
The Space Congress® Proceedings 1969 (6th) Vol. 1 Space, Technology, and
Society

Apr 1st, 8:00 AM

On-Line Conversational Information Storage and Retrieval System On-Line Conversational Information Storage and Retrieval System

A. L. Scheidegger
Apollo Systems Department, General Electric Company, Cape Canaveral, Florida

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Scheidegger, A. L., "On-Line Conversational Information Storage and Retrieval System" (1969). The Space
Congress® Proceedings. 2.
https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-12/2

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217148562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1
https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1969-6th-v1%2Fsession-12%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-12/2?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1969-6th-v1%2Fsession-12%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

AN ON-LINE CONVERSATIONAL
INFORMATION STORAGE AND

RETRIEVAL SYSTEM

A. L. Scheidegger
Apollo Systems Department
General Electric Company
Cape Canaveral, Florida

Abstract

During the past several years the General
Electric Company has been developing a Dynamic
Automated Reporting Technique (DART). DART
was conceived for application to Dynamic
Situations such as exist in management of large
programs.

DART fulfills the following system require­
ments :

1) Capable of accepting inputs which vary in
content, volume and structure.

2) Capable of accommodating inputs from
several remote locations.

3) Ability to react to output demands which
specify output content at the time of
demand.

4) Function without computer programming
charges.

5) Provide a means of self reporting status
outputs for improving system effective­
ness .

6) Capable of user operation.

7) Uses stylized English commands.

8) Capable of quick easy updating and revision.

DART has been used and modified based on
experiments in Information Storage and Retriev­
al for the last three (3) years. These experi­
ments have involved four (4) different computer
types, and have consisted of data bases of
personnel files, test planning, ECP Change
Tracking and as an aid in the evaluation of
Missile Guidance and Range Safety Systems per­
formance. As a result of these experiments,
further generalized needs for the overall im­
provement of this User Oriented Conversational
Remote Access System are being studied.

This paper explains the rationale behind
the DART system design and provide examples of
its stylized language, data structuring and its
operation.

Introduction

Communication of information from the
source to the Need Point is a vital key to the
successful culmination of our large modern
complex programs.

It has been widely accepted that the most
effective operations are predicated upon the
timely availability of complete and accurate
information. It has been shown that automation
can and will continue to play an important part
in providing that information in a timely manner.

The approach of linking an information system
to a communications network provides the capa­
bility for transmitting from the source through
the information system to the user whoever and
wherever he may be. (Figure 1)

The operation of such a system depends
strongly on the ability of the information system
to communicate with the user thru the users re­
mote terminal facilities.

The existing telephone/teletype network can
and is providing remote terminal services at
many locations. Improvements in remote terminals
are desirable and will undoubtedly be made avail­
able.

The problem facing us now is an available
user oriented, information storage and retrieval
system.

This exposition has been an attempt to
develop an intuitive sense of recognition of
some of the problems in information storage and
retrieval, and to present a philosophy and means
for these problem solutions.

It is not the intent here to represent DART
as the panacea to computer problem problems,
however it has been used in its present form as
a satisfactory solution to many of the problems
of user oriented information storage and retrieval.
In addition. General Electric's Apollo Systems
Department is working in other areas to accomplish
improvements in information storage and retrieval.

This philosophy which we have developed into
a system called DART is functionally operating
and has been described herein. It is hoped that
this paper will be educational and Informative,
Further information regarding DART may be obtained
by contacting Apollo Systems Department,, Kennedy
Operations s 7011 N. Atlantic Ave., Cape Canaveral,
Florida.

12-11

DISC
STORAGE
CONTROLLER

MAGNETIC
TAPE

CONTROLLER

CENTRAL PROCESSOR

Figure 1
GE APOLLO SYSTEMS COMPUTER NETWORK

Problem Analysis

Many systems have been devised for semi­
automatic and automatic storage and retrieval of
information. Although most of these systems have
been satisfactory, a few important ones have been
either ineffective or inefficient in their missions.
They have failed to support the user in maintain­
ing cognizance over and extracting intelligence
from the mass of data in the system. A review of
both successful and unsuccessful systems revealed
three common characteristics: (1) the input or­
ganization was specified in advance, was well de­
fined and not changeable; (2) the data output was,
likewise, specified in advance, well defined and
could not easily be changed; and (3) the machine
processing instructions were fixed at the data
level. That is, there was no provision for data
manipulation that would permit organization
structure changes.

The effectiveness of these systems was a
function of how well the design team could specify
the inputs and the outputs to be encountered during
the operational life of the system. The best sys­
tems reflected excellent design team efforts in
predicting the inputs and outputs accurately and
comprehensively. The important point, however, is
that for a few systems even an apparently excellent
system design became unusable very soon after the
start of operational life, if not before.

Upon close examination, it became clear that
these systems were being applied to missions which
were significantly different from the missions for
which they were designed. Design was based on
specific programming of data relations and formats,
producing systems that were not flexible. Change
could be accommodated only by reprogramming, and
in many missions the rate of change of require­
ments is many times greater than the rate at which
changes can be implemented. It has been reported,
for instance, that at one time the SAGE system
programs were being obsoleted seven times faster
than they could be rewritten.

