
Dissertations and Theses

2013

Nonlinear Control for Dual Quaternion Systems Nonlinear Control for Dual Quaternion Systems

William D. Price
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Aerospace Engineering Commons, Engineering Physics Commons, and the Robotics

Commons

Scholarly Commons Citation Scholarly Commons Citation
Price, William D., "Nonlinear Control for Dual Quaternion Systems" (2013). Dissertations and Theses. 155.
https://commons.erau.edu/edt/155

This Dissertation - Open Access is brought to you for free and open access by Scholarly Commons. It has been
accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fedt%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=commons.erau.edu%2Fedt%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=commons.erau.edu%2Fedt%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=commons.erau.edu%2Fedt%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/155?utm_source=commons.erau.edu%2Fedt%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

NONLINEAR CONTROL FOR DUAL QUATERNION SYSTEMS

by

William D. Price

A Dissertation Submitted to the Physical Sciences Department

in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

(Engineering Physics)

Embry-Riddle Aeronautical University

Daytona Beach, FL 32114

2013

Copyright by William D. Price 2013

All Rights Reserved

ii

Acknowledgments

I would like to thank my advisor, Dr. Sergey Drakunov, for providing me with this

opportunity, and for his dedication, enthusiasm, and expertise towards the subject

matter and completion of this thesis.

iv

Abstract

The motion of rigid bodies includes three degrees of freedom (DOF) for rotation,

generally referred to as roll, pitch and yaw, and 3 DOF for translation, generally

described as motion along the x, y and z axis, for a total of 6 DOF. Many complex

mechanical systems exhibit this type of motion, with constraints, such as complex hu-

manoid robotic systems, multiple ground vehicles, unmanned aerial vehicles (UAVs),

multiple spacecraft vehicles, and even quantum mechanical systems. These motions

historically have been analyzed independently, with separate control algorithms being

developed for rotation and translation. The goal of this research is to study the full

6 DOF of rigid body motion together, developing control algorithms that will affect

both rotation and translation simultaneously. This will prove especially beneficial

in complex systems in the aerospace and robotics area where translational motion

and rotational motion are highly coupled, such as when spacecraft have body fixed

thrusters.

A novel mathematical system known as dual quaternions provide an efficient

method for mathematically modeling rigid body transformations, expressing both

rotation and translation. Dual quaternions can be viewed as a representation of the

special Euclidean group SE(3). An eight dimensional representation of screw the-

ory (combining dual numbers with traditional quaternions), dual quaternions allow

for the development of control techniques for 6 DOF motion simultaneously. In this

work variable structure nonlinear control methods are developed for dual quaternion

systems. These techniques include use of sliding mode control. In particular, slid-

v

ing mode methods are developed for use in dual quaternion systems with unknown

control direction. This method, referred to as self-reconfigurable control, is based

on the creation of multiple equilibrium surfaces for the system in the extended state

space. Also in this work, the control problem for a class of driftless nonlinear sys-

tems is addressed via coordinate transformation. It is shown that driftless nonlinear

systems that do not meet Brockett’s conditions for coordinate transformation can be

augmented such that they can be transformed into the Brockett’s canonical form,

which is nonholonomic. It is also shown that the kinematics for quaternion systems

can be represented by a nonholonomic integrator. Then, a discontinuous controller

designed for nonholonomic systems is applied. Examples of various applications for

dual quaternion systems are given including spacecraft attitude and position control

and robotics.

vi

Contents

List of Tables ix

List of Figures x

Nomenclature xiii

1 Introduction 1

1.1 Dual Quaternions . 1

1.2 Self-Reconfigurable Control . 4

1.3 Nonlinear Control for Nonholonomic Driftless Systems 7

2 Rigid Body Motion 9

2.1 Rotations . 10

2.1.1 Quaternions . 17

2.2 Translation . 22

2.2.1 Dual Numbers . 27

2.2.2 Dual Quaternions . 33

2.3 Dual Quaternion Rigid Body Motion Model 36

3 Sliding Mode Control 39

3.1 Ordinary Differential Equations with Sliding Modes 40

3.1.1 Differential Inclusions . 42

3.1.2 Sliding Motion Description . 43

vii

4 Self-Reconfigurable Control 50

4.1 Dual Quaternion Sliding Surface . 52

4.2 Self-Reconfigurable Control . 54

4.3 Numerical Examples . 60

4.3.1 Planar Example . 60

4.3.2 Dual Quaternion Example . 66

5 Nonlinear Driftless Systems 71

5.1 Approach . 72

5.2 Controller Design . 74

5.2.1 Application of the Nonholonomic Feedback to Quaternion System 78

5.3 Brockett’s Canonical Form . 83

5.3.1 Unicycle Example . 89

5.3.2 Dual Quaternion Example . 103

6 Conclusion 115

A Matlab Code 118

A.1 Self Reconfigurable Control MATLAB Files 118

A.1.1 Planar Example . 118

A.1.2 Dual Quaternion Example . 120

A.2 Nonholonomic Driftless System MATLAB Files 124

A.2.1 Nonholonomic Feedback to Quaternion System 124

A.2.2 Unicycle Examples . 126

A.2.3 Multiple Dual Quaternion Spacecraft Example 132

References 138

viii

List of Tables

4.1 Values used for Self-Reconfigurable Control R3 example with B = −I. 61

4.2 Values used for Self-Reconfigurable Control R3 example with state de-

pendent B(x). 64

4.3 Values used for Self-Reconfigurable Control DH example. 67

5.1 Initial conditions for unicycle regulation example. 94

5.2 Desired trajectories for unicycle tracking problem. 99

5.3 Initial conditions for unicycle tracking problem. 99

5.4 Initial conditions for three spacecraft dual quaternion example. 108

ix

List of Figures

2.1 Fixed reference frame A and rotated frame B (Wie, 1998). 11

2.2 Euler angles associated with roll (ϕ), pitch (θ), and yaw (ψ) (NASA

JPL, 2004). 13

2.3 Representation of Euler’s Eigenaxis Theorem. 17

2.4 A single 120o quaternion rotation about the first diagonal in the 3D

ijk space (MathsPoetry, 2009). 19

2.5 Representation of translation in R3. 23

2.6 Representation of both translation and rotation in R3. 24

2.7 Representation of Chasles Theorem or Screw theory. 26

2.8 Representation of Plücker coordinate for a line. 29

2.9 Plücker coordinate representation of screw axis and rotation. 30

2.10 Representation of dual vector dot and cross products. 32

3.1 Sliding Mode Equivalent Control ueq. 49

4.1 Equilibrium manifolds in σ̂-space (p = 2). 57

4.2 Convergence of |σ|2 to k∆t for B = −I. 62

4.3 Convergence of positions x, y, θ for B = −I. 63

x

4.4 Convergence of |σ|2 to k∆t for state dependent B(x). 65

4.5 Convergence of positions x, y, θ for state dependent B(x). 66

4.6 Convergence of |ˆ⃗σ|2 to k∆t . 68

4.7 Convergence of attitude q . 69

4.8 Convergence of positions x, y, z . 70

5.1 Stabilization of the nonholonomic integrator (A. Bloch & Drakunov,

1996). 78

5.2 Results for quaternion system when q21o + q22o > |q3o|. 82

5.3 Results for quaternion system when q21o + q22o < |q3o|. 83

5.4 Unicycle system diagram. 90

5.5 Results for translated system of a regulation example including four

unicycles. 95

5.6 Results for Lyapunov functions of a regulation example including four

unicycles. 96

5.7 Results for original coordinates of a regulation example including four

unicycles. 97

5.8 Results for X-Y coordinates of a regulation example including four

unicycles. 98

5.9 Results for translated error coordinates of a tracking example including

two unicycles. 100

5.10 Results for Lyapunov functions for a tracking example including two

unicycles. 101

5.11 Results for original coordinates for a tracking example including two

unicycles. 102

xi

5.12 Results for X-Y coordinates for a tracking example including two uni-

cycles plus their desired trajectories. 103

5.13 Attitude q results for all three spacecraft. 109

5.14 Translation p⃗ results for spacecraft A. 110

5.15 Translation p⃗ results for spacecraft B. 111

5.16 Translation p⃗ results for spacecraft C. 112

5.17 Lyapunov function results for dual quaternion example. 113

5.18 3D translational results for all three spacecraft. 114

xii

Nomenclature

Not Bold Letters a, b, θ Real scalars in R

ω⃗, v⃗, p⃗ Real vectors in R3

â, θ̂ Dual scalars in DR

ˆ⃗ω, ˆ⃗n Dual vectors in DR3

Bold Lowercase Letters q,ω,p Quaternions in H

q̂, ω̂, p̂ Dual quaternions in DH

Bold Uppercase Letters A,M, I Real matrices in Rn×n

Â, M̂ Dual matrices in DRn×n

xiii

Chapter 1

Introduction

1.1 Dual Quaternions

The quaternion formulation of rotational kinematics has certain advantages in their

application to mechanical systems, namely in robotics, spacecraft control and oth-

ers . For example, quaternions allow for the easy design of control algorithms by

using the quaternion error. This technique can be extended to a special number sys-

tem known as dual-quaternions. Dual quaternions, a representation of the special

Euclidean group SE(3), are an efficient method for representing rigid body transfor-

mations, expressing both rotation and translation. They have already been useful

in several areas such as developing rigid body dynamics (Brodsky & Shoham, 1999;

Dooley, 1991), development of strapdown inertial navigation algorithms (Wu, Hu,

& Hu, 2005), and development of a logarithmic proportional control law for rigid

body kinematics using dual quaternions (D.-P. Han, Wei, & Li, 2008). This is fur-

ther developed for control of rigid body kinematics and dynamics using a logarithm

1

1.1. DUAL QUATERNIONS

proportional derivative controller (D. Han, Wei, & Li, 2008). Dual quaternions also

are now used in spacecraft control, specifically using dual quaternions to calculate

spacecraft relative position and attitude (Li, Yuan, Yue, & Fang, 2007) as well as

developing sliding mode controllers for the spacecraft rendezvous problem (J. Wang,

Liang, & Sun, 2012).

The dynamics in this case are represented via dual-numbers and/or dual-vectors by

introducing into the real numbers the dual element ε satisfying the property ε2 = 0 .

The space of dual-quaternions is actually a Clifford algebra. The models of mechanical

systems that include many rotational and translational parts as well as actuator and

other dynamics in this case have a multidimensional state space such that each of

the dimensions is represented by dual quaternions. By combining a dual quaternion-

based dynamic representation with a variable structure approach you can achieve

simultaneous rotation and translation control for spatial rigid body systems where

the dynamics contain multiple sources of uncertainty and unmodeled effects.

Lyapunov-based techniques have proven to be very effective in nonlinear control

design. Recently, these techniques have been extended to dual quaternion based

model formulations such as providing a new formulation for the control of spatial

rigid bodies (D. Han, Wei, & Li, 2008; D.-P. Han et al., 2008). After revealing the

geometric structure of dual quaternions, logarithmic feedbacks are used to derive

control laws in both kinematic design and dynamic design. The ideas are extended

to regulation and tracking problems.

The high-cost of spacecraft mission design creates a strong interest in the use of

new control methods. These high dollar costs include the high expense associated

with attitude control equipment (either the value of the equipment itself or added

2

1.1. DUAL QUATERNIONS

launch weight needed to place larger, heavier equipment in space). Majority of the

previous studies of spacecraft maneuvers have analyzed attitude and translation as

separate problems.

One way costs can be minimized on a spacecraft is to reduce the number of actu-

ators onboard, providing motivation to study the underactuated spacecraft problem.

An underactuated spacecraft is one that has fewer actuators than total degrees-of-

freedom. This could be the result of the spacecraft’s initial design or because of a

failure mode, allowing redundancy to be built into the control algorithm rather in

actual hardware. Methods have been used to control both position and attitude of

an underactuated satellite using only four coplanar thrusters (Yoshimura, Matsuno,

& Hokamoto, 2011). Stability, accessibility, and controllability of a spacecraft has

been examined using only two control torques provided by thrusters about two of

the principle axis (Krishnan, 1992; Krishnan, Reyhanoglu, & McClamroch, 1994). A

feedback control law for controlling an underactuated spacecraft has been developed

with constraints on the control inputs (Tsiotras & Luo, 2000). Sliding control has

been used to control an underactuated multibody spacecraft (Ashrafiuon & Erwin,

2004) and a sliding mode controller for use in maintaining a formation of underactu-

ated satellites (Mcvittie, Kumar, Liu, & Candidate, 2010). Control algorithms have

been developed using perturbation analysis and Lie group theory to design small-

amplitude forces to control underactuated mechanical systems (Nordkvist, Bullo, &

Member, 2008).

3

1.2. SELF-RECONFIGURABLE CONTROL

1.2 Self-Reconfigurable Control

Self-reconfigurable, variable structure approaches are widely used for the problems of

dynamic systems control and observation due to their characteristics of finite time

convergence, robustness to uncertainties, and insensitivity to external disturbances

especially in sliding mode (DeCarlo, Zak, & Drakunov, 2011).

The main thrust of the sliding mode control research for many years has been

in designing an appropriate sliding manifold to stabilize a nonlinear system. In the

majority of cases, only one-component manifolds were considered, described by:

σi(t, x) = 0 (1.1)

where σ = col(σ1, ..., σm) and the goal of the design was to make the system reach

their intersection

{σ(t, x) = 0} =
m∩
i=1

{σi(t, x)} = 0 (1.2)

The present work concentrates instead on the design of equilibrium sets in the

state space with a more complicated structure than just the intersection of several one-

component manifolds. The families of sliding (or potentially sliding) surfaces provide

new opportunities for designing robust systems with new interesting properties.

Robust control of various classes of uncertain nonlinear systems has been widely

researched in controls literature (Corless & Leitmann, 1981; Gutman, 1979; Qu, 1992,

1993; Marino & Tomei, 1993; Slotine & Hedrick, 1993; Kaloust & Qu, 1995). A

particularly challenging class of uncertain systems are those containing uncertainty

in the control sign (S. Drakunov, 1993). The control sign in this context represents

4

1.2. SELF-RECONFIGURABLE CONTROL

the control direction - the control force or torque direction, for example, under any

given control command. While many of the systems addressed in previous controls

literature concern systems with known time-varying control direction, control design

for systems with unknown control direction is a much more challenging task.

Sliding mode-based approach has been used to develop a robust controller in or-

der to globally stabilize a system with unknown control direction (S. Drakunov, 1993;

S. V. Drakunov, 1994). Applying this method is especially useful for mechanical

systems acting in an unpredictable, uncertain environment. One of the successful

examples is the design of the ABS system for the ground vehicles and landing air-

crafts (S. V. Drakunov, Ozguner, Dix, & Ashrafi, 1995). Another approach used the

so-called shifting laws, which are updated via online identification of the unknown

control direction (Kaloust & Qu, 1995). Another approach proposed is based on mon-

itoring functions to mitigate the difficulty in control direction uncertainty (Oliveira,

Peixoto, & Liu, 2007, 2010). Another approach using monitoring functions employs

a monitoring function-driven switching mechanism, which adjusts the control sign,

assuming no a priori knowledge of the control direction (Hsu, Oliveira, & Peixoto,

2006).

The method that was presented in (S. Drakunov, 1993), uses a purely robust

feedback technique to achieve finite-time convergence to a sliding manifold in the

presence of unknown control direction. This robust feedback control design is much

less computationally intensive because it requires no monitoring functions, function

approximators, or online adaptive laws. By applying this computationally efficient

control scheme with a compact dual-quaternion-based dynamic parametrization, an

effective and versatile control method can be developed to achieve simultaneous trans-

5

1.2. SELF-RECONFIGURABLE CONTROL

lational and rotational control of a spatial rigid body.

To achieve computationally efficient six degrees of freedom (DOF) control (i.e.,

simultaneous translational and rotational control) of a spatial rigid-body system,

choosing a proper position and orientation vector parametrization is critical. Three-

element orientation vectors such as Euler angles can provide a unified representation

of position and orientation; however, the Euler parametrization has inherent singu-

larities in the parametrization. The unit quaternion has the benefit that it does not

suffer from singularities. However, it has been shown that quaternion-based controller

design can be complicated by the fact that the position and orientation errors are cal-

culated separately (Pham, Perdereau, Adorno, & Fraisse, 2010; Xian, Dawson, de

Queiroz, & Chen, 2004). To eliminate the need for control designs using two separate

loops for controlling rotation and translation, dual quaternions are widely regarded

as the most compact and efficient means for simultaneously representing translational

and rotational motion (Aspragathos & Dimitros, 1998; Funda, Taylor, & Paul, 1990;

Pham et al., 2010). The dual quaternion is an effective tool that it used in many

applications, including robot manipulators (Aspragathos & Dimitros, 1998; Funda et

al., 1990; Pham et al., 2010) inertial navigation (Wu et al., 2005), computer vision,

and control of spatial rigid bodies (D. Han, Fang, & Wei, 2008).

By using a control architecture similar to that in (S. Drakunov, 1993), a sliding

mode control approach is used in this work to achieve finite-time convergence to a

sliding manifold for a class of dual-quaternion-based systems with unknown control

input direction. The result is a robust control law that is rigorously proven to achieve

finite-time convergence to a sliding manifold in the presence of unknown control

direction without the use of function approximators or online parameter adaptation.

6

1.3. NONLINEAR CONTROL FOR NONHOLONOMIC DRIFTLESS SYSTEMS

1.3 Nonlinear Control for Nonholonomic Driftless

Systems

Also in this work control algorithms for a class of nonlinear driftless systems are

investigated, originally introduced by Brockett (Brockett, 1981):

ẋ = B(x)u (1.3)

where x ∈ Rn and u ∈ Rm. For example, a unicycle with direction and speed control

inputs is prototypical system and the mobile robots are generalized unicycle systems

with added kinematic constraints. Both systems are modeled by (5.1) and studied

for control solutions in the literature (J. Wang et al., 2012; Medina-Garciadiego &

Leonessa, 2011; Pathak & Agrawal, 2004; Zenkov, Bloch, & Marsden, 2002). The

controllability condition for such systems is well established and can be easily tested

via the accessibility algebra and the accessibility distribution (Isidori, 1997). An

interesting class of controllable systems with the structure of (5.1) is the so-called

kinematic nonholonomic system. Those systems are characterized by specific relation

between the dimension of the system state x and the control input u. This current

work relaxes this condition by extending the system space and designing control for

the augmented system.

The method presented here addresses the possibility of such augmentation for

systems that do not permit a Brockett’s canonical form. The augmented system

must be controllable and satisfy the hypotheses of the Brocket theorem listed in the

next section. Therefore, the system can be controlled by various developed nonholo-

7

1.3. NONLINEAR CONTROL FOR NONHOLONOMIC DRIFTLESS SYSTEMS

nomic system controllers. The control architecture considered here is from (A. Bloch,

Drakunov, & Kinyon, 1997) and (A. M. Bloch, Drakunov, & Kinyon, 2000).

This work discusses an example of a driftless nonholonomic system that can be

augmented for the conversion to Brocket’s canonical form and generalization of the

proposed method. To show the proposed design framework, the work presents a

prototypical unicycle system, including the example of controlling multiple moving

robots with one of the controls being common for the whole swarm, and its simula-

tions. Also presented is the example of multiple underactuated spacecraft represented

using dual quaternions.

8

Chapter 2

Rigid Body Motion

In order to discuss rigid body motion using dual quaternions, it is important first to

establish a foundation. A single dimensionless particle’s position can be described us-

ing a Cartesian frame, usually consisting of a point projected onto three orthonormal

axes (x, y, z) ∈ R3. The motion of a particle can then be represented by a continuous

curve p(t) = (x(t), y(t), z(t)) ∈ R3. This concept is extended from a single particle

to a completely ”undistortable” collection of particles, referred to as a rigid body,

where the distance between any two particles remains constant. If p and q represent

any two particles of a rigid body, then the definition of a rigid body can be defined

mathematically as:

∥p(t)− q(t)∥ = ∥p(0)− q(0)∥ = constant (2.1)

for all t ≥ 0 (Murray, Li, & Sastry, 1994).

