represents the different depths but no pattern emerges at first glance and anomalous data is not easily 

detected. The lines in the graph are the default colors from the Matplotlib graphing software. Since 

most plotting programs have similar default color schemes, it is easily seen that the programs have 

not been designed for high-dimensionality data.

Ascending lightness values of a monotonic hue were used as a gradient which assigns the 

lighter colors to shallower depth and gradually darker colors to deeper depths. Pattern recognition 

is easier using Figure 4 compared to Figure 3 because of the simple presentation of the relationship 

between and depth. Each of the examples has drawbacks; and the key to InfoVis theory is to balance 

the trade-off of added dimensionality. Figure 4 shows the distribution of depths through the color 

ramp. Although it is easily seen how the depths vary, resolving each depth isn�t as easily done. On 

some parts of the spectral profile, deeper depths have higher intensity values than the shallower 

depths. This can be observed in Figure 3 more easily than in Figure 4.
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Figure 3. Sample depths from the Indian River Lagoon and their spectral profile. 

Figure 4. Sampled depths from the Indian River Lagoon and their spectral profiles. The

color palette �blues� makes use of color as a gradient which aids pattern recognition. 

Heat Maps for Identifying Relationships in High Dimensional Data 

The HICO instrument measured 87 unique spectral intensities at every pixel. In order to 

identify features of this spectral curve that are good predictors of water depth, 10,000 total 

combinations of average intensity, slope, ratio, log slope, and log ratio were calculated for every 

combination of the spectral bands. Although techniques such as Principal Component Analysis 

(PCA) identify unique features and help reduce the dimensionality of the problem, they rearrange 

the raw spectral information such that the information contained in the original intensities is lost in 
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Figure 5. Binned correlation matrix for the 10,000 attributes which describe the spectral 

curves. The rejection threshold is at r2 = 0.9. Each position in this matrix represents the 

average of 100 correlation coefficients between given attributes. As the viewer moves from 

left to right or up to down across the graphic, the spectral bands being compared are toward 

the redder wavelengths. This repeats for each of the 5 attribute types.

the PCA-derived attributes. If instead the curve shape is described by many single attributes, future 

bathymetry mapping efforts can use the strongest indicators directly and also give more insight into 

the physical processes of light energy propagation through a water column.

Once each of the 10,000 spectral curve features are calculated, it is necessary to remove 

redundant information. Because each attribute was calculated for every combination of spectral band

(e.g. average intensity between band 4 and 7 and average intensity between band 4 and 8), many 

attributes are similar and can be removed without loss of critical information. In order to identify 

the most unique attributes, we calculate a correlation matrix and remove attributes for which their 

correlation with another attribute falls above some threshold. However, if each correlation 

coefficient were to be displayed, the user would need to look through 100,000,000 values. In order 

to quickly view patterns and identify outliers, correlation matrices are commonly displayed using 

heat maps: graphics in which each matrix position is colored with a color which represents the value 
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it holds. However, with a 10,000 square matrix, to view each point would require several computer 

monitors arranged in an array. Because of the slowly varying nature of our attribute values, we 

average every 100x100 matrix positions into a single bin. This greatly reduces the number of points 

plotted in the heat map while maintaining the overall attribute correlation trends.

Figure 5 demonstrates the binned heat map approach for analyzing the relationship between 

variables. To emphasize the uniqueness of each variable, a simple diverging color map was chosen 

and centered on the correlation threshold value for attribute rejection. By changing the correlation 

threshold, we can choose how many attributes are rejected before the next phase of our bathymetry 

mapping routine. Correlations that fall above the threshold appear as red while correlations below 

the threshold are blue. Additionally, stronger positive and negative correlations have more saturated 

colors. This color scheme enables the viewer to quickly distinguish between spectral attributes that 

are strong or weak identifiers of depth. For example, in Figure 5, average intensities contain little 

unique information and are clearly above the rejection criteria. Many patterns exist across the other 

attributes and are visible as white stripes or patches in the correlation matrix. Although these are not 

colored red, they are still just at the edge of rejection and the corresponding attributes are not very 

unique.

Conclusion

Data mining provides a unique way for many fields to monitor and analyze data. Given the 

nature of big data, it is necessary to apply special methods of visualization while avoiding the use 

of dimensionally ambiguous visual features. InfoVis Theory offers techniques to create effective 

visuals so a viewer can gather the maximum information in the least amount of time without 

compromising data or creating chartjunk. Visual analytics and InfoVis Theory can be used in school

curricula and work force training to teach the sometimes non-intuitive skills necessary to create an 

effective data graphic.
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