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On-Orbit Characterization of Electric Propulsion on LEO
Satellites

D. Barnhart, Phillips Laboratory 
J. Sankovic, NASA Lewis Research Center

ABSTRACT
Because of the current high cost for space experiments on large and small space qualified 

platforms, alternate methods of space characterization must be explored. Utilizing commercial or 
military satellites as testbeds for subsystems is a potential platform for small devices. Electric propulsion 
is a viable and upcoming subsystem that is of high interest to planetary mission engineers as well as 
commercial satellite developers. The cost of space demonstration, and the risk associated with non- 
space tested components, is a major driver in the reluctant admittance into the satellite and space 
experiment world for electric propulsion. It is proposed that by incorporating small lightweight electric 
propulsion devices onto small satellites as external or "bolt-on" experiments, an increase in the number 
of flight opportunities can occur. Specific problems that will be addressed are spacecraft body 
interaction, contamination effects, thermal interface problems, power conditioning control electronics, 
and propulsion feed system interfaces.

Introduction

Traditional approaches to space qualified hardware encompass rigorous ground 
test methods and operations. Risk reduction is achieved through extensive 
environmental and qualification tests to a component or subsystem. Although the 
majority of component, subsystem, and even system problems can be worked out this 
way, a particular area of difficulty is characterizing the system interaction of a 
subsystems operation in space, a specific example being electric propulsion devices.

Electric propulsion devices produce various forms of ionized and uncharged 
contaminant exhaust during normal operation. In addition, they generally require 
larger amounts of power over time than other subsystems. Thus, effects of the electric 
propulsion device interaction with the overall spacecraft are not easy to discover on the 
ground, given the hard vacuum requirement for actual operations. The most robust 
approach to characterization of an electric propulsion device with its host system is, 
therefore, in space. But this presents the disadvantages of high risk to an overall 
mission, because limited testing can be accomplished prior to its operation.

This paper will address the concept of packaging an electric propulsion device 
into "payload" constraints. Currently there are several programs underway within the 
US and Europe that are developing both small and large electric propulsion 
demonstration experiments.p]p]p] Although this approach is not new, the idea of 
reducing the electric propulsion system power and propellant requirements, can open 
up more potential flight opportunities via small, lightweight military and civilian 
satellites. The types of electric propulsion devices proposed to test include de-rated ion 
engines, stationary plasma thrusters, and hydrogen and ammonia arcjets. 
Magnetoplasmadynamic(MPD) thruster testing is not proposed on small satellites due to 
its large size and power requirements.
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Electric Propulsion Devices ' ? ;

Electric propulsion devices, whether classified as arcjet or ion engine 
technology, typically are designed for specific operating points. These points are set 
based on both physical characteristics of the thruster, for instance grid size and 
diameter on an ion engine, and nozzle characteristics on an arcjet, as well as the input 
power applied, varying both current and voltage. Applied power is most often the 
primary characteristic that couples an electric propulsion device with a spacecraft.

Limiting these characteristics to what is readily and realistically available on 
board a small lightweight spacecraft(here defined as Pegasus constrained volume and 
less than 250 kg to LEO), defines operating constraints, and therefore, specific electric 
propulsion devices that can be flown. Although certainly not true in all cases, a basic 
assumption shall be made on the linearity of electric propulsion devices to decreases 
and increases in operating parameters around their nominal operating points. Figures 1 
and 2 show respectively graphs of off-nominal ground test operations for an arcjet and 
plasma engine. As shown, a trend can be seen on the thrust and Isp for both, that 
increases with power. Thus, by flying and characterizing a lower power electric 
propulsion system, extrapolations to higher power systems can be made on both 
performance and operating characteristics directly.
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Figure 1. Arcjet Engine Operating Characteristics[4]
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Figure 2. Ion Engine Operating Characteristics!5]

Figure 3 shows a representative arcjet system layout. Figure 4 shows a 
representative ion engine layout.