Rigid motion, consisting of both rotation and translation, is the continuous move-

ment of a rigid body, meaning the distance between any two particles remains con-

9

2.1. ROTATIONS

stant throughout the motion. A rigid body can be represented by the subset O

where O ⊂ R3 and rigid motion represented using a family of continuous mappings

g(t) : O → R3 describing the motion of the individual particles in a fixed Cartesian

coordinate frame. For the mapping g(t) : O → R3 to describe rigid motion, a neces-

sary condition must be that the mapping maintains the distance between points of

the rigid body. However, this condition is not sufficient since it does not account for

internal reflections, i.e. the mapping (x, y, z) → (x, y,−z) maintains distances be-

tween points but reflects points inside the rigid body about the xy plane. Therefore,

a second necessary condition that the cross product of vectors between points in the

rigid body be preserved is required. A rigid transformation is defined as a mapping

g : R3 → R3 satisfying these two conditions (Murray et al., 1994):

1. Distance is preserved: ∥g(p)− g(q)∥ = ∥p− q∥ for all points p, q ∈ O ⊂ R3.

2. The cross product is preserved: g∗(v × w) = g∗(v) × g∗(w) for all v, w ∈ R3

and where v = p1 − q1, w = p2 − q2, and p1, p2, q1, q2 ∈ O ⊂ R3, and g∗(v) =

g(p)− g(q).

2.1 Rotations

The definition of a rigid body rotation allows for particles in a rigid body to rotate but

not translate with respect to each other. To describe this rotation, the orientation

between a fixed coordinate frame attached to the rigid body and a fixed inertial

frame is used. In Fig.2.1, reference frame A, consisting of three orthogonal unit

vectors {a⃗1, a⃗2, a⃗3}, refers to a fixed inertial frame and reference frame B, consisting

of the unit vectors {⃗b1, b⃗2, b⃗3}, refers to the body frame. The unit vectors of B can

10

2.1. ROTATIONS

be defined in terms of frame A by:

b⃗1 = R11a⃗1 +R12a⃗2 +R13a⃗3 (2.2)

b⃗2 = R21a⃗1 +R22a⃗2 +R23a⃗3

b⃗3 = R31a⃗1 +R32a⃗2 +R33a⃗3

where Rij ≡ b⃗i · a⃗j is the cosine of the angle between b⃗i and a⃗j, referred to as the

direction cosine. A rotation matrix, RB/A ∈ R3×3 is also referred to as a direction

cosine matrix and can be used to express the relation in (2.2) where RB/A ≡ [Rij]

(Wie, 1998). Rotational matrices formed in this manner are orthogonal with detR =

±1 and when defined in right hand coordinate systems the detR = +1.

Figure 2.1: Fixed reference frame A and rotated frame B (Wie, 1998).

The space of rotation matrices in Rn×n can be defined by the Lie group SO(n) ⊂

11

2.1. ROTATIONS

Rn×n as:

SO(n) =
{
R ∈ Rn×n : RTR = I, detR = +1

}
(2.3)

where SO refers to special orthogonal group, with special meaning that detR = +1.

The group SO(3) ⊂ R3×3 describes the rotational group of R3 with the following

properties (Murray et al., 1994):

1. Closure: If R1,R2 ∈ SO(3), then R1R2 ∈ SO(3).

2. Identity: The identity element of the group SO(3) is the identity matrix I ∈

R3×3.

3. Inverse: The inverse of R ∈ SO(3) is RT ∈ SO(3), i.e. RRT = RTR = I.

4. Associativity: The associativity of group SO(3) follows from the associativity

of matrix multiplication, i.e. (R1R2)R3 = R1 (R2R3) .

Similarly, the group SO(n) of n× n orthogonal matrices with det = 1 is a matrix

Lie group.

Definition 1. In general, a Lie group is a differentiable manifold G which is also a

group such that the group product G × G → G and the inverse map g → g−1 are

differentiable (Murray et al., 1994).

Definition 2. A matrix Lie group is any group G with the property that if Am ∈ G

and Am converges to some matrix A that either A ∈ G or A is not invertible (Hall,

2003).

SO(n) is a differential manifold where SO(n) ⊂ GL(n;R) where GL(n;R) is the

general linear matrix Lie group consisting of all n × n invertible matrices with real

entries (Hall, 2003).

12

2.1. ROTATIONS

Euler Angles as a representation of SO(3)

A common method for representing SO(3) rotations is the use of Euler angles. Euler

angles consist of three successive angles of rotation, each about one of the axes of the

rotated body-fixed reference frame. The first rotation is about any axes, the second

rotation is about one of two axes not used in the first rotation, and the third rotation

is about of the two axes not used in the second rotation. There are 12 possible

combinations of axes rotations that can be used, each represented by three letters

corresponding the axes used and the order in which they are used (eg: ZYZ, XYZ,

ZYX, etc.) (Wie, 1998). The ZYX Euler angles are commonly used in the aerospace

field, with the x-axis rotation referred to as roll (ϕ), the y-axis rotation referred to as

pitch (θ), and the z-axis rotation referred to as yaw (ψ), shown in Fig. 2.2.

Figure 2.2: Euler angles associated with roll (ϕ), pitch (θ), and yaw (ψ) (NASA JPL,

2004).

Three separate rotation matrices, each representing a single rotation about a single

13

2.1. ROTATIONS

principle axis, are combined to form a full 3-dimensional rotation matrix RB/A. The

combined rotations for the ZYX Euler representation is shown in (2.4a).

RB/A = Rz(ψ)Ry(θ)Rx(ϕ) (2.4a)

RB/A =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 (2.4b)

RB/A =

cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ

cos θ sinψ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− cosψ sinϕ

− sin θ cos θ sinϕ cos θ cosϕ

(2.4c)

The Euler angle representation is surjective to SO(3) allowing the Euler angles to

be computed from a given rotation matrix R ∈ SO(3). Using (2.4c) the solutions for

the ZYX rotation are given in (2.5).

ϕ = arctan2
1R32

R33

(2.5a)

θ = arctan2
−R31√
R2

11 +R2
21

(2.5b)

ψ = arctan2
R21

R11

(2.5c)

It is a fundamental feature of SO(3) that any three dimensional representation will

have a singularity for a particular rotation. In the case of ZYX Euler angles, it occurs

1The arctan2
a
b is similar to tan−1 a

b but uses the sign of a and b to determine the quadrant of
the resultant angle.

14

2.1. ROTATIONS

at θ = ±π
2
(Murray et al., 1994). This is related to the fact that SO(3) is not simply-

connected. Another way to visualize this singularity is to examine the Euler angle

kinematics, shown in (2.6).

ϕ̇

θ̇

ψ̇

 = 1
cos θ

cosψ − sinψ 0

cos θ sinψ cos θ cosψ 0

− sin θ cosψ sin θ sinψ cos θ

 ω⃗ (2.6)

The vector ω⃗ represents the angular rate vector.

Definition 3. For a matrix Lie group G, the Lie algebra of G, denoted g, is the set of

all matrices X such that etX is in G for all real numbers t (Hall, 2003).

The Lie algebra so(n) associated with the matrix Lie group SO(n) can be used

to represent rotations using a single unit vector ω ∈ R3 which specifies the direction

of rotation and θ ∈ R, representing the angle of rotation in radians.

SO(n) in general can be expressed in the form eω
×θ where ω× ∈ so(n) is a skew-

symmetric matrix satisfying ω×T
= −ω× whose elements come from ω⃗ by the following

relation:

ω× =

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.7)

where ω⃗ = [ω1 ω2 ω3]
T . This so(n) space is defined as

so(n) =
{
ω× ∈ Rn×n : ω×T

= −ω×
}
. (2.8)

Specifically, the set so(3) ⊂ R3×3 is a vector space with respect of standard matrix

15

2.1. ROTATIONS

summation and multiplication by a scalar since the sum of two elements of so(3)

is an element of so(3) and the scalar multiple of any element of so(3) is also an

element of so(3). Any element of so(3) is represented by a unit skew-symmetric

matrix (ω× ∈ so(3), ∥ω⃗∥ = 1) and a real number θ ∈ R (Murray et al., 1994). Using

this representation, the matrix exponential of so(3) can be reduced as follows:

eω
×θ = I +

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
ω× +

(
θ2

2!
− θ4

4!
+
θ6

6!
− · · ·

)
ω×2

eω
×θ = I + ω× sin θ + ω×2

(1− cos θ) (2.9)

where (2.9) is referred to as Rodrigues’ Formula (Murray et al., 1994). In summary

any rotation matrix R ∈ SO(3) can be expressed by a single rotation vector ω⃗ ∈

R3, ∥ω∥ = 1 and a single rotation angle θ ∈ R as shown in Fig. 2.3. This is also

known as Euler’s Eigenaxis Theorem (Wie, 1998) which states that any rotation can

be represented by a single rotation (θ) about a single Euler Eigenaxis (ω⃗). The

rotation matrix is expressed in the form R = eω
×θ where ω× ∈ so(3) ⊂ R3×3.

16

2.1. ROTATIONS

~ω

θ

a1

a2

a3

Figure 2.3: Representation of Euler’s Eigenaxis Theorem.

2.1.1 Quaternions

Quaternions were invented by Hamilton in 1843 as an extension of the complex num-

bers to a hypercomplex numbers (q = q0 + q1i + q2j + q3k ∈ H) consisting of a real

part (q0) and a three dimensional complex part (q1i + q2j + q3k) (Hamilton, 1844).

Hamilton invented the quaternions to allow for division algebra among Euclidean

17

2.1. ROTATIONS

vectors. Multiplication of the individual complex components uses the following rules

i2 = j2 = k2 = ijk = −1 (2.10)

ij = −ji = k (2.11)

jk = −jk = i

ki = −ki = j.

Quaternions can be also be represented as a combination of a scalar and three dimen-

sion vector as follows

q = [s, q⃗], (2.12)

where s = q0 is the scalar part and q⃗ = q1i+q2j+q3k is the vector part with imaginary

unit elements. Basic operations of quaternions are given as follows

qa + qb = [sa + sb, q⃗a + q⃗b] (2.13)

λq = [λs, λq⃗]

qaqb =
[
sasb − q⃗T

a q⃗b, sbq⃗a + saq⃗b + q⃗a × q⃗b

]
,

where λ is a scalar. Of note, a feature of quaternions is that the product of two

quaternions is noncommutative. The conjugate of q is defined as q∗ = [s,−q⃗] and the

norm is ∥q∥ =
√
qq∗. In summary, the algebra of H is a noncommutative associative

division algebra over the reals as well as a normed division algebra.

Quaternions can be used in lieu of other methods such as direction cosine matrixes

to represent attitude rotations. Unit quaternions, Hu, are quaternions where ∥q∥ = 1,

and can used to represent rotation. Utilizing Euler’s Eigenaxis Theorem, instead of

18

2.1. ROTATIONS

using multiple angular rotations to describe a rotation, a single rotation angle θ about

a unit eigenaxis n⃗ can be used. A example rotation in the 3D ijk space is shown in

Fig. 2.4. The red arrows show how i is rotated into j, j into k and k into i. The

rotational unit quaternion, defined as

q =

[
cos

(
θ

2

)
, sin

(
θ

2

)
n⃗

]
(2.14)

relates a fixed p⃗ in an original frame B to a new frame A by

pa = q∗pbq (2.15)

where pa and pb are vector quaternions with zero scalar part, i.e. p = [0, p⃗].

Figure 2.4: A single 120o quaternion rotation about the first diagonal in the 3D ijk

space (MathsPoetry, 2009).

19

2.1. ROTATIONS

The unit quaternions Hu are a representation of the spin Lie group S3 which forms

a 3-sphere in R4 which is isomorphic to the matrix Lie group SU(2). SU refers to the

special unitary matrix Lie group which consists of the space of matrices U ∈ Cn×n

defined by (Hall, 2003):

SU(n) =
{
U ∈ Cn×n : U†U = I, detU = +1

}
. (2.16)

Quaternions can be represented as a pair of complex numbers α = q0 + q1i and

β = q2 + q3i such that

q = α + βj = (q0 + q1i) + (q2 + q3i)j. (2.17)

where |α|2 + |β|2 = 1. This pair of complex numbers for quaternions can than be

easily represented by SU(2) as (D. Han, Fang, & Wei, 2008):

SU(2) =

 α β̄

−β̄ ᾱ

 .Hu (2.18)

The group SU(2) is simply-connected, and therefore no singularities appear for any

orientation. SU(2) is almost isomorphic to SO(3), SU(2) can be mapped onto SO(3),

but it is two to one (Hall, 2003). The direction cosine matrix R ∈ SO(3) can be

obtained from the unit quaternion q by (Wie, 1998):

R =

q20 + q21 − q22 − q23 2(q1q2 − q3q0) 2(q1q3 + q2q0)

2(q1q2 + q3q0) q20 − q21 + q22 − q23 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) q20 − q21 − q22 + q23

 (2.19)

20

2.1. ROTATIONS

The fact that SU(2) has a two to one to correspondence with SO(3) creates some

ambiguity (i.e. there are two unit quaternions, q and −q, that represent the same

physical orientation). In order to create a one to one correspondence from Hu to

SO(3), a normalization can be performed such that

N (q) =

 q, if q0 ≥ 0

−q, otherwise
(2.20)

where N (q) is the normalization of q. This new set {N (q)} does have a one to one

correspondence with SO(3) (D. Han, Fang, & Wei, 2008).

The rotational kinematic equation for quaternions, which has no singularities, is

given as

q̇ =
1

2
qω, (2.21)

where ω is the quaternion of the angular rate vector (ω = [0, ω⃗]) of the body frame

relative to an inertial frame expressed in the body frame (Wie, 1998).

A useful function for quaternions is the logarithm (Kim, Kim, & Shin, 1996). The

general logarithm for quaternions is defined as

log q =

[
0,

cos−1 s√
1− s2

q⃗

]
, s ̸= 1. (2.22)

Using 2.14, the logarithm of a unit quaternion is:

log q =

[
0,
θ

2
n⃗

]
. (2.23)

This leads to the exponential form of Hu which forms the Lie algebra for unit quater-

21

2.2. TRANSLATION

nions and is of the form:

q = e[0,
θ
2
n]. (2.24)

The unit quaternion logarithm in (2.23) is a vector quaternion (i.e. it’s real scalar

term is zero), so an approximation is used for simplicity:

log q =
θ

2
n⃗ (2.25)

yielding a normal R3 vector. When θ = 0,q =
[
1, 0⃗

]
or when θ = 2π,q =

[
−1, 0⃗

]
the log q = 0⃗ by convention.

2.2 Translation

Rigid body transformations that consist purely of translation are simple compared to

transformations that consist purely of rotation. Given a point q ∈ R3, represented in

a translated B frame as qb ∈ R3, to be represented in the fixed frame A as qa ∈ R3 is

as straightforward as:

qa = p⃗ab + qb (2.26)

where p⃗ab ∈ R3 represents a position vector of the origin of the translated frame B

from the origin of the fixed frame A. This relationship is shown in Fig.2.5. Reference

frame B has been translated from the fixed reference frame A by p⃗ab. Point q can be

represented in frame A using (5.40).

22

2.2. TRANSLATION

a3

a1

a2

b3

b1

b2

~pab

q

Figure 2.5: Representation of translation in R3.

The transformation for translation in (5.40) can be combined with the transfor-

mation for rotation in (2.2) to yield a transformation for for translation and rotation,

shown in Fig.2.6. Reference frame B has been translated from the fixed reference

frame A by p⃗ab and rotated by RA/B. Point q can be represented in frame A using

(2.27). The transformation can be defined by the following:

qa = p⃗ab +RA/Bqb (2.27)

23

2.2. TRANSLATION

a3

a1

a2

b3

b1

b2

~pab

q

R
A/B

Figure 2.6: Representation of both translation and rotation in R3.

The special Euclidean matrix Lie group SE(n) ⊂ R(n+1)×(n+1) can be used to

represent rigid body transformation by using the product space of Rn with SO(n)

where SE(n) , Rn×SO(n). For the specific case of 3-dimensional rigid body motion:

SE(3) ,
{
(p⃗,R) : p⃗ ∈ R3,R ∈ SO(3) ⊂ R3×3

}
= R3 × SO(3). (2.28)

For example, the transformation described in (2.27) and shown in Fig.2.6 can be

24

2.2. TRANSLATION

represent by the homogenous transformation matrix(Murray et al., 1994):

TA/B =

 RA/B p⃗ab

01×3 1

 (2.29a)

qa1

qa2

qa3

1

= TA/B

qb1

qb2

qb3

1

(2.29b)

In order to transform points in R3, the 3× 1 vector used to represent the point must

be augmented to a 4 × 1 vector by adding a 1 in the fourth element, as shown in

(2.29b). Vectors can also be transformed in a similar matter by augmenting their

fourth element with a 0. The identity element for SE(3) is I ∈ R4×4 and the inverse

is defined as:

TB/A =

 RB/A −RB/Ap⃗ab

01×3 1

 (2.30)

where RB/A = RA/BT

.

Chasles Theorem, also referred to as screw theory, which states that every rigid

body transformation can be realized by a rotation about an axis combined with a

translation parallel to that axis (Murray et al., 1994). Fig. 2.7 illustrates the concept

of Screw theory, which states that a rigid body transformation can be described by a

single rotation (θ) about an axis (ω⃗) combined with a translation (d⃗) parallel to that

axis.

25

2.2. TRANSLATION

~ωpo

~q

θ

~d

pn

Figure 2.7: Representation of Chasles Theorem or Screw theory.

The Lie algebra for SE(3), defined as the following, can be used to describe this

concept:

se(3) ,
{(
v⃗, ω×) : v⃗ ∈ R3, ω× ∈ so(3) ⊂ R3×3

}
. (2.31)

In homogenous coordinates, an element of se(3) is represented as:

ξ× =

 ω× v⃗

01×3 0

 ∈ R4×4 (2.32)

where ω× is the skew-symmetric representation of the rotation axis ω⃗ and v⃗ = −ω⃗× q⃗,

shown in Fig. 2.7. The exponential mapping of the Lie algebra se(3) onto its Lie

26

2.2. TRANSLATION

group SE(3) is as follows:

eξ
×θ =

 eω
×θ (I− eω

×θ)(ω⃗ × v⃗) + ω⃗ω⃗T v⃗θ

01×3 1

 =

 R p⃗

01×3 1

 (2.33)

where ω⃗ and θ come from the SO(3) exponential form R = eω
×θ (Murray et al., 1994).

This leaves solving the equation

Av⃗ = p⃗ (2.34a)

A = (I− eω
×θ)ω× + ω⃗ω⃗T θ (2.34b)

for v⃗ to determine all the elements in (2.32). The matrix A in (2.34b) is nonsingular

for all θ ∈ R.

2.2.1 Dual Numbers

Dual numbers were invented by Clifford (Clifford, 1873) in 1873 and further developed

for the use in rigid body motion by Study (Study, 1891). One can formally extend

the set of real numbers R by adding a dual factor ϵ with nilpotent property ϵ2 = 0

while ϵ ̸= 0. The set of such numbers DR is called a set of dual numbers defined as

x̂ = x+ ϵx′. (2.35)

27

2.2. TRANSLATION

The dual element can also be thought of as a linear operator

ϵ =

 0 0

1 0

 (2.36)

giving the dual number x̂ from (2.35) the form

x̂ =

 x 0

x′ x

 . (2.37)

The dual numbers form a two-dimensional associative commutative algebra, satisfying

the following basic operations

â+ b̂ = (a+ b) + ϵ (a′ + b′) (2.38a)

λâ = λa+ ϵλa′ (2.38b)

âb̂ = ab+ ϵ (ba′ + ab′) (2.38c)

â∗ = a− ϵa′ (2.38d)

â

b̂
=
âb̂∗

b̂b̂∗
=
a

b
+ ϵ

(
a′

b
− ab′

b2

)
, b ̸= 0 (2.38e)

where λ is a scalar (Wu & Hu, 2006). As seen from (2.38e), division for dual numbers

is not well defined and only exists when the real term of the divisor does not equal

zero.

Dual vectors are vectors whose elements are dual numbers or, alternatively, are

dual numbers whose real and dual parts are both vectors.

28

2.2. TRANSLATION

ˆ⃗v = v⃗ + ϵv⃗′ (2.39)

Unit dual vectors provide a method of representing lines in free space, (
ˆ⃗
l = v⃗+ϵm⃗).

The real term represents the unit direction vector (v⃗) of the line and the dual part is

the line moment (m⃗ = q⃗ × v⃗) where the vector q⃗ is vector from the reference frame

origin to a point on the vector v⃗, and the moment m⃗ is normal to the plane passing

through the origin and v⃗ (Wu et al., 2005). This representation is also referred as a

Plücker coordinate for a line, shown in Fig.2.8. Plücker Coordinate for a line consists

of a dual vector (
ˆ⃗
l = v⃗ + ϵm⃗) where the real component (v⃗) represents the unit

direction vector of the line and the dual component is the line moment (m⃗ = q⃗ × v⃗).

