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CIGSeS and CIGS2 Thin Film Solar Cells on Flexible Foils for Space 
Power 

Neelkanth G. Dhere, Sachin S. Kulkarni, Vinay V. Hadagali, Shirish A. Pethe, Parag S. 
Vasekar, Ashwani Kaul, Bhaskar Kumar and Santosh Khatri  
Florida Solar Energy Center, University of Central Florida

1679 Clearlake Road, Cocoa, FL 329225703 

The objective of the research is to develop flexible, lightweight, radiation-
resistant, high-specific-power, highly efficient CuIn1-xGaxSe2-ySy (CIGSeS) and CuIn1-

xGaxS2 (CIGS2) thin-film solar cells for space electric power. The near optimum 
bandgap, potential for higher specific power, and superior radiation resistance make this 
technology an ideal candidate for space electric power. The superior radiation resistance 
of CIGSeS thin-film solar cells relative to the conventional silicon and gallium arsenide 
single-crystal cells in the space radiation environment would extend mission lifetimes 
substantially. The conventional rigid Si and GaAs cells must be folded in an accordion 
style for deployment space. This can cause problems of opening up and folding of the 
solar array as has happened recently with the International Space Station. On the other 
hand, the flexible solar cells and modules can be packaged and rolled out more easily. 
The stainless steel and titanium foil substrate materials are capable of withstanding high 
temperatures required for preparing good quality CIGSeS absorber layer. They also do 
not sag easily and hence do not require rigidizing as is the case with plastic sheet 
substrates.

The CIGSeS absorber film is prepared by selenization/sulfurization of DC 
magnetron sputter-deposited CuGa, In metallic precursors on 10 cm x 10 cm metallic foil 
substrate coated with molybdenum back contact layer. CdS heterojunction partner is 
deposited by chemical bath deposition. Transparent and conducting bilayer of intrinsic 
ZnO and aluminum doped ZnO:Al is deposited by RF magnetron sputtering. Cells are 
completed by depositing Ni/Al front contact fingers by thermal evaporation. The 
sputtering technique utilized in the preparation of solar cells provides an added advantage 
of facilitating easy scale-up of the laboratory size cells for economic large-area 
manufacture by the roll-to-roll process. Chemical composition, crystallographic structure 
and morphology of  CIGSeS thin films are analyzed by energy dispersive spectroscopy, 
Auger electron spectroscopy, X-ray diffraction, scanning electron microscopy and 
transmission electron microscopy.  The photovoltaic properties of completed cells are 
studied by measurement of current-voltage characteristics and quantum efficiency. Best 
efficiencies of 10.4% under AM 1.5 conditions and 8.84% under AM 0 conditions were 
achieved on small-area CIGS2 thin-film solar cells.  
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Abstract

The work focuses on development of CuIn1-

xGaxSe2-ySy and CuIn1-xGaxS2 thin film solar cells on 
lightweight and flexible stainless steel (SS) or titanium 
foils as substrates. The near optimum bandgap, 
potential for higher specific power, and superior 
radiation resistance make this technology an ideal 
candidate for space electric power. The objective of 
the present research is to develop lightweight, 
radiation-resistant, highly efficient, high-specific-
power CIGS thin-film solar cells for space electric 
power. DC magnetron sputtered metallic precursors 
CuGa/In are selenized/sulfurized. CdS, heterojunction 
partner, is deposited by chemical bath deposition. 
Intrinsic ZnO and aluminum doped ZnO are deposited 
by RF magnetron sputtering followed by Ni/Al front 
contact fingers by thermal evaporation. Best efficiency 
of 8.84% under AM 0 conditions and 10.4% under AM 
1.5 conditions was achieved on 2.5 cm x 2.5 cm 
stainless steel substrate from a cell of 0.4 cm2 total 
area. 

1. Introduction 

Among the thin film material studied for solar cell 
applications, CuIn1-xGaxSe2 (CIGS) has achieved the 

highest conversion efficiency of 19.5% [1]. It is a 
direct bandgap semiconductor having a coefficient of 
absorption of 3.6×105 /cm [2]. The electrically inactive 
point defects existing in the CIGS material provide 
inherent p-type conductivity [3]. CIGS solar cells have 
shown high radiation resistance, compared to 
crystalline silicon solar cells [4] making it an ideal 
material for space applications. In comparison to the 
traditional use of glass substrates, CIGS deposited on 
thin metal foils advantages of economical large scale 
roll-to-roll processing, flexibility for very thin foils 
and improved device cooling under concentration and 
[5]. Post sulfurization of CIGS is promising for 
bandgap engineering. Furthermore, it has been 
reported that the controlled incorporation of sulfur into 
CIGS films reduces the carrier recombination in the 
space charge region due to the deep trap states [6]. 
There is interest in the development of CIGS2 solar 
cells on flexible substrates. Several groups have 
reported fabrication of polycrystalline CuIn1-xGaxSe2 

(CIGS) solar cells on flexible foils substrates [7]. The 
CIGS cell with an efficiency exceeding 17% has been 
obtained using SS substrate [8]. 

The selection of a flexible and lightweight 
substrate is mainly based on three factors: thermal 
expansion, chemical effect or the diffusion of 
detrimental impurities in the absorber layer and the 
influence of surface properties on nucleation. Titanium 



is a potential candidate because its coefficient of 
thermal expansion is 8.6×10-6/oC, close to that of 
CIGS (9.0x10-6/oC). Deposition of SiO2 on to the Ti 
substrate prevents the diffusion of impurities and also 
provides a smooth surface for the growth of an 
absorber layer. Ti also has high tensile strength and is 
very stable at selenization and sulfurization 
temperatures. 

