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CHAOS TO PERIODICITY IN NONLINEAR PHYSICAL
SYSTEMS”

ALMAS U. ABDULLA




Universal Law for the Transition from
Chaos to Periodicity in Nonlinear

Physical

Armas U.

Systems

ABDULLA

Palm Bay High School, Melbourne, Florida 32901
Email:abdulla@fit.edu

Abstract

This paper investigates the Chaos
phenomena in nonlinear physical
systems described by differential
equations. A prototypic system
1s the Duffing oscillator, described
by the nonlinear second order dif-
ferential equation which presents
a mathematical model of the mo-
tion performed by a plane pen-
dulum under a periodic external
force. By using numerical and
phase space analysis, the transi-
tion from periodic to chaotic be-
havior (and wvice versa) is ana-
lyzed. By changing the damp-
ing parameter k, the transition
to chaos through the bifurcations
of limit cycles is demonstrated.
Numerical results show that after
four successful bifurcations, the
16-cycle unexpectedly exchanges
with a stable 3-cycle, which fur-

ther bifurcates to a 6- and 12-
cycle, until the chaotic strange at-
tractor s reached. Further de-
crease of the damping parame-
ter prouvides the transition from
chaos to odd periodic limit cy-
cles. The stable 9-, 7- and 5-
pertodic ltmit cycles successfully
lead the motion, the latter bifur-
cates to 10-cycle, and further to
15-cycle, which again leads to a
chaotic strange attractor. Finally,
for small values of the damping
parameter, a stable 1-limit cycle
emerges from the chaos.

1 Introduction

This paper investigates the Chaos
phenomena in nonlinear physical
systems described by differential
equations. A prototypic equation
is Duffing’s oscillator, a driven,



damped, and anharmonic oscilla-
tor described by the following sec-
ond order differential equation:

itki—x+a® = f(t),t >0, (1.1)
where

f(t) = acos(t).

The equation (1.1) presents a
mathematical model for the phys-
ical problem of the oscillations of
the plane pendulum ([5]). The
pendulum consists of a heavy
small diameter ball suspended on
a rigid and very light rod (Fig.1).

mg

Figure 1. Forced pendulum ([5]).

The rod can rotate around the
horizontal axis. The position of
the ball is determined by a single
time-dependent coordinate, for in-
stance, the angular displacement
denoted as z(t).  Accordingly,
the first derivative &, denotes the
velocity of the pendulum, while
the second derivative , denotes

the acceleration of the pendulum.
The motion of the ball is ruled by
gravitation, damping forces (fric-
tion, etc.), and the external peri-
odic force. The Duffing equation
(1.1) can be derived by a straight-
forward application of Newton’s
second law. Duffing’s equation
is often regarded as a precise ap-
proximation of numerous techni-
cal devices ([5, 6]). Consider an
initial-value problem for the equa-
tion (1.1) under the condition

ac(O) = Ty, x(O) = Yo, (1'2)

where x, is an initial position,
and 1y, is an initial velocity of
the pendulum. By introducing a
new function y = z, the problem
(1.1),(1.2) may be replaced with
the following initial value problem
for the system of two equations:

=1y, z(0) = x,, (1.3)

~ky +x —a” + f(t),

y(0) = . (1.4)
The function f(t) = acos(t) por-
trays an external force with period

T = 27. For any fixed value of the
damping parameter k, initial posi-

y:

tion x,, and initial velocity ,, the
solution (x(t),y(t)) of the system

(1.3),(1.3) is described as a con-
tinuous curve in the phase plane



(x,&). T = 2m presents natural
time step, and the intermittent so-
lution with period 27N, N be-
ing an integer, describes a closed
curve on the phase plane of period
27N, that is to say, x(t + 27 N) =
z(t), y(t + 2 N) = y(t). This so-
lution is called an N-cycle. The
main question addressed is to un-
derstand how the asymptotic be-
havior of (z(t),y(t)) as t — oo,
depends on the damping parame-
ter k. 1If for a certain range of
initial values, the solution of the
Duffing’s system settles down on
an N — cycle, then the latter is
called a period N attractor, or N-
limit cycle. We will use term sta-

ble N-cycle.

It is well-known that for large
values of k, there is a period 1
attractor, or 1-limit cycle. When
k decreases, this 1-limit cycle
may become repelling or unsta-
ble, and accede to other m-limit
cycles. However, an attractor is
not necessarily a periodic and reg-
ular closed curve on the phase
plane. In the time frame of
the 1960s, Japanese mathemati-
cian Ueda made a remarkable dis-
covery of, so called, strange at-
tractors ([2]). He discovered
that, for certain values of the
damping parameter k, all solu-
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tions asymptotically converge to
a strange non-periodic, irregular
solution which makes random-like
oscillations. Ueda’s ”strange at-
tractor” portrayed the solution
unpredictable in time, and ex-
tremely sensitive to initial values.
In view of these properties, it is
called a chaotic. A Poincare map
of Ueda’s strange attractor is pre-
sented in Figure 20 of the Appen-
dix. This discovery opened a new
chapter in the research of dynami-
cal systems with continuous time.

