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Abstract
Scheduling the ground processing functions of 
the Space Shuttle is an inherently difficult 
task. Most automated scheduling tools are ori­ 
ented towards manufacturing problems which 
are very different from shuttle processing. The 
distinguishing factors between shuttle process­ 
ing and manufacturing are:

1. Shuttle processing requires much un­ 
planned to be added to the schedule while 
manufacturing process plans are typically 
determined well in advance.

2. Manufacturing activities are significantly 
more predictable than shuttle repair activ­ 
ities in terms of resource needs and dura­ 
tions.

3. Shuttle processing is fundamentally more 
complex than typical manufacturing con­ 
cerns.

4. Shuttle processing requires rea­ 
soning about orbiter configuration as well 
as tasks and resources.

To address these discrepencies, we have devel­ 
oped a new scheduling system that adopts Ar­ 
tificial Intelligence techniques. This paper de­ 
scribes the unique capabilities of this schedul­ 
ing system as well as some preliminary results 
of the system using the shuttle data.

1 Introduction
1.1 Problem Description
Space Shuttle Ground Processing is the labor intensive 
effort of repairing and maintaining Space Shuttles be­ 
tween flights. Kennedy Space Center currently uses a 
three-tiered approach to developing schedules for shut­ 
tle missions. At the top level is the long range sched­ 
ule which represents multiple shuttle flights over several 
years. The middle tier schedule is developed about 100 
days prior to the beginning of the flight. Activities at 
this tier are generally Orbiter Maintenance Instructions 
(OMPs). An OMI describes a process that could extend 
form one hour to a month. The third tier represents the 
primitive operations that define OMFs. Due to the large

quantity of operations and constant schedule changes, 
the third tier schedule is only generated for a 11 day 
time period. Separate specific schedules for each OMI 
are also maintained for short periods of time.

The scheduling process works as follows. Approxi­ 
mately 100 days before the beginning of a flight, high 
level planners create the middle tier schedule. They start 
from a generic processing schedule, and add new work 
specific to the current mission. Once finished, they per­ 
form CPM analysis to develop a schedule. This schedule 
has many resource constraint violations that must be re­ 
solved. The planner then adjusts the schedule to balance 
resources.

During the execution of a schedule, the planning and 
scheduling staff maintain a detailed 72 hour schedule. 
This schedule shows all activities that are being per­ 
formed. Scheduling at this level is primarily monitored 
via daily scheduling meetings. During the meetings, rep- 
resentativies of the various work groups discuss their re­ 
source requirements and target completion times. The 
person in charge of the meeting coordinates the dynamic 
rescheduling of the work to be performed. Unfortu­ 
nately, delays still occur. For instance, on one occasion, 
work that was scheduled could not be performed because 
the necessary quality control inspectors were not avail­ 
able. Unavailable parts, new problems, broken equip­ 
ment, and scare manpower all contribute to the uncer­ 
tainty that results in schedule delays. In this dynamic 
environment, it is imperative that the schedule coordi­ 
nators are capable of predicting the impact of decisions 
they intend to make. KSC managers perform superbly, 
given the amount of information they currently exploit. 
We expect that the system described below wiE greatly 
improve this decision-making process.

1.2 AI vs. Project Management Tools
On the surface, it appears that project management 
tools Me sufficient to solve the Space Shuttle Ground
Processing problem. In fact KSC has performed in this 
manner lor the second tier level and beginning to do 
so at the third tier as well. Unfortunately, the project 
management took can. only .address part of the problem. 
Each •activity Mas temporal requirements, resource re­ 
quirements, and orbiter configuration requirements. Ex­ 
isting project management tools can represent most of 
the temporal requirements .and. some of the resource te»
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quirements, but, no tool can represent the configuration 
requirements. Given this, the best any conventional tool 
can do is give you partial information.

