
The Space Congress® Proceedings 1991 (28th) Space Achievement: A Global
Destiny

Apr 24th, 2:00 PM - 5:00 PM

Paper Session II-B - Space Shuttle Processing: A Case Study in Paper Session II-B - Space Shuttle Processing: A Case Study in

Artificial Intelligence Artificial Intelligence

Cindy Mollakarimi
Lockheed Space Operations Company, Titusville, FL

Monte Zweben
NASA, Ames Research Center, Moffett Field, CA

Bob Gargan
Lockheed Corporation, Palo Alto, CA

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Mollakarimi, Cindy; Zweben, Monte; and Gargan, Bob, "Paper Session II-B - Space Shuttle Processing: A
Case Study in Artificial Intelligence" (1991). The Space Congress® Proceedings. 9.
https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th/april-24-1991/9

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217148451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th
https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1991-28th%2Fapril-24-1991%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th/april-24-1991/9?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1991-28th%2Fapril-24-1991%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

Space Shuttle Processing; A Case Study in Artificial Intelligence
Cindy Mollikarimi Robert Gargan Monte Zweben

Lockheed Space Operations Co, Lockheed AI Center NASA Ames Research Center
1100 Lockheed Way 3251 Hanover St. 0/9620 B/259 M.S. 244-17

M.S. LSO-439 Palo Alto, California 94304 MofFett Field, California 94035
Titusville, Florida 32780 gargan@laicJockheed.com zweben@pluto.arc.nasa.gov
407-383-2200 Ext. 2852

Abstract
Scheduling the ground processing functions of
the Space Shuttle is an inherently difficult
task. Most automated scheduling tools are ori­
ented towards manufacturing problems which
are very different from shuttle processing. The
distinguishing factors between shuttle process­
ing and manufacturing are:

1. Shuttle processing requires much un­
planned to be added to the schedule while
manufacturing process plans are typically
determined well in advance.

2. Manufacturing activities are significantly
more predictable than shuttle repair activ­
ities in terms of resource needs and dura­
tions.

3. Shuttle processing is fundamentally more
complex than typical manufacturing con­
cerns.

4. Shuttle processing requires rea­
soning about orbiter configuration as well
as tasks and resources.

To address these discrepencies, we have devel­
oped a new scheduling system that adopts Ar­
tificial Intelligence techniques. This paper de­
scribes the unique capabilities of this schedul­
ing system as well as some preliminary results
of the system using the shuttle data.

1 Introduction
1.1 Problem Description
Space Shuttle Ground Processing is the labor intensive
effort of repairing and maintaining Space Shuttles be­
tween flights. Kennedy Space Center currently uses a
three-tiered approach to developing schedules for shut­
tle missions. At the top level is the long range sched­
ule which represents multiple shuttle flights over several
years. The middle tier schedule is developed about 100
days prior to the beginning of the flight. Activities at
this tier are generally Orbiter Maintenance Instructions
(OMPs). An OMI describes a process that could extend
form one hour to a month. The third tier represents the
primitive operations that define OMFs. Due to the large

quantity of operations and constant schedule changes,
the third tier schedule is only generated for a 11 day
time period. Separate specific schedules for each OMI
are also maintained for short periods of time.

The scheduling process works as follows. Approxi­
mately 100 days before the beginning of a flight, high
level planners create the middle tier schedule. They start
from a generic processing schedule, and add new work
specific to the current mission. Once finished, they per­
form CPM analysis to develop a schedule. This schedule
has many resource constraint violations that must be re­
solved. The planner then adjusts the schedule to balance
resources.

During the execution of a schedule, the planning and
scheduling staff maintain a detailed 72 hour schedule.
This schedule shows all activities that are being per­
formed. Scheduling at this level is primarily monitored
via daily scheduling meetings. During the meetings, rep-
resentativies of the various work groups discuss their re­
source requirements and target completion times. The
person in charge of the meeting coordinates the dynamic
rescheduling of the work to be performed. Unfortu­
nately, delays still occur. For instance, on one occasion,
work that was scheduled could not be performed because
the necessary quality control inspectors were not avail­
able. Unavailable parts, new problems, broken equip­
ment, and scare manpower all contribute to the uncer­
tainty that results in schedule delays. In this dynamic
environment, it is imperative that the schedule coordi­
nators are capable of predicting the impact of decisions
they intend to make. KSC managers perform superbly,
given the amount of information they currently exploit.
We expect that the system described below wiE greatly
improve this decision-making process.