Long-term plans envisage swarms of distributed, 
autonomous, small satellites, termed microsats or even 
nanosats, to perform specific tasks. Some missions 
will use solar electric propulsion (SEP) instead of 
rockets. CIGS2 thin-film solar cells on flexible foil 
substrates may be able to increase the specific power 
by an order of magnitude from the current level of 65 
W/kg.Thin film technology could conservatively 
reduce the array-manufacturing cost of a medium-
sized 5-kW satellite from the current level of $2000k 
to less than $500k [8]. Non-rigid cells also have an 
advantage in stability. Because of the low initial 
velocities and steady acceleration, SEP satellites must 
spend long periods in intense regions of trapped 
radiation belts. CIGS solar cells are superior to the 
conventional silicon and gallium arsenide solar cells in 
the space radiation environment. The potential for 
improved radiation resistance of thin-film solar cells 
relative to single-crystal cells could extend mission 
lifetimes substantially. Recent studies have shown that 
12.6% efficient, thin-film cells would start to become 
cost-competitive in geosynchronous earth orbit (GEO) 
and low earth orbit (LEO) missions [9]. 

The objective of the present research is to develop 
lightweight, radiation-resistant, highly efficient, high-
specific-power CIGS thin-film solar cells for space 
electric power.  

Metallic precursors, CuGa/In are deposited by DC 
magnetron sputtering on 10 cm x 10 cm substrate area. 
A small proportion of gallium is incorporated so as to 
obtain benefits of improved adhesion, slightly higher 
bandgap, and incorporation of a back-surface field, as 
has been done with CIGS cells on conventional 
substrate. Initially, CIGS2 thin-film solar cells are 
being fabricated on 127- m-thick SS substrates. A few 
CIGS2 cells have also been prepared on 20- m-thick 
SS substrates. CdS heterojunction partner is deposited 
by chemical bath deposition. Intrinsic ZnO and 
aluminum doped ZnO is deposited by RF magnetron 
sputtering. Sputtering technique that is used in the 
preparation of solar cell provides an added advantage 
of facilitating easy scale-up of the laboratory size cells 
to the commercially available size manufactured in 
industries using the roll-to-roll process. Cells are 
completed by depositing Ni/Al front contact fingers by 
thermal evaporation. CIGSeS and CIGS2 thin films 
were analyzed by scanning electron microscope to 

study the nature of morphology including grain size 
and compactness of the film. X-ray diffraction was 
carried out during the series of experiments to 
optimize the deposition and selenization/sulfurization 
parameters. Energy dispersive spectroscopy was used 
to study the stoichiometric composition. Auger 
electron spectroscopy was carried out to verify the 
elemental variation along the thickness of the film. 
Transmission electron microscopy was also carried out 
to study the active mechanisms at the interface 
hampering the efficiency of the cell. Best efficiency of 
8.84% under AM 0 conditions and 10.4% under AM 
1.5 conditions was achieved on 2.5 cm x 2.5 cm 
stainless steel substrate from a cell of 0.4 cm2 total 
area. However, significant technological hurdles 
remain before thin-film technology could be 
implemented as the primary power source for 
spacecraft.  

2. Experimental work 

A 25 m thick Ti substrate of was used as 
substrate. It can provide specific power of 1015 W/Kg 
with a 10% efficient cell. It was coated with a 
dielectric barrier layer of SiO2 using sol-gel dip 
coating method. Sol-gel was prepared in two steps. 
First, alkoxide and ethanol were mixed in 1:5 
proportions. In the second step, distilled-deionized 
water and acid were added to obtain final 
alkoxide:ethanol:H2O:acid ratios of 1:5:5.1:0.55. The 
solution was stirred and preserved in a large beaker for 
24 hours for the reaction to complete [10]. The 
substrates were completely immersed in sol-gel and 
then withdrawn at a well-defined speed under 
controlled thermal and atmospheric conditions. The 
uniformity of coating thickness depends on precise 
speed control and minimal vibration of the substrate 
and fluid surface. The coated substrate was sintered at 
450oC for 1 hour to form a uniform coating. The 
surface roughness was observed to improve from 
average roughness (Ra) 1750 Å to 542 Å. Bright 
annealed stainless steel foils with thickness of 127 m 
and 20 m were also used as substrates. CIGS2 thin 
films were prepared by a two-step process. The first 
step consisted of sputter- deposition of alternate layers 
of CuGa(22%) and In, to achieve the elemental ratio 
of Cu/(In+Ga) ~1.4, on a molybdenum-coated flexible 
foil substrate. This formed a stacked elemental layer 
sequence that produced a predominant Cu11In9 
precursor phase. This layer was sulfurized in Ar:H2S 
1:0.04 gas mixture and argon flow rate of 650 sccm, 
using a three zone furnace. The temperature of initial 
dwell was changed from 120 to 135°C. After 
annealing the samples in flowing argon for 25 min at 



this temperature, the flow of H2S gas was initiated. 
The maximum sulfurization temperature was 475°C, 
while the sulfurization time was varied from 20 to 60 
min. It was found that the binary Cu11In9 precursor 
phase reacted in the H2S:Ar gas environment to form a 
good crystalline pseudo-quaternary phase of CIGS2 
film. Some samples were sulfurized at 475°C for 30 
min, followed by annealing at 500°C without H2S gas 
flow in an Ar atmosphere for 10 min. This annealing 
step favored grain growth and recrystallization. The 
Cu-rich stoichiometry during the growth of CIGS2 
films results in an improved morphology, i.e., 
enhanced grain sizes of the polycrystalline films 
through a pseudo-liquid Cu-S phase. For the sulfur 
system, according to the phase diagram of Cu�S, the 
respective liquid phase is not expected in the substrate 
temperature range of Tsub<600°C. However, owing to 
the high cation mobility in the Cu�S compounds, the 
cation lattice in a binary Cu�S phase at the surface of a 
growing CIS2 film behaves as a quasi-liquid. For 
selenide system, this phenomenon is attributed to 
CuSe liquid formed on top of Cu-rich films [11]. The 
CuxS phase was etched in 10% aqueous KCN solution. 
Solar cells were completed by deposition of CdS 
heterojunction partner layer by chemical bath 
deposition, and deposition of transparent-conducting 
i:ZnO/ZnO:Al  window bilayer by RF sputtering, and 
vacuum evaporation of Ni/Al contact fingers through a 
metal mask (Figure 1). Bright annealed stainless steel 
foils of 20 and 127 µm thicknesses were evaluated 
among possible substrate materials for polycrystalline 
CIGS2 solar cell. 

