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Bio-optically, surface waters of the northeastern US continental shelf are strongly 

heterogeneous, exhibiting highly variable distributions in both time and space of suspended sediment, 

colored dissolved organic matter (CDOM), and phytoplankton concentration and community structure. 

These render the standard global NASA satellite chlorophyll algorithm suspect. However, spectral 

signatures of the water are well quantified by the actual satellite-based multispectral reflectance (Rrs) 

measurements. Here, we use 6 bands of Rrs measurements from 19 years (1998-2016) of monthly 

composite SeaWiFS and MODIS data to identify the spectral signatures of dominant water types present 

over the northeast shelf. A merged multivariate clustering approach that incorporates neural network-

based Self-Organizing Maps and agglomerative hierarchical clustering is used to group similar spectral 

signatures across the entire time and space domain. These sort the surface water into 8 dominant 

groups. Remapped results provide a climatological view of seasonal cycles of these bio-optical groups 

and their spatial geography and then quantify their interannual variability over 19 years. Results indicate 

the same 2-3 spectral groups dominate the study area each year. Several less spatially predominant 

groups are present mainly along the coast and over George’s Bank. Spectral signatures of the water 

groups suggest that three groups represent the clearest waters and two groups the most particle and 



absorption dominated waters, with other groups representing varying concentrations of CDOM and 

phytoplankton. These descriptions are consistent with both the geographic position of the groups and 

calculated inherent optical properties of the groups. Interannual variability of the groups at each 

location effectively captures boundaries between ecological regions, reflecting frontal zones reported in 

the literature. Quantified trends in the spatial coverage of the groups over the 19 years shows a 

significant decline in the time/space coverage of the clearest water groups. These trends are strongest 

and significant in summer months, consistent with strong summer trends in sea surface temperature. 

There are also systematic trends in water groups in March and May on either side of the April spring 

bloom, suggesting phenology shifts in bloom characteristics. Over interannual time scales, the more 

turbid coastal water groups have correlations to wind strength and river discharge. These results 

provide new satellite-based ocean color measurements of shelf variability over seasonal and interannual 

time scales and present managers with new tools to monitor biologically important change over this 

economically critical and rapidly changing ecosystem. 
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CHAPTER 1 

INTRODUCTION 

1.1. Overview 

The surface ocean exhibits variations in color as a result of the absorption and reflectance of the 

water molecules themselves combined with the absorption and reflectance of any particles or dissolved 

material in the water (Mobley, 1994). In coastal zones, varying concentrations and types of suspended 

sediment, colored dissolved organic matter (CDOM) and phytoplankton alter the color of the water from 

blue to green to shades of yellow and brown (Arnone and Gould, 1998; Yoder and Kennelley, 2006; 

McClain, 2009; Mélin and Vantrepotte, 2015). Quantifying this color provides insights into the bio-

optical and biogeochemical characteristics of the water.  

Satellite ocean color sensors such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the 

Moderate Resolution Imaging Spectroradiometer (MODIS) measure reflectance at multiple bands of the 

visible spectrum. Repeat orbits over many years offer large-scale, consistent and repetitive data over 

decades (SeaWiFS 1997-2010; MODIS 2003-present). Measurements of ocean color have revolutionized 

our understanding of many aspects of ocean biogeochemistry and its variability (McClain, 2009). Specific 

examples include chlorophyll variability from small (e.g.  Kahru et al., 2004) to large (Polovina et al., 

2008) spatial scales and from short (e.g. Fiedler, 1984; Thomas et al., 2003) to longer time scales (e.g. 

Signorini et al., 2015), primary production assessments (e.g. Moore and Abbott, 2000; Goes et al., 2004; 

Behrenfeld et al., 2006), river plume variability (e.g. Thomas and Weatherbee, 2006; Molleri et al., 2010; 

Hopkins et al., 2013), biological effects of storms (Babin et al., 2004), phytoplankton community 

structure (e.g. Alvain et al., 2005) and phytoplankton phenology (Ji et al., 2007; Platt et al., 2009; Song et 

al., 2010; Ardyna et al., 2017). One important application of these satellite-measured ocean color data 

sets is to isolate and map time/space boundaries of ecological provinces that have similar 
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biogeochemical characteristics and/or variability (e.g. Longhurst, 1998; Oliver and Irwin, 2008; Irwin and 

Oliver, 2009; Vantrepotte and Méin, 2011; Reygondeau et al., 2013), something that is not possible with 

in situ data. Such maps provide an important tool to monitor change.  

The overarching goals of this study are to isolate and describe the dominant bio-optical surface 

water types on the northeast US shelf (Fig. 1) and then quantify their time and space variability. 

Nineteen years (1998-2016) of SeaWiFS and MODIS multispectral measurements are used to develop a 

climatological view of the seasonality of dominant water color types and then quantify their interannual 

variability over the 19-year period. The work builds on previous efforts to identify and map regions of 

similar bio-optical variability reported in the literature and circumvents known problems with estimating 

oceanographic variables such as chlorophyll from space-borne ocean color measurements in optically 

complex coastal water.   

1.2. Bio-optical geography from satellite data 

 Past studies subdivide the ocean into geographic regions based on various measures of 

similarity between properties of interest. Longhurst (1998, 2006) provided a global ocean identification 

of static ecological provinces based on satellite ocean color data, in-situ measured nutrient data and 

various physical parameters. Subsequent studies inspired by Longhurst’s provinces worked to improve 

classification of surface waters globally and regionally. Oliver and Irwin (2008) identified 81 global 

biogeographic provinces using a more objective approach based on clustering techniques applied to 4 

years (2003-2006) of MODIS water leaving radiance (Rrs) data and sea surface temperature (SST) 

measurements. Mélin and Vantrepotte (2015) used 7 years of global SeaWiFS Rrs data and an 

unsupervised clustering method to distinguish water masses in coastal and shelf regions worldwide. 

Their results led to the identification of 16 optically distinct water classes in coastal waters globally, of 

which 5-6 described the US northeast shelf region. These 5-6 classes represented the most turbid waters 

identified in their study, demonstrating the significant tidal mixing, river influence and high 
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phytoplankton concentrations that are characteristic to this region. Kavanaugh et al. (2014) combined 

concurrent SeaWiFS chl-a and PAR measurements with satellite SST data over the North Pacific from 

1998-2010. They used a two-step data reduction clustering technique involving probabilistic self-

organizing maps and hierarchical agglomerative clustering to identify unique seascapes and document 

the seasonal migration of these seascapes. Cluster analyses on MODIS SST and chl-a data from 3 time 

periods in 2003 (Devred et al., 2007) subdivided the Northwest Atlantic into ecological provinces, 

documented their seasonal variation and compared these provinces to those of Longhurst’s for the 

same region. Traykovski and Sosik (2003) avoided chlorophyll measurements and compared 2 

multivariate feature-based classification methods based on 3 bands of Rrs values from 2 days (July 7, 

1980 and October 8, 1997) of Coastal Zone Color Scanner (CZCS) and SeaWiFS data. Their results over 

their Northwest Atlantic study area isolated 6 different water types, with the northwest shelf region 

dominated by 2 optical water types they label as Gulf of Maine and Georges Bank.  

1.3. Coastal optical complexity 

Coastal regions and semi-enclosed shelf seas such as the northeast shelf are characterized by strong 

spatial and temporal hydrographic and biological variability due to impacts from runoff and river 

discharge, tidal mixing and variations in tidal magnitude, wind-driven mixing, advection of different 

water masses of varying nutrient concentrations (Townsend et al., 2015) and varying bathymetry. Mid-

latitude shelves are also subject to strong seasonal variability (Townsend et al., 2006). These influences 

interact to produce strong variability in the concentration and species composition of phytoplankton, 

suspended matter size and type, and CDOM, leading to complex and varying optical properties of 

coastal waters (IOCCG, 2000; Balch et al., 2012; He et al., 2013).  This complexity poses challenges to the 

quantification of satellite-based oceanographic quantities such as chlorophyll (IOCCG, 2000; Vantrepotte 

et al., 2012; Ye et al., 2016).  
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After atmospheric correction, multispectral satellite instruments measure remote sensing 

reflectance (Rrs) across bands of select wavelengths within the visible spectrum. Standard NASA 

algorithms developed for the calculation of chlorophyll concentration are based on ratios of the blue to 

green Rrs values and have been widely and successfully utilized for open ocean waters (Uitz et al., 2006; 

Brewin et al., 2010; Vantrepotte and Mélin, 2011) where color is primarily a function of chlorophyll 

concentration. In coastal waters, however, strong reflectance over the visible spectrum by non-algal 

particles suspended in surface waters and strong absorbance in the blue wavelengths by CDOM affect 

the Rrs values and lead to an overestimation of chlorophyll (Darecki and Stramski, 2004; Dall’Olmo et al., 

2005; Garcia et al., 2005; Werdell et al., 2009). This bias is especially problematic in the Gulf of Maine 

(GOM) where significant quantities of CDOM delivered by local rivers remain in the surface water (Balch 

et al., 2004). Other approaches to the use of Rrs data to estimate oceanographic variables take a semi-

analytic approach, inverting spectra to derive estimates of phytoplankton and dissolved substance 

absorption, and particulate backscatter (e.g. Garver and Siegel, 1997; Lee et al., 2002). In their standard 

application, all these approaches are optimized to a global average and most of their validation is carried 

out on open ocean measurements making their direct application in localized coastal regions such as the 

Gulf of Maine challenging.  