2 Hypothesis and Pro-
cedures

The main hypothesis of this paper
is that there is a universal tran-
sition route from periodicity to
chaos and vice versa, from chaos
to periodicity. After a chaotic
regime, all odd periodic cycles
are distributed in decreasing or-
der. We aim to find whether there
exist universal constants, which
qualitatively describe this univer-
sal transition route. Finding this
universal law and its related con-
stants will be a great advantage in
the prediction of the behavior of a
chaotic systems described by non-
linear differential equations.

Our procedure consists of the



Step 1.

Step 4.

following algorithm:

Find how the asymp-
totic behavior of the trajec-
tory of the system (1.3), (1.4)
depends on the initial point
(0,Yo) for large values of the
damping parameter k. This
step will present a classifica-
tion of the possible limit cy-
cles for different ranges of the
initial values.

Step 2. Choose an initial value

as a typical point from each
range to investigate the de-
pendence of limit cycles on the
damping parameter.

Step 3. Provided that the bi-

furcation of the limit cycles
is observed, for an arbitrary
positive integer n, signify by
k, the value of the damping
parameter when the 2"~ 1. T-
periodic limit cycle bifurcates
to a 2" - T-periodic limit cycle
(remember that T = 27).

Having three succes-
sive values k,,, K, 11, knio, cal-
culate the convergence rate of
the damping parameter as

kn - kn—i—l

kn—|—1 - kn—i—?

5, = (2.1)

It is expected that o, will

4

Step 5.

Step 9.

be near the universal constant
4.6629... (see [1]) for large n

Consider the formula
(2.1), where n is replaced with
n + 1, and by substituting 9,
for 0,1, predict the value of
k.3 as

k _ (1 + 5n)kn+2 - kn—H
n+3 — 5

(2.2)

Step 6. If accuracy is achieved,

go to step 7. Otherwise re-
place n with n+1, and go to
step 4.

Step 7. Having the value k.,

when the limit cycle becomes
chaotic, decrease the value k
slowly, and observe whether
the transition from a chaotic
strange attractor to another
periodic limit cycle occurs.

Step 8. By changing the damp-

ing parameter near the chaotic
regime, search for the limit cy-
cles with an odd period (2n +
1)T and signify the related
value of the damping parame-
ter as \,.

Attempt to find the

order of the odd limit cycles,
and modify steps 4-6 to find



the convergence rate of the pa-
rameter values A, to possible
universal constants.

3 Description of Re-
sults

We demonstrate the results when
the external force is chosen as
f(t) = 0.3cost. It should be
noted that the choice of the con-
stant as specifically 0.3 has no
qualitative influence on the de-
scribed results. For all large val-
ues of the damping parameter k,
the solution of the Duffing’s sys-
tem (1.3) converges to a stable 1-
cycle. There are two symmetric
1-cycles, each being attractive for
a particular range of initial values.
In Figure 2, a stable 1-cycle is pre-
sented with the initial value cho-
sen as (1,0), while the damping
parameter £k = 0.43. While de-
creasing the damping parameter,
the 1-cycle becomes unstable and
repelling. It eventually bifurcates
to a 2-cycle (Figure 3). This bifur-
cation is repeated by further de-
creasing k, and a successive bifur-
cation to the 4-, 8 and 16-cycles
is observed (Figures 4-6). How-
ever, the bifurcation doesn’t con-
tinue ad infinitum. By slowly de-
creasing k, we observe that the

16-cycle unexpectedly transforms
into a stable 3-cycle (see Figure 7).
Moreover, by further decreasing k,
we find that the 3- and 16-cycles
repeatedly exchange each other.

0.4
0.2
\J

Figure 2. Stable 1-cycle,
(Zo, Yo) = (1,0), k = 0.43.

Figure 3. Stable 2-cycle,
(o, Y0) = (1,0), k = 0.425.

A similar route is calculated for
the different ranges of the ini-
tial values. In Figures 21-26 of
the Appendix, a similar bifurca-
tions route between the 1- and
16-cycles with successive exchange
with the 3-cycle is presented with
the initial value being chosen as
(-1,0).  We calculated the ap-
proximate convergence rate of the



damping parameter by using the
formula (2.1) of Step 4 of the al-
gorithm from §2, according to four
successive bifurcations between 2-
and 16-cycles. For both different
ranges of initial values the conver-
gence rate comes close to Feigen-
baum’s universal constant & =
4.6692... (see Table 1 and Table 2
in Appendix). One could expect
that, as in descrete models with a
quadratic maximium, this bifurca-
tion continues ad infinitum. How-
ever, 1t is not.