The deposition sequence was on flexible Ti foils 
was SiO2/Ti/SiO2/CIGSeS/CdS/i:ZnO/ZnO:Al/Ni/Al. 
Mo back contact and Cu-Ga-In metallic precursors 
were deposited by DC magnetron sputtering. Mo 
being a refractory material develops stress depending 
upon the sputtering power and pressure. Mo was 
deposited using a three-layer sequence. The Mo layer 
with tensile stress was sandwiched between two layers 
with compressive stress to reduce the overall stress 
and to build a 500 nm thick layer. 

CuGa was deposited at 350 watts and 1.5×10-3

Torr argon pressure while indium was deposited at 
230 watts and 7x10-4 Torr argon pressure. The time of 
deposition of each layer was adjusted so as to obtain 
2.75 m thickness of the absorber layer. The elemental 
stack was selenized at 400oC for 10 minutes followed 
by sulfurization at 475oC for 20 minutes. The cells 
were completed by depositing CdS, n-type hetero- 
junction partner layer by chemical bath deposition, 
and deposition of  window bilayer of i:ZnO and 
ZnO:Al by RF magnetron sputtering and Ni/Al contact 
fingers by e-beam evaporation. 

 

ZnO : Al (0.5 m)

Metallic Foil (127 m / 20 m)

Ni/Al Ni/Al

ZnO : Al (0.5 m)

Metallic Foil (127 m / 20 m)

Ni/Al Ni/Al

 
 

Figure 1. Layer sequence of CIGS2 thin film-solar cell 
 
The phases, surface morphologies and elemental 

depth profiles of the CIGS2 films prepared on 
stainless steel flexible foils substrates were 
characterized as follows: Films were examined 
visually for their appearance, color and any tendency 
to peeling. X-ray diffraction (XRD) was used to 
identify the crystalline phases, using a RIGAKU 
diffractometer. The 2 -range for the diffractometer 
was set from 10 to 80° with a step size of ?0.02°. 
Surface morphology of the CIGS2 thin film was 
studied using scanning electron microscopy (SEM). 
Chemical composition was analyzed by electron probe 
microanalysis (EPMA). Depth profiling was 
performed by secondary ion mass spectroscopy 
(SIMS) and Auger electron spectroscopy (AES) with 
simultaneous sputter etching. The substrate surface 
roughness and thickness of thin films were measured 
using the surface profile measuring system. Current�
voltage characteristics of CIGS2 solar cells were 
measured under AM0 and AM1.5 conditions at the 
NASA Glenn Research Center and National 
Renewable Energy Laboratory (NREL). Quantum 
efficiency was measured at NREL. 

3. Results and Discussion 
 

The scanning electron microscopy (SEM) 
micrograph of CIGSeS film on Ti foil in Figure 2 
shows compact CIGSeS grains with grain size of 
approximately 1 to 2 m. Table I provides the 
elemental concentrations of CIGSeS thin film on Ti 
foil obtained using X-ray energy dispersive 
spectroscopy (XEDS) at 15 KV. It was observed that 
the amount of gallium was high while the film was 
copper-poor. These observations are also supported by 
X-ray diffraction (XRD) analysis. The shift of peaks 
towards higher 2  value indicates high gallium 
content. XRD analysis (Figure 3) confirmed the 
presence of a chalcopyrite structure with (112) 



preferred orientation. Intensity ratio of planes 112/220 
was 3.7. 

 
 

Figure 2. SEM of CIGSeS film on Ti foil at 5500 X 
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Figure 3. XRD Pattern of CIGSeS on Ti foil.

Table 1. XEDS of CIGSeS film on Ti foil analysis at 
15kV 

Element Cu In Ga Se S 
At % 23.26 21.60 7.41 20 27.72 

Auger electron spectroscopy (AES) analysis of 
CIGSeS film on Ti foil showed that the gallium 
concentration increases towards the back contact while 
that of indium decreases. Gallium has a tendency to 
diffuse towards the back contact. It is also seen that 
the sulfur concentration is higher that that of selenium 
along the thickness of the film which is in accordance 
with the XEDS data. Higher amount of sulfur in the 
film indicated that the selenization was not complete 
and the film had substantial amount of selenium 
vacancies. These vacancies were filled up during post 

sulfurization by sulfur atoms. Further experiments 
were carried out on Mo-coated glass to establish the 
requisite temperature for complete selenization of the 
film. It was found that selenization at 500oC resulted 
in complete dissociation of diethyl selenium, 
providing adequate selenium to go in the film. Further 
experiments will be carried out on Ti foil at 500oC to 
study the adhesion and morphology of CIGSeS films. 

For CIGS2 thin films on stainless steel (SS) foils, 
the initial dwell of 30 min at 120°C was changed to 
135°C, and the flow of H2S gas was started after 25 
min at 135°C to avoid the formation of voids before 
the initiation of sulfurization [12]. The XRD spectrum 
of the as deposited (Cu+Ga)/In metallic precursors 
processed at 135°C indicated the presence of a highly 
oriented Cu11In9 phase without any elemental or alloy 
phases. The XRD pattern of a near stoichiometric, 
slightly Cu-poor, etched CIGS2 thin film on SS foil is 
shown in Figure 4; it showed (101), (112), (103), 
(004)/(200), (213),(204)/(200), (116)/(312), 
(008)/(400), and (332) reflections of a CuIn0.7Ga0.3S2 
phase. The calculated lattice parameters were a = 5.67 
Å and c = 11.34 Å. A Mo peak was obtained at 40.22°. 
The (112) peak of CuGaS2 was also observed. This is 
attributed to Ga diffusion towards the Mo back-
contact, creating a Ga-rich phase near the back, and a 
Ga-poor phase at the surface and in the bulk of the 
CIGS2 thin film [13]. In the case of random 
orientation, the intensity ratio of (112) with respect to 
(220)/(204) peaks, should be 1.5. The intensity ratio of 
I112/I220/204, for these films, was remarkably higher, 
showing a high degree of (112) preferred orientation. 