Here, we attempt to avoid biases in the estimation of oceanographic quantities such as chlorophyll 

by directly examining the actual Rrs measurements. These offer a multivariate view of the color 

spectrum of each parcel of water, in a systematic time series, over the duration of our study period.  
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1.4.  Study area background  

The study area (Fig. 1) consists of the North American shelf extending from immediately south of 

Massachusetts including Nantucket Shoals, northeast to the western portion of the Scotian shelf. The 

area is dominated by the Gulf of Maine, a semi-enclosed shelf sea with bathymetry restricted interaction 

with the Atlantic Ocean. Low salinity surface water flows southwest down the Scotian Shelf and enters 

the eastern GOM around Nova Scotia (Smith 1989). During the spring, Scotian Shelf Water flows into the 

Bay of Fundy along the eastern side, where it is tidally mixed and then carried out of the Bay of Fundy 

along the western side to join the Eastern Maine Coastal Current (EMCC). During the remainder of the 

year, Scotian Shelf Water flows more directly into the EMCC, entering the current at the mouth of the 

Bay of Fundy (Pettigrew et al., 1998; Xue et al., 2000). Residual circulation in the GOM is cyclonic 

(Pettigrew et al., 1998). The EMCC flows southwest along the Maine coast as a relatively cold, well-

mixed and nutrient-rich body of water (Townsend et al., 1987). The EMCC seasonally bifurcates in the 

Fig. 1. The study area showing geographic names of specific locations, political boundaries and 
bathymetry. Regions of two coastal currents along the Maine coast are shown as EMCC and WMCC. 
Offshore areas (> 500 m) have been masked out and are shown in white.  
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vicinity of Penobscot Bay. One branch continues west along the coast as the Western Maine Coastal 

Current (WMCC), while the other branch turns offshore, contributing to the cyclonic gyre over Jordan 

Basin (Pettigrew et al., 2005; Townsend et al., 2006). The WMCC flows westward along the coast 

towards Massachusetts, where it contributes to the cyclonic gyre around Wilkinson Basin. The coastal 

flow is influenced by seasonally varying river discharge, the largest of which are the St. John and 

Penobscot Rivers (Townsend et al., 2006). The contribution of freshwater to the coastal current, 

especially during the spring, impacts the circulation patterns along the coast in addition to nearshore 

stratification (Townsend, 1991).  Some water from western GOM is entrained in the clockwise residual 

circulation around Georges Bank, while other water exits the GOM directly through the Northeast 

Channel (Pettigrew et al., 1998, 2005). South of Cape Cod, shelf flow is to the west.  

Regional bathymetry (Fig. 1) plays a major role in circulation, vertical mixing and resulting biological 

and turbidity patterns. The deepest areas in the GOM are the three basins, Jordan, Wilkinson and 

Georges Basin, and the Northeast Channel. These areas reach depths of >200 m, with the basins all 

reaching depths greater than 250 m. These basins stratify earliest in the season and most strongly in the 

summer months, leaving a nutrient-poor, oligotrophic upper water column. In contrast, much of the 

upper Bay of Fundy, coastal regions off the southern tip of Nova Scotia, Georges Bank, and Nantucket 

Shoals are shallow (Brooks, 1985). Strong tidal currents in the region induce vertical mixing that keeps 

these shallow regions better mixed throughout the year, injecting nutrients into the upper water column 

and creating regions of elevated phytoplankton biomass (Thomas et al., 2003; Townsend et al., 2006; 

Hasegawa et al., 2011) and increased suspended sediment and turbidity (Hargrave et al., 1983; Brooks, 

1985). Hydrographic frontal zones separate the well-mixed waters over shallow regions from the 

stratified deeper waters. These features are prominent, especially in summer, in the Bay of Fundy, the 

southwestern coast of Nova Scotia, around Nantucket Shoals, around Georges Bank and on the southern 

boundary of the cold EMCC (Loder and Greenberg, 1986; Townsend et al., 2006). A shelf-break front is 
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often present along the seaward side of the study region. In the southern portion of the study area, this 

front separates the fresher and cooler waters of the shelf from the warmer, more saline waters of the 

continental slope that have a stronger influence of the Gulf Stream (e.g. Gawarkiewicz et al., 1996). In 

the northern portion of the study area, this front separates the fresher Scotian Shelf water from slope 

water of northern origin (e.g. Fournier et al., 1979; Townsend et al., 2006). A systematic mapping of 

frontal features in satellite sea surface temperature data (Ullman and Cornillon, 1999) tracks the 

seasonal position of these fronts. They also document a winter frontal feature nearshore in the GOM 

that separates colder, shallow coastal water from warmer water over the deeper basins resulting from 

differing impacts of strong winter atmospheric cooling. 

The study region is highly biologically productive (O’Reilly et al., 1987), with clear seasonal and 

spatial patterns in phytoplankton concentration (Thomas et al., 2003). In winter (December-February), 

chlorophyll concentrations throughout the region are at their lowest. Concentrations peak during the 

spring bloom in March-May, decline in summer from June-July and then increase again between August-

November during the fall bloom. Seasonal cycles are weaker over shallow bathymetry, where vertical 

mixing brings new nutrients into the upper water column throughout the year (e.g. Townsend and 

Thomas, 2001) and strongest over the deeper basins (Thomas et al., 2003). Yoder et al. (2002) show a 

clear relationship between SST patterns and surface chlorophyll patterns over the study area. Shallow 

regions also create shifts in the timing of the spring bloom (Townsend et al., 1992, 1994) as winter light 

limitation is relived earlier over shallow water columns. There is evidence that the relatively fresh 

surface water from the Scotian Shelf impacts the timing of the spring bloom in the GOM (Ji et al., 2007), 

driving earlier blooms upstream in the east and delayed blooms in the western GOM. Seasonality in 

phytoplankton community structure contributes to the bio-optical complexity of the region. Species 

succession over Georges Bank (Townsend and Thomas 2001, 2002; Gettings et al., 2014) begins as early 

as January or February, when diatoms dominate. Dinoflagellates become dominant after this and by 
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June diatom concentrations begin to increase again in response to silicate regeneration. Over deeper 

basins, the spring bloom, dominated by diatoms, gives way to summer conditions dominated by smaller 

cells. Together, the interaction of bathymetry and vertical mixing create a strongly heterogeneous 

phytoplankton regime in both time and space.  
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CHAPTER 2 

METHODS 

2.1. Data 

Daily 1 km resolution, atmospherically-corrected remote sensing reflectance (Rrs) data from NASA’s 

MODIS and SeaWiFS missions were acquired from NASA’s Ocean Color server (oceancolor.gsfc.nasa.gov) 

for the study area. The SeaWiFS data used here cover full years from 1998-2007 when the incidence of 

missing data due to mission problems was minimal. MODIS data cover the period 2003-2016. Together, 

these sensors provide a 19-year study period, 1998-2016. Daily swath data were remapped to a 

standard map projection. To reduce data volume, data gaps due to cloud cover and strong daily 

variability in Rrs retrievals likely caused by poor cloud/fog masking or variability in atmospheric 

correction success, monthly average data were deemed an effective temporal resolution to view the 

seasonal and interannual variability we were interested in. Monthly composite images were formed 

using a multi-step smoothing approach. Daily scenes were first median filtered in space using a 5x5 

operator. The monthly mean at each location was then formed using the 50% of valid retrievals 

centered on the median Rrs value within a 5x5 pixel region over that month. The resulting monthly fields 

were then further smoothed with a 5x5 median operator. This approach was effective in dramatically 

reducing the impact of Rrs outliers from the composite averaging and producing final monthly 

composite images that were relatively smooth. All further analyses were performed on the 19-year 

monthly composite data time series. 

