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Abstract

A theoretical framework is established for the control of higher-order non-

holonomic systems, defined as systems that satisfy higher-order noninte-

grable constraints. A model for such systems is developed in terms of

differential-algebraic equations defined on a higher-order tangent bundle.

A number of control-theoretic properties such as nonintegrability, con-

trollability, and stabilizability are presented. Higher-order nonholonomic

systems are shown to be strongly accessible and, under certain conditions,

small time locally controllable at any equilibrium. There are important

examples of higher-order nonholonomic systems that are asymptotically

stabilizable via smooth feedback, including space vehicles with multiple

slosh modes and Prismatic-Prismatic-Revolute (PPR) robots moving open

liquid containers, as well as an interesting class of systems that do not

admit asymptotically stabilizing continuous static or dynamic state feed-

back. Specific assumptions are introduced to define this class, which in-

cludes important examples of robotic systems. A discontinuous nonlinear

feedback control algorithm is developed to steer any initial state to the

equilibrium at the origin. The applicability of the theoretical development

is illustrated through two examples: control of a planar PPR robot ma-

nipulator subject to a jerk constraint and control of a point mass moving

on a constant torsion curve in a three dimensional space.
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1

INTRODUCTION

Dynamic systems can be classified as either holonomic or nonholonomic. The term

“holonomic” comes from the Greek words “integral” (or “whole”) and “law” (Hertz,

1894), and refers to mechanical systems subject to constraints that limit their possible

configurations. If the constraints given in terms of the velocity, acceleration or higher-

order time derivatives can be integrated to constraints on the configuration variables,

they are called holonomic constraints. A typical example is the length constraint

for a simple pendulum. On the other hand, if the constraints cannot be integrated

to the configuration variables, they are called nonintegrable or nonholonomic. The

rolling disk and ball are classical examples of systems with first-order nonholonomic

constraints (Bloch, 2003).

The problem of controlling dynamical systems that satisfy nonintegrable relations

has attracted considerable attention in the recent past. These studies were primarily

limited to systems satisfying nonintegrable kinematic relations, also known as sys-

tems with first-order (classical) nonholonomic constraints. Examples of systems with

nonintegrable first-order constraints include systems subject to rolling constraints as

well as mechanical systems that involve symmetries, which result in nonintegrable

conserved quantities such as angular momentum. Several examples of systems with

first-order nonholonomic constraints have been studied in the context of robot ma-

nipulation, mobile robots, wheeled vehicles, and space robotics. A few representative

control works include the study of controllability and stabilizability (Bloch et al.,

1992; Laumond, 1993; Reyhanoglu and McClamroch, 1991), motion planning (Mur-

ray and Sastry, 1993; Nakamura and Mukherjee, 1991; Reyhanoglu and Al-Regib,

1994), and feedback stabilization and tracking (Aneke et al., 2003; Aneke, 2003; As-

tolfi, 1996; Godhavn and Egeland, 1997; Jiang and Nijmeijer, 1997, 1999; Jiang et al.,
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2001; Kolmanovsky et al., 1996; Lefeber, 2000; Samson, 1995; Sordalen and Egeland,

1995; Walsh et al., 1994; Walsh and Bushnell, 1995).

In Reyhanoglu et al. (1999), the ideas in Bloch et al. (1992) have been extended

to dynamical systems that satisfy nonintegrable acceleration relations. It has been

shown that such systems can arise not only by imposition of certain design constraints

on the allowable motions of redundant robot manipulators but also as models of

underactuated mechanical systems, defined as systems with fewer inputs than degrees

of freedom. Examples of such systems include underactuated space vehicles (Cho

et al., 2000b; Krishnan et al., 1992; Reyhanoglu and Rubio Hervas, 2012a; Rubio

Hervas and Reyhanoglu, 2012a) and underactuated manipulators (Baillieul, 1993;

Mahindrakar et al., 2005; Reyhanoglu and Rubio Hervas, 2012b).

Since the beginning of last century, there has been considerable work on the dy-

namics formulation of systems with higher-order nonholonomic constraints. Most

notable developments in this field include the works of Nielsen, Tzenoff, Mangeron,

Deleanu, Appell, and Gibbs (see e.g., Jarzebowska (2006) and references therein).

More recently, new forms of the differential equations of systems with higher-order

nonholonomic constraints have been derived (Jarzebowska, 2002; Ze-chun and Feng-

xiang, 1987). In Jarzebowska (2002), the concept of program constraint is introduced

as a demand imposed by design on a system whose sources are not necessarily in other

bodies, which can be formulated as differential equations of any order. Material and

program constraints are subsequently incorporated into a unified formulation to model

nonholonomic systems of any order. To the best of our knowledge, little has been done

in generalizing the control and stabilization ideas developed in Bloch et al. (1992) and

Reyhanoglu et al. (1999) to higher-order nonholonomic dynamic systems, except for

tracking control problems (Jarzebowska, 2005, 2006).

There are important examples of second-order nonholonomic systems that are

asymptotically stabilizable via smooth feedback, including space vehicles with multi-

ple slosh modes and Prismatic-Prismatic-Revolute (PPR) robots moving open liquid

containers, as well as an interesting class of systems that do not admit asymptot-

ically stabilizing continuous static or dynamic state feedback. It has been demon-

strated that pendulum and mass-spring models can approximate complicated fluid

and structural dynamics; such models have formed the basis for many studies on dy-

namics and control of space vehicles with fuel slosh (Bandyopadhyay et al., 2009a,b;

Peterson et al., 1989; Shekhawat et al., 2006). There is an extensive body of litera-

ture on the interaction of vehicle dynamics and slosh dynamics and their control, but

this literature treats only the case of small perturbations to the vehicle dynamics.

2



The control approaches developed for accelerating space vehicles have commonly em-

ployed methods of linear control design (Sidi, 1997; Wie, 1998) and adaptive control

(Adler et al., 1991). A number of related papers following a similar approach are

motivated by robotic systems moving liquid filled containers (Feddema et al., 1997;

Grundelius and Bernhardsson, 1999; Grundelius, 2000; Terashima and Schmidt, 1994;

Yano et al., 2001a,b; Yano and Terashima, 2001, 2005). The linear control laws for

the suppression of the slosh dynamics inevitably lead to excitation of the transverse

vehicle motion through coupling effects. The complete nonlinear dynamics formula-

tion in this dissertation allows simultaneous control of the transverse, pitch, and slosh

dynamics (Reyhanoglu and Rubio Hervas, 2011a,b, 2012a,b,c,d, 2013; Rubio Hervas

and Reyhanoglu, 2012a,b; Rubio Hervas et al., 2013; Rubio Hervas and Reyhanoglu,

2013f,g).

There is an interesting class of systems that do not admit asymptotically stabiliz-

ing continuous static or dynamic state feedback. Specific assumptions are introduced

to define this class, which includes important examples of robotic systems. A discon-

tinuous nonlinear feedback control algorithm is developed to steer any initial state

to the equilibrium at the origin. The applicability of the theoretical development is

illustrated through a third-order nonholonomic system example: control of a planar

PPR robot manipulator subject to a jerk constraint (Rubio Hervas and Reyhanoglu,

2013d). Jerk is defined as the time derivative of the acceleration, and thus is an

interesting example of third-order constraints. In the context of robot manipulators,

it is associated with rapidly changing actuator forces. Excessive jerk leads to pre-

mature wear on the actuators, resonant vibrations in the robot’s structure, and is

difficult for a controller to track accurately; even some experiments indicate that our

brain realizes a version of minimum-jerk in planning grasping motions for our arms

(Freeman, 2012).

The organization of the dissertation is as follows: Chapter 2 summarizes some

notions of differential calculus, differential geometry, controllability, and stabilizabil-

ity. In Chapter 3 models of higher-order nonholonomic systems are presented and

a nonlinear control system representation is developed. Theoretical results on con-

trollability and stabilizability are presented in Chapter 4. Chapter 5 is devoted to

the synthesis of feedback control algorithms for a class of higher-order nonholonomic

systems. Physical examples illustrating the theoretical development of this disserta-

tion are included in Chapters 6 and 7. Finally, Chapter 8 contains conclusions and

remarks on future research directions.
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2

MATHEMATICAL

BACKGROUND

In this section, we review the general mathematical background from differential

calculus and differential geometry on which our development in later chapters is based.

This summary is borrowed from Reyhanoglu (1992). For full details, see Abraham

et al. (1988); Crampin and Pirani (1986); Nijmeijer and van der Schaft (1990).

2.1 Overview of Differential Geometry

Let h : A→ R be a scalar function defined on an open subset A of Rn. The value of

h at x = (x1, . . . , xn) ∈ A is denoted by h(x) = h(x1, . . . , xn). The function h is called

a Ck (k times continuously differentiable) function if it possesses continuous partial

derivatives of all orders ≤ k on A. Here k ∈ Z+, i.e., k is a positive integer. If h is Ck

for all k then h is said to be a smooth or C∞ function. A mapping H : A→ Rm is a

collection (H1, . . . , Hm) of functions Hi : A→ R. The mapping H is Ck if all Hi’s are

Ck. A mapping P : A→ Rm1×m2 is an m1×m2 matrix of functions Pij : A→ R. The
mapping P is Ck if all Pij’s are C

k. We use the notation P ′ to denote the transpose

of P .

A topological space is a set S with a topology. Any open set containing a point p

of a topological space is called a neighborhood of p. For a subset S0 of a topological

space S, there is a unique open set, denoted int(S0) and called the interior of S0,

which is contained in S0 and contains any other open set contained in S0. We say that

S0 has empty interior with respect to S if S0 contains no open set of S other than

4



2.1 Overview of Differential Geometry

the empty set ∅. Consider a mapping F : S1 → S2, where S1 and S2 are topological

spaces. The mapping F is said to be continuous if the inverse image of every open

set of S2 is an open set of S1. The mapping F is open if the image of an open set of

S1 is an open set of S2. The mapping F is a homeomorphism if it is a bijection and

both continuous and open.

A locally Euclidean space E of dimension n is a topological space such that for each

p ∈ E there exists a homeomorphism φ from some open neighborhood of p onto an

open set in Rn. A manifold M of dimension n is a topological space which is a locally

Euclidean space of dimension n, is Hausdorff (any two different points have disjoint

neighborhoods) and has a countable basis. A coordinate chart on a manifold M is a

pair (U, ϕ), where U is an open set of M and ϕ a homeomorphism of U onto an open

set of Rn. Sometimes ϕ is represented as (ϕ1, . . . , ϕn), where ϕi : U → R is called

the i-th coordinate function. If p ∈ U , the n-tuple of real numbers (ϕ1(p), . . . , ϕn(p))

is called the set of local coordinates of p in the coordinate chart (U, ϕ).

A C∞ atlas on a manifold M is a collection {(Ui, ϕi)}i∈I , where I is an index set,

of pairwise C∞-compatible coordinate charts with the property that ∪i∈IUi = M. An

atlas is complete if it is not properly contained in any other atlas. A smooth (C∞)

manifold is a manifold equipped with a complete C∞ atlas.

Let M1 and M2 denote two smooth manifolds of dimension n. Then a bijective

mapping F : M1 → M2 is a diffeomorphism if F is bijective and both F and F−1

are smooth mappings. The manifolds M1 and M2 are diffeomorphic if there exists a

diffeomorphism F : M1 → M2.

One may define the notion of analytic manifold, analytic mappings of manifolds

and so on, by assuming that functions, mappings, etc. are analytic. We shall make

this assumption explicit whenever needed.

Let M be a smooth manifold of dimension n. The tangent space to M at a point

x ∈ M is denoted by TxM. The tangent bundle of M is TM =
∪

x∈MTxM, the union

of tangent spaces. A vector field τ on M is a smooth map, which assigns to each

point on x ∈ M a tangent vector τ(x) ∈ TxM. In local coordinates, τ is represented

as a column vector whose elements depends on x:

τ(x) = (τ1(x), . . . , τn(x))
′ .

Alternatively, considering τ as a differential operator, we write

τ(x) = τ1(x)
∂

∂x1
+ . . .+ τn(x)

∂

∂xn
.

5



2.1 Overview of Differential Geometry

The symbol ∂
∂xi

is to be thought of as a basis element for the tangent space with

respect to a given set of local coordinates. A distribution assigns a subspace of the

tangent space to each point in M in a smooth way. A distribution can be defined by

a set of smooth vector fields τ 1, . . . , τ r. In this case we define the distribution as

∆ = span{τ 1, . . . , τ r},

where we take the span over the set of smooth real-valued functions on M. At any

point x ∈ M the distribution is a linear subspace of the tangent space, i.e.,

∆(x) = span{τ 1, . . . , τ r}(x) ⊂ TxM .

Given two smooth vector fields X =
∑n

i=1Xi
∂
∂xi

and Y =
∑n

i=1 Yi
∂
∂xi

on M, we

define a new vector field, denoted as [X, Y ] and called the Lie bracket of X and Y , as

[X, Y ] =
n∑

j=1

(
n∑

i=1

∂Yj
∂xi

Xi −
∂Xj

∂xi
Yi

)
∂

∂xj
.

A distribution ∆ is called involutive if [X, Y ] ∈ ∆ whenever X and Y are vector

fields in ∆.

Denote by V (M) the linear space of smooth vector fields defined on M. Then

V (M) with the Lie bracket operation is a Lie algebra. In particular, it can be shown

that the map (X, Y ) 7→ [X,Y ] is bilinear, skew-commutative and satisfies the Jacobi

identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 , ∀X, Y, Z ∈ V .

A linear subspace L ⊂ V (M) is called a Lie subalgebra if

[X,Y ] ∈ L , ∀X,Y ∈ L .

Let {X i | 1 ≤ i ≤ q} be a finite set of vector fields and L1, L2 two subalgebras of

V (M) which contain the vector fields X1, . . . , Xq. Clearly, the intersection L1 ∩ L2

is again a subalgebra of V (M) and contains X1, . . . , Xq. Thus we conclude that

there exists a unique subalgebra L of V (M) which contains X1, . . . , Xq, and has the

property of being contained in all the subalgebras of V (M) which contain the vector

fields X1, . . . , Xq. This subalgebra is referred to as the smallest subalgebra of V (M)

which contains the vector fields X1, . . . , Xq. By an inductive argument using the

Jacobi identity, it can be shown that every element of L is a linear combination of

repeated Lie brackets of the form [X ik , [. . . [X i2 , X i1 ] . . .]], where X ij , 1 ≥ ij ≥ q, is in

6



2.1 Overview of Differential Geometry

the set {X i | 1 ≤ i ≤ q} and 1 < j < ∞. With the subalgebra L we may associate a

distribution L in a natural way:

L(x) = span{X(x) | X ∈ L} , x ∈ M .

The cotangent space to M at x ∈ M is denoted by T ∗
xM, which is identified as

the dual space associated with the tangent space TxM. The cotangent bundle of M

is T ∗M =
∪

x∈MT
∗
xM, the union of cotangent spaces. Just as we defined vector fields

on TxM, on T ∗
xM we can define a covector field (one-form) ω. In local coordinates,

we represent ω as a row vector whose elements depends on x:

ω(x) = (ω1(x), . . . , ωn(x)) .

Alternatively, we write

ω(x) = ω1(x)dx1 + . . .+ ωn(x)dxn .

The symbols dxi represent the basis dual to the basis ∂
∂xi

on TxM and are defined as

dxi ·
∂

∂xj
= δij,

where δij is the Kronecker delta. A one-form acts on a vector field to give a real

valued function on M,

ω · τ =

(
n∑

i=1

ωidxi

)
·

(
n∑

j=1

τj
∂

∂xj

)
=

n∑
i=1

τiωi .

A codistribution assigns a subspace of the cotangent space to each point in M in

a smooth way. A codistribution can be defined by a set of smooth covector fields

ω1, . . . , ωs. In this case we define the codistribution as

Ω = span{ω1, . . . , ωs},

where we take the span over the set of smooth real-valued functions on M. At any

x ∈ M the codistribution is a linear subspace of the cotangent space, i.e.,

Ω(x) = span{ω1, . . . , ωs}(x) ⊂ T ∗
xM .

It is possible to construct a codistribution starting from a given distribution, and

conversely. The natural way to do this is the following: given a distribution ∆, for

7
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each x ∈ M consider the annihilator of ∆(x), that is the set of all covectors which

annihilate all vectors in ∆(x)

∆⊥(x) = {ω ∈ T ∗
xM | ω · v = 0 , ∀v ∈ ∆(x)} .

Since ∆⊥(x) is a subspace of T ∗
xM, this construction identifies exactly a codistribu-

tion ∆⊥, called the annihilator of ∆. Conversely, given a codistribution Ω, we can

construct a distribution, denoted Ω⊥ and called the annihilator of Ω, so that for each

x ∈ M

Ω⊥(x) = {v ∈ TxM | ω · v = 0 , ∀ω ∈ Ω(x)} .

2.2 Higher-Order Tangent Bundles

Consider a system defined on a smooth (C∞) configuration manifold Q of dimen-

sion n with local coordinates q = (q1, . . . , qn). We introduce higher-order tangent

bundles in order to deal with higher-order constraints.

For the configuration manifold Q, the usual tangent bundle is given by

TQ =
∪
q∈Q

TqQ = {(q, q̇) | q ∈ Q, q̇ ∈ TqQ}.

The second-order tangent bundle is defined as

T 2Q = T (TQ) =
∪

(q,q̇)∈TQ

T(q,q̇)TQ = {(q, q̇, q̈) | (q, q̇) ∈ TQ, q̈ ∈ T(q,q̇)TQ}.

The p-th order tangent bundle can be defined iteratively as

T pQ = T (T p−1Q).

The local coordinates for the p-th order tangent bundle are given by (q, q̇, . . . , q(p)).

First-order (classical) nonholonomic constraints (Bloch et al., 1992) and second-

order nonholonomic constraints (Reyhanoglu et al., 1999), defined on TQ and T 2Q

respectively, naturally appear in several physical examples. In this dissertation, we

will extend the development in Bloch et al. (1992) and Reyhanoglu et al. (1999) to

higher-order nonholonomic constraints of the form

Gβ(t, q, q̇, . . . , q
(p)) = 0, β = 1, . . . , k < n, p ∈ Z+. (2.1)

Assume that there exists a non-constant smooth function

h(·) : R× T p−1Q → R

8
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such that dh
dt

= 0 along the trajectories of (2.1), then h is called a non-trivial first

integral.

Definition 2.1 : The constraints (2.1) are (completely) p-th order nonholonomic if

and only if there does not exist any non-trivial first integral.

Remark 2.1 : The p-th order jet prolongation of R×Q is denoted by Jp(R×Q). If

(t, q) are fibered coordinates on R×Q, then (t, q, q̇, . . . , q(p)) are fibered coordinates on

Jp(R×Q). Clearly, one can identify Jp(R×Q) with R×T pQ. Thus h(t, q, q̇, . . . , q(p))

can also be viewed as a scalar function defined on the p-th order jet prolongation.

2.3 Controllability of Nonlinear Systems

Assume control-affine systems of the form

ẋ = f(x) +
m∑
i=1

gi(x)ui , x ∈ M, u ∈ U, (2.2)

where M is a smooth n dimensional manifold, g = (g0, . . . , gm), where g0 = f , is an

(m+ 1)-tuple of smooth vector fields on M, and U is a subset of Rm containing zero

in its interior.

Referring to the triple Σ = (M,g,U) as the control system, an admissible control

for Σ is a Lebesgue integrable, U-valued function defined on some interval [0, T ]. An

equilibrium solution of (2.2) is denoted by xe corresponding to u = 0, i.e., f(xe) = 0.

The simplest approach to studying the controllability of the nonlinear system

(2.2) is to consider its linearization. Nevertheless, this approach, although easier,

may lead to the loss of some information. This is the reason why we directly consider

applying tools from nonlinear control theory. Some results from the nonlinear control

literature (see e.g., Nijmeijer and van der Schaft (1990), Sussmann (1987a), Sussmann

and Jurdjevic (1972)) are presented as follows:

Let R(p, t) denote the set of reachable states from the initial state p in time ex-

actly t, for the nonlinear system (2.2).

Definition 2.2 (Nijmeijer and van der Schaft, 1990; Sussmann and Jurdje-

vic, 1972; Sussmann, 1987a): Consider the nonlinear system (2.2) and let p ∈ M.

Then
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(1) The system is said to be accessible at p if for any T > 0,
∪

t≤T R(p, t) has a

nonvoid interior with respect to M. If this holds for all p ∈ M, then the system is

said to be accessible.

(2) The system is said to be strongly accessible at p if for any T > 0, R(p, T ) has

a nonvoid interior with respect to M. If this holds for all p ∈ M, then the system is

said to be strongly accessible.

(3) The system is said to be small time locally controllable (STLC) at p if for any

T > 0, p is an interior point of
∪

t≤T R(p, t).

Definition 2.3 (Nijmeijer and van der Schaft, 1990; Sussmann and Jurdje-

vic, 1972; Sussmann, 1987a): Consider the nonlinear system (2.2).

(1) Let L denote the smallest subalgebra of V (M) which contains the vector fields

f, g1, . . . , gm, and let L denote the corresponding involutive distribution defined by

L(x) = span{X(x) | X ∈ L} , x ∈ M .

Then L and L are called the accessibility algebra and accessibility distribution, respec-

tively.

(2) Let L0 denote the smallest subalgebra of V (M) which contains the vector fields

g1, . . . , gm and satisfies [f,X] ∈ L0 for all X ∈ L0, and let L0 denote the corresponding

involutive distribution defined by

L0(x) = span{X(x) | X ∈ L0} , x ∈ M .

Then L0 and L0 are called the strong accessibility algebra and strong accessibility dis-

tribution, respectively.

The accessibility distribution L can be defined in a natural way as follows:

L(p) = span{X(p) : X ∈
∪
k≥0

Sk},

where

S0 = span{f, gi, i ∈ Im},

Sk = Sk−1 + span{[f,X], [gi, X], i ∈ Im : X ∈ Sk−1} , k ≥ 1.
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Similarly, the strong accessibility distribution L0 can be defined as

L0(p) = span{X(p) : X ∈
∪
k≥0

Sk
0},

S0
0 = span{gi, i ∈ Im},

Sk
0 = Sk−1

0 + span{[f,X], [gi, X], i ∈ Im : X ∈ Sk−1
0 } , k ≥ 1.

The following results are standard.

Theorem 2.1 (Nijmeijer and van der Schaft, 1990; Sussmann and Jurdjevic,

1972; Sussmann, 1987a): Consider the system (2.2) and let p ∈ M. Then

(1) A sufficient condition for the system to be accessible from p is that

dimL(p) = n . (2.3)

(2) A sufficient condition for the system to be strongly accessible from p is that

dimL0(p) = n . (2.4)

If the system is real analytic then the above conditions are also necessary.