It may be noted that (112) orientation would be 
beneficial for achieving a good lattice match with 
CdS, and consequently for efficient device fabrication. 
Despite the very Cu-rich film of the unetched sample, 
with Cu/(In+Ga) ratio up to 1.68, no secondary phases 
could be detected in the XRD pattern for the unetched 
sample [14]. As discussed earlier, a Cu-rich 
stoichiometry during the growth of CIGS2 films 
results in an improved morphology i.e. enhanced grain 
size of the polycrystalline films. This excess CuxS was 
etched in 10% KCN solution. 

The scanning electron micrograph (SEM) of a 
near stoichiometric, slightly Cu-poor, etched CIGS2 
thin film on SS foil is shown in Figure 5. SEM image 
for the sample showed large, well-faceted grains with 
slight porosity. The porosity was observed at the grain 
boundaries from where the CuxS phases have been 
etched. The grain size measured by an intercept 
method was 3 m i.e., comparable to the film 
thickness. 

An AES survey (Figure 6) of near stoichiometric, 
slightly Cu-poor, etched CIGS2 thin film sample on 
SS foil, was performed over a range of kinetic  



 
Figure 4. XRD pattern from a near stoichiometric, 
slightly Cu-poor, etched CIGS2 thin film on SS foil. 

 
Figure 5. SEM image of a near stoichiometric, slightly 
Cu-poor, etched CIGS2 thin film on SS foil.  
 
energies (50�2250 eV), using the primary electron 
beam of energy 5 keV. A representative area of 
sample was chosen and an AES survey was carried out 
at magnification of 1000X, equivalent to an area of 
102X102 m. An AES survey over the selected area 
showed the presence of copper at 60, 777, 850, and 
924 eV, sulfur at 151, and 2131 eV, indium at 345 and 
410 eV, gallium at 1071 eV, carbon at 273 eV, 
potassium at 252 eV and oxygen at 515 eV. The 
surface atomic concentrations calculated from the 
peak to peak height from the AES survey and relative 
sensitivities of the respective elements were as 
follows: copper 20.67 at. %, sulfur 31.62 at. %, indium 
12.3 at.%, gallium 6.92 at.%, potassium 7.72 at.%, 
oxygen 11.92 at.% and carbon 15.04 at %.  

The AES depth profile was obtained by sputtering 
an area of 1x1mm2 with energetic argon ions at a rate 
of 475 Å /min for 72 min. Figure 7 shows peak heights 
at ifferent depths (time) for different elements. The 
peak heights were obtained for the following elements: 
copper, indium, gallium, oxygen, carbon, sulfur, 
molybdenum, iron and potassium. Copper and sulfur 

 

 
Figure 6. Surface AES survey of near stoichiometric, 

slightly Cu-poor, etched CIGS2 thin film on SS foil. 
 

 
Figure 7. AES depth profile of near stoichiometric, 
slightly Cu-poor, etched CIGS2 thin film on SS foil. 

 
 
concentration showed the same trend; it decreased 
near the Mo back-contact. Potassium was detected at 
the surface. Its concentration decreased rapidly in the 
bulk. Potassium was attributed to the KCN treatment 
that was used to etch away excess CuxS phase. Indium 
concentration was constant in most of the thickness of 
CIGS2 layer, then decreased with depth becoming 
negligible at the CIGS/Mo interface. Concentration of 
gallium at the surface was approximately 10%, while 
at the CIGS/Mo interface it was 30%. This showed 
that Ga concentration increased towards the Mo back-
contact. Beyond the thickness of the Mo back-contact 
layer, the concentration of iron rises, due to iron in the 
stainless steel foil. The apparent concentration of iron 
within the CIGS2 film thickness would create an 
erroneous impression of iron diffusion. This is 
discussed further below. Apparent humps in the depth 
profiles were caused by a non-uniform sputter-etching 
rate. It can be seen that the film thickness of etched 
CIGS2 sample from the depth profile was 
approximately 2.4 m. 

SIMS depth profiling (Figure 8) of CIGS2 film on 
SS foil was performed on an etched sample by positive 



SIMS, using a CAMECA IMS-3F system with oxygen 
primary beam current 150 nA, impact energy 5.5 keV, 
angle of incidence 42°, rastered over 250x250 m, 
with source at 10 keV and sample at 4.5 keV. The 
corresponding unetched sample had Cu/(In+Ga) ~1.4, 
and was sulfurized at 475°C for 30 min, and annealed 
for 10 min each at 475 and 500°C. The slightly Cu-
poor, etched CIGS2 thin-film sample was monitored 
for eight species. To achieve high sensitivity 
measurements, secondary positive cluster ions such as 
23Na, 34S, K, 54Fe, 65Cu, (69Ga+O), 92Mo,and (113In+O) 
were used for detection of Na, S, K, Fe, Cu, Ga, Mo, 
and In respectively. Cu concentration was mostly 
constant over the depth of the film. Ga concentration 
remained constant to 1 m, and then increased to the 
Mo back-contact. Indium concentration remained 
constant through most of film thickness and decreased 
near the Mo back-contact. Na was not added 
intentionally. S concentration was uniform throughout 
film thickness. Na concentration at the surface of the 
substrate was attributed to the residue from cleaning 
with soap solution. Potassium incorporation was due 
to etching of the CuxS phase present on the grains and 
near the grain boundaries with KCN solution. Careful 
SIMS analysis, described below, showed that the 
concentration of iron was below the detection limit. 
Thus there was no significant diffusion of iron. No 
sharp interfaces were observed at CIGS2/Mo and 
Mo/substrate. This was probably because of the 
interdiffusion of species and porosity formed due to 
etching with 10% KCN treatment. 

