

Formula Hybrid

 Teams must design and build an openwheel, single-seat, electric or plug-in hybrid racecar and compete in a series of static and dynamic events.

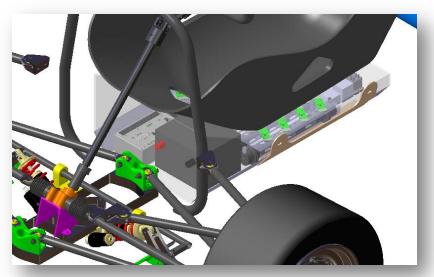
Team Goals

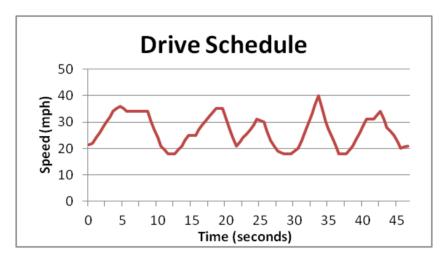
- Safety
- Reduce Vehicle Weight to under 500 lbf
- Integration of High Voltage Accumulator
- Serviceability
- Reliability
- Vehicle Dynamics

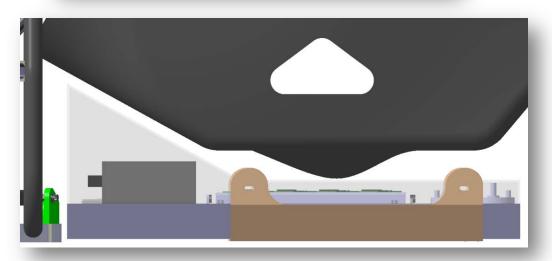
Tractive System Requirements

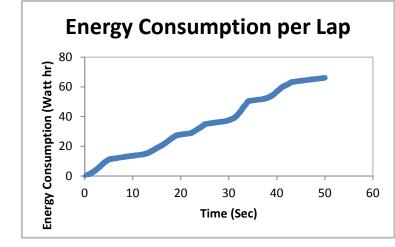
Completing a 75 meter straight-line course in less than 10 seconds

Req. #	Requirement
1	Can withstand 20g loads in the ground plane and 10g vertically
2	Container must be electrically isolated
3	Transparent structure to maintain full visibility of the system's components
4	Pass rain certification
5	Each cell must be individually monitored for voltage and temperature.
6	If enclosure is located outside of the monocoque, it must be able to withstand side and rear impact loads that comply with the minimum material requirement

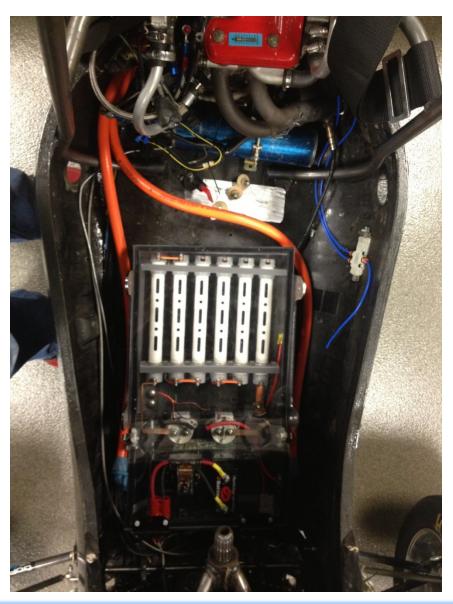

Problems with Last Year's System

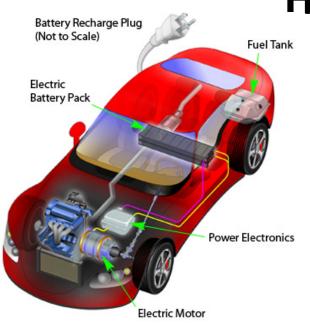

- Lack of serviceability
- Non-symmetric weight distribution leading to poor vehicle dynamics
- Integration
- New SES
 Requirements for Side/Rear Impact