SeaWiFS and MODIS sensors each have slightly different spectral bands and wavelength centers. The 

monthly compositing was applied to the 6 visible spectral bands of Rrs measurements from the bands of 

each sensor that were most complementary (Table 1).  
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The 5-year period of mission overlap (2003-2007) was used to test whether, within the context of 

our goals and analysis approach, the spectral data from the two sensors could be treated as equal to 

form a single time series. Four separate analyses were conducted, subjected to our grouping analysis 

(described in detail below) and compared. In the first two analyses, SeaWiFS and MODIS monthly data 

from 2003-2007 were analyzed separately. The third and fourth analyses utilized a combination of both 

SeaWiFS and MODIS data. The third analyzed a time series with SeaWiFS data from 2003-2004 and 

MODIS data from 2005-2007 and the fourth performed the grouping analysis using SeaWiFS data from 

2003-2004 and MODIS data from 2003-2007. Select months from all four analyses were compared by 

both mapping the final group membership from each combination and by quantifying the number of 

pixels assigned to each group. Between all four analyses, very few pixels changed groups and monthly 

maps and the spectral characteristics of the final groups from each test were essentially identical. We 

concluded that for the level of grouping we were conducting, the bands in the 6 wavelengths we used 

from the two missions could be considered identical. A single 19-year monthly time series was created  

using SeaWiFS data for the period of 1998-2002 and MODIS data for 2003-2016.  

A bathymetry mask was fitted to each monthly composite image excluding waters deeper than 500 

m to focus analysis on shelf waters.  

Concurrent environmental metrics representing SST anomalies (SSTa), river discharge and wind 

strength were acquired. Daily, optimally interpolated NOAA OISST 0.25 x 0.25 degree resolution data 

(Reynolds et al., 2007; Banzon and Reynolds, 2017) from January 1982 to December 2016 were 

downloaded from the NOAA Earth System Research Laboratory (http://www.esrl.noaa.gove/psd/).  

Sensor Rrs(λ) nm 
band 1 

Rrs(λ) nm 
band 2 

Rrs(λ) nm 
band 3 

Rrs(λ) nm 
band 4 

Rrs(λ) nm 
band 5 

Rrs(λ) nm 
band 6 

SeaWiFS 412 443 490 510 555 670 

MODIS 412 443 488 531 555 667 

Table 1. Spectral Rrs bands unique to SeaWiFS and MODIS sensors used in this analysis.  
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Monthly averages and climatologies were calculated for the study area and used to calculate monthly 

SST anomalies. A series of grid cells from the center of the GOM were subsampled and averaged to 

characterize interannual SST variability over the study period for the entire study region. Daily mean 

Penobscot River discharge data were downloaded from the USGS Water Resources 

(https://waterdata.usgs.gov/usa/nwis). Monthly average discharge was calculated for 1998-2016 and on 

interannual time scales is considered representative of relative discharge from rivers in the study region. 

Monthly wind velocities from the National Centers for Environmental Prediction (NCEP) from grid 

locations (42-44 N and 290-294 E) in the central GOM were downloaded as u-wind and v-wind reanalysis 

vectors from the NOAA Earth System Research Lab (https://www.esrl.noaa.gov). These were used to 

calculate monthly average wind speed for the study region over the study period January 1998 to 

December 2016. 

2.2. Two-step multivariate cluster analysis 

We group optical water types through time and space based on their similarity over the 6 spectral 

bands of Rrs data. Each data pixel (approximately 243 k) in each of the 228 monthly composite images 

was assigned a group following a two-step multivariate cluster analysis. We first use Self-Organizing 

Maps (Kohonen, 2001) to affect a large data reduction and partition data pixels into a relatively large 

number of initial groups. We then further simplify the output of the Self-Organizing Map to fewer 

groups through hierarchical clustering. 

Prior to clustering, Rrs values in each of the 6 spectral bands were normalized by their mean and 

standard deviation. The overall mean of each band was subtracted from the original Rrs values, and then 

divided by the band’s standard deviation. The resulting normalized Rrs data values weigh each band 

equally, allowing each to contribute equally to the distance-based multivariate clustering analysis below. 

Self-Organizing Maps (SOMs) are an effective data reduction technique (Liu and Weisberg, 2011) for 

large, multi-dimensional data sets and have been utilized extensively in social and geographic sciences 
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(e.g. Hara et al., 1994; Kaski and Kohonen, 1996; Chen and Shrestha, 2000; Nerbonne and Heeringa, 

2001).  Previous examples of their use within the field of oceanography include (Ainsworth, 1999; 

Richardson et al., 2003; Risien et al., 2004; Iskandar et al., 2008).  SOMs are a form of artificial neural 

network, utilizing competitive and cooperative learning to train a group of nodes, modeling the input 

data onto a reduced dimension node field based on measurements of attribute similarity. In this study, 

these attributes are the Rrs values in the 6 bands. After iterating through the entire data set many times, 

and continuously updating the SOM node field, the final node field is a 2-dimensional time and space 

model of the original data where each node is defined by 6 attributes representing Rrs values from the 6 

satellite bands. Upon completion, each original data point can be assigned an output node that most 

closely represents it, effectively grouping the data (Kohonen, 2001). 

We used the SOM package made available by the Department of Information and Computer Science 

at the Helsinki University of Technology (http://www.cis.hut.fi). The selected distance metric for this 

SOM analysis was the commonly used Euclidean distance. The number of nodes and their 2D MxN 

arrangement is user defined, usually determined through trial and error (Kohonen, 2013), with 

consideration of the 2D shape of the input data (Kohonen, 2001). We tested 40 different sized and 

shaped node arrangements and tracked the quantization error, the measure of the final average 

Euclidean distance between all data points and their best matching node, to track the effectiveness of 

the 2D node arrangement (Kohonen, 2013). Based on these values, we determined that 36 output nodes 

in a 6x6 arrangement provided an effective compromise between the level of detail/separation we were 

seeking and an effective representation of the original data. Default values for the training rate and 

cooperative learning distance metrics in the SOM were used. Each pixel in all 228 monthly composite 

images were analyzed with the SOM as a 6-value vector in Rrs space and were modeled onto the 36 

nodes, that have a 6-value vector representing the Rrs values. Upon completion, grouping is 
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accomplished by assigning each original data point a number from 1-36, indicative of the node that most 

closely represented it, measured as Euclidean distance.  

The SOM algorithm is effective at retaining maximum diversity of the optical characteristics of the 

data pixels while assigning more nodes to areas of the data attribute space that have the most data. 

Examination of the spectral shape of each of these 36 nodes indicated that the characteristics of many 

of the nodes were reasonably similar. We wanted to further simplify the Rrs characteristics with the goal 

of distinguishing dominant oceanographic features throughout the study area time/space window. The 

36 SOM nodes were further grouped into more optically distinct groups using a simple agglomerative 

hierarchical clustering with Euclidean distance and average linkage. Combinations of other separation 

and grouping metrics were examined, but the resulting dendrogram (Fig. 2) of the chosen method 

provided the simplest, most effective partitioning of the SOM nodes. A stopping rule was applied to 

determine the optimal separation distance to cut the dendrogram tree. While somewhat subjective, the 

stopping rule represents a balance based on vertical distance between merged groups and the number 

of final groups desired (Vesanto and Alhoniemi, 2000; Thomas et al., 2010). Large distances indicate an 

increased dissimilarity between groups. Here we identified the lowest region of the tree that exhibited 

the largest distances and resulted in merging the SOM nodes into the 8 most similar groups. Two other 

Fig. 2. Dendrogram of hierarchical clustering of 36 SOM nodes. The red line indicates where the 
stopping rule was applied, resulting in 8 final groups. 
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stopping distances were examined, resulting in 11 and 13 groups respectively. The spectral 

characteristics of these groupings showed that several of the groups exhibited strong similarities. We 

concluded that clustering the 36 SOM nodes into 8 groups was an effective grouping into sufficiently 

optically distinct water types. Each pixel in each month was then assigned a label from 1-8, indicative of 

which group it belonged to. 