~v

~q

~m

Figure 2.8: Representation of Plücker coordinate for a line.

29

2.2. TRANSLATION

These Plücker coordinates can be used to define the screw axis from (2.32) as

ˆ⃗
ξ = ω⃗ + ϵv⃗, shown in Fig. 2.9. The screw axis can be represented by a Plücker line

coordinate,
ˆ⃗
ξ = ω⃗ + ϵv⃗ where v⃗ = −ω⃗ × q⃗. The dual angle θ̂ = θ + ϵd describes the

motion about the screw axis.

A

~q

A
′

~ω

θ

B

~d

~pab

Figure 2.9: Plücker coordinate representation of screw axis and rotation.

The basic operation for dual vectors are as follows

ˆ⃗v1 = v⃗1 + ϵv⃗′1
ˆ⃗v2 = v⃗2 + ϵv⃗′2

ˆ⃗vT1
ˆ⃗v2 = v⃗T1 v⃗2 + ϵ

(
v⃗T1 v⃗

′
2 + v⃗

′T
1 v⃗2

)
(2.40a)

ˆ⃗v1 × ˆ⃗v2 = v⃗1 × v⃗2 + ϵ (v⃗1 × v⃗′2 + v⃗′1 × v⃗2) . (2.40b)

These vector operations can be applied to Plücker lines to develop useful relationship

between screws. The dual vector dot product from (2.40a) is equivalent to the cosine

of the dual angle θ̂ = θ + ϵd

ˆ⃗
lT1
ˆ⃗
l2 = cos θ̂ (2.41)

30

2.2. TRANSLATION

where
ˆ⃗
l1 = l⃗1 + ϵm⃗1,

ˆ⃗
l2 = l⃗2 + ϵm⃗2, θ is the crossing angle and d the perpendicular

distance between the Plücker lines, shown in Fig.2.10. The cross product between

two Plücker lines, defined as

ˆ⃗
l1 ×

ˆ⃗
l2 = sin θ̂ ˆ⃗n (2.42)

produces a new Plücker line ˆ⃗n which represents the common perpendicularly inter-

secting lines in the direction of l⃗1 × l⃗2, also shown in Fig. 2.10. The dot product and

cross product of two Plücker lines (
ˆ⃗
l1,

ˆ⃗
l2) can be used to represent the relationship

between the two lines. θ is the crossing angle, d is the perpendicular distance between

the lines, and the dual vector ˆ⃗n is the common perpendicularly intersecting line in

the direction of l⃗1 × l⃗2 (Wu et al., 2005).

31

2.2. TRANSLATION

~̂l1

θ

d

~̂l2

~̂n

Figure 2.10: Representation of dual vector dot and cross products.

A dual matrix consists of a real and dual matrix, or a matrix of dual numbers.

Multiplication of dual vectors and matrices are performed as follows

Â1 = A1 + ϵA′
1 Â2 = A2 + ϵA′

2

Â1Â2 = A1A2 + ϵ (A1A
′
2 +A′

1A2) (2.43a)

Â1v̂1 = A1v⃗1 + ϵ (A′
1v⃗1 +A1v⃗

′
1) (2.43b)

32

2.2. TRANSLATION

where multiplication of dual matrices is associative, but not necessarily commutative.

For nonsingular dual matrices the inverse is defined as Â−1 = A−1 − ϵ (A−1A′A−1)

which satisfies Â−1Â = ÂÂ
−1

= I where I is a real identity matrix (J. Wang et al.,

2012).

2.2.2 Dual Quaternions

In a similar way dual numbers can be used to extend Rn and Cn thus obtaining the

sets of dual vectors DRn and DCn, the quaternions H can also be extended to the

dual quaternions DH. Namely, dual quaternions are defined as

q̂ = q+ ϵq′ (2.44a)

or

q̂ =
[
q̂0, ˆ⃗q

]
(2.44b)

where q ∈ H and q′ ∈ H are quaternions (Wu et al., 2005), q̂0 is a dual number and ˆ⃗q

is a dual vector representing the scalar and vector components of the dual quaternion

respectively. The following is some basic operations of dual quaternions:

q̂1 + q̂2 =
[
q̂10 + q̂20 ,

ˆ⃗q1 + ˆ⃗q1

]
(2.45a)

q̂1q̂2 = q1q2 + ϵ(q2q
′
1 + q1q

′
2) (2.45b)

q̂∗ =
[
q̂0,−ˆ⃗q

]
(2.45c)

∥q̂∥2 = q̂q̂∗ (2.45d)

33

2.2. TRANSLATION

where q̂∗ = q∗+ ϵq′∗ is the conjugate of q̂. Of note, the magnitude squared of q̂ from

(2.45d) yields a dual number.

Dual quaternions can be used to represent screw motion, using quaternions rather

than angles to represent rotation. A 6-DOF transformation consisting of a rotation

q ∈ Hu followed by a translation p⃗ ∈ R3 can be represented by a dual quaternion by

setting

q′ =
1

2
q[0, p⃗]. (2.46)

A dual quaternion defined in this matter has the characteristic q · q′ = 0 in addition

to the unit quaternion criterion ∥q∥ = 1 and is considered normalized and referred

to as DHu. DHu forms a Lie group, consisting of a manifold with 3 dual dimensions

(X. Wang, Han, Yu, & Zheng, 2012). The identity element of DHu is Î ∈ DHu and is

defined as Î = (1, 0, 0, 0) + ϵ(0, 0, 0, 0). Unit dual quaternions can be used to define

the screw motion shown in Fig. 2.9 by the following

q̂ =

[
cos

θ̂

2
, sin

θ̂

2
ˆ⃗
ξ

]
= q+ ϵ

1

2
qpab (2.47)

where θ̂ = θ + ϵd is the dual angle about the screw axis
ˆ⃗
ξ = ω⃗ + ϵv⃗ (X. Wang et al.,

2012). Elements of DHu can be expressed in exponential form by its Lie algebra ĥ,

defined as (X. Wang et al., 2012)

ĥ =

[
0̂,

1

2
θ̂
ˆ⃗
ξ

]
(2.48a)

q̂ = e
θ
2
ĥ (2.48b)

The screw motion in Fig. 2.9 can be represented by this Lie algebra as (X. Wang et

34

2.2. TRANSLATION

al., 2012)

ĥ =
[
0̂,
ˆ⃗
h
]

ˆ⃗
h = ω⃗ + ϵ

(
q⃗ × ω⃗ +

θ

d
ω⃗

)
. (2.49)

The logarithm of a dual quaternion can then be defined as

log q̂ =
θ

2
Ĵ =

[
0̂,

1

2
θ̂
ˆ⃗
ξ

]
. (2.50)

Since this is not a intuitive result for representing transformations in SE(3), the

logarithm can be approximated by a dual vector, exploiting the geometry in Fig. 2.9

as

log q̂ =
1

2
(θω⃗ + ϵp⃗ab) (2.51)

where θ ∈ R and ω⃗ ∈ R3 are respectively the rotational angle and eigenaxis of

rotation, and p⃗ab ∈ R3 is the translation vector (X. Wang et al., 2012). By definition,

the log
(
±Î

)
is the dual null vector ˆ⃗0 = [0, 0, 0]+ ϵ [0, 0, 0] (D. Han, Wei, & Li, 2008).

The error difference between two dual quaternions q̂1, q̂2 ∈ DH is defined as

ê12 = q̂∗
1 ◦ q̂2. (2.52)

A norm for dual quaternions, N(q̂), can be defined using the inner product of the

35

2.3. DUAL QUATERNION RIGID BODY MOTION MODEL

logarithm in (2.51) as follows

N(q̂) = 2∥ log q̂∥ = 2
√

⟨log q̂, log q̂⟩ (2.53)

where

⟨log q̂, log q̂⟩ = (log q̂)T · log q̂ =
|θ|2 + ϵ(2θpab cosα)

4

⇒ N(q̂) = |θ|+ ϵ(θpab cosα)

where α is the angle between ω⃗ and p⃗ab and pab is the magnitude of p⃗ab. N(q̂) is a dual

positive number (i.e. both the real and dual elements are positive) and N(±Î) = 0̂.

The distance between two dual quaternions D(q̂1, q̂2) is defined using (2.52) and (??)

as D(q̂1, q̂2) = N(ê12) (D. Han, Fang, & Wei, 2008).

2.3 Dual Quaternion Rigid Body Motion Model

For a single rigid body the kinematic equation describing simultaneously rotation and

translation is

˙̂q =
1

2
q̂ω̂ (2.54a)

ω̂ =
[
0̂, ˆ⃗ω

]
(2.54b)

where the dual vector ˆ⃗ω ∈ DR3, called a twist, is defined as

ˆ⃗ω = ω⃗ + ϵv⃗ = ω + ϵ(˙⃗p+ ω⃗ × p⃗). (2.55)

36

2.3. DUAL QUATERNION RIGID BODY MOTION MODEL

where ω⃗ ∈ R3 is the angular velocity, p⃗ refers to position, ˙⃗p is the velocity with respect

to the moving frame and the vector v⃗ ∈ R3 refers to the inertial velocity, defined in

the moving frame (J. Wang et al., 2012).

Rigid body dynamics are traditionally defined by:

˙⃗v =
f⃗

m
(2.56a)

˙⃗ω = −J−1 (ω⃗ × Jω⃗) + J−1τ⃗ (2.56b)

where v⃗ ∈ R3 is the translational velocity, m ∈ R is the translational inertia or mass,

f⃗ ∈ R3 is the translational force applied, ω⃗ ∈ R3 is the rotational velocity, J ∈ R3×3

is the rotational inertia matrix, and τ⃗ ∈ R3 is the torque applied.

Dual vectors can be used to describe the same rigid body dynamics in a single

equation. To do so, a dual inertia matrix is defined as

M̂ = m
d

dϵ
I+ ϵJ (2.57)

=

m d

dϵ
+ ϵJxx ϵJxy ϵJxz

ϵJxy m d
dϵ
+ ϵJyy ϵJyz

ϵJxz ϵJyz m d
dϵ
+ ϵJzz

where m is mass, J ∈ R3×3 is the inertia matrix, and I ∈ R3×3 the real identity matrix

(Brodsky & Shoham, 1999). The operator d
dϵ

is complimentary to the element ϵ. The

37

2.3. DUAL QUATERNION RIGID BODY MOTION MODEL

operations ϵ and d
dϵ

are defined as follows

ϵv̂ = ϵ(v + ϵv′) = ϵv (2.58)

d

dϵ
v̂ =

d

dϵ
(v + ϵv′) = v′.

The inverse of the dual inertia matrix is defined as M̂−1 = J−1 d
dϵ
+ ϵ 1

m
I (J. Wang et

al., 2012).

The dynamics of a rigid body is then defined as

˙̂
ω⃗ = −M̂−1(ˆ⃗ω × M̂ ˆ⃗ω) + M̂−1f̂ (2.59)

where f̂ = f + ϵ τ ∈ DR3 is a dual vector called the force motor with f ∈ R3 and

τ ∈ R3 being the force and torque vectors in the body frame (J. Wang et al., 2012).

38

Chapter 3

Sliding Mode Control

The sliding mode control approach has long been recognized as a particularly suitable

method for handling nonlinear systems with uncertain dynamics and disturbances. It

is is one of the most powerful of contemporary control methods. Probably the first

work was done by Irmgard Flügge-Lotz (Flügge-Lotz, 1953). Further development on

sliding mode control was done by S.V. Emelyanov and V. I. Utkin (Utkin, 1978).

The main idea of the method is to switch the control in such a way so that the

system from any possible state was forced to reach a certain manifold in the state

space, i.e. to keep some relation between the systems’ internal variables. This relation

(manifold) is chosen in such a way that the system fulfills a desired task under that

constraint.

The major advantage of Sliding Mode controllers is an inherent low sensitivity

to parameter variations and disturbances since after the reaching phase the state is

kept very robustly on the manifold in spite of the parameter variations and external

disturbances. This chapter provides an introduction into the sliding mode control

39

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

theory and applications.

3.1 Ordinary Differential Equations with Sliding

Modes

This section discusses the main results of the theory of ordinary differential equations

with a discontinuous right hand side. The solution of this equations does not exist

in classical sense so a generalization of the concept of solution is needed. First re-

call classical theorems for existence and uniqueness of ordinary differential equation

solutions. Consider the initial value problem for ordinary differential equation:

ẋ = f(x, t) (3.1)

where x(0) = x0. Classical conditions for existence of solutions to this problem are

the Carathéodory conditions (Coddington & Levinson, 1955):

1. f(x, t) is continuous with respect to x for almost all t.

2. f(x, t) is measurable for all (t, x) ∈ D.

3. f(x, t) ≤ g(t) (bounded).

Theorem 1. If Carathéodory conditions are met, then the solution of the initial value

problem (IVP) exists such that

t ∈ [−δ, δ],∃ U ∋ x0,∃ x(t) (3.2)

40

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

Carathéodory conditions guarantee existence but not uniqueness of the solution. Con-

sider the following example.

Example:

ẋ = f(x, t), x ∈ Rn (3.3a)

ẋ =
√

|x| (3.3b)

x(0) = 0 (3.3c)

There are two solutions, x(t) = 0 and x(t) = t2

4
.

Uniqueness requires stronger conditions for f(x, t). One of the most known is the

Lipshitz condition (Khalil, 2002):

|f(x, t)− f(t, y)| ≤ l(t)|x− y| (3.4)

Theorem 2. If f(x, t) is Lipschitz then the solution of the initial value problem is

unique on some interval [−δ, δ] ∋ t.

Consider the simple first order equation:

ẋ = −M · sgn(x) (3.5)

whereM > 0. For any x(0) ̸= 0 the solution reaches the origin in finite time t1. After

that it is ”natural” to assume that x(t) ≡ 0 for t > t1. In this case the solution exists

but if x(to) = 0 it is unique only for the ”forward” interval t ∈ [to,∞), but not unique

for t ∈ (−∞, to). For example x1(t) = M(t0 − t) ̸= x2(t) = M(t − t0) for t < t0 but

both are solutions of (3.5) and x1(t) ≡ x2(t) ≡ 0 when t ≥ t0.

41

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

3.1.1 Differential Inclusions

More general case when the right hand side of the ordinary differential equation

is discontinuous was rigorously studied by Filippov (Filippov, 1988). Consider the

general system ẋ = f(t, x) where f(t, x) is discontinuous at the point (t, x∗) and

x ∈ R. By examining the potentially resulting vectors in the vicinity ϵ away from

the point (t, x∗) as ϵ approaches zero, the remaining vectors must be a combination

of the vectors in set F (t, x), where ẋ ∈ F (t, x).

The function x(t) is the solution to the discontinuous differential equation ẋ =

f(t, x) if and only if

1. The function x(t) is differentiable almost everywhere (discontinuities at a point

are allowed), and

2. ẋ(t) remains an element of the set F (t, x) for all t.

This definition is the most general case for the solution of an differential equation

with a discontinuous right–hand side. In itself, it does not provide an exact solution,

but a set of vectors.

Mathematically, the elements of this set of vectors F must be within the convex

hull of the resulting vectors. Let M be the set composed of the discontinuous points

in (t, x). The convex hull of a set M is defined as:

co1 M = {α1x1 + α2x2 + . . .+ αkxk} (3.6)

where x1, x2, . . . xn,∈ R, α1, α2, . . . , αk ≥ 0, and
∑k

i=1 αi = 1. If such elements

in the convex hull exist where all of the αi are between zero and one, then by the

1co denotes the convex hull of the corresponding set {}.

42

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

Fillipov Definition this set of αi’s will form a set of valid ẋ vectors which will solve

the differential equation ẋ = f(t, x).

3.1.2 Sliding Motion Description

Classical Filippov Definition

For a smooth switching manifold σ = 0, the Fillipov Definition selects a subset of

vectors from the convex closure which will be tangent to the switching manifold.

Given the convex hull exists for which includes vectors from the trajectory tangent to

σ, the differential equation can be replaced by the differential inclusion ẋ ∈ F (t, x).

The classical Fillipov definition for right–hand side discontinuous differential equation

ẋ = f(t, x), for (t, x) ∈M is stated as (Filippov, 1988):

F (t, x∗) = co{limϵ→0{f(t, x)|x ∈ Vϵ(x
∗) excluding M}} (3.7)

where x∗ is a point of discontinuity on the right–hand side of the differential equation

and Vϵ(x
∗) is the vicinity ϵ away from x∗ (i.e., Vϵ(x

∗) = {x| ∥x−x∗∥ < ϵ}) and F (t, x)

is a set of vector fields in Rn.

The resulting set F (t, x) lies within the differential inclusion and within the convex

hull. Moreover, these vectors F (t, x) will be tangential to the smooth switching

manifold σ = 0. F (t, x) ⊥ ∇σ solution yields a smaller set of possible vectors but it

is still not unique, but it is a necessary condition to remain on the manifold σ. Let

us consider what the Filippov definition gives in application to (3.5): Example 1:

ẋ = − sgnx

43

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

Notice this is a first order system with the set of discontinuities M only composed of

the point x = 0, so σ = x = 0. Observing the behavior near the origin, if x is greater

than zero, the resulting vector ẋ is equal to negative one and vice versa. Replacing

the differential equation with a differential inclusion:

ẋ ∈ F (t, x)

where :

F (t, x) = co{−1,+1}

= α1(−1) + α2(+1)

where α1, α2 ≥ 0 and α1 + α2 = 1. By substituting for α2 into the convex hull:

−α1 + 1 + α1 = 1− 2α1

where α1 ≥ 0. If the trajectory were directed to remain on the manifold once it

arrives, the vector ẋ must equal zero. Given the differential equation was replaced by

a differential inclusion, and solving for ẋ = 0 results in α1 = 1
2
and α2 =1 − α1 =1

2
.

Example 2: A mass–spring system with mass unit mass and spring constant is

described by the differential equation.

ẍ+ x = u

can be rewritten by choosing x1 = x and x2 = ẋ as:

44

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

ẋ1 = x2

ẋ2 = −x1 + u

Choosing the discontinuous control signal of the form u = −M sgn(x2 + x1), the

equations at the points of discontinuity become:

x∗2 + x∗1 = 0

F (t, x∗) = co

 x∗2

−x∗1 −M

 ,
 x∗2

−x∗1 +M

α

 x∗2

−x∗1 −M

+ (1− α)

 x∗2

−x∗1 +M

 =

 x∗2

−x∗1 + (1− 2α)M

For the vector to be tangent to the manifold σ = x1 + x2 = 0, it must be orthogonal

to the vector normal to σ = 0, which means orthogonal to ∇σ = [1 1]T . Therefore

their inner product must be zero resulting in:

x∗2 + [−x∗1 + (1− 2α]M] = 0

α =
x∗2 − x∗1 +M

2M

Substituting α into ẋ yields

 x∗2

−x∗1 +M − x∗2 + x∗1 −M

 =

 x∗2

−x∗2

45

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

where the value α(x1, x2) is constrained between zero and one.

The affine system is given as follow:

ẋ = f(t, x) (3.8)

Outside the switching manifold, the trajectories are described by

f =

 f+, σ > 0

f−, σ < 0
, (3.9)

while on the manifold σ = x1 + x2 = 0 and since ∇σ = [1, 1]T the system equations

are as follows:

ẋ1 = x2 (3.10a)

ẋ2 = −x2 (3.10b)

or F = [x2, −x2]T . The normal vector of the manifold is denoted as:

n⃗ =

[
∂σ

∂x

]T
∂σ

∂x
·
(
αf+ + (1− α)f−) = 0 (3.11a)

Since normal vector perpendiculars to the tangential vector of the manifold, the value

of α can be calculated by setting the product of two vectors equal to zero as in the

above equation. Using the manifold equation we have x2 = −x1 so the system is

46

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

given by

ẋ1 = −x1 (3.12a)

ẋ2 = −x2. (3.12b)

Thus, x1 → 0 and x2 → 0 as t→ ∞.