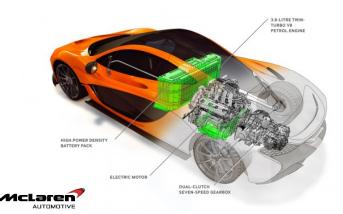


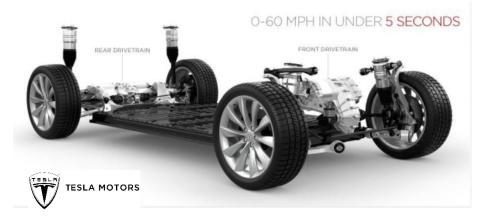
Design and Analysis



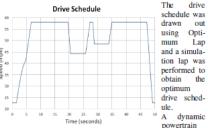


			BILL OF								
HV SYSTEM AND SUBSIDIARIES											
PART DESCRIPTION	PART NUMBER	MATERIAL	SUPPLIER/MFU		QUANTITY TO ORDER	UNIT	TOTAL PRICE	TIME	RESPONSIBLE	STATUS	COMMENTS/MISC.
Enclosure/Tube Mounting											
Overcenter Closing Latch	29-619	Stainless Steel	PROTEX	2	2	\$ 7.44	\$ 14.88	1 week	Steven Fox	0%	Light duty rigid claw fastn
Latch Catchplates	08-594	Stainless Steel	PROTEX	2	2	\$ 1.66	\$ 3.32	1 week	Steven Fox	0%	90 degree catchplate
Acrylic Sheet	242084	Acrylic	Optix	2	2	\$ 116.00	\$ 232.00	1 day	Steven Fox	0%	36X72X.220" Sheet
Case		PC/Acrylic	Cut and Bond	1			\$ -		Steven Fox	0%	
Lid		PC/Acrylic	Cut and Bond	1			\$ -		Steven Fox	0%	
Top Tube Clamp		PC/Acrylic	CNC Machine	1			\$ -		Steven Fox	0%	
Bottom Tube Clamp		PC/Acrylic	CNC Machine	1			\$ -		Steven Fox	0%	
Lid Hinge		Stainless Steel	PROTEX	2	2	\$ 4.38	\$ 8.76		Steven Fox	0%	
Fasteners	92316A628	Steel grade 8	McMASTER-CARR	1	1	\$ 7.48	\$ 7.48		Steven Fox	0%	
Rubber Spacers	441298	Rubber	The Hillman Group	1	1	\$ 17.68	\$ 17.68		Steven Fox	0%	
Batteries and Battery Tubes											
Cell Tubes	254977	PVC	Home Depot	3	5	\$ 1.72	\$ 8.60	1 day	Joshua Drayer	0%	two tubes per and 4 extra
Battery Cells	26650 M1	LIPO	A123	24	0		\$ -		Joshua Drayer	0%	
Bus Bars (if needed)	1HLG1	Copper	Grainger	1	0	\$ 106.60	\$ -	1 week	Joshua Drayer	0%	(2) .25in thick, 1ft long, 6in wid
End Cap Nuts		ABS	McMASTER-CARR	12	0		s -		Joshua Draver	0%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
End Caps		ABS	McMASTER-CARR	12	0		\$ -		Joshua Draver	0%	
Grommets		Rubber	Grainger	12	0		\$ -		Joshua Draver	0%	
Nickel Plates		Nickel	McMASTER-CARR	18	0		\$ -		Joshua Draver	0%	
Belleville Disc Springs	9712k61	Steel	McMASTER-CARR	24	0	\$ 0.32	\$ -	1 week	Joshua Draver	0%	Spring between batteries
12V Battery	AG801	lifepo4	Antigravity	1	1	\$ 179.99		1 week	Joshua Draver	0%	New low voltage battery
Battery Monitoring	110002		· ······g·u····y			V 2113133	V 2.1 3.13 5			0,12	
BMS	Lithiumate Pro	NA NA	eLithion	1	0		ŝ -		Jeff Garraud	0%	
Cell Board CENTER	15C0100X	Cicuit Board	eLithion	12	0		s -		Jeff Garraud	0%	No connector or dot
Cell Board NEGATIVE	1SC0100X	Cicuit Board	eLithion	6	0		s -		Jeff Garraud	0%	Has connector and black do
Cell Board POSITIVE	1SC0100X	Cicuit Board	eLithion	6	0		ŝ -		Jeff Garraud	0%	Has connector and red do
Connectors to CB's	13C0100X	ABS	Grainger	12	0		\$ -		Jeff Garraud	0%	nus connector and red do
Arduino Board		NA NA	Arduino	1	0		\$ -		Jeff Garraud	0%	
Power Distribution			Aldullo				_		i Guirada	070	
POSITIVE & NEGATIVE Contacts	686-901	NA NA	Stancor	2	0		Ś-		Roshan Patel	0%	
Bender	200-301	NA NA	Bender	1	0		\$ -		Roshan Patel	0%	
HV Relav	686-901	NA NA	Stancor	1	0		\$ -		Roshan Patel	0%	
LV Relay	120-907	NA NA	Stancor	1	0		\$ -		Roshan Patel	0%	
Motor Controller	KDH07601A	NA NA	Kelly	1	0		\$ -		Roshan Patel	0%	
Motor Controller Mount	KDHU/001A	PC/Acrylic	CNC Machine	1	0		\$ -		Roshan Patel	0%	
		Copper Copper	Soundcrafters	50	50	\$ 2.97	7	1 day	Roshan Patel	0%	FOR Involute discussion 4.6
4 ga Power Cables Terminals	V4 200 a			1	50	\$ 2.97	\$ 18.95				50ft insulated copper wire 4 G
Ferraz Shawmut	Y4-38R-t A6T125	Copper	rowbar Electrical Par Ferrraz Shawmut	1	0	\$ 18.95	\$ 18.95	1 week	Roshan Patel Roshan Patel	0%	(25) Copper Eyelets with 3/8in
LED Indicators	WFLS-A60-BK	LED/Plastic	superbrightleds.com	1	1	\$ 23.95	7		Roshan Patel	0%	1 m. weatherproof, cuttable, LE