2.3.  Monthly climatologies and interannual variability  

Following the two-step cluster analysis, a monthly climatology time series was generated. At each 

location, in each calendar month, the climatological group number was defined as the group that most 

often occurred (the mode) over the 19 years of data. For the rare data points (< 0.0005% of the total 

data points) that had more than one group identified as the mode, the group with the lowest value was 

assigned to represent that data point in the climatology. Due to the small number of data points 

impacted by this arbitrary decision, the ultimate effect on the final results was deemed to be negligible.  

The stability of these climatological values over the 19 years for each of the locations/months 

provides one estimate of interannual variability and was estimated by quantifying the number of years 

the assigned climatological value (mode) at each data location occurred. Values approaching 19 suggest 

locations that were highly stable over the 19 years and were consistently placed into the same group. 

Locations with much lower values were frequently placed into different groups, suggesting stronger 

interannual variability. Climatological seasonal variability was quantified as the percentage of the study 

area occupied by each group in each month. Interannual variability was quantified as the percentage of 

the study area occupied by each group in each of the 228 monthly composite images of the 19-year time 

series.  

The above climatology and interannual variability calculations were also conducted on the original 

36 SOM nodes to provide an increased level of detail in the analysis. These results are presented in the 

appendix.  
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CHAPTER 3 

RESULTS 

3.1. Group spectral characteristics 

Mean spectra over all months and locations determined by the 6 Rrs values characterize the optical 

signature of each of the 8 groups separated by the clustering (Fig. 3). Based on the shape of the spectra, 

these 8 groups can be broadly described as three general bio-optical types: the clearest water in the 

study area/time series (groups 1, 2 and 5), water with an increased influence of varying concentrations 

of phytoplankton and CDOM (groups 3, 4 and 6), and more turbid/particle dominated water (groups 7 

and 8).  

 

 Groups 1, 2 and 5 have spectra with relatively low Rrs values in the spectral region 550-670 nm 

(Fig. 3a) and relatively high and flat Rrs values in the blue-green region in the normalized spectra (Fig. 

3b), indicative of the clearest waters in our study area. Group 1 represents the clearest waters. In the 

shorter (blue) portion of the spectrum, this group has the highest and flattest normalized reflectance 

Fig. 3: Spectral signatures in the 6 bands for each of the 8 groups identified by the two-step multivariate 
clustering technique. a.) Mean spectra for each group. The shaded areas represent ± 1 standard deviation. b.) 
The same mean spectra normalized to the mean Rrs value of each band to provide a different view of 
differences in spectral shape.  

b. a. 



16 
 

values (Fig. 3b), characteristic of weak phytoplankton and CDOM absorption, and water most closely 

approaching oligotrophic conditions. This group also exhibits the lowest normalized Rrs values from 510-

670 nm (Fig. 3b), indicative of decreased absorption due to lower concentrations of particulate and 

dissolved matter (Yoder and Kennelly, 2006; Lohrenz et al., 2009; Mélin and Vantrepotte, 2015). In 

groups 2 and 5, the lower normalized values in the blue region of the spectrum (McClain, 2009; 

Vantrepotte et al., 2012), the spectral peak located around 490 nm (Ye et al., 2016), and the higher 

normalized values from 510-670 nm compared to group 1 suggests an increased influence of CDOM and 

suspended particle concentration. Groups 2 and 5, however, still exhibit significantly less influence by 

phytoplankton and non-algal particles than other groups. Together these three groups represent varying 

degrees of the clearest waters present in the GOM. 

The groups with increased phytoplankton and CDOM influence (groups 3, 4 and 6) exhibit a plateau 

in their spectra maximum values (Fig. 3a) from approximately 500-555 nm and very low reflectance 

values at 412 nm. Of the 8 groups, group 3 is likely most influenced by CDOM, indicated by the lowest 

normalized Rrs value at 412 nm (Fig. 3b). Group 3 has high values between 510-670 nm, suggesting 

more suspended particle influence than groups 4 and 6. With the lowest spectral values across the 

shorter wavelengths (Fig. 3a), group 6 likely represents the water type with the strongest phytoplankton 

influence, as chlorophyll concentration is roughly inversely proportional to reflectance in the blue region 

of the spectrum due to absorbance (Yoder and Kennelly, 2006). 

Groups 7 and 8 exhibit stronger Rrs values across most of the longer wavelengths of the spectra (Fig. 

3a), indicative of stronger backscatter and increased particulate influence compared to the other 

groups. Of these 2 groups, group 7 has the strongest of these characteristics. The low normalized values 

in the shortest wavelength suggest increased influence of CDOM within these waters. The peak at ~555 

nm suggests an increased amount of suspended sediment and other particulate matter (Lohrenz et al., 

2009; Mélin and Vantrepotte, 2015; Ye et al., 2016).  
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3.2.  Climatological seasonal variability 

Mapping the climatological group at each location in each calendar month provides a spatial view of 

the climatological seasonal progression of bio-optical water types over the year (Fig. 4). The maps show 

a distinct seasonal progression in the dominant water groups present within the study area. Beginning in 

January, groups 4, 7 and 8 are present along much the entire Maine coast and in the Bay of Fundy. 

These three groups also dominate over Nantucket Shoals, the southwest coast of Nova Scotia and the 

center of Georges Bank (see Fig. 1). Group 5 dominates the western and central GOM whereas group 6 

dominates the Scotian Shelf and eastern GOM. In February, group 6 occupies more of the central GOM 

and group 5 less. Groups 4, 7 and 8 have receded shoreward around Nantucket Shoals. The center of 

Georges Bank now includes contributions from group 3. Other patterns are similar to those of January. 

In March, group 6 covers most of the study area, including most of Nantucket Shoals and Georges Bank. 

The Bay of Fundy, the coast of Maine and the southern coast of Nova Scotia remain dominated by 

groups 7 and 8 with an increased contribution from group 3. In April, the study area is almost 

completely occupied by group 6, with the exception of the Bay of Fundy and the eastern Maine coast. 

Group 5 is almost entirely absent. By May, group 6 still dominates, but groups 7 and 8 are concentrated 

further up into the Bay of Fundy, groups 3 and 4 increase over Nantucket Shoals and group 5 reappears 

in patches in the central GOM and along much of the shelf break south of Nantucket Shoals and Georges 

Bank. In June, the dominant group covering most of the study area has shifted from group 6 to group 5, 

with group 6 now occupying coastal regions in the western GOM.  The extent of groups 3, 7 and 8 has 

further contracted into the Bay of Fundy. Groups 4 and 8 appear over Georges Bank and group 1 

appears along the shelf break, with group 2 separating it from group 5. By July, the dominant water type 

in the central GOM is group 1, extending along the entire shelf break, over the Northeast Channel and 

the deeper basins of the GOM. Again, group 2 can be found at the boundary between groups 1 and 5. 

Groups 3, 4, 7 and 8 remain low in areal coverage and continue to contract even further into the Bay of  
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Fig. 4: Monthly climatology maps of group distribution over the 19-year study period. Climatological 
value at each location is the mode over the 19 years for each month. 
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Fundy. In August, group 5 resumes as the dominant group over much of the study area, with group 2 

evident around Georges Bank and in patches in the central GOM and on the Scotian Shelf. Group 1 

recedes to the southwestern shelf break region. By September, group 5 remains dominant in the central 

GOM, but group 6 has expanded outward from the coast and group 2 has largely disappeared. The area 

covered by groups 3, 4, 7 and 8 remains low and is primarily concentrated in the Bay of Fundy region. 

Group 3 replaces group 4 over the central portion of Georges Bank. Along the southwestern portion of 

the shelf break, the extent of groups 1 and 2 has decreased. In October, the central GOM is dominated 

by group 6 again, with group 5 along the eastern offshore edge of the study area. Groups 3, 4, 7 and 8 

increase in area within the Bay of Fundy and over Nantucket Shoals. Group 1 and 2 are present, but 

strongly reduced at the southern shelf break. By November, group 6 has receded to the Scotian Shelf 

and the western coastal region of the GOM and group 5 once again dominates the central GOM. Groups 

3, 4, 7 and 8 have expanded west down the coast from the Bay of Fundy and expanded around 

Nantucket Shoals and Georges Bank. December strongly resembles January, with the GOM dominated 

by group 5, group 6 on the Scotian Shelf and western GOM coast, and groups 4, 7 and 8 having a large 

areal coverage extending down the Maine coast from the Bay of Fundy and spreading out more over 

Nantucket Shoals and Georges Bank.  