Much of the work being performed on the orbiter re­ 
quires that the orbiter be in a specific configuration. In 
most cases there may not be any technical sequencing 
requirement connecting several activities, but they are 
related through orbiter configuration. For example, cer­ 
tain tile work might require the payload bay doors to 
be in a closed position, certain tests require the pay- 
load bay doors partially open (to gain access to other 
parts of the orbiter), and certain tests such as deploy­ 
ing an antenna require the doors completely open. All 
three types of activities are independent of each other 
but require conflicting configurations of the orbiter. An 
effective scheduling system must consider these interac­ 
tions.

Another important contribution of AI is that it al­ 
lows a scheduling system to consider far more alterna­ 
tives than a project management system. We search the 
space of possible schedules using heuristics (i.e., rules of 
thumb) to drive the scheduler toward more desireable 
solutions. Project management systems typically deter­ 
mine the earliest and lates possible times for activities 
and then simply resolves resource allocations by delaying 
activities later until resources are available.

AI approaches to scheduling are not new. ISIS [Fox, 
M. S., 1983] and then OPIS [Ow, P.S. and S.F. Smith, 
1988] focused on developing a constraint based job shop 
scheduling system. KSC has also performed scheduling 
work previously. Empress [Hankins, G.B., et. al, 1985] 
and Phits [Gargan Jr., 1987] both focused on aspects of 
the planning and scheduling cargo processing.

1,3 Operational Concept
For .each mission, we download a network of activities, 
constraints, and resources, from the Computer-Aided 
Planning and Scheduling system (CAPSS) that is based 
upon the Artemis project scheduling product. We then 
begin either with the schedule downloaded or schedule 
the network again within our tool. Our system can then 
evaluate the goodness of the schedule based upon the 
constraints and automatically resolve the constraint con­ 
flicts. Through a graphical user-interface, the planner or 
manager can enter schedule changes and wiE be informed 
of the ramifications of the schedule changes. This entails 
a before and after report of any changes to tasks'and a 
graphical depiction of the violated constraints. Then the 
user cam continue to manually modify the schedule or ask 
the resckeduler to deconflict the schedule automatically. 

The major contribution of the work reported here is in 
rescheduling and therefore the remaining portion of this 
paper wiH concentrate on rescheduling. First, we for­ 
mulate the rescheduling problem and then describe our 
rescheduling algorithm. Finally, we demonstrate results 
of using our algorithm on the Shuttle data.

2 Fixed Preemptive Scheduling
Scheduling is the process of assigning times and resources 
to the activities of a plan. Fixed preemptive scheduling

is a specialization of classical scheduling, where each ac­ 
tivity is preempted when it intersects an illegal time in­ 
terval specified by an activity work calendar. An activity 
work calendar designates when work is prohibited. Hol­ 
idays and overtime shifts are typical examples. Fixed 
preemptive schedulers split activities into the shortest 
sequence of contiguous subtasks, such that each subtask 
is legal with respect to the parent's work calendar. Fixed 
preemptive scheduling is distinguished from flexible pre­ 
emptive scheduling because of the shortest contiguous 
sequence restriction. In other words, fixed preemptive 
problems prohibit idle time between the split subtasks 
of an activity, if that idle time is legal with respect to 
the task calendar.

Scheduling assignments must satisfy a set of domain 
constraints. Generally, these include temporal con­ 
straints, milestone constraints, and resource require­ 
ments. Temporal constraints relate tasks1 to other 
activities (e.g., end(Tl) < start(T2)) and milestone 
constraints relate tasks to fixed metric times (e.g., 
end(Tl) < 11/23/90 12 00 00). A resource require­ 
ment consists of a type and quantity of a resource (e.g., 
4 mechanical technicians, 3 cranes). Each resource re­ 
quirement has a corresponding capacity constraint. The 
constraint asserts that the resource must not be overal- 
located.

We also model the state requirements and effects for 
each activity A state requirement asserts that a state 
variable must have a certain value over a period of time 
(e.g., the payload bay doors must be open during an 
activity, the power and the hydraulics must be off dur­ 
ing a task, or an area must be clear during an activity). 
Each state requirement has a corresponding constraint 
that forces the state variable to have the correct value 
over the specified time interval. State effects model how 
activities change state variables (e.g., an activity opens 
the payload bay doors from the end of an activity and 
persists until something else closes them, or an activ­ 
ity makes an area hazardous during the activity, etc.). 
Figure 1, summarizes the definition of fixed preemptive 
scheduling problems.