The mass spectrum recorded from masses of 1�
120 is shown in Figure 8. Sharp peaks were observed 
for elemental and molecular species such as O2

+, S+, 
K+, Ca+, SO+, Cu+, Ga+, GaO+, CuO+, CuO2+, In+, 
InO+, and InO2

+ . Na was not detected during analysis 
of mass spectra. Because of the large number of 
isotopes of Cu, In, Mo, Ga, and S, a number of mass 
interferences were observed. The mass spectrum 
clearly indicated the presence of Cu, In, Ga, S, Mo and 
K. The chemical composition of CIGS2 films on SS 
foils was analyzed by EPMA. Average atomic 
concentrations measured at 10 kV and 20 kV for an 
unetched sample showed Cu:In:Ga:S proportion of 
51.52:7.80:1.83:38.83 and 41.90:10.92:2.56:44.63, 
respectively. The Cu:In:Ga:S atomic concentrations 
for the etched sample at 10 and 20 kV were found to 
be  27.38:21.61:3.30:47.71 and 
23.96:19.36:5.70:50.99, respectively. The compound 
formulae were Cu1.09In0.87Ga0.13S2 and 
Cu0.96In0.77Ga0.23S2, respectively. The Cu:In:Ga:S 
atomic concentrations for the etched sample deposited 
on 20- m-thick SS foil at 20 kV were found to be 
28.60: 14.90:11.42:45.10. The compound formula was 
Cu1.10In0.60Ga0.40S2. 

Surface roughness of the substrate was measured 
with the surface profile measuring system. The 
average roughness, Ra value for 127- m-thick SS foil 
(Figure 9) was 62.3 Å and average waviness Wa was 
141.6 Å. The average roughness Ra for 20- m-thick 
SS foil (Figure 10) was 396.4 Å and surface waviness 
Wa was 773.2 Å. 

PV parameters of a CIGS2 solar cell on 127- m-
thick SS flexible foil measured under AM0 conditions 
(Figure 11) at NASA GRC were: open-circuit voltage, 
VOC = 802.9 mV, short-circuit current density, JSC = 
25.07 mA/cm2, fill factor, FF = 60.06%, and efficiency 

 = 8.84%. For this cell, AM1.5 PV parameters 
measured at NREL were: open-circuit voltage, VOC = 
763 mV, short-circuit current density, JSC= 20.26 
mA/cm2, fill factor, FF = 67.04%, and efficiency  = 
10.4%. The quantum efficiency curve (Figure 12) 
showed a sharp QE cut-off, equivalent to a CIGS2 
bandgap of ~1.50 eV, fairly close to the optimum 
value for efficient AM0 PV conversion in space. PV 
parameters for a cell fabricated on 20-µm-thick SS foil 
measured at NREL under AM1.5 conditions were: 
VOC=740mV, JSC=13.129 mA/cm2, FF = 41.63%, and 

 = 4.06%. 
Foils with high defect density, in the form of 

surface roughness, showed an increase in Ga content 
in the bulk of material. Fill factor, i.e., the squareness 
of the I�V curve also decreased with increase in defect 
density. Efficiency showed a decreasing trend with 
increasing surface roughness. The loss in efficiency 
was attributed to surface roughness of the substrate, 
and decrease in fill factor. The solar efficiency of a 
photovoltaic system depends critically on the spectral 
distribution of the radiation. 

At AM0 the solar spectrum has an irradiance of 
1353 W/m2. At the PV Materials Laboratory of FSEC, 
the goal is to achieve efficiency under AM0 conditions 
in the range of 10�15%. Table 2 provides the 
projected specific power in W/kg of flexible metallic 
substrate at AM0 for 10 and 15% efficient CIGS2 
solar cells. 

 

 
 

Figure 8. SIMS mass spectra of near stoichiometric, 
slightly Cu-poor, etched CIGS2 thin film 



 
Figure 9. Surface roughness measurement of 127-

mm-thick SS foil 

 

Figure 10. Surface roughness measurement of 20-
mm-thick SS foil 

 
 

Figure 11. AM0 I�V curve of CIGS2 thin film solar cell 
(NASA GRC) 

 
 

Figure 12. QE curve of CIGS2 thin film solar cell 
(NREL) 

 
Table 2. Projected specific power for CIGS2 solar 

cells 

Substrate Projected specific power 
(W/kg) 

  = 10% 
at AM0 

 = 15% 
at AM0 

127-µm (5 mil) 
SS foil 33.0 199.6 

20-µm (< 1mil) 
SS foil 768.8 1153.1 

25.4µm (1 mil) 
Ti foil 1015.8 1523.6 

 

4. Conclusions and Future Plans 
 
Flexible and ultra-lightweight SiO2 coated Ti foil 

was used successfully as a substrate for preparing 
CIGS2/CdS thin-film solar cells using 
selenization/sulfurization of sputtered metallic 
precursors technique. Efficiencies above 10 % can be 
obtained by improving the growth behavior of CIGSeS 
layer and fine tuning the process, work is being 
continued on CIGSeS films as well. Further 
selenization using diethyl selenium of elemental stack 
will be carried out at higher temperature. 

Sputtered copper, gallium and indium precursors 
with Cu/(In+Ga) ratio ~1.4 formed a predominant 
Cu11In9 precursor phase, free from inhomogeneous 
secondary phases. The temperature of the initial 30-
min dwell of 120°C was changed to 135°C. H2S gas 
flow was begun after 25 min of the dwell. The binary 
Cu11In9 precursor phase reacted in an H2S: Ar gas 
environment to form a good crystalline pseudo-



