
The Space Congress® Proceedings 1991 (28th) Space Achievement: A Global
Destiny

Apr 24th, 2:00 PM - 5:00 PM

Paper Session II-B - The Launch Processing System of Tomorrow Paper Session II-B - The Launch Processing System of Tomorrow

Gerry Duggan
Harris Space Systems Corporation, Rockledge, FL

Shaman Mullich
Harris Space Systems Corporation, Rockledge, FL

Charles Westerfield
Harris Space Systems Corporation, Rockledge, FL

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Duggan, Gerry; Mullich, Shaman; and Westerfield, Charles, "Paper Session II-B - The Launch Processing
System of Tomorrow" (1991). The Space Congress® Proceedings. 8.
https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th/april-24-1991/8

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217148707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th
https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1991-28th%2Fapril-24-1991%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th/april-24-1991/8?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1991-28th%2Fapril-24-1991%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

IMASA The Launch Processing
System of Tomorrow

Authors: Gerry Duggan
Shaman Mullick
Charles D.Westerfield

ABSTRACT

Harris Space Systems Corporation
P.O. Box 5000
Rockledge,R 32955
(407)633-3800

Preparation and launch operations on the Space Shuttle and its payloads are highly complex. The current Checkout, Con
trol, and Monitor System (CCMS), installed in the mid-1970s to provide prelaunch testing, launch sequencing, and con
trol of the Shuttle, is now approaching the end of its useful life. To meet the increase in launch processing requirements
for both the Shuttle and Space Station, NASA has responded to the need to replace this aging system with a new system
which incorporates the advantages of modern state-of-the-art real time computers, displays, software, and communica
tions. This effort, known as the Core Electronics System, is being implemented by a NASA/Harris team. The objective
is to develop a Generic (or Core) test system, applicable both to Shuttle launch processing and to Space Station integration
and test, which will also serve as the basis for future NASA test systems. The Core project will replace the CCMS at
KSC and, in parallel, develop and install the Test, Control, and Monitor System (TCMS) for the Space Station. The Core
System will serve space exploration well into the twenty-first century. This paper discusses the Core architecture and
the benefits it provides to the space community.

THE LPS OF TODAY
Progression of LPS Capability Over the years

Launch processing technologies have evolved considerably over the last 30 years. Table 1 shows the progression from
early to current to future launch needs and capabilities. Preparation for launch of the Space Transportation System (STS)
is currently accomplished through the use of the Launch Processing System (LPS). The LPS was developed in the
mid-1970s and evolved from the need for a rapid Shuttle turnaround to meet the projected launch rates. The operational
goal of the LPS is a successful launch. All test activities are focused on providing safe, trouble-free launches while main
taining schedule and avoiding costly delays.

Table 1 The Progression of Launch/Checkout Capability over the last 30 years

Chronology
Yesterday
(1960/70*s)
Today
(1970/80*8)

Tomorrow
(early-1990's/
2000's)

Examples
Early missile launches

Shuttle/payloads

Space Station/Shuttle

Mission Attributes
Single test article,
sequential test
Single Test article,
parallel tests,
rapid launch turnaround
Multiple test articles,
independent parallel test,
multi-stage integration,
rapid reconfiguration and
turnaround

Test Architecture
Centralized computer,
dumb terminals
Distributed computers,
dumb terminals,
shared network
Pooled Computers,
smart/graphics terminals,
shared networks,
reconfigurable resources

Today's LPS

Today's LPS consists of three elements: the Central Data Subsystem (CDS), the Record and Playback Subsystem (RPS),
and the Checkout, Control, and Monitor Subsystem (CCMS). The CDS provides data management, test application soft-

5-1

ware development, and system build functions for the UPS white supporting a program library, historical data, and p&~
and post-test analyses. The RPS provides the mechanism for capture and playback of all unprocessed kstnimentation.
data, The CCMS commands and monitors the vehicle and Ground Support Equipment (GSE) during launch processing
operations,
The current CCMS has served NASA well during its checkout mission* but there .are some imminent needs for launch
processing which the CCMS does not meet These include: a shorter' turnaround toe for test program development, 'the

.. checkout of Space Station Freedom a^cles>>siinultxa^us.ch^oa!t.of> nAi]ltiple test articles, .and hence, improved test
performance and increased system capacity. Modification of the current CCMS is not prudent due to its limited leconfi-
gurabilityt custom software, obsolete hardware, and the limited responsiveness of its Test Build process.