Dynamic situations encountered in military
intelligence systems, large program management,
and large scale command and control systems, all
present a new and challenging aspect to Information
Storage and Retrieval. No longer can the usual
"once and for all" approach of specifying inputs,
specifying outputs, and designing the black box
to perform the transformation be used. The inputs
and outputs change faster than people can design
or redesign the black box. The problem facing us
is one of coping with a changing context. In the
dynamic situation it is the context of the user
which changes. Data stored in a fixed or restrict­
ive context soon becomes uninformative and will be
relevant only when reorganized in a new context.
To be effective the system must be able to accommo­
date not only the restructuring of data but to
actively aid the user in placing stored data into
the new context.

The importance of context is not generally
realized. Information is not derived solely from
data. Data can have meaning - can be information
- only when it is expressed in relation to other
data organized in some pattern. Data when expressed
with context is information. Context is comprised
of three factors that serve to give meaning to a
singular piece of data. These three factors are:

Structure: The over-all arrangement of categories
into which the data may be classified and of rela­
tionships between the categories.

Interpretati on: The meaning associated with each
of the categories and relationships. The alter­
native meaning that any one category may have.

Probability: Among the alternative interpretations
there will be those that are more certain than
others for a given situation.

The Dynamic System

A system that is to operate continuously and
effectively, in a dynamic user context, must be
able to accommodate three situations that are oppo­
site from the three situations noted for an inflex­
ible system. Inputs will vary. Some types of data
will be identified in advance of system production,
but will vary in content and volume. Some data
will not be identified until after system operation
begins as the user context will cause changes in the
structure, interpretation, and probability of alter­
native interpretation. There will be different re­
lationships between new data and existing data which
will continue to be used. With this changing con­
text, outputs will change as new relationships be­
come meaningful to the user.

To accommodate the rate of change of context
evident in dynamic situations, the mechanism which
is used to restructure context and to manipulate
the data into the new context cannot be one of
system modification. Reprogramming, the "engineer­
ing change path", will never be adequate to the
response time required.

12-22

One promising solution to the problem is the
dynamic system - one that provides its own re­
structuring capability with simple, general in­
structions. Three elements appear as guides for
the concept:

1. An information storage and retrieval system
must be an extension of the user's mind.

2. To be effective it must embody the two major
properties concerned with information storage
and retrieval. It must be able to store data
and it must store the data within a structure
that is in substantial correlation with the
user's context.

3. As the user's data changes, the pertinent
stored data must be easily located and
changed; likewise, as the user's context
changes, so must the pertinent structure of
stored data be changed to mirror that context.

In the new concept any required changes are
accomplished without reprogramming by holding the
data in a definite structure but by making the
structure independent of the machine/software
configuration. The machine will hold the data
and relate the data as specified by the user via
the machine language; however, the language will
be of such power that the structure may be changed
via the same language without changing the machine/
software configuration. The details of this part
of the concept will be presented in the next
section. It is important now to consider one
serious ramification of this concept.

The Process Of Optimization

It is evident that if the user is to be able
to adjust the structure of the stored data to
reflect his own context changes, me must have the
information criteria and tools necessary to
identify the need for change and to implement the
changes. It is also realized that when part of
the system data file is changed, the change must
be designed with great care so that other parts
of the file are not affected.

To accomplish a system data file change as
required to mirror user situation change and to
control the system changes, it is evident that a
process must be followed which is identical to
the general optimization process followed in any
successful development.

In the process shown in Figure 2, the develop­
er started with a clear statement of the system
mission and requirements. He then determines the
state of the system and evaluates whether or not
the system meets the requirements. If optimization
is required, he must analyze system state to de­
termine the cause of the inconsistency. After an
analysis, he developes alternative solutions,
chooses the best solution, and carefully plans
implementation of the solution. Application of
the plan then results in adjustment of either the
system state or of the system requirements, hope­
fully the former.

There are several points along this process
where information must be supplied and safeguards
erected to insure successful adjustment of state
in the proper direction,, There must be an effect­
ive technique of measuring system state so that a
clear, unbiased estimate of state may be obtained.
Information of this kind must describe system con­
figuration, system activity, system design para­
meters, etc. Evaluation, of states can. only fee
accomplished when criteria are provided to define
success/failure states. Measurements of state
rarely agree completely with statement of system
mission and requirements. The extent of disagree­
ment allowable depends upon many factors oriented
not only towards system, performance but also to­
ward the resource expenditures required to resolve
the disagreement. ThuSj criteria for evaluation
of success/failure must, be developed before eval­
uation can be accomplished,

Analysis of the causes of incoosistenci.es
requires detailed information similar 'to the
measurement of system state. Inputs 'required! to
develop alternative solutions and to select, the
best solution should contain, general, types of
solutions worked out by the system design, team:
and specific types worked out by the user from,
past experience with, the system. Of course, good
understanding of the system design, and of the
various user orientations is also required at this
point to preclude partial optimizing, tee solution
may very well improve the system in, support of one
user orientation, while definitely degrading: the
system with, respect: to a second user •orientation,

Planning the best method of implementing the
chosen solution should include perspective from
the system design and. state, and, from user admin­
istrative p r a c t I c es „

Figure, 2
Tti e Pr o c es s o f Op t iiiiz; at ion,.

