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STOCHASTIC FAILURE MODELS BASED UPON 
DISTRIBUTIONS OF STRESS PEAKS

Dr. Richard L. Patterson
University of Florida
Gainesville, Florida

This paper summarizes the development of 
three stress-strength models of reliability in 
which the stress producing mechanism is a one 
dimensional random process evolving in time. 
The general reliability functions are given 
along with examples of special cases. The prob 
lem of modeling randomly deteriorating strength 
is briefly discussed and one model is discussed 
from the point of view of time series analysis.

Introduction

Stress and strength are terms which are 
used rather loosely to describe physical prop 
erties of components and their operating en 
vironment. A component is said to "fail" if its 
physical state deteriorates to some condition in 
which it is inoperative, unsafe, or performs 
outside acceptable tolerance limits. Its fail 
ure may be "catastrophic", i.e., a near 
instantaneous transfer to the failed state or 
it may undergo "wear" which means roughly that 
its performance deteriorates more gradually 
although not necessarily continuously.

A component experiences failure as a result 
of usage in a "stress" environment which can 
include such stressors as heat, voltage, hydrau 
lic pressure, radiation, vibration, shock, and 
acceleration. A measure of component strength 
is its ability to resist the collective effects 
of a set of stress forces, i.e., its ability to 
maintain a performance level under an environ 
mental stress profile. The "total strength" of 
a component is an ill defined quantity but 
theoretically it represents the component's 
resistance to deterioration under the cumulative 
effect of all stress forces acting during its 
period of performance.

Earlier "stress-strength" models of com 
ponent reliability assumed that the component 
possessed a certain strength X and when placed 
in operation under a stress Y that failure 
occurred whenever stress exceeded strength 
during the period of operation, i.e, whenever 
Y > X. In the literature one finds X and Y to 
be assigned normal distributions N(yx , o£) and 
N(yy, ap, respectively so that

Reliability = P(Y < X) = 1 -
-

(1.0)
where cj>(Z) is the cumulative standard normal 
distribution function.

This model assumes that Y represents the 
intensity of the maximum stress occurring during 
the interval of operation and that failure 
occurs if and only if the peak stress exceeds 
the component strength which is assumed to be 
selected at random from a normal distribution 
but remains fixed during the period of operation 
once it is selected. The time parameter is

suppressed as is also the mechanism generating 
stress peaks among which occurs the maximum. 
Whether or not X and Y represent a single 
environmental stress variable or a "total stress" 
variable which, in effect, means that they are 
transformations from some multidimensional 
stress-strength space, is left to the analyst to 
decide.

The model given by Equation (1.0) can be 
easily generalized to the case where Y and X 
have gamma distributions with parameters (A, £) 
and (X(l + y), k), respectively (y > 0), so that

Reliability = P(X > Y) = B(k-l; k+£-l,
I + p.

P 

(2.0)
where B(x; n, p) denotes the cumulative bi 
nomial distribution with parameters n and p 
summed from 0 through x.

Models (1.0) and (2.0) permit neither an 
explicit estimate of life length (unless time 
appears as a parameter) nor a controlled 
variation in the parameters of the underlying 
stress environment that actually produces the 
sequence of stress peaks or pulses that are 
assumed to cause the deterioration.

In what follows a stress environment is 
represented explicitly in terms of the distri 
bution of occurrences of stress peaks and their 
intensities. Component strength is at first 
held constant and then assumed to behave in 
some time dependent but deterministic manner. 
Failure events are defined and their probabili 
ties of occurrence are presented. Finally the 
more difficult case of random deterioration of 
strength is considered and a particular model is 
developed. Stress and strength are represented 
as single variables. The question of whether 
the models presented can be valid one dimensional 
representations of the combined effects of a 
multidimensional stress environment is not 
discussed. A final point made in the paper 
concerns the inclusion of the reliability func 
tions developed herein within the class of IHRA 
(increasing hazard rate average) life distribu 
tions as defined by Birnbaum* Esary, and 
Marshall in Reference 1. Derivations of the 
models presented in this paper are contained in 
Reference 2.