FORMULA HUBRID


model was

2013 Sustainability Report

INTRODUCTION

One of the reasons for the growth of hybrid vehicle sales is the reduction in emissions over non-hybrid vehicles. A well-to-tank analysis was done using the Greenhouse, Regulated Emissions, Energy Use in Transportation (GREET) software model created by Argonne National Laboratories. A tank-to-wheel analysis was done using a model made in Simulink and MATLAB. The drive schedule used in the simulation was created in Optimum Lap. The total emissions of the hybrid versus gas vehicles are calculated by looking at the combined analyses (well-to-wheel) of Triton.

MODEL DEVELOPMENT

The calculated drive schedule around the proposed 2013 Formula Hybrid Endurance course.

posed 2015 Formula Hybrid Endurance course. developed in MATLAB and Simulink using known performance characteristics of Triton (engine fuel map, rolling resistance, aerodynamic drag, etc.) and the selected powertrain configuration, which is a post-transmission parallel hybrid utilizing lithium ion batteries.

Triton's hybrid configuration.

WELL-TO-TANK

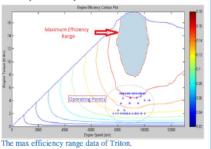
The amount of CO₂ generated by the production and delivery of each megajoule (MJ) of gasoline to be used by Triton (often referred to as the well-to-tank emission value) was calculated with GREET. This amount was found to be 24.3 grams of CO₂/MJ of energy. 15.8 grams of CO₂ are emitted per MJ of fuel, while only 8.5 grams of CO₂ are emitted per MJ of selectrical energy.

TANK-TO-WHEEL

The average quantity of CO₂ generated by Triton per kilometer of the endurance race (often referred to as tank-to-wheel) was also calculated. This was found to be 122.6 grams of CO₂/km emitted by the engine.

Fuel Economy and Environment Fuel Economy A5 MPG Activations uses to 10 to

Example Fuel Economy Sticker.


COMPARISON

The well-to-tank and tank-to-wheel results of Triton were compared to a purely gasoline vehicle under the same conditions. If Triton was strictly gasoline powered, the well-to-tank value would be 29.5 grams of CO₂/km of fuel, which is lower than the hybrid system's 39.9 grams of CO₂/km. However, the tank-to-wheel value of the gasoline vehicle, 139.4 g CO₂/km, is higher than Triton's 122.6 grams of CO₂/km. The table below presents the well-to-tank emissions converted to grams of CO₂/km. The

Hybrid vs Gas-Only Comparison									
Parameters	Hybrid	Gas-Only							
Well-to-Tank (g CO2/km)	39.9	29.5							
Tank-to-Wheel (g CO2/km)	122.6	139.4							
Total Emissions (g CO2/km)	162.5	168.9							
MDC	44.7	20.2							

Values calculated using Argonne National Laboratories' GREET.

combined emissions for the total well-to-wheel analysis are also provided for hybrid and gasoline-only modes of operation. For Triton's application, hybrid vehicles produce fewer emissions than comparable non-hybrids.

Sustainability

12% Increase in Fuel Economy

Future Endeavors