12-23

System Requirements

On the basis of the previous discussion, the
following system requirements have been set to
guide the design effort:

1.

2.

The system must be capable of accommodating
inputs which vary in content, volume 3 fre­
quency, and structure.

The system must be able to react to output
demands where the content and format of the
output may be specified at the time of demand.
The only constraint is that the output demand
must be stated in the terminology existent
within the stored data.

No computer programming changes will be re­
quired to accomplish the system optimizing
function.

Aids for optimizing system effectiveness
shall be built-in via self-reporting status

outputs and system monitor evaluation cri­
teria.

System control shall be accomplished directly

by the data user.

The system source language shall be stylized
english and shall consist of a minimum number
of functions.

System Design

In response to the previously defined re­
quirements, a system has been designed and a
prototype has been produced. The design depends

heavily upon two techniques - the basic data
organization and the source language; consequently

each technique will be described in the succeeding

two sections. Following this, a description of

the system and examples of data and context mani­

pulations are given.

Basic Data Organization

All data entered into the system will be in

the form of a unit called an Item. Each of the

many items will consist of three subdivisions, an

Item Name, an Abstract, and a Text as depicted in

Figure 3 (See Table 1).

The Text is the main body of the Item and

consists of the various pieces of data which are

closely associated with the Item Name. These

pieces may be in the form of equalities and may

be characterized by Attribute Names and Attribute

Values or they may be statements in the form of

sentences. The text may be of any length (within

large bounds) and may have any format. For
efficient retrieval, it will be required (where

Attribute Names and Attribute Values are used)

that the same Attribute Names be used in each item

although they will not be required to follow ident­

ical formats.

The abstract consists of a set of Descriptors

which are identifiers for the textual data. These

Descriptors, chosen by the user in view of the
pertinent characteristics of the data, are to es­

tablish in part the structure and interpretation
of the data in the text. The Descriptors help as

locators during data retrieval and provide the
power to identify and retrieva classes of data.

DATA ITEM <

(ITEM NAME)
IN

1

(DESCRIPTORS)
d, d 2 d 3

(ATTRIBUTES)
(NAMES) (VALUES)

Figure 3
Basic Data Organization

The Item Name is not necessarily a unique

identifier for a particular Item. Two Items may

have the same Item Name even though they may not

have common Descriptors, Attribute Names and
Attribute Values. For example: It is completely
possible to have two Items called "JOE SMITH"

which have certain commonalities and differences.

Source Language

In order to provide for the versatility re­

quired of the system and to meet concurrently the

requirement for minimum source language functions,

a set of four functions has been found to be
sufficient to direct all manipulations concerned

with information storage and retrieval, and with

system optimization. These functions are:

1. ADD

2. DELETE

3. CHANGE

4. DISPLAY

With these four functions the system can

manipulate data selected by Item Name, specific

Attribute Values, or by more general common
Descriptors. The first three functions serve to

enter intelligence into storage and to provide

the power to optimize the system; that is, to

establish a context and, subsequently to maintain

the context in correlation with user context. The

last function, DISPLAY, serves to retrieve data.

The system source language should allow for

data organizational change as well as content

change. Furthermore, it should permit retrieval

as well as change of selected items of data.

12-24

The determination of Item selection should be
permitted by content of an item as well as by its
name. In short, change and retrieval should be
permitted by implication and relation as much as
possible. This requirement then allows commands
to be formulated in a more associative or human
fashion, rather than in an artificial or mechanical
fashion where commands involve only names.

As indicated above, the system provides four
basic functions with which to change data content
as well as to display or retrieve data. The sys­
tem language permits the user to do this through
the application of a sequence of commands. A
command is composed of five factors which are
simultaneously interpreted to give full and widely
variable meaning. These factors are:

1. Todays date

2. A Function

THE OBJECT. The terms which appear in the (object)
part of the command identify for the computer to
which part of the data structure the function is
to be applied. The function tells it what to do,
and the object tells it on what part to operate.

The permissible terms which may appear as
objects of a command with the DISPLAY function
are:

1. ITEM NAME/S
2. ITEM/S
3. ABSTRACT/S
4. TEXT/S
5. ATTRIBUTE/S
6. DESCRIPTOR POOL
7. ATTRIBUTE NAME/S

The permissible terms which may appear as
objects of a command with the CHANGE function
are:

3. An Object of the function

^' Values of change or selection

5. Conditions of selection

Symbolically,

(command) = : (date)

(--Execute Command-------)(Under specified conditions)
(function)(object)(values)(conditions)$$

Each command is a self-contained and inde­
pendent statement to the system. It results in an
isolated fact about the data and does not refer to
another command. However, the results of one
command may be referred to by another command.
THE FUNCTION. As previously mentioned, four
different functions are provided to establish and
maintain context of data as well as retrieve se­
lected data from the file. Only these four terms
may appear within the function part of the command.

1. DISPLAY causes the selection and output of
certain items or parts of items of data, de­
pending upon the content of the remaining
three parts of the command. This function
also will output the contents of the descrip­
tor pool as well as the complete data file.