2.1 Rescheduling
In real-world applications, schedules rarely execute as 
planned because of the inherent uncertainty of opera­ 
tional environments. This uncertainty is typically man­ 
ifested as:

1. modifications to the start and end of activities,
2. modifications to the quantity of resources required,
3. modifications to the work durations of activities,
4. unavailable or defective resources,
5. unexpected state conditions,
6. the addition of new activities that have become rel­ 

evant, and
7. the removal of existing activities that have become 

obsolete.

1 We use the terms task and activity interchangeably.



Given a set of tasks, each with:
1. a work duration
2. a work calendar
3. a set of temporal constraints
4. set of resource requirements
5. a set of state requirements
6. a set of state effects 

Find:
1. a splitting of each task into subtasks,
2. a metric start and end time for each subtask, and
3. an assignment of a specific resource pool for each 

resource request,
Such that:

1. the subtasks of each task are the shortest set of con­ 
tiguous tasks legal according to each activity work 
calendar,

2. the aggregate duration of subtasks sums to the cor­ 
responding task's work duration,

3. all temporal constraints are satisfied,
4. all state requirements are satisfied, and
5. no resource is overallocated or prematurely depleted 

(i.e, all resource capacity constraints are satisfied).

Figure 1: Fixed Preemptive Scheduling

As originally described in [Ow, P., Smith S., Thiriez, 
A., 1988J, any rescheduling algorithm must be sensitive 
to the speed of rescheduling, the domain optimization 
criteria, and the amount of perturbation to the origi­ 
nal schedule. Typical optimization criteria include the 
minimization of flow time (work-in-process time), the 
minimization of labor overtime, and the minimization 
of deadline tardiness. In our presentation of constraint- 
based simulated annealing below, we will discuss how 
our heuristics address optimization criteria.

3 Constraint-Based Simulated 
Annealing

We have extended traditional simulated annealing with a 
constraint framework that is used to both evaluate solu­ 
tions and to improve solutions. In the following sections 
we describe our constraint language, give examples of the 
specific constraints used in our experiments, and finally 
present the role of constraints during search.

3*1 Constraints
Constraints are defined by the functions depicted in Fig­ 
ure 2. Every constraint has a penalty function, a weight, 
and a repair function. The penalty function measures 
the degree of violation for the constraint. The constraint 
weight is a measure of utility or importance for the con­ 
straint. Both the weight and penalty contribute to the 
goodness evaluation of a schedule called the cost function

(see Figure 2.). The repair function modifies a schedule 
with the intention of improving the constraint's penalty. 
Repairs usually improve the penalties, but occasionally 
they inflict further constraint violations (that get re­ 
paired in later iterations of the search). Repair functions 
either replace resource assignments or reassign activity 
times. Tasks that are temporally reassigned must also 
be re-split according to their work calendars. Before dis­ 
cussing the repair functions in more detail, we present 
the MOVE operator that performs temporal reassign­ 
ment.

3.1.1 MOVE Operator
The MOVE operator places the given task at a given 

time, and then if necessary, moves other tasks to sat­ 
isfy temporal constraints. It takes a state, a task, 
a time, and a direction and then finds a new state: 
MOVE : S x Task x time x direction -+ S'. A state 
is an assignment of values to all variables constituting 
a schedule. If direction is one, then the start of the 
task is placed at the given time, otherwise, the end of 
the task is placed at that time. The MOVE operator 
is implemented as a Waltz constraint propagation algo­ 
rithm over time intervals [Waltz, D., 1975, Davis, E., 
1987]. In constraint satisfaction terminology, this algo­ 
rithm enforces arc-consistency [Mackworth, A.K., 1977, 
Freuder, E. C., 1982], The algorithm recursively enforces 
temporal constraints until there are no outstanding vio­ 
lations.

After every schedule modification, the MOVE opera­ 
tor is employed to preserve temporal constraints. For 
example, if a task is delayed by the user, the Waltz algo­ 
rithm will reassign each postrequisite that has violated 
temporal constraints. This in turn causes further viola­ 
tions that are recursively resolved until temporal quies­ 
cence.