Figure 4. Stable 4-cycle,
(0, Y0) = (1,0), k = 0.418.

Figure 5. Stable 8-cycle,
(0, Y0) = (1,0), k = 0.416.

Figure 6. Stable 16-cycle,
(o, Y0) = (1,0), k = 0.414898.

Figure 7. Stable 3-cycle,
(0,Y0) = (1,0), k = 0.41459176.

Astoundingly, after the 16- cy-
cle becomes repelling, a stable 3-
cycle emerges (See Figure 7 and
Figure 26 of Appendix). More-
over, by further reducing k, the 3-
and 16- cycle exchange with each
other. By decreasing the damping
parameter further, the stable 3-
cycle becomes repelling, and bifur-
cates to a 6- cycle (See Figure 8).
Further reduction of the damping
parameter leads to a 12- cycle (See
Figure 9). It is expected that in



this range of the damping para-
meter, periodic 3 - 2"-cycles follow
each other until a chaotic strange
attractor appears (See Figure 10).
It should be pointed out that up
to this point, the dynamics of
limit cycles in two different ranges
of initial values evolve indepen-
detly from each other. However,
as one see from Figure 10, the
chaotic strange attractor expands
out of half plane, and accordingly,
two ”symmetric” strange attrac-
tors correspond with each other.
As a result, the trajectory starts
jumping randomly between those
overlapping attractors. This cre-
ates a unique strange attractor,
which is a unification of two over-
lapping ones (Figure 11).

Stable 6-cycle,
(0, Y0) = (1,0), k = 0.41336.

Figure 8.

Figure 9. Stable 12-cycle,
(0, Y0) = (1,0), k = 0.41275.

Figure 10. Chaotic attractor,
(o, Y0) = (1,0), k = 0.405.

Figure 11. Overlapping chaotic
attractor, (z,,v,) = (1,0),
k = 0.38.



By further reducing the damp-
ing parameter, a chaotic strange
attractor again leads to a periodic
limit cycle. We observe the tran-
sition from Chaos to odd periodic
limit cycles. In Figure 12, a stable
9- cycle is presented.

Stable 9 Cycle,
(1,0), k = 0.35.

Figure 12.

(T, Yo) =

Further decrease of k, provides a
transition from the 9- to a 7- cycle.
The interesting transition mecha-
nism is demonstrated in Figure 13.
By loosing two loops, the stable 9-
cycle smoothly transforms into a
stable 7-cycle (Figure 14).

Figure 13. Transition from 9- to
7-cycle, (z,,v0) = (1,0), k = 0.34.

Figure 14. Stable 7 Cycle,
(Zo, ¥o) = (1,0), k = 0.325.

In a similar way, stable 7-cycle
transforms to stable 5-cycle (Fig-

ure 15).

Figure 15.  Stable 5 Cycle,
(0, Y0) = (1,0), k = 0.299.

It was expected that the stable
5-cycle would be transformed into
a stable 3-cycle by completing a
series of all odd cyles. Instead, the
5- cycle unexpectedly bifurcates
to a stable 10-cycle (Figure 16),
which further tansforms to a sta-
ble 15-cycle (Figure 17). Further
decrease of k, leads to a chaotic
strange attractor (Figure 18).



Figure 16. Stable 10 Cycle, Figure 19. Stable 1 Cycle,
(%o, o) = (1,0), k = 0.296. (o, o) = (1,0), k = 0.13..

Finally, for small values of the
damping parameter, a stable 1-
limit cycle emerges again from
Chaos(Figure 19).

Figure 17. Stable 15 Cycle,
(0, Y0) = (1,0), k = 0.295.

Figure 18. Chaos, (z,,1,) =
(1,0), k = 0.293..
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Figure 22. Stable 2-cycle,
(o, Yo) = (—1,0), k = 0.425.

Figure 20. Ueda’s strange attrac-
tor.

Figure 23. Stable 4-cycle,
(0, Yo) = (—1,0), k = 0.418.

Figure 21. Stable 1-cycle,
(%o, Yo) = (—1,0), k = 0.43.

Figure 24. Stable 8-cycle,
(0, Y0) = (—1,0), k = 0.416.
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Figure 25.

Stable 16-cycle,

(o,Y0) = (—1,0), k = 0.414896.

Figure 26.
(o,Y0) = (—1,0), k = 0.414891.
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