2. ADD is the function which permits new data
to be added to the file. Complete items may
be added to the file or new attributes or
descriptors may be added to existing items.
This function allows broadening of the data
context.

3. DELETE is the function which allows deletion
of unwanted items or parts of items from the
file.

^- CHANGE is the function which permits the
substitution of a new term or value to part
of an item in the place of an already existing
term or value. This function permits new
interpretation of the data.

1. ITEM NAME/S
2. DESCRIPTOR/S
3. ATTRIBUTE VALUE/S
4. ATTRIBUTE NAME/S

The permissible terms which may appear as
objects of a command with the DELETE function
are:

1.
2.
3.

ITEM/S
ATTRIBUTE/S
DESCRIPTOR/S

The permissible terms which may appear as
objects of a command with the ADD function are:

1.
2.
3.

ITEM/S
ATTRIBUTE/S
DESCRIPTOR/S

THE VALUES. The terms which appear in the VALUE
part of the command amount to new data or data
to be used for comparison purposes depending upon
the function and object of the command. In a
number of cases the content of VALUE will be empty.

THE CONDITIONS. The terms appearing in the
CONDITIONS part of the command serve to define for
the computer to which Items of data the command is
to be applied.

(COMMAND):(DATE)(FUNCTI ON)(OBJECT)(VALUE)(CONDITION)$$

/ ATTRIBUTE VALUESy
/ ATTRIBUTE NAIES /

DESCRIPTORS /
ITE» NAIES /

NEI DATA
STORED DATA

Figure 4
DART Language Summary

12-25

The conditions, therefore, allow the user
to specify that data having certain common de­
scriptors be operated on while data not having
the specified commonality would be undisturbed.

The terms appearing in the CONDITIONS part
of the command constitute a Boolean expression of
terms. These terms may be Item Names, Descriptors,
Attribute Names or Attribute Values or Text Values.
It is through the interpretation of CONDITIONS
that certain Items or parts of Items of data are
selected from the file to be operated upon accord­
ing to the FUNCTIONS. The Boolean expression
which constitutes CONDITIONS is made up of one to
four Boolean sub-expressions connected by logical
"and".

System Functional Description

Figure 5, Overall User/Machine Activity,
shows a top level layout of the system. It is
composed of the user and the computer (with its
Information Retrieval Language) . The user acts
in a dual capacity of: (1) actually using the
machine as a storage and retrieval device; and
(2) evaluating and optimizing the machine effect­
iveness. In the former role, he works with new
input data and with information requests. New
data is formatted into items and entered via the
ADD function while requests for information are
formulated as a command using the DISPLAY function.
The computer responds to each command by adding
data to its storage or by searching its storage
for the data requested (the data which satisfied
the conditions) and displaying the data at its
output. The user is then free to use the data as
he sees fit. Although it is hoped that at this
point he will be attentive to his role of systems
evaluator and express his opinion as to how well
the machine satisfied his request.

NEl DATA

Figure 5
Overall User/Machine Activity

In his second role, the user will identify
the need for context adjustment, determine the
change required, and implement the change.
Implementation is accomplished via the DELETE and
CHANGE functions primarily, although the ADD
function could also be considered in this capacity.
Identification of the need for adjusting context
is accomplished while evaluating system effective­
ness which in turn is made possible partly by the
displays of status provided by the machine. System
activity reports, and configuration change records,
are provided for this purpose. The additional

information required to complete the evaluation -
the user satisfaction - is almost automatically
provided since the evaluator is the user. Se­
lection of changes to be made should easily follow
a good evaluation since the change required is that
which brings the structure of data within the
machine more closely in correlation with the user's
context.

The machine can be any of the many computers
available for data processing because there are no
requirements within the new system which demand
unique capabilities in the machine. Of course, the
question of machine efficiency is always present and
certain types of machines (disk files, serial char-
achter memories, etc.) have advantages over other
types from this aspect of system effectiveness.
Basic system functions are shown in Figure 6.

If the machine were to be examined at some
time after system operation had begun, it would
contain a file consisting of several items of data.
The items may have abstracts of different length
and content and texts of different length and con­
tent. Along with the data pool will be a descriptor
pool - a list of all the descriptors used in all the
abstracts. This pool becomes an important reference
list for the user and is also employed in the com­
puter for the search and compare technique of find­
ing data.

COMMAND COMMAND
INTER-

PRETAT'N

ADD
DELETE
CHANGE
DISPLAY

PERFORM
DATA

SELECTION

/ DATA \
I FILE H ———

EXECUTE

SELECTED
DATA

/ ——— 1
CHANGE,
DELETE
OR ADD

__ DATA

PREPARE

SYSTEM
DATA

0 STRUCT
CONFIG

DISPLAY
PROJECT
DATA

REPORTS

DISPLAY
CHANGE
DATA

JRE AND
URATION DATA

Figure 6
a ACTIVITY AND CONFIGURATION
CHANGE

3 DESCRIPTOR POOL

:> SYSTEM ACTIVITY DATA

Basic System Functions

This bank of data comprises the total in­
formation used for the project upon which the
system is applied, and for differentation from
the following discussion this data will be termed
Project Data.