1.2 AI vs. Project Management Tools
On the surface, it appears that project management
tools Me sufficient to solve the Space Shuttle Ground
Processing problem. In fact KSC has performed in this
manner lor the second tier level and beginning to do
so at the third tier as well. Unfortunately, the project
management took can. only .address part of the problem.
Each •activity Mas temporal requirements, resource re­
quirements, and orbiter configuration requirements. Ex­
isting project management tools can represent most of
the temporal requirements .and. some of the resource te»

&JJ

quirements, but, no tool can represent the configuration
requirements. Given this, the best any conventional tool
can do is give you partial information.

Much of the work being performed on the orbiter re­
quires that the orbiter be in a specific configuration. In
most cases there may not be any technical sequencing
requirement connecting several activities, but they are
related through orbiter configuration. For example, cer­
tain tile work might require the payload bay doors to
be in a closed position, certain tests require the pay-
load bay doors partially open (to gain access to other
parts of the orbiter), and certain tests such as deploy­
ing an antenna require the doors completely open. All
three types of activities are independent of each other
but require conflicting configurations of the orbiter. An
effective scheduling system must consider these interac­
tions.

Another important contribution of AI is that it al­
lows a scheduling system to consider far more alterna­
tives than a project management system. We search the
space of possible schedules using heuristics (i.e., rules of
thumb) to drive the scheduler toward more desireable
solutions. Project management systems typically deter­
mine the earliest and lates possible times for activities
and then simply resolves resource allocations by delaying
activities later until resources are available.

AI approaches to scheduling are not new. ISIS [Fox,
M. S., 1983] and then OPIS [Ow, P.S. and S.F. Smith,
1988] focused on developing a constraint based job shop
scheduling system. KSC has also performed scheduling
work previously. Empress [Hankins, G.B., et. al, 1985]
and Phits [Gargan Jr., 1987] both focused on aspects of
the planning and scheduling cargo processing.

1,3 Operational Concept
For .each mission, we download a network of activities,
constraints, and resources, from the Computer-Aided
Planning and Scheduling system (CAPSS) that is based
upon the Artemis project scheduling product. We then
begin either with the schedule downloaded or schedule
the network again within our tool. Our system can then
evaluate the goodness of the schedule based upon the
constraints and automatically resolve the constraint con­
flicts. Through a graphical user-interface, the planner or
manager can enter schedule changes and wiE be informed
of the ramifications of the schedule changes. This entails
a before and after report of any changes to tasks'and a
graphical depiction of the violated constraints. Then the
user cam continue to manually modify the schedule or ask
the resckeduler to deconflict the schedule automatically.

The major contribution of the work reported here is in
rescheduling and therefore the remaining portion of this
paper wiH concentrate on rescheduling. First, we for­
mulate the rescheduling problem and then describe our
rescheduling algorithm. Finally, we demonstrate results
of using our algorithm on the Shuttle data.

2 Fixed Preemptive Scheduling
Scheduling is the process of assigning times and resources
to the activities of a plan. Fixed preemptive scheduling

is a specialization of classical scheduling, where each ac­
tivity is preempted when it intersects an illegal time in­
terval specified by an activity work calendar. An activity
work calendar designates when work is prohibited. Hol­
idays and overtime shifts are typical examples. Fixed
preemptive schedulers split activities into the shortest
sequence of contiguous subtasks, such that each subtask
is legal with respect to the parent's work calendar. Fixed
preemptive scheduling is distinguished from flexible pre­
emptive scheduling because of the shortest contiguous
sequence restriction. In other words, fixed preemptive
problems prohibit idle time between the split subtasks
of an activity, if that idle time is legal with respect to
the task calendar.

Scheduling assignments must satisfy a set of domain
constraints. Generally, these include temporal con­
straints, milestone constraints, and resource require­
ments. Temporal constraints relate tasks1 to other
activities (e.g., end(Tl) < start(T2)) and milestone
constraints relate tasks to fixed metric times (e.g.,
end(Tl) < 11/23/90 12 00 00). A resource require­
ment consists of a type and quantity of a resource (e.g.,
4 mechanical technicians, 3 cranes). Each resource re­
quirement has a corresponding capacity constraint. The
constraint asserts that the resource must not be overal-
located.