A quantitative summary of this climatological seasonality (Fig. 5) shows the spatial coverage of each 

group as a percentage of the total study area in each month. Comparing the y-axis of these plots shows 

the extent to which the study area is dominated by groups 5 and 6 in most months. Groups 1 and 2 both 

have maxima in the summer months (June, July, August), but group 1 is almost entirely absent in other 

months (fall, winter and spring), whereas group 2 has a secondary maximum in late fall/winter 

(November-February). Groups 3 and 6 have maxima in spring, peaking in March and April respectively, a 

second maxima in the fall peaking in October, and summer and winter minima. Group 4 has a seasonal 

cycle that resembles group 2 but has strong maxima in late fall/winter (November-February), and 
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smaller, secondary maxima in summer (June-August). Group 5 exhibits no obvious seasonal distribution 

pattern; the most defining feature of this group is the very low areal coverage in April. Groups 7 and 8 

have similar seasonal cycles, with winter maxima and summer minima and group 7 having the strongest 

seasonality. 

3.3.  Interannual variability 

Although there are strong and obvious seasonal cycles in the climatology, the location and extent of 

each of the 8 optical groups varies between years and months. One measure of interannual variability is 

the frequency of occurrence of the group at each location identified as the climatology. Stability maps 

(Fig. 6) identify locations that were more consistently placed into the climatological group each month  

Fig. 5: Quantification of group climatological distribution. Percentage of the total study area 
occupied by each group in each monthly climatology map from Fig. 4. 
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Fig. 6: Monthly stability maps of group climatological values. Regions of high stability (blue) are 
frequently classified as the single climatological group across the 19 years. Regions of low 
stability (red) are more frequently classified as a different group across the 19 years. 
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over the 19 years and those locations where the climatology (Fig. 4) hides stronger interannual 

variability. There are clear seasonal and spatial patterns to this interannual stability. In late fall and 

winter months (November-February), the stability of the climatological group in much of the study area 

is lowest. In contrast, spring (March and April) is the most stable, with April as the most stable month. 

Georges Bank and Nantucket Shoals are consistently the least stable regions in the study area. The 

southwestern coast of Nova Scotia and the Maine coastal region are also regions of strong interannual 

variability in most months. The Scotian Shelf, the western GOM coastal regions and the upper portions 

of the Bay of Fundy are the most stable regions in many months, especially in spring and summer. 

Similarly, the shelf-break region in the southern-most portion of our study area also exhibits strong 

interannual stability, especially in summer months. 

Overall interannual variability is represented in Fig. 7 as the percent of the total study area that each 

group occupies in each month over the study period. The seasonality of many groups shown in the 

climatology (Fig. 4 and 5) is clearly evident, but differences from year to year are also evident. We 

supplement this view of interannual variability by plotting the monthly percent coverage of each group 

separately (Fig. 8) and simplify this further as the annual total percent coverage in each year (Fig. 9). 

Among the clearer patterns in this interannual variability are decreasing coverage of the study area by 

groups 1 and 2, strongest in the last 5-6 years of the time series. Both have a significant (p < 0.05) 

negative trend over the study period of 0.40 and 0.21% year-1 respectively. We used the non-parametric 

Sen’s slope to calculate these trends to avoid issues associated with the unknown underlying 

distribution of the data and to minimize the impact of outliers on each end of the times series. 

Conversely, groups 3 and 6 suggest an increasing trend, again, most strongly in the latter part of the 

time series. Group 3 has weak interannual variability over the initial part of the time series. However, 

after 2012 when it reached its lowest value, a steady increase in its areal coverage is evident. The last 

three years have the highest values of the entire time series. Although individual months of groups 6  
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Fig. 7:  Summary of group interannual variability over 19 years. The time series shows the percent of 
the total study area that each group covers for each monthly composite image. 

Fig. 8: Interannual variability of each group shown as the percent of the total study area that the 
group covers in each month over the study period. Separated by group to better observe interannual 
variability. Note the changing y-axis scale. 
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(Fig. 8) do not show a clear increasing trend, over annual periods (Fig. 9) the interannual variability 

shows a decreasing trend from 1998-2005, a large value in 2006, and then an increasing trend from 

2007-2016, with highest values in the time series from 2014-2016. Groups 4, 5, 7 and 8 do not have 

obvious trends or patterns in Figures 8 or 9.  

Beyond multi-year trends, some individual years show interannual events consistent across many of 

the 8 groups (Fig. 9). For groups 3, 4 and 8, the year 2012 has the smallest coverage of all years, and for 

group 5, this year is among the strongest. The year 2002 has the largest coverage for groups 1, 2 and 8 

and is among the largest for group 4. 

We separated the 19-year trends for each group into individual months to examine whether the 

trends evident in Fig. 9 occurred preferentially within certain seasons and whether certain groups had 

trends in specific seasons that the annual values did not show. A number of groups have significant 

trends in spring and summer months (Fig. 10 and 11) (see appendix for all plots). In spring, both March 

and May (Fig. 10) had significant decreasing trends in groups 2 and 5 over the time series and group 6 

had a significant increasing trend. April trends were not significant. In summer (Fig. 11), group 1 has a 

significant decreasing trend in all three months (June-August), group 3 had significant increasing trends 

in June and August (and was also increasing in July, but not significantly), and groups 5 and 6 had 

significant increasing trends in June and August respectively. Both groups 5 and 6 were also increasing 

(but not statistically significant) in the other 2 summer months (July-August and June-July respectively). 

In winter months, although strong interannual variability was evident, trends over the study period 

(December and January, not shown) were not significant for any group, and even in adjacent months 

(November and February), only 1 group had a significant trend in each month, and neither was one of 

the two dominant groups (5 and 6). (See appendix for tables with all slope and significance values.) 
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Fig. 9. Annual total of percent coverage in each year. Annual value was calculated using the total 
number of data points from each year and the total number of points of each group. 
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Fig. 10: Groups with significant trends over the time series in individual months in spring (March and 
May). April did not have significant changes in group distribution patterns. Slopes (m, as % year-1) were 
calculated using the non-parametric Sen’s slope calculation.  

Fig. 11: Groups with significant trends over the time series in individual months in summer (June, 
July, August). Slopes were calculated using the non-parametric Sen’s slope calculation.  
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CHAPTER 4 

DISCUSSION 

4.1.  Climatological patterns and group spectral and bio-optical characteristics 

Inherent optical properties (IOPs) calculated over our 8 groups provide a check on the bio-optical 

interpretation of water characteristics based on the Rrs spectral shapes evident in Fig. 3. Marine IOPs 

quantify contributions to the absorption and scattering properties of the light field in the water column 

and so provide a link between the satellite-measured remote sensing reflectance (Rrs) and the 

biogeochemical properties of the water being measured (Werdell et al., 2018). Three IOP variables were 

calculated using data from the generalized IOP (GIOP) formulation (Werdell et al., 2013) provided by the 

NASA ocean color database (oceancolor.gsfc.nasa.gov): phytoplankton spectral absorption coefficient 

(aph), absorption coefficient from dissolved organic matter and non-algal particles (adg) and the 

particulate backscattering coefficient (bbp). MODIS daily GIOP data from 443 nm from daily scenes for 

the period 2003-2015 were converted to monthly composites with the same methodology used for the 

Rrs data (see Methods). GIOP values corresponding to the location of each of the 8 groups were 

Fig. 12: MODIS GIOP data from 2003-2015 for each group time/location. Median values are indicated 
by red line with upper and lower bounds of boxes indicating the 75th and 25th percentiles 
respectively. Box whiskers include extreme data points not considered to be outliers. a.) 
Phytoplankton absorption for each group. b.) Dissolved and particulate matter absorption for each 
group. c.) Particulate backscattering for each group.  

b. a. c. 
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extracted from each monthly composite and their median values and associated statistics over the study 

period were calculated for each of the 3 IOP variables (Fig. 12).  