Generalized Filippov Definition

For a system is given as:

ẋ = f(t, x, u) (3.13)

where u ∈ U(t, x). ẋ is in the convex hull of the f(t, x, U(t, x)) function which satisfies

the Filippov definition:

ẋ∈F (t, x) = lim ϵ→ 0co {f(t, x, U(t, x))|∥x− x∗∥ < ε} (3.14)

where inU(t, x).

Equivalent Control Method

Consider the system:

ẋ = f(t, x, u) x ∈ Rn, u ∈ R (3.15)

47

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

The control variables are described in the smooth switching manifold σ(t, x) = 0:

u =

 u+(t, x), σ > 0

u−(t, x), σ < 0
(3.16)

The vectors f , defined as

f+(t, x) = f(t, x, u+(t, x)) (3.17a)

f−(t, x) = f(t, x, u−(t, x)) (3.17b)

are assumed to satisfy Lipschitz condition. Since in sliding mode σ(t, x) = 0 then at

the ”average” σ̇ = 0, therefore:

∂σ

∂t
+
∂σ

∂x
f(t, x, ueq) = 0 (3.18)

where the solution ueq of (3.18) is called the equivalent control.

For a system described by an equation affine in the control variable u

ẋ = f(t, x) +B(t, x)u (3.19)

the equivalent control method gives the same solution as Filippov definition. In this

case the equation describing system behavior on the manifold is:

ẋ = f(t, x) +B(t, x)ueq (3.20)

48

3.1. ORDINARY DIFFERENTIAL EQUATIONS WITH SLIDING MODES

Solving (3.18) for ueq in case of the system (3.19) we obtain

σ(t, x) = 0 (3.21a)

σ̇ =
∂σ

∂t
+
∂σ

∂x
· (f +Bueq) = 0 (3.21b)

⇒ ueq = −
(
∂σ

∂x
B

)−1(
∂σ

∂t
+
∂σ

∂x
f

)
(3.21c)

This case is illustrated in Fig. 3.1.

Figure 3.1: Sliding Mode Equivalent Control ueq.

Many of the equations considered in this work are of the following

ẋ = B(x)u (3.22)

where

ueq = −
(
∂σ

∂x
B(x)

)−1
∂σ

∂t
. (3.23)

49

Chapter 4

Self-Reconfigurable Control

Sliding mode control for many years has been used in designing an appropriate

sliding manifold to stabilize nonlinear systems (S. V. Drakunov & Utkin, 1992;

S. V. Drakunov & DeCarlo, 1994). The sliding mode control approach is used for a

class of systems

ẋ = f(t, x) +B(t, x)u (4.1)

with uncertain functions f and B. The objective is to make σ(x) = 0 to be a

stable sliding manifold where σ is a given function, under the assumption that f

and B belong to wide classes of functions. In majority of cases only one-component

manifolds were considered described by the equations

σi(t, x) = 0 (4.2)

50

where σ = col(σ1, ..., σm) and the goal of the design was to make the system reach

their intersection

{σ(t, x) = 0} =
m∩
i=1

{σi(t, x)} = 0 (4.3)

These techniques were extended to a larger class of systems using the addition of

multiple manifolds (S. Drakunov, 1993; S. V. Drakunov, 1994).

This present work, some of which has been previously presented in (Price, Ton,

MacKunis, & Drakunov, 2013), concentrates on the design of equilibrium sets in the

state space with more complicated structure than just the intersection of several one-

component manifolds. The families of sliding (or potentially sliding) surfaces provide

new opportunities for designing robust systems with new interesting properties. The

control design is based on the creation of multiple sliding surfaces for the system in

the extended state space. Each sliding surface in the extended space corresponds

to the stability of the origin in σ-space of the given systems, i.e. sliding surface on

σ(x) = 0. In general, these points are different for different f and B.

If areas of attraction for the multiple sliding surfaces covers the entire state space,

the proposed control allows one to achieve the goal by a control law which is uni-

versal for the class of systems. Being adaptive by its behavior such control auto-

matically changes its structure if the system structure changes during the regulation

process. By combining a dual quaternion-based dynamic representation with sliding

mode control approach, simultaneous rotation and translation control can be achieved

for spatial rigid body systems, where the dynamics contain multiple sources of un-

certainty and unmodeled effects. In this work dual quaternion models are used in

combination with self-configurable variable structure/sliding-mode control, extend-

ing previous work (S. Drakunov, 1993).

51

4.1. DUAL QUATERNION SLIDING SURFACE

4.1 Dual Quaternion Sliding Surface

The dual quaternion kinematics (5.47) and dynamics (4.4b) for a single rigid body

was presented in Chapter 2 as

˙̂q =
1

2
q̂ω̂ (4.4a)

˙̂
ω⃗ = −M̂−1(ˆ⃗ω × M̂ ˆ⃗ω) + M̂−1f̂ (4.4b)

The kinematics and dynamics of a single rigid body can be expanded on and gener-

alized to include multiple bodies:

˙̂qi =
1

2
q̂iω̂i (4.5)

˙̂qi = f
(
q̂1, q̂2, ..., q̂n, ˆ⃗ω1, ˆ⃗ω2, ..., ˆ⃗ωn, t

)
(4.6)

˙̂
ω⃗i = −M̂−1ĝi

(
q̂1, q̂2, ..., q̂n, ˆ⃗ω1, ˆ⃗ω2, ..., ˆ⃗ωn, t

)
(4.7)

+ M̂−1ĥi(q̂
1, q̂2, ..., q̂n, ˆ⃗ω1, ˆ⃗ω2, ..., ˆ⃗ωn, t)f̂ i

where the integer i represents a single rigid body and n represents the total number

of rigid bodies. In these equations the functions ĝi and ĥi represent the internal

forces/torques and the direction of the control force f̂ i = ûi, respectively.

Introducing the generalized position dual quaternion vector Q̂ = [q̂1, q̂2, . . . , q̂n]T ∈

DHn and generalized dual velocities vector Ω̂ = [ˆ⃗ω1, ˆ⃗ω2, . . . , ˆ⃗ωn]T ∈ DRn the model

can be written as

˙̂
Q =

1

2
Q̂[0̂, Ω̂] (4.8)

˙̂
Ω = −M̂−1ĝ(Q̂, Ω̂, t) + M̂−1ĥ(Q̂, Ω̂, t)û. (4.9)

52

4.1. DUAL QUATERNION SLIDING SURFACE

If in the equations (4.5),(4.8) Ω̂ = [ˆ⃗ω1, ˆ⃗ω2, . . . , ˆ⃗ωn]T is considered as control, the

logarithmic feedback law can be used to solve the kinematic regulation control prob-

lem (D. Han, Fang, & Wei, 2008) ˆ⃗ωi = −2k log λq̂i, k > 0 or

Ω̂ = −2k log λQ̂, (4.10)

where the log is the quaternion log approximation (2.51) and understood componen-

twise. The parameter λ is used to have the controller take the shorter path for the

identical equilibrium positions Î and −Î, where (D. Han, Fang, & Wei, 2008)

λ =

 1, if q̂(0) · Î ≥ 0

−1, otherwise.
(4.11)

Using (4.10), the sliding surface is described as

σ̂ = Ω̂+ 2k log λQ̂ = ˆ⃗0. (4.12)

Another function that will be useful is sgnρ(x) ∈ Rn defined as (Zhang & Duan,

2011):

sgnρ(x) = [|x1|ρsgn(x1)...|xn|ρsgn(xn)]T (4.13)

where x ∈ Rn is an arbitrary vector and ρ ∈ R. For a dual vector x̂ = x1 + ϵx2 ∈

DRn,x1,x2 ∈ Rn (Zhang & Duan, 2011):

sgnρ(x̂) = sgnρ(x1) + ϵsgnρ(x2). (4.14)

53

4.2. SELF-RECONFIGURABLE CONTROL

4.2 Self-Reconfigurable Control

In this section, a control algorithm is presented to solve stabilization problem to the

sliding manifold

M = {[Q̂, Ω̂] ∈ DHn × DRn|σ̂(Q̂, Ω̂) = 0} (4.15)

introduced in the previous section. Note here, that σ̂ is an n-dimensional dual vector

belonging to DRn which is a linear vector space1. It is assumed that the dynamic

model (4.8), (4.9) contains an unknown, state- and time-varying input gain matrix,

which causes unmodeled variations that manifest themselves as a priori unknown

changes in the commanded control direction. Once the dual-quaternion-based dy-

namic model is expressed in the general form, a robust sliding mode controller will

be presented, which will be proven to mitigate the unknown control direction based

on the approach suggested in (S. Drakunov, 1993), (S. V. Drakunov et al., 1995) and

achieve finite-time convergence to a sliding surface.

Differentiating (4.12) yields

˙̂σ = B̂(Q̂, Ω̂, t)û+ F̂(Q̂, Ω̂, t) (4.16)

where B̂ = M̂−1ĥ(Q̂, Ω̂, t) ∈ DRn×n is a matrix defining direction of the control

action in σ-space. The goal is to develop a control algorithm that does not require

knowledge of B̂, but it can be assumed that this dual matrix satisfy natural conditions

that follow from mechanical properties of the controlled system. B̂ is such that

(i) it is nonsingular almost everywhere, and (ii) the corresponding quadratic form

1It is also a Banach space with corresponding norms. So that, for example, if σ̂ = σ + ϵσ′, then

this dual vector p-norm is ∥σ̂∥p =
[
∥σ∥pp + ∥σ′∥pp

] 1
p = [

∑n
k=1(|σk|p + |σ′

k|p)]
1
p , (p ≥ 1).

54

4.2. SELF-RECONFIGURABLE CONTROL

ξT B̂(Q̂, Ω̂)ξ is sign definite and a manifold (if such exists) in DHn × DRn space

where this quadratic form can change its sign does not coincide with the desired

sliding manifold M at least in some area of the state space DHn × DRn where the

system trajectories evolve.

The main idea behind this control is in partitioning the σ̂-subspace onto a grid

comprised of concentric manifolds that are spheres defined by ∥σ̂∥pp = ∆(t)k, where

∆(t) > 0 is the variable grid step, k is a nonnegative integer and ∥ · ∥p is a p-norm.

Inside each layer Lk between these manifolds Lk = {∆(t)k ≤ ∥σ̂∥pp ≤ ∆(t)(k + 1)}

the control may be constant, but its sign alternates from one layer to another. We

show that this control structure under a nonsingularity condition results in a set of

stable equilibrium spheres in σ̂-subspace. Then we choose the dynamics of ∆(t) so

that eventually all spheres radii converge to zero, thus, stabilizing σ̂ to the origin of

the corresponding dual vector space.

The union of the concentric manifolds forms a switching manifold:

G =
r∪

k=0,±1,...

Gk =
r∪

k=0,±1,...

{
x : ∥σ̂(x)∥pp = ∆(t)k

}
. (4.17)

Pick û such that

û = Û0sgn

[
sin

(
π
∥σ̂∥pp
∆(t)

)]
sgn(σ̂), (4.18)

where Û0 is a dual matrix control gain of the form:

Û0 = Kf
d

dϵ
+ ϵKτ (4.19)

55

4.2. SELF-RECONFIGURABLE CONTROL

where Kf and Kτ may be constant diagonal matrixes or state dependent diagonal

matrixes related to the gains for translation and rotation respectively. The operators

d
dϵ

and ϵ are included in the dual matrix control gain so that the real (force) and dual

(torque) components of the force motor f̂ are associated with the dual (displacement)

and real (rotation) components of the sliding surface σ̂. Let us note that the term

sgn
[
sin

(
π

∥σ̂∥pp
∆(t)

)]
is a changing sign scalar and the last term sgn(σ̂) in (4.18) is a dual

vector part of the control that alternate signs in the quadrants of the corresponding

dual vector space DRn. It is needed to guarantee stability on one of the sliding

manifolds Gk.

The function ∆(t) is the following:

∆(t) = C − µ

∫ t

0

∥σ̂(τ)∥ppdτ, (4.20)

where C > 0 is chosen from the area of initial conditions and µ > 0 is a control

parameter regulating spheres’ radii convergence rate.

Fig 5.1 demonstrates the vector field of velocities and one possible scenario of con-

vergence toward the sliding manifold (red line) using control (4.18). In this simulation

experiment the matrix B and the initial conditions were chosen randomly.

Also note, that in (4.18) the sin(πx) function is used only for convenience and

relate this control algorithm to the one described in (S. V. Drakunov, 1994). In fact,

the main property that is required from this function is the alternating sign. It does

not even have to be periodic. So the more general form of the control algorithm is

û = Û0ψ

(∥σ̂∥pp
∆(t)

)
sgn(σ̂), , (4.21)

56

4.2. SELF-RECONFIGURABLE CONTROL

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

sigma1

si
gm

a2

Figure 4.1: Equilibrium manifolds in σ̂-space (p = 2).

where the function ψ(x) is such that, for example, ψ(x) = sgnn(x) if |x| ≤ 1, and

ψ(x) = − sgn(x) otherwise.

Proof. Here a sketch of the proof is provided just to demonstrate the technique by

considering the case of real B̂. The general situation is treated similarly by considering

separately the real and dual part of the control (4.18). The values p = 1, and a real

scalar Û0 are used. The idea behind the convergence proof is the following: consider

57

4.2. SELF-RECONFIGURABLE CONTROL

a Lyapunov function with multiple zeroes:

V =

∣∣∣∣sin(π∥σ̂∥1∆(t)

)∣∣∣∣ . (4.22)

V is positive everywhere except it is zero at the points where

∥σ̂∥1 = ∆(t)k (4.23)

k = 0,±1,±2,

The derivative of V along the system trajectories is

V̇ = sgn

[
sin

(
π
∥σ̂∥1
∆(t)

)]
cos

(
π
∥σ̂∥1
∆(t)

)
π
d

dt

[
∥σ̂∥1
∆(t)

]
. (4.24)

Since the 1-norm can be represented as ∥σ∥1 = (sgnσ)Tσ the derivative of ∥σ∥1 using

(4.16) can be written as

d∥σ̂∥1
dt

= (sgnσ)T σ̇ = (sgnσ)T B̂û+ (sgnσ)T F̂, (4.25)

or using (4.18) written as

d∥σ̂∥1
dt

= Û0(sgnσ)
T B̂(sgnσ)sgn

[
sin

(
π
∥σ̂∥1
∆(t)

)]
+ (sgnσ)T F̂. (4.26)

Combining this with (4.24) the Lyapunov function derivative can be written as

V̇ = Û0
π

∆(t)
(sgnσ)T B̂(sgnσ) cos

(
π
∥σ̂∥1
∆(t)

)
+G, (4.27)

58

4.2. SELF-RECONFIGURABLE CONTROL

where all terms that don’t depend on the control in the variable G are combined.

By this assumption the quadratic form with the matrix B̂ in this expression is sign

definite. On the other hand at the points where V = 0 (∥σ̂∥1 = ∆(t)k) the cos is

+1 or −1, so at every other point it is guaranteed that V̇ < 0 if of course, Û0 is big

enough. This proves the stability some of the points (4.23). In fact, sliding mode

will start at one of these points and ∥σ̂∥1 = ∆(t)k will be true after some moment of

time.

Now using the expression for ∆ (4.20) and (4.23) yields

∥σ̂∥1 =
[
C − µ

∫ t

0

∥σ̂(τ)∥1dτ
]
k. (4.28)

The latter is stable equation that guarantees ∥σ̂∥1 → 0 exponentially as t→ ∞.

59

4.3. NUMERICAL EXAMPLES

4.3 Numerical Examples

4.3.1 Planar Example

In the first numerical example the planar motion of the rigid body is considered:

ẋ = vx (4.29a)

ẏ = vy (4.29b)

θ̇ = ω (4.29c)

v̇x = fx (4.29d)

v̇y = fy (4.29e)

ω̇ = τ (4.29f)

where vx, vy are the velocity in the x and y direction, ω is the angular velocity, and

f⃗ = [fx, fy, τ]
T is the generalized force vector that defined in the fixed frame which

depends on the control u⃗ ∈ R3. f⃗ and u⃗ are related via an unknown 3 × 3 possibly

state dependent matrix B = B(X) (X = [x, y, vx, vy, θ, ω]
T).

f⃗ = B(X)u⃗. (4.30)

Let the sliding surface be σ⃗ = [σ1 σ2 σ3]
T , where

σ1 = kxx+ vx (4.31a)

σ2 = kyy + vy (4.31b)

σ3 = kθθ + ω. (4.31c)

60

4.3. NUMERICAL EXAMPLES

The objective is to drive the system (4.29) to the origin with an orientation of θ = 0.

Differentiating σ⃗ yields

˙⃗σ = B(X)u+G. (4.32)

For the purpose of this simulation the values in Table 4.1 were used.

Table 4.1: Values used for Self-Reconfigurable Control R3 example with B = −I.

xi 2

yi -2.5

θi
π
4

C .3

µ .05

kx .12

ky .12

kθ .1

U0 .2I

Using the control algorithm in (4.18) the control u⃗ is defined as:

u⃗ = .2I sgn

[
sin

(
π
∥σ⃗∥
∆(t)

)]
sgn (σ⃗) (4.33)

The first simulation used the matrix B(X) = −I, effectively placing the control

vector opposite of the desired direction. Figs. 4.2 and 4.3 demonstrate convergence

to the sliding manifolds and the convergence for the variables x, y, θ. As can be seen

in Fig. 4.2, the system moved away from the nearest sliding surface at k = 1 and but

followed the next surface at k = 2.

61

4.3. NUMERICAL EXAMPLES

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

| σ
 | 2

|σ|2
k∆t

k=2

k=1

k=3

Figure 4.2: Convergence of |σ|2 to k∆t for B = −I.

62

4.3. NUMERICAL EXAMPLES

0 10 20 30 40 50 60
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

x,
 y

, θ

x
y
θ

Figure 4.3: Convergence of positions x, y, θ for B = −I.

The next simulation used a time varying, state dependent matrix for B(X) defined

as:

B(X) =

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (4.34)

63

4.3. NUMERICAL EXAMPLES

This B(X) has the effect of assuming that that translation control is in the fixed

frame, while in actuality the control is in the rotating body frame. The values in

Table 4.2 were used for this simulation.

Table 4.2: Values used for Self-Reconfigurable Control R3 example with state depen-

dent B(x).

xi .5

yi -1

θi π

C .5

µ .015

kx .12

ky .12

kθ .6

U0 .1I

Figs. 4.4 and 4.5 demonstrate convergence to the sliding manifolds and the con-

vergence for the variables x, y, θ.

64

4.3. NUMERICAL EXAMPLES

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

| σ
 | 2

|σ|2

k∆t

k=1

k=2

k=3

k=4

Figure 4.4: Convergence of |σ|2 to k∆t for state dependent B(x).

65

4.3. NUMERICAL EXAMPLES

0 20 40 60 80 100 120
−3

−2

−1

0

1

2

3

4

5

6

t

x,
 y

, θ

x
y

θ

Figure 4.5: Convergence of positions x, y, θ for state dependent B(x).

4.3.2 Dual Quaternion Example

In the second numerical example the 6-DOF motion of a rigid body using dual quater-

nions is considered:

˙̂q =
1

2
q̂ω̂ (4.35a)

˙̂
ω⃗ = −M̂−1(ˆ⃗ω × M̂ ˆ⃗ω) + M̂−1 ˆ⃗f (4.35b)

where q̂ is the dual quaternion, ˆ⃗ω is the dual velocity vector and
ˆ⃗
f = [fx, fy, fz]

T +

ϵ[τx, τy, τz]
T is the generalized force dual vector that depends on the control ˆ⃗u ∈ DR3.

ˆ⃗
f and ˆ⃗u are related via an unknown 3 × 3 possibly state dependent dual matrix

66

4.3. NUMERICAL EXAMPLES

Ĉ = Ĉ(q̂,̂⃗ ω) by

ˆ⃗
f = Ĉ

(
ˆ⃗u
)
. (4.36)

Let the sliding surface be ˆ⃗σ, where

ˆ⃗σ = (ω⃗ + kθθn⃗) + ϵ (v⃗ + kpp⃗) (4.37)

The objective is to drive the system (4.35) to the origin with an orientation of θ = 0

or q = [1, 0, 0, 0].

For the purpose of this simulation the values in Table 4.3 were used.

Table 4.3: Values used for Self-Reconfigurable Control DH example.

q(0) [.1739, .3392,−.8213, .4244]

p⃗(0) [2.5, 1.5,−1]

C .3

µ .03

kθ .1

kp .2

Kf 15I

Kτ 15I

Fig. 4.6 shows the convergence of the system to the real and dual components of

the sliding manifold. Fig. 4.7 and Fig. 4.8 demonstrate convergence for the rotational

and translational position respectively.