ARCJETTHRUSTER(AJT)

Figure 3. Arcjet System Layout(1.8kW Hydrazine RRC)
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Figure 4. Ion Engine Layout

All electric propulsion systems include some type of power-related hardware 
which are used to implement electrical operation of the thrusters. This hardware 
includes the power processing units(PPU's), cabling, and depending upon the type of 
spacecraft operation, batteries, solar cells, or other power sources. Currently, PPU 
components are still large with respect to a small class spacecraft. Weight and volume 
constraints on a small spacecraft are such that packaging is a large consideration. 
Considering an electric propulsion device then, largely depends upon the volume 
available to insert the related hardware. Based on Figures 1 and 2, it is postulated that 
decreasing the input power to the electric propulsion unit, smaller components can be 
flown, including PPU's and their related cabling. This can be seen in the PPU's 
generated for the lower power arcjet engines from RRC/PED.[6]

Electric Propulsion Integration on S/C

To assess the premise that an EP system can be incorporated onto a small 
satellite, we will examine a sample spacecraft and electric propulsion device.

* EP Device Characteristics
Input Power 500W 
Efficiency 30% 
Isp 1000 sec 
Total Propellant 4 kg

* Spacecraft Characteristics
Mass 225 kg 
Total Power 600 W 
Allowable Payload 
Weight 30 kg
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For demonstration, it is proposed that a very short orbit transfer be initiated by the electric propulsion device on this satellite, after the primary mission has occurred. The mission parameters for this are listed below[7]:

Min. Altitude at startup 484 km
Final Altitude 800 km
Inclination 28.5 deg.
Total Delta V change 170 m/sec

The launch vehicle to be used would be less than 1000 Kg pay load capacity. A Pegasus is used for example. The payload limitations are shown below to indicate the constraints on small spacecraft mass characteristics for various insertion altitudes:

Park OrWt al 200 nml

250 (g) 450 @ 1000 MEO HEO 
97.265 98.747 @ 28.5 @> 55 <g> 63.4 

Target Final Orbit

Figure 5. Pegasus Payload Capabilities Versus Altitude

Integration Methodology

There are two basic methods to integrate an EP system onto the spacecraft. The first consists of creating a structural module from the EP system components that attaches independently to the spacecraft. This module would "bolt-on" separately from other components and have minimal interface requirements. The second method 
incorporates the EP system internally designed with the spacecraft.

Bolt-on Method
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The first method of attaching a module completely separate from other 
components of the spacecraft presents unique advantages and disadvantages. By 
creating an efficient package out of the EP system, this "payload" can be transported on 
a variety of different spacecraft within its diameter constraints. The interfaces between 
the spacecraft and the module are minimal, consisting of the mechanical fixture points 
or fixture plane, and the electrical umbilicals or wiring. All operation of the EP system 
would be carried out through a pre-defined set of logic parameters that are monitored 
and acted upon by the EP module. The module would execute its own EMI and 
thermal dissipation based on the spacecraft orientation and requirements. Figure 6 
shows a concept designed by the Phillips Lab and the Jet Propulsion Laboratory.

PROPELLANT TANK

\

PROPULSION x
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POWER PROCESSING 

UNIT (PPU)

Figure 6. Electric Propulsion Module Concept.

This approach has been successfully achieved by the Russians in the 
development and flight operation of their Stationary Plasma Thrusters (SPT's) from the 
early 1970's[8].

Some disadvantages of this approach are apparent when trying to minimize 
overall payload weight. Because the EP module is independent, it must have a 
structure to hold all the components together. Based on previous payload development 
efforts, this structure would account for up to 15% of the EP module weight. Also, if 
the EP system is kept simple as outlined above( ie. no gimbaling mechanism allowed), 
there is only one specific attachment orientation that is allowed to the spacecraft to 
make the EP system effective in operation. Thrust vector offsets must be minimized by 
mechanical alignment prior to operation.
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Integral Method .; ;

The second method using an EP system is to integrate all the components into 
the preliminary and final design of the spacecraft. To develop an efficient and 
economical union, this would mean a high degree of interaction by the payload 
designer between the EP system and the spacecraft early on. This allows utilization of 
unused physical volume of the spacecraft for additional instrumentation. It also allows 
a decrease in the EP system overall weight because extra structural elements do not 
need to be developed to house the entire structure. Existing or easily modifiable 
internal bulkheads and interface plates can be used on the spacecraft. Specific electric 
propulsion sizing can be accomplished more accurately, because of the flexibility in the 
various subsystem components(ie. different propulsion tanks, various thrust levels and 
thruster sizes, etc.) Balancing the spacecrafts axis of inertia to its required mission 
constraints(eg. viewing requirements), allows optimization of the consumables 
necessary. [9] Thus, flexibility in placement of the electric propulsion system 
components can decrease the required amount of propellant. (Although this is not 
necessarily a consideration in demonstration missions, it is a primary consideration in 
operational missions.)