IOP results for each group are consistent with the general description given to each group based on 

their Rrs spectral characteristics. IOPs indicate that groups 1, 2 and 5 have the lowest values for aph, adg 

and bbp, indicative of the clearest and least biologically productive waters in the study area. Groups 7 

and 8 have the highest values for each IOP, indicative of the largest relative load of backscattering 

particulate matter, and highest dissolved absorption and phytoplankton concentrations. Of these, group 

7 has significantly elevated phytoplankton influence and particulate scattering (aph and bbp). Groups 3, 4 

and 6 are intermediate between these two extremes, with increased particulate load and a stronger 

influence of phytoplankton and non-particulate absorption than groups 1, 2 and 5, but less particulate 

load and weaker absorption than groups 7 and 8. 

These descriptions are also consistent with expected surface water bio-optical characteristics based 

on their geographic position, the overall circulation patterns within the study area and seasonal cycles in 

stratification and bloom occurrence. Groups 5 and 6 have relatively similar spectral and IOP 

characteristics and dominate the study area both spatially and temporally. Of these, group 6 has slightly 

higher phytoplankton and dissolved absorption, dominates during the spring and fall bloom periods (Fig. 

5), is associated with the western Maine coastal region throughout the summer and maintains 

dominance over the Scotian Shelf throughout winter (Fig. 4). Group 5 dominates during winter and 

summer. Group 1 is present primarily along the shelf break on the southern edge of the study area and 

is present inside the GOM only in mid-summer (Fig. 4), disappearing entirely during the winter (Fig. 5).  

These patterns are consistent with relatively oligotrophic surface water influenced by the Gulf Stream 

intruding onto the study area’s shelf (e.g. Gawarkiewicz et al., 2012) and strongly stratified, nutrient-

poor conditions over the deeper central basins of the GOM in mid-summer (e.g. Townsend, 1991; 

Thomas et al., 2003). Group 5 appears to represent an optical intermediate between groups 1 and 6. 
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Groups 3 and 6 both have seasonal distribution patterns (Fig. 5) that match the timing of spring and fall 

phytoplankton blooms (e.g. Thomas et al., 2003) and as such are likely strongly driven by the surface 

nutrient regime, light and stratification. The timing of their respective climatological seasonal peaks (Fig. 

5) suggests that group 3 isolates bio-optical characteristics most prevalent during early bloom conditions 

and group 6 best represents peak bloom conditions. Group 2 also represents relatively clear water and 

occurs at the boundaries of other groups, especially between group 1 and 5, and groups 4 and 5, over 

the Scotian Shelf, Nantucket Shoals and Georges Bank regions (Fig. 4), primarily in summer and 

secondarily in winter (Fig. 5). 

In contrast, groups 7 and 8 are present in times and locations consistent with water having the 

highest spectral Rrs values and strongest absorption and backscatter. These are located along shallow 

coastal zones, especially along the Maine coast, Bay of Fundy and southwestern Nova Scotia coast, and 

over Nantucket Shoals and Georges Bank: regions of strongest tidal mixing, strongest river influence, 

highest potential for suspended sediment load and elevated nutrient concentrations supporting higher 

chlorophyll concentrations (e.g. Townsend et al., 1987). These groups are strongest in winter and 

weakest in summer, consistent with increased winter wind mixing and reduced vertical stratification 

over shallow coastal waters. With its exceptionally strong tidal currents, it is no surprise that group 7, 

the most turbid water in the GOM, characterizes a significant proportion of the waters within the upper 

reaches of the Bay of Fundy year-round. Groups 3 and 4 have intermediate bio-optical properties and 

occur primarily at the boundary between these more turbid waters and groups 5 and 6. Along the Maine 

coast, these groups, together with Groups 7 and 8, follow the path of the well-mixed, nutrient-rich 

EMCC (Townsend et al., 2006). Groups 3, 4 and 8 dominate waters on top of Georges Bank, a shallow 

region of strong tidal mixing, increased vertical nutrient flux, elevated phytoplankton concentrations 

and the potential for sediment resuspension (O’Reilly et al., 1987; Townsend et al., 2006; Hu et al., 

2008). 
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4.2.  Climatological seasonal and regional stability 

The study area is a highly variable shelf region that experiences strong changes in bio-optical 

properties in both time and space (Fig. 6). Interannual variability is strongest during late fall/winter 

months (November-February). This is especially true over shallow regions such as Georges Bank and 

Nantucket Shoals, where variability in winter conditions from year to year likely create strongly differing 

conditions of suspended sediment, phytoplankton concentrations and phytoplankton community 

structure. Another possible contributor to increased winter group interannual variability is the increased 

cloud cover that reduced valid satellite retrievals in winter months. With fewer days of data available, 

the monthly averaged composite images are more strongly influenced by daily variability leading to 

different group classification in any one year and stronger interannual variability in data point 

classification. Conversely, April experiences the highest stability in group classification over the study 

period. April is the climatological month of the annual spring bloom over the study region (Thomas et 

al., 2003) and the data show that the bio-optical conditions during this bloom are highly stable from year 

to year. There is a second region-wide increase in interannual stability during the period of the fall 

bloom, centered on September, again suggesting recurring similar bio-optical conditions over most 

years. 

Interannually, the most consistently unstable region over the seasons in the study area is Georges 

Bank (Fig. 6). This region is known to be highly dynamic, influenced by tidal mixing, wind-driven mixing, 

strong gradients in nutrient concentration, phytoplankton concentration, community structure and 

frontal zones (Gettings et al., 2014; Hu et al. 2008; Townsend and Pettigrew, 1996; Townsend et al., 

2006). These combine to keep the optical properties of this shallow bank highly dynamic. The only 

month when group classification of data points on Georges Bank is reasonably consistent is in April, 

when the spring bloom completely covers this area. In contrast, the upper Bay of Fundy is perhaps the 

most stable region in the study area. Due to intense tidal mixing, sediments are continuously mixed into 
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the water column. With one group best representing waters dominated by suspended sediment, this 

leaves little variability in data point classification for this region. In summer months when this tidal 

mixing is no longer augmented as strongly by wind-driven mixing, the variability of group classification 

increases slightly as the suspended sediment load likely decreases and other bio-optical factors become 

more important. 

An oceanographic feature that the interannual group stability (Fig. 6) effectively isolates is the 

position of the dominant frontal zones of the region. These appear as localized regions of elevated 

group variability from year to year due to slight variations in their exact position and/or bio-optical 

characteristics. Prominent in Fig. 6 are the shelf break front along the southern portion of the study area 

south of Cape Cod and Georges Bank that is evident in all months except April and May and fronts 

around Georges Bank. Also prominent are winter frontal zones separating shallow, well mixed colder 

water from warmer deeper water along the coast of Maine, frontal zones at the seaward edge and 

western terminus of the EMCC in spring, summer and fall, and the frontal structure over the southern 

Nova Scotia shelf. The position and seasonality of these fronts is strongly similar to those shown by 

Ullmann and Cornillon (1999) who isolated these fronts in 12 years of satellite SST data. These authors 

show that because their position is strongly controlled by bathymetry, they reoccur in the same position 

from year to year. Not surprisingly, these SST frontal zones are also localized regions of increased 

variability in bio-optical characteristics. 

4.3.  Interannual variability and comparisons to environmental variables 

The data show that 2 of the clearest water groups (1 and 2) have a significant decline in coverage 

over the study period (Fig. 9). These trends are dominated by decreases during the summer months (Fig. 

11) and are coincident with significant increases in groups 3 and 6. Both groups 3 and 6 represent 

waters with increased phytoplankton and CDOM influence whose seasonal timing suggests they peak in 

coverage during the spring and fall blooms. These trend patterns suggest an increase in the time and/or 
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space window of phytoplankton and/or absorption dominated conditions over the study period. They 

are consistent with the increasing trend in summer CDOM concentration along a transect across the 

GOM over the past decade reported by Balch et al. (2012). These authors suggest this CDOM increase is 

due to climate-related increases in precipitation and river runoff into the GOM, resulting in increased 

surface dissolved absorption. Trends were not evident in April group coverage but were evident in the 

months on either side of the April spring bloom (Fig. 10). In both March and May, groups 2 and 5 decline 

over the time series, while group 6 increases. These trends suggest shifts in the timing of bloom 

conditions and likely reflect changes in the bio-optical properties associated with the strong phenology 

shifts in SST shown by Thomas et al. (2017) that were strongest in spring, summer and fall. The 

combination of group distribution patterns from May-July suggest that group 5 represents a transition 

bio-optical type between the bloom conditions represented by group 6 and the most oligotrophic 

conditions represented by group 1. The increase in group 6 in May (Fig. 10) appears to delay the 

insurgence of group 5, indicated by the increasing June coverage of group 5 over the time series. This in 

turn affects the timing and total areal coverage of group 1 in the summer, with a decrease in group 1 

presence in the central GOM. Summer group distribution patterns suggest that the clearest waters 

represented by group 1 are covering gradually less area over time and are being replaced by other 

groups, mainly groups 3, 5 or 6. 