Lessons Learned
The LPS was. technologically advanced when delivered and NASA has learned many valuable lessons from their launch
checkout experience on 'today's system. To promote long life, the .architecture should be open, based on Mushy-wide
standards (which were not mature at the time of the LPS development), and, implemented with generic, modular compo
nents that can be used to support any launch or checkout mission by'the addition of missio&-unkpe interfaces. The num
ber of pooled, modular' elements at a facility should be selected to reflect the maximum number of concunent tests :needed
tosuppoit schedules at that facility. Multiple concurrent tests sbouldbe supported 'through theassigprnentandconfigiiia-
tion of pooled modular elements to serve a particular 'test, As another lesson learned, ihe destgnapfuoach must begeaied
toward satisfying the-end 'users by including them, as a part of the design team,, steeping them, invdved throughout the
entire development cycle, and embedding feto^^
and monitor lest articles in a safe, accurate, aid timely manner,

THE LPS OF TOMORROW
NASA has defined a new checkout system. This newLFS retains portions of Ihe old, LPS,,, while defiling a/new CCMS
(CCMS-4I) to retain 'the best of'the IPS aid eliaiaite or reduce thereoogmied Imitations. CCMS-H includes generic

wait* industry standards apfitted throughout* and a modular design. This architecture takes advantage of the common
system requirements for die SIS ant Space Station checkout Commonalities include: a Human Ckwiputer Interface
(HG1); tieaMlty to;f oaaitow^^ stoii^imi^
measurement data; and configuration control, fault isolation* and status deteradnation of any equipment.

. TMs new UPS definition is the basis for the Gxepnject eogpneered jointiy % aNASA/Hania team. The Generic
System, represents a common "cores** upon test and. checkout systems are built 'The CoiePtoject defines
two systeufis fbr checkout Ihe CCMS-II far STS aotMties and the TM, Contni, and Monitor Subspusm ^PCMS) te
Space Station activife* Hese two systems and future will 'fee 'bull from 'Ihe modules of te generic Ooro
architecture.
Based on lessons on tie LPS of today, fee LPS rf'ioniofrow wil acccwmmoiite :teipiOTeaicate in lie ioDowiqg
aiets: (^miiltipleiiitssiois^
setreaomtes»(5) miillipteisefs.,® syste»:peiri^ and (7) missing elememshnidaiions. Eachofteaeimpnive-
ments are descried individually to the fbDowtog ^sectiois,
ACCOMMOD^E^ MUUT^ MISSIONS: GENERIC SYSTEM CONCEPT
Experience gained by NASA/KSC on pisipicip^ such ;asLPS»Cfe^
Checkout Unit (PPCl^ conBnned fee notion feal launch, pniamicli, iiii.pstliaicl'Wl|islie^^ Aama lHae
nwasureof sameness to the ftncttonsthey pevfbna. Andflnther, paericaoi^
can fee developed top«^ feeseamnontattkw. !lwiiig te gmricconiiNmntssffsasi^
q oe components can then be toiegiafeBd into fldimlainchiMOoesstogaysienis » meet il» ̂ ecisl needs of tenrisrioL

(1) CCMS-n, a :iepiic««i for CCMS © KMS,
acoom|)IUhed» jMwt mm At At csistfir

imptomenied on fee Co» 1 te cenaric system oonoqtt

for tte mission, fay mm te wife seme oonibhwto

ARTICLE UNDER

tlT t
RIM:
DAM

APs

DPs

DATA
ACQUISITION
SUBSYSTEM

1
"

APPLICATION
PROCESSOR
SUBSYSTEMS Jl

1
• ——— ' ——————

DISPLAY
PROCESSOR
SUBSYSTEMS 1

11
DATA

ACQUISITION
SUBSYSTEM

• •

GROUN

•

3 SUPPORT EQUIPMENT ARTK

DATA
ACQUISITIO
SUBSYSTEM

RTN REAL-TIME NETWORK

DBS
i

DATA BASE
SUBSYSTEM

1

ARS

I
ARCHIVE &
RETRIEVAL DR
SUBSYSTEM

DNS DISPLAY NETWORK SUBSYSTEM

1
FIGURE

Ml
EXTERNAL SYSTEMS/USER

1 GENERIC SYSTl

SPF

N
| _

I
, , I, , „ , I

;LE UNDER TEST

DIGITAL
RECORDING &

^ RETRIEVAL
SUBSYSTEM

I ,

SOFTWARE
PRODUCTION
FACILITY

EM ARCHITECTURE

The Data Acquisition Subsystem (DAS) contains Data Acquisition Modules (DAMs) and Remote Interface Modules
(RIMs) that interface directly with the Test Article and/or GSE, acquiring and processing data from the source in the
downlink direction and through-putting commands in the uplink direction. Mission-unique interfaces are satisfied by
the addition of special interface cards to the generic DAMs.