quaternary phase of CIGS2 film. After etching in 
KCN, CIGS2 films became stoichiometric when the 
the ratio of Cu/(In+Ga) of unetched film was in the 
range 1.4-1.8. CIGS2 films grew with (112) texture of 
the chalcopyrite structure. A highly Ga-rich phase was 
formed near the back-contact while a Ga-poor phase 
was formed in the bulk of the film and in the 
electrically active part of the device, because of the 
tendency of gallium to diffuse towards the back-
contact. The bandgap of this film was narrow at the 
surface and in the bulk, and widened towards back-
contact, leading to formation of a back-surface field. 
This built-in back-surface electric field was expected 
to improve the solar cell performance [15, 16]. PV 
parameters of a CIGS2 solar cell on 127-µm-thick SS 
flexible foil measured under AM0 conditions at the 
NASA GRC were: VOC = 802.9mV, JSC = 25.07 
mA/cm2, FF = 60.06%, and  = 8.84%. For this cell, 
AM1.5 PV parameters measured at NREL were: VOC
= 763mV, JSC= 20.26mA/cm2, FF = 67.04%,  = 
10.4%. Quantum efficiency curve showed a sharp cut-
off, equivalent to a CIGS2 bandgap of ~1.50 eV, fairly 
close to the optimum value for efficient AM0 PV 
conversion in space. PV parameters for a cell 
fabricated on 20-µm-thick SS foil measured at NREL 
under AM1.5 conditions were: VOC=740mV, 
JSC=13.129 mA/cm2, FF = 41.63%,  = 4.06%. 

Foils with high defect density in the form of 
surface roughness showed an increase in Ga content in 
the bulk of material. Fill factor, i.e., the squareness of 
the I�V curve also decreased with increase in defect 
density. Efficiency decreased with increasing surface 
roughness. With the construction of large-area, dual-
chamber magnetron-sputtering unit, samples of 
thickness uniformity ±2% over the central 5 inch (12.5 
cm) width and ±3% over the central 6 inch (15 cm) 
width will be fabricated. 
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IntroductionIntroductionIntroduction

Requirements of space powerRequirements of space power
LightweightLightweight
Radiation resistantRadiation resistant
Highly efficientHighly efficient
High specific powerHigh specific power
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IntroductionIntroductionIntroduction

CIGS and CIGS2 as ideal candidatesCIGS and CIGS2 as ideal candidates
Can be fabricated on lightweight substrates Can be fabricated on lightweight substrates 
such as stainless steel (SS) or titanium foilssuch as stainless steel (SS) or titanium foils
Highest conversion efficiency of all thin film Highest conversion efficiency of all thin film 
technologiestechnologies
Higher radiation resistance as compared to Higher radiation resistance as compared to 
crystalline silicon solar cellscrystalline silicon solar cells
Increase in specific power by over an order Increase in specific power by over an order 
of  magnitude from current level of 65 W/kgof  magnitude from current level of 65 W/kg

IntroductionIntroductionIntroduction

Selection criteria for substrateSelection criteria for substrate
Thermal expansionThermal expansion
Chemical effect or the diffusion of Chemical effect or the diffusion of 
detrimental impurities in the absorber layer detrimental impurities in the absorber layer 
The influence of surface properties on The influence of surface properties on 
nucleationnucleation

Titanium foil a potential candidateTitanium foil a potential candidate
Thermal coefficient of 8.6Thermal coefficient of 8.6××1010--66//ooCC
Deposition of SiODeposition of SiO2 2 prevents diffusion of prevents diffusion of 
impuritiesimpurities
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Thin Film Solar Cell 
Structure

Thin Film Solar Cell Thin Film Solar Cell 
StructureStructure

Se
In

CuGa

ZnO : Al (0.5 m)

i : ZnO (0.05 m)
CdS (0.05 m)

CIGSeS / CIGS2 (2.5 m)

Mo (0.55 m)

Metallic Foil (127 m / 20 m)

Ni/Al Ni/Al

SeSe
In

CuGa

CIGSeS / CIGS2 (2.5 m)

Experimental WorkExperimental WorkExperimental Work

25 25 m m thick Ti substrate was used thick Ti substrate was used �� specific specific 
power of 1015 W/kg for 10% efficient cellpower of 1015 W/kg for 10% efficient cell
SiOSiO22, dielectric barrier layer, deposited by Sol, dielectric barrier layer, deposited by Sol--
gel processgel process
Deposition of metallic precursors using DC Deposition of metallic precursors using DC 
magnetron sputtering.magnetron sputtering.
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Experimental WorkExperimental WorkExperimental Work

Sulfurization for CIGS2 [Cu/(In+Ga)~ 1.4]Sulfurization for CIGS2 [Cu/(In+Ga)~ 1.4]
The metallic precursors were annealed in The metallic precursors were annealed in 
Ar:HAr:H22S mixture for 20 S mixture for 20 -- 60 min at ~47560 min at ~475°°CC
Some samples were further annealed at Some samples were further annealed at 
~500~500°°C in inert ambient for recrystallization C in inert ambient for recrystallization 
and better grain growthand better grain growth

Experimental WorkExperimental WorkExperimental Work

Selenization/Sulfurization for CIGSeSSelenization/Sulfurization for CIGSeS
The metallic precursor was selenized in The metallic precursor was selenized in 
HH22:DESe mixture at ~400:DESe mixture at ~400°°C for ~10 mins.C for ~10 mins.
This is followed by sulfurization in Ar:HThis is followed by sulfurization in Ar:H22S S 
mixture at ~475mixture at ~475°°C for ~20 C for ~20 minsmins..