We also model the state requirements and effects for
each activity A state requirement asserts that a state
variable must have a certain value over a period of time
(e.g., the payload bay doors must be open during an
activity, the power and the hydraulics must be off dur­
ing a task, or an area must be clear during an activity).
Each state requirement has a corresponding constraint
that forces the state variable to have the correct value
over the specified time interval. State effects model how
activities change state variables (e.g., an activity opens
the payload bay doors from the end of an activity and
persists until something else closes them, or an activ­
ity makes an area hazardous during the activity, etc.).
Figure 1, summarizes the definition of fixed preemptive
scheduling problems.

2.1 Rescheduling
In real-world applications, schedules rarely execute as
planned because of the inherent uncertainty of opera­
tional environments. This uncertainty is typically man­
ifested as:

1. modifications to the start and end of activities,
2. modifications to the quantity of resources required,
3. modifications to the work durations of activities,
4. unavailable or defective resources,
5. unexpected state conditions,
6. the addition of new activities that have become rel­

evant, and
7. the removal of existing activities that have become

obsolete.

1 We use the terms task and activity interchangeably.

Given a set of tasks, each with:
1. a work duration
2. a work calendar
3. a set of temporal constraints
4. set of resource requirements
5. a set of state requirements
6. a set of state effects

Find:
1. a splitting of each task into subtasks,
2. a metric start and end time for each subtask, and
3. an assignment of a specific resource pool for each

resource request,
Such that:

1. the subtasks of each task are the shortest set of con­
tiguous tasks legal according to each activity work
calendar,

2. the aggregate duration of subtasks sums to the cor­
responding task's work duration,

3. all temporal constraints are satisfied,
4. all state requirements are satisfied, and
5. no resource is overallocated or prematurely depleted

(i.e, all resource capacity constraints are satisfied).

Figure 1: Fixed Preemptive Scheduling

As originally described in [Ow, P., Smith S., Thiriez,
A., 1988J, any rescheduling algorithm must be sensitive
to the speed of rescheduling, the domain optimization
criteria, and the amount of perturbation to the origi­
nal schedule. Typical optimization criteria include the
minimization of flow time (work-in-process time), the
minimization of labor overtime, and the minimization
of deadline tardiness. In our presentation of constraint-
based simulated annealing below, we will discuss how
our heuristics address optimization criteria.

3 Constraint-Based Simulated
Annealing

We have extended traditional simulated annealing with a
constraint framework that is used to both evaluate solu­
tions and to improve solutions. In the following sections
we describe our constraint language, give examples of the
specific constraints used in our experiments, and finally
present the role of constraints during search.

3*1 Constraints
Constraints are defined by the functions depicted in Fig­
ure 2. Every constraint has a penalty function, a weight,
and a repair function. The penalty function measures
the degree of violation for the constraint. The constraint
weight is a measure of utility or importance for the con­
straint. Both the weight and penalty contribute to the
goodness evaluation of a schedule called the cost function

(see Figure 2.). The repair function modifies a schedule
with the intention of improving the constraint's penalty.
Repairs usually improve the penalties, but occasionally
they inflict further constraint violations (that get re­
paired in later iterations of the search). Repair functions
either replace resource assignments or reassign activity
times. Tasks that are temporally reassigned must also
be re-split according to their work calendars. Before dis­
cussing the repair functions in more detail, we present
the MOVE operator that performs temporal reassign­
ment.

3.1.1 MOVE Operator
The MOVE operator places the given task at a given

time, and then if necessary, moves other tasks to sat­
isfy temporal constraints. It takes a state, a task,
a time, and a direction and then finds a new state:
MOVE : S x Task x time x direction -+ S'. A state
is an assignment of values to all variables constituting
a schedule. If direction is one, then the start of the
task is placed at the given time, otherwise, the end of
the task is placed at that time. The MOVE operator
is implemented as a Waltz constraint propagation algo­
rithm over time intervals [Waltz, D., 1975, Davis, E.,
1987]. In constraint satisfaction terminology, this algo­
rithm enforces arc-consistency [Mackworth, A.K., 1977,
Freuder, E. C., 1982], The algorithm recursively enforces
temporal constraints until there are no outstanding vio­
lations.

After every schedule modification, the MOVE opera­
tor is employed to preserve temporal constraints. For
example, if a task is delayed by the user, the Waltz algo­
rithm will reassign each postrequisite that has violated
temporal constraints. This in turn causes further viola­
tions that are recursively resolved until temporal quies­
cence.

Repair strategies also rely on the MOVE operator and
are described in the next sections. It is important to note
that the penalty, weight, and repair functions for tempo­
ral constraints are unnecessary because these constraints
are preserved by the MOVE operator.