In support of the user's dual role, the
machine also has a dual role. There must be a
second data bank which is retained as data for
the system optimization and is termed System Data.
Data contained in this bank must be sufficient to
provide :

1. Reports upon system utilization
2. Reports upon data configuration
3. Reports on data configuration change

12-26

The first two types of data will consist of
data required to manage the system. This data is
geared to measurement of state and to reveal the
major modes of system usage. Consequently, the
data will describe daily system activity in terms
of data additions such as requests satisfied and
requests rejected. This activity data will also
be used in the optimization effort to provide
over-all profiles of system activity. As such,
it will include tallies of: commands received
by function type (ADD, CHANGE, DELETE, DISPLAY);
number of incorrectly formulated commands; number
of requests satisfactorily filled, and so forth.

The latter type of report, Configuration
Change Record (System Item), will provide the in­
formation necessary to identify past changes and
the change content. Configuration accounting and
control is a necessary activity in any system and
will be particularly required in a system in which
CHANGE is a major activity. To prepare for these
reports, a second set of Items (consisting of Item
Name, Abstract and Text) will be set up in storage.
Each configuration change command which is executed
will automatically generate a new system item in
which the Item Name will be the change identifier
(concatenation of the contents of (function) and
(object) part of the command), the Abstract will
be composed of the System Descriptors signifying
which data are affected by the change, and the
Text shall consist of the command which caused
the change and of the old values that existed prior
to the change. In addition, the data of the command
issuing the change will be included in the text as
a separate attribute. The construction of this new
Item is shown in Figure 7. These items of infor­
mation are generated as part of the normal machine
process and require no additional activities on
the part of the user. It will be noted that change
records are generated as a result of all commands
which cause changes to Project Data. These commands
are those that contain the function CHANGE, DELETE,
or ADD since any of the three can change the con­
figuration of the data file. The DISPLAY function,
of course, only exposes the stored data and in no
way changes its configuration; therefore, it is not
included.

COMMAND CAUSING

r\ CONFIGURATION
CHANGE

NEW SYSTEM ITEM

SYSTEM
ITEM

FUNCTION/

CONCANTATION

DATE
COMMAND

OLD VALUES
NEI VALUES

NAMES OF

————— +. «•»••
J EXECU

1
SELECT
ITEM/

(DA
V FI

Figure 7
System Item Generation

System Model

In order to clarify many of the questions
which probably have occurred by this time, it may
be helpful to consider a model operation of the
system. Let the system be employed as a service
to a group whose interest encompasses the parti­
culars of the top level change notification status
at GE, Cape Canaveral. Their items of information
would be similar to the sample in Table 1 where
the Item, Name, Descriptor, and Attribute Names
and Values are shown.

As the user file grows there would be stored
in the computer many items similar to the sample
following. Each item will have a different Item
Name, will have abstracts of varying size (although
many of the Descriptors from Item to Item will be
the same) and will have texts of varying size.
The texts will contain many common Attribute Names
with differing Attribute Values. There is no re­
quirement that the Attribute Names be ordered in
the same sequence for one Item as for the next Item
even though the names may be identical in both items.

* * * ITEM NAME * * *
* 47/66ICD2101

* * * ABSTRACT * * *
ORIG B
A HDW
B HDW
IND AREA
66ICD2102
LM 4

TEXT
DATE RECD AT A = 8/19/68
ECP NO = RC3417
DESCRIPTION = PROPER GROUNDING FOR THE OXYGEN SAMPLNG

GSE
TWR/ECR = 9370
TECH APP ACT A = 9/10/68
TECH APP ACT B - 8/16/68
CCB APP SCH A = UNK
CCB APP SCH B = UNK
REMARKS = RETURN FROM LEVEL II FOR CANCELLATION BEING

HELD IN SUB PANEL

Figure 8 - Table I

Now, suppose that a new change was initiated
and that a new Item of data is available for entry
on 12/13/68. The user would prepare in stylized
English the data shown in Example 1 and would em­
ploy the ADD function to enter the complete item
into the machine. Note that each command has a
date associated with it, (generally the date of
execution of the command), in this case 12/13/68.

(12/13/68) (ADD) (ITEM) (70/65ICD9200// AS 503 * ORIG C * A DOC *

C DOC * PAD AREA * 65ICD9200// DESCRIPTION = ADD WIRING BETWEEN

HYD SKID AND ANTI DRAIN BACK VALVE * DATE RECD AT A = 12/13/68 *

ECP NO = 1057* TWR/ECR = 11153 * TECH APP SCH A = 12/13/68 *

TECH APP ACT C = 12/11/68 * CCB APP SCH A= 1/6/69 *

CCB APP SCH C = 1/6/69 * REMARKS = NONE) () $$

Figure 9
Example I

Note that the ADD function notifies the
machine which type of operation it is to perform.
The ITEM entry in the object position of the
command format notifies the machine that a com­
plete item of data is to be added. The empty
parentheses denote that the Conditions part of
the command format is meaningless - the data is to
be accepted with no regard to other stored data
and the $$ denotes end of command. The Values

12-27

position of the command format gives the data that
is to be stored. This data, since it is a complete
Item, must contain an Item Name - 70/65ICD9200 -
An Abstract (denoted by the descriptors between the
next // marks) and a text (denoted similarly by the
Attribute Name and Attribute Value between the next
set of () marks).