Note that in the nonlinear control literature the conditions (2.3) and (2.4) are

referred to as the accessibility and strong accessibility rank conditions, respectively.

In our analysis we also use the sufficient condition of Sussmann (1987a) for small

time local controllability. The condition involves the notion of the degree of a bracket.

Let Br(X) denote the smallest Lie algebra of vector fields containing f, g1, . . . , gm

and let B denote any bracket in Br(X). We define the degree of a bracket to be

δ(B) =
∑m

i=0 δ
i(B), where δ0(B), δ1(B), . . . , δm(B) denote the number of times

X0, . . . , Xm, respectively, occur in B. The bracket B is called “bad” if δ0(B) is

odd and δi(B) is even for each i, i = 1, . . . ,m.

Theorem 2.2 (Sussmann, 1987a): Let xe ∈ M. The system (2.2) is STLC at

xe if it satisfies the accessibility rank condition; and if B is “bad” there exist good

brackets C1, . . . , Ck of lower degree in Br(X) such that B can be written as a linear

combination of Ci, i = 1, . . . , k, at xe.
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Theorem 2.2 can be generalized by introducing an admissible weight vector l =

(l0, l1, . . . , lm), li ≥ l0 ≥ 0, ∀i. Then we define the l-degree of B as the value of∑m
i=0 liδ

i(B).

Theorem 2.3 (Bianchini and Stefani, 1993): Let xe ∈ M. The system (2.2) is

STLC at xe if it satisfies the accessibility rank condition; and if B is a “bad” bracket,

it must be l-neutralized for an admissible weight vector l, i.e., must be a linear com-

bination of good (i.e., not of the bad type) brackets of lower l-degree at the equilibrium.

2.4 Stabilizability of Nonlinear Systems

Feedback stabilization of nonlinear systems is a problem of great importance in

control theory. While tremendous progress has been made towards the understanding

of controllability of control systems of the form (2.2), it has also become clear that

the feedback stabilization problem is much more complicated (see e.g., Sontag, 1990).

From the many results on feedback stabilization which have been obtained in

recent years here we only need to recall the two cornerstone results, which show

most clearly where our work fits in. Under some controllability assumptions the first

guarantees the existence of asymptotically stabilizing discontinuous state feedback

controllers for real analytic systems, the other result gives very restrictive necessary

conditions for the existence of stabilizing continuous state feedback laws. For details

and the precise definitions of the employed notions we refer the reader to the original

papers.

Theorem 2.4 (Sussmann, 1979) : Consider the system (2.2) and let xe denote

an equilibrium solution. Assume that the system is real analytic. If the system is

STLC at xe, then there exists a piecewise analytic feedback controller which locally

asymptotically stabilizes the system to xe.

Theorem 2.5 (Brockett, 1983) : Consider the system (2.2) and let xe denote

an equilibrium solution. A necessary condition for the existence of a C1 static state

feedback law which asymptotically stabilizes the system to xe is that the image of the
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2.4 Stabilizability of Nonlinear Systems

map

(x, u) 7→ f(x) +
m∑
i=1

giui

contains a neighborhood of zero.

It should be noted that the above condition is also necessary for the existence of

a C0 (continuous) asymptotically stabilizing static or dynamic state feedback which

results in existence of unique trajectories (Coron, 1990; Sontag, 1990; Zabczyk, 1989).
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3

NONLINEAR MODELING OF

HIGHER-ORDER

NONHOLONOMIC SYSTEMS

This chapter studies the nonlinear modeling problem for systems with higher-order

nonholonomic constraints using tools from theoretical mechanics. A general control

systems approach is developed for such systems. The applicability of the theoretical

development is illustrated in the subsequent chapters.

3.1 Mathematical Formulation

In this section we introduce different concepts that allow us to derive the dynamic

equations for systems with higher-order nonholonomic constraints.

3.1.1 Universal D’Alembert’s Principle

Consider a mechanical system that consists of N mass points and let ms and r⃗s

denote the mass and the radius vector of the s-th particle, respectively. Denote by

F⃗s the force acting on the s-th particle. Let p⃗s be the linear momentum of the s-th

14



3.1 Mathematical Formulation

particle. Then the Universal D’Alembert’s Principle can be written as:

N∑
s=1

(− ˙⃗ps + F⃗s) · δr⃗(p)s = 0, p ∈ Z+,

δt = 0, δr⃗s = . . . = δr⃗(p−1)
s = 0, δr⃗(p)s ̸= 0, (3.1)

where p denotes the p-th order derivative.

3.1.2 Mićević Dušan-Rusov Lazar’s Form

Let Q denote the configuration manifold such that r⃗s = r⃗s(q
1, . . . , qn), s =

1, . . . , N, is a smooth transformation. Let (q, q̇, . . . , q(p)) for q ∈ Rn be the local

coordinates on the p-th order tangent bundle M = T (p)Q, where p refers to the order

of the nonholonomic constraint. As shown in Ze-chun and Feng-xiang (1987), the

Universal D’Alembert’s Principle (3.1) can be changed into the Mićević Dušan-Rusov

Lazar’s form:

n∑
i=1

(−∂T
(p)

∂qi(p)
+
∂T (p−1)

∂qi(p−1)
+
∂T

∂qi
+ Q̂i)δq

i(p) = 0, p ∈ Z+, (3.2)

where Q̂i denotes the i-th generalized force given by

Q̂i =
N∑
s=1

F⃗s ·
∂r⃗

(p)
s

∂qi(p)
=

N∑
s=1

F⃗s ·
∂r⃗s
∂qi

, p ∈ Z+. (3.3)

3.1.3 Generalized Lagrange’s Equations

Given the kinetic energy of the system

T =
1

2

N∑
s=1

ms
˙⃗rs · ˙⃗rs, (3.4)

and the relation
∂r⃗

(p+1)
s

∂qi(p)
= (p+ 1)

∂ ˙⃗rs
∂qi

, ∀p, (3.5)

it is easy to prove that the following relation applies

∂T (p−1)

∂qi(p−1)
=

1

p
[(p− 1)

∂T (p)

∂qi(p)
+
∂T

∂qi
]. (3.6)

Substituting (3.6) into (3.2), we obtain the Generalized Lagrange Equations as

n∑
i=1

{1
p
[
∂T (p)

∂qi(p)
− (p+ 1)

∂T

∂qi
]− Q̂i}δqi

(p)

= 0, p ∈ Z+. (3.7)
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Note that if the system is holonomic, then the δqi
(p)

are independent of each other in

(3.7), hence for p = 1 we have

∂Ṫ

∂q̇i
− 2

∂T

∂qi
= Q̂i,

which are commonly known as Nielsen equations (Nielsen, 1935). Similarly for p = 2,

Tzenoff equations (Tzenoff, 1924) are obtained.

Given a kinetic energy of the form T = T (q, q̇), the following result (Jarzebowska,

2002) can be applied: If the function T is regular enough, i.e., all derivatives up to

certain order p can be computed, then the identity below holds

d

dt

∂T

∂q̇i
≡ 1

p
[
∂T (p)

∂qi(p)
− ∂T

∂qi
], i = 1, . . . , n, p ∈ Z+. (3.8)

Therefore, equations (3.7) can be shown equivalent to

n∑
i=1

{ d
dt

∂T

∂q̇i
− ∂T

∂qi
− Q̂i}δqi

(p)

= 0, p ∈ Z+, (3.9)

which is the commonly used Lagrange’s formulation.

If we wish to formulate equations (3.7) in terms of a Lagrangian we have first to

separate the generalized forces (Q̂i) into conservative forces (derivable from a potential

V ) and nonconservative forces (Qi), i.e.,

Q̂i = −∂V
∂qi

+Qi.

Defining the Lagrangian as L = T − V together with the fact that for V = V (q)

∂V (p)

∂qi(p)
=
∂V

∂qi

holds, the following equations can be easily obtained

n∑
i=1

{1
p
[
∂L(p)

∂qi(p)
− (p+ 1)

∂L

∂qi
]−Qi}δqi

(p)

= 0, p ∈ Z+. (3.10)

3.1.4 Higher-Order Nonholonomic Constraints

Assume that the system is subject to n−m, 1 ≤ m < n, nonholonomic constraints

of p-th order

Gβ(q, q̇, . . . , q
(p)) = 0, β = 1, . . . , n−m, p ∈ Z+, (3.11)
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so that the generalized virtual displacements satisfy the condition

n∑
i=1

∂Gβ

∂qi(p)
δqi

(p)

= 0, β = 1, . . . , n−m. (3.12)

From (3.7) and (3.12), using the method of Lagrange’s multipliers yields

1

p
[
∂T (p)

∂qi(p)
− (p+ 1)

∂T

∂qi
] = Q̂i +

n−m∑
β=1

λβ
∂Gβ

∂qi(p)
, i = 1, . . . , n, p ∈ Z+, (3.13)

or
d

dt
∇q̇iT −∇qiT = Q̂i +

n−m∑
β=1

λβ
∂Gβ

∂qi(p)
, i = 1, . . . , n, p ∈ Z+, (3.14)

where λβ’s are undetermined Lagrange’s multipliers, ∇(·) refers to the gradient oper-

ator with respect to the variable (·), T = T (q, q̇) is the kinetic energy of the system,

and Qi are the generalized forces. Note that a “prime” denotes transpose. Equation

(3.14) can be written in matrix form as

d

dt
∇q̇T −∇qT = Q̂+

(
∂G

∂q(p)

)′

λ. (3.15)

We now partition the set of generalized coordinates q = (q1, . . . , qn) as q =

(q1, q2), q1 ∈ Rm, q2 ∈ Rn−m, where 1 ≤ m < n. For second order constraints,

these forms appear naturally in systems under the action of m < n independent

control forces and/or torques, i.e., systems with fewer control inputs than degrees

of freedom (see e.g., Reyhanoglu et al. (1999) and references therein). Examples of

such systems include underactuated space vehicles (Krishnan et al., 1992; Reyhanoglu

and Rubio Hervas, 2012b; Rubio Hervas and Reyhanoglu, 2012a) and underactuated

manipulators (Mahindrakar et al., 2005; Reyhanoglu and Rubio Hervas, 2012a, 2013).

Without loss of generality, we assume that the actuated degrees of freedom are

represented by the elements of q1 and the unactuated degrees of freedom are repre-

sented by the elements of q2.

Suppose that q2
(p) are in a linear form with respect to q1

(p), i.e.,

q2
(p) = J(q, q̇, . . . , q(p−1))q1

(p) +R(q, q̇, . . . , q(p−1)) , (3.16)

where J ∈ R(n−m)×m and R ∈ Rn−m are C∞ (smooth) functions defined on ap-

propriate subsets of T p−1Q. Then the condition imposed on the generalized virtual

displacements by the constraints (3.16) is given by

δq
(p)
2 = J(q, q̇, . . . , q(p−1))δq

(p)
1
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and equations (3.7) can be formulated, in a compact form, as

1

p
{[∇

q
(p)
1
T (p) − (p+ 1)∇q1T ] + J ′[∇

q
(p)
2
T (p) − (p+ 1)∇q2T ]} = Q̂1 + J ′Q̂2, (3.17)

or in terms of the Lagrangian

1

p
{[∇

q
(p)
1
L(p) − (p+ 1)∇q1L] + J ′[∇

q
(p)
2
L(p) − (p+ 1)∇q2L]} = Q1 + J ′Q2. (3.18)

These equations can be also written in the usual form as

[
d

dt
∇q̇1T −∇q1T ] + J ′[

d

dt
∇q̇2T −∇q2T ] = Q̂1 + J ′Q̂2, (3.19)

or

[
d

dt
∇q̇1L−∇q1L] + J ′[

d

dt
∇q̇2L−∇q2L] = Q1 + J ′Q2, (3.20)

Here Q̂1, Q1 ∈ Rm and Q̂2, Q2 ∈ Rn−m correspond to the partitioning of Q̂ and

Q. All of these forms are equivalent. It must be pointed out that, although these

equations remind us of the commonly used Lagrangian formulation, their novelty is

given by the fact that they are proved to be valid for any order of the nonholonomic

constraints (i.e., not necessarily first and second order as it would be expected from

the usual analysis) and they give the minimum set of equations compatible with the

constraints while embedding the constraint actions into the formulation.

3.2 Nonlinear Control System Formulation

In this section we define a general procedure to write the equations above in a

nonlinear control system form.

Let Q = B(q)u, where B(q) ∈ Rn×r, r ≥ m is a full rank matrix, and let

C(q, . . . , q(p−1)) =

[
1

J(q, . . . , q(p−1))

]
,

where 1 is the m×m identity matrix and u ∈ Rr denotes the control input vector.

Given L = L(q, q̇), the expression (3.20) can be rewritten as

C ′[M(q)q̈+F (q, q̇)] = C ′B(q)u. (3.21)

The constrained system defined by (3.16) and (3.21) can be expressed as

q1
(p) = v, (3.22)

q2
(p) = J(q, q̇, . . . , q(p−1))v+R(q, q̇, . . . , q(p−1)), (3.23)
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where v ∈ Rm denotes the new control input vector.

The main idea can now be described as follows. We first design the new control

input v and solve for the corresponding motion q, q̇, . . . , q(p−1) based on the system

given by (3.22) and (3.23). Then we compute the actual control input vector u using

the expression (3.21). If r = m, the control input u can be found by using the inverse

of C ′B. When r > m, C ′B has full row rank and hence there are infinitely many

solutions. In this case, C ′BB′C is not singular and one can use a right inverse of C ′B

to solve for a control input vector u as

u = (C ′B)†C ′[M(q)q̈ + F (q, q̇)], (3.24)

where (C ′B)† = B′C(C ′BB′C)−1 denotes the right inverse of C ′B.

In the next chapter, a number of control-theoretic properties are studied for sys-

tems of the form above. A clear example illustrating this development is a point mass

moving on a constant-torsion curve, which can be found in Chapter 7.
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4

CONTROLLABILITY AND

STABILIZABILITY RESULTS

Here we develop a number of control-theoretic results such as nonintegrability,

controllability, and stabilizability for higher-order nonholonomic systems. This chap-

ter is based on papers by Rubio Hervas and Reyhanoglu (2013a,b,e).

Let (q, q̇, . . . , q(p−1)) for q ∈ Rn denote local coordinates on the (p − 1)-th order

tangent bundle M = T p−1Q, where p refers to the order of the nonholonomic con-

straint. Generalizing the ideas introduced in Reyhanoglu et al. (1999), we define the

n−m-covector fields

ω = Jdq
(p−1)
1 − dq

(p−1)
2 +Rdt, (4.1)

on M× R so that the n−m relations given by the equation (3.16) can be rewritten

as ω = 0. Augment the covector fields (4.1) with the contact forms

ω̃1 = dq1 − q̇1dt, ω̃2 = dq2 − q̇2dt, (4.2)

...

ω̃2(p−1)−1 = dq
(p−2)
1 − q

(p−1)
1 dt, ω̃2(p−1) = dq

(p−2)
2 − q

(p−1)
2 dt, (4.3)

and let Ω ⊂ T ∗(M× R) denote the codistribution

Ω = span{ω, ω̃i, i ∈ I2(p−1)} , (4.4)

where I2(p−1) denotes the set {1, . . . , 2(p− 1)}. The annihilator of Ω, denoted Ω⊥, is
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spanned by m+ 1 linearly independent smooth vector fields

τ0 =

p−1∑
j=1

q(j)
′∇q(j−1) +R′∇

q
(p−1)
2

+
∂

∂t
, (4.5)

τj =
∂

∂q
j(p−1)
1

+ J
′

j∇q
(p−1)
2

, j ∈ Im. (4.6)

We present the following result.

Definition 4.1 : Consider the distribution Ω⊥ and let C̃ denote its accessibility

algebra; i.e., the smallest subalgebra of V ∞(M×R) that contains τ0, τ1, . . . , τm. Let C̃

denote the accessibility distribution generated by the accessibility algebra C̃. Then the

constraints defined by equation (3.16) are completely nonholonomic (nonintegrable) if

dim C̃(η, t) = pn+ 1, ∀(η, t) ∈ M× R .

Note that the sufficient condition in Definition 4.1 gives a coordinate-free charac-

terization of nonintegrability for any set of constraints of the form (3.16). This result

is analogous of those given in Bloch et al. (1992) and Reyhanoglu et al. (1999) for

the nonintegrability of velocity and acceleration constraints. In the real analytic case,

this condition is also a necessary condition for the nonintegrability. In what follows,

we will consider the real analytic case.

Equations (3.22) and (3.23) can be expressed in the usual nonlinear control system

form by defining the following state variables

η1 = q1, η2 = q2, . . . , η2p−1 = q
(p−1)
1 , η2p = q

(p−1)
2 .

The state equations are given by

η̇i = ηi+2, i ∈ I2p−2, (4.7)

η̇2p−1 = v, (4.8)

η̇2p = J(η1, . . . , η2p)v +R(η1, . . . , η2p), (4.9)

which can be identified with the usual normal form (Reyhanoglu et al., 1999). Equa-

tions (4.7)-(4.9) define a drift vector field f(η) = (η3, . . . , η2p−1, η2p, 0, R) and control

vector fields gi(η) = (0, . . . , 0, ei, Ji), where ei denotes the i’th standard basis vector
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in Rm and Ji denotes the i-th column of the matrix function J, i ∈ Im, according to

the standard control system form

η̇ = f(η) +
m∑
i=1

gi(η)vi . (4.10)

Note that an equilibrium solution ηe, corresponding to v = 0, of equation (4.10)

has the form ηe1 ∈ Rm, ηe2 ∈ Rn−m, where R(ηe1, η
e
2, 0, . . . , 0) = 0, and ηe3 = ηe4 = . . . =

ηe2p = 0; i.e., an equilibrium solution corresponds to a motion of the system for which

all the configuration variables remain constant. The controllability and stabilizability

properties of a system subject to the constraints (3.16) near an equilibrium configu-

ration qe can be obtained by studying local properties of the system (4.7)-(4.9) near

the corresponding equilibrium solution ηe3 = . . . = ηe2p = 0.

Following the development in Reyhanoglu et al. (1999), it can be shown that a

higher-order nonholonomic system, which satisfies the sufficient condition of Defini-

tion 4.1, is strongly accessible. This nonlinear controllability property is equivalent

to Definition 2.1 and it guarantees that a necessary condition for small time local

controllability (STLC) of the system at the equilibrium is satisfied.

Theorem 4.1 : Assume that the constraints (3.16) are (completely) p-th order non-

holonomic. Then the system (4.10) is strongly accessible.

Proof : Since relations (3.23) are assumed to be completely nonintegrable

dimC̃(η, t) = pn+ 1, ∀(η, t) ∈ M× R,

i.e., the distribution Ω⊥ spanned by τ0, τ1, . . ., τm satisfies the accessibility Lie algebra

rank condition at any (q, . . . , q(p−1), t) ∈ M× R.
Let πM : M × R → M denote the projection onto M. Then, πM∗τ0 = f and

πM∗τi = gi, i ∈ Im. Let C0 denote the strong accessibility algebra associated with

f , gi, i ∈ Im, i.e., the smallest subalgebra which contains g1, . . . , gm and satisfies

[f,X] ∈ C0,∀X ∈ C0, and let C0 denote the strong accessibility distribution generated

by the strong accessibility algebra C0. Since

dimC̃(η, t) = dimC0(η) + 1

it follows that

dimC0(η) = pn, ∀η ∈ M.
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Hence the system (4.7)-(4.9) is strongly accessible. Consequently, the system with

higher-order nonholonomic constraints, defined by (3.22) and (3.23), is strongly ac-

cessible.

The following result illustrates the fact that for certain higher-order nonholonomic

systems a given equilibrium configuration cannot be asymptotically stabilized using

time-invariant continuous (static or dynamic) state feedback. This property has been

previously recognized for a class of second-order nonholonomic (or underactuated)

systems in Reyhanoglu et al. (1999).

Theorem 4.2 : Assume that Ri(q, 0, . . . , 0) = 0, ∀q ∈ Q, for some i ∈ In−m. Let

n−m ≥ 1 and let (qe, 0, . . . , 0) denote an equilibrium solution. Then the higher-order

nonholonomic system, defined by equations (4.7)-(4.9) (or equivalently by equation

(4.10)), is not asymptotically stabilizable to (qe, 0, . . . , 0) using time-invariant contin-

uous (static or dynamic) state feedback law.

Proof : A necessary condition for the existence of a time-invariant continuous asymp-

totically stabilizing state feedback law for system (4.7)-(4.9) is that the image of the

mapping

(η1, η2, . . . , η2p−1, η2p, v) 7→

(η3, η4, . . . , v, J(η1, η2, . . . , η2p−1, η2p)v +R(η1, η2, . . . , η2p−1, η2p))

contains some neighborhood of zero (see Brockett (1983)). This necessary condition

is not satisfied since no points of the form

(0, . . . , 0, ϵ), ϵi ̸= 0 ,

are in its image. Hence system (4.7)-(4.9) cannot be asymptotically stabilized to an

equilibrium (ηe1, η
e
2, 0, . . . , 0) by a time-invariant continuous (static or dynamic) state

feedback law and the system with higher-order nonholonomic constraints, defined

by (3.22) and (3.23), is not asymptotically stabilizable to (qe, 0, . . . , 0) using time-

invariant continuous (static or dynamic) state feedback law.

Strong accessibility is not sufficient to guarantee the existence of a piecewise ana-

lytic feedback law for asymptotic stabilization of the higher-order nonholonomic sys-

tem at an equilibrium solution in the real analytic case. In certain cases a stronger

controllability property such as small time local controllability (STLC) can be proved

to guarantee that existence (Sussmann, 1979).
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The first test for controllability is related to the system linearization about an

equilibrium q = qe and v = 0. If the linearization of the system is controllable then

so is the system itself. The converse is not true and, in this case, this first order test

is inconclusive and a nonlinear analysis is required. Since Kalman rank condition is

the commonly used test for linear controllability, small time local controllability can

be extended for nonlinear systems as follows (Sussmann, 1987a):

Consider the system (3.22) and (3.23) together with the drift and control vector

fields

f = (q, q̇, . . . , q(p−1), 0, R(q, q̇, . . . , q(p−1))),

gi = (0, . . . , 0, ei, Ji(q, q̇, . . . , q
(p−1))) , i ∈ Im.