The Real Time Network (RTN) provides data and command routing and storage services that interconnect DAMs to
Application Processors (APs) and Archival Recording Subsystems (ARSs). As the name implies, the APs process user-
written test application programs that analyze downlink data and generate uplink commands. Mission-unique data and
command processing are thus contained in the Test Programs themselves. Multiple application program languages are
supported by the generic system including GOAL, UDL, Ada, C, and LJSR
The ARS records the processed data for both on-line and post-test retrievals and analyses. Terabyte storage is achievable
through the use of optical disk platters. Data thus recorded is physically mounted in jukeboxes** within the Database
Subsystem (DBS) where it may be retrieved by requesting users and operators. The Digital Recording ami Retrieval
Subsystem (DRRS) records and retrieves raw (unprocessed) data directly from the test article interfaces.
Users and Operators gain visibility and control over data processing and retrieval operations through Display Processors
(DPs) interconnected to APs and ARSs via the Display Network Subsystem (DNS). As with test application programs,
the users define mission-unique graphical displays for dynamic viewing of data associated with or analyzed by the
user-written test programs.

ACCOMMODATE GROWTH AND CHANGE

A major lesson has been learned on past programs: technological advancements cause rapid obsolescence of commer
cial products. Supplier support often wanes within a few years of introducing am "exciting newprodnct" in favor of iieir
latest and greatest offering. In order for future systems to yield a 30-plus year lie, MAS A/KSC .his aided to the generic
system concept some antidotes against the effects of obsolescence, growth, and change:

a. A multi-network architecture to accommodate the interconnection and future addition of modular
elements

b. Observance of open system standards to accommodate the use of heterogeneous products (for hanhvaie and
software implementations

c. Allocation of system functionality to generic physical modules that can be to file is id
accommodate present and future expansion needs

d. A layered software architecture to augment the open system standards to the
to the layer boundaries

e. Sufficient performance margins to accommodate both design tolerance aid growth.
Multi-network Architecture and Open System Standards
Figure 2 depicts a template of the multi-network architecture.

TEST. ARTICLE

TEST ARTICLE

GLOBAL DISPLAY BUS

FIGURE 2 MULTI-NETWORK ARCHITECTURE

The RTN is a custom design patterned after the existing Common Data Buffer of the LPS with extended performance
to accommodate 16 independent concurrent tests and extended porting to permit up to 256 subsystem interconnections.

The DNS has several network components: (1) an Ethernet local display bus to accommodate local clusters of APs, DPs,
ARSs, and DBSs; (2) a Fiber Distributed Data Interface (FDDI) global display bus to interconnect the local buses; and
(3) various bridges (BRs) and gateways (GWYs) to interconnect internal and external networks.

The SN/MNET is an Ethernet service network (SN) and maintenance network (MNET) that provides file transfer ser
vices and accumulates maintenance-diagnostic data for front-end subsystem elements (DASs). Attached to this network
are multi-port communication servers (CSs) having RS-232 interfaces into all system modules for running diagnostic
tests from a central operational position (a designated AP/DP).

The Ethernet and FDDI networks provide IEEE standard link-level communication protocols supported by TCP/IP up
per level protocols for the near term, migratable to Open Systems Interconnect (OSI) standard protocols in the future.
For the customized RTN, standard interface protocols are provided using TCP/IP (later OSI) for the upper levels and di
rect interfaces at the link level.

In addition to the open system communication standards, the Generic System also specifies the use of the IEEE POSIX
Operating System for all commercial general purpose computers in the system.

Modular Additions of Heterogeneous Elements

Heterogeneous computing elements can be added and combined in the multi-network architecture so long as each ele
ment observes the open system network and operating system standard protocols. Further, as a heterogeneous element
becomes obsolete, it can be replaced with a technologically superior version to meet future demands without major
rework to salvage its application suite. Thus, the open system architecture assures vendor independence and provides
for growth, expansion, and interchangeability of elements. The result is a system with considerably extended lifetime
and reuse to serve other mission environments.