The user now has an additional Item of data
stored in his system. At some later time (12/15/68)
let us assume that he received additional data which
is pertinent to only one change 70/65ICD9200. In
this case he would not want to add a complete item
of data but would simply want to add data to an
existing item in storage. To accomplish this he
would again employ the ADD function, but this time
would utilize the Conditions part of the command
format to specify that the values were to be
added only to the stored item that met the con­
ditions stated. The command would appear as:

TIME OF DAY IS 17.172 ELAPSED TIME IS 0.0033
COMMAND BEING PROCESSED IS AS FOLLOWS (RDCOM)

(12/13/68) (ADD) (ATTRIBUTE) (PRIORITY = THIS IRN HAS TP AT A) (IN(
70/65ICD9200))$$ $$$$

* * * ITEM NAME * * *
* 70/65ICD9200

ATTRIBUTE(S) BELOW ADDED. (ADATT)
* PRIORITY = THIS IRN HAS TP AT A

CURRENT COMMAND HAS BEEN PROCESSED.
ITEMS WERE FOUND TO SATISFY COMMAND. (MAIN)

Figure 10 - Example 2

The computer is thus instructed to utilize
its ADD operation on the Item which is the Item
Name (IN), 70/65ICD9200, and to add ATTRIBUTE as
specified. The computer would interpret this
command, search for the records containing the
70/65ICD9200 item, and would add the specified
attributes to the text. Note that this command
has caused a change in the stored data configur­
ation and that the results of this change will be
recorded in the System Data portion of the system.

To further describe the model operation,
assume that something in the user's context has
changed and that he no longer considers the De­
scriptor "URGENT" to be pertinent to SC 103. He
would thus desire to delete that Descriptor from
all Abstracts for those Items connected with
SC 103. Such a command is written as:

(4/8/68) (DELETE> (DESCRIPTOR) (URGENT]

(D(SC 103))$$

Figure 11 - Example 3

The computer would, search for all items which
contained a Descriptor SC 103 and would delete the
Descriptor URGENT from the identified Abstracts.

To further illustrate the manipulation power
in the system, assume that it is desired to correct
stored data such as changing a Descriptor from *
ORIG B TO ORIG C for all Change Notices which
occurred between the dates 11/5/68 and 12/3/68.
To accomplish this, a command using the Change
function would be written. The Object portion of
the command would specify that a Descriptor was to
be changed while the Conditions portion would call
for only those having DATE RECD AT A which occurred
between the specified dates and which were relevant
to SC 103.

TIME OF DAY IS 17.057 ELAPSED TIME IS 0.017
COMMAND BEING PROCESSED IS AS FOLLOWS (RDCOM)

(12/6/68) (CHANGE) (DESCRIPTOR) (ORIG B *TO*ORIG C)
(D(AS 503) AV((DATE RECD AT A*BETWEEN*11/5/68 , 12/3/68)))$$

* * * ITEM NAME * * *
* 70/65ICD9700

DESCRIPTOR(S) CHANGED AS FOLLOWS. (CHGDES)
* CHANGE - *FROM* ORIG B

:= TO* ORIG C

CURRENT COMMAND HAS BEEN PROCESSED
1 ITEMS WERE FOUND TO SATISFY COMMAND. (MAIN)

Figure 12 - Example 4

Note here that a double search must be
accomplished because there are two conditions ex­
pressed to select the proper set of Items. First,
the computer would search for those items which
contained the Descriptor, AS-503, and then it would
select from that group only those items received at
A between 11/5/68 and 12/3/68. Since dates are not
carried by this user in the-Abstract, he found it
necessary to search the text for the pertinent dates.
Thus, he has written, *AV(DATE RECD AT A*BETWEEN*
11/5/68, 12/3/68) as a constraint which tells the
computer to search for an Attribute Value, AV, which
has an Attribute Name of DATE RECD AT A, and to se­
lect those items for which the value lies within the
bounds of 11/5/6'8 and 12/3/68.

The previous examples illustrate how the in­
put and storage processes and the manipulative
power of the system are utilized. The following
two examples will illustrate the tremendous retrie­
val power of the system.

Suppose that one user interested in the
65ICD9202 desired a history of these changes. He
would know that 65ICD9202 was used for either of
two locations - Pad or Industrial Area - and that
the purpose would be keyed in the Abstract as Pad
Area or Industrial Area respectively. Since the
logic operation OR is not included in the source
language and since there may be changes with Pad
Areas only, changes with Industrial Area only and
changes with both, the user must write two commands
to obtain all the data.

(4/7/68) (DISPLAY) (ITEM) () (D(PAD AREA*65ICD9202))$$
(4/7/68) (DISPLAY) (ITEM) () (D(IND AREA*65ICD9202))$$

Figure 13 - Example 5

Thus, his need for information has been
comprehensively satisfied.