The following Lie brackets can be easily obtained:

adfgi = (0, . . . , 0,−ei,−Ji, 0, ∗) , i ∈ Im ,

adf2gi = (0, . . . , 0, ei, Ji, 0, ∗, 0, ∗) , i ∈ Im ,

...

adfp−1gi = ((−1)p−1ei, (−1)p−1Ji, 0, ∗, . . . , 0, ∗) , i ∈ Im ,

[gi, gj] = (0, . . . , 0, Hji −Hij) , i, j ∈ Im ,

[gj, [f, gi]] = (0, . . . , 0,−Hij, 0, ∗) , i, j ∈ Im ,

adf [gj, [f, gi]] = (0, . . . , 0, Hij, 0, ∗, 0, ∗) , i, j ∈ Im ,

adf2 [gj, [f, gi]] = (0, . . . , 0,−Hij, 0, ∗, 0, ∗, 0, ∗) , i, j ∈ Im ,

...

adfp−2 [gj, [f, gi]] = (0, (−1)p−1Hij, 0, ∗, . . . , 0, ∗) , i, j ∈ Im ,

where

Hij(q, . . . , q
(p−1)) =

∂Ji(q, . . . , q
(p−1))

∂q(p−1)
bj(q, . . . , q

(p−1)) , i, j ∈ Im, (4.11)

bi(q, . . . , q
(p−1)) =

(
ei

Ji(q, . . . , q
(p−1))

)
, i ∈ Im . (4.12)

Note that bi is a projection of gi.

Theorem 4.3 : Let n −m ≥ 1 and let (qe, 0, . . . , 0) denote an equilibrium solution.

The system with higher-order nonholonomic constraints, defined by (3.22) and (3.23),

is small time locally controllable at (qe, 0, . . . , 0) if

dim span{adfαgi(q
e), α = p, . . . , p∗, i ∈ Im} = p(n−m) (4.13)
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for a sufficiently large p∗.

Proof : Consider the system (3.22) and (3.23). By condition (4.13), the space spanned

by the vectors

adfαgi, α = 0, . . . , p− 1, i ∈ Im, (4.14)

adfαgi, α = p, . . . , p∗, i ∈ Im. (4.15)

has dimension pn at (qe, 0, . . . , 0), and hence the system is strongly accessible at

(qe, 0, . . . , 0). Let l0 = l and li = p∗l, i ∈ Im. The only bad bracket with δ(B) = 1

is f which vanishes at the equilibrium. Any bad bracket with δ(B) ≥ 3 will have

an l-degree greater or equal to (2p∗ + 1)l. Since the spanning good brackets (4.15)

have l-degree less than (2p∗ + 1)l, any bad bracket with δ(B) ≥ 3 can be written as

linear combinations of the good brackets which have lesser l-degree. It follows that

the Bianchini and Stefani condition is satisfied at (qe, 0, . . . , 0). Hence, under the

stated assumptions, the system (3.22) and (3.23) is small time locally controllable at

(qe, 0, . . . , 0).

Theorem 4.3 can expressed in terms of R(η1, η2, . . . , η2p−1, η2p) and Ji(η1, η2, . . . ,

η2p−1, η2p), i ∈ Im, as follows:

Corollary 4.1 : Let n−m ≥ 1 and let (qe, 0, . . . , 0) denote an equilibrium solution.

The system with higher-order nonholonomic constraints, defined by (3.22) and (3.23),

is small time locally controllable at (qe, 0, . . . , 0) if rank [A1 . . . Am] is p(n−m), where

Ai ∈ Rp(n−m)×p, i ∈ Im, is the matrix

Ai =

 (a1)i · · · (ap)i
...

. . .
...

(ap)i · · · (a2p−1)i

, i ∈ Im,

and

(aj)i = [(

j−1∑
k=0

βk
∂R

∂q(p−j+k)
)bi](qe,0,...,0), i ∈ Im, j ∈ I2p−1, (p− j + k) ≥ 0,

βk = [
k−1∑
l=0

∂R

∂q
(p−k+l)
2

βl](qe,0,...,0), k ∈ Ij−1, β0 = 1 ∈ R(n−m)×(n−m), (p− k + l) ≥ 0,

bi(q, . . . , q
(p−1)) =

(
ei

Ji(q, . . . , q
(p−1))

)
, i ∈ Im ,

where 1 is the (n−m)× (n−m) identity matrix.
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Proof : The expressions for adfαgi(q
e), α = p, . . . , 2p − 1, i ∈ Im, result in a set

of matrices Ai, i ∈ Im, multiplied by a matrix C = diag{(−1)p, . . . , (−1)2p−1}. The

rank of the matrices AiC, i ∈ Im, is the same as that for Ai, i ∈ Im. Since dimension

of the span {adfαgi(q
e), α = 0, . . . , 2p − 1, i ∈ Im} is pn, we have a set of good

brackets adfαgi(q
e), α = 0, . . . , 2p− 1, i ∈ Im, which spans a space with a dimension

of pn. It follows that the conditions of Theorem 4.3 are satisfied with p∗ = 2p− 1 at

(qe, 0, . . . , 0). Hence, under the stated assumptions, the system (3.22) and (3.23) is

small time locally controllable at (qe, 0, . . . , 0).

Other sufficient conditions for small time local controllability can be obtained as

a generalization of that in Reyhanoglu et al. (1999).

Theorem 4.4: Let n −m ≥ 1 and let (qe, 0, . . . , 0) denote an equilibrium solution.

The system with higher-order nonholonomic constraints, defined by (3.22) and (3.23),

is small time locally controllable at (qe, 0, . . . , 0) if there exists a set of n−m pairs of

indices (ik, jk) ∈ I2m , ik ̸= jk , k ∈ In−m,

dim span{Hikjk(q
e), k ∈ In−m} = n−m, (4.16)

Hikjk(q
e) ̸= Hjkik(q

e), k ∈ In−m, (4.17)

and

Hikik(q
e) = 0, ∀k ∈ In−m . (4.18)

Proof : Consider the system (3.22) and (3.23) and assume that conditions (4.16)-(4.18)

hold. By condition (4.16) and (4.17), the space spanned by the vectors

adfαgi, α = 0, . . . , p− 1, i ∈ Im ,

[gik , gjk ], adfβ [gjk , [f, gik ]] , β = 0, . . . , p− 2, k ∈ In−m , (4.19)

has dimension pn at (qe, 0, . . . , 0), and hence, the system is strongly accessible at

(qe, 0, . . . , 0). Let l0 = lik = l and li = 2l, i ̸= ik, i ∈ Im, k ∈ In−m. The degree

δ(B) =
∑m

i=0 δ
i(B) of a bad bracket must necessarily be odd. Any bad bracket

with δ(B) ≥ p + 2 has l-degree greater than or equal to l(p + 2). Clearly, these

brackets are l-neutralized since the spanning good brackets (4.19) have l-degree less

than l(p+2). Hence, it suffices to show that bad brackets with δ(B) = 1, δ(B) = 3, ...,

δ(B) < p+2 are l-neutralized. The only bad bracket with δ(B) = 1 is f which vanishes

at the equilibrium. By conditions (4.16)-(4.18), the bad brackets with repeating
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indexes ik, k ∈ In−m can be written as linear combinations of good brackets of

lower l-degree; and by condition (4.16), the bad brackets with repeating indexes

i, i ̸= ik, i ∈ Im, k ∈ In−m, can be written as linear combinations of the good

brackets which have lesser l-degree. It follows that the Bianchini and Stefani condition

is satisfied at (qe, 0, . . . , 0). Hence, under the stated assumptions, the system (3.22)

and (3.23) is small time locally controllable at (qe, 0, . . . , 0).

In the next chapter, a control algorithm is presented for a particular class of

systems with higher-order nonholonomic constraints. The results of this chapter are

illustrated in Chapters 6 and 7.
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5

FEEDBACK CONTROL OF A

CLASS OF HIGHER-ORDER

NONHOLONOMIC SYSTEMS

This chapter studies the control problem for a special class of systems with higher-

order nonholonomic constraints. Specific assumptions are introduced that define this

class, which includes important models of robotic system examples. The main result of

the chapter is the construction of a discontinuous nonlinear feedback control algorithm

for which the closed loop equilibrium at the origin is made globally attractive. The

control construction approach is introduced in detail, and a proof of attractiveness

is presented. This chapter is based on papers by Rubio Hervas and Reyhanoglu

(2013b,g).

5.1 Mathematical Model

In the previous chapter we have shown that after suitable nonlinear state and

control transformations, many examples of higher-order nonholonomic systems can

be described by nonlinear control equations of the form

q1
(p) = v, (5.1)

q2
(p) = J(q, q̇, . . . , q(p−1))v +R(q, q̇, . . . , q(p−1)), (5.2)

where q1 ∈ Rm denotes the configuration variables for the m ≥ 2 directly actuated

degrees of freedom, v ∈ Rm denotes the transformed control variables for the directly
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5.2 Feedback Control Law

actuated degrees of freedom, and q2 ∈ Rn−m denotes the configuration variables the

control of which must be achieved through the system coupling characterized by

the functions J(q, q̇, . . . , q(p−1)) ∈ R(n−m)×m and R(q, q̇, . . . , q(p−1)) ∈ Rn−m. Here

q = (q1, q2). In this chapter, we will restrict the subsequent development to R ≡ 0 so

that any rest configuration is an equilibrium configuration qe for v = 0. Our objective

is to construct a controller which makes a given equilibrium configuration globally

attractive.

Assume now that (5.2) can be arranged as

q2
(p) = N1(q12, q̇12, . . . , q

(p−1)
12 )q

(p)
11 +N2(q, q̇, . . . , q

(p−1))q
(p)
12 , (5.3)

where q1 = (q11, q12), q11 ∈ Rl, q12 ∈ Rm−l, and 1 ≤ n−m ≤ l ≤ m. Then (5.1) and

(5.2) can be rewritten as

q
(p)
11 = v1, (5.4)

q
(p)
12 = v2, (5.5)

q
(p)
2 = N1(q12, q̇12, . . . , q

(p−1)
12 )v1 +N2(q1, q2, . . . , q

(p−1)
1 , q

(p−1)
2 )v2. (5.6)

5.2 Feedback Control Law

This section develops a control strategy for systems with higher-order nonholo-

nomic constraints of the form (5.3). Given its structure, a four-step feedback control

algorithm can be designed to drive the system from any initial state to the origin. The

idea here is based on the finite-time stabilization results developed in the literature

for linear control systems (Bhat and Bernstein, 2005; Hon, 2002; Kryachkov et al.,

2010; Levant, 2001).

Following Bhat and Bernstein (2005), consider the p-integrator system

z(p) = v. (5.7)

There exists ϵ ∈ (0, 1) such that, for every α ∈ (1 − ϵ, 1), the origin is a globally

finite-time-stable equilibrium for the system (5.7) under the feedback

v = −
p∑

i=1

ki | z(i−1) |αi signz(i−1), (5.8)

where z(0) = z and ki > 0, i = 1, . . . , p, are chosen such that the polynomial sp +

kps
p−1 + · · ·+ k2s+ k1 is Hurwitz and α1, . . . , αp satisfy

αi−1 =
αiαi+1

2αi+1 − αi

, i = 2, . . . , p,
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5.2 Feedback Control Law

with αp+1 = 1 and αp = α.

Based on the controller (5.8), an algorithm can be generated to control any initial

state to the origin of (5.4)-(5.6) in finite time.

Assume that there exists a nonzero equilibrium configuration qe12 such thatN1(q
e
12, 0,

. . . , 0) has full row rank n−m. Also assume thatN1(0, . . . , 0) = 0, N2(q1, 0, . . . , q
(p−1)
1 , 0) =

0. Then, a control strategy for the system (5.4)-(5.6) can be proposed to drive any

initial state to the origin in four steps as follows:

Step 1) Drive the system to a nonzero equilibrium qe12 such that N1(q
e
12, 0, . . . , 0)

has full row rank n−m in finite time using

v1 = 0,

v2 = −L1 | q12 − qe12 |β1 sign(q12 − qe12)−
p∑

i=2

Li | q(i−1)
12 |βi signq

(i−1)
12 ;

Step 2) Drive the q2 variables to zero while keeping the q12 = qe12 using

v1 = −N †
1(q

e
12, 0, . . . , 0)

p∑
i=1

Ki | q(i−1)
2 |αi signq

(i−1)
2 ,

v2 = −L1 | q12 − qe12 |β1 sign(q12 − qe12)−
p∑

i=2

Li | q(i−1)
12 |βi signq

(i−1)
12 ;

where N †
1 = NT

1 (N1N
T
1 )

−1 denotes the right inverse of N1(q
e
12, 0, . . . , 0);

Step 3) Drive the q12 variables to zero while keeping the q2 ≡ 0 using

v1 = −
p∑

i=1

K ′
i | q

(i−1)
2 |α′

i signq
(i−1)
2 ,

v2 = −
p∑

i=1

L′
i | q

(i−1)
12 |β′

i signq
(i−1)
12 ;

Step 4) Drive the q11 variables to zero while keeping the q12 ≡ 0 using

v1 = −
p∑

i=1

K ′′
i | q(i−1)

11 |α′′
i signq

(i−1)
11 ,

v2 = −
p∑

i=1

L′′
i | q

(i−1)
12 |β′′

i signq
(i−1)
12 .

Here Ki, Li, K
′
i, L

′
i, K

′′
i , L

′′
i , αi, βi, α

′
i, β

′
i α

′′
i , β

′′
i satisfy the sufficient conditions

of Bhat and Bernstein (2005) for the finite-time stability of the p-integrator system

(5.7).
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5.2 Feedback Control Law

In Chapter 7, this theoretical framework is illustrated through an example. In

particular, we introduce a manipulator with a jerk constraint and apply the results

of this chapter.
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6

EXAMPLES: SECOND-ORDER

NONHOLONOMIC SYSTEMS

This chapter is based on papers by Rubio Hervas and Reyhanoglu (Reyhanoglu and

Rubio Hervas, 2011a,b, 2012a,b,c,d, 2013; Rubio Hervas and Reyhanoglu, 2012a,b;

Rubio Hervas et al., 2013; Rubio Hervas and Reyhanoglu, 2013f,g). We consider

two important examples of second-order nonholonomic systems that are asymptoti-

cally stabilizable via smooth feedback: space vehicles with multiple slosh modes and

Prismatic-Prismatic-Revolute (PPR) robots moving open liquid containers.

6.1 Control of Space Vehicles with Fuel Slosh Dy-

namics

In fluid mechanics, liquid slosh refers to the movement of liquid inside an accel-

erating tank or container. Important examples include propellant slosh in spacecraft

tanks and rockets (especially upper stages), cargo slosh in ships and trucks transport-

ing liquids, and liquid slosh in robotically controlled moving containers.

Propellant slosh has been a problem studied in spacecraft design since the early

days of large, liquid-fuel rockets. In launch vehicles or spacecraft, sloshing can be

induced by propellant tank motions resulting from guidance and control system com-

mands or from changes in vehicle acceleration. When the fuel tanks are only partially

filled, large quantities of fuel move inside the tanks under translational and rotational
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6.1 Control of Space Vehicles with Fuel Slosh Dynamics

accelerations and generate the slosh dynamics. The slosh dynamics interacts with the

rigid body dynamics of the spacecraft.

The traditional treatment of liquid slosh control began with the inclusion of phys-

ical barriers, such as baffles and complete compartmentalization, meant to limit the

movement of liquid fuel to small amplitudes of high, negligible frequencies. Later,

bladders were added to the list of ways to limit these motions. These techniques,

although helpful in some cases, do not completely succeed in canceling the sloshing

effects. Moreover, these suppression methods involve adding to the spacecraft struc-

tural mass, thereby increasing mission cost. Hence the control system must both

assure stability during the thrusting phase and achieve good attitude control while

suppressing the slosh dynamics.

The effects of baffle positions (and quantities) on sloshing frequency have been

studied in the literature (Biswal et al., 2003). The mathematical techniques used in

these studies are based on the velocity potential function solved using finite-element

analysis. Results show that baffles are more effective when near the free-surface of the

fluid. In Venugopal and Bernstein (1996), surface pressure control and surface flap

actuators have been proposed for controlling slosh in rectangular tanks. The feedback

controllers are designed using a Linear-Quadratic-Gaussian (LQG) synthesis. Fluid is

assumed to be incompressible, inviscid, and irrotational. Results show a steady-state

slosh amplitude lower than the no-actuator case.

The effect of liquid fuel slosh on spinning spacecraft has also been explored in

the literature (Hubert, 2003, 2004). Different slosh motion types - surface waves,

bulk fluid motion, and vortices - as well as fluid configurations during spinning are

defined (Hubert, 2003). The design of control strategies for a launch vehicle with

propellant sloshing has also been studied in several works (Blackburn and Vaughan,

1971; Freudenberg and Morton, 1992; Hubert, 2004; Kim and Choi, 2000; Qi et al.,

2009). In Blackburn and Vaughan (1971), an advanced linear model of the Saturn

V launch vehicle is developed and a linear optimal control law is proposed to control

the vehicle. The work in Freudenberg and Morton (1992) studies the problem of

robust control of a launch vehicle subject to aerodynamic, flexible, and slosh mode

instabilities.

It has been demonstrated that pendulum and mass-spring models can approxi-

mate complicated fluid and structural dynamics; such models have formed the basis

for many studies on dynamics and control of space vehicles with fuel slosh (Bandy-

opadhyay et al., 2009a,b; Peterson et al., 1989; Shekhawat et al., 2006). These models

are obtained using computational fluid dynamic techniques (Dodge, 2000). There
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6.1 Control of Space Vehicles with Fuel Slosh Dynamics

is an extensive body of literature on the interaction of vehicle dynamics and slosh

dynamics and their control, but this literature treats only the case of small pertur-

bations to the vehicle dynamics. The control approaches developed for accelerating

space vehicles have commonly employed methods of linear control design (Sidi, 1997;

Wie, 1998) and adaptive control (Adler et al., 1991). A number of related papers

following a similar approach are motivated by robotic systems moving liquid filled

containers (Feddema et al., 1997; Grundelius and Bernhardsson, 1999; Grundelius,

2000; Terashima and Schmidt, 1994; Yano et al., 2001a,b; Yano and Terashima, 2001,

2005). The linear control laws for the suppression of the slosh dynamics inevitably

lead to excitation of the transverse vehicle motion through coupling effects. The com-

plete nonlinear dynamics formulation in this section allows simultaneous control of

the transverse, pitch, and slosh dynamics.

The previous work in Cho et al. (2000b) and Reyhanoglu (2003) considered a

spacecraft with a partially filled spherical fuel tank and included only the lowest

frequency slosh mode in the dynamic model using pendulum and mass-spring analo-

gies. In this section, the previous results are extended by using multi-mass-spring

and multi-pendulum models for the characterization of the most prominent sloshing

modes. First, the modeling and control problem for planar maneuvering of space

vehicles is considered. Models with time-invariant and time-varying slosh parameters

are developed and studied in detail. The control inputs are defined by the gimbal

deflection angle of a non-throttleable thrust engine and a pitching moment about

the center of mass of the spacecraft. Later, the development is extended to a three-

dimensional case. In this case, the control inputs are the two gimbal deflection angles

of a main engine and three independent torques, generated by either gas jet pairs or

control moment gyros, about the center of mass of the spacecraft. It is assumed that

the rocket acceleration due to the main engine thrust is large enough so that surface

tension forces do not significantly affect the propellant motion during main engine

burns. The control objective is to control the translational velocity vector and the

attitude of the spacecraft, while attenuating the sloshing modes characterizing the

internal dynamics. The results are applied to the AVUM upper stage–the fourth stage

of the European launcher Vega (Perez, 2006). The main contributions in this section

are (i) the development of full nonlinear mathematical models for maneuvering of

the spacecraft and (ii) the design of Lyapunov-based nonlinear feedback control laws.

Simulation examples are included to illustrate the effectiveness of the controllers.
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6.1.1 Planar Thrust Vector Control of an Upper-Stage Rocket

with Time-Invariant Slosh Parameters

This section considers the modeling and control problem for planar maneuvering

of space vehicles with fuel slosh dynamics. Slosh parameters are considered to be

time-invariant.

6.1.1.1 Model Formulation

We now formulate the dynamics of a spacecraft with a single propellant tank

including the prominent fuel slosh modes. The spacecraft is represented as a rigid

body (base body) and the sloshing fuel masses as internal bodies. The main ideas

in Cho et al. (2000a) are employed to express the equations of motion in terms of the

spacecraft translational velocity vector, the angular velocity, and the internal (shape)

coordinates representing the slosh modes.

To summarize the formulation in Cho et al. (2000a), let v ∈ R3, ω ∈ R3, and η ∈
RN denote the base body translational velocity vector, the base body angular velocity

vector, and the vector of internal coordinates, respectively. In these coordinates, the

Lagrangian has the form L = L(v, ω, η, η̇), which is SE(3)-invariant (SE(2) in the

planar case) in the sense that it does not depend on the base body position and

attitude. The generalized forces and moments on the spacecraft are assumed to

consist of control inputs which can be partitioned into two parts: τt ∈ R3 (typically

from thrusters) is the vector of generalized control forces that act on the base body

and τr ∈ R3 (typically from symmetric rotors, reaction wheels, control moment gyros,

and thruster pairs) is the vector of generalized control torques that act on the base

body. It is also assumed that the internal dissipative forces are derivable from a

Rayleigh dissipation function R. Then, the equations of motion of the spacecraft

with internal dynamics are shown to be given by (Cho et al., 2000a):

d

dt

∂L

∂v
+ ω̂

∂L

∂v
= τt, (6.1)

d

dt

∂L

∂ω
+ ω̂

∂L

∂ω
+ v̂

∂L

∂v
= τr, (6.2)

d

dt

∂L

∂η̇
− ∂L

∂η
+
∂R

∂η̇
= 0, (6.3)

where â denotes a 3× 3 skew-symmetric matrix formed from a = [a1, a2, a3]
′ ∈ R3:

â =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .
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It must be pointed out that in the above formulation it is assumed that no control

forces or torques exist that directly control the internal dynamics. The objective is to

simultaneously control the rigid body dynamics and the internal dynamics using only

control effectors that act on the rigid body; the control of internal dynamics must

be achieved through the system coupling. In this regard, equations (6.1)-(6.3) model

interesting examples of underactuated mechanical systems. The published literature

on the dynamics and control of such systems includes the development of theoretical

controllability and stabilizability results for a large class of systems using tools from

nonlinear control theory (Reyhanoglu et al., 1996, 1999) and the development of

effective nonlinear control design methodologies (Reyhanoglu et al., 2000) that are

applied to several practical examples, including underactuated space vehicles (Cho

et al., 2000b; Reyhanoglu, 2003).

In the subsequent sections, mechanical-analogy models are developed to charac-

terize the propellant sloshing during a typical thrust vector control maneuver. The

spacecraft acceleration due to the main engine thrust is assumed to be large enough

so that surface tension forces do not significantly affect the propellant motion during

main engine burns. This situation corresponds to a “high-acceleration” regime that

can be characterized by using the Bond number Bo–the ratio of acceleration related

forces to the liquid propellant’s surface tension forces, which is given by

Bo =
ρaR2

σ
,

where ρ and σ denote the liquid propellants density and surface tension, respectively; a

is the spacecraft acceleration, and R is a characteristic dimension (e.g., propellant tank

radius). During the steady-state high-acceleration situation the propellant settles at

the “bottom” of the tank with a flat free surface. When the main engine operation for

thrust vector control introduces lateral accelerations, the propellant begins sloshing.