CdS, heterojunction partner, deposited by CdS, heterojunction partner, deposited by 
chemical bath depositionchemical bath deposition
A window layer of iA window layer of i--ZnO / ZnO:Al bilayer ZnO / ZnO:Al bilayer 
deposited by RF magnetron sputteringdeposited by RF magnetron sputtering
Ni/Al Contact fingers are deposited by thermal Ni/Al Contact fingers are deposited by thermal 
evaporationevaporation
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Material CharacterizationMaterial CharacterizationMaterial Characterization

Scanning electron microscopy (SEM) for Scanning electron microscopy (SEM) for 
morphological analysismorphological analysis
X ray diffraction (XRD) analysis for crystallinity X ray diffraction (XRD) analysis for crystallinity 
of the filmsof the films
X ray Energy dispersive spectroscopy (XEDS) X ray Energy dispersive spectroscopy (XEDS) 
and secondary ion mass spectroscopy (SIMS) and secondary ion mass spectroscopy (SIMS) 
for compositionfor composition
Auger electron spectroscopy (AES) for depth Auger electron spectroscopy (AES) for depth 
profileprofile
Transmission electron microscopy (TEM) to Transmission electron microscopy (TEM) to 
understand the interface propertiesunderstand the interface properties

Electrical CharacterizationElectrical CharacterizationElectrical Characterization

CurrentCurrent--Voltage (IVoltage (I--V) characteristics to V) characteristics to 
determine the photovoltaic parameters: open determine the photovoltaic parameters: open 
circuit voltage (Vcircuit voltage (Vococ), short circuit current (I), short circuit current (Iscsc), ), 
and fill factor (FF)and fill factor (FF)
Quantum efficiency (QE) analysis to Quantum efficiency (QE) analysis to 
understand the loss mechanisms over the understand the loss mechanisms over the 
complete solar spectrumcomplete solar spectrum
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Result and DiscussionsResult and DiscussionsResult and Discussions

(101), (112), (103), (004)/(200), (101), (112), (103), (004)/(200), 
(213), (204)/(200), (116)/(312), (213), (204)/(200), (116)/(312), 
(008)/(400), and (332) reflections of (008)/(400), and (332) reflections of 
a CuIna CuIn0.70.7GaGa0.30.3SS22 phasephase

Calculated lattice parameters were Calculated lattice parameters were 
a = 5.67 a = 5.67 ÅÅ and c = 11.34 and c = 11.34 ÅÅ

(112) peak of CuGaS2 was also (112) peak of CuGaS2 was also 
observed observed -- Ga diffusion towards the Ga diffusion towards the 
Mo backMo back--contact, creating a Gacontact, creating a Ga--rich rich 
phase near the backphase near the back

High degree of (112) preferred High degree of (112) preferred 
orientationorientation

XRD pattern of a near stoichiometric, slightly 
Cu-poor, etched CIGS2 thin film on SS foil

CIGS2 Absorber FilmCIGS2 Absorber Film

CIGS2 Absorber FilmCIGS2 Absorber FilmCIGS2 Absorber Film

Large, wellLarge, well--faceted faceted 
grains with slight porositygrains with slight porosity
Porosity was observed at Porosity was observed at 
the grain boundaries the grain boundaries 
from where the Cufrom where the CuxxS S 
phases have been phases have been 
etchedetched
Grain size measured by Grain size measured by 
an intercept method was an intercept method was 
~3 ~3 mm

SEM image of a near stoichiometric, slightly 
Cu-poor, etched CIGS2 thin film on SS foil
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CIGS2 Absorber FilmCIGS2 Absorber FilmCIGS2 Absorber Film

Calculated surface atomic Calculated surface atomic 
concentrations: concentrations: 
Cu Cu -- 20.67 at.%, S 20.67 at.%, S -- 31.62 at. %, 31.62 at. %, 
In In -- 12.3 at.%, Ga 12.3 at.%, Ga -- 6.92 at.%,     6.92 at.%,     
K K -- 7.72 at.%, O7.72 at.%, O22 -- 11.92 at.% 11.92 at.% 
and C and C -- 15.04 at %15.04 at %

Cu and S concentration showed Cu and S concentration showed 
the same trend; it decreased near the same trend; it decreased near 
the Mo backthe Mo back--contactcontact
K detected at the surface and it K detected at the surface and it 
decreased rapidly in the bulkdecreased rapidly in the bulk
Indium concentration was Indium concentration was 
constant in the bulk and reduced constant in the bulk and reduced 
at the Mo backat the Mo back--contactcontact
Ga concentration was low in the Ga concentration was low in the 
bulk and increased near the Mo bulk and increased near the Mo 
backback--contactcontact

Surface AES Survey 

AES Depth Profile

CIGS2 Absorber FilmCIGS2 Absorber FilmCIGS2 Absorber Film

The mass spectrum clearly The mass spectrum clearly 
indicated the presence of Cu, In, indicated the presence of Cu, In, 
Ga, S, Mo and KGa, S, Mo and K
Cu concentration was mostly Cu concentration was mostly 
constant over the depth of the filmconstant over the depth of the film
Ga concentration remained Ga concentration remained 
constant to 1 constant to 1 m, and then m, and then 
increased to the Mo backincreased to the Mo back--contactcontact
Indium concentration remained Indium concentration remained 
constant through most of film constant through most of film 
thickness and decreased near the thickness and decreased near the 
Mo backMo back--contact contact 
Sulfur concentration was uniform Sulfur concentration was uniform 
throughout film thicknessthroughout film thickness
Sodium concentration at the Sodium concentration at the 
surface of the substrate was surface of the substrate was 
attributed to the residue from attributed to the residue from 
cleaning with soap solutioncleaning with soap solution

SIMS mass spectra of near stoichiometric, 
slightly Cu-poor, etched CIGS2 thin film
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CIGS2 Absorber FilmCIGS2 Absorber FilmCIGS2 Absorber Film

44.6344.632.562.5610.9210.9241.9041.9020 kV20 kV

38.8338.831.831.837.807.8051.5251.5210 kV10 kV

SSGaGaInInCuCu

50.9950.995.705.7019.3619.3623.9623.9620 kV20 kV

47.7147.713.303.3021.6121.6127.3827.3810 kV10 kV

SSGaGaInInCuCu

45.1045.1011.4211.4214.9014.9028.6028.6020 kV20 kV

SSGaGaInInCuCu

compound formula was Cu1.10In0.60Ga0.40S2

compound formula was Cu0.96In0.77Ga0.23S2

EPMA analysis of etched sample deposited on 20- m-thick SS foil

EPMA analysis of etched CIGS2 sample

EPMA analysis of an unetched CIGS2 sample

compound formula was Cu1.09In0.87Ga0.13S2

CIGS2 Absorber FilmCIGS2 Absorber FilmCIGS2 Absorber Film

Foils with high defect density, in the form of surface Foils with high defect density, in the form of surface 
roughness, showed an increase in Ga content in the bulk roughness, showed an increase in Ga content in the bulk 
of materialof material
Fill factor also decreased with increase in defect densityFill factor also decreased with increase in defect density
Efficiency showed a decreasing trend with increasing Efficiency showed a decreasing trend with increasing 
surface roughnesssurface roughness