Assume that there is a second user who wants
to interrogate the same bank of data from a second
viewpoint. Suppose that he is concerned with
evaluating the performance on a change implementa­
tion cycle of certain Change Notices. He might
want to see the complete Item for all Instrumenta­
tion changes received at A before a certain date
during 1968 and received technical approval at A
before November 1, 1968. The resulting command
would be:

TIME OF BAY IS 17.161 ELAPSED TIME IS 0.0007
COMMAND BEING PROCESSED IS AS FOLLOWS (RDCOM)

(12/13/68) (DISPLAY) (ITEM) () (AV((TECH APP ACT A*LESS THAN*
11/1/68)*(DATE RECD AT A*BETWEEN*1 /I /68 , 11/I/68))D(INSTR))$$

Figure 14 - Example 6

12-28

Thus, it is seen that the system meets the
requirements set forth for the system design and
that the user has significant power to use
effectively large amounts of Project Data. He
is not isolated from the machine by programmers
or system operators, and yet is not required that
he learn a voluminous set of rules and a strange
language in order to use the machine himself.

With respect to System Data, the operation is
oriented towards keeping the user advised of the
actual contents and configuration of his data and
towards providing him with measurements of system
activity and direction of change. In the previous
examples it may have been noted that the user will
sometimes choose to search Abstracts for key Des­
criptors, while at other times he may specify text
searches for Attribute Names or character strings
(Text Values). A question probably arose in the
reader's mind as to how the user is to remember
which words are used as descriptors and which words
appear only in the text. Earlier, in the System
Functional Description, brief mention was made of
the Descriptor Pool (Figure 15) which is a list
of all Descriptors used in the stored Abstracts.
This list is used internally in the machine as a
search reference when commands are being inter­
preted and it is also displayed to provide the
user with a reference document. With this docu­
ment, therefore, he can determine if he is not sure,
whether or not the words he considers key words are
included in the Descriptors. If he finds that they
are, he can confidently command a search of Abstracts
on the basis of his Descriptors. If, on the other
hand he finds that his key words are not included
in the Descriptors, he may command a search by other
associated Descriptors or by Attribute Names. He
may also, at this point, use the ADD function to add
his key words to the pertinent Abstracts if he feels
that his key words will have continuing significance
as Descriptors. This latter action is representa­
tive of the user identifying a need for optimizing
the system and taking the appropriate action by ad­
justing the context of the stored data.

DESCRIPTOR

PROJ 3
PROJ 6
PROJ 4
PROJ
PROJ 4
PROJ 9
PROJ 2
PROJ 1
PROJ 3
PROJ 6
PROJ 6
PROJ 6
PROJ
PROJ
PROJ
PROJ
PROJ

2
3
0
V
0
0
0
0
0
0
0
0
1
2
6
0
0

LM3
LM4
LM5
LM6
B HDW
B DOC
C HDW
C DOC
ORIG A
ORIG B
ORIG C
PAD AREA
SC 104
SC 105
SC 103
SC 113
SC 106

— ~ ——— """ "s~ "^^^ _ «-

Figure 15
Descriptor Pool

Configuration change accounting is accomplished
by automatic generation of System Data Items as ex­
plained previously. In the System Model examples
it will be noted that commands, except Display,
caused the actual configuration of the stored data
to be changed. Therefore for each of those exam­
ples here would have been a new item of data gener­
ated for configuration change accounting purposes.
In Example 2, the ADD function was employed, and
although a change resulted, there was no change to
existing data as happens with the DELETE and CHANGE
functions. Therefore, the item generated will con­
sist of the Item Name, the date of command execution,
the content of the command and the Item Name -
70/65ICD9200 - of the affected Project Data Items.

* * * ITEM NAME * * *
* SYSTEM ITEM

* * * ABSTRACT * * *
* ATTRIBUTE ADDED

* * * TEST * * *
* DATE = 12/13/68
* COMMAND = (12/13/68) (ADD) (ATTRIBUTE) (PRIORITY = THIS

IRN HAS TP AT A) (IN(70/65ICD9200))$$
* ITEM = FILE DESCRIPTION
* PRIORITY = THIS IRN HAS TP AT A
* ITEM = 70/65ICD9200
* PRIORITY = THIS IRN HAS TP AT A......

ITEM BELOW DELETED . . .(DELITM)

* INTERFACES = NONE
* SYSTEM IMPACT = ADD CAPABILITY FOR FOUR MORE TRACKS ON

FR100 TAPE RECORDER

Figure 16
System Item Generated From Example 2

In Example 3, where a general class of items
were changed (all those having SC 103 in their
Abstracts), there will possibly be several items
changed with no evidence to the user as to which
were changed. A simultaneously generated item of
System Data would account for all changes; that
is, its Text would contain the command wording and
the Item Names of the Project Data Items which were
changed by the command.

* * * ITEM NAME * * *
* SYSTEM ITEM

ABSTRACT * * *
DESCRIPTOR DELETED

TEXT * * *
DATE = 12/14/68
COMMAND = (12/14/68) (DELETE) (DESCRIPTOR) (URGENT)(D(S

C 103))$$ $
ITEM = FILE DESCRIPTION
DESCRIPTOR DELETED = URGENT
ITEM = 10/66ICD21X5
DESCRIPTOR DELETED - URGENT

ITEM BELOW DELETED (DELITM)

Figure 17
System Item Generated From Example 3

Recent Efforts

In late summer of 1967, using the General
Electric, Apollo Systems Department's computer
capabilities in Daytona Beach, the Dynamic
Automated Reporting Technique (DART) was installed
on the IBM 7044. Sample data were loaded, edited,
revised and retrieved. The preliminary investigation
on this project indicated that the DART system was
technically capable of timely and efficient transfer
of management data which can be applied in a general
sense to many management problems.

12-29

In October of 1967, the installation of DART
on a Remote Access Batch GE 635 computer was ini­
tiated. The complete conversion of the program
to the GE 635 was completed in early January 1968.
Since that time, the concept of applying DART to
some of the management systems problems which we
face has been attempted, and has been in many ways
quite successful. After a thorough analysis of
certain typical systems, it was found that major
problems are associated with gathering data, and
getting data into a readily usable data bank.
Solution of the problem of inputting data under
the one described here, should enhance the operation
of any system considerably. With the advent of re­
mote access on a large scale computer, it was found
that DART could be made even more cost efficient on
the GE 635 than before. This is extremely encoura­
ging to the people working with DART and who pro­
moted the remote access capability. Thus, the
program was launched to implement in a pilot mode
the use of DART as a Change Statusing System. The
primary purpose of the system was to create easy
and quick access to status on certain changes, which
are being implemented by General Electric. The
remote teletype access allows free use of data
entry from any teletype location; allows entry of
data in the user context; and provides an input
system which eliminates load forms, key punch,
subsequent transmission to a computer. It also
eliminates the need for voluminous reports and
provides management direct and quick access to the
data bank.

Turn-around on the GE 635 computer was
initially estimated to be feasible in a matter of
four (4) hours. Experience as of this writing has
shown each case to be within this estimate. In
many cases, responses were available within 5 or
10 minutes, some, before the operator of the tele­
type has completed his entire activity. The
attractiveness of being able to structure his own
context the data which he was about to enter, has
shown a very appealing side. The interest and
flexibility of operation which is provided by DART
to the user has turned the idea of loading data
into an understandable, more fascinating and
challenging task. In addition, specific indivi­
duals have been called out as being responsible
for certain data within their area. This indivi­
dual is responsible by name, if the data is not
current or needs to be updated, and has not been
updated, his name is made available for direct
telephone contact if required. He is also immanently
aware of a direct responsibility, where prior to
this time, no direct responsibility had been assigned
to him. The need for this direct responsibility is
felt, if he doesn't do it, no one else will. He
knows that since he has direct access, there is no
filtering, and exactly the data he inputs will be
there, rather than some condensed coded version which
might come out as a result of clearing house activi­
ties. Although the cost of operating DART is some­
what higher than operating a similar conventional
system, we must recognize the cost of maintenance
of a clearing house of data has been eliminated.
This is one of the tradeoffs to be made, and usually
results in lower overall costs. There is no question
that the user of the system itself can be made more
efficient and less costly by the use of devices,
such as coding and abbreviating etc. However, it
is not our intent at the moment to regress into this

type of operation which would eliminate one of its
main attractions of being simple to understand and
operate.

Future Directions For Optimization

Many extensions, optimizations, spin-offs
and applications of the present work have been
identified at this time. They range from making
the design more flexible and powerful to defining
machine requirements for implementation of time
sharing. Some of the more important directions
are:

1. IMPROVING MACHINE EFFICIENCY
Although actual machine efficiency has been
considered in the system design phase, it
has been regulated to a tertiary objective.
There are undoubtedly improvements to be made
in this area and any design review should be
conducted from this viewpoint.

2. MORE FLEXIBILITY IN DESCRIPTOR USE
An immediate step in this direction would be
the introduction of an OR capability for
selection of Descriptor level data.

The addition of Multi-File addressing capa­
bility through the use of Descriptors to
create a working file capable of being
addressed by DART commands. This need will
become more apparent as the size and volume
and numbers of data file increases.

3. INCREASED LANGUAGE CAPABILITY
(a) By the use of synonym tables to allow

greater freedom in selection of terms.

(b) By tolerating somewhat less than 10070
fulfillment of the spelling requirement,
say, 7 or 8 out of 10 matches within the
file structure.

4. COMPUTATION AND MORE FLEXIBLE FORMAT
CAPABILITY
By allowing user controlled report generator
flexibility and internal computer calculating
flexibility to allow matrix arrays to be
printed and operated on.

5. INCREASED SYSTEM CAPABILITY
The capability to provide an Attribute Name
List for purposes of system activities.

The next planned activity in furthering DART
development will be to concentrate on task 4 above,
namely to extend its manipulating power to perform
generalized mathematical tasks and print columnar
arrays of numerical and alphabetic data in order
to provide concise small volume summaries to the
large volume user.

12-30

	On-Line Conversational Information Storage and Retrieval System
	Scholarly Commons Citation

	tmp.1405433652.pdf.lWx4t