This approach has been used more often than modular or wafer stage 
integration. The SERT experiments in the 70 f s and 80 f s specifically used this 
approach, as the spacecraft was designed for the electric propulsion device[10]. RRC 
has developed a low power hydrazine arcjet for specific use on the GE Series 7000 
geosynchronous satellites for north/south stationkeeping.[n] These thrusters are 
incorporated into the design, and are specifically suited for this size and mass 
spacecraft.

In terms of demonstration missions, a small solar ion propulsion spacecraft was 
proposed for lunar science missions. [12] The concept was to develop a lightweight 
spacecraft to lower overall launch and mission costs to allow continuos space science 
exploration of the lunar surface. The spacecraft weighed approximately 150 kg, with 
approximately 1450 W of power at the beginning of the mission.

A disadvantage to this approach is the incumbent increase in complexity on the 
overall spacecraft design due to inclusion of another payload. Thermal and electrical 
interface concerns will increase, and a more detailed modeling effort may have to be 
done to keep thermal and electrical interference effects from becoming a problem.

Characterization

Tradeoffs between ground testing and space testing are normally made with 
regards to finances and mission opportunities for systems that utilize electric propulsion 
devices. Space qualification of any system is expensive and complicated. However,
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characterization of the electric propulsion systems overall performance interaction with 
the host spacecraft must be done on-orbit. Thus, ways to achieve this characterization 
must be done with low-cost and light weight components, or procedures dealing with 
the host spacecrafts capabilities.

Normally, spacecraft manufacturers do not ground test the EP system while it is 
attached to the S/C. Tank sputter and contamination are the biggest concerns with 
operational ground vacuum tests of integrated EP system on S/C bus. However, due to 
cost and risk, an arcjet was tested on a FLTSATCOM spacecraft at TRW to look at 
EMI and thermal effects.[13](It has been proposed that a "bell jar" can be placed over 
the spacecraft bus and critical components, isolating the electric propulsion device from 
the spacecraft, which would allow the electric thruster to be run inside a vacuum 
chamber as a ground systems test.[ 14])

Thus, characterization of the EP system interaction to the spacecraft is usually 
reserved for space. Characterization is extremely important to assess overall risk for 
future satellite designers. Space characterization is very important to verify the ground 
based data, thereby updating effective models to decrease future space testing. Several 
important parameters are specified here to characterize the EP system.

Characterization parameters for EP systems include;
* Life and degradation of performance
* Thrust performance
* Beam divergence angle and subsequent plume energies
* Electrical interaction of the plume with the spacecraft
* Thruster startup, and transition to steady state
* Thruster interaction with the spacecraft outgassing
* Thruster interaction with the overall environment
* Aspects of solar array degradation.

These and other parameters can be separated into areas of applications, namely
* Spacecraft Operation
* Array(Power source) Degradation
* Thruster/Spacecraft Interaction
* Thruster/Environment Interaction
* Thruster Performance

Spacecraft Operation

The parameters that characterize an electric propulsion device relative to the 
spacecraft can be described by the physical processes that drive the thruster. The 
particular voltage and current sent into the PPU, and into the thruster describes relative 
efficiency of the physical operation of the thruster. The specific hardware requirement 
can be easily met on a small spacecraft with voltage and current probes.
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Propellant pressure gauges can measure pressure in the tanks, and be used to 
characterize the feed system performance. Varying the mass flow rate changes the 
performance parameters of the electric thruster. Thus, placing pressure gauges along 
the feed system path can reveal relative pressure drops versus time, and help 
understand transients in the thruster operation.

Temperature probes(eg. thermocouples or thermoresistors) show absolute 
temperatures on the PPU, the thruster body, thermal signatures near the thruster heat or 
isolation shield, and transients in the overall spacecraft temperature.

Array Degradation

Spacecraft interaction includes the articulated appendages that pose the largest 
area of exposure to an electric propulsion device plume, the solar arrays. Degradation 
to the arrays has been a subject of argument about possible effects. Some proponents 
believe that the plume effects will essentially sputter contaminants off of the array, 
rather than on. It may be that characterization of this phenomenon must be determined 
in the combined environment of space. Diagnostic equipment used to determine this 
effect can include carefully placed soar cells in varying positions near the plume; 
radiometers of several wavelengths to assess radiation emission effects; and possibly 
neutral mass spectrometers with different mass ranges to assess propellant products and 
sputter contaminants. Of these, only the solar cells would easily be integrated onto a 
small spacecraft.