As discussed in Enright and Wong (1994), Bond numbers as low as 100 would indicate

that low-gravity (i.e., low-acceleration) effects may be of some significance. A detailed

discussion of low-gravity fluid mechanics is given in Dodge (2000).

Multi-mass-spring analogy

We now derive a multi-mass-spring model of the sloshing fuel where the oscillation

frequencies of the mass-spring elements represent the prominent sloshing modes (Sidi,

1997).

Consider a rigid spacecraft moving on a plane as indicated in Fig. 6.1, where vx, vz

are the axial and transverse components, respectively, of the velocity of the center of

36



6.1 Control of Space Vehicles with Fuel Slosh Dynamics

the fuel tank, and θ denotes the attitude angle of the spacecraft with respect to a fixed

reference. The fluid is modeled by moment of inertia I0 assigned to a rigidly attached

mass m0 and point masses mi, i = 1, . . . , N , which are restricted to move along the

spacecraft fixed z-axis. The relative positions of mi are denote by si. Moments of

inertia of these masses are taken as zero. The locations h0 and hi are referenced to

the center of the tank. A restoring force −kisi acts on the mass mi whenever the

mass is displaced from its neutral position si = 0. A thrust F is produced by a

gimballed thrust engine as shown in Fig. 6.1, where δ denotes the gimbal deflection

angle, which is considered as one of the control inputs. A pitching moment M is also

available for control purposes. The constants in the problem are the spacecraft mass

m and moment of inertia I; the fuel masses m0, mi; the distance b between the body

z-axis and the spacecraft center of mass location along the longitudinal axis, and the

distance d from the gimbal pivot to the spacecraft center of mass. If the tank center

is in front of the spacecraft center of mass then b > 0. The parameters mi, hi, ki and

b depend on the shape of the fuel tank, the characteristics of the fuel and the fill ratio

of the fuel tank.

M

θ

vz

Z

X

vx

δF

h0

h2
h1

m1

k1/2

k1/2

s1

m2

k2/2

k2/2

s2

b

d

m0 I0

Figure 6.1: A multiple slosh mass-spring model for a spacecraft.
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To preserve the static properties of the liquid, the sum of all the masses must be

the same as the fuel mass mf , and the center of mass of the model must be at the

same elevation as that of the fuel, i.e.,

m0 +
N∑
i=1

mi = mf , (6.4)

m0h0 +
N∑
i=1

mihi = 0. (6.5)

Let î and k̂ be the unit vectors along the spacecraft-fixed longitudinal and transverse

axes, respectively, and denote by (x, z) the inertial position of the center of the fuel

tank. The position vector of the center of mass of the vehicle can then be expressed

in the spacecraft-fixed coordinate frame as

r⃗ = (x− b)̂i+ zk̂. (6.6)

Clearly, the inertial velocity of the vehicle can be computed as

˙⃗r = vxî+ (vz + bθ̇)k̂, (6.7)

where vx = ẋ+ zθ̇ and vz = ż − xθ̇.

Similarly, the position vectors of the fuel masses m0, mi, ∀i, in the spacecraft-

fixed coordinate frame are given, respectively, by

r⃗0 = (x+ h0)̂i+ zk̂,

r⃗i = (x+ hi)̂i+ (z + si)k̂, ∀i.

Assuming hi are constants, the inertial velocities can be computed as

˙⃗r0 = vxî+ (vz − h0θ̇)k̂,

˙⃗ri = (vx + siθ̇ ) î+ (vz − hiθ̇ + ṡi)k̂, ∀i.

The total kinetic energy can now be expressed as

T =
1

2
m ˙⃗r2 +

1

2
m0

˙⃗r20 +
1

2

N∑
i=1

mi
˙⃗r2i +

1

2
(I + I0)θ̇

2.

Since gravitational effects are ignored, there is no gravitational potential energy.

The acceleration of the rocket gives rise to the elastic potential energy given by

U =
1

2

N∑
i=1

kis
2
i .
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Typically, ki would be a function of the axial acceleration. However, in this section

it is assumed that the axial acceleration is not significantly affected by small gimbal

deflections, pitch changes and fuel motion so that ki remain constant.

Thus, under the indicated assumptions, the Lagrangian (L = T − U) can be

computed as

L =
1

2
m
[
v2x + (vz + bθ̇)2

]
+

1

2
m0

[
v2x + (vz − h0θ̇)

2
]
+

1

2
(I + I0)θ̇

2

+
1

2

N∑
i=1

mi

[
(vx + siθ̇)

2 + (vz − hiθ̇ + ṡi)
2
]
− 1

2

N∑
i=1

kis
2
i .

Dissipative effects due to fuel slosh are included via damping constants ci. The

damping coefficients for the sloshing masses are usually determined by experimental

measurements with partially filled tanks (Dodge, 2000). A fraction of kinetic energy

of sloshing fuel is dissipated during each cycle of the motion. When the damping is

small, it can be represented accurately by equivalent linear viscous damping. Even

with baffles, the damping ratio is seldom greater than about 0.05. It is customary to

include the damping via a Rayleigh dissipation function R given by

R =
1

2

N∑
i=1

ciṡ
2
i .

Applying equations (6.1)-(6.3) with

η =

 s1
...
sN

 , v =

 vx
0
vz

 , ω =

 0

θ̇
0

 ,

τt =

 F cos δ
0

F sin δ

 , τr =
 0
M + Fp sin δ

0

 ,
where p = b+ d, the equations of motion can be obtained as

(m+mf )ax +mbθ̇2 +
N∑
i=1

mi(siθ̈ + 2ṡiθ̇) = F cos δ, (6.8)

(m+mf )az +mbθ̈ +
N∑
i=1

mi(s̈i − siθ̇
2) = F sin δ, (6.9)

Ī θ̈+
N∑
i=1

mi(siax−his̈i+2siṡiθ̇)+mbaz=M+Fp sin δ, (6.10)

mi(s̈i + az − hiθ̈ − siθ̇
2) + kisi + ciṡi = 0, ∀i, (6.11)
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where (ax, az) = (v̇x + θ̇vz, v̇z − θ̇vx) are the axial and transverse components of the

acceleration of the center of tank, and

Ī = I + I0 +mb2 +m0h
2
0 +

N∑
i=1

mi(h
2
i + s2i ).

Note that equations (6.11) represent N nonintegrable second-order relations and

hence they can be viewed as second order nonholonomic constraints.

The control objective is to design feedback controllers so that the controlled space-

craft accomplishes a given planar maneuver, that is a change in the translational

velocity vector and the attitude of the spacecraft, while suppressing the fuel slosh

modes.

Multi-Pendulum Analogy

This section derives a multi-pendulum model of the sloshing fuel where the os-

cillation frequencies of the pendula represent the prominent sloshing modes (Sidi,

1997).

Consider a rigid spacecraft moving on a plane as indicated in Fig. 6.2, where vx, vz

are the axial and transverse components, respectively, of the velocity of the center of

the fuel tank, and θ denotes the attitude angle of the spacecraft with respect to a fixed

reference. The fluid is modeled by moment of inertia I0 assigned to a rigidly attached

mass m0 and masses mi, i = 1, . . . , N , attached to pendula of lengths li. Moments of

inertia of these masses are taken as zero. The locations h0 and hi are referenced to

the center of the tank. A thrust F is produced by a gimballed thrust engine as shown

in Fig. 6.2, where δ denotes the gimbal deflection angle, which is considered as one of

the control inputs. A pitching moment M is also available for control purposes. The

constants in the problem are the spacecraft mass m and moment of inertia I; the fuel

masses m0, mi; the distance b between the body z-axis and the spacecraft center of

mass location along the longitudinal axis, and the distance d from the gimbal pivot

to the spacecraft center of mass. If the tank center is in front of the spacecraft center

of mass then b > 0. The parameters mi, hi, li and b depend on the shape of the fuel

tank, the characteristics of the fuel and the fill ratio of the fuel tank.

As in the multi-mass-spring model, the sum of all the fluid masses must be the

same as the fuel mass mf ; i.e., equation (6.4) is satisfied. In the multi-pendulum case,

the rigidly attached mass location h0 satisfies

m0h0 +
N∑
i=1

mi(hi − li) = 0. (6.12)
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M

θ

vz

Z

X

vx

δF

b

d

l1

l2

m0

m1

m2

m

h0

h1

ψ2

ψ1

h2

Figure 6.2: A multiple slosh pendula model for a spacecraft.

As in the previous case, the inertial position and velocity vectors in the spacecraft-

fixed coordinate frame are given by equations (6.6) and (6.7), respectively.

The position vectors of the fuel masses m0, mi, ∀i, in the spacecraft-fixed coor-

dinate frame are given, respectively, by

r⃗0=(x+ h0)̂i+ zk̂,

r⃗i=(x+hi−li cosψi)̂i+(z+li sinψi)k̂.

Again assuming hi are constants, the inertial velocities can be computed as

˙⃗r0=vxî+ (vz − h0θ̇)k̂,

˙⃗ri=[vx+li(θ̇+ψ̇i) sinψi ]̂i+[vz−hiθ̇+li(θ̇+ψ̇i) cosψi]k̂.

The total kinetic energy can now be expressed as

T =
1

2
m ˙⃗r2 +

1

2
m0

˙⃗r20 +
1

2
(I + I0)θ̇

2 +
1

2

N∑
i=1

mi
˙⃗r2i .

Since gravitational effects are ignored, there is no potential energy. Thus, the
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Lagrangian equals the kinetic energy, which can be expressed as

L =
1

2
m[v2x + (vz + bθ̇)2] +

1

2
m0[v

2
x + (vz − h0θ̇)

2] +
1

2
(I + I0)θ̇

2

+
1

2

N∑
i=1

mi[(vx + li(θ̇ + ψ̇i) sinψi)
2 + (vz − hiθ̇ + li(θ̇ + ψ̇i) cosψi)

2].

Let ϵi denote the damping constants that represent the dissipative effects due to

fuel slosh. Then, for this case, the Rayleigh dissipation function R can be expressed

as

R =
1

2

N∑
i=1

ϵiψ̇
2
i .

Applying equations (6.1)-(6.3) with

η =

 ψ1
...
ψN

 , v =

 vx
0
vz

 , ω =

 0

θ̇
0

 ,
τt =

 F cos δ
0

F sin δ

 , τr =
 0
M + Fp sin δ

0

 ,
the equations of motion can be obtained as

(m+mf )ax +
N∑
i=1

mili(θ̈ + ψ̈i) sinψi + m̄b̄θ̇2 +
N∑
i=1

mili(θ̇ + ψ̇i)
2 cosψi = F cos δ,

(6.13)

(m+mf )az +
N∑
i=1

mili(θ̈ + ψ̈i) cosψi + m̄b̄θ̈ −
N∑
i=1

mili(θ̇+ψ̇i)
2 sinψi = F sin δ,

(6.14)

Ī θ̈ −
N∑
i=1

milihi[(θ̈ + ψ̈i) cosψi − (θ̇ + ψ̇i)
2 sinψi] + m̄b̄az −

N∑
i=1

ϵiψ̇i =M + Fp sin δ,

(6.15)

mili[li(θ̈+ψ̈i)−hi(θ̈ cosψi + θ̇2 sinψi)+(ax sinψi+az cosψi)]+ϵiψ̇i = 0, ∀i, (6.16)

where (ax, az) = (v̇x + θ̇vz, v̇z − θ̇vx) are the axial and transverse components of the

acceleration of the center of tank, and

m̄b̄ = mb−
N∑
i=1

mili,

Ī = I + I0 +mb2 +m0h
2
0 +

N∑
i=1

mih
2
i .
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Note that equations (6.16) represent N nonintegrable second-order relations and

hence they can be viewed as second order nonholonomic constraints.

The control objective is again to design feedback controllers so that the controlled

spacecraft accomplishes a given planar maneuver, that is a change in the translational

velocity vector and the attitude of the spacecraft, while suppressing the fuel slosh

modes.

6.1.1.2 Controllability and Stabilizability Analysis

This section presents a detailed development of feedback control laws through the

model obtained via the multi-mass-spring analogy.

Consider the model of a spacecraft with a gimballed thrust engine shown in Fig.

6.1. If the thrust F during the fuel burn is a positive constant, and if the gimbal

deflection angle and pitching moment are zero, δ = M = 0, then the spacecraft and

fuel slosh dynamics have a relative equilibrium defined by

vz = v̄z, θ = θ̄, θ̇ = 0, si = 0, ṡi = 0, ∀i,

where v̄z and θ̄ are arbitrary constants. Without loss of generality, the subsequent

analysis considers the relative equilibrium at the origin, i.e., v̄z = θ̄ = 0. Note that

the relative equilibrium corresponds to the vehicle axial velocity

vx(t) = vx0 + āxt, t ≤ tb, (6.17)

where vx0 is the initial axial velocity of the spacecraft, tb is the fuel burn time, and

āx =
F

m+mf

.

Note that after the burnout vx becomes a constant and thus it is bounded ∀t.
Since we have assumed that the axial acceleration term ax is not significantly

affected by small gimbal deflections, pitch changes and fuel motion (an assumption

verified in simulations), equation (6.8) can be simplified to:

v̇x + θ̇vz = āx. (6.18)

Substituting this approximation leads to the following reduced equations of motion
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for the transverse, pitch and slosh dynamics:

(m+mf )(v̇z − θ̇vx(t)) +mbθ̈ +
N∑
i=1

mi(s̈i − siθ̇
2) = F sin δ, (6.19)

Ī θ̈ +
N∑
i=1

mi(āxsi − his̈i + 2siṡiθ̇) +mb(v̇z − θ̇vx(t)) =M + Fp sin δ, (6.20)

s̈i + v̇z − θ̇vx(t)− hiθ̈ − siθ̇
2 +

ki
mi

si +
ci
mi

ṡi = 0, ∀i, (6.21)

where vx(t) is considered as an exogenous input. The subsequent analysis is based

on the above equations of motion for the transverse, pitch and slosh dynamics of the

vehicle.

Remark 6.1: If one considers only small vehicle motions about the relative equilib-

rium at the origin, then the following linearized equations of motion can be obtained:

(m+mf )(v̇z − θ̇vx(t)) +mbθ̈ +
N∑
i=1

mis̈i = Fδ, (6.22)

Ī θ̈ +
N∑
i=1

mi(āxsi − his̈i) +mb(v̇z − θ̇vx(t)) =M + Fpδ, (6.23)

s̈i + v̇z − θ̇vx(t)− hiθ̈ +
ki
mi

si +
ci
mi

ṡi = 0, ∀i. (6.24)

The origin of the linearized time varying system (6.22)-(6.24) can be made uni-

formly asymptotically stable by linear state feedback. One of the difficulties in control

design is the time variation representing the non-constant axial velocity of the vehicle

that appears in the equations. This time variation formally prohibits the use of trans-

fer function concepts, even for the linearized system (6.22)-(6.24). In the subsequent

development, a Lyapunov-based control design approach is proposed for the nonlinear

system (6.19)-(6.21) that overcomes this difficulty.

Eliminating s̈i in (6.19) and (6.20) using (6.21) yields

(m+m0)(v̇z−θ̇vx(t))+(mb−m0h0)θ̈−
N∑
i=1

(kisi+ciṡi)=F sin δ, (6.25)

(mb−m0h0)(v̇z−θ̇vx(t))+(Ī−
N∑
i=1

mih
2
i )θ̈+N(si, ṡi, θ̇)=M+Fp sin δ, (6.26)

where

N(si, ṡi, θ̇) =
N∑
i=1

[
(miāx + kihi)si + hiciṡi + 2misiṡiθ̇ −mihisiθ̇

2
]
.
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Note that the expressions (6.4) and (6.5) have been utilized to obtain equations (6.25)

and (6.26) in the form above.

By defining control transformations from (δ,M) to new control inputs (u1, u2):

[
u1
u2

]
=

 m+m0 mb−m0h0

mb−m0h0 Ī −
N∑
i=1

mih
2
i

−1  F sin δ +
N∑
i=1

(kisi + ciṡi)

M + Fp sin δ −N(si, ṡi, θ̇)

 ,
the system (6.19)-(6.21) can be written as:

v̇z = u1 + θ̇vx(t), (6.27)

θ̈ = u2, (6.28)

s̈i = −ω2
i si − 2ζiωiṡi − u1 + hiu2 + siθ̇

2, ∀i, (6.29)

where

ω2
i =

ki
mi

, 2ζiωi =
ci
mi

, ∀i.

Here ωi and ζi, ∀i, denote the undamped natural frequencies and damping ratios,

respectively.

In order to apply the ideas of previous chapters, it is first noticed that equation

(6.27) contains the time varying term vx(t). To deal with time dependence, the space

state is expanded to also account for that term. Let

[η1, η2, η3, η4, η4+i, η4+N+i] = [vx, vz, θ, θ̇, si, ṡi], ∀i,

be the space state vector in R4+2N . Then, the system described by (6.27)-(6.29)

together with (6.17) can be rewritten in a control form as

η̇1 = āx, (6.30)

η̇2 = η1η4 + u1, (6.31)

η̇3 = η4, (6.32)

η̇4 = u2, (6.33)

η̇4+i = η4+N+i, ∀i, (6.34)

η̇4+N+i = −ω2
i η4+i − 2ζiωiη4+N+i − u1 + hiu2 + η4+iη

2
4, ∀i, (6.35)

and the drift and control vector fields as

f = āx
∂

∂vx
+ θ̇vx

∂

∂vz
+ θ̇

∂

∂θ
+ ṡi

∂

∂si
+ (−ω2

i si − 2ζiωiṡi + siθ̇
2)
∂

∂ṡi
, ∀i,

g1 =
∂

∂vz
− ∂

∂ṡi
, i = 1, . . . , N, g2 =

∂

∂θ̇
+ hi

∂

∂ṡi
, ∀i.
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The space spanned by [f, g1, g2, adfg2, adf ig1], ∀i, at the equilibrium determine

an accessibility rank 4 + 2N . Without loss of generality, assume the origin to be

our equilibrium point. Then Theorem 4.3 is applied to the system projected to

[vz, θ, θ̇, si, ṡi], ∀i, to prove small time local controllability of the system described by

(6.27)-(6.29).

6.1.1.3 Feedback Control Laws

The main idea in the subsequent development is to first design feedback control

laws for (u1, u2) and then use the following equations to obtain the feedback laws for

the original controls (δ,M) for t ≤ tb:

δ = sin−1

(
[(m+m0)u1 + (mb−m0h0)u2 −

N∑
i=1

(kisi + ciṡi)]/F

)
, (6.36)

M = (mb−m0h0)u1 + (Ī −
N∑
i=1

mih
2
i )u2 +N(si, ṡi, θ̇)− Fp sin δ. (6.37)

Now, consider the following candidate Lyapunov function for the system (6.27)-

(6.29):

V =
r1
2
v2z +

r2
2
θ2 +

r3
2
θ̇2 +

r4
2

N∑
i=1

(ṡ2i + ω2
i s

2
i − 2hiṡiθ̇),

where r1, r2, r3, and r4 are positive constants. Assume that

µ = r3 − r4

N∑
i=1

h2i > 0

so that the function V is positive definite.

Remark 6.2: Let z = (θ̇, ṡ1, . . . , ṡN)
′ and let Q ∈ R(N+1)×(N+1) denote the symmet-

ric matrix corresponding to the quadratic form

z′Qz = r3θ̇
2 + r4

N∑
i=1

(ṡ2i − 2hiṡiθ̇).

Clearly, this quadratic form is positive definite if and only if the leading principal

minors of the matrix Q are all positive. It is easy to show that the condition holds if

µ > 0.

The time derivative of V along the trajectories of (6.27)-(6.29) is

V̇ = −2r4
N∑
i=1

ζiωiṡ
2
i + [r1vz − r4

N∑
i=1

(ṡi − hiθ̇)]u1 + [r1vx(t)vz + r2θ + µu2

+ r4
N∑
i=1

(hiω
2
i si + 2ζiωihiṡi + siṡiθ̇ − hisiθ̇

2)]θ̇.
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Clearly, the feedback laws

u1 = −K1[r1vz − r4

N∑
i=1

(ṡi − hiθ̇)], (6.38)

u2 = − 1

µ
[r2θ +K2θ̇ + r1vx(t)vz + r4

N∑
i=1

(hiω
2
i si + 2ζiωihiṡi + siṡiθ̇ − hisiθ̇

2)],

(6.39)

where K1 and K2 are positive constants, yield

V̇ =−K1[r1vz−r4
N∑
i=1

(ṡi−hiθ̇)]2 −K2θ̇
2−2r4

N∑
i=1

ζiωiṡ
2
i ,

which satisfies V̇ ≤ 0.

Note that the closed-loop system becomes time-invariant after the burnout (since

the time-varying term vx(t) becomes constant after the burnout). Using Krasovski-

LaSalle invariance principle for time-varying systems (Khalil, 2002), it is easy to prove

asymptotic stability of the origin of the closed loop defined by the equations (6.27)-

(6.29) and the feedback control laws (6.38)-(6.39). Note also that the positive gains

K1 and K2 can be chosen arbitrarily to achieve good closed loop responses.

Remark 6.3: Following the above procedure, it is easy to show that the reduced

equations for the multi-pendulum case are given by

v̇z=u1+θ̇vx(t), (6.40)

θ̈=u2, (6.41)

ψ̈i=−ciu1 cosψi−di sinψi−(1−cihi cosψi)u2−eiψ̇i+cihiθ̇
2 sinψi, ∀i, (6.42)

where

ci =
1

li
, di =

Fci
m+mf

, ei =
ϵi
mil2i

, ∀i,
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and the controls (u1, u2) can be obtained as

u1 = −K1[r1vz − r4

N∑
i=1

ci(ψ̇i + θ̇(1− cihi cosψi)) cosψi], (6.43)

u2 = − 1

µ
[r2θ +K2θ̇ + r1vx(t)vz + r4

N∑
i=1

eiψ̇i(cihi cosψi − 1)

+ r4

N∑
i=1

cihi((θ̇ + ψ̇i)
2 − 0.5θ̇ψ̇i − di) sinψi

+ r4

N∑
i=1

cihi(di−cihiθ̇2) cosψi sinψi]. (6.44)

Note also that as mentioned previously the control approaches developed for ac-

celerating space vehicles have commonly employed methods of linear control design.

The linear control laws for the suppression of the slosh dynamics inevitably lead to

excitation of the transverse vehicle motion through nonlinear coupling effects. In this

dissertation, this issue has been addressed by designing the nonlinear controller given

by (6.36)-(6.39) based on the complete nonlinear dynamics formulation that allows

simultaneous control of the transverse, pitch, and slosh dynamics.