Repair strategies also rely on the MOVE operator and 
are described in the next sections. It is important to note 
that the penalty, weight, and repair functions for tempo­ 
ral constraints are unnecessary because these constraints 
are preserved by the MOVE operator.

3.1.2 Resource Capacity Constraints
The resource capacity constraint is a relation among 

the start time, end time, and a resource pool variable 
of a task. It states that the resource assigned to the re­ 
quest must not exceed its capacity during the task. For 
example, the first resource request of a task has the cor­ 
responding constraint;

, 1))) < 
, I))))

where ST stands for the start time, IT for the end time, 
and TU for total aggregate usage of the resource pool- 
assigned to the request The penalty of the constraint is 
boolean - it is one if the condition ia violated 
otherwise. The weight of the constraint is -one*

The repair for a resource capacity constraint initially 
attempts to substitute a new resource pool , If this does



not satisfy the constraint, it selects an activity contribut­ 
ing to the over allocation and reassigns it to another time. 
This reassignment exploits the MOVE operator to pre­ 
serve temporal constraints.

The computational complexity of this repair is pro­ 
portional to the cost of selecting a task to move. One 
viable strategy is to move the task associated with the 
constraint which yields a constant time selection. An­ 
other strategy is to move a different task that is simul­ 
taneously using the resource. Any heuristic used for this 
choice should consider the following criteria:
Fitness: Move the task that is using an amount closest 

to the amount that is overallocated. A task using a 
smaller amount is not likely to have a large enough 
impact and a task using a far greater amount is 
likely to be in violation wherever it is moved.

Temporal Slack: Any task that is highly constrained 
(i.e., few legal times) temporally is likely to cause 
temporal constraint violations and therefore could 
result in large perturbations to the schedule.

Temporal Dependents: Similar to temporal slack, a 
task with many dependents is likely to cause tem­ 
poral constraint violations, if moved.

Severity of Bottleneck: Prefer tasks that do not need 
to be moved drastically to avoid extending flow time 
and to mimize perturbation.

Priority: The system should avoid delaying important 
tasks, but prefer moving them earlier.

In-Process: A task that has already begun should be 
completed as soon as possible, rather than tem­ 
porarily stopping it, and then continuing later.

Chronological Proximity: It is better to move activ­ 
ities that start later in the schedule than those that 
are about to begin.

Cycles: It is better to avoid moving tasks that have 
been moved frequently in previous iterations be­ 
cause the iterative improvement algorithm can po­ 
tentially cycle.

We address the speed of scheduling with the above cri­ 
teria by considering only the next available time for each 
movet rather than by exploring many possible times. 
This same criteria also avoids extending flow time be­ 
cause later available times are not immediately consid­ 
ered

In our current implementation, we consider only fit­ 
ness, temporal dependents, severity of bottleneck, in- 
process, and chronological proximity. Let T be the set 
of tasks that are using the resource during the time cor­ 
responding to a constraint. We calculate two probabili­ 
ties for each member of T: the probability of moving the 
activity to the next later available time and the prob­ 
ability of moving the activity to its next earlier time. 
These probabilities are calculated by combining scores 
based on the criteria above. We disregard scores for cri­ 
teria that are not very discriminatory with the hope of 
improving the effectiveness of this scoring. For example, 
if all the culprits have a comparable number of tem­ 
poral dependents, then the scores for this criterion are

discarded when calculating the move probabilities. The 
repair then chooses the move randomly with respect to 
the probabilities calculated.