Layered Software Architecture

To further assure planned growth of the system, the software architecture is organized into four layers to insulate against
the rippling effects of changes to the software. The layering is depicted in Figure 3.

The layers are separated by standard interface boundaries used to communicate between layers. Thus, software changes
that may occur within a layer are inhibited from propagating change to its neighboring layers because the interface
between them has been formalized and standardized.

User-written, mission-unique application software resides at the top layer (layer 1). Typically this layer consists of test
programs, simulation programs, or test data analysis programs. At this layer, the user-programmer need have no knowl
edge of the inner workings of the generic system architecture, relying solely on the standard interface calls to the next
lower layer for gaining access to system services.

5-4

LAYER 1

LAYER 2

LAYER 3

LAYER 4

USER APPLICATION SOFTWARE

Standard user application interface

OPERATION AND SUPPORT SYSTEM SOFTWARE

Standard Distributed System Interface
DISTRIBUTED OPERATING ENVIRONMENT

Standard Platform Interface

HARDWARE/SOFTWARE PLATFORM

FIGURE 3 LAYERED SOFTWARE ARCHITECTURE

The next level down (layer 2) contains the generic system environment provided by the Core system for user develop-
men t, operations, anal y scs, and maintenance activities by which the user and/or associated application programs manipu
late the test article. This layer does require knowledge about the functionality of modular elements of the Core architec
ture, since measurement, command, and link tables need to be built and executed in the Core environment by this layer.
However, this layer need not concern itself about the distributed nature of the architecture and the mechanism for inter
process communications and associated distribution of data. This is the domain of the layers below it.
The next level down (layer 3) provides the distributed operating environment that manages the multi-network architec
ture and provides transparent interprocess and inter-element communications and data distribution services to the layers
above it.
The lowest layer (layer 4) provides transparency to the peculiarities of each hardware/software platform to the upper lay
ers, providing a standard POSIX compatible interface, and the vendor specific operating system software plus extensions.
Performance Margins
To accommodate growth, sufficient performance margins must be added to each modular system element to account
for both design growth and future expansion needs. The plan on Core is to arrive at the margin requirements through
successive estimation refinements, starting with mathematical analysis, continuing with simulation/modeling in selected
areas, and finally through "proof of concept" (POC) testing and evaluation. The first two refinements provide enough
confidence to merit initial vendor evaluations and selections. After the initial selections are made, a POC system is im
plemented to validate system performance and ensure sufficient performance margins for both design and expansion.
ACCOMMODATE MULTIPLE CONCURRENT TESTING
Core will deliver up to 30 sets of equipment over the life of the project. A set is bounded by the equipment attached to
an RTN, a pool of modular resources that can be allocated and configured to form test subsets. Core will provide a re
source configuration function which will allow the execution of up to 16 concurrent independent tests. The resource allo
cation and associated test subset partitioning example shown in Figure 4 demonstrates a set having multiple test subset
allocations. The resources interconnected by bars with common shading make up a test subset.
Formation of a Test Subset
A Subset Manager forms a test subset by selecting modular subsystem elements from the pool of unallocated resources.
Once allocated to the new test subset, the subset is ready to be physically configured into an operational test This occurs
automatically when the Subset Manager gives the system a command to configure the test subset All associated subset
resources are then address-linked and downloaded from the DBS with operating and test execution software. Following
subset configuration, an operational readiness test (ORT) is run to ensure the operational readiness of the test subset to
perform its assigned mission. The test subset then stands ready for test execution (or test verification) as initiated by the
SubsetManager under direction of the Test Conductor. A set is specified to accommodate up to 16 test subsets executing
concurrently.

Test Execution
Test execution functions include data acquisition, processing, and recording; closed loop processing; exception process
ing; reactive sequence command execution; and equipment monitoring. Test data may be distributed to external systems

5-5

Up to 16 Virtually
Isolated Subsets

Display
Network
COTS

Components
External Gateways

FDDI Backbone
Ethernet Local

.Real-Time -100 us to 1 m»_____g^, * ^_____Near Real-Time -100 mS-
(Front-end) ' (Back-end)