6.1.1.4 Simulations

The feedback control laws developed in the previous section are implemented here

for the AVUM upper stage spacecraft (Perez, 2006). The first two slosh modes are

included to demonstrate the effectiveness of the control law. The physical parameters

used in the simulations for the multi-mass-spring and multi-pendulum cases are given

in Tables 6.1 and 6.2, respectively. The fluid parameters are obtained using the

formulae in Dodge (2000).

The control objective in both cases is the stabilization of the spacecraft in orbital

transfer, suppressing the transverse and pitching motion of the spacecraft and sloshing

of fuel while the spacecraft is accelerating. In other words, the control objective

is to stabilize the relative equilibrium corresponding to a constant axial spacecraft

acceleration of 1.77m/s2 and vz = θ = θ̇ = 0, si = ṡi = 0, i = 1, 2 (or ψi = ψ̇i =

0, i = 1, 2 in the multi-pendulum case). In the simulations, a fuel burn time of 660 s

is assumed. Note that the following relation between the slosh variables can be used

to compare the results for both cases:

si = li sinψi, i = 1, 2.
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It must be noted that for the AVUM spacecraft the characteristic length of the

propellant tank can be taken as ≈ 0.5 m and the propellant UMDH (Unsymmetrical

Dimethyl Hydrazine) has a σ/ρ ratio of around 0.25×10−4 m3/s2. Thus, accelerations

that are larger than 0.1 m/s2 correspond to a Bond number larger than 1000, which is

clearly in the high-acceleration regime. The simulations indicate that during the main

engine burn the vehicle acceleration exceeds 1 m/s2, and thus the mechanical-analogy

models are valid.

Table 6.1: Physical parameters for a spacecraft (multi-mass-spring analogy).

Parameter Value Parameter Value

m 975 kg F 2450N

I 400 kg ·m2 I0 14.85 kg ·m2

m0 358 kg k1 750 kg/s2

m1 89 kg k2 65 kg/s2

m2 2.7 kg c1 25.8 kg/s

h0 −0.011m c2 1.32 kg/s

h1 0.035m b −0.6m

h2 0.291m d 1.2m

First the multi-mass-spring model is considered. The effectiveness of the Lyapunov-

based controller (6.38)-(6.39) is demonstrated by applying the controller to the com-

plete nonlinear system (6.8)-(6.11). Time responses shown in Figs. 6.3-6.5 correspond

to the initial conditions vx0 = 3000m/s, vz0 = 150m/s, θ0 = 5o, θ̇0 = 0, s10 = 0.15m,

s20 = −0.15m, and ṡ10 = ṡ20 = 0. As can be seen in the figures, the transverse veloc-

ity, attitude angle, and the slosh states converge to the relative equilibrium at zero

while the axial velocity vx increases and v̇x tends asymptotically to 1.77m/s2. Note

that there is a trade-off between good responses for the directly actuated degrees of

freedom (the transverse and pitch dynamics) and good responses for the unactuated

degree of freedom (the slosh dynamics); the controller given by (6.38)-(6.39) with pa-

rameters r1 = 8×10−7, r2 = 2500, r3 = 500, r4 = 1×10−5, K1 = 1×104, K2 = 1×104

represents one example of this balance.

Next the multi-pendulum model is considered. The effectiveness of the controller

(6.43)-(6.44) is demonstrated by applying the controller to the complete nonlinear

system (6.13)-(6.16). Time responses shown in Figs. 6.6-6.8 correspond to the same
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initial conditions and the same controller parameters as in the previous case. Again,

as can be seen in the figures, the transverse velocity, attitude angle, and the slosh

states converge to the relative equilibrium at zero while the axial velocity vx increases

and v̇x tends asymptotically to 1.77m/s2. Clearly, the simulation results show a close

agreement in responses for both cases.

Table 6.2: Physical parameters for a spacecraft (multi-pendulum analogy).

Parameter Value Parameter Value

m 975 kg F 2450N

I 400 kg ·m2 I0 14.85 kg ·m2

m0 358 kg l1 0.204m

m1 89 kg l2 0.070m

m2 2.7 kg ϵ1 1.072 kg ·m2/s

h0 −0.011m ϵ2 0.007 kg ·m2/s

h1 0.239m b −0.6m

h2 0.361m d 1.2m
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Figure 6.3: Time responses of vx, vz and θ (Multi-mass-spring case).
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Figure 6.4: Time responses of s1 and s2 (Multi-mass-spring case).
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Figure 6.5: Gimbal deflection angle δ and pitching moment M (Multi-mass-spring

case).
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Figure 6.6: Time responses of vx, vz and θ (Multi-pendulum case).

0 100 200 300 400 500 600
−50

0

50

ψ
1 (

de
g)

Time (s)

0 100 200 300 400 500 600
−40

−20

0

20

40

ψ
2 (

de
g)

Time (s)

Figure 6.7: Time responses of ψ1 and ψ2 (Multi-pendulum case).
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Figure 6.8: Gimbal deflection angle δ and pitching momentM (Multi-pendulum case).

6.1.2 Planar Thrust Vector Control of an Upper-Stage Rocket

with Time-Varying Slosh Parameters

The previous sections considered a spacecraft with multiple fuel slosh modes as-

suming constant physical parameters. In this section, we take into account the time-

varying nature of the slosh parameters, which renders stability analysis more difficult.

The treatment is parallel to that in the previous section. The control inputs are de-

fined by the gimbal deflection angle of a non-throttleable thrust engine and a pitching

moment about the center of mass of the spacecraft. The control objective is to control

the translational velocity vector and the attitude of the spacecraft, while attenuat-

ing the sloshing modes characterizing the internal dynamics. The results are applied

to the AVUM upper stage–the fourth stage of the European launcher Vega (Perez,

2006). The main contributions here are (i) the development of a full nonlinear math-

ematical model with time-varying slosh parameters and (ii) the design of a nonlinear

time-varying feedback controller. Simulation example is included to illustrate the

effectiveness of the controller.
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6.1.2.1 Model Formulation

Consider the multiple slosh mass-spring model for a spacecraft as described in

Section 6.1.1 and let the slosh parameters be time-varying.

Assuming a constant fuel burn rate, we have

mf = mini

(
1− t

tf

)
, (6.45)

wheremini is the initial fuel mass in the tank and tf is the time at which, at a constant

rate, all the fuel is burned.

To compute the slosh parameters, a simple equivalent cylindrical tank is considered

together with the model described in Dodge (2000), which can be summarized as

follows. Assuming a constant propellant density, the height of still liquid inside the

cylindrical tank is

h =
4mf

πφ2ρ
, (6.46)

where φ and ρ denote the diameter of the tank and the propellant density, respectively.

As shown in Dodge (2000), every slosh mode is defined by the parameters

mi = mf

[
φ tanh (2ξih/φ)

ξi (ξ2i − 1)h

]
, (6.47)

hi =
h

2
− φ

2ξi

[
tanh (ξih/φ)−

1− cosh (2ξih/φ)

sinh (2ξih/φ)

]
, (6.48)

ki =
mig

φ
2ξi tanh (2ξih/φ) , (6.49)

where ξi, ∀i, are constant parameters given by

ξ1 = 1.841, ξ2 = 5.329, ξi ≃ ξi−1 + π,

and g is the axial acceleration of the spacecraft. For the rigidly attached mass, m0

and h0 are obtained from (6.4), (6.5), (6.45), and (6.46). Assuming that the liquid

depth ratio for the cylindrical tank (i.e., h/φ) is less than two, the following relations

apply

I0 =

(
1− 0.85

h

φ

)
mf

(
3φ2

16
+
h2

12

)
−m0h

2
0 −

N∑
i=1

mih
2
i , if

h

φ
< 1,

I0 =

(
0.35

h

φ
− 0.2

)
mf

(
3φ2

16
+
h2

12

)
−m0h

2
0 −

N∑
i=1

mih
2
i , if 1 ≤ h

φ
< 2.

Let î and k̂ be the unit vectors along the spacecraft-fixed longitudinal and trans-

verse axes, respectively, and denote by (x, z) the inertial position of the center of
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the fuel tank. The position vector of the center of mass of the vehicle can then be

expressed in the spacecraft-fixed coordinate frame as

r⃗ = (x− b)̂i+ zk̂.

The inertial velocity and acceleration of the vehicle can be computed as

˙⃗r = vxî+ (vz + bθ̇)k̂,

¨⃗r = (ax + bθ̇2)̂i+ (az + bθ̈)k̂,

where we have used the fact that (vx, vz) = (ẋ + zθ̇, ż − xθ̇) and (ax, az) = (v̇x +

vz θ̇, v̇z − vxθ̇)

Similarly, the position vectors of the fuel masses m0, mi, ∀i, in the spacecraft-

fixed coordinate frame are given, respectively, by

r⃗0 = (x+ h0)̂i+ zk̂,

r⃗i = (x+ hi)̂i+ (z + si)k̂, ∀i.

The inertial accelerations of the fuel masses can be computed as

¨⃗r0 = (ax − h0θ̇
2 + ḧ0)̂i+ (az − 2ḣ0θ̇ − h0θ̈)k̂,

¨⃗ri = (ax + siθ̈ − hiθ̇
2 + ḧi + 2ṡiθ̇)̂i+ (az + s̈i − hiθ̈ − siθ̇

2 − 2ḣiθ̇)k̂, ∀i.

Now Newton’s second law for the whole system can be written as

F⃗ = m¨⃗r +
N∑
i=0

mi
¨⃗ri, (6.50)

where

F⃗ = F (̂i cos δ + k̂ sin δ).

The total torque with respect to the tank center can be expressed as

τ⃗ = (I + I0) θ̈ĵ + ρ⃗×m¨⃗r +
N∑
i=0

ρ⃗i ×m¨⃗ri, (6.51)

where

τ⃗ = τ ĵ = [M + F (b+ d) sin δ] ĵ,

and ρ⃗, ρ⃗0, and ρ⃗i are the positions of m, m0, and mi relative to the tank center,

respectively, i.e.,

ρ⃗ = −b̂i, ρ⃗0 = h0î, ρ⃗i = hîi+ sik̂, ∀i.
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The dissipative effects due to fuel slosh are included via damping constants ci.

When the damping is small, it can be represented accurately by equivalent linear

viscous damping. Newton’s second law for the fuel mass mi can be written as

miazi = −ciṡi − kisi, (6.52)

where

azi = s̈i+az−hiθ̈−siθ̇2 − 2ḣiθ̇.

Using (6.50)-(6.52), the equations of motion can be obtained as

(m+mf )ax +mbθ̇2 +
N∑
i=1

mi(siθ̈ + 2ṡiθ̇ + ḧi) +m0ḧ0 = F cos δ, (6.53)

(m+mf )az +mbθ̈ +
N∑
i=1

mi(s̈i − siθ̇
2 − 2ḣiθ̇)− 2m0ḣ0θ̇ = F sin δ, (6.54)

Ī θ̈ +
N∑
i=1

mi

(
siax − his̈i + 2(siṡi + hiḣi)θ̇ + siḧi

)
+ 2m0h0ḣ0θ̇0 +mbaz = τ, (6.55)

mi(s̈i+az−hiθ̈−siθ̇2−2ḣiθ̇)+kisi+ciṡi=0, ∀i, (6.56)

where p = b+ d and

Ī = I + I0 +mb2 +m0h
2
0 +

N∑
i=1

mi(h
2
i + s2i ).

Note that equations (6.56) represent N nonintegrable second-order relations and

hence they can be written as second order nonholonomic constraints.

The control objective is again to design feedback controllers so that the controlled

spacecraft accomplishes a given planar maneuver, that is a change in the translational

velocity vector and the attitude of the spacecraft, while suppressing the fuel slosh

modes.

6.1.2.2 Feedback Control Laws

This section presents a detailed development of feedback control laws through the

model obtained via the multi-mass-spring analogy.

Consider the model of a spacecraft with a gimballed thrust engine shown in Fig.

6.1. If the thrust F during the fuel burn is a positive constant, and if the gimbal

deflection angle and pitching moment are zero, δ = M = 0, then the spacecraft and

fuel slosh dynamics have a relative equilibrium defined by

vz = v̄z, θ = θ̄, θ̇ = 0, si = 0, ṡi = 0, ∀i,
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where v̄z and θ̄ are arbitrary constants. Without loss of generality, the subsequent

analysis considers the relative equilibrium at the origin, i.e., v̄z = θ̄ = 0. Note that

the relative equilibrium corresponds to the vehicle axial velocity

vx(t) = vx0 + āxt, t ≤ tb,

where vx0 is the initial axial velocity of the spacecraft, tb is the fuel burn time, and

āx =
F

m+mf

.

Note that after the burnout vx becomes a constant and thus it is bounded ∀t.
Now assume the axial acceleration term ax is not significantly affected by small

gimbal deflections, pitch changes and fuel motion (an assumption verified in simula-

tions). Consequently, equation (6.53) becomes:

v̇x + θ̇vz = āx. (6.57)

Substituting this approximation leads to the following reduced equations of motion

for the transverse, pitch and slosh dynamics:

(m+mf )āz +mbθ̈ +
N∑
i=1

mi(s̈i − siθ̇
2 − 2ḣiθ̇)− 2m0ḣ0θ̇ = F sin δ, (6.58)

Ī θ̈ +
N∑
i=1

mi

[
āxsi − his̈i + siḧi + 2(siṡi + hiḣi)θ̇

]
+ 2m0h0ḣ0θ̇0 +mbāz = τ, (6.59)

mi(s̈i+āz−hiθ̈−siθ̇2−2ḣiθ̇)+kisi+ciṡi=0, ∀i, (6.60)

where āz = v̇z − θ̇vx(t). Here vx(t) is considered as an exogenous input. The sub-

sequent analysis is based on the above equations of motion for the transverse, pitch

and slosh dynamics of the vehicle.

Eliminating s̈i in (6.58) and (6.59) using (6.60) yields

(m+m0)āz+(mb−m0h0)θ̈ − 2m0ḣ0θ̇ −
N∑
i=1

(kisi + ciṡi) = F sin δ, (6.61)

(mb−m0h0)āz + (Ī −
N∑
i=1

mih
2
i )θ̈+ 2m0h0ḣ0θ̇ +G=M+Fp sin δ, (6.62)

where

G =
N∑
i=1

[
(miāx +miḧi + kihi)si + hiciṡi + 2misiṡiθ̇ −mihisiθ̇

2
]
.
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Note that the expressions (6.4) and (6.5) have been utilized to obtain equations (6.61)

and (6.62) in the form above.

By defining control transformations from (δ,M) to new control inputs (u1, u2):

[
u1
u2

]
=

 m+m0 mb−m0h0

mb−m0h0 Ī −
N∑
i=1

mih
2
i

−1  F sin δ + 2m0ḣ0θ̇ +
N∑
i=1

(kisi + ciṡi)

M + Fp sin δ − 2m0h0ḣ0θ̇ −G

 ,
the system (6.58)-(6.60) can be written as:

v̇z = u1 + θ̇vx(t), (6.63)

θ̈ = u2, (6.64)

s̈i = −ω2
i si − 2ζiωiṡi − u1 + hiu2 + siθ̇

2 + 2ḣiθ̇, ∀i, (6.65)

where

ω2
i =

ki
mi

, 2ζiωi =
ci
mi

, ∀i.

Here ωi and ζi, ∀i, denote the undamped natural frequencies and damping ratios,

respectively.

The main idea in the subsequent development is to first design feedback control

laws for (u1, u2) and then use the following equations to obtain the feedback laws for

the original controls (δ,M) for t ≤ tb:

δ = sin−1

(
[(m+m0)u1 + (mb−m0h0)u2 − 2m0ḣ0θ̇ −

N∑
i=1

(kisi + ciṡi)]/F

)
, (6.66)

M = (mb−m0h0)u1 + (Ī −
N∑
i=1

mih
2
i )u2 + 2m0h0ḣ0θ̇ +G− Fp sin δ. (6.67)

Consider the following candidate Lyapunov function to stabilize the subsystem

defined by the equations (6.63) and(6.64):

V =
r1
2
v2z +

r2
2
θ2 +

r3
2
θ̇2,

where r1, r2, and r3 are positive constants so that the function V is positive definite.

The time derivative of V along the trajectories of (6.63) and (6.64) can be com-

puted as

V̇ = r1vzv̇z + r2θθ̇ + r3θ̇θ̈,

or rewritten in terms of the new control inputs

V̇ = (r1vz)u1 + (r1vxvz + r2θ + r3u2) θ̇.
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Clearly, the feedback laws

u1 = −l1vz, (6.68)

u2 = − 1

r3

(
r2θ + l2θ̇

)
, (6.69)

where l1, l2 are positive constants and taking into account that

r1vxvz θ̇ ≤

(
θ̇2

2
+

(r1vxvz)
2

2

)
,

yield

V̇ = −l1r1v2z − l2θ̇
2 + r1vxvz θ̇ ≤ −r1

(
l1 −

r1v
2
x

2

)
v2z −

(
l2 −

1

2

)
θ̇2.

which satisfies V̇ ≤ 0 if l1 > 0.5r1v
2
x and l2 > 0.5, where vx is bounded at any time t.

The closed-loop system for (vz, θ)-dynamics can be written as

v̇z = −l1vz + θ̇vx(t), (6.70)

θ̈ = −K1θ −K2θ̇, (6.71)

where K1 = r2/r3 and K2 = l2/r3.

Equation (6.71) can be easily solved in the case of K2
2 > 4K1 as

θ (t) = Ae−λ1t +Be−λ2t,

where A, B are integration constants and −λ1, −λ2 are the eigenvalues of the linear

system (6.71). Therefore, θ (t) and θ̇ (t) can be upper bounded as

|θ(t)| ≤ Ce−λt,
∣∣∣θ̇(t)∣∣∣ ≤ De−λt,

respectively, where C, D are positive constants and λ = min(λ1, λ2). Now, assuming

that λ ̸= l1, equation (6.70) can be integrated to obtain an upper bound for vz(t) as:

|vz (t)| ≤ αe−βt,

where α, β are positive constants. Therefore, it can be concluded that the (vz, θ)-

dynamics are exponentially stable under the control laws (6.68) and (6.69).

To analyze the stability of the N equations defined by (6.65), it will be first shown

that the system described by the equation

s̈i + 2ζiωi (t) ṡi + ω2
i (t) si = 0, (6.72)
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is exponentially stable.

From equations (6.47) and (6.49)

ωi (t) =

√
2gξi
φ

tanh

(
2ξih (t)

φ

)
∈ C1.

The following properties can be shown to hold:

ω2
i (t) ≥ ε21, p (t) =

1

2

ω̇i (t)

ωi (t)
+ 2ζiωi (t) ≥ ε22,

|2ζiωi (t)| ≤ 2ζi

√
2gξi
φ

=M1,
∣∣ω2

i (t)
∣∣ ≤ 2gξi

φ
=M2,

|2ω̇i (t)ωi (t)| ≤ g

(
2ξi
φ

)2

=M3,

where ε1 and ε2 are small positive parameters given the fact that the tank will never

be totally empty, but a small amount of fuel will always remain inside. For this same

reason h (t) > 0, ∀t. Therefore, by Corollary A.1 (see Appendix), the system (6.72)

is exponentially stable.

Now write equation (6.65) as

ẋ = (A1 (t) + A2 (t))x+H(t), (6.73)

where x = [si, ṡi]
′ and

A1(t) =

[
0 1

−ω2
i (t) −2ζiωi(t)

]
, A2(t) =

[
0 0

θ̇2(t) 0

]
,

H(t) =

[
0

−āz(t) + hi(t)θ̈(t) + 2ḣi(t)θ̇(t)

]
.

Under the stated assumptions, A1(t) is exponentially stable and there exist posi-

tive constants λ0, λ1 and λ2 such that∫ ∞

0

∥A2(t)∥ dt ≤ λ0, ∥H(t)∥ ≤ λ1e
−λ2t, ∀t ≥ 0.

Hence, for any initial condition the state of the system (6.58)-(6.60) converges expo-

nentially to zero since the conditions in Lemma A.1 are satisfied.

6.1.2.3 Simulations

The feedback control law developed in the previous section is implemented here

for the fourth stage of the European launcher Vega. The first two slosh modes are
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Table 6.3: Physical parameters for a spacecraft (time-varying slosh parameters).

Parameter Value Parameter Value

F 2450 N b −0.6 m

m 975 kg d 1.2 m

mini 580 kg φ 1 m

I 400 kg ·m2 tb 650 s

ρ 1180 kg/m3 tf 667 s

included to demonstrate the effectiveness of the controller (6.66)-(6.69) by applying

to the complete nonlinear system (6.53)-(6.56). The physical parameters used in the

simulations are given in Table 6.3.

We consider stabilization of the spacecraft in orbital transfer, suppressing the

transverse and pitching motion of the spacecraft and sloshing of fuel wile the space-

craft is accelerating. In other words, the control objective is to attract the relative

equilibrium corresponding to a specific spacecraft axial acceleration and vz = θ = θ̇ =

si = ṡi = 0, i = 1, 2.

Time responses shown in Figs. 6.9-6.11. correspond to the initial conditions

vx0 = 3000m/s, vz0 = 100m/s, θ0 = 5◦, θ̇0 = 0, s10 = 0.1m, s20 = −0.1m, and

ṡ10 = ṡ20 = 0. We assume a fuel burn time of 650 s. As can be seen, the transverse

velocity, attitude angle, and the slosh states converge to the relative equilibrium at

zero while the axial velocity vx increases and v̇x tends asymptotically to F/(m+mf ).

Note that there is a trade-off between good responses for the directly actuated degrees

of freedom (the transverse and pitch dynamics) and good responses for the internal

degrees of freedom (the slosh dynamics); the controller given by (6.66)-(6.69) with

parameters r1 = 8× 10−7, r2 = 1000, r3 = 500, l1 = 104, l2 = 4× 104 represents one

example of this balance.
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Figure 6.9: Time responses of vx, vz and θ.
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Figure 6.10: Time responses of s1 and s2.

62



6.1 Control of Space Vehicles with Fuel Slosh Dynamics

0 100 200 300 400 500 600
−40

−20

0

20

40

δ 
(d

eg
)

Time (s)

0 100 200 300 400 500 600
−2000

−1000

0

1000

2000

M
 (

N
.m

)

Time (s)

Figure 6.11: Gimbal deflection angle δ and pitching moment M .
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Figure 6.12: Time responses of vx, vz and θ (zero control case).
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Figure 6.13: Time responses of s1 and s2 (zero control case).
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Figure 6.14: Gimbal deflection angle δ and pitching moment M (zero control case).
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6.1.3 Thrust-Vector Control of a Three-Axis Stabilized Space-

craft with Fuel Slosh Dynamics

This section formulates the dynamics of a three-axis stabilized spacecraft with a

single fuel tank and model the sloshing propellant as a multi-mass-spring system. The

equations of motion are expressed in terms of the three dimensional spacecraft trans-

lational velocity vector, the attitude, the angular velocity, and the internal (shape)

coordinates representing the slosh modes. A Lyapunov-based nonlinear feedback con-

trol law is proposed to control the translational velocity vector and the attitude of

the spacecraft, while attenuating the sloshing modes characterizing the internal dy-

namics. A simulation example is included to illustrate the effectiveness of the control

law.