Surface roughness measurement 
of 127-mm-thick SS foil

Surface roughness measurement 
of 20-mm-thick SS foil
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Light and Dark J vs VLight and Dark J Light and Dark J vsvs VV

Voc = 739 mV, 
Jsc = 26.01 mA/cm2, 
FF = 63.7%, and 

= 8.95%, under AM 0 
conditions at NASA GRC

J x V, IEC, Slight 
crossover >1.9xJsc

Moderately 
photoconducting CdS 
layer.
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Log (J+Jsc) vs VtotalLog (J+Jsc) Log (J+Jsc) vsvs VVtotaltotal

Ascending and 
descending curves to verify 
hysteresis

Main part, diode behavior
Offset due to higher Jo

under illumination
Shunting effects <0.1 mA 

cm-2

No modification of slope 
due to Rs even at ~3x Jsc. 0.01
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dJ/dV Vs Vs VoltagedJ/dV Vs dJ/dV Vs VsVs VoltageVoltage

AC conductance 
by dJ/dV vs V 
around Jsc

Rp ~600 cm2

Xenon arc lamp 
flicker, noisy curve
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dV/dJ Vs 1/(J+Jsc)dV/dJ Vs 1/(J+Jsc)dV/dJ Vs 1/(J+Jsc)

Straight lines - diode or 
exponential behavior 

Intercept at 

Rs = 0.6 

Not essential to account 
for Rp

Current loss by dV/dJ vs 
(1- (dV/(dJRp) [J+Jsc+V/Rp)] 
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Diode factor, A and 
reverse saturation 
current density, Jo from
Ln (J+Jsc) vs corrected 
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J vs A & Ln Jo
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A2/C2 versus VoltageAA22/C/C22 versus Voltageversus Voltage
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ConclusionConclusionConclusion

Flexible and ultraFlexible and ultra--lightweight SiOlightweight SiO22 coated Ti coated Ti 
foil was successfully used as a substrate for foil was successfully used as a substrate for 
preparing CIGSeS/CdS thinpreparing CIGSeS/CdS thin--film solar cells film solar cells 
using sputtering techniqueusing sputtering technique
CIGS2 films grew with (112) texture of the CIGS2 films grew with (112) texture of the 
chalcopyrite structurechalcopyrite structure
A highly GaA highly Ga--rich phase was formed near the rich phase was formed near the 
backback--contact resulting in widened energy contact resulting in widened energy 
bandgap towards backbandgap towards back--contact, leading to contact, leading to 
formation of a backformation of a back--surface fieldsurface field

ConclusionConclusionConclusion

PV parameters for a cell fabricated on 20PV parameters for a cell fabricated on 20--µµmm--
thick SS foil measured at NREL under AM1.5 thick SS foil measured at NREL under AM1.5 
conditions were:conditions were:
VVOCOC=740mV, J=740mV, JSCSC=13.129 mA/cm=13.129 mA/cm22, FF = 41.63%, , FF = 41.63%, 
and and = 4.06%= 4.06%
Efficiency decreased with increasing surface Efficiency decreased with increasing surface 
roughnessroughness
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ConclusionConclusionConclusion

PV parameters of a CIGS2 solar cell on 127PV parameters of a CIGS2 solar cell on 127--µµm thick SS m thick SS 
flexible foil measured under AM0 conditions at the NASA flexible foil measured under AM0 conditions at the NASA 
GRC were: GRC were: 
VVOCOC = 802.9 mV, J= 802.9 mV, JSCSC = 25.07 mA/cm= 25.07 mA/cm22, FF = 60.06%, , FF = 60.06%, 
and and = 8.84%= 8.84%
PV parameters for same cell measured under AM1.5 PV parameters for same cell measured under AM1.5 
conditions at NREL were: conditions at NREL were: 
VVOCOC = 763 mV, J= 763 mV, JSCSC= 20.26 mA/cm= 20.26 mA/cm22, FF = 67.04%, and, FF = 67.04%, and

= 10.4% = 10.4% 
Quantum efficiency curve showed a sharp cutQuantum efficiency curve showed a sharp cut--off, equivalent off, equivalent 
to a CIGS2 bandgap of ~1.50 eV, fairly close to the optimum to a CIGS2 bandgap of ~1.50 eV, fairly close to the optimum 
value for efficient AM0 PV conversion in spacevalue for efficient AM0 PV conversion in space

ConclusionConclusionConclusion

Various semiconducting properties such as Series Various semiconducting properties such as Series 
resistance (resistance (RRss), Shunt resistance (), Shunt resistance (RRpp), Reverse ), Reverse 
saturation current density (Jsaturation current density (Joo), Diode quality factor (A), ), Diode quality factor (A), 
and Doping density (Nand Doping density (NAA) were calculated using the ) were calculated using the 
measured photovoltaic parametersmeasured photovoltaic parameters
The calculated values were: The calculated values were: RRss= 0.6 = 0.6 /cm/cm22, R, Rpp~600 ~600 

/cm/cm22, J, Joo 1.85x10-8 A/cm2, , A A 2.21, NA ~1.5x1017 cm-

3, and Junction width (W) = 0.15 m
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Future WorkFuture WorkFuture Work

Efficiencies above 10 % can be obtained by Efficiencies above 10 % can be obtained by 
improving the growth behavior of absorber improving the growth behavior of absorber 
layer and fine tuning the processlayer and fine tuning the process
Further selenization using diethyl selenium of Further selenization using diethyl selenium of 
elemental stack will be carried out at higher elemental stack will be carried out at higher 
temperaturetemperature
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