67

4.3. NUMERICAL EXAMPLES

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

t

|σ̂
| 2

|σ̂|2

k∆(t)

k=4

k=3

k=2

k=1

Figure 4.6: Convergence of |ˆ⃗σ|2 to k∆t

68

4.3. NUMERICAL EXAMPLES

0 10 20 30 40 50 60 70 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

q

q
0

q
1

q
2

q
3

Figure 4.7: Convergence of attitude q

69

4.3. NUMERICAL EXAMPLES

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

p

p
x

p
y

p
z

Figure 4.8: Convergence of positions x, y, z

70

Chapter 5

Nonlinear Driftless Systems

In this chapter1 a control algorithm is developed for a class of nonlinear driftless

systems originally introduced by Brockett (Brockett, 1981):

ẋ = B(x)u (5.1)

where x ∈ Rn and u ∈ Rm. The controllability condition for such systems is well

established and can be easily tested via the accessibility algebra and the accessibility

distribution (Isidori, 1997). An interesting class of controllable systems with the

structure of (5.1) is so-called a kinematic nonholonomic system. Those systems are

characterized by specific relation between the dimension of the system state x and

the control input u. This condition will be relaxed by extending the system space

and designing control for the augmented system.

The conditions necessary for augmentation of such systems which do not permit

1Some of the material presented in this chapter was also presented in (Price, Seo, Kitchen-
Mckinley, & Drakunov, 2014)

71

5.1. APPROACH

a Brockett’s canonical form is examined. The augmented system must be control-

lable and satisfy the hypotheses of the Brocket theorem listed in the next section.

Therefore, the system can be controlled by various developed nonholonomic system

controllers. The control architecture considered here is from (A. Bloch et al., 1997)

and (A. M. Bloch et al., 2000).

5.1 Approach

In (Brockett, 1981), Brockett presented a theorem stating that there exists a co-

ordinate transformation which renders (5.1) to a canonical form with the following

assumptions:

H 1. For x ∈ Rn and u ∈ Rm, it is assumed that n = m(m+ 1)/2.

H 2. E(1) spans Rm(m+1)/2, wherein E(1) is defined by

E(0)
x = span{B(x)} (5.2)

E(1) = span{E(0)
x + [E(0)

x ,E(0)
x]} (5.3)

with Lie bracket [·, ·] for vector fields.

Corresponding Brockett’s theorem is

Theorem 3. Given the system (5.1) satisfying both H1 and H2, there exist coor-

dinates (x1, x2, . . . , xm, y1,2, y1,3, . . . , ym−1,m) in a neighborhood of a given point, say

72

5.1. APPROACH

x = 0, so that the equations are represented by

ẋi = ui + ri, i = 1, 2, . . . ,m (5.4a)

ẏij = uixj − ujxi + rij, i, j = 1, 2, . . . ,m, i < j (5.4b)

where the ri and rij have vanishing first partials with respect to x and y and in addition

rij has vanishing second partials with respect to xi and xj.

The observations on the hypotheses 1 and 2 reveal that the certain class of con-

trollable systems failing to satisfy those hypotheses may have an augmented system

representation for Theorem 3 to be applicable. More specifically, if n < m(m+ 1)/2,

then, there may exist n1 = m(m+ 1)/2− n differential equations

ẋs = Bs(xs,x)u xs ∈ Rn1 (5.5)

such that combining (5.1) and (5.5), i.e., xa = [xT ,xT
s]

T and Ba = [BT , BT
s]

T , we

obtain the augmented system

ẋa = Ba(xa)u xa ∈ Rm(m+1)/2, (5.6)

which satisfy H 2 and thus the augmented system dynamics have the form of (5.1)

with H 1 and H 2.

Then to the augmented system we apply control from (A. Bloch et al., 1997) and

(A. M. Bloch et al., 2000) considering (5.5) as part of dynamical control law.

73

5.2. CONTROLLER DESIGN

5.2 Controller Design

The general system studied is described as follows. Let g be a Lie algebra with a

direct sum decomposition g = m+ h such that h is a Lie subalgebra, [h,m] ⊆ m, and

[m,m] ⊆ h. Consider the following system in g:

ẋ = u (5.7a)

Ẏ = [u, x] = xuT − uxT (5.7b)

where x, u ∈ m, Y ∈ h, m ∈ Rn, h ∈ so(n), and n ≥ 2. The control input u is

generated by

u(x, Y) = −αx+ β[Y, x] (5.8)

where α = α(x, Y) and β = β(x, Y) (A. Bloch et al., 1997). With this choice of u,

(5.7) becomes:

ẋ = −αx+ β[Y, x] (5.9a)

Ẏ = β [[Y, x], x] (5.9b)

The following polynomials are used to develop the control strategy:

U =
1

2
⟨x, x⟩ = 1

2
(xTx) (5.10a)

V1 =
1

2
⟨Y, Y ⟩ = 1

2
trace(Y TY) (5.10b)

V2 =
1

2
⟨[x, Y] , [x, Y]⟩ = 1

2
xT

(
Y TY

)
x (5.10c)

74

5.2. CONTROLLER DESIGN

From (5.10) the following is computed:

U̇ = −2αU (5.11a)

V̇1 = −4βV2 (5.11b)

V̇2 = −2αV2 − 4βUV2 (5.11c)

The control strategy can now be described using the following steps:

(i) With the control α > 0, β = 0 without changing Y , drive x to the eigenvector of

Y TY corresponding to its maximum nonzero eigenvalue λmax > 0; if λmax = 0

implement step (iv).

(ii) Implement the control with α = 0, β > 0. This does not change the magnitude

of x (∥x∥ = const.), but in the cases of interest will imply that the maximum

eigenvalue of Y TY strictly decreases. Continue until V2 ≈ 0.

(iii) Repeat Steps (i) and (ii) until Y ≈ 0 or V1 ≈ 0.

(iv) Drive x to the origin using the control with α > 0, β = 0.

Step (i) of the control strategy is implemented as follows:

(A) Drive x to the origin via the control u = −αx where α > 0. This does not affect

Y since Ẏ = 0.

(B) Drive x from 0 to the eigenvector x∗ of Y TY corresponding to λmax by the

control u = −α(x− x∗) where α > 0.

Theorem 4. The algorithm (i)-(iv) represents a global stabilizing control for the

system (5.7).

75

5.2. CONTROLLER DESIGN

The stability proof is given in (A. Bloch et al., 1997) and (A. M. Bloch et al., 2000).

The tracking problem can be developed by defining the tracking error using the

following:

x̄ = x− xd (5.12a)

Ȳ = Y − Yd − xdx
t + xxTd (5.12b)

where xd and Yd are the desired states and x̄ and Ȳ are the state errors. The system

in (5.7) can then modified to be

˙̄x = ẋ− ẋd (5.13a)

ū = u− ud (5.13b)

˙̄Y = x̄ūT − ūx̄T + g, g = 2x̄uTd − 2udx̄
T (5.13c)

where ud is the control required for the desired trajectory and ū is the control error

(A. Bloch & Drakunov, 1995). A modification to Step 4 of the control strategy is

required to allow for a return to Step 1 in the case were Ȳ increases beyond an

unacceptable amount due to the extra term g found in (5.13c). With this change, the

control strategy can then be used to ensure that the state errors are driven to zero

and remain there.

76

5.2. CONTROLLER DESIGN

In the low dimension case, important for various applications, when x ∈ R2 the

system (5.7) is a nonholonomic integrator:

ẋ1 = u1 (5.14a)

ẋ2 = u2 (5.14b)

ẋ3 = x1u2 − u1x2. (5.14c)

The control law (5.8) in this case, as shown in (A. Bloch & Drakunov, 1996), is

u1 = −αx1 + β x2 (5.15a)

u2 = −αx2 − β x1 (5.15b)

where α, β can be chosen as

α = α0 sgn(x21 + x22 − |x3|) (α0 > 0) (5.16a)

β = β0 sgn(x3) (β0 > 0) (5.16b)

In this case when outside the parabolic area x21+x
2
2 > |x3|, asymptotic convergence

of x3 is guaranteed. If the initial conditions are inside this area, x21 + x22 is increasing

and reaches parabola in finite time, staying then in sliding mode on the surface of

parabola, where

ẋ3 = −β0x3. (5.17)

In fact, this control forms two sliding surfaces in the state space of the closed system:

{x3 = 0} and {x21 + x22 = |x3|}.

77

5.2. CONTROLLER DESIGN

−10 −5 0 5 10−20
0

20−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure 5.1: Stabilization of the nonholonomic integrator (A. Bloch & Drakunov,

1996).

5.2.1 Application of the Nonholonomic Feedback to Quater-

nion System

Let us show how to modify the above result in order to design a feedback control for

very important case of quaternion system when only two controls are used. Consider

the kinematic equation for unit quaternions Hu:

q̇ =
1

2
qω (5.18a)

q̇0

q̇1

q̇2

q̇3

=

1

2

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

0

ω1

ω2

ω3

(5.18b)

78

5.2. CONTROLLER DESIGN

Now consider the case where only two components of the angular velocity can be

controlled, i.e. ω⃗ = [ω1 ω2 0]T , the kinematics can be simplified to (5.19a). Then

the equations for q1 and q2 in (5.19a) are linearized around the equilibrium point

q = [1 0 0 0]T yielding (5.19b) with the equation for q3 containing the nonholonomic

constraint for q1 and q2.

q̇0

q̇1

q̇2

q̇3

=

1

2

−q1 −q2

q0 −q3

q3 q0

−q2 q1

 ω1

ω2

 (5.19a)

q̇0

q̇1

q̇2

q̇3

=

1

2

−q1 −q2

1 0

0 1

−q2 q1

 ω1

ω2

 (5.19b)

It can be seen when examining q⃗ = [q1 q2 q3]
T in (5.19b) that this is a nonholo-

nomic integrator where:

 q̇1

q̇2

 =
1

2

 ω1

ω2

 (5.20a)

q̇3 =
1

2
(q1ω2 − q2ω1) (5.20b)

79

5.2. CONTROLLER DESIGN

The control can be designed as:

 ω1

ω2

 = γ

 1 0

0 1

 q1

q2

+ κ

 0 1

−1 0

 q1

q2

 . (5.21)

Substituting (5.21) into (5.19a) yields

2

 q̇1

q̇2

 = (γq0 + κq3)

 q1

q2

+ (γq3 − κq0)

 0 −1

1 0

 q1

q2

 . (5.22)

As can be seen this expression is similar to (5.15) where

α = γq0 + κq3 (5.23a)

β = γq3 − κq0, (5.23b)

or

γ =
1

∆
(αq0 + βq3) (5.24a)

κ =
1

∆
(αq3 − βq0), (5.24b)

where ∆ = q20 + q23 and similarly to (5.16)

α = α0 sgn(q21 + q22 − |q3|) (α0 < 0) (5.25a)

β = β0 sgn(q3) (β0 < 0). (5.25b)

80

5.2. CONTROLLER DESIGN

Singularity of such control does not create any problem since if ∆ = 0 any con-

stant control that ”pushes” the state from this manifold can be applied and then the

algorithm (5.25) will stabilize the system.

Numerical Simulation for Nonholonomic Feedback to Quaternion System

For the simulation results, a single rotating rigid body with a u ∈ R2 control vector

u = [ω1, ω2] using the kinematics of (5.19a) and the control algorithm in (5.21)-(5.25)

is used. In the first example, initial conditions where chosen such that they would lie

outside the parabola q21 + q22 = |q3|. Fig. 5.2 provides the results for the quaternion

system, showing the system reaching the equilibrium point q = [1, 0, 0, 0] with initial

conditions qi = [.23,−.65, .69,−.23]. Gains of α = −1 and β = −1 were used for

simplicity. As seen in Fig. 5.2, when the initial conditions lie outside the parabola

q21 + q22 = |q3|, the system proceeds to the sliding surface q3 = 0 and then proceeds to

the equilibrium point.

81

5.2. CONTROLLER DESIGN

0 5 10 15

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

q

q
0

q
1

q
2

q
3

Reaches sliding surface q3 = 0

Figure 5.2: Results for quaternion system when q21o + q22o > |q3o|.

In the second example, initial conditions where chosen such that they would lie

inside the parabola q21 + q22 = |q3|. Fig. 5.3 provides the results for the quaternion

system, showing the system reaching the equilibrium point q = [1, 0, 0, 0] with initial

conditions qi = [.26,−.26, .26,−.89]. As seen in Fig. 5.3, when the initial conditions

lie inside the parabola q21 + q22 = |q3|, the system must first moves q1 and q2 outward

until it reaches the parabolic surface q21 +q
2
2 = |q3|, then the system is able to proceed

to the equilibrium point along the surface of the parabola.

82

5.3. BROCKETT’S CANONICAL FORM

0 5 10 15 20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

q

q
0

q
1

q
2

q
3

Reaches sliding surface q
2

1
+ q

2

2
= |q3|

Figure 5.3: Results for quaternion system when q21o + q22o < |q3o|.

5.3 Brockett’s Canonical Form

Consider a nonlinear driftless system represented by

ẋ = B(x)u =

1 0 0

0 1 0

−x2 x1 0

x21 x22 1

u (5.26)

where x = [x1, x2, x3, x4]
T and u = [u1, u2, u3]

T . Since x ∈ R4 and u ∈ R3, the

system (5.26) fails to satisfy Brockett’s condition H 1 for a canonical-form conversion.

83

5.3. BROCKETT’S CANONICAL FORM

Since the number of states is smaller than the required in H 1, we may think of

adding additional states without modifying the dynamics of x. Thus, we define the

augmented state vector xa = [x1, x2, x3, x4, x5, x6]
T whose dynamics are given by

ẋa = Ba(xa)u (5.27a)

=

1 0 0

0 1 0

−x2 x1 0

x21 x22 1

ψ11(xa) ψ12(xa) ψ13(xa)

ψ21(xa) ψ22(xa) ψ23(xa)

u (5.27b)

wherein each ψij will be determined to satisfy H 2 later. Based on H2, we obtain E(1)

for Ba(xa) as

E(1) = span{Ba1 , Ba2 , Ba3 , [Ba1 , Ba2], [Ba1 , Ba3], [Ba2 , Ba3]} (5.28)

where Bai is i-th column of Ba matrix; and the matrix representation of E(1) must

be nonsingular. Since the rank of E(1) for B(x) in (5.26) is 3, we have the matrix

84

5.3. BROCKETT’S CANONICAL FORM

representation of E(1) for Ba(xa) as

1 0 0 0 0 0

0 1 0 0 0 0

−x2 x1 0 2 0 0

x21 x22 1 0 0 0

ψ11(xa) ψ12(xa) ψ13(xa) ζ11 ζ12 ζ13

ψ21(xa) ψ22(xa) ψ23(xa) ζ21 ζ22 ζ23

(5.29)

where ζij are given by

ζ11 =− ψ22ψ11,6 + ψ21ψ12,6 − ψ12ψ11,5 + ψ11ψ12,5 − x22ψ11,4

+ x21ψ12,4 − x1ψ11,3 − x2ψ12,3 − ψ11,2 + ψ12,1 (5.30a)

ζ21 =− ψ22ψ21,6 + ψ21ψ22,6 − ψ12ψ21,5 + ψ11ψ22,5 − x22ψ21,4

+ x21ψ22,4 − x1ψ21,3 − x2ψ22,3 − ψ21,2 + ψ22,1 (5.30b)

ζ12 =− ψ23ψ11,6 + ψ21ψ13,6 − ψ13ψ11,5 + ψ11ψ13,5 − ψ11,4

+ x21ψ13,4 − x2ψ13,3 + ψ13,1 (5.30c)

ζ22 =− ψ23ψ21,6 + ψ21ψ23,6 − ψ13ψ21,5 + ψ11ψ23,5

− ψ21,4 + x21ψ23,4 − x2ψ23,3 + ψ23,1 (5.30d)

ζ13 =− ψ23ψ12,6 + ψ22ψ13,6 − ψ13ψ12,5 + ψ12ψ13,5

− ψ12,4 + x22ψ13,4 + x1ψ13,3 + ψ13,2 (5.30e)

ζ23 =− ψ23ψ2,6 + ψ22ψ23,6 − ψ13ψ22,5 + ψ12ψ23,5

− ψ22,4 + x22ψ23,4 + x1ψ23,3 + ψ23,2 (5.30f)

85

5.3. BROCKETT’S CANONICAL FORM

In (5.30), arguments of the function are suppressed for notational simplicity and

ψij,k is a notation for to ∂ψij/∂xk. Although (5.30) looks complicated, one only needs

to focus on ζ12, ζ13, ζ22, and ζ23 because these define the rank of E(1) for Ba based on

(5.29). Thus, the following ψij are chosen:

ψ11 =0 (5.31a)

ψ12 =x
3
1 + x32 − 6x2 − 3x4 (5.31b)

ψ13 =3x2 (5.31c)

ψ21 =x
3
1 − 3x21 + x32 − 3x4 (5.31d)

ψ22 =− 3x22 (5.31e)

ψ23 =3x1 − 3 (5.31f)

Therefore, the augmented system represented by (5.27) with (5.31) satisfies both

H 1 and H 2 so that (5.27) can be transformed to Brockett’s canonical form by Theo-

rem 3. Accordingly, the coordinate transition for Brockett’s canonical form is obtained

as

z1

z2

z3

z4

z5

z6

=

x1

x2

−1
3
(x31 + x32) + x4

x3

x4 +
x6

3

x22 +
x5

3

(5.32)

86

5.3. BROCKETT’S CANONICAL FORM

In fact, the obtained transformation in (5.32) is a global diffeomorphism and thus

Theorem 3 is valid about any x0 ∈ Rn for (5.26). Transformed system is

ż =

u1

u2

u3

u2z1 − u1z2

u3z1 − u1z3

u3z2 − u2z3

(5.33)

Generalization of the described scheme (augmenting the system with additional states)

to arbitrary nonlinear driftless system is given by the following theorem which is the

extension of Theorem 3.

Theorem 5. Consider the system represented by (5.1) and rank(E(1)) = n. If n ≤

m(m+1)/2, then there exist ψij(xa) with xa = [x1, . . . , xm(m+1)/2]
T , i = 1, . . . ,m(m+

1)/2−n and j = 1, . . . , n which augment the system (5.1) to be (5.27a); and coordinate

transitions xa 7→ (x1, x2, . . . , xm, y1,2, y1,3, . . . , ym−1,m) for (5.27a) in a neighborhood

of a given point, say x = 0, so that the equations are represented by

ẋi = ui + ri, i = 1, 2, . . . ,m (5.34a)

ẏij = uixj − ujxi + rij, i, j = 1, 2, . . . ,m, i < j (5.34b)

where the ri and rij have vanishing first partials with respect to x and y and in addition

rij has vanishing second partials with respect to xi and xj.

87

5.3. BROCKETT’S CANONICAL FORM

Proof. Since rank(E(1)) = n, the matrix form of E(1) can be represented as a lower tri-

angular matrix with nonzero diagonal elements about x = 0 without loss of generality

as follows,

E(1) = [A|B] (5.35)

where A ∈ R
m(m+1)

2
×n and B ∈ R

m(m+1)
2

×m(m−1)
2 are given by

A =

b1,1 . . . 0

...
. . . 0

bn,1 bn,n

ψ1,1 . . . ψ1,m ζ1,1 . . . ζ1,n−m

...
. . .

...

ψn1,1 . . . ψn1,m ζn1,1 . . . ζn1,n−m

(5.36)

B =

0 . . . 0

...
...

0 . . . 0

ζ1,n−m+1 . . . ζ
1,

m(m−1)
2

...
. . .

...

ζn1,n−m+1 . . . ζ
n1,

m(m−1)
2

(5.37)

where n1 = m(m+1)/2−n as in (5.5). For E(1) of (5.35) to be a full rank matrix, the

square matrix Bs = [ζi,j], i = 1, . . . , d, j = n−m+1, . . . ,m(m−1)/2 in B should be

nonsingular. Since x ∈ Rn is in the C1-manifold, M, whose tangent space is spanned

by column vectors of A and rank(A) is n, M can be obtained via an immersion from

Ma where xa resides. Therefore, we may conclude that there exist ψi,j(xa) casting

88

5.3. BROCKETT’S CANONICAL FORM

Bs nonsingular matrix about x = 0. This makes Ba(xa) satisfy both H 1 and H 2.