6.1.3.1 Model Formulation

This section formulates the dynamics of a three-axis stabilized spacecraft with

a single propellant tank including the prominent fuel slosh modes. The spacecraft

is represented as a rigid body (base body) and the sloshing fuel masses as internal

bodies.

We now derive a multi-mass-spring model of the sloshing fuel where the oscilla-

tion frequencies of the mass-spring elements represent the prominent sloshing modes

(see e.g., Reyhanoglu and Rubio Hervas (2011b, 2012b); Rubio Hervas and Rey-

hanoglu (2012a,b)). Consider a rigid spacecraft moving in a three-dimensional space

as shown in Fig. 6.15, where F denotes the constant thrust produced by a gimballed

thrust engine. The gimbal deflection angles δ1 and δ2 about the spacecraft fixed

y-axis and z-axis, respectively, are considered as control inputs. The input torque

M = [Mx, My, Mz]
′, generated by gas jet pairs or control moment gyroscopes, is also

available for control purposes. For simplicity, xyz axes are assumed to be principal

axes. The fluid is modeled by moment of inertia I0 assigned to a rigidly attached

isoinertial mass m0 and point masses mi, i = 1, . . . , N , whose relative positions along

the spacecraft fixed y and z-axis are denoted by ξi and ηi, respectively. Moments of

inertia of these masses are taken as zero. The locations h0 and hi are referenced to

the center of mass of undisturbed propellant. Restoring forces −kyiξi and −kziηi act
on the mass mi whenever the mass is displaced from its neutral position ξi = 0 and

ηi = 0, respectively. Damping constants cyi and czi characterize the dissipative effects

of the fuel slosh. In this dissertation, for simplicity it is assumed that kyi = kzi = ki

65



6.1 Control of Space Vehicles with Fuel Slosh Dynamics

and cyi = czi = ci. The spacecraft mass m, moments of inertia (Jx, Jy, Jz), the fuel

masses (m0, mi), the distance b between the origin of body xyz axes and the space-

craft center of mass location along the longitudinal axis, and the distance d from

the gimbal pivot to the spacecraft center of mass are assumed to be constant. If the

tank center is in front of the spacecraft center of mass then b > 0. The parameters

mi, hi, ki, ci and b depend on the shape of the fuel tank, the characteristics of the

fuel and the fill ratio of the fuel tank. To preserve the static properties of the liquid,

the sum of all the masses must be the same as the fuel mass mf , and the center of

mass of the model must be at the same elevation as that of the fuel; i.e., equations

(6.4) and (6.5) are satisfied.

b

d

x

y

z δ1

δ2

FM

Figure 6.15: A spacecraft with a liquid propellant tank.
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Figure 6.16: A multi mass-spring model of sloshing.

Denote by

r = [x, y, z]′

the inertial position of the center of mass of the undisturbed fuel in the spacecraft-

fixed coordinate frame. The position vectors of the center of mass of the vehicle and

the fuel masses m0, mi, ∀i, in the spacecraft-fixed coordinate frame are then given,

respectively, by

rc = [(x− b), y, z]′,

r0 = [x+ h0, y, z]
′,

ri = [x+ hi, y + ξi, z + ηi]
′, ∀i.

Clearly, the inertial velocity of the center of mass of the undisturbed fuel can be

expressed as

v = ṙ + ω × r,
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where ω = [ωx, ωy, ωz]
′ is the angular velocity vector. The inertial velocities vc, v0,

and vi, ∀i, can be computed similarly.

The total kinetic energy neglecting the moment of inertia of the sloshing masses,

can now be expressed as

T =
1

2
m∥vc∥2 +

1

2

N∑
j=0

mj∥vj∥2 +
1

2
ω′(J + J0)ω,

where J = diag{Jx, Jy, Jz} and J0 = diag{I0, I0, I0}.
Since gravitational effects are ignored, there is no gravitational potential energy.

The acceleration of the rocket gives rise to the elastic potential energy given by

U =
1

2

N∑
i=1

ki(ξ
2
i + η2i ).

Typically, ki would be a function of the axial acceleration. However, in this section

it is assumed that the axial acceleration is not significantly affected by small gimbal

deflections, attitude changes and fuel motion so that ki remains constant.

Dissipative effects due to fuel slosh are included via damping constants ci so that

the Rayleigh dissipation function R can be expressed as

R =
1

2

N∑
i=1

ci(ξ̇
2
i + η̇2i ).

Applying equations (6.1)-(6.3) with L = T − U and

s =

[
ξ
η

]
, v =

 vx
vy
vz

 , τt =
 F cos δ1 cos δ2

F sin δ2
−F sin δ1 cos δ2

 ,

ω =

 ωx

ωy

ωz

 , τr =
 Mx

My − Fp sin δ1 cos δ2
Mz − Fp sin δ2

 ,
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where p = b+ d, the equations of motion can be obtained as

(m+mf )ax+mb(ω
2
y+ω

2
z)+

N∑
i=1

mi[2ωyη̇i−2ωz ξ̇i +ηi(ω̇y+ωxωz)−ξi(ω̇z−ωxωy)]

=F cos δ1 cos δ2, (6.74)

(m+mf )ay−mb(ω̇z+ωxωy)+
N∑
i=1

mi[ξ̈i−2ωxη̇i −ηi(ω̇x−ωyωz)−ξi(ω2
x+ω

2
z)]

=F sin δ2, (6.75)

(m+mf )az+mb(ω̇y−ωxωz)+
N∑
i=1

mi[η̈i+2ωxξ̇i−ηi(ω2
x+ω

2
y)−ξi(ω̇x+ωyωz)]

=−F sin δ1 cos δ2, (6.76)

(I0+Jx)ω̇x+(Jz−Jy)ωyωz+
N∑
i=1

mi[ξiη̈i−ηiξ̈i−ηi(ay−ηi(ω̇x+ωyωz)−hi(ω̇z+ωxωy))

+2(ηiη̇i +ξiξ̇i)ωx+ξi(az+ξi(ω̇x+ωyωz)−hi(ω̇y+ωxωz))]=Mx, (6.77)

(I0+Jy+Ī)ω̇y+(Jx−Jz−Ī)ωxωz+mbaz+
N∑
i=1

mi[−hiη̈i+2ηiη̇iωy−2ξ̇i(ωzηi+hiωx)

+ηi(ax+ηi(ω̇y+ωxωz)+hi(ω
2
x−ω2

z))−hiξi(ω̇x+ωyωz)−ηiξi(ω̇z−ωxωy)]

=My−Fp sin δ1 cos δ2, (6.78)

(I0+Jz+Ī)ω̇z+(Jy−Jx+Ī)ωxωy−mbay+
N∑
i=1

mi[hiξ̈i+2ξiξ̇iωz−2η̇i(ωyξi+hiωx)

−ξi(ax−ξi(ω̇z−ωxωy)−hi(ω2
y−ω2

x))−hiηi(ω̇x−ωyωz)−ηiξi(ω̇y+ωxωz)]

=Mz−Fp sin δ2, (6.79)

mi[ξ̈i+ay −2η̇iωx−ηi(ω̇x−ωyωz)−ξi(ω2
x+ω

2
z)−hi(ω̇z−ωxωy)]+kiξi+ciξ̇i=0, ∀i, (6.80)

mi[η̈i+az+2ξ̇iωx+ξi(ω̇x+ωyωz)−ηi(ω2
x+ω

2
y)−hi(ω̇y−ωxωz)]+kiηi+ciη̇i=0, ∀i, (6.81)

where a = [ax, ay, az]
′ = v̇+ ω× v is the acceleration of the center of mass of the fuel

in the spacecraft-fixed frame and

Ī = mb2 +m0h
2
0 +

N∑
i=1

mih
2
i .

Note that equations (6.80)-(6.81) represent 2N nonintegrable second-order relations

and hence they can be viewed as second order nonholonomic constraints.

Let θ = [θ1, θ2, θ3]
′ denote the vector of Euler angles. Assuming 321 Euler angle

sequence, the angular velocity can be expressed as

ω = Q(θ)θ̇, (6.82)
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where

Q(θ) =

 1 0 − sin θ2
0 cos θ1 sin θ1 cos θ2
0 − sin θ1 cos θ1 cos θ2

 .
The control objective is to design feedback controllers so that the controlled space-

craft accomplishes a given three-dimensional maneuver while suppressing the fuel

slosh modes.

6.1.3.2 Feedback Control Laws

Consider the model of a spacecraft with a gimballed thrust engine shown in Fig.

6.15-6.16. If the thrust F during the fuel burn is a positive constant, and if the gimbal

deflection angles and moments are zero, δ1 = δ2 = Mx = My = Mz = 0, then the

spacecraft and fuel slosh dynamics have a relative equilibrium defined by

vy = v̄y, vz = v̄z, θ = θ̄, θ̇ = 0, s = ṡ = 0,

where v̄y, v̄z and θ̄, are arbitrary constants. Without loss of generality, the subsequent

analysis considers the relative equilibrium at the origin, i.e., v̄y = v̄z = θ̄ = 0. Note

that the relative equilibrium corresponds to the vehicle axial velocity

vx(t) = vx0 + āxt, t ≤ tb,

where vx0 is the initial axial velocity of the spacecraft, tb is the fuel burn time, and

āx = F/(m+mf ). Note that after the burnout vx becomes a constant and thus it is

bounded ∀t.
Now assume the axial acceleration term ax is not significantly affected by small

gimbal deflections, attitude changes and fuel motion (an assumption verified in sim-

ulations). Consequently, equation (6.74) becomes:

v̇x + ω2vz − ω3vy = āx. (6.83)

Substituting this approximation into (6.75)-(6.81) leads to the following reduced equa-

tions of motion for the transverse, attitude and slosh dynamics, where vx(t) is con-

sidered as an exogenous input. The subsequent analysis is based on these equations

of motion for the transverse, attitude and slosh dynamics of the vehicle.

We now design a nonlinear controller to stabilize the relative equilibrium at the

origin of the equations (6.75)-(6.81). Our control design is based on a Lyapunov

function approach. By defining control transformations from (δ1, δ2,Mx,My,Mz) to
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new control inputs (u1, u2, u3, u4, u5), the equations (6.75)-(6.81) can be written

as:

v̇y = u1 − vxωz + vzωx, (6.84)

v̇z = u2 + vxωy − vyωx, (6.85)

θ̈1 = u3, (6.86)

θ̈2 = u4, (6.87)

θ̈3 = u5, (6.88)

ξ̈i = −Ω2
i ξi − 2ζiΩiξ̇i − u1 + 2η̇iωx +ηi(ω̇x−ωyωz)+ξi(ω

2
x+ω

2
z)+hi(ω̇z−ωxωy),

(6.89)

η̈i = −Ω2
i ηi − 2ζiΩiη̇i − u2 − 2ξ̇iωx −ξi(ω̇x+ωyωz)+ηi(ω

2
x+ω

2
y)+hi(ω̇y−ωxωz),

(6.90)

where

Ω2
i =

ki
mi

, 2ζiΩi =
ci
mi

, ∀i.

Here Ωi and ζi, ∀i, denote the undamped natural frequencies and damping ratios,

respectively.

Now, consider the following candidate Lyapunov function for the system (6.84)-

(6.90):

V =
r1
2
v2y+

r2
2
v2z+

r3
2
θ21+

r4
2
θ̇21+

r5
2
θ22+

r6
2
θ̇22+

r7
2
θ23

+
r8
2
θ̇23 +

r9
2

N∑
i=1

(ξ̇2i + Ω2
i ξ

2
i − 2hiξ̇iωz − 2ηiξ̇iωx)

+
r10
2

N∑
i=1

(η̇2i + Ω2
i η

2
i − 2hiη̇iωy + 2ξiη̇iωx), (6.91)

where ri, i = 1, . . . , 10, are positive constants. Assume that r4 = r6 = r8 ≫ 1 ≫
r9 = r10. Then it is easy to show that the function V is positive definite.

The time derivative of V along the trajectories of (6.84)-(6.90) is

V̇ = −2r9

N∑
i=1

ζiΩiξ̇
2
i − 2r10

N∑
i=1

ζiΩiη̇
2
i + [r1vy − r9

N∑
i=1

(ξ̇i − hiωz − ηiωx)]u1

+ [r2vz − r10

N∑
i=1

(η̇i − hiωy + ξiωx)]u2 +
3∑

i=1

(fi1u3 + fi2u4 + fi3u5 + gi)θ̇i, (6.92)

where fij, gi, i, j = 1, 2, 3, are functions of vy, vz, θ, θ̇, s, and ṡ.
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Assume F = [fij] is a 3× 3 invertible matrix ∀t. Then, the feedback laws

u1 = −l1[r1vy − r9

N∑
i=1

(ξ̇i − hiωz − ηiωx)], (6.93)

u2 = −l2[r2vz − r10

N∑
i=1

(η̇i − hiωy + ξiωx)], (6.94) u3
u4
u5

 = −F−1

 g1 + l3θ̇1
g2 + l4θ̇2
g3 + l5θ̇3

 , (6.95)

where li, i = 1, . . . , 5, are positive constants, yield

V̇ = −2r9

N∑
i=1

ζiΩiξ̇
2
i − 2r10

N∑
i=1

ζiΩiη̇
2
i − l1[r1vy − r9

N∑
i=1

(ξ̇i − hiωz − ηiωx)]
2

− l2[r2vz − r10

N∑
i=1

(η̇i − hiωy + ξiωx)]
2 − l3θ̇

2
1 − l4θ̇

2
2 − l5θ̇

2
3,

which satisfies V̇ ≤ 0. Using Krasovski-LaSalle invariance principle, it is easy to

prove the asymptotic stability of the origin of the closed loop defined by equations

(6.84)-(6.90) and the feedback control laws (6.93)-(6.95). Note that the positive gains

lj, j = 1, . . . , 5, can be chosen arbitrarily to achieve good close loop responses.

Remark 6.4: If we assume small Euler angles, the formulation above can be made

more tractable. This assumption simplifies the form of the control laws (6.95) while

still reflecting main features of the three-dimensional sloshing problem. In this case,

ω = θ̇, and fij, gi, i = 1, 2, 3, take the following form:

f11 = r4 −
N∑
i=1

(r9η
2
i + r10ξ

2
i ), f12 = f21 = r10

N∑
i=1

hiξi,

f22 = r6 − r10

N∑
i=1

h2i , f13 = f31 = −r9
N∑
i=1

hiηi,

f33 = r8 − r9

N∑
i=1

h2i , f23 = f33 = 0
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g1=(r1−r2)vyvz+r3θ1+r9
N∑
i=1

[2ξ̇iη̇i+θ̇1ξiξ̇i−θ̇2hiξ̇i−2(hiθ̇3 + θ̇1ηi)η̇i

+Ω2
i ξiηi+2ζiΩiηiξ̇i]−r10

N∑
i=1

[2ξ̇iη̇i−θ̇1ηiη̇i+θ̇3hiη̇i−2(hiθ̇2 − θ̇1ξi)ξ̇i

+Ω2
i ξiηi+2ζiΩiξiη̇i],

g2=r2vxvz+r5θ2−r10
N∑
i=1

(θ̇3ξiη̇i−θ̇2ηiη̇i−hiΩ2
i ηi −2hiζiΩiη̇i)−r9

N∑
i=1

θ̇3ηiξ̇i,

g3=−r1vxvy+r7θ3+r9
N∑
i=1

(θ̇3ξiξ̇i+hiΩ
2
i ξi+2hiζiΩiξ̇i).

6.1.3.3 Simulations

The feedback control laws developed in the previous section are implemented here

for the AVUM upper stage spacecraft (Perez, 2006). The first two slosh modes are

included to demonstrate the effectiveness of the control law. The physical parameters

used in the simulation is given in Table 6.4. The fluid parameters are obtained

using the formulae in Dodge (2000). The control objective is to stabilize the relative

equilibrium corresponding to a constant axial spacecraft acceleration of 1.720m/s2

and vy = vz = 0, θ = θ̇ = 0, s = ṡ = 0.

It must be noted that for the AVUM spacecraft the characteristic length of the

propellant tank can be taken as≈ 0.375 m and the propellant UMDH (Unsymmetrical

Dimethyl Hydrazine) has a σ/ρ ratio of around 0.25×10−4 m3/s2. Thus, accelerations

that are larger than 0.1 m/s2 correspond to a Bond number larger than 1000, which is

clearly in the high-acceleration regime. The simulation indicates that during the main

engine burn the vehicle acceleration exceeds 1 m/s2, and thus the mechanical-analogy

model is valid.

The effectiveness of the Lyapunov-based control laws is demonstrated by applying

the controller defined by (6.93)-(6.95) to the complete nonlinear system (6.74)-(6.82).

Time responses shown in Figs. 6.17-6.22 correspond to the initial conditions

v0 = [3000, 75, 25]′ m/s, θ0 = [5o, 2o, −5o]′,

s0 = [0.15, 0.05, −0.1, 0.15]′ m, θ̇0 = 0, ṡ0 = 0.

As can be seen in the figures, the transverse velocities, attitude angles, and the

slosh states converge to the relative equilibrium at zero while the axial velocity vx
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Table 6.4: Physical parameters for a spacecraft (three-dimensional case).

Parameter Value Parameter Value

m 975 kg F 2450N

Jx 600 kg ·m2 tb 600 s

Jy 800 kg ·m2 b −0.6m

Jz 400 kg ·m2 d 1.2m

m0 358 kg h0 −0.011m

m1 89 kg h1 0.035m

m2 2.7 kg h2 0.291m

I0 14.85 kg ·m2 āx 1.720m/s2

k1 750 kg/s2 c1 25.8 kg/s

k2 65 kg/s2 c2 1.32 kg/s

increases and v̇x tends asymptotically to 1.720m/s2. Note that there is a trade-off

between good responses for the directly actuated degrees of freedom (the transverse

and attitude dynamics) and good responses for the unactuated degree of freedom (the

slosh dynamics); the controller given by (6.93)-(6.95) with parameters r1 = r2 = 8×
10−7, r3 = r5 = r7 = 1000, r4 = r6 = r8 = 500, r9 = r10 = 1× 10−5, l1 = l2 = 1× 104,

l3 = l4 = l5 = 4× 104 represents one example of this balance.
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Figure 6.17: Time responses of vx, vy and vz.
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Figure 6.18: Time responses of θ1, θ2 and θ3.
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Figure 6.19: Time responses of ξ1 and ξ2.
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Figure 6.20: Time responses of η1 and η2.
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Figure 6.21: Gimbal deflection angles δ1 and δ2.
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Figure 6.22: Control moments Mx, My and Mz.
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6.2 Liquid Container Transfer via a PPR Robot

This section studies the point-to-point liquid container transfer control problem

for a PPR robot, i.e., a robot with two prismatic and one revolute joint. The robot

manipulator is represented as three rigid links, and the liquid slosh dynamics are

included using a multi-mass-spring model. It is assumed that two forces and a torque

applied to the prismatic joints and the revolute joint, respectively, are available as

control inputs. The objective is to control the robot end-effector movement while

suppressing the sloshing modes. A nonlinear mathematical model that reflects all

of these assumptions is first introduced. Then, Lyapunov-based feedback controllers

are designed to achieve the control objective. Two cases are considered: partial-state

feedback that does not use slosh state information and full-state feedback that uses

both robot state and slosh state measurements or estimations. Computer simulations

are included to illustrate the effectiveness of the proposed control laws.

The active slosh control approaches developed for robotic systems moving liquid

filled containers (Feddema et al., 1997; Gandhi and Duggal, 2009; Grundelius and

Bernhardsson, 1999; Grundelius, 2000; Pridgen et al., 2010; Terashima and Schmidt,

1994; Yano et al., 2001a,b; Yano and Terashima, 2001) are mostly based on linear

control design methods (Aboel-Hassan et al., 2009; Bryson, 1994; Sidi, 1997; Wie,

1998) and adaptive control methods (Adler et al., 1991). Most of the existing litera-

ture on the liquid slosh problem considers only the first sloshing mode represented by

a single pendulum model or a single mass-spring model. The literature that incorpo-

rates more than one sloshing mode in modeling the slosh dynamics includes (Dodge,

2000; Reyhanoglu and Rubio Hervas, 2012a, 2013).

This section presents novel methods for the fast robotic delivery of an open con-

tainer of liquid without residual end point sloshing. In particular, a planar Prismatic-

Prismatic-Revolute (PPR) robot moving a liquid filled container is considered. The

control inputs for the PPR robot are two forces and a torque applied to the prismatic

joints and the revolute joint, respectively. The control objective is to control the robot

movement while suppressing the sloshing modes. The main contributions in this sec-

tion are (i) the development of a full nonlinear mathematical model of the coupled

robot motion and slosh dynamics and (ii) the design of Lyapunov-based feedback

controllers that achieve the control objective. Two cases are considered: partial-state

feedback that does not use slosh state information and full-state feedback that uses

both robot state and slosh state measurements or estimations. Simulation examples

are included to illustrate the effectiveness of the controllers.
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6.2.1 Model Formulation

This section formulates the dynamics of a PPR robot moving a liquid filled con-

tainer including the prominent liquid slosh modes. In particular, the sloshing liquid

is modeled as a multi-mass-spring system where the oscillation frequencies of the

mass-spring elements represent the prominent sloshing modes.

Consider a planar PPR robot moving in a vertical plane as shown in Fig. 6.23,

where (x, y) denotes the position of the revolute joint and θ the orientation of the

third link. Let the forces Fx and Fy be the control inputs to the two prismatic

joints and the torque τθ be the input to the revolute joint. The constants for the

robot are the link masses M1, M2, M3; the moment of inertia I3 of the third link

about its center of mass; the distance l between the revolute joint and the center of

mass of the third link, and the distance b from the center of mass of the third link

to the end-effector. As shown in Fig. 6.24, the liquid filled container is a cylinder

of radius r and height hc. The mass and moment of inertia of the container (with

respect to its own center of mass) are denoted by mc and Ic, respectively. The fluid

is modeled by moment of inertia I0 assigned to a rigidly attached mass m0 and point

masses mi, i = 1, . . . , N , whose relative positions along the container-fixed lateral

axis are denoted by si. The locations h0 and hi are referenced to the center of mass

of undisturbed liquid. For simplicity, it is assumed that the center of mass of the

container is at the same location as the center of mass of the undisturbed liquid. A

restoring force −kisi acts on the mass mi whenever the mass is displaced from its

neutral position si = 0. The parameters m0, h0, I0, mi, hi, ki depend on the shape

of the container, the characteristics of the liquid, and the fill ratio of the container.