A comparison of group interannual variability to concurrent metrics representing sea surface 

temperature anomalies (SSTa), GOM river discharge and wind mixing, provides insight into the extent to 

which interannual variability in the coverage of the bio-optical groups is related to easily-tracked 

environmental forcing. Correlations were calculated between the interannual variability in group 

percent coverage in individual months and the concurrent environmental metric monthly mean. A 

Spearman rank correlation was used to avoid potential biases caused by the unknown underlying 

probability distributions of group sizes and to decrease the importance to strong outliers. 
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Groups 7 and 8 represent the most turbid and strongest absorbing waters in the study area and are 

closely associated with the coast especially along the Maine coast and Bay of Fundy. Regional river 

discharge is strongly seasonal, with minima in winter and summer, and a strong maximum in April 

during the spring freshet when discharge is 5-10 times that of mid-summer (Fig.12). An examination of 

the extent to which interannual variability in these groups was related to river discharge showed that 

March variability in the percent coverage of group 8 was positively correlated with March discharge, and 

April variability of group 7 was positively correlated with April discharge. Group 3, which is also often 

closely associated with these coastal groups (Fig. 4) was also positively correlated to river discharge, in 

both March and April, as well as in January and February. There was no correlation of these groups to 

summer or fall river discharge. However, group 6, which in July is usually restricted to a narrow coastal 

band along the western GOM shore (Fig. 4), had a significant positive correlation of July percent 

coverage to July river discharge. Together, these correlations show that the satellite data and 

multivariate grouping methodology is effective in capturing variability in these coastal bio-optical water 

groups and the area coverage of these groups in the study region is linked to river discharge, especially 

in spring, expanding in years of stronger river discharge.  

Fig. 13: Climatological monthly Penobscot River discharge 1998-2016 (±1 s.d.). Calculated from daily 
mean USGS Water Resources data collected in West Enfield, ME. 
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Wind-driven mixing impacts vertical stability. In shallow regions, wind mixing can play a role in 

increased turbidity and over deeper basins can play a role in the vertical flux of nutrients and light 

availability. Climatological wind speeds over the study area are maximum in late fall/winter (November-

February) and minimum in summer (Fig. 14). Comparisons of the interannual variability in group percent 

coverage to monthly mean wind speed over the study period showed that both of the most turbid 

coastal groups (7 and 8) had correlations to wind speed. The percent coverage of group 7 was positively 

correlated to wind speed in January, March, July and October. Group 8 was positively correlated to wind 

speed in October and December. A second pattern of interaction was evident over deeper basins in the 

spring. In the study region, the April spring bloom is climatologically dominated by group 6 (Fig. 4). 

However, significant negative correlations between April wind speeds and April coverage of groups 4 

and 5 suggest that years of decreased wind mixing in spring are associated with increases in the percent 

coverage of these two other groups. 

We examined correlations between monthly SST anomalies calculated for the GOM region and 

monthly group size over the 19-year study period. The strong climate-induced increasing trend in SST 

Fig. 14: Average wind speed from grid locations in the central GOM (±1 s.d.). Monthly NCEP 
reanalysis data from the NOAA Earth System Research Lab. 
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(Pershing et al., 2015; Thomas et al., 2017) was removed from the SST anomalies prior to correlation 

calculations. No systematic correlations were evident between the interannual variability of group 

percent coverage and the monthly SST anomalies over the study period. It is interesting to note, 

however, that the large marine heat wave that impacted the region in 2012 (Pershing et al., 2015; 

Scannell et al., 2016) was coincident with annual changes in the coverage of many bio-optical groups 

(Fig. 9), with groups 3, 4 and 8 all having a minima in their coverage and group 5 a maxima. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

Nineteen years (1998-2016) of SeaWiFS and MODIS multispectral Rrs data were used to quantify 

seasonal and interannual variability in the surface optical properties of the US northeastern shelf. Data 

were grouped over time and space based on similarity of their Rrs spectra using a two-step multivariate 

clustering technique resulting in the 8 most dominant bio-optical water types. These 8 groups were 

broadly identified as 3 groups representing the clearest waters in the study area, 2 groups with the 

highest Rrs values across their spectra indicative of increased turbidity and particle load, and a series of 

groups with intermediate spectral shapes representing varying concentrations of phytoplankton and 

CDOM. These descriptions were consistent with the geographic and bathymetric group locations and 

also with IOP values calculated for the same groups. 

Seven of the 8 dominant groups had strong seasonal cycles in their distribution patterns indicating 

the groups isolated here effectively track the seasonal evolution of bio-optical conditions in the study 

region. Two of the groups, representing the clearest and least productive waters of the study window, 

exhibited a significant decline in annual coverage over the time series that parallel the strong warming 

trend of the study region and increases in CDOM concentrations reported in the literature. Examination 

of trends in individual months over the 19-year time series sheds light on seasonally specific shifts. 

Trends were not evident in winter months (December-February), likely due to strong mixing, low 

temperatures and low light conditions that create similar bio-optical conditions each winter. Multi-year 

trends were also not evident in April, the peak of the spring bloom, again likely due to recurrent bio-

optical conditions each year. However, months on either side of the climatological spring bloom (March 

and May) exhibited a decrease in groups characterizing clearer waters and an increase in the groups 

associated with the spring bloom. These patterns are indicative of bloom bio-optical phenology shifts 

that parallel spring SST phenology shifts reported in the literature. The monthly data also show that the 
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multi-year decreasing trend in clearest waters was primarily due to trends in summer months, 

consistent with when the strongest trends in SST are occurring.  

The analysis approach and results offer a highly objective view of satellite-measured ocean color 

variability within the study area. Results based on the actual Rrs spectral signatures of each data point 

avoid assumptions and biases made by in-water algorithms that use band ratios or invert poorly 

constrained spectral shapes in attempts to estimate specific oceanographic characteristics such as 

chlorophyll concentration or absorption. In such optically complex waters, such approaches are best 

applied using locally-tuned coefficients assisted by in situ data as ground truth. Biases in such 

approaches can also lead to discontinuities in derived time series over multiple missions. Differences in 

ocean color presented here are based on the most direct satellite measurements available, removing 

these additional sources of uncertainty. The study area is known to be a region where these biases can 

be strong. Allowing the clustering algorithms to identify the most similar optical characteristics and 

grouping data points based on their quantifiable statistical similarity avoids biases in more subjective 

group identification and pattern interpretation. The actual number of groups to retain and describe the 

data remains subjective and as with any modeling approach, needs to balance the number of variables 

used in the model with ease of interpretation. The results reported here focus on simplifying the multi-

spectral data to the dominant 8 groups evident over the time/space window of the study and an analysis 

of their seasonal and interannual variability. However, the initial SOM analysis resulted in 36 groups, 

offering a much richer view of ocean color variability over the study window. Variability within these 36 

groups has the potential to be useful in other studies more focused on specific environmental processes 

or more detailed analyses of sub-regions than the broad overview of variability presented here. Such 

applications await further analysis.  

Results presented here offer insight into some of the ocean color trends and changes that are 

occurring in the study area concurrent with the well documented rapid warming of the region (e.g. 
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Pershing et al., 2015; Saba et al., 2015; Thomas et al., 2017). Only a longer time series can determine if 

the trends documented here are the new norm for the region or if they are unresolved low frequency 

interannual variability. However, the trends in group coverage and their seasonal timing imply changes 

in the bio-optical characteristics of the surface water and changes in the amount, timing and/or 

composition of phytoplankton. Each of these changes has implications for the trophic functioning of this 

highly productive region and likely will have socio-economic implications in a region strongly dependent 

on marine resources. 
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Appendix A 

SELF-ORGANIZING MAP RESULTS 

Figures below show results from the Self-Organizing Map analysis, classifying data points into 36 nodes. 