Therefore, by Theorem 3, there exists a necessary coordinate transition for Brockett’s

canonical form.

Remark 1. In the previous example, (5.26) satisfies rank(E(1)) = n with n = 4. Thus,

there exists ψi,j which renders the augmented system to be a controllable Brockett’s

canonical form. In order to find ψi,j, it is required to satisfy the full rank condition

for the augmented system involving partial derivatives as shown in the motivating

example. However, we may use the various control methods developed for Brockett’s

canonical system as a consequence of Theorem 5.

Remark 2. x defines the flow on n-manifold,M, which is a submanifold ofm(m+1)/2-

dimensional manifold, Ma, where xa flow is defined. As a result, M can also be

regarded as a projection of Ma, and thus xa need not be zero while x is zero in the

motivating example for control purposes.

5.3.1 Unicycle Example

This section presents the implementation of Theorem 5 for unicycle systems starting

from a single unicycle, shown in Fig. 5.4. In the case of the nonholonomic system

consisting of two unicycles coupled by one common control input for heading, a con-

ventional control strategy is also demonstrated for the comparison with the proposed

generalized augmentation approach.

89

5.3. BROCKETT’S CANONICAL FORM

x

y

φ

v

ω

Figure 5.4: Unicycle system diagram.

A single simple unicycle vehicle model can be written as

ẋ = v cosϕ (5.38a)

ẏ = v sinϕ (5.38b)

ϕ̇ = ω (5.38c)

where the forward velocity and heading velocity controls are v and ω respectively.

90

5.3. BROCKETT’S CANONICAL FORM

We can define a change of coordinates F (ϕ)

[
x1 x2 x3

]T
= F (ϕ)

[
x y ϕ

]T
(5.39)

where

F (ϕ) =

0 0 1

cosϕ sinϕ 0

ϕ cosϕ− 2 sinϕ ϕ sinϕ+ 2 cosϕ 0

 (5.40)

and a nonsingular state-dependent transformation of the controls

u1 = ω (5.41a)

u2 = v +
(x3
2

− x1x2
2

)
ω (5.41b)

yielding the system

ẋ1 = u1 (5.42a)

ẋ2 = u2 (5.42b)

Ẏ =

 0 x1u2 − x2u1

−x1u2 + x2u1 0

 (5.42c)

Two simple unicycle vehicles (vehicles a and b) with coupled steering (same ϕ and ω)

91

5.3. BROCKETT’S CANONICAL FORM

but independent velocity control can be written as:

ẋa = va cosϕ (5.43a)

ẏa = va sinϕ (5.43b)

ẋb = vb cosϕ (5.43c)

ẏb = vb sinϕ (5.43d)

ϕ̇ = ω (5.43e)

and after applying the transformation in (5.40) the kinematics of (5.43) can be written

in the form of (5.44):

ẋ1 = u1 (5.44a)

ẋ2 = u2 (5.44b)

ẋ3 = u3 (5.44c)

ẋ4 = x2u3 − x3u2 (5.44d)

ẋ5 = x3u1 − x1u3 (5.44e)

ẋ6 = x1u2 − x2u1 (5.44f)

where u2 and u3 account for the independent velocity controls of the vehicles and u1

accounts for the steering control for both vehicles. (5.44d) is added to satisfy H 1.

(5.44e and 5.44f) come naturally from the transformation of the original system in

(5.43). (5.44d) is an additional constraint added to the kinematics that puts an added

constraint linking the velocity of the vehicles together. While this added constraint

is a more limited system, the control algorithm is able to stabilize the system. For N

92

5.3. BROCKETT’S CANONICAL FORM

vehicles, N(N−1)
2

additional equations must be added. The system can also be written

as

ẋ = u (5.45a)

Ẏ = xuT − uxT = [u,x] (5.45b)

where

x =

[
x1 x2 x3

]T
(5.46)

Ẏ =

0 x1u2 − x2u1 x3u1 − x1u3

−x1u2 + x2u1 0 x2u3 − x3u2

−x3u1 + x1u3 −x2u3 + x3u2 0

u =

[
u1 u2 u3

]T

Multiple Unicycles Regulation Problem

For the simulation results, four unicycles were considered using the control strategy

describe in section 5.2. Table 5.1 provides the initial conditions that were used for

the four unicycles. Gains of α = 1, β = 1 were used for simplicity.

93

5.3. BROCKETT’S CANONICAL FORM

Table 5.1: Initial conditions for unicycle regulation example.

xi yi ϕi

Vehicle A 2 2 230◦

Vehicle B -2 1.5 230◦

Vehicle C -1.5 -2 230◦

Vehicle D 2 -1 230◦

Fig. 5.5 provides the results for the transformed coordinate system. These results

correspond to the transformed coordinates vs. time, the top plot displaying the x-

coordinates and the bottom displaying the y-coordinates. The step labels refer to

areas in the results that correspond to the various steps of the control algorithm.

The results for x1 are not displayed in 5.5, but displayed as ϕ in Fig. 5.7. The y

values that are displayed correspond to the elements of the matrix Y that correspond

to the coordinates that come from the original system naturally, as opposed to the

ones that are added in order to meet the Brockett conditions. Each step in the control

strategy can be easily seen in the results. Initially the x-coordinates are seen to drive

to the origin and then to another value corresponding to the initial eigenvector, all

the while the values for the y-coordinates remain unchanged. Then, during step 2 of

the control strategy, the y values are driven to zero. Since there is only one initial

eigenvalue, the algorithm then proceeds to step 4 were the x values are driven to zero

once again.

94

5.3. BROCKETT’S CANONICAL FORM

0 5 10 15 20 25 30 35 40
−4

−2

0

2

4

Time

x n

0 5 10 15 20 25 30 35 40

−10

−5

0

5

10

Time

y n

x2 and y
1

x3 and y
2

x4 and y
3

x5 and y
4

Step 1

Step 2

Step 4

Figure 5.5: Results for translated system of a regulation example including four

unicycles.

The various steps of the control strategy are also easily illustrate in Fig. 5.6

which displays the Lyapunov functions U, V1 and V2. These results correspond to

the polynomial equations U, V1, V2 vs. time. The top plot displays U = 1
2
⟨x, x⟩, the

middle plot displays V1 =
1
2
⟨Y, Y ⟩ and the bottom plot displays V2 =

1
2
⟨[x, Y], [x, Y]⟩.

The step labels refer to areas in the results that correspond to the various steps of the

control algorithm. Step 1 is broken up to subparts A and B to illustrate the controller

first driving to the origin and then to the first eigenvector of Y TY .

95

5.3. BROCKETT’S CANONICAL FORM

0 5 10 15 20 25 30 35 40

0

2

4

Time

U

0 5 10 15 20 25 30 35 40
0

200

400

Time

V
1

0 5 10 15 20 25 30 35 40
0

100

200

Time

V
2

Step 1A Step 1B Step 4Step 2

Figure 5.6: Results for Lyapunov functions of a regulation example including four

unicycles.

Figs. 5.7 and 5.8 display the simulation results in terms of the original system.

Fig. 5.7 provides the results vs. time. These results correspond to the original

coordinates vs. time. The top plot displays the results for ϕ, which corresponds to

the heading angle for all four unicycles. The middle and bottom plot displays the

results for the x-coordinates and y-coordinates of the four unicycles respectively.

96

5.3. BROCKETT’S CANONICAL FORM

0 5 10 15 20 25 30 35 40

0

100

200

Time

φ
(d

eg
s)

0 5 10 15 20 25 30 35 40
−5

0

5

Time

X

x

a

x
b

x
c

x
d

0 5 10 15 20 25 30 35 40
−5

0

5

Time

Y

 y
a

y
b

y
c

y
d

Figure 5.7: Results for original coordinates of a regulation example including four

unicycles.

Fig. 5.8 is a plot of the x− y coordinates, showing the paths that each of the four

unicycles take. These results correspond to the original x and y coordinates. The

x-coordinates are displayed along the horizontal axis with the y-coordinates displayed

along the vertical axis.

97

5.3. BROCKETT’S CANONICAL FORM

−5 0 5
−6

−4

−2

0

2

4

6

X

Y

V

a

V
b

V
c

V
d

Figure 5.8: Results for X-Y coordinates of a regulation example including four uni-

cycles.

Multiple Unicycles Tracking Problem

Simulation results are also provided to demonstrate the tracking ability of the control

strategy in section 5.2. For this example only two unicycles are used to allow for

displaying both the desired path and the actual path. The following provides the

initial conditions that were used for the two unicycles plus the desired trajectory

used. The desired trajectories for each of the vehicles is listed in Table 5.2 and

their initial conditions are listed in Table 5.3. Gains of α = 1, β = 1 were used for

simplicity.

98

5.3. BROCKETT’S CANONICAL FORM

Table 5.2: Desired trajectories for unicycle tracking problem.

Vehicle A Vehicle B

xdi 0 0

ydi 1 -1

ϕdi 0◦ 0◦

ẋd .2 cosϕ .2 cosϕ

ẏd .2 sinϕ .2 sinϕ

ϕd
π
4
sin π

9
t π

4
sin π

9
t

Table 5.3: Initial conditions for unicycle tracking problem.

Vehicle A Vehicle B

xi 2 2

yi -1 -1.5

ϕi 230◦ 230◦

The results provided in Fig.5.9 illustrate the error values x̄ and ȳ of the trans-

formed coordinate system. These results correspond to the transformed error coordi-

nates vs. time, the top plot displaying the x̄-coordinates and the bottom displaying

the ȳ-coordinates. Again the ȳ values that are displayed correspond to the elements

of the matrix Ȳ that correspond to the coordinates that come from the original sys-

tem naturally, as opposed to the ones that are added in order to meet the Brockett

conditions.

99

5.3. BROCKETT’S CANONICAL FORM

0 20 40 60 80 100
−4

−2

0

2

4

Time

x̄
n

x̄1

x̄2

x̄3

0 20 40 60 80 100
−10

−5

0

5

10

Time

ȳ
n

ȳ1

ȳ2

Figure 5.9: Results for translated error coordinates of a tracking example including

two unicycles.

Fig. 5.10 displays the Lyapunov functions U, V1 and V2. These results correspond

to the polynomial equations U, V1, V2 vs. time. The top plot displays U = 1
2
⟨x̄, x̄⟩, the

middle plot displays V1 =
1
2
⟨Ȳ , Ȳ ⟩ and the bottom plot displays V2 =

1
2
⟨[x̄, Ȳ], [x̄, Ȳ]⟩.

The various steps of the control strategy are more difficult to distinguish in the

tracking problem, but in can be seen from the results for U in Fig.5.10 that in this

example, there were two eigenvalues of Ȳ T Ȳ as x̄ is seen to drive towards the first

eigenvector around 15 secs and to the second eigenvector around 25 seconds.

100

5.3. BROCKETT’S CANONICAL FORM

0 20 40 60 80 100
0

2

4

Time

U

0 20 40 60 80 100
0

100

200

Time

V
1

0 20 40 60 80 100
0

100

200

Time

V
2

Figure 5.10: Results for Lyapunov functions for a tracking example including two

unicycles.

Figs. 5.11 and 5.12 display the simulation results in terms of the original system

as compared to the desired track path. Fig. 5.11 provides the results vs. time.

These results correspond to the original coordinates vs. time. The top plot displays

the results for ϕ and ϕd, which correspond to the heading angle and desired heading

angle for both unicycles. The middle and bottom plot displays the results and desired

trajectories for the x-coordinates and y-coordinates of the unicycles respectively.

101

5.3. BROCKETT’S CANONICAL FORM

0 10 20 30 40 50 60 70 80 90 100
−100

0

100

200

Time

φ
(d

eg
s)

φ

d

φ

0 10 20 30 40 50 60 70 80 90 100

0

10

20

Time

X

xad

xa

xad

xa

0 10 20 30 40 50 60 70 80 90 100

−5

0

5

Time

Y

ybd

yb

ybd

yb

Figure 5.11: Results for original coordinates for a tracking example including two

unicycles.

Fig.5.12 is a plot of the x − y coordinates, showing the paths that each of the

unicycles take plus the desired trajectories of both unicycles. These results corre-

spond to the original x and y coordinates. The x-coordinates are displayed along the

horizontal axis with the y-coordinates displayed along the vertical axis.

102

5.3. BROCKETT’S CANONICAL FORM

−4 −2 0 2 4 6 8 10 12 14 16
−4

−3

−2

−1

0

1

2

3

4

5

X

Y

Vad

Va

Vbd

Vb

Figure 5.12: Results for X-Y coordinates for a tracking example including two unicy-

cles plus their desired trajectories.

5.3.2 Dual Quaternion Example

This section presents the implementation of Theorem 5 for dual quaternion systems.

The example that is considered is the kinematics for multiple spacecraft in free space.

An interesting feature of the kinematics for dual quaternion systems is that they

are easily modified to meet Brockett conditions. For review, the kinematics for dual

quaternions are defined as:

˙̂q =
1

2
q̂ω̂. (5.47)

103

5.3. BROCKETT’S CANONICAL FORM

For this example it is assumed that the spacecraft is underactuated, using only 2 rota-

tional controllers and one translational controller, where ˆ⃗ω = [0, ω2, ω3]
T + ϵ[vx, 0, 0]

T .

The kinematics from (5.47) are reduced and written in matrix form to reflect this ˆ⃗ω.

q̇0

q̇1

q̇2

q̇3

q̇′0

q̇′1

q̇′2

q̇′3

=
1

2

−q2 −q3 0

−q3 q2 0

q0 −q1 0

q1 q0 0

−q′2 −q′3 −q1

−q′3 q′2 q0

q′0 −q′1 q3

q′1 q′0 −q2

ω2

ω3

vx

 (5.48)

The kinematics of (5.48) for components q2, q3, and q
′
1 are linearized about the point

q̂ = [1, 0, 0, 0]T + ϵ[0, 0, 0, 0]T and rearranged to match the canonical form in (5.7).

The states q0 and q′0 are not used in the linearized model and assumed to be 1 and 0

respectively. This is an expression of the constraints characteristic of DHu of |q| = 1

and q · q′ = 0.

q̇2

q̇3

q̇′1

q̇′2

q̇′3

q̇1

=

1

2

1 0 0

0 1 0

0 0 1

0 −q′1 q3

q′1 0 −q2

−q3 q2 0

ω2

ω3

vx

 (5.49)

104

5.3. BROCKETT’S CANONICAL FORM

As seen in (5.49), the linearized kinematics naturally satisfy H 1 and H 2 and can now

be defined in the form of (5.7) where

x = [q2, q3, q
′
1]

T
(5.50a)

u = [ω2, ω3, vx]
T (5.50b)

Y =

0 q1 −q′3

−q1 0 q′2

q′3 −q′2 0

 (5.50c)

The next step is to examine the kinematics for multiple space vehicles. As in the

unicycle example, an additional constraint is added such that all the vehicles must

have the same orientation. The kinematics of (5.48) are extended to include the dual

kinematics for two additional vehicles, for a total of three vehicles (A,B,C). The

real component of the dual quaternion kinematics, which represents the rotational

kinematics, is assumed to be the same for each vehicle to reflect the constraint that

105

5.3. BROCKETT’S CANONICAL FORM

they must all have the same attitude orientation.

q̇0

q̇1

q̇2

q̇3

q̇′0A

q̇′1A

q̇′2A

q̇′3A

q̇′0B

q̇′1B

q̇′2B

q̇′3B

q̇′0C

q̇′1C

q̇′2C

q̇′3C

=
1

2

−q2 −q3 0 0 0

−q3 q2 0 0 0

q0 −q1 0 0 0

q1 q0 0 0 0

−q′2A −q′3A −q1 0 0

−q′3A q′2A q0 0 0

q′0A −q′1A q3 0 0

q′1A q′0A −q2 0 0

−q′2B −q′3B 0 −q1 0

−q′3B q′2B 0 q0 0

q′0B −q′1B 0 q3 0

q′1B q′0B 0 −q2 0

−q′2C −q′3C 0 0 −q1

−q′3C q′2C 0 0 q0

q′0C −q′1C 0 0 q3

q′1C q′0C 0 0 −q2

ω2

ω3

vxA

vxB

vxC

(5.51)

The subscripts A,B, and C refer to each of the 3 vehicles being considered. The same

linearization and rearrangement that was done in (5.49) is done to (5.51). However,

for the kinematics to satisfy H 1, additional kinematic equations must be added.

Again, the number of additional constraints that must be added is N(N−1)
2

where N is

the number of vehicles. For three vehicles, three additional constraints are required,

referred to as qAB, qAC , and qBC . These added kinematic equations place an additional

106

5.3. BROCKETT’S CANONICAL FORM

constraint relating the velocity of the vehicles together. The result is the following:

q̇2

q̇3

q̇′1A

q̇′1B

q̇′1C

q̇′2C

q̇′3C

q̇′2B

q̇′3B

q̇′2A

q̇′3A

q̇1

q̇AB

q̇AC

q̇BC

=
1

2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 −q′1C 0 0 q3

q′1C 0 0 0 −q2

0 −q′1B 0 q3 0

q′1B 0 0 −q2 0

0 −q′1A q3 0 0

q′1A 0 −q2 0 0

−q3 q2 0 0 0

0 0 q′1B −q′1A 0

0 0 q′1C 0 −q′1A
0 0 0 q′1C −q′1B

ω2

ω3

vxA

vxB

vxC

(5.52)

107

5.3. BROCKETT’S CANONICAL FORM

The result in (5.52) now satisfies H 1 and H 2 and can be defined in the form of (5.7)

where

x =
[
q2, q3, q

′
1A
, q′1B , q

′
1C

]T
(5.53a)

u = [ω2, ω3, vxA
, vxB

, vxC
]T (5.53b)

Y =

0 q1 −q′3A −q′3B −q′3C
−q1 0 q′2A q′2B q′2C

q′3A −q′2A 0 qAB qAC

q′3B −q′2B −qAB 0 qBC

q′3C −q′2C −qAC −qBC 0

(5.53c)

Multiple Dual Quaternion Spacecraft Regulation Problem

For the simulation results, three spacecraft were considered using the control strategy

in section 5.2. Table 5.4 provides the initial positions that were used for the three

spacecraft. An initial attitude of q = [.50,−.40, .68, .35]T was for all three spacecraft.

Gains of α = 3, β = 3 were used.

Table 5.4: Initial conditions for three spacecraft dual quaternion example.

px py pz

Vehicle A 2 1 -1.5

Vehicle B -1.5 -1 2

Vehicle C -1 -2 1.5

Fig. 5.13 provides the attitude q results for all three spacecraft. As expected,

the vector portion of q is seen converging to 0, while the scalar portion q0 is seen

108

5.3. BROCKETT’S CANONICAL FORM

converging to 1.

0 5 10 15 20 25 30

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

q

q
0

q
1

q
2

q
3

Figure 5.13: Attitude q results for all three spacecraft.

Figs. 5.14, 5.15, and 5.16 provide the translational p⃗ results for spacecrafts A,B,

and C respectively. As expected, all three spacecraft results converge to 0.

109

5.3. BROCKETT’S CANONICAL FORM

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

Time

~p

p
x

p
y

p
z

Figure 5.14: Translation p⃗ results for spacecraft A.

110

5.3. BROCKETT’S CANONICAL FORM

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

Time

~p

p
x

p
y

p
z

Figure 5.15: Translation p⃗ results for spacecraft B.

111

5.3. BROCKETT’S CANONICAL FORM

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

Time

~p

p
x

p
y

p
z

Figure 5.16: Translation p⃗ results for spacecraft C.

Fig. 5.17 provides the results for the Lyapunov functions U, V1 and V2. These

results correspond to the polynomial equations U, V1, V2 vs. time. The top plot

displays U = 1
2
⟨x, x⟩, the middle plot displays V1 = 1

2
⟨Y, Y ⟩ and the bottom plot

displays V2 = 1
2
⟨[x, Y], [x, Y]⟩. The various steps of the control strategy are can be

seen in Fig. 5.17.

112

5.3. BROCKETT’S CANONICAL FORM

0 5 10 15 20 25 30
0

1

2

3

Time

U

0 5 10 15 20 25 30
0

5

Time

V
1

0 5 10 15 20 25 30
0

5

Time

V
2

Figure 5.17: Lyapunov function results for dual quaternion example.

Fig. 5.18 provides the translation results for all three spacecraft together on a 3D

x, y, z plot.