As in the previous cases, to preserve the static properties of the liquid, the sum

of all the masses must be the same as the liquid mass mf , and the center of mass of

the model must be at the same elevation as that of the liquid, i.e.,

m0 +
N∑
i=1

mi = mf , m0h0 +
N∑
i=1

mihi = 0.
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ĵ î

x

y

τθ

Figure 6.23: A PPR robot moving a liquid filled container.
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Figure 6.24: A multi-mass-spring model of liquid slosh.

Let î and ĵ be the unit vectors along the container-fixed transverse (along the third

link) and cylindrical axes, respectively. Then the inertial position of revolute joint
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and the container center can be expressed in the container-fixed coordinate frame as

r⃗r = (x cos θ + y sin θ)̂i+ (−x sin θ + y cos θ)ĵ,

r⃗c = r⃗r + (l + b+ r)̂i.

Similarly, the position vectors of the liquid masses m0, mi, ∀i, in the container-fixed

coordinate frame are given, respectively, by

r⃗0= r⃗c + h0ĵ,

r⃗i= r⃗c + sîi+ hiĵ.

The kinetic energies of the robot, the container, and the liquid can be computed

as

Tr =
1

2
(M1 +M2)ẋ

2 +
1

2
M2ẏ

2 +
1

2
I3θ̇

2 +
1

2
M3[(ẋ− lθ̇ sin θ)2 + (ẏ + lθ̇ cos θ)2],

Tc =
1

2
mc

˙⃗r2c +
1

2
Icθ̇

2,

Tl =
1

2
m0

˙⃗r20 +
1

2
I0θ̇

2 +
1

2

N∑
i=1

mi
˙⃗r2i .

The potential energies of the robot, the container, and the liquid can be expressed as

Ur =M2gy +M3g(y + l sin θ),

Uc = mcg[y + (l + b+ r) sin θ],

Ul = m0g[y + (l + b+ r) sin θ + h0 cos θ] +
1

2

N∑
i=1

kis
2
i

+
N∑
i=1

mig[y + (l + b+ r) sin θ + hi cos θ].

The Lagrangian can now be given as

L = Tr + Tc + Tl − Ur − Uc − Ul.

The dissipative effects due to fuel slosh are described by damping coefficients ci. A

fraction of kinetic energy of sloshing fuel is dissipated during each cycle of the motion.

The damping is included via a Rayleigh dissipation function R given by

R =
1

2

N∑
i=1

ciṡ
2
i .
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Applying Lagrange’s formulation with dissipation, the equations of motion can be

obtained as

(M̄ + m̄f )ẍ− m̄l̄(θ̇2 cos θ + θ̈ sin θ) +
N∑
i=1

mi(s̈i cos θ − 2ṡiθ̇ sin θ) = Fx, (6.96)

(M2 +M3)ÿ − m̄l̄(θ̇2 sin θ − θ̈ cos θ) +
N∑
i=1

mi(s̈i sin θ + 2ṡiθ̇ cos θ)

+ (M2 +M3 + m̄f )g = Fy, (6.97)

Ī θ̈ − m̄l̄(ẍ sin θ − ÿ cos θ)−
N∑
i=1

mi[his̈i − 2θ̇(a+ si)ṡi]

+ (M3l + m̄fa)g cos θ = τθ, (6.98)

mi[s̈i + ẍ cos θ + ÿ sin θ − hiθ̈ − (a+ si)θ̇
2] + kisi + ciṡi = 0, ∀i, (6.99)

where

M̄ =M1 +M2 +M3,

m̄f = mc +mf ,

a = l + b+ r,

m̄l̄ =M3l + m̄fa+
N∑
i=1

misi,

Ī = I3 + Ic + I0 +M3l
2 + m̄fa

2 +m0h
2
0 +

N∑
i=1

mi(h
2
i + s2i + 2sia).

Note that equations (6.99) represent N nonintegrable second-order relations and

hence they can be viewed as second order nonholonomic constraints.

Let r = [x, y, θ]′ and s = [s1, . . . , sN ]
′ be the configuration vectors of the robot and

slosh masses, respectively; and let q = [r′, s′]′ denote the (N+3)-vector of generalized

coordinates. Denote by τr = [Fx, Fy, τθ]
′ the control input vector for the PPR robot.

Then the system (6.96)-(6.99) can be written as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (6.100)

where q̇ and q̈ are (N + 3)-vectors of generalized velocities and generalized accelera-

tions, respectively, and

M=

[
Mrr Mrs

Msr Mss

]
=


M̄+m̄f 0 −m̄l̄ sin θ m′ cos θ

0 M2+M3 m̄l̄ cos θ m′ sin θ
−m̄l̄ sin θ m̄l̄ cos θ Ī −h′D(m)
m cos θ m sin θ −D(m)h D(m)

 ,
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C=

[
Crr Crs

Csr Css

]
=


0 0 −m̄l̄θ̇ cos θ−ṡ′m sin θ −m′θ̇ sin θ

0 0 −m̄l̄θ̇ sin θ+ṡ′m cos θ m′θ̇ cos θ

0 0 ṡ′D(m)(s+1a) [am′+s′D(m)]θ̇

0 0 −[am+D(m)s]θ̇ 0

 ,
G =

[
Gr

D(k)s

]
, τ =

[
τr

−D(c)ṡ

]
,

where 1 = [1, . . . , 1]′ ∈ RN and

Gr =

 0
(M2 +M3 + m̄f )g
(M3l + m̄fa)g cos θ

 .
Here m, h, k, and c denote the N -vectors of sloshing masses, distances, spring con-

stants, and damping coefficients, respectively; and for any n-vector v, D(v) denotes

the diagonal matrix diag{v1, . . . , vn}.
It is assumed that the manipulator parameters are chosen such that the symmetric

(N + 3) × (N + 3) generalized inertia matrix is positive definite for all θ ∈ S, si ∈
(−r, r), i = 1, . . . , N . It can be shown that the dynamic model (6.100) satisfy the

following property:

Property: Ṁ − 2C is a skew-symmetric matrix.

The control objective is to design feedback controllers so that the controlled PPR

accomplishes a point-to-point transfer of the liquid container, while suppressing the

slosh modes. It must be pointed out that in the above formulation it is assumed that

no control forces or torques exist that directly control the slosh dynamics. The ob-

jective is to simultaneously control the robot dynamics and the slosh dynamics using

only control effectors that act on the PPR robot; the control of the slosh dynamics

must be achieved through the system coupling. In this regard, equations (6.96)-(6.99)

model interesting examples of underactuated mechanical systems. The published lit-

erature on the dynamics and control of such systems includes the development of

theoretical controllability and stabilizability results for a large class of systems using

tools from nonlinear control theory (Reyhanoglu et al., 1999) and the development

of effective nonlinear control design methodologies (Reyhanoglu et al., 2000) that are

applied to several practical examples, including underactuated space vehicles (Krish-

nan et al., 1992; Reyhanoglu, 2003) and underactuated manipulators (Mahindrakar

et al., 2005).
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6.2.2 Controllability and Stabilizability Analysis

In this section, tools from differential geometric control theory are applied to derive

the controllability and stabilizability properties. In this context, equation (6.99) can

be considered as a second order nonholonomic constraint. To analyze this system

define

ẍ = v1, (6.101)

ÿ = v2, (6.102)

θ̈ = v3, (6.103)

s̈i = −v1 cos θ − v2 sin θ + hiv3 + (a+ si)θ̇
2 − ω2

i si − 2ζiωiṡi, ∀i. (6.104)

For simplicity, we will consider only the first two modes (i.e., i = 1, 2), however,

we will show that this is easily generalizable for any number of modes.

Let q = [x, y, θ, s1, s2]
′ denote the configuration vector and define the following

state variables

(η1, . . . , η10) = (x, y, θ, s1, s2, ẋ, ẏ, θ̇, ṡ1, ṡ2).

Then, we can rewrite (6.101)-(6.104) as

η̇1 = η6,

η̇2 = η7,

η̇3 = η8,

η̇4 = η9,

η̇5 = η10,

η̇6 = v1,

η̇7 = v2,

η̇8 = v3,

η̇9 = −v1 cos η3 − v2 sin η3 + h1v3 + (a+ η4)η
2
8 − ω2

1η4 − 2ζ1ω1η9,

η̇10 = −v1 cos η3 − v2 sin η3 + h2v3 + (a+ η5)η
2
8 − ω2

2η5 − 2ζ2ω2η10.

It can be shown that the linearization around the equilibrium configuration is com-

pletely controllable if ωi ̸= 0, ∀i. There exist solutions to the problem of controlling

the PPR robot moving a liquid filled container.

A nonlinear approach can be used to illustrate Theorem 4.3 and the relationship

between linear and nonlinear controllability for this kind of systems.
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It is clear that the drift and control vector fields are

f = ẋ
∂

∂x
+ ẏ

∂

∂y
+ θ̇

∂

∂θ
+ ṡ1

∂

∂s1
+ ṡ2

∂

∂s2
+ [(a+ s1)θ̇

2 − ω2
1s1 − 2ζ1ω1ṡ1]

∂

∂ṡ1

+ [(a+ s2)θ̇
2 − ω2

2s2 − 2ζ2ω2ṡ2]
∂

∂ṡ2
,

g1 =
∂

∂ẋ
− cos θ

∂

∂ṡ1
− cos θ

∂

∂ṡ2
,

g2 =
∂

∂ẏ
− sinx3

∂

∂ṡ1
− sin θ

∂

∂ṡ2
,

g3 =
∂

∂θ̇
+ h1

∂

∂ṡ1
+ h2

∂

∂ṡ2
.

Define q = (q1, q2) as q1 = (x, y, θ) ∈ R3 and q2 = (s1, s2) ∈ R2 such that the

movement of the liquid filled container moved by the PPR robot can be expressed

as a second-order nonholonomic system where p = 2, m = 3, and n = 5. As shown

in Theorems 4.3, 4.4 and Corollary 4.1, the small time local controllability of this

system can be studied by the properties of the matrices J and R. If we rewrite the

(n−m) nonholonomic constraints as

[
η̇9
η̇10

]
=

[
− cos η3 − sin η3 h1
− cos η3 − sin η3 h2

] v1
v2
v3

+
[

(a+ η4)η
2
8 − ω2

1η4 − 2ζ1ω1η9
(a+ η5)η

2
8 − ω2

2η5 − 2ζ2ω2η10

]
,

it is easy to identify

J1 =

[
− cos η3
− cos η3

]
, J2 =

[
− sin η3
− sin η3

]
, J3 =

[
h1
h2

]
,

R =

[
(a+ η4)η

2
8 − ω2

1η4 − 2ζ1ω1η9
(a+ η5)η

2
8 − ω2

2η5 − 2ζ2ω2η10

]
.

Note that since Ji, i = 1, . . . , 3, does not depend on (η6, . . . , η10), Theorem 4.4 is

not applicable to prove small time local controllability.

We now apply Corollary 4.1 by defining the following matrices evaluated at the
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equilibrium (ηe1, . . . , η
e
5, 0, . . . , 0):

β0 =

[
1 0
0 1

]
, β1 =

∂R

∂q̇2
β0 =

[
−2ζ1ω1 0

0 −2ζ2ω2

]
,

β2 =
∂R

∂q2
β0 +

∂R

∂q̇2
β1 =

[
ω2
1(4ζ

2
1 − 1) 0
0 ω2

2(4ζ
2
2 − 1)

]
,

b1 =


1
0
0

− cos ηe3
− cos ηe3

, b2 =


0
1
0

− sin ηe3
− sin ηe3

, b3 =


0
0
1
h1
h2

.
Then the matrix A1 is given by

(a1)1 = β0
∂R

∂q̇
b1 =

[
2ζ1ω1 cos η

e
3

2ζ2ω2 cos η
e
3

]
,

(a2)1 = β0
∂R

∂q
b1 + β1

∂R

∂q̇
b1 =

[
ω2
1(1− 4ζ21 ) cos η

e
3

ω2
2(1− 4ζ22 ) cos η

e
3

]
,

(a3)1 = β1
∂R

∂q
b1 + β2

∂R

∂q̇
b1 =

[
−4ω3

1ζ1(1− 2ζ21 ) cos η
e
3

−4ω3
2ζ2(1− 2ζ22 ) cos η

e
3

]
as

A1 =


2ζ1ω1 cos η

e
3 ω2

1(1− 4ζ21 ) cos η
e
3

2ζ2ω2 cos η
e
3 ω2

2(1− 4ζ22 ) cos η
e
3

ω2
1(1− 4ζ21 ) cos η

e
3 −4ω3

1ζ1(1− 2ζ21 ) cos η
e
3

ω2
2(1− 4ζ22 ) cos η

e
3 −4ω3

2ζ2(1− 2ζ22 ) cos η
e
3

 .
Similar expressions can be obtained for (aj)i, i = 2, 3, j = 1, . . . , 3, to construct

A2 =


2ζ1ω1 sin η

e
3 ω2

1(1− 4ζ21 ) sin η
e
3

2ζ2ω2 sin η
e
3 ω2

2(1− 4ζ22 ) sin η
e
3

ω2
1(1− 4ζ21 ) sin η

e
3 −4ω3

1ζ1(1− 2ζ21 ) sin η
e
3

ω2
2(1− 4ζ22 ) sin η

e
3 −4ω3

2ζ2(1− 2ζ22 ) sin η
e
3


and

A3 =


−2ζ1ω1h1 −ω2

1(1− 4ζ21 )h1
−2ζ2ω2h2 −ω2

2(1− 4ζ22 )h2
−ω2

1(1− 4ζ21 )h1 4ω3
1ζ1(1− 2ζ21 )h1

−ω2
2(1− 4ζ22 )h2 4ω3

2ζ2(1− 2ζ22 )h2

 .
Thus we can construct the matrix [A1 A2 A3] of rank 4 and it follows from Corollary

4.1 that the system is small time locally controllable. Note that ωi ̸= 0, ∀i, and
h1 ̸= h2 are assumed.

The result above is easily applicable to any number of modes N constructing a

matrix [A1 A2 A3] of rank 2N .
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6.2.3 Feedback Control Laws

In this section, Lyapunov-based feedback controllers are designed to achieve the

control objective. Two cases are considered; partial-state feedback that does not use

slosh state information and full-state feedback that uses both robot state and slosh

state measurements or estimations.

6.2.3.1 Partial-State Feedback

Consider the model of a PPR robot moving a liquid filler container shown in Figs.

6.23 and 6.24. The equilibrium solution corresponding to

F̄x = 0, F̄y = (M2 +M3 + m̄f )g, τ̄θ = (M3l + m̄fa)g cos θ̄

is given by x = x̄, y = ȳ, θ = θ̄, si = ṡi = 0, ∀i. Without loss of generality in our

subsequent analysis, we consider the equilibrium at the origin, i.e., x̄ = ȳ = θ̄ = 0.

To design a partial-state feedback controller that stabilizes the system (6.100) at

the origin, consider the following candidate Lyapunov function:

V =
1

2
[r′D(α)r + s′D(k)s+ q̇′Mq̇],

where α = [α1, α2, α3]
′, αi > 0, i = 1, 2, 3.

Using the fact that Ṁ − 2C is a skew-symmetric matrix, the time derivative of V

along the trajectories of (6.100) can be computed as

V̇ = ṙ′[τr −Gr +D(α)r]− ṡ′D(c)ṡ.

Clearly, the control law

τr = Gr −D(α)r −D(λ)ṙ, (6.105)

where λ = [λ1, λ2, λ3]
′, λi > 0, i = 1, 2, 3, yields

V̇ = −ṙ′D(λ)ṙ − ṡ′D(c)ṡ,

which satisfies V̇ ≤ 0. Using LaSalle’s principle (Khalil, 2002), it is easy to prove the

asymptotic stability of the origin of the closed-loop system defined by (6.100) and

the feedback control law (6.105). Note that the control parameters α and λ can be

chosen arbitrarily to achieve good closed-loop responses.

We now present the following result.

Proposition 6.1: Consider the system (6.100) with the feedback control law (6.105),

where the constant control parameters satisfy αi > 0, λi > 0, i = 1, 2, 3. Then the

closed-loop system is uniformly asymptotically stable at the origin.
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6.2 Liquid Container Transfer via a PPR Robot

6.2.3.2 Full-State Feedback

In order to apply the theory developed for underactuated mechanical systems (Rey-

hanoglu et al., 1999), rewrite the system (6.100) as

Mrr(q)r̈ +Mrs(q)s̈+ Fr(q, q̇) = τr, (6.106)

Msr(q)r̈ +Mss(q)s̈+ Fs(q, q̇) = 0, (6.107)

where

Fr(q, q̇) = Crrṙ + Crsṡ+Gr,

Fs(q, q̇) = Csrṙ +D(c)ṡ+D(k)s.

Following Reyhanoglu et al. (1999), s̈ can be expressed as

s̈ = −M−1
ss (q)[Msr(q)r̈ + Fs(q, q̇)],

and substituted into (6.106) to obtain

M̄(q)r̈ + F̄ (q, q̇) = τr,

where

M̄(q) =Mrr(q)−Mrs(q)M
−1
ss (q)Msr(q),

F̄ (q, q̇) = Fr(q, q̇)−Mrs(q)M
−1
ss (q)Fs(q, q̇).

Consequently, using the partial feedback linearizing controller

τr = M̄(q)u+ F̄ (q, q̇), (6.108)

the system (6.106)-(6.107) can be rewritten as

r̈ = u, (6.109)

s̈ = J(q)u+R(q, q̇), (6.110)

where

J(q) = −[1 cos θ 1 sin θ − h],

R(q, q̇) = −D2(ω)s− 2D(ζ)D(ω)ṡ+ (s+ 1a)θ̇2.

Here ω = [ω1, . . . , ωN ]
′ ∈ RN , ζ = [ζ1, . . . , ζN ]

′ ∈ RN , and ωi =
√

ki
mi

and ζi =
ci

2ωimi
, i = 1, . . . , N , denote the undamped natural frequencies and damping ratios,
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6.2 Liquid Container Transfer via a PPR Robot

respectively. Equations (6.109)-(6.110) have a special triangular or cascade form that

appropriately captures the important attributes of underactuated mechanical sys-

tems. Equation (6.109) defines the linearized dynamics for the 3 completely actuated

degrees of freedom of the robot. Equation (6.110) defines the dynamics of the N

unactuated degrees of freedom of the slosh masses.

To design a full-state feedback controller to stabilize the system (6.109)-(6.110)

at the origin, consider the following candidate Lyapunov function:

V =
1

2
[r′D(α)r + ṙ′D(λ)ṙ + β[ṡ′ṡ+ s′D2(ω)s− 2ṡ′Jṙ]] .

It is assumed that

ṙ′D(λ)ṙ + β[ṡ′ṡ+ s′D2(ω)s− 2ṡ′Jṙ] > 0 (6.111)

so that the function V is positive definite.

Remark 6.4: Let Q ∈ R(N+3)×(N+3) denote the symmetric matrix corresponding to

the quadratic form

q̇′Qq̇ = ṙ′D(λ)ṙ + β[ṡ′ṡ+ s′D2(ω)s− 2ṡ′Jṙ].

Clearly, this quadratic form is positive definite if and only if the leading principal

minors of the matrix Q are all positive.

Let λ1 = λ2 = λ3 = λ. Then, for N = 2 the following conditions guarantee that

the quadratic form is positive definite:

α1(λ− βh21)− β(α1 + λ) > 0,

λ[λ− β(h21 + h22)]− β[2λ− (h1 − h2)
2] > 0.

The time derivative of V along the trajectories of (6.109)-(6.110) is

V̇ = ṙ′
[
D(α)ṙ +D(λ)u− β[J̇ ′ṡ+ J ′(Ju+R)]

]
+ βṡ′(s+ 1a)θ̇2

− 2βṡ′D(ω)D(ζ)ṡ

= ṙ′[Bu+H]− 2βṡ′D(ω)D(ζ)ṡ,

where

B = D(λ)− βJ ′J,

H = β
[
−J̇ ′ṡ+ 2J ′D(ω)D(ζ)ṡ+ J ′D2(ω)s− J ′(s+ 1a)θ̇2 + ṡ′(s+ 1a)θ̇e3

]
+D(α)r.
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6.2 Liquid Container Transfer via a PPR Robot

Here e3 = [0, 0, 1]′ is the third standard basis vector in R3.

Remark 6.5: Note that B and H are given in open form as

B =


λ1 −Nβ cos2 θ −0.5Nβ sin 2θ β cos θ

N∑
i=1

hi

−0.5Nβ sin 2θ λ2 −Nβ sin2 θ β sin θ
N∑
i=1

hi

β cos θ
N∑
i=1

hi β sin θ
N∑
i=1

hi λ3 − β
N∑
i=1

h2i

 ,

H =


−β

N∑
i=1

[(ω2
i si + 2ζiωiṡi − (a+ si)θ̇

2) cos θ + ṡiθ̇ sin θ] + α1x

−β
N∑
i=1

[(ω2
i si + 2ζiωiṡi − (a+ si)θ̇

2) sin θ − ṡiθ̇ cos θ] + α2y

−β
N∑
i=1

[((a+ si)θ̇
2 − ω2

i si − 2ζiωiṡi)hi − (a+ si)ṡiθ̇] + α3θ

 .

The feedback control law

u = −B−1(q)[H(q, q̇) +D(γ)ṙ], (6.112)

where γ = [γ1, γ2, γ3]
′, γi > 0, i = 1, 2, 3, yields

V̇ = −ṙ′D(γ)ṙ − 2βṡ′D(ω)D(ζ)ṡ,

which satisfies V̇ ≤ 0. Using LaSalle’s principle (Khalil, 2002), it is easy to prove

asymptotic stability of the origin of the closed loop defined by the equations (6.109)-

(6.110) and the feedback control law (6.112). Note that the control parameters β, α, λ

and γ can be chosen arbitrarily to achieve good closed loop responses. The full-state

feedback law can be written in terms of the original control inputs using the relation

(6.108) as:

τr = −M̄(q)B−1(q)[H(q, q̇) +D(γ)ṙ] + F̄ (q, q̇). (6.113)

We now present the following result.

Proposition 6.2: Consider the system (6.100) with the feedback control law (6.113),

where the control parameters are chosen such that the constant parameters β >

0, αi > 0, λi > 0, i = 1, 2, 3, satisfy the condition given by (6.111) and γj >

0, j = 1, 2, 3. Then the closed-loop system is uniformly asymptotically stable at the

origin.
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6.2 Liquid Container Transfer via a PPR Robot

6.2.4 Simulations

The feedback control laws developed in the previous sections are implemented

here. The first two slosh modes are included to demonstrate the effectiveness of the

control laws. The physical parameters used in the simulations are given in Table 6.5.