2-Dimensional node arrangement, Rrs spectra, climatological distribution and stability maps, and 

interannual variability graphs of the 36 nodes are included.  

 

 

 

 

  

 

 

 

 

 

 

  

Fig. 16: Average spectral characteristics for data grouped by each of the 36 SOM nodes. Data points 
over the 19-year time series associated with each node were identified and their 6 spectral bands 
averaged. In general, spectra are arranged from more turbid waters in the left plot to clearest waters 
on the right. 

Fig. 15: SOM hits and u-matrix maps. a.) Hits map shows the relative (filled area) and actual number 
of data points classified into each of the 36 SOM nodes. b.) U-matrix is a measure of the Euclidean 
distance between neighboring nodes. 

b. a. 
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Fig. 17: Monthly climatology maps of the 36 nodes. At each data location, the climatological value is 
the most often occurring node (the mode) over the 19 years of data. 
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Fig. 18: Interannual stability at each location of the monthly climatological values over the 19 years 
for the 36 SOM nodes. Quantifies how frequently each location was classified as a different node 
over the 19 years. Regions of low interannual variability (blue) are most often classified as the same 
node across the 19 years. Regions of high interannual variability (red) are more frequently classified 
as a different node across the 19 years. 
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Fig. 20: Percentage of the total study area that each of the 36 SOM nodes occupies separated by 
month to show interannual variability over the 19-year time series. Anomalous bio-optical 
characteristics in specific months and years (e.g. March 2003, September 2006) become evident, in 
addition to shifts in overall distribution patterns in the last several years of the time series (e.g. July-
November). 

Fig. 19: Summary of interannual variability of the 36 SOM node coverage of the study area. Time 
series of the percent of the total study area that each node covers for all monthly composite images. 
Every other month indicated on the x-axis. Seasonal cycles in node distribution are evident in 
addition to interannual variability and study area-wide distribution shifts in the last 5-6 years. 
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Appendix B 

MONTHLY COMPOSITE GROUP DISTRIBUTION MAPS 

Figures below show the distribution of the 8 final bio-optical groups for each month in each of the 19 

years.  

Fig. 21: January interannual distribution of 8 bio-optical groups over the 19-year time series. 
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Fig. 22: February interannual distribution of 8 bio-optical groups over the 19-year time series. 
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  Fig. 23: March interannual distribution of 8 bio-optical groups over the 19-year time series. 
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 Fig. 24: April interannual distribution of 8 bio-optical groups over the 19-year time series. 
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  Fig. 25: May interannual distribution of 8 bio-optical groups over the 19-year time series. 
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Fig. 26: June interannual distribution of 8 bio-optical groups over the 19-year time series. 
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  Fig. 27: July interannual distribution of 8 bio-optical groups over the 19-year time series. 
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  Fig. 28: August interannual distribution of 8 bio-optical groups over the 19-year time series. 
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 Fig. 29: September interannual distribution of 8 bio-optical groups over the 19-year time series. 
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  Fig. 30: October interannual distribution of 8 bio-optical groups over the 19-year time series. 



60 
 

 
Fig. 31: November interannual distribution of 8 bio-optical groups over the 19-year time series. 



61 
 

  Fig. 32: December interannual distribution of 8 bio-optical groups over the 19-year time series. 
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Appendix C 

 MONTHLY PERCENT GROUP COVERAGE BAR PLOTS 

Figures below show the percent coverage of the study region of the 8 final bio-optical groups for each of 

the 19 years, separated by month. 

 

  

  

Fig. 33: January interannual variability in total percent study area coverage of each of the 8 bio-
optical groups over the 19-year time series. Note the varying y-axis scaling. 
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Fig. 34: February interannual variability in total percent study area coverage of each of the 8 bio-
optical groups over the 19-year time series. Note the varying y-axis scaling. 

Fig. 35: March interannual variability in total percent study area coverage of each of the 8 bio-
optical groups over the 19-year time series. Note the varying y-axis scaling. 
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Fig. 37: May interannual variability in total percent study area coverage of each of the 8 bio-optical 
groups over the 19-year time series. Note the varying y-axis scaling. 

Fig. 36: April interannual variability in total percent study area coverage of each of the 8 bio-optical 
groups over the 19-year time series. Note the varying y-axis scaling. 
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Fig. 38: June interannual variability in total percent study area coverage of each of the 8 bio-optical 
groups over the 19-year time series. Note the varying y-axis scaling. 

Fig. 39: July interannual variability in total percent study area coverage of each of the 8 bio-optical 
groups over the 19-year time series. Note the varying y-axis scaling. 



66 
 

 

Fig. 40: August interannual variability in total percent study area coverage of each of the 8 bio-
optical groups over the 19-year time series. Note the varying y-axis scaling. 

 

Fig. 41: September interannual variability in total percent study area coverage of each of the 8 bio-
optical groups over the 19-year time series. Note the varying y-axis scaling. 
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Fig. 42: October interannual variability in total percent study area coverage of each of the 8 bio-
optical groups over the 19-year time series. Note the varying y-axis scaling. 

Fig. 43: November interannual variability in total percent study area coverage of each of the 8 bio-
optical groups over the 19-year time series. Note the varying y-axis scaling. 
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Fig. 44: December interannual variability in total percent study area coverage of each of the 8 bio-
optical groups over the 19-year time series. Note the varying y-axis scaling. 
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Slope 
Group Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 -0.192 -0.016 -0.005 0.000 -0.055 -1.014 -1.885 -0.891 -0.095 0.052 -0.040 0.140 

2 0.260 -0.637 -0.386 -0.004 -0.295 -0.536 0.132 -0.570 -0.203 -0.019 -0.487 0.004 

3 -0.067 0.146 0.157 -0.006 0.037 0.153 0.070 0.103 0.051 -0.047 0.012 -0.079 

4 0.128 0.047 -0.148 0.028 -0.071 -0.024 0.037 0.001 -0.078 -0.039 -0.043 -0.041 

5 0.130 -0.468 -1.206 -0.206 -1.685 0.891 0.640 0.618 -0.957 0.042 0.360 0.212 

6 -0.110 1.495 1.775 -0.095 1.742 0.527 0.310 0.563 1.248 0.238 0.625 -0.673 

7 -0.031 0.062 -0.024 0.029 -0.015 -0.004 -0.034 0.004 -0.028 -0.029 -0.029 0.098 

8 -0.113 0.025 -0.024 0.097 0.048 0.027 0.039 0.030 -0.031 -0.074 0.066 -0.015 

 

 

 

  

p value 
Group Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 0.53 0.26 0.34 0.51 0.04 0.01 0.04 0.03 0.53 0.44 0.13 0.29 

2 0.40 0.04 0.01 0.48 0.01 0.07 0.73 0.36 0.06 0.89 0.01 0.97 

3 0.62 0.26 0.11 0.94 0.62 0.01 0.23 0.01 0.44 0.62 0.89 0.40 

4 0.21 0.67 0.01 0.48 0.07 0.40 0.40 0.97 0.04 0.29 0.53 0.58 

5 0.73 0.40 0.03 0.40 0.01 0.04 0.16 0.29 0.23 0.97 0.83 0.78 

6 0.78 0.14 0.03 0.78 0.01 0.14 0.18 0.02 0.21 0.83 0.44 0.29 

7 0.78 0.48 0.83 0.16 0.67 0.83 0.44 0.78 0.18 0.36 0.58 0.36 

8 0.14 0.78 0.89 0.16 0.44 0.23 0.53 0.33 0.18 0.04 0.33 0.83 

Significance 
Group Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 0 0 0 0 1 1 1 1 0 0 0 0 

2 0 1 1 0 1 0 0 0 0 0 1 0 

3 0 0 0 0 0 1 0 1 0 0 0 0 

4 0 0 1 0 0 0 0 0 1 0 0 0 

5 0 0 1 0 1 1 0 0 0 0 0 0 

6 0 0 1 0 1 0 0 1 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 1 0 0 

Table 2: Monthly group slopes, p values and significance. Tends (% of study area year-1) in each of 
the 8 groups, in each month, over the 19-year study period, their statistical significance (as p values) 
and a summary of the trend significance > 95%. Trends were calculated using the non-parametric 
Sen’s slope calculations, p values test the null hypothesis that the actual trend is =0 and significance 
summary is binary, assigning a value of 1 to 95% significant trends. 
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