FIGURE 4 PARTITIONING THE SET INTO SUBSETS

and requests for information received and serviced. The safing and monitoring of the orbiter, payloads, and support
equipment are also provided. For TCMS , the Test End Item may be the actual Space Station elements and/or a simulation
of its missing elements.
PROVIDE MANAGEMENT OF SHARED AND SUBSET RESOURCES
Operation and maintenance management tools in the Core architecture support a hierarchical structure shared throughout
the system but concentrated at the Set/Facility level and Subset level. The Set/Facility manager is in charge of shared
resources and associated Network Management which has standard tools to report network health and associated statis
tics. The S ubset Manager controls allocation of resources to support the management of backup and redundant resources.
There are several management tools which overlap both levels of management including System Integrity and System
Maintenance.
Set/Facility Management
Set/Facility management is controlled by a designated AP and DP pair that manages all shared or unallocated resources
in the facility. A facility is defined as a collection of sets such as Firing Rooms 1,2,3, and 4 and the other sets intercon
nected by the LC-39 network. Shared resources include the networks, external interfaces, and Data Base Subsystem
(DBS). This function performs all facility level management, client administration, and subset load/initialization/shut
down coordination with subset managers.
Network Management. The network management function provides network configuration, initialization, perform
ance monitoring, fault monitoring, and maintenance capabilities to the Core System. The Core network design integrates
management standards and protocols embedded in the network components into an operational network management
system. The Network Manager provides centralized control of network operations, using industry-wide management
standards that permit heterogeneous network elements to interoperate.

Subset Management
Each subset monitors and maintains the operational readiness of its own configured resources. The Subset Manager coor
dinates the load of subsystem software with the DBS and coordinates the initialization of all subsystems. Integrity is
maintained by monitoring the health counts for all subsystems (including redundant pairs).
Reconfiguration and Redundancy Management The functionality is provided to reallocate and reconfigure re
sources in the event of failure or to invoke redundant elements that have been ̂ reallocated to a test subset. When a
failure is detected, the Subset Manager coordinates manual switchover activities or monitors automatic switchover acti
vities. If a redundant pair has been configured, the Redundancy Management function coordinates the switchover from
prime to backup (manual invocation) or from active to standby (automatic invocation); if an auxiliary unit has not been
preallocated, a resource may be drawn from the available set pool into the subset. When the switchover or reconfiguration
has been completed, all subsystems are notified of the configuration changes via system messages.
System Integrity
Health and Status information is collected, recorded, displayed, and processed by the System Integrity function residing
on an AP to maintain and monitor allocated resources in the subset Health and Status collection involves generating

and transmitting any status changes, configuration changes, errors, or faults at any level of the subset Juenocfay* Heitota
is recorded with a time stamp and resource identification and then reported. Health and Status data may fee
by any interested client in a hierarchical manner. The data is analyzed for faults and a determination is nude
or not the fault is recoverable and notification is sent to the appropriate client System Integrity itself is xedamtet in that
two identical copies reside on two separate hardware platforms.
System Maintenance
The S y stem Maintenance function provides the capability to support fault detection, fault isolation* troublethooting, aid
trending analysis. These functions are provided on-line or off-Ene and are available from the subset down to the card
level. System Maintenance provides three classes of functions: Subset ORT, Health and Status Analysis, and board level
testing. The ORT function is a hierarchical suite of tests verifying that the subset performs as a unit prior to test execution.
The Health and Status analysis function retrieves all recorded data and provides a failure history of all hardware le-
sources, including the sequence of events leading up to a failure. This analysis wll provide data to aid preventive mainte
nance scheduling.
ACCOMMODATE MULTIPLE CLIENTS
Lessons learned in the past mandate the early involvement of the end users (Clients) in the system development process.
A system is much more likely to be successful if it gains a priori acceptance by the "Clients.** The Core System serves
a variety of Clients who interact with the system from several different orientations. In order to effectively serve their
needs, a detailed study of their job roles and associated tasks was conducted resulting in a successive partitioning hierar
chy by orientation, task category, type and classification. Table 2 lists these categories, along with a concise definition
of the tasks performed by the various Clients of the Core System.

Table 2 Client Definitions

Client Name

User

Operator

Auditor

Developer

Orientation

Test

Support

Process

System

Task Category

Preparation

Execution

Administration

Operations

Maintenance

Assurance

Development

Sustentation

Definition
Preparation consists of test article data base
ingest and modification. Preparation also
includes interpretation of test requirements,
development of test procedures and user
application programs, definition of required
resources, and building of test configurations.
Execution consists of control and supervision
of test operations
Administration consists of account and privilege
maintenance, configuration management, and
maintenance of system data bases.
Operations consists of management and control
of Core system resources . Operations also
includes preparation and monitoring of subsets
in support of testing.
Maintenance consists of failure analysis, fault
isolation, recovery, and preventative maintenance.
Assurance consists of ensuring the integrity of
ail system, support, and test functions.
Development consists of the initial design and
implementation of the Core system by the CEC.
Sustentation consists of modification and
enhancement of the Core system after delivery.