The use of probabilistic repairs that are biased by 
heuristic knowledge is an important attribute of this 
technique because it circumvents infinite cycling and my­ 
opic side effects. For example, suppose the system re­ 
solves a resource constraint by delaying the best activity 
according to its heuristics. Then suppose a milestone is 
violated and the activity is returned to its initial time 
in the next iteration. Without probabilities, this would 
infinitely recur. Myopic side effects are also avoided 
because sometimes the system will disregard its local 
heuristic and result in better schedules.
3.1.3 State Constraints

The state constraint is a relation among a time inter­ 
val, a state variable and a state. The constraint indicates 
that the state variable must be in the given state over 
the given interval. For example, a task requiring that 
the main landing gear of the space shuttle be deployed 
during the activity would be:

holds(ST(?T), ET(1T), 
MainLandingGear (Atlantis) = DOWN)

The penalty of this constraint is boolean with a weight 
of one. To repair this constraint, the task with the re­ 
quirement is reassigned to the next point in time when 
the state variable is assigned the desired value. Again the 
MOVE operator is used to shift a task and to preserve 
temporal constraints. In the future, we plan on extend­ 
ing this repair with options resembling the modal truth 
criterion of non-linear planners [Chapman, D., 1987]. 
One option is to introduce a new activity that satis­ 
fies the state requirement. Another is to move a task 
that sets the state variable appropriately, before the task 
with the requirement2 . The final option is to move an 
activity that clobbers the required state to another time 
where it does not interfere. In future work, we intend 
to tackle planning problems with a probabilistic deci­ 
sion function analogous to the resource constraint repair. 
While this approach sacrifices the completeness proper­ 
ties that many non-linear planners enjoy, we believe that 
the anytime characteristics (see Section 4) of our search 
will be appealing.

3.1.4 Milestone Constraints
The milestone constraint enforces a relationship be­ 

tween a task and a metric time. For example, 
holds(end(!T) < 11 23 90 12 00 00). The penalty of the 
constraint is boolean and the weight of the constraint is 
one. The repair uses the MOVE operator to shift the 
violated activity to satisfy the milestone.

3.2 Search Algorithm
Rescheduling begins when a user enters schedule modi­ 
fications via a graphical user interface. Then, for each 
modification, the MOVE operator is enforced. This pro­ 
vides the initial scheduling assignment for annealing.

2 This option was included in an earlier prototype of the 
system but it is not used in these experiments.
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• Let 5 9* {«i, $2,..., sn} be the set of possible states 
where each s, is a unique assignment of values to all 
variables (i.e., a schedule).

• Let C = {ci, C2,..., cn } be the set of constraints.
• PenaltyCi : S —* [0,1] is a function defining the cost 

of a single constraint violation given a state.
• WeightCi :—* [0,1] is a function defining the impor­ 

tance or utility of a constraint.
• RepairCi : 5 —*• Sf is a function that modifies a state 

to improve a constraint violation.

Figure 2: Constraints: A representation of generation 
and test knowledge.

Cost(s) = y^ Penaltyc .(s) * Weightc .
CicC

is a function indicating the goodness of a state.
• New : S —* S' is a function that transforms a state 

into a new state by a sequence of repairs: 
Repairc .(s) o RepairCj (s) o ....RepairCn (s)

• Escapees',T) = e-lc<"*('>-c°**<'')l/T is the prob­ 
ability that the system will transition into a worse 
state in order to escape a local minimum.

Figure 3: The basic functions of constraint-based simu­ 
lated annealing.

The goodness of this assignment is calculated by the cost 
function. The specific cost function for our experiments 
is simply the number of constraints violated for the given 
assignment. Then, by repairing penalized constraints, it 
suggests a new solution and evaluates its cost. If the 
new cost is an improvement, it adopts the new assign­ 
ment and continues. If the new solution is worse, the 
algorithm adopts it according to the escape probability. 
This last step allows the algorithm to escape local min­ 
ima - situations where any move will result in a worse 
state. The basic algorithm is as follows (where S is a full 
schedule):
SolveCSX

Old = Cost(S);
Repeat until Old <= *THRESHOLD* < 

S' = Hew(S); 
NewC = Cost(S'); 
If NewC < Old

Then Old = NewC; S = lext; 
Else { With probability Escape do 

Old = HewC; S = Next;
>;

SaveBestSolutionlf Necessary ;

During each iteration, a subset of the outstanding vi­ 
olations is retrieved and then repaired. Currently, we re­ 
pair the ten earliest availability constraints, and all the 
violated state- variable constraints. We plan to experi­ 
ment with these parameters to determine how they affect 
the convergence to a solution. We bound the search by a 
maximum number of iterations and a maximum cumu­ 
lative time. Generally, we use a very large time bound 
and a limit of 40 iterations per run.