3.1.2 Resource Capacity Constraints
The resource capacity constraint is a relation among

the start time, end time, and a resource pool variable
of a task. It states that the resource assigned to the re­
quest must not exceed its capacity during the task. For
example, the first resource request of a task has the cor­
responding constraint;

, 1))) <
, I))))

where ST stands for the start time, IT for the end time,
and TU for total aggregate usage of the resource pool-
assigned to the request The penalty of the constraint is
boolean - it is one if the condition ia violated
otherwise. The weight of the constraint is -one*

The repair for a resource capacity constraint initially
attempts to substitute a new resource pool , If this does

not satisfy the constraint, it selects an activity contribut­
ing to the over allocation and reassigns it to another time.
This reassignment exploits the MOVE operator to pre­
serve temporal constraints.

The computational complexity of this repair is pro­
portional to the cost of selecting a task to move. One
viable strategy is to move the task associated with the
constraint which yields a constant time selection. An­
other strategy is to move a different task that is simul­
taneously using the resource. Any heuristic used for this
choice should consider the following criteria:
Fitness: Move the task that is using an amount closest

to the amount that is overallocated. A task using a
smaller amount is not likely to have a large enough
impact and a task using a far greater amount is
likely to be in violation wherever it is moved.

Temporal Slack: Any task that is highly constrained
(i.e., few legal times) temporally is likely to cause
temporal constraint violations and therefore could
result in large perturbations to the schedule.

Temporal Dependents: Similar to temporal slack, a
task with many dependents is likely to cause tem­
poral constraint violations, if moved.

Severity of Bottleneck: Prefer tasks that do not need
to be moved drastically to avoid extending flow time
and to mimize perturbation.

Priority: The system should avoid delaying important
tasks, but prefer moving them earlier.

In-Process: A task that has already begun should be
completed as soon as possible, rather than tem­
porarily stopping it, and then continuing later.

Chronological Proximity: It is better to move activ­
ities that start later in the schedule than those that
are about to begin.

Cycles: It is better to avoid moving tasks that have
been moved frequently in previous iterations be­
cause the iterative improvement algorithm can po­
tentially cycle.

We address the speed of scheduling with the above cri­
teria by considering only the next available time for each
movet rather than by exploring many possible times.
This same criteria also avoids extending flow time be­
cause later available times are not immediately consid­
ered

In our current implementation, we consider only fit­
ness, temporal dependents, severity of bottleneck, in-
process, and chronological proximity. Let T be the set
of tasks that are using the resource during the time cor­
responding to a constraint. We calculate two probabili­
ties for each member of T: the probability of moving the
activity to the next later available time and the prob­
ability of moving the activity to its next earlier time.
These probabilities are calculated by combining scores
based on the criteria above. We disregard scores for cri­
teria that are not very discriminatory with the hope of
improving the effectiveness of this scoring. For example,
if all the culprits have a comparable number of tem­
poral dependents, then the scores for this criterion are

discarded when calculating the move probabilities. The
repair then chooses the move randomly with respect to
the probabilities calculated.

The use of probabilistic repairs that are biased by
heuristic knowledge is an important attribute of this
technique because it circumvents infinite cycling and my­
opic side effects. For example, suppose the system re­
solves a resource constraint by delaying the best activity
according to its heuristics. Then suppose a milestone is
violated and the activity is returned to its initial time
in the next iteration. Without probabilities, this would
infinitely recur. Myopic side effects are also avoided
because sometimes the system will disregard its local
heuristic and result in better schedules.
3.1.3 State Constraints

The state constraint is a relation among a time inter­
val, a state variable and a state. The constraint indicates
that the state variable must be in the given state over
the given interval. For example, a task requiring that
the main landing gear of the space shuttle be deployed
during the activity would be:

holds(ST(?T), ET(1T),
MainLandingGear (Atlantis) = DOWN)

The penalty of this constraint is boolean with a weight
of one. To repair this constraint, the task with the re­
quirement is reassigned to the next point in time when
the state variable is assigned the desired value. Again the
MOVE operator is used to shift a task and to preserve
temporal constraints. In the future, we plan on extend­
ing this repair with options resembling the modal truth
criterion of non-linear planners [Chapman, D., 1987].
One option is to introduce a new activity that satis­
fies the state requirement. Another is to move a task
that sets the state variable appropriately, before the task
with the requirement2 . The final option is to move an
activity that clobbers the required state to another time
where it does not interfere. In future work, we intend
to tackle planning problems with a probabilistic deci­
sion function analogous to the resource constraint repair.
While this approach sacrifices the completeness proper­
ties that many non-linear planners enjoy, we believe that
the anytime characteristics (see Section 4) of our search
will be appealing.