The fluid parameters are obtained using the formulae in Dodge (2000).

Table 6.5: Physical parameters for a PPR robot and liquid container.

Parameter Value Parameter Value

M1 5 kg m0 7.95 kg

M2 10 kg m1 1.43 kg

M3 15 kg m2 0.04 kg

h0 −0.008m mc 1.5 kg

h1 0.042m Ic 0.011 kg ·m2

h2 0.113m I0 0.042 kg ·m2

k1 258N/m c1 0.038N · s/m

k2 22.5N/m c2 0.002N · s/m

l 0.25m b 0.25m

r 0.1m I3 0.3125 kg ·m2

We consider a fast point-to-point transfer of the container while suppressing the

slosh modes. Simulations correspond to the initial conditions

(x0, y0, s10 , s20) = (1, 1, 0.03, −0.01) (m),

θ0 = π/4, ẋ0 = ẏ0 = θ̇0 = ṡ10 = ṡ20 = 0.

First the partial-state feedback case is considered. The effectiveness of the Lyapunov-

based controller (6.105) is demonstrated by applying the controller to the complete

nonlinear system (6.96)-(6.99). The control parameters were chosen as

α = [25, 25, 25]′, λ = [50, 50, 50]′.

Time responses shown in Figs. 6.25-6.27 demonstrate that although the robot states

converge to the origin in about 7 seconds, the slosh modes do not converge to zero

fast enough due to insufficient damping.
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6.2 Liquid Container Transfer via a PPR Robot

Next the full-state feedback case is considered. The effectiveness of the Lyapunov-

based controller (6.113) is demonstrated by applying the controller to the complete

nonlinear system (6.96)-(6.99). Time responses shown in Figs. 6.28-6.30 correspond

to the same initial conditions. The control parameters in this case were chosen as

α = [15, 15, 15]′, λ = [6, 6, 6]′, β = 1, γ = [30, 50, 30]′.

As can be seen in the figures, the robot and the slosh states converge to the equilibrium

at zero very fast. In both cases, the force on the second prismatic joint and the torque

on the revolute joint converge to F̄y = 352.4 N and τ̄θ = 101.1 N ·m, respectively.
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Figure 6.25: Time responses of x, y and θ (Partial-state feedback).
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Figure 6.26: Time responses of s1 and s2 (Partial-state feedback).
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Figure 6.27: Time responses of Fx, Fy and τθ (Partial-state feedback).
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Figure 6.28: Time responses of x, y and θ (Full-state feedback).
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Figure 6.29: Time responses of s1 and s2 (Full-state feedback).
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Figure 6.30: Time responses of Fx, Fy and τθ (Full-state feedback).
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7

EXAMPLES: THIRD-ORDER

NONHOLONOMIC SYSTEMS

This chapter is based on papers by Rubio Hervas and Reyhanoglu (2013a,b,c,d,e).

We study two examples of systems that do not admit asymptotically stabilizing con-

tinuous static or dynamic state feedback: a planar PPR robot manipulator subject

to a jerk constraint and a point mass moving on a constant torsion curve in a three

dimensional space.

7.1 Control of a Manipulator with a Jerk Con-

straint

Jerk is defined as the time derivative of the acceleration, and thus is an interest-

ing example of third-order constraints. In the context of robot manipulators, it is

associated with rapidly changing actuator forces. Excessive jerk leads to premature

wear on the actuators, resonant vibrations in the robot’s structure, and is difficult for

a controller to track accurately; even some experiments indicate that our brain real-

izes a version of minimum-jerk in planning grasping motions for our arms (Freeman,

2012).
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7.1 Control of a Manipulator with a Jerk Constraint

7.1.1 Model Formulation

Following the ideas in Reyhanoglu et al. (1999), consider a planar PPR robot,

i.e., a robot with two prismatic and one revolute joint, moving on a horizonal plane

so that gravity can be ignored. Also assume that the joints are actuated by control

inputs (Fx, Fy, T ). An idealized model of this manipulator is shown in Fig. 7.1.

The model consists of a base body, which can translate and rotate freely in the plane,

and a massless arm at the tip of which the end-effector is attached. The base body is

connected to the massless arm. The Cartesian position (xB, yB) of the base body as

well as the angle θ through which the base body is rotated can be controlled. Assume

that the end effector is required to track a trajectory such that the transverse jerk

component is zero.

Let (x, y) denote the end-effector position of the manipulator. Also, let the base

body have massM and rotational inertia I, the end-effector and payload combination

have mass m, and let l be the length of the massless arm.

yB

xB

M

Fy

Fx

θ

m

x

y

T

Figure 7.1: Simplified model of a PPR manipulator.

The control problem is to move the manipulator between any given initial configu-

ration (x0, y0, θ0) and final configuration (xf , yf , θf ) such that the resultant transverse
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7.1 Control of a Manipulator with a Jerk Constraint

jerk at the end-effector is zero, i.e.,

...
y =

...
x tan θ, ∀t ≥ 0.

For simplicity, assume (xf , yf , θf ) = (0, 0, 0) and θ ∈ (−π/2, π/2).
We use the ideas introduced previously to formulate the above problem as a non-

linear control problem. Let (Fx, Fy, T ) ∈ R3 denote the vector of control inputs

applied to the base body, where (Fx, Fy) are the force inputs in the x and y direction,

respectively, and T is the torque input. The Lagrangian of the system is given by

L =
1

2
(M +m)(ẋ2 + ẏ2) +

1

2
(I +Ml2)θ̇2 +Mlθ̇(ẋ sin θ − ẏ cos θ).

The virtual work can be computed as

δW = Fxδ(x− l cos θ) + Fyδ(y − l sin θ) + Tδθ.

Following the development in the previous chapters, the constrained equations of

motion can be written as

(M +m)(ẍ cos θ + ÿ sin θ) +Mlθ̇2 = Fx cos θ + Fy sin θ, (7.1)

Ml(ẍ sin θ − ÿ cos θ) + (I +Ml2)θ̈ = T + l(Fx sin θ − Fy cos θ), (7.2)

together with the constraint
...
y =

...
x tan θ. (7.3)

It is easy to check that (7.3) satisfies Definition 2.1 and hence represents a non-

integrable jerk relation, which implies that the transverse jerk component of the

end-effector is zero. This condition can be viewed as a design constraint.

7.1.2 Controllability and Stabilizability Analysis

In this section, we consider the third-order nonholonomic constraint system (7.1)-

(7.2) and study its control-theoretic properties.

Assuming θ ∈ (−π/2, π/2), equation (7.3) can be expressed as

...
x = u1, (7.4)
...
θ = u2, (7.5)
...
y = u1 tan θ, (7.6)

Note that we have used

Fy = (M +m)ÿ. (7.7)
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so that the original control inputs can be recovered from the relations

Ḟx = (M +m)u1 +Ml
θ̇

cos θ
(2θ̈ + θ̇2 tan θ), (7.8)

Ṫ = (I +Ml2)u2 −mlθ̇(ẍ cos θ + ÿ sin θ)−Ml2θ̇(2θ̈ tan θ +
θ̇2

cos2 θ
). (7.9)

Now the control problem is reduced to designing controls u1 and u2 for the system

(7.4)-(7.6). Once these controls are designed, one can use relations (7.7), (7.8) and

(7.9) to determine the controls Fy, Fx and T , respectively.

Let q = [x, θ, y]′ denote the configuration vector and define by

(q, q̇, q̈) ∈ M = R× (−π/2, π/2)× R× R3 × R3

the state. Clearly, the set of equilibrium solutions corresponding to u = 0 is given by

Me = {(q, q̇, q̈) ∈ M | q̇ = q̈ = 0}.

The control system can be expressed in the usual form (4.10) such that the drift and

control vector fields are given by

f = ẋ
∂

∂x
+ θ̇

∂

∂θ
+ ẏ

∂

∂y
+ ẍ

∂

∂ẋ
+ θ̈

∂

∂θ̇
+ ÿ

∂

∂ẏ
,

g1 =
∂

∂ẍ
+ tan θ

∂

∂ÿ
, g2 =

∂

∂θ̈
.

Note that for this system p = n = 3 and m = 2.

Since R ≡ 0, there is no time-invariant continuous feedback law which asymp-

totically stabilizes the system to a given equilibrium solution (qe, 0, 0). On the other

hand, the space spanned by the vectors

g1, g2, [f, g1], [f, g2], [f, [f, g1]], [f, [f, g2]], [g2, [f, [f, g1]]],

[f, [g2, [f, [f, g1]]]], [f, [f, [g2, [f, [f, g1]]]]]

has dimension 9 at any (q, q̇, q̈) ∈ M and hence the system is strongly accessible.

Moreover, since the bad brackets of order 1, 3, and 5 are zero at any equilibrium

solution (qe, 0, 0) ∈ Me, Sussmann’s sufficient conditions for small time local control-

lability (Sussmann, 1987a) are satisfied. Clearly, the system is a real analytic sys-

tem, and therefore there exist both time-invariant piecewise analytic feedback laws

(Sussmann, 1979) and time-periodic continuous feedback laws (Coron, 1990) which

asymptotically stabilize (qe, 0, 0).
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We now state the following results which characterize the controllability and sta-

bilizability properties of the constrained manipulator dynamics.

Proposition 7.1: Let (qe, 0, 0) ∈ Me denote an equilibrium solution. The following

hold for the constrained manipulator dynamics described by equations (7.4)-(7.6).

1. The system is strongly accessible since the constraint (7.3) is third-order non-

holonomic.

2. The system is small time locally controllable at (qe, 0, 0) since the sufficient

conditions for small time local controllability are satisfied.

3. There exist both time-invariant piecewise analytic feedback laws and time-

periodic continuous feedback laws which asymptotically stabilize (qe, 0, 0).

4. There is no time-invariant continuous feedback law which asymptotically stabi-

lizes the closed loop to (qe, 0, 0).

The controllability properties given in Proposition 7.1 guarantee the existence of

the solution to the problem of controlling the manipulator with zero jerk at its end.

7.1.3 Feedback Control Laws

A control strategy for the system (7.4)-(7.6) is proposed in four steps as follows:

Step 1) Drive the system to a nonzero equilibrium such that tan θe ̸= 0 in finite

time using

u1 = 0,

u2 = −l1 | θ − θe |β1 sign(θ − θe)− l2 | θ̇ |β2 signθ̇ − l3 | θ̈ |β3 signθ̈,

Step 2) Drive the y variable to zero while keeping the θ = θe using

u1 = − 1

tan θe
(k1 | y |α1 sign y + k2 | ẏ |α2 sign ẏ + k3 | ÿ |α3 sign ÿ),

u2 = −l1 | θ − θe |β1 sign (θ − θe)− l2 | θ̇ |β2 sign θ̇ − l3 | θ̈ |β3 sign θ̈,

Step 3) Drive the θ variable to zero while keeping the y ≡ 0 using

u1 = −k1 | y |α1 sign y − k2 | ẏ |α2 sign ẏ − k3 | ÿ |α3 sign ÿ),

u2 = −l1 | θ |β1 sign θ − l2 | θ̇ |β2 sign θ̇ − l3 | θ̈ |β3 sign θ̈,

100



7.1 Control of a Manipulator with a Jerk Constraint

Step 4) Drive the x variable to zero while keeping the θ ≡ 0 using

u1 = −k1 | x |α1 signx− k2 | ẋ |α2 sign ẋ− k3 | ẍ |α3 sign ẍ),

u2 = −l1 | θ |β1 sign θ − l2 | θ̇ |β2 sign θ̇ − l3 | θ̈ |β3 sign θ̈.

Here ki, li, αi, βi satisfy the sufficient conditions of Bhat and Bernstein (2005) for

the finite-time stability of triple integrators. Note that Step 1 prevents from dividing

by zero in the next steps. On the other hand, if the initial condition is one such that

θ ̸= 0, then Step 1 is not needed.

7.1.4 Simulations

We now illustrate the previous ideas through a numerical simulation. The physical

parameters used in the simulations are given in Table 7.1.

Table 7.1: Physical parameters for a PPR robot manipulator.

Parameter Value

M 10 kg

m 2 kg

l 1m

I 0.16 kg ·m2

Assume an initial condition

(x0, y0) = (1,−1) (m), θ0 = π/4 (rads),

ẋ0 = ẍ0 = ẏ0 = ÿ0 = θ̇0 = θ̈0 = 0.

The control architecture is implemented here with

(k1, k2, k3) = (l1, l2, l3) = (1.0, 1.5, 1.5),

(α1, α2, α3) = (β1, β2, β3) = (0.5, 0.6, 0.75).

Time responses are shown in Figs. 7.2-7.4. As can be seen in the figures, the

robot converges to the equilibrium at zero in 30 s. Resultant forces and torques

do not exceed 10 N and 5 N ·m, respectively. Note also that the jerk constraint is

satisfied at any point including the discontinuities.
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Figure 7.2: Time responses of x, y and θ.
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Figure 7.3: Time responses of u1 and u2.
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Figure 7.4: Time responses of Fx, Fy and T .

7.2 A Point Mass Moving on a Constant-Torsion

Curve

Consider a point mass M moving on a curve of constant torsion in a three dimen-

sional space. The parametric equation of a curve in R3 can be expressed as r⃗ = r⃗(t),

where t refers to any parameter, typically time. Assuming that the parametrization

is regular and that the curvature does not vanish, the torsion can be computed by

the formula

τ =
( ˙⃗r × ¨⃗r) ·

...
r⃗

∥ ˙⃗r × ¨⃗r∥2
, (7.10)

which can be expressed in a Cartesian reference frame with r⃗(t) = x(t)⃗i+y(t)⃗j+z(t)k⃗

as

τ =

...
x (ẏz̈ − ÿż) +

...
y (ẍż − ẋz̈) +

...
z (ẋÿ − ẍẏ)

(ẏz̈ − ÿż)2 + (ẍż − ẋz̈)2 + (ẋÿ − ẍẏ)2
. (7.11)

Thus, a curve with constant torsion (τ = c) is a constraint of the form

...
x (ẏz̈− ÿż)+

...
y (ẍż−ẋz̈)+...

z (ẋÿ−ẍẏ) = c[(ẏz̈− ÿż)2+(ẍż−ẋz̈)2+(ẋÿ−ẍẏ)2]. (7.12)
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The control problem is to move the point mass between any given initial configuration

(x0, y0, z0) and final configuration (xf , yf , zf ) such that the constant torsion condition

(7.12) is satisfied. We assume that the mass is actuated by a force F = [Fx, Fy, Fz]
′.

Assuming ẋÿ − ẍẏ ̸= 0, equation (7.12) can be expressed as

...
z = J1

...
x + J2

...
y +R, (7.13)

where

J1 = − ẏz̈ − ÿż

ẋÿ − ẍẏ
, J2 = − ẍż − ẋz̈

ẋÿ − ẍẏ
, R = c

(ẏz̈ − ÿż)2 + (ẍż − ẋz̈)2 + (ẋÿ − ẍẏ)2

ẋÿ − ẍẏ
.

The Lagrangian of the system is given by

L =
1

2
M(ẋ2 + ẏ2 + ż2)−Mgz.

Denote by q = [x, y, z]′ the configuration vector and partition it as q1 = [x, y]′

and q2 = z. Then equation (3.21) results in

Mq̈1 + J ′M(q̈2 + g) = u1 + J ′u2, (7.14)

where J = [J1, J2], u1 = [Fx, Fy]
′, and u2 = Fz.

Using a right inverse with

C(q, q̇, q̈) =

[
1

J(q, q̇, q̈)

]
,

we can solve (7.14) for u as[
u1
u2

]
=M

[
(1 + J ′J)−1 J ′

1+JJ ′
J

1+JJ ′
JJ ′

1+JJ ′

] [
q̈1

q̈2 + g

]
. (7.15)

By defining v =
...
q 1 together with the state variables

(η1, . . . , η9) = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈),

the system can be expressed in a control-affine form as

η̇ = f(η) + g(η)v, (7.16)

where f(η) = [η4, η5, η6, η7, η8, η9, 0, 0, R]
′, v = [v1, v2]

′ and

g(η) =

 1 0
0 1
J1 J2

.
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7.2 A Point Mass Moving on a Constant-Torsion Curve

Note that the drift and control vector fields are given by

f = ẋ
∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
+ ẍ

∂

∂ẋ
+ ÿ

∂

∂ẏ
+ z̈

∂

∂ż
+R, (7.17)

g1 =
∂

∂ẍ
+ J1

∂

∂z̈
, g2 =

∂

∂ÿ
+ J2

∂

∂z̈
. (7.18)

The control design strategy would consist of first constructing the control input v

using (7.16) and then deriving the control inputs u1 and u2 (or Fx, Fy and Fz) using

(7.15).

It can be shown that if the constant torsion is not zero the system (7.16) satisfies a

number of controllability and stabilizability properties which guarantee the existence

of solutions for the above motion planning problem. If the torsion of a regular curve

with non-vanishing curvature is identically zero, then this curve belongs to a fixed

plane defined by the initial condition and, therefore, the constraint (7.12) has a first

integral. That is, the trajectory cannot leave the fixed plane and thus points that

do not lie on the plane cannot be reached. Also note that a curve with constant

curvature and constant torsion is a helix.
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8

CONCLUSIONS AND FUTURE

RESEARCH

The nonlinear modeling problem for systems with higher-order nonholonomic

constraints has been studied using tools from theoretical mechanics. A number of

control-theoretic properties such as nonintegrability, accessibility, controllability, and

stabilizability have been derived using tools from differential geometry. We have stud-

ied a special class of systems with higher-order nonholonomic constraints. Specific

assumptions have been introduced that define this class, which includes important

models of robotic system examples. One of the main results of the dissertation is

the construction of a discontinuous nonlinear feedback controller for which the closed

loop equilibrium at the origin is made globally attractive. The control construction

approach has been described in detail, and a proof of attractiveness has been pre-

sented. The applicability of the theoretical development has been illustrated through

several examples including second and third order nonholonomic constraints: space

vehicles with multiple slosh modes, planar PPR robot manipulators moving liquid

containers, a planar PPR robot manipulator subject to a jerk constraint, and a point

mass moving on a constant torsion curve in a three dimensional space.

The many avenues considered for future research include the development of more

general control algorithms applicable to such systems as well as the design of control

laws that achieve robustness, insensitivity to system and control parameters, and

improved disturbance rejection. New examples present promising avenues of research.

Future research directions for the examples studied in this dissertation include:
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1. Space vehicle with multiple slosh modes: The design of nonlinear control ob-

servers to estimate the slosh states. Problems involving multiple propellant

tanks. The control system design in this dissertation is based on the assump-

tion that the axial acceleration term of the spacecraft is not significantly affected

by small gimbal deflections, pitch changes, and fuel motion so that it remains

constant. Relaxing this assumption presents another promising avenue of re-

search.

2. Point-to-point liquid container transfer: The design of nonlinear control ob-

servers to estimate the slosh states. Problems involving link and joint flexibili-

ties, multiple liquid containers, and three dimensional transfers offer challenges

that need to be overcome.

3. Planar PPR robot manipulator subject to a jerk constraint: Problems involving

link and joint flexibilities, multiple end-effectors, and three dimensional maneu-

vers represent new research directions.

4. Point mass moving on a constant torsion curve in a three dimensional space:

The study of its theoretic-control properties dealing with the singularities issues

they present as well as the development of feedback control laws.
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APPENDIX

Consider the system

s̈+ f (t) ṡ+ g (t) s = 0, (8.1)

where g (t) ∈ C1, |f (t)| < M1, |g (t)| < M2, |ġ (t)| < M3.

Theorem A.1: If g (t) > ε21 and p (t) = 1
2
ġ(t)
g(t)

+ f (t) > ε22, then the origin is globally

uniformly asymptotically stable.

Proof: Given the conditions above, the following bounds can be set

−M1 < f (t) < M1, α
2
1 < g (t) < M2,

−M3 < ġ (t) < M3, ε
2
2 < p (t) <

M3

2ε21
+M1.

Consider the following candidate Lyapunov function

V (z, t) =
1

2

(
s2 + 2β

sṡ√
g (t)

+
ṡ2

g (t)

)
,

where z = [s ṡ]T is the state vector and β is a positive constant. This function can

be rewritten in a matrix form as

V (z, t) =
1

2

[
s ṡ

] [ 1 β√
g

β√
g

1
g

][
s
ṡ

]
,

which is positive definite if β < 1.

Recalling that a positive definite quadratic function zTPz satisfies

λmin (P ) z
T z ≤ zTPz ≤ λmax (P ) z

T z,

where

λmin (P ) =
1 + g

2g

[
1−

√
1− 4g

1− β2

(1 + g)2

]
,
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λmax (P ) =
1 + g

2g

[
1 +

√
1− 4g

1− β2

(1 + g)2

]
,

and thus the following hold:

γ1∥z∥2 ≤ V ≤ γ2∥z∥2,

where γ1 and γ2 are positive constants.

Taking the time derivative of V (z, t) yields

V̇ = − β√
g (t)

[
g (t) s2 + p (t) sṡ+

(
p (t)

β
√
g (t)

− 1

)
ṡ2

]
,

which can be rewritten as

V̇ = − β
√
g

[
s ṡ

] [ g p
2

p
2

p
β
√
g
− 1

] [
s
ṡ

]
< 0.

Clearly, V̇ < 0 if

β <
16ε51ε

2
2

16M2ε41 + (M3 + 2ε21M1)
2 .

Note that V̇ satisfies

V̇ ≤ − β
√
g
λmin (Q) ∥z∥2.

It can be shown that if

β < min

{
1,

16ε51ε
2
2

16M2ε41+(M3+2ε21M1)
2

}
,

then, using Theorem 4.10 of Khalil (2002), it can be concluded that the origin is

exponentially stable. Hence, the following result can be stated.

Corollary A.1: There exist α, β > 0 such that

|s| < βe−α(t−t0), |ṡ| < βe−α(t−t0), ∀t ≥ t0.

The following result is a modified version of that presented in Reyhanoglu et al.

(2000).

Lemma A.1: Consider a system which is described by the linear time-varying dif-

ferential equation

ẋ = (A1 (t) + A2 (t))x+H (t) , x ∈ Rn. (8.2)

If the matrix A1 (t) is exponentially stable and there exist positive constants λ0,

λ1 and λ2 such that
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(i)
∫∞
0

∥A2 (t)∥dt ≤ λ0, (ii) ∥H (t)∥ ≤ λ1e
−λ2t, ∀t ≥ 0,

then all the solutions of (8.2) approach zero exponentially as t goes to ∞.
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