4 Anytime Characteristics
When searching for a solution, the annealing algorithm 
saves its best solution to date and returns it when the al­ 
gorithm is interrupted. This approach meets the criteria 
put forth in [Dean, T., and Boddy, M., 1988] to be clas­ 
sified as an anytime algorithm. Their criteria classifies 
anytime algorithms as those that:

1. can be interrupted and restarted

2. can be terminated at any time and will output an 
answer

3. return answers that improve in a well-behaved man­ 
ner over time.

An additional consideration is that the solution output 
must be useful to the user. It makes no sense to be 
anytime if the solution can not be utilized effectively.

Our algorithm is interruptible, restartable, and out­ 
puts a solution when terminated. The solution quality 
increases as a step-function of time. Figure 4. is an 
actual run of our algorithm that demonstrates the rela­ 
tionship between the cost and best cost over time. In­ 
terim solutions are useful in our application domains be­ 
cause human schedulers can manually resolve conflicts in 
the schedule, especially when there are few conflicts that 
tend to be over-allocations of resources. Usually, the re­ 
maining conflicts can be resolved by allowing proximate 
activities to share resources. Our system is not capable 
of modeling this sharing capacity at this time.

5 Preliminary Results

We have modeled the Space Shuttle processing environ­ 
ment with about 500 activities that are split into a ap­ 
proximately 4000 sub tasks. There are 1600 temporal 
constraints, 8000 resource constraints} and 3900 state 
requirements. The orbiter processing environment is rife 
with uncertainty and reactive decisions are made quickly. 
Suppose a scheduling change causes many conflicts for a 
particular schedule. It would be unacceptable for tech­ 
nicians and other personnel to remain idle while the sys­ 
tem resolves every conflict* An anytime solution must be 
adopted, at least for the activities slated lot immediate 
execution.

Figure 5. presents the results of simulating reschedul­ 
ing scenarios using actual Space Shuttle processing data*. 
We modify a random number of activities and then ini­ 
tiate rescheduling. The graph plots best cost against 
cumulative time. These graphs indicate that the algo­ 
rithm scales to very large problems and maintains its 
anytime characteristics.
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6 Development Status
The project to apply the scheduler to the KSC shuttle 
processing problem has been underway for about a year. 
Since early 1990, we have been working with actual data 
from a completed shuttle flight. While this data did not 
provide us with orbiter configuration data, it did provide 
us the ability to test our algorithms on realistic data sets. 

Our plan is to shadow the STS-37 flight this winter. 
The main goal of this experiment is to collect the neces­ 
sary scheduling information to enter into the system. To 
date, resource and configuration information for ground 
processing is either unavailable in an electronic medium 
or is significantly innaccurate. During the testing period, 
we will add in the changes to the work as they occur pro­ 
viding new schedules in a timely manner. As the quality 
of the information being stored in the knowledge base 
increases, our system will produce better schedules. The 
schedules we produce will then be compared to existing 
work schedule providing us some insight into new infor­ 
mation to add to our system. Our hope is that even at 
this early phase of testing, we will be able to provide the 
KSC personnel some insight into alternative schedules 
that might not have been considered in the past.

7 Conclusion
In this paper, we described a research scheduling tool 
that is being applied to scheduling ground processing 
activities for the space shuttle. Research in this area has 
been on-going for several years and is at a state where an 
application of this magnitude can be attempted. We pro­ 
vided a brief overview of the scheduling system provid­ 
ing examples of the use of the various pieces to the KSC 
application. Experimentation with the repair strategies 
will continue as we use the rescheduling component of 
the system with the real data. It is generally felt, that 
there is a tremendous potential for savings to the shut­ 
tle program if this effort and the other phases of the 
scheduling process at KSC are automated.
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Figure 4: Best Cost and Current Cost
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Figure 5: Space Shuttle Rescheduling Problems
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