Thruster/Spacecraft Interaction

The characteristics described under the spacecraft operation description all apply 
to describe the thruster to spacecraft interaction . Some additional diagnostic tools can 
be applied to further ascertain certain issues. Radio emission probes, or radio 
frequency antennas tuned to certain wavebands, can be used to determine interference 
to onboard telemetry. Also, by careful placement and use of the spacecraft telemetry 
equipment, the primary diagnostic RF equipment may be the spacecraft operational 
system.

Further interaction may be determined by electron temperature and density 
probes. Normally referred to as langmuir probes, these can determine relative 
dispersion of plume effects. (Specific electron densities must be considered. Depending 
upon their intensities, the langmuir probe may not be feasible due to a high accuracy 
requirement in positioning, which may not be possible on a small spacecraft. [15][16])

Again, a mass spectrometer can determine sputter or contamination products 
deposited by the plume itself, or the plumes interaction with the spacecraft body.

Additionally, electromagnetic noise and electromagnetic interference (EMI) 
affects, present or absent by the operation/non-operation of the thruster, are particularly 
important in assessing a thrusters interaction. Electrostatic field sensors and 
transformers placed at various points on the spacecraft surface can measure electric 
field intensity, frequency of noise pulses, and characterization of the EMI effects 
during operation. [17]
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Thruster/Environment Interaction .

Specific interaction between the thruster or its exhaust and the ambient 
environment is also of concern. Radio frequency antenna, radiometers, electron 
temperature and density probes, and mass spectrometers could all contribute to the 
diagnoses of how the thruster interacts with the ambient environment. Of particular 
interest is the relative voltage or charge buildup between the thruster exhaust and the 
spacecraft.

Thruster Performance

Almost all of the aforementioned diagnostic tools will help to determine the 
overall thruster performance. Internal operating characteristics can be determined from 
the basic health and status information presented in temperature, voltage/current, 
pressure and radiation data. In addition, high heat strain gauges may be used to 
characterize the physical processes that occur on and around the thruster itself.

Thrust performance(ie. force imposed by the thruster on the spacecraft) can be 
determined from actual operation of the spacecraft over a given amount of time. 
Ephemeris data can be used to calculate the thrust given an operating time and altitude. 
By demonstrating an orbit transfer, obvious performance calculations can be made with 
reference to the spacecrafts movement, easily tracked by a space surveillance system. 
Thrust performance can also be determined by the use of accelerometers along the 
longitudinal axis of the spacecraft. The use of onboard GPS data can also be used to 
determine exact inertial position over time.

Life

In any examination of electric propulsion, another characteristic must be 
discussed. Based upon the premise of limited propellant and power available for an EP 
system, life testing would not be a characteristic examined on a small satellite with 
electric propulsion. Life testing is normally done in ground facilities. This also allows 
testing of the entire power and propulsion subsystem and its characterization over 
different operating points. [13] Flow rate data could be determined by propellant 
pressurization drop over time versus the operating time. This could be characterized 
fairly accurately on the ground but can be varified in orbit.

It may be possible to achieve results on life test using accelerated methods. 
This would be done running a given electric propulsion device above its rated power 
level at a fraction of its stated life, and using a statistical averaging method to 
calculated lifetime performance. [ 18] It is questionable, without the actual retrieval of 
the device to measure any physical deformities, that a good life test characterization 
could be made with this method. Possible applications of remote cameras to examine 
the electric thruster nozzle for obvious signs of wear would provide degradation data.
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By decreasing the input power and propellant required to operate a specific 
electric propulsion device, small experimental packages can be flown on numerous 
small satellites. Traceability to large powered systems can be done with small electric 
propulsion systems for future operations. Due to the mass and volume constraints that 
small spacecraft would impose, multiple missions with similar thrusters might have to 
be performed to evaluate different characteristic data, using distinct sets of 
instrumentation. Each mission could be tailored for a specific set of diagnostics 
equipment and characterization requirements, thus increasing the general operational 
knowledge over a series of experiments. This approach can be done today with 
existing technology and experimental apparatus, for use in tomorrows larger 
operational systems.
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