113

5.3. BROCKETT’S CANONICAL FORM

−3
−2

−1
0

1
2

3

−2

0

2

−3

−2

−1

0

1

2

3

XY

Z
Vehicle A
Vehicle B
Vehicle C

Figure 5.18: 3D translational results for all three spacecraft.

114

Chapter 6

Conclusion

The current work presents the study and feedback design for dynamical systems hav-

ing dual quaternion representation. Mathematical methods utilizing dual quaternions

allow extremely compact (and thus computationally efficient) description of complex

systems in the aerospace and robotics area. From the control theory point of view the

dissertation focuses on achieving closed loop stability under unknown control direc-

tion. Such type of model uncertainty represents serious challenges for conventional

linear and nonlinear control. The main methodology of the suggested approach is

based on sliding mode control with multiple equilibrium manifolds extended to dual

quaternion systems. Control algorithms based on this method allow design of univer-

sal algorithms for a class of mathematical models where the control matrix B(t,x) is

completely unknown or only partial information about this matrix is available.

Also in this work, nonholonomic control strategies for driftless nonlinear systems

were studied. In particular, methods for augmenting the general class of driftless

nonlinear systems which do not already satisfy the Brockett conditions for trans-

115

formation to a canonical form were developed by the addition of new states. As

a result, control algorithms that have been previous developed for nonholonomic

systems meeting Brockett conditions can now be applied to an even larger class of

nonlinear driftless systems. In this work two such control techniques, nonholonomic

integrator and Bloch-Drakunov-Kinyon feedback algorithm, are used as examples.

Specifically a nonholonomic integrator control algorithm is used for kinematic atti-

tude control of a underactuated quaternion system. Also the Bloch-Drakunov-Kinyon

feedback algorithm is used for the example of multiple unicycles as well as the dual

quaternion example of multiple underactuated spacecraft. Both of these examples are

nonholonomic systems which did not originally satisfy Brockett conditions. Numer-

ous simulation experiments are presented that confirm and support the theoretical

results of stability and robustness of the developed feedback algorithms.

In summary, the main results of the dissertation are:

• Extending the results of dual quaternion systems to systems described by mul-

tiple dual quaternions and dual vectors;

• Developing control methodology based on sliding mode control to dual quater-

nion systems;

• Designing specific control laws for dual quaternion systems in presence of un-

certainty in the control matrix;

• Extending control Bloch-Drakunov-Kinyon feedback algorithm for nonholonomic

systems to systems not satisfying Brocket conditions;

• Designing quaternion/dual quaternion based control for nonholonomic systems.

Future research on this work may include the following:

• extending the unknown control direction sliding mode control techniques devel-

oped for dual quaternion systems to n-dual quaternion systems,

116

• extending the Bloch-Drakunov-Kinyon feedback algorithm developed for dual

quaternion systems to include the system dynamics as well as tracking,

• apply sliding mode control techniques to the Bloch-Drakunov-Kinyon feedback

algorithm to compensate for various disturbances and/or uncertainties.

117

Appendix A

Matlab Code

The following code presents how control algorithms were implemented for the various

numerical examples presented in this work. The code used to create the various plots

have not been included for brevity.

A.1 Self Reconfigurable Control MATLAB Files

A.1.1 Planar Example

Code used in section 4.3.1.
selfreconfig2d.m

clc; clear all; close all;

%Initial Conditions

x = .5;

y = -1;

theta = 5*pi/4;

Vx = 0;

Vy = 0;

118

A.1. SELF RECONFIGURABLE CONTROL MATLAB FILES

w = 0;

%Sim parameters

tmax = 120;

t = 0;

dt = .004;

%Control gains

global kx ky kt mu Uk C

kx = .12;

ky = .12;

kt = .6;

mu = .015;

Uk = diag(ones(3,1))*.1;

C = .5;

INT = 0;

X = [x Vx y Vy theta w INT]’;

while t(end)<tmax

Xi=rk4(’ecc1eq’,t(end),X(:,end),dt);

t = [t;t(end)+dt];

X = [X Xi];

end

self2deq.m

function[Xd]=ecc1eq(t,X)

global kx ky kt C mu Uk normsig

x = X(1);

Vx = X(2);

y = X(3);

Vy = X(4);

theta = X(5);

w = X(6);

INT = X(7);

dx = Vx;

dy = Vy;

dtheta = w;

119

A.1. SELF RECONFIGURABLE CONTROL MATLAB FILES

%Sliding Manifold

sig1 = kx*l*x + Vx;

sig2 = ky*l*y + Vy;

sig3 = kt*l*theta + w;

sigma = [sig1 sig2 sig3]’;

normsig = norm(sigma);

%Control Algorithm

dINT = mu*normsig;

DT = C - INT;

U = Uk*sign(sin(pi*normsig/DT))*sign(sigma);

%Unknown control direction matrix

B = [cos(theta) sin(theta) 0;...

-sin(theta) cos(theta) 0;...

0 0 1];

F=B*U;

%System kinematics

ddx = F(1);

ddy = F(2);

dw = F(3);

Xd=[dx;ddx;dy;ddy;dtheta;dw;dINT];

A.1.2 Dual Quaternion Example

Code used in section 4.3.2.
selfquat.m

clc; clear all; close all;

global kt kp mu Uk C J iJ l m B

%Initial Conditions

PARA.ATTI(1) = 45; %Yaw (degs)

PARA.ATTI(2) = -145; %Roll (degs)

PARA.ATTI(3) = 30; %Pitch (degs)

120

A.1. SELF RECONFIGURABLE CONTROL MATLAB FILES

PARA.ATTI=PARA.ATTI*pi/180; %Convert to radians

s1 = sin(PARA.ATTI(1)/2); %Conv to quaternion

s2 = sin(PARA.ATTI(2)/2);

s3 = sin(PARA.ATTI(3)/2);

c1 = cos(PARA.ATTI(1)/2);

c2 = cos(PARA.ATTI(2)/2);

c3 = cos(PARA.ATTI(3)/2);

q = [c1*c2*c3+s1*s2*s3;...

s1*c2*c3-c1*s2*s3;...

c1*s2*c3+s1*c2*s3;...

c1*c2*s3-s1*s2*c3];

Q = [q(1) -q(2) -q(3) -q(4);...

q(2) q(1) -q(4) q(3);...

q(3) q(4) q(1) -q(2);...

q(4) -q(3) q(2) q(1)];

p = 2*[2.5; 2; -1];

qp = .5*Q*[0;p];

DQ = [q;qp];

DW = [0; 0; 0; 0; 0; 0];

J = diag([200 300 400]);

iJ = inv(J);

m = 100;

%Sim parameters

tmax = 100;

t = 0;

dt = .008;

qrand=[.7,0,.2,0];

qrand=qrand/norm(qrand);

B=quat2dcm(qrand);

B=[B zeros(3);zeros(3) B];

%B=-1;

%Control gains

121

A.1. SELF RECONFIGURABLE CONTROL MATLAB FILES

kt = .13;

kp = .10;

mu = .02;

Uk = diag([ones(3,1);ones(3,1)])*7;

C = .35;

INT = 0;

l = sign(q(1));

%System DQ’s

X = [DQ; DW; INT];

while t(end)<tmax

Xi=rk4(’self3eq’,t(end),X(:,end),dt);

t = [t;t(end)+dt];

X = [X Xi];

end

%Calcculation of position and sigma results

for k=1:length(t)

q = X(1:4,k);

qp = X(5:8,k);

QC = [q(1) q(2) q(3) q(4);...

-q(2) q(1) q(4) -q(3);...

-q(3) -q(4) q(1) q(2);...

-q(4) q(3) -q(2) q(1)];

P(:,k) = 2*QC*qp;

s = acos(l*q(1));

if (1e6-round(abs(q(1))*1e6))==0

logq = [0;0;0];

else

logq = l*s*q(2:4)*(1-q(1)^2)^-.5;

end

logqp = P(2:4,k);

sigq(:,k) = X(9:11,k) + 2*kt*logq;

normsigq(k) = norm(sigq(:,k));

sigp(:,k) = X(12:14,k) + kp*logqp;

normsigp(k) = norm(sigp(:,k));

normsig(k) = norm([sigq(:,k), sigp(:,k)]);

end

122

A.1. SELF RECONFIGURABLE CONTROL MATLAB FILES

selfdqeq.m

function[Xd]=self3eq(t,X)

global kt kp l C mu Uk normsig J iJ m B

q = X(1:4);

qp = X(5:8);

w = X(9:11);

v = X(12:14);

DW = X(9:14);

INT = X(15);

Q = [q(1) -q(2) -q(3) -q(4);...

q(2) q(1) -q(4) q(3);...

q(3) q(4) q(1) -q(2);...

q(4) -q(3) q(2) q(1)];

QP = [qp(1) -qp(2) -qp(3) -qp(4);...

qp(2) qp(1) -qp(4) qp(3);...

qp(3) qp(4) qp(1) -qp(2);...

qp(4) -qp(3) qp(2) qp(1)];

QC = [q(1) q(2) q(3) q(4);...

-q(2) q(1) q(4) -q(3);...

-q(3) -q(4) q(1) q(2);...

-q(4) q(3) -q(2) q(1)];

s = acos(l*q(1));

if (1e6-round(abs(q(1))*1e6))==0

logq = [0;0;0];

else

logq = l*s*q(2:4)*(1-q(1)^2)^-.5;

end

sp = QC*qp;

logqp = sp(2:4);

logDQ = [kp*logqp;kt*logq];

%Sliding surface

sig = [v;w] + 2*logDQ;

123

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

normsig = norm(sig);

DT = C - INT;

U = -Uk*sign(sin(pi*normsig/DT))*sign(sig);

dINT = mu*normsig;

iM = [zeros(3) iJ;(1/m)*eye(3) zeros(3)];

M = [zeros(3) m*eye(3);J zeros(3)];

DQ = [Q zeros(4);QP Q];

cw = [0 -w(3) w(2);...

w(3) 0 -w(1);...

-w(2) w(1) 0];

cv = [0 -v(3) v(2);...

v(3) 0 -v(1);...

-v(2) v(1) 0];

cDW=[cw zeros(3);cv cw];

%DQ Kinematics

dDQ = .5*DQ*[0;DW(1:3);0;DW(4:6)];

%DQ Dynamics

dDW = -iM*cDW*M*DW+iM*B*U;

Xd=[dDQ;dDW;dINT];

A.2 Nonholonomic Driftless SystemMATLAB Files

A.2.1 Nonholonomic Feedback to Quaternion System

Code used in section 5.2.1.
nonholq.m

clear all;clc;close all

%Random initial conditons

qi=[randn randn randn randn]’;

qi=qi/norm(qi);

124

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

%Simulation parameters

dt=.001;

t(1)=0;

tmax=20;

q(:,1)=qi;

while t(end)<tmax

Xi=rk4(’nonholqfun’,t(end),q(:,end),dt);

t=[t;t(end)+dt];

q=[q Xi];

end

plot(t,q,’LineWidth’,2)

axis([0 t(end) -1.1 1.1])

legend(’q_0’,’q_1’,’q_2’,’q_3’)

xlabel(’Time’)

ylabel(’\mathbf{q}’,’Interpreter’,’latex’)

nonholfunq.m

function[dX]=nonholqfun(t,X)

q=X;

%Control gains

a0=-1;

b0=-1;

%Sliding surfaces

a=a0*sign(q(2)^2+q(3)^2-abs(q(4)));

b=b0*sign(q(4));

d=q(1)^2+q(4)^2;

if d<.0001

d=.0001;

end

%Control algorithm

k1=(a*q(1)+b*q(4))/d;

k2=(a*q(4)-b*q(1))/d;

125

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

w=[0 0 0 0]’;

w(2)=k1*q(2)+k2*q(3);

w(3)=k1*q(3)-k2*q(2);

Q=[q(1) -q(2) -q(3) -q(4);...

q(2) q(1) -q(4) q(3);...

q(3) q(4) q(1) -q(2);...

q(4) -q(3) q(2) q(1)];

%System kinematics

dq=.5*Q*w;

dX=dq;

A.2.2 Unicycle Examples

Code used in section 5.3.1.
multiunicycleregulation.m

clear all;clc;close all

N=4; %Number of unicycles

T=90; %Simulation runtime

dt=0.01; %Time intervals

eball=0.001; %Error tolerance

%Variable Declarations

s(1:2*N) = zeros;

x(1:N+1,1) = zeros;

Y(N+1,N+1,1) = zeros;

u(1:N+1,1)=zeros;

%Starting heading

phi=2*pi*rand;

x(1,1)=phi;

%Randomizes starting positions and converts to translated system

126

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

for i=1:N

s(2*i-1)=3*randn;

s(2*i)=3*randn;

x(i+1,1)=cos(phi)*s(2*i-1)+sin(phi)*s(2*i);

Y(1,i+1,1)=(phi*cos(phi)-2*sin(phi))*s(2*i-1)+(phi*sin(phi)...

...+2*cos(phi))*s(2*i);

Y(i+1,1,1)=-Y(1,i+1,1);

end

%Starting values

COUNT=0;

t(1)=0;

U(1)=0.5*(x’*x);

V1(1)=0.5*trace(Y’*Y);

V2(1)=0.5*x’*(Y’*Y)*x;

STEP=1;

for k=1:T/dt,

t(k+1)=t(k)+dt;

%control algorithm

switch STEP

case 1 %Step 1A of control algorithm

normx=norm(x(:,k));

alpha=1;

beta=0;

u(:,k)=-alpha*x(:,k);

if normx<eball

[v,d]=eigs(Y(:,:,k)’*Y(:,:,k));

xe=v(:,1);

STEP=2;

COUNT=COUNT+1;

end

case 2 %Step 1B of control algorithm

norme=norm(x(:,k)-xe);

alpha=1;

beta=0;

u(:,k)=-alpha*(x(:,k)-xe);

if norme<eball

127

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

STEP=3;

end

case 3 %Step 2&3 of control algorithm

alpha=0;

beta=1/N;

u(:,k)=beta*Y(:,:,k)*x(:,k);

if V2(k)<eball/N

STEP=1;

end

if V1(k)<eball

STEP=4;

end

case 4 %Step 4 of control algorithm

normx=norm(x(:,k));

alpha=1;

beta=0;

u(:,k)=-alpha*x(:,k);

end

%System Kinematics

x(:,k+1)=x(:,k)+dt*u(:,k);

Y(:,:,k+1)=Y(:,:,k)+dt*(x(:,k)*u(:,k)’-u(:,k)*x(:,k)’);

Y(:,:,k+1)=triu(Y(:,:,k+1))-tril(Y(:,:,k+1)’);

U(k+1)=0.5*x(:,k+1)’*x(:,k+1);

V1(k+1)=0.5*trace(Y(:,:,k+1)’*Y(:,:,k+1));

V2(k+1)=0.5*x(:,k+1)’*Y(:,:,k+1)’*Y(:,:,k+1)*x(:,k+1);

end

%Transfers results back to original coordinates

p=x(1,:);

y(:,:)=Y(1,2:N+1,:);

for i=1:N

S(2*i-1,:)=(cos(p)+p.*sin(p)/2).*x(i+1,:)-sin(p)/2.*y(i,:);

S(2*i,:)=(sin(p)-p.*cos(p)/2).*x(i+1,:)+cos(p)/2.*y(i,:);

% v(i,:) =uc(k,:)-(X(k+N,:)-X(1,:).*X(k,:))/2.*uc(1,:);

end

Code used in section 5.3.1.

128

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

multiunicycletracking.m

clear all;close all;clc

N=4; %Number of unicycles

T=90; %Simulation runtime

dt=0.01; %Time intervals

eball=0.001; %Error tolerance

t=[0:dt:T];

%Desired trajectory generation

% Heading Trajectory

A=pi/4; %Amplitude

w=20*pi/180; %Frequency

phid=A*sin(w*t);

wd=w*A*cos(w*t);

%Translation trajectory

V=.2; %Velocity

xc=0;

yc=0;

xdd=V*cos(phid);

ydd=V*sin(phid);

Vd=linspace(V,V,T/dt+1);

%Variable declarations

s(1:2*N) = zeros;

x(1:N+1,1) = zeros;

Y(N+1,N+1,1) = zeros;

u(1:N+1,1)=zeros;

%Random starting heading

phi=2*pi*rand;

x(1,1)=phi;

129

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

%Formation spacing

r=1; %radius

a=2*pi/(N); %circular interval

%Randomize starting positions, translate starting positions and desired

%positions

for i=1:N

s(2*i-1)=2*randn;

s(2*i)=2*randn;

x(i+1,1)=cos(phi)*s(2*i-1)+sin(phi)*s(2*i);

Y(1,i+1,1)=(phi*cos(phi)-2*sin(phi))*s(2*i-1)+(phi*sin(phi)...

...+2*cos(phi))*s(2*i);

Y(i+1,1,1)=-Y(1,i+1,1);

xd(i,1)=r*sin(i*a)+xc;

yd(i,1)=r*cos(i*a)+yc;

end

%Generate translated desired trajectory

for k=1:T/dt;

xd(:,k+1)=xdd(k)*dt+xd(:,k);

yd(:,k+1)=ydd(k)*dt+yd(:,k);

end

Xd(1,:)=phid;

ud(1,:)=wd;

for i=1:N

Xd(i+1,:)=cos(phid).*xd(i,:)+sin(phid).*yd(i,:);

Yd(1,i+1,:)=(phid.*cos(phid)-2*sin(phid)).*xd(i,:)+(phid.*sin(phid)...

...+2*cos(phid)).*yd(i,:);

Yd(i+1,1,:)=-Yd(1,i+1,:);

YD(:,:)=Yd(1,i+1,:);

ud(i+1,:)=Vd+(YD’-Xd(1,:).*Xd(i+1,:))/2.*ud(1,:);

end

%Initialize values

YD=Yd(:,:,1);

COUNT=0;

t(1)=0;

STEP=1;

130

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

XE(:,1)=x(:,1)-Xd(:,1);

YE(:,:,1)=Y(:,:,1)-YD(:,:,1)-Xd(:,1)*x(:,1)’+x(:,1)*Xd(:,1)’;

U(1)=0.5*XE(:,1)’*XE(:,1);

V1(1)=0.5*trace(YE(:,:,1)’*YE(:,:,1));

V2(1)=0.5*XE(:,1)’*YE(:,:,1)’*YE(:,:,1)*XE(:,1);

for k=1:T/dt,

%control algorithm

switch STEP

case 1 %Step 1A of control algorithm

alpha=1;

uh(:,k)=-alpha*XE(:,k);

if U(k)<eball

[v,d]=eigs(YE(:,:,k)’*YE(:,:,k));

xe=v(:,1);

STEP=2;

COUNT=COUNT+1;

end

case 2 %Step 2A of control algorithm

alpha=1;

norme=norm(XE(:,k)-xe);

uh(:,k)=-alpha*(XE(:,k)-xe);

if norme<eball

STEP=3;

end

case 3 %Step 2&3 of control algorithm

beta=2;

uh(:,k)=beta*YE(:,:,k)*XE(:,k);

if V2(k)<eball/10

STEP=1;

end

if V1(k)<eball*10

STEP=4;

end

case 4 %Step 4 of control algorithm

alpha=1;

beta=0;

uh(:,k)=-alpha*XE(:,k);

if V1(k)>eball*50

131

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

STEP=1;

end

end

%System Kinematics

u(:,k)=uh(:,k)+ud(:,k);

x(:,k+1)=x(:,k)+dt*u(:,k);

Y(:,:,k+1)=Y(:,:,k)+dt*(x(:,k)*u(:,k)’-u(:,k)*x(:,k)’);

Y(:,:,k+1)=triu(Y(:,:,k+1))-tril(Y(:,:,k+1)’);

YD(:,:,k+1)=YD(:,:,k)+dt*(Xd(:,k)*ud(:,k)’-ud(:,k)*Xd(:,k)’);

YD(:,:,k+1)=triu(YD(:,:,k+1))-tril(YD(:,:,k+1)’);

XE(:,k+1)=x(:,k+1)-Xd(:,k+1);

YE(:,:,k+1)=Y(:,:,k+1)-YD(:,:,k+1)-Xd(:,k+1)*x(:,k+1)’...