3.1.4 Milestone Constraints
The milestone constraint enforces a relationship be­

tween a task and a metric time. For example,
holds(end(!T) < 11 23 90 12 00 00). The penalty of the
constraint is boolean and the weight of the constraint is
one. The repair uses the MOVE operator to shift the
violated activity to satisfy the milestone.

3.2 Search Algorithm
Rescheduling begins when a user enters schedule modi­
fications via a graphical user interface. Then, for each
modification, the MOVE operator is enforced. This pro­
vides the initial scheduling assignment for annealing.

2 This option was included in an earlier prototype of the
system but it is not used in these experiments.

5-20

• Let 5 9* {«i, $2,..., sn} be the set of possible states
where each s, is a unique assignment of values to all
variables (i.e., a schedule).

• Let C = {ci, C2,..., cn } be the set of constraints.
• PenaltyCi : S —* [0,1] is a function defining the cost

of a single constraint violation given a state.
• WeightCi :—* [0,1] is a function defining the impor­

tance or utility of a constraint.
• RepairCi : 5 —*• Sf is a function that modifies a state

to improve a constraint violation.

Figure 2: Constraints: A representation of generation
and test knowledge.

Cost(s) = y^ Penaltyc .(s) * Weightc .
CicC

is a function indicating the goodness of a state.
• New : S —* S' is a function that transforms a state

into a new state by a sequence of repairs:
Repairc .(s) o RepairCj (s) oRepairCn (s)

• Escapees',T) = e-lc<"*('>-c°**<'')l/T is the prob­
ability that the system will transition into a worse
state in order to escape a local minimum.

Figure 3: The basic functions of constraint-based simu­
lated annealing.

The goodness of this assignment is calculated by the cost
function. The specific cost function for our experiments
is simply the number of constraints violated for the given
assignment. Then, by repairing penalized constraints, it
suggests a new solution and evaluates its cost. If the
new cost is an improvement, it adopts the new assign­
ment and continues. If the new solution is worse, the
algorithm adopts it according to the escape probability.
This last step allows the algorithm to escape local min­
ima - situations where any move will result in a worse
state. The basic algorithm is as follows (where S is a full
schedule):
SolveCSX

Old = Cost(S);
Repeat until Old <= *THRESHOLD* <

S' = Hew(S);
NewC = Cost(S');
If NewC < Old

Then Old = NewC; S = lext;
Else { With probability Escape do

Old = HewC; S = Next;
>;

SaveBestSolutionlf Necessary ;

During each iteration, a subset of the outstanding vi­
olations is retrieved and then repaired. Currently, we re­
pair the ten earliest availability constraints, and all the
violated state- variable constraints. We plan to experi­
ment with these parameters to determine how they affect
the convergence to a solution. We bound the search by a
maximum number of iterations and a maximum cumu­
lative time. Generally, we use a very large time bound
and a limit of 40 iterations per run.

4 Anytime Characteristics
When searching for a solution, the annealing algorithm
saves its best solution to date and returns it when the al­
gorithm is interrupted. This approach meets the criteria
put forth in [Dean, T., and Boddy, M., 1988] to be clas­
sified as an anytime algorithm. Their criteria classifies
anytime algorithms as those that:

1. can be interrupted and restarted

2. can be terminated at any time and will output an
answer

3. return answers that improve in a well-behaved man­
ner over time.

An additional consideration is that the solution output
must be useful to the user. It makes no sense to be
anytime if the solution can not be utilized effectively.

Our algorithm is interruptible, restartable, and out­
puts a solution when terminated. The solution quality
increases as a step-function of time. Figure 4. is an
actual run of our algorithm that demonstrates the rela­
tionship between the cost and best cost over time. In­
terim solutions are useful in our application domains be­
cause human schedulers can manually resolve conflicts in
the schedule, especially when there are few conflicts that
tend to be over-allocations of resources. Usually, the re­
maining conflicts can be resolved by allowing proximate
activities to share resources. Our system is not capable
of modeling this sharing capacity at this time.

5 Preliminary Results

We have modeled the Space Shuttle processing environ­
ment with about 500 activities that are split into a ap­
proximately 4000 sub tasks. There are 1600 temporal
constraints, 8000 resource constraints} and 3900 state
requirements. The orbiter processing environment is rife
with uncertainty and reactive decisions are made quickly.
Suppose a scheduling change causes many conflicts for a
particular schedule. It would be unacceptable for tech­
nicians and other personnel to remain idle while the sys­
tem resolves every conflict* An anytime solution must be
adopted, at least for the activities slated lot immediate
execution.