The Core Human Computer Interface (HCI) is evolving to satisfy the individual preferences and expectations of these
Clients. A series of HCI prototypes were constructed based on Client preferences, ranging from controlled interaction

1-7

structures for the Test Execution environment to more flexible windowing environments for Test Developers. These pro
totypes were incorporated into the POC evaluations, and iterated based on feedback from the Clients. From these itera
tions, an HCI design responsive to client needs is being defined. The net result will be a superior user interface design
that satisfies a wide range of clients while still accommodating their individual needs.

IMPROVE SYSTEM PERFORMANCE
The LPS of tomorrow will provide improvement in system performance and operational efficiency for both the Test De
velopment and Test Execution Environments.
Test Development Environment
The Test Development Environment incorporates the concept of segmented builds within a test configuration. That is,
the total system software build is partitioned into reasonably independent segments during the development phase, with
each segment being developed, compiled, and built separately. liiese segments are integrated into a total System Build
when the system is configured for the Test Execution phase. Basically, this breaks the total system build process down
into much smaller building blocks, thus improving the turnaround time for any particular build segment. Once loaded
into the Execution Environment, the test configuration build can be edited on-line to make last minute additions, dele
tions, or modifications to build segments without requiring the rebuilding of the entire test configuration.

Test Execution Environment

The Test Execution Environment incorporates performance improvements in the real time acquisition and distribution
of data. D AMs are specified to process 10,000 measurements of polled data per second as well as PCM data streams oper
ating at one megabit per second. Total throughput for a test configuration can be 50,000 measurements per second,
but the RTN will handle up to 16 times this throughput to accommodate 16 concurrently running test configurations.
In addition, the RTN will provide a latency of no more than 1 millisecond fully loaded and 250 microseconds lightly

loaded.

PROVIDE SIMULATION OF MISSING ELEMENTS
TCMS for the Space Station Program has unique and challenging requirements for real time simulation. Since the space
station is to be assembled on-orbit in space, the test-checkout mission extends the concept of simulation from just "pro
gram verification" to include "missing element simulations." That is, ground test and checkout of the present launch ele
ment in the Space Station assembly sequence must include the capability of simulating the missing elements that are ei
ther already on orbit (past launch elements) or will arrive on orbit later (future launch elements). The concept calls for
government furnished Flight Equivalent Units (FEUs) to simulate the missing flight processor elements and for TCMS-
supplied processors to simulate missing sensors and effectors that drive the FEUs. Thus, while the Test Environment is
checking out the present launch element, the Simulation Environment is simulating missing elements having real time
interfaces with the present launch element. The TCMS physical architecture to support simulation is identical to that
which supports test* with the following distinction: as the TCMS simulation processors are executing user-written simu
lation programs, the TCMS test processors are executing user-written test programs. As might be expected, ahigh degree
of software commonality «iste between, the test and simulation environments. The same repertoire of languages are sup
ported for developing and executing test or simulation programs. Because of functional commonality, the software sup
port services provided for ihe development-build process as well as the execution process incorporate common soft
ware components for both the simulation and test environments.

SUMMARY
Launch processing requires real time data acquisition, monitoring, and control technology. As new launch vehicle and
test articles are developed, the checkout system must adapt. The Core generic, open system architecture induces system
complexity and allows for efficient managementof equipment configuration, easy reconfiguration, expandability, upgra-
deability, and reusability for new missions. Each component is selected and designed to provide sufficient margins for
future system growth and to reduce the cost of ownership through improved operations and maintenance. Commercially
available components are being identified, evaluated, arid selected in all feasible instances in order to reduce program
cost and risk. The LPS of tomorrow will &e n superior system, having benefited from lessons learned on the current
LPS, The Core System is a leader in this mw w&y ttffomMing launch checkout systems. This mw appmmk is vit&l
to achieving NASA's go&i of a s«y% reliable* cast -effective* opemtwrmMy efficient Munch system with a life expectancy
of 3Q-plus years..

5-6

	Paper Session II-B - The Launch Processing System of Tomorrow
	Scholarly Commons Citation

	tmp.1409503896.pdf.h1iWH