...+x(:,k+1)*Xd(:,k+1)’;

U(k+1)=0.5*XE(:,k+1)’*XE(:,k+1);

V1(k+1)=0.5*trace(YE(:,:,k+1)’*YE(:,:,k+1));

V2(k+1)=0.5*XE(:,k+1)’*YE(:,:,k+1)’*YE(:,:,k+1)*XE(:,k+1);

end

%Transfers results back to original coordinates

p=x(1,:);

y(:,:)=Y(1,2:N+1,:);

ye(:,:)=YE(1,2:N+1,:);

for i=1:N

S(2*i-1,:)=(cos(p)+p.*sin(p)/2).*x(i+1,:)-sin(p)/2.*y(i,:);

S(2*i,:)=(sin(p)-p.*cos(p)/2).*x(i+1,:)+cos(p)/2.*y(i,:);

% v(i,:) =uc(k,:)-(X(k+N,:)-X(1,:).*X(k,:))/2.*uc(1,:);

end

A.2.3 Multiple Dual Quaternion Spacecraft Example

Code used in section 5.3.2.
nonholndq.m

clear all;

clc;close all

global dwu N

132

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

%Number of spacecraft

N=9;

%Random initial attitude

qi=[randn randn randn randn]’;

qi=qi/norm(qi);

qi=sign(qi(1))*qi;

Qi=[qi(1) -qi(2) -qi(3) -qi(4);...

qi(2) qi(1) -qi(4) qi(3);...

qi(3) qi(4) qi(1) -qi(2);...

qi(4) -qi(3) qi(2) qi(1)];

dqi=qi;

%Establish canonical system

x(1:2,1)=[dqi(3);dqi(4)];

Y(:,:,1)=zeros(N+2);

Yi=zeros(N+2);

Y(1,2,1)=dqi(2);

dqx=zeros(N*(N-1)/2,1);

k=0;

s=1;

for i=1:N

pi(:,i)=[0 4*rand-2 4*rand-2 4*rand-2]’; %Randomize starting pos’s

qpi(:,i)=.5*Qi*pi(:,i);

dqi=[dqi;qpi(:,i)];

x(i+2,1)=dqi(4*i+2);

Y(1:2,i+2)=[-dqi(4*i+4);dqi(4*i+3)];

if i>1

Y(3:i+1,i+2,1)=dqx(s:s+i-2);

k=k+1;

s=s+k;

end

end

Y=triu(Y)-triu(Y).’;

%System parameters

dt=.005;

t(1)=0;

133

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

T=120;

eball=.005;

p(:,:,1)=pi;

dq(:,1)=[dqi;dqx];

COUNT=0;

Z=zeros(4);

U(1)=0.5*(x’*x);

V1(1)=0.5*trace(Y’*Y);

V2(1)=0.5*x’*(Y’*Y)*x;

STEP=1;

%Control gains

a=3;

b=3;

for k=1:T/dt,

%control algorithm

switch STEP

case 1 %Step 1A of control algorithm

normx=norm(x(:,k));

alpha=a;

beta=0;

u(:,k)=-alpha*x(:,k);

if normx<eball

[v,d]=eigs(Y(:,:)’*Y(:,:));

xe=v(:,1);

STEP=2;

COUNT=COUNT+1;

end

case 2 %Step 1B of control algorithm

norme=norm(x(:,k)-xe);

alpha=a;

beta=0;

u(:,k)=-alpha*(x(:,k)-xe);

if norme<eball*5

134

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

STEP=3;

end

case 3 %Step 2&3 of control algorithm

alpha=0;

beta=b;

%normp=norm(p1(:,k))+norm(p2(:,k));

u(:,k)=beta*Y(:,:)*x(:,k);

if V2(k)<eball/10

STEP=1;

end

if V1(k)<eball

STEP=4;

end

case 4 %Step 4 of control algorithm

%normx=norm(x(:,k));

alpha=a;

beta=0;

u(:,k)=-alpha*x(:,k);

end

%System Kinematics

dwu=u(:,k);

Xi=rk4(’nonholnedqfun’,t(k),dq(:,k),dt);

t(k+1)=t(k)+dt;

dq(:,k+1)=Xi;

x(1:2,k+1)=[dq(3,k+1);dq(4,k+1)];

qc=[dq(1,k+1);-dq(2,k+1);-dq(3,k+1);-dq(4,k+1)];

Qc=[qc(1) -qc(2) -qc(3) -qc(4);...

qc(2) qc(1) -qc(4) qc(3);...

qc(3) qc(4) qc(1) -qc(2);...

qc(4) -qc(3) qc(2) qc(1)];

j=0;

s=1;

dqx(:,k+1)=dq(4*N+5:end,k+1);

Yi(1,2)=dq(2,k+1);

for i=1:N

p(:,i,k+1)=2*Qc*dq(4*i+1:4*i+4,k+1);

x(i+2,k+1)=dq(4*i+2,k+1);

Yi(1:2,i+2)=[-dq(4*i+4,k+1);dq(4*i+3,k+1)];

135

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

if i>1

Yi(3:i+1,i+2)=dqx(s:s+i-2,k+1);

j=j+1;

s=s+j;

end

end

Y(:,:)=triu(Yi)-triu(Yi).’;

U(k+1)=0.5*x(:,k+1)’*x(:,k+1);

V1(k+1)=0.5*trace(Y(:,:)’*Y(:,:));

V2(k+1)=0.5*x(:,k+1)’*Y(:,:)’*Y(:,:)*x(:,k+1);

end

q=dq(1:4,:);

nonholndqfun.m

function[dX]=nonholnedqfun(t,X)

global dwu N

dqx=X(N*4+5:end);

q=X(1:4);

Q=[q(1) -q(2) -q(3) -q(4);...

q(2) q(1) -q(4) q(3);...

q(3) q(4) q(1) -q(2);...

q(4) -q(3) q(2) q(1)];

w=[0 0 dwu(1) dwu(2)]’;

%attitude kinematics

ddq(1:4)=.5*Q*w;

ux=dwu(3:end);

for i=1:N

qp=X(4*i+1:4*i+4);

QP=[qp(1) -qp(2) -qp(3) -qp(4);...

qp(2) qp(1) -qp(4) qp(3);...

qp(3) qp(4) qp(1) -qp(2);...

qp(4) -qp(3) qp(2) qp(1)];

dw=[w;0;dwu(i+2);0;0];

136

A.2. NONHOLONOMIC DRIFTLESS SYSTEM MATLAB FILES

%Dual kinematics

ddq(4*i+1:4*i+4)=.5*[QP Q]*dw;

xd(i,1)=qp(2);

end

%additional constraints kinematics

Yd=xd*ux.’-ux*xd.’;

k=0;

s=1;

for i=1:(N-1)

ddqx(s:s+i-1,1)=Yd(1:i,i+1);

k=k+1;

s=s+k;

end

dX=[ddq’;ddqx];

137

References

Ashrafiuon, H., & Erwin, R. S. (2004). Sliding control approach to underactuated
multibody systems. In Proc. american control conference. (pp. 1283–1288).
Boston, MA.

Aspragathos, N. A., & Dimitros, J. K. (1998). A comparative study of three methods
for robot kinematics. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics , 28 (2), 135–145.

Bloch, A., & Drakunov, S. (1995). Tracking in nonholonomic dynamic systems via
sliding modes. In Proc. conf. on decision and control (pp. 2103–2106). New
Orleans, LA.

Bloch, A., & Drakunov, S. (1996). Stabilization and track-
ing in the nonholonomic integrator via sliding modes. Sys-
tems & Control Letters , 29 , 91–99. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0167691196000497

Bloch, A., Drakunov, S., & Kinyon, M. (1997, December). Stabilization of Brock-
ett’s generalized canonical driftless system. In Decision and control, 1997.,
proceedings of the 36th ieee conference on (Vol. 5, pp. 4260 –4265 vol.5). doi:
10.1109/CDC.1997.649505

Bloch, A. M., Drakunov, S. V., & Kinyon, M. K. (2000, January). Sta-
bilization of Nonholonomic Systems Using Isospectral Flows. SIAM
Journal on Control and Optimization, 38 (3), 855–874. Retrieved
from http://epubs.siam.org/doi/abs/10.1137/S0363012998335607 doi:
10.1137/S0363012998335607

Brockett, R. W. (1981). Control theory and singular Riemannian geometry
(P. J. Hilton & G. S. Young, Eds.). Springer-Verlag.

Brodsky, V., & Shoham, M. (1999, July). Dual numbers representation of rigid body
dynamics. Mechanism and Machine Theory , 34 (5), 693–718. Retrieved from
http://linkinghub.elsevier.com/retrieve/pii/S0094114X98000494 doi:
10.1016/S0094-114X(98)00049-4

Clifford, W. (1873). Preliminary Sketch of Bi-quaternions. Proc. London Mathemat-

138

References

ical Society , 4 , 381–395.
Coddington, E. A., & Levinson, N. (1955). Theory of Ordinary Differential Equations.

New York: McGraw-Hill.
Corless, M., & Leitmann, G. (1981). Continuous state feedback guaranteeing uniform

ultimate boundedness for uncertain dynamic systems. IEEE Transactions on
Automatic Control , 26 (5), 1139–1144.

DeCarlo, R., Zak, S., & Drakunov, S. V. (2011). Variable structure and sliding mode
control. In: The Control Handbook (W. S. Levine, ed.), CRC Press.

Dooley, J. R. (1991). Spatial rigid body dynamics using dual quaternion com-
ponents. Robotics and Automation, 1991. . . . (April), 90–95. Retrieved from
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=131559

Drakunov, S. (1993). Sliding mode control of the systems with
uncertain direction of control vector. Decision and Con-
trol, 1993., Proceedings of the . . . , 6–7. Retrieved from
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=325642

Drakunov, S. V. (1994). Sliding mode control with multiple equilibrium manifolds. In
Proceedings of me94 international congress and exposition (the winter annual
meeting of asme) (pp. 101–108). Chicago, IL.

Drakunov, S. V., & DeCarlo, R. (1994). Sliding Mode Control Design via Lyapunov
Approach. In Proceedings of 33rd ieee conference on decision and control (cdc)
(pp. 1925–1930). Orlando, FL.

Drakunov, S. V., Ozguner, U., Dix, P., & Ashrafi, B. (1995). ABS control using
optimum search via sliding modes. IEEE Transactions on Control Systems
Technology , 3 (1), 79–85.

Drakunov, S. V., & Utkin, V. (1992). Sliding Mode Control in Dynamic Systems.
International Journal of Control , 55 , 1029–1037.

Filippov, A. F. (1988). Differential Equations with Discontinuous Right-hand Sides.
Boston, MA: Kluwer Academic Publishers.

Flügge-Lotz, I. (1953). Discontinuous Automatic Control. Princeton Univeristy
Press.

Funda, J., Taylor, R. H., & Paul, R. P. (1990). On homogeneous transforms, quater-
nions, and computational efficiency. IEEE Transactions on Robotics and Au-
tomation, 6 (3), 382–388.

Gutman, S. (1979, June). Uncertain dynamical systems–a {L}yapunov min-max
approach. IEEE Trans. Automat. Contr., 24 (3), 437–443.

Hall, B. C. (2003). Lie Groups, Lie Algebras, and Representations. Springer-Verlag
New York, Inc.

Hamilton, W. R. (1844). On Quaternions; or on a New System of Imaginaries in
Algebra. The London, Edinburgh and Dublin Philosophical Magazine and J.
Science, 25 (3), 489–495.

139

References

Han, D., Fang, X., & Wei, Q. (2008, April). Rotation interpolation based on the
geometric structure of unit quaternions. 2008 IEEE International Conference
on Industrial Technology(1), 1–6. doi: 10.1109/ICIT.2008.4608619

Han, D., Wei, Q., & Li, Z. (2008, April). A Dual-quaternion Method for Control
of Spatial Rigid Body. 2008 IEEE International Conference on Networking,
Sensing and Control(5), 1–6. doi: 10.1109/ICNSC.2008.4525172

Han, D.-P., Wei, Q., & Li, Z.-X. (2008, July). Kinematic con-
trol of free rigid bodies using dual quaternions. International Jour-
nal of Automation and Computing , 5 (3), 319–324. Retrieved from
http://www.springerlink.com/index/10.1007/s11633-008-0319-1 doi:
10.1007/s11633-008-0319-1

Hsu, L., Oliveira, T. R., & Peixoto, A. J. (2006, June). Sliding Mode Control of
Uncertain Nonlinear Systems with Arbitrary Relative Degree and Unknown
Control Direction. Int’l Workshop on Variable Structure Systems , 178–183.

Isidori, A. (1997). Nonlinear control systems. Springer-Verlag New York, Inc.
Kaloust, J., & Qu, Z. (1995). Continuous robust control design for nonlinear uncertain

systems without a priori knowledge of control direction. IEEE Transactions on
Automatic Control , 40 (2), 276–282.

Khalil, H. K. (2002). Nonlinear Systems (3rd ed.). Upper Saddle River, NJ: Prentice
Hall.

Kim, M., Kim, M., & Shin, S. (1996). A compact differential formula for the first
derivative of a unit quaternion curve. Journal of Visualization and Computer
. . . , 0 (0), 1–14.

Krishnan, H. (1992). Attitude stabilization of a rigid spacecraft
using gas jet actuators operating in a failure mode. In De-
cision and control, Tucson, Arizona. Retrieved from
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=371454

Krishnan, H., Reyhanoglu, M., & McClamroch, H. (1994, June).
Attitude stabilization of a rigid spacecraft using two control
torques: A nonlinear control approach based on the spacecraft at-
titude dynamics. Automatica, 30 (6), 1023–1027. Retrieved from
http://linkinghub.elsevier.com/retrieve/pii/0005109894901961

doi: 10.1016/0005-1098(94)90196-1
Li, K., Yuan, J., Yue, X., & Fang, Q. (2007). Autonomous navi-

gation algorithm for spacecrafts based on dual quaternion. Pro-
ceedings of SPIE , 6795 , 67953K–67953K–6. Retrieved from
http://link.aip.org/link/PSISDG/v6795/i1/p67953K/s1&Agg=doi doi:
10.1117/12.774862

Marino, R., & Tomei, P. (1993). Robust stabilization of feedback linearizable time-
varying uncertain nonlinear systems. Automatica, 29 , 181–189.

140

References

MathsPoetry. (2009). Diagonal rotation. Retrieved 8 OCT 2013, from
http://en.wikipedia.org/wiki/File:Diagonal rotation.png

Mcvittie, G. R., Kumar, K. D., Liu, G., & Candidate, D. S. (2010). Reduced Input
Control of an Underactuated Satellite Formation. In Aiaa guidance, navigation,
and control conference (pp. 1–20). Toronto, Ontario Canada.

Medina-Garciadiego, V., & Leonessa, A. (2011). Tracking control of a nonholonomic
ground vehicle. In American control conference (acc), 2011 (pp. 1710–1713).

Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic
manipulation. Boca Raton, FL: CRC Press LLC.

NASA JPL. (2004). Satellite attitude control. Retrieved 10 Oct 2013, from
http://www.srl.caltech.edu/personnel/mseibert/galex/protected/test/htdocs-galex-new/TECHNOLOGY/spacecraft systems.html

Nordkvist, N., Bullo, F., & Member, S. (2008). Control algorithms along rela-
tive equilibria of underactuated Lagrangian systems on Lie groups. Auto-
matic Control, IEEE Transactions on, 53 (11), 2021–2026. Retrieved from
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4700860

Oliveira, T. R., Peixoto, A. J., & Liu, H. (2007, July). Sliding Mode Output Tracking
of Uncertain Nonlinear Systems with Unknown Control Direction. American
Control Conference, 3831–3836. doi: 10.1109/ACC.2007.4282888

Oliveira, T. R., Peixoto, A. J., & Liu, H. (2010). Sliding Mode Control of Uncertain
Multivariable Nonlinear Systems With Unknown Control Direction via Switch-
ing and Monitoring Function. IEEE Transactions on Automatic Control , 55 (4),
1028–1034. doi: 10.1109/TAC.2010.2041986

Pathak, K., & Agrawal, S. K. (2004). Planning and control of a nonholonomic unicycle
using ring shaped local potential fields. In American control conference, 2004.
proceedings of the 2004 (Vol. 3, pp. 2368—-2373 vol.3).

Pham, H.-L., Perdereau, V., Adorno, B. V., & Fraisse, P. (2010). Position and orien-
tation control of robot manipulators using dual quaternion feedback. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 658–663.

Price, W. D., Seo, D., Kitchen-Mckinley, S. J., & Drakunov, S. V. (2014). Stabilization
of Driftless Nonlinear Systems with Nonholonomic Control Strategy. In 2014
european control conference (submitted).

Price, W. D., Ton, C., MacKunis, W., & Drakunov, S. (2013). Self-Reconfigurable
Control for Dual-Quaternion/Dual-Vector Systems. In 2013 european control
conference (pp. 860–865). Zurich, Switzerland.

Qu, Z. (1992). Global stabilization of nonlinear systems with a class of unmatched
uncertainties. Sys. Contr. Lett., 18 (3), 301–307.

Qu, Z. (1993). Robust control of nonlinear uncertain systems under generalized
matching conditions. Automatica, 29 , 985–998.

141

References

Slotine, J. J. E., & Hedrick, K. (1993). Robust input-output feedback linearization.
lnt. J. Contr., 57 , 1133–1139.

Study, E. (1891). Von den Bewegungen und Umlegungen. Mathematische Annalen,
39 , 441–556.

Tsiotras, P., & Luo, J. (2000). Control of underactuated spacecraft
with bounded inputs. Automatica, 36 , 1153–1169. Retrieved from
http://www.sciencedirect.com/science/article/pii/S000510980000025X

Utkin, V. (1978). Sliding Modes and Their Application in Variable Structure Systems.
Moscow: MIR.

Wang, J., Liang, H., & Sun, Z. (2012, February). Dual-quaternion-
based finite-time control for spacecraft tracking in six degrees of free-
dom. Proceedings of the Institution of Mechanical Engineers, Part
G: Journal of Aerospace Engineering , 0 (0), 1–18. Retrieved from
http://pig.sagepub.com/lookup/doi/10.1177/0954410011434883 doi:
10.1177/0954410011434883

Wang, X., Han, D., Yu, C., & Zheng, Z. (2012, May). The geometric structure
of unit dual quaternion with application in kinematic control. Journal of
Mathematical Analysis and Applications , 389 (2), 1352–1364. Retrieved from
http://linkinghub.elsevier.com/retrieve/pii/S0022247X12000327 doi:
10.1016/j.jmaa.2012.01.016

Wie, B. (1998). Space Vehicle Dynamics and Control (J. S. Przemieniecki, Ed.).
Reston, VA: AIAA.

Wu, Y., & Hu, X. (2006). Strapdown inertial navigation us-
ing dual quaternion algebra: error analysis. Aerospace and
Electronic Systems, . . . , 42 (1), 259–266. Retrieved from
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1603421

Wu, Y., Hu, X., & Hu, D. (2005). Strapdown inertial navigation system algorithms
based on dual quaternions. Aerospace and Electronic . . . , 41 (1). Retrieved from
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1413751

Xian, B., Dawson, D. M., de Queiroz, M. S., & Chen, J. (2004, July). A Contin-
uous Asymptotic Tracking Control Strategy for Uncertain Nonlinear Systems.
{IEEE} Transactions on Automatic Control , 49 (7), 1206–1211.

Yoshimura, Y., Matsuno, T., & Hokamoto, S. (2011). Position and Attitude Control
of an Underactuated Satellite with Constant Thrust. In Aiaa guidance, navi-
gation, and control conference (pp. 1–13). Portland, Oregon. Retrieved from
http://www.aric.or.kr/treatise/journal/content.asp?idx=144438

Zenkov, D. V., Bloch, A. M., & Marsden, J. E. (2002). The
{Lyapunov} Malkin theorem and stabilization of the unicycle with
rider. Systems & Control Letters , 45 (4), 293–302. Retrieved from

142

References

http://www.sciencedirect.com/science/article/pii/S0167691101001876

doi: 10.1016/S0167-6911(01)00187-6
Zhang, F., & Duan, G. (2011). Robust Integrated Translation

and Rotation Finite-Time Maneuver of a Rigid Spacecraft Based
on Dual Quaternion. In Aiaa guidance, navigation, and con-
trol conference (pp. 1–17). Portland, Oregon. Retrieved from
http://www.aric.or.kr/treatise/journal/content.asp?idx=144484

143

	Nonlinear Control for Dual Quaternion Systems
	Scholarly Commons Citation

	tmp.1442342072.pdf.MFwM6