Figure 5. presents the results of simulating reschedul­
ing scenarios using actual Space Shuttle processing data*.
We modify a random number of activities and then ini­
tiate rescheduling. The graph plots best cost against
cumulative time. These graphs indicate that the algo­
rithm scales to very large problems and maintains its
anytime characteristics.

5-21

6 Development Status
The project to apply the scheduler to the KSC shuttle
processing problem has been underway for about a year.
Since early 1990, we have been working with actual data
from a completed shuttle flight. While this data did not
provide us with orbiter configuration data, it did provide
us the ability to test our algorithms on realistic data sets.

Our plan is to shadow the STS-37 flight this winter.
The main goal of this experiment is to collect the neces­
sary scheduling information to enter into the system. To
date, resource and configuration information for ground
processing is either unavailable in an electronic medium
or is significantly innaccurate. During the testing period,
we will add in the changes to the work as they occur pro­
viding new schedules in a timely manner. As the quality
of the information being stored in the knowledge base
increases, our system will produce better schedules. The
schedules we produce will then be compared to existing
work schedule providing us some insight into new infor­
mation to add to our system. Our hope is that even at
this early phase of testing, we will be able to provide the
KSC personnel some insight into alternative schedules
that might not have been considered in the past.

7 Conclusion
In this paper, we described a research scheduling tool
that is being applied to scheduling ground processing
activities for the space shuttle. Research in this area has
been on-going for several years and is at a state where an
application of this magnitude can be attempted. We pro­
vided a brief overview of the scheduling system provid­
ing examples of the use of the various pieces to the KSC
application. Experimentation with the repair strategies
will continue as we use the rescheduling component of
the system with the real data. It is generally felt, that
there is a tremendous potential for savings to the shut­
tle program if this effort and the other phases of the
scheduling process at KSC are automated.

References
[Chapman, D., 1987) Chapman, D. Planning for Con­

junctive Goals. Artificial Intelligence, 32(4), 1987.
[Davis, E., 1987] Davis, E. Constraint Propagation with

Interval Labels. Artificial Intelligence, 32(3), 1987.
[Dean, T., and Boddy, M., 1988] Dean, T., and Boddy,

M. An Analysis of Time-Dependent Planning. In Pro­
ceedings of AAAI-88, 1988.

[Fox, M, S., 1983] Fox, M. S. Constraint-Directed
Search: A Case Study of Job Shop Scheduling. PhD
thesis, Carnegie Mellon University, 1983.

[Freuder, E. C., 1982] Freuder, E. C. A Sufficient Con­
dition for Backtrack-Free Search. /. ACM, 29(1),
1982.

[Gargan Jr., 1987] E.A. Gargan Jr. Mission planning
and simulation via intelligent agents. In Proceedings
of Space Station Automation III, November 1987.

[Hankins, G.B., et. al, 1985] Hankins, G.B., Jordan,
J.W., Katz, J.L., Mulvehffl, A.M., Dumoulin, J.N.,

Ragusa, J. EMPRESSrExpert Mission Planning and
RE-planning Scheduling System. In Expert Systems
in Government Symposium, 1985.

[Mackworth, A.K., 1977] Mackworth, A.K. Consistency
in Networks of Relations. Artificial Intelligence, 8(1),
1977.

[Ow, P., Smith S., Thiriez, A., 1988] Ow, P., Smith S.,
Thiriez, A. Reactive Plan Revision. In Proceedings
AAAI-88, 1988.

[Ow, P.S. and S.F. Smith, 1988] Ow, P.S. and S.F.
Smith. "Viewing Scheduling as an Opportunistic
Problem Solving Process. Annals of Operation Re­
search, 12, 1988.

[Waltz, D., 1975] Waltz, D. Understanding Line Draw­
ings of Scenes with Shadows. In P. Winston, edi­
tor, The Psychology of Computer Vision. McGraw-
Hill, 1975.

§•22

Best Cost

20

Figure 4: Best Cost and Current Cost

0 1000 2000 3000 4000 5000 6000
Time (seconds)

Figure 5: Space Shuttle Rescheduling Problems

5-23

	Paper Session II-B - Space Shuttle Processing: A Case Study in Artificial Intelligence
	Scholarly Commons Citation

	tmp.1409503743.pdf.zUC3Q

