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Early results from the Space Telescope Imaging Spectrograph.
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Abstract
The STIS instrument was installed into HST in February 1997 during the Servicing Mission

2. It has  completed checkout and is beginning its science program, and is working well. Several
scientific demonstration observations were taken, illustrating some of the range of scientific uses
and modes of observation of STIS.

Keywords: Hubble, spectrograph, echelle, ultraviolet, optical, spectra, MAMA, black hole, galax-
ies, supernova

1. Introduction
STIS was built by Ball Aerospace for the Laboratory for Astronomy and Solar Physics at

NASA/Goddard Space Flight Center. It is a UV and visible spectrograph with a wavelength range
from 115 to 1000 nm, and has spectral resolving powers between 20 and 100,000. It uses 2-
dimensional detectors with 1024 x 1024 pixels, a CCD in the visible/IR and Multi-Anode Microchannel
Arrays (MAMAs) in the UV. The 2  MAMAs, one with CsI and one with CsTe, were built at Ball. Use
of 2-dimensional detectors allows direct imaging, long slit spectroscopy to obtain many spectra of
an extended object at once, and echelle spectroscopy for simultaneous high spectral resolution
and broad spectral range. The primary spectral modes are shown in the Table.

Figure 1 . STIS optical layout.



The optical layout is shown in Figure 1. Light entering the instrument is first cor-
rected for spherical aberration and astigmatism to produce a sharp image at the entrance slit
wheel of the spectrograph, where one of 65 small slits, long slits or large apertures can be se-
lected. The spectrograph collimator then puts a parallel beam onto the grating wheel, where one of
21 gratings, mirrors or a prism is selected, defining the spectral mode. The grating wheel also tilts
to direct the beam to a detector or mirror or echelle grating, and selects the wavelength range1,2,3.

2. Early Observations

During the post-launch checkout phase prior to the start of the primary science program, a
few early observations were taken to demonstrate the new scientific capability and show some of
the ways in which STIS will operate.



2.1. Supernova 1987A
For the special case of extended emission line objects we can observe with wide slit spec-

troscopy to obtain many separate images at once of an object. For example for SN 1987A, a
supernova that exploded in the Large Magellanic Cloud (LMC), a small galaxy close to our own
160,000 light years away, we selected an area including the inner fossil ring and part of the outer
rings surrounding the supernova, using our 2 x 52 arcsec slit, as shown between the blue lines in
the upper left of Figure 2.4 Selected spectral images show lines of [NII], H alpha and [NII] in the
upper right, two [SII] lines in the center, and [OIII] at the bottom right.   The images of the inner ring
are slightly different sizes in the different lines This 1.2 light year diameter ring was ejected by the
star in its earlier red giant stage about 20,000 years ago, and was recently heated and ionized by
the UV flash of the supernova explosion. We now see the 50,000K afterglow of this event, and can
derive the properties of the ring by the structure and decay of the different line images.

In the brighter [NII] image, we see the fainter outer ring to the right broken at the location of
the central supernova. We interpret this as shadowing of the ring by the extended supernova blast
wave, showing that the left side of the right outer ring is behind the supernova. This tells us the
orientation of the entire three ring system, that the left ring is in front and the right ring is behind.

In several of the images we see a gap in the ring, at about 2 o’clock. In the hydrogen and
oxygen line images there is an emission feature interior to this point, which we interpret as blue-
shifted line emission from the gap. Since we know now that this ring edge is towards us, blue-
shifted emission is moving away from the supernova. This suggests that the first parts of the blast
wave front are beginning to impact and break through the ring. The velocity measured is 250 km/
s (? M mph).

Figure 2. Supernova 1987A in the visible.
Top left: WFPC image with STIS 2

arcsec wide slit superposed.
Top right: Spectral images of emission

lines of [NII], H alpha and [NII]. The outer ring
seen in the right [NII] image is shadowed by the
central supernova debris, showing the left sides
of the rings are behind the right sides. Blue-
shifted emission from the gap in the inner ring
at 2 o’clock shows material blasting out through
the ring.

Center: Spectral emission lines of [SII].
Ratio shows the density in the ring is greater
than 103 cm-3.

Center right: Spectral emission line of
[OIII]. Shows blue-shifted component.



We then obtained a UV spectrum through a 2 x 2 arcsec slit, to include the inner ring and
to exclude a nearby bright star (Figure 3). The Lyman alpha bright earth airglow is shown blocked
out. Three faint rings in the lines of [OIV], [NIV] and HeII are just detectable. High velocity H Lyman
alpha and NV emission is seen surrounding the supernova, but interior to the ring, with a velocity
about 15,000 km/s (33 M mph).  This emission was predicted from X-ray and radio observations to
be from the blast  wave of the supernova debris hitting the surrounding low density gas, and we
are now able to see its location. We expect it to get much brighter when the main blast hits the ring
in a few years.

Figure 3.  Supernova 1987A in the UV. Top: WFPC image
with STIS 2 x 2 arcsec aperture superposed. Center: STIS
UV spectral image. Bright H Lyman alpha geocorona has
been blocked out. Lyman alpha and NV emission from high
velocity gas (15,000km/s) from the supernova blast wave
interacts with the circumstellar gas. Bottom: Cartoon identi-
fying features.

2.2. A black hole in a galaxy center
Figure 4 shows the result of observations of slit spectroscopy of the galaxy