Constant Strength Models

Model 1: Stress Pro-cess Statioiiagy 
wi th I nd ep endent

Components are assumed to .function, in a 
random environment characterized by a sequence
of stress "shocks" or "'pulses1'1 having an, arbi 
trary but fixed distribution F(x) of stress 
intensity. Let {N(t); t * 0} denote a station 
ary random process with independent increments 
in which N(t) is the number of pulses occurring 
in the time interval (0, t) . Stress 
assumed to be mutually independent indepen-
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dent of N(t). Let Yn (t) denote the maximum 
stress intensity occurring in (0, t) given that 
n peaks occurred.

Then 

P(Yn (t) $ x) = (F(x)) n (n = 0,1,2, ...)

and the probability of occurrence of the joint 
event that n stress peaks occur in (0, t) and 
the maximum does not exceed x in intensity, is

P(Yn (t) 1 x) P(N(t) = n)

= (F(x)) n P(N(t) - n)

(n - 0,1,2, . . .)

The distribution function P(Y(t) - x) of 
the maximum stress intensity occurring in (0, t) 
is therefore

P(Y(t) - x) = I P(N(t) = n) (F(x)) n 
n=0

(3.0)
Example. Let (N(t); t - 0} be a station 

ary Poisson process of intensity A. Then for 
x > 0 the number M(t,x) of stress pulses 
occurring in (0, t) and exceeding x in intensity 
is Poisson distributed with parameter A(l -F(x)), 
i.e.,

P(M(t, x) = n)

- F(x))t) -*(l - F(x))t

(3.1)

(n = 0,1,2, ...)

Therefore if component failure is defined to be 
the event that m or more stress pulses exceed x 
in intensity during (0, t) for some prede 
termined m and x, then

Reliability = 1 - £ P(M(t, x) = i) 
i=m

= my 1 (^(1 - F(x))t) 1 e -A(l - F(x))t 

1=0 X ' (3.2)

This model can be used to estimate the 
increase in component life length that can be 
achieved by increasing component strength x or 
by decreasing the occurrence rate A of stress 
shocks impinging upon the component. For 
instance, suppose that the distribution of 
stress peak intensity is negative exponential 
with mean 1/0. The number of stress peaks 
occurring in (0, t) is Poisson with mean At. 
Failure occurs if at least one pulse exceeds 
x in intensity. The mean time to failure of a

1 i x/ 0 
component is therefore ——— = —— e

which shows the relative effect of stress peak 
intensity and the occurrence rate of stress 
peaks upon component life length.

Stress Process Non-homogeneous Poisson 
with Independent Increments

The generalization here concerns the 
instantaneous rate of occurrence of stress 
pulses. In the present case, let h(t)dt = 
instantaneous probability of occurrence of a

stress pulse in (t, t + dt) . All other assumpt 
ions remain the same.

Let ?n (t, x) denote the probability that n 
stress pulses exceed level x in intensity during 
(0, t).

Thus, one can write

Pn (t + At, x) = Pn (t, x)[l-h(t)At(l-F(x))] 

+ Pn _!Ct, x)h(t)At(l-F(x)) 

+ 0(At) ; (n - 1,2, . . .)

P 0 (t + At, x) - P Q (t,

(n = 0)

By forming the difference quotient on the left 
hand side with respect to t and taking limits, 
one arrives at a system of differential 
difference equations having the solution

Pn (t,

[(1 - F(x)) J h(a)da]
__________ 0 _______

n!

r
-(I - F(x)) J h(a)da 

e 0
(4.0)

As before failure may be defined as the event 
that m or more pulses exceed level x in (0, t) 
and the reliability function is the correspond 
ing generalization of Equation (3.2).

Model 2: Stress Peaks Defined by a 
Renewal Process

A renewal process is defined to be a 
sequence of non negative identically distributed 
and mutually independent random variables 
{Xj_; i = 1, 2, ...}. In the present context X i 
represents the length of the time interval 
separating the (i-l)st and i-th stress peak. 
Denote the common distribution function of the 
Xi as G(t) with density g(t). As before the 
common distribution function of the intensity of 
each stress peak is F(x). The assumption con 
cerning G(t) is more general in this case than 
in the two previous models since the number of 
stress pulses occurring in (0, t) need not be 
Poisson. When failure is defined to be the 
event that at least one pulse exceed level x in 
intensity during (0, t), it is shown in Refer 
ence 2 that the Laplace transform of the 
reliability function R(t, x) is

, x)) - R*(s, x)

(s)

where

- F(x) g*(s)]

g*(s) is the Laplace transform of g(t). 

Example. Let

g(t j =^-e-At 

2

(5.0)

so that
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Then
1 -

R (s, x) = s + A

Upon inversion,

R(t , x) =

Using the facts

(a) sR*(s, x) - R(0+, x) - R f *(s, x) 

and

(5.1)

(b) - A. R ,* (Sf x)
s=0

= mean life length

one can compute the mean life length of a com 
ponent whose reliability is given by Equation 
(5.0). In this particular case the mean life 
length is computed to be

X(l - F(x))

The precision of the estimate of life length 
can be computed working with the first and 
second derivatives of the transform (5.0) in 
the usual way.

Variable Strength Models

The assumption concerning component strength 
differs basically in that strength x is assumed 
to be a time dependent function

x = m(t)

where m(t) is defined at those non negative 
values of t for which x = 0. For what follows 
it is assumed that m(t) is continuous in t.

Model 5: Stress Peaks Defined by a 
Non-homogeneous Poisson Process

Let strength x be time dependent so that 
x = m(t), satisfying the conditions stated 
above. Let the instantaneous probability of 
occurrence of a stress peak in (t, t + At) be 
h(t)At (h(t) - 0) and independent of the 
instants at which peaks occurred previously. 
The distribution function of the stress peak 
intensity is I ; (x) . Then

Prob [n stress peaks exceed strength 

x = m(t) in (0, t)J

(6.0)

whore
c(t) - - F(m(x))Jdx

If failure in (.0, t) is defined as the event 
that k or more stress pulses exceed strength 
in (_(), tj , then component reliability is

-c(t)

x = m(t) = b - at z (0 - t -

(6.1)

k = 1.

Then for

for

A ~ 6b 2 
P Q (t) = exp {-[(——— )Ce6at -1)]} ;

t >

-6b
Po (t} =

k = 1 
»

1 : t > a

F(t) = \ t/a : 0 - t - a

0 : t - 0

Then F(m(t)) = F(a) = 1 for all t - 0 and 

PQ (t) = 1 for all t - 0.

h(x) - a/b
-1

Then

1 - F(m(x)) = 1 - e

k = 1.

(a, b > 0),

-(x/b) a

-(t/b) a ^
P o (t) = exp {-[(t/b) - 1 + e v " ' ]}

which has the approximate Weibull distribution 
for large t. Additional examples are given in 
Reference 2. Equation (6.0) assumes that the 
number of stress peaks occurring in (0, t) is 
independent of strength x. While such an 
assumption would not be valid in many situations, 
Equation (6.0) may still be a useful model inas 
much as m(t) may be a slowly decreasing function 
representing the effects of, say, wear and the 
stress pulses occurring at random are indepen 
dent of wear and are the cause of catastrophic 
failure. There is no mathematical requirement 
that m(t) be monotonic.
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Models of Randomly Decreasing Strength

Component strength is now assumed to 
deteriorate in random decrements which may 
occur at instants in time separated by intervals 
of random length. Whereas the previous models 
have been rather simple mathematically, the 
representation of strength as a random process 
which may deteriorate in a monotonic fashion is 
by no means simple. (The possibility of a 
component increasing in strength will not be 
considered here.) The difficulty is of two 
types. First there is the problem of represent 
ing the size of the strength decrement in terms 
of the intensity of not only the most recent 
stress but previous stresses as well. Birnbaum 
and Saunders^ have considered some alternative 
assumptions that might lead to useful models. 
The other problem is one of how to design an 
experiment in which strength deterioration can 
be adequately measured so that model parameters 
can be estimated. The point of view taken here 
is that strength can be represented as a time 
series which is monotonic non increasing with 
time. The mathematical difficulties that one 
encounters depend upon the assumptions con 
cerning the frequency with which decrements 
occur, their magnitude, and the degree of 
dependence of these two variables upon the 
strength history. Embedded within these 
assumptions are the parameters of the under 
lying stress mechanism. To illustrate the 
time series approach one model will be developed 
with the following assumptions:

a) strength is monotonic non increasing
in time;

b) strength at time t, Z(t) is the 
difference between some initial 
value Z(0) and a random sum

N(t) 
Y(t) = I x , i.e.,

z(t) - z(o) - (xx + ... + xN(t) )
- 2(0) - Y(t) (7.0)

c) {X^; i = 1,2, ...} is a sequence of
mutually independent and identically 
distributed random variables having 
a distribution with mean E(X) and 
variance Var (X),

d) (N(t); t - 0} is a random process
defined upon the non negative integers 
having a distribution with mean 
E(N(t)) and variance Var (N(t)),

e) (N(t); t - 0} is independent of
{Xt ; i » 1,2, ...} .

The decrements in strength are represented in, 
terms of the X^'s which are presumably trans 
formations of stress but independent of past 
stress history. The distribution of Z(t) is
then known whenever the distribution of Y(t) 
can be determined,

Example^ Let the X^'s have the negative 
exponential distribution with parameter A and 
let {N(t)} be a homogeneous Poisson process 
with parameter p. Then the density F'Cy, t) 
of Y(t) is 2

F'Cy, t) = 6(y)e
- pt Ay)

where

(x/2)
2n

n=0 n!(n + j)!

is the modified Bessel function of index j and 
6(y) is the Dirac delta function.

It may be possible, as in Model 5 given by 
Equation (7.0) together with assumptions (a) 
through (e) , to use the theory of first passage 
times to advantage in studying the process of 
strength deterioration. In this regard Model 5 
is particularly simple and the mean and variance 
of the time Ty at which Y(t) first reaches a 
predetermined level y is the following:

E(TV ) =
E(X)

Var(T) - Var (T) -_
E(X)

2(E(X))2

+ Var (X) -

(7.1)

y Var(X) 

(E(X))3

2 E(X)'

I 
1

. 12

+ 5 (Var X) 4 

4(E(X)) 4

"(7.2)
where yT and Var(t) are the mean and variance 
of the common distribution governing the lengths 
of the time intervals separating instants at 
which strength decrements occur,

and pj is the third moment of the distribution 
governing the X^'s,

If failure is taken to be synonymous with the 
event that Y(t) first reaches level y, then 
Equation (7.1) gives the mean life length of 
the component and Equation (7.2) is a measure 
of the variability of its life length. E(X) 
and Var(X) are related to the applied stress 
and may themselves be functions of other param 
eters,

IHRA Reliability Functions

Birnbaum, et. al., defines the increasing
hazard rate average (IHRA) class of functions 
by their property that for any member F(t) the 
"survival 11 distribution F (t) = 1 - F(t) satisfies 
the condition

whenever t - T ..

IHRA distributions are useful in the theory 
of system reliability as Birnbaum's paper shows 
and a short calculation demonstrates that the 
survival functions given by Equations (3.2), 
(4.0), and (6..1)" are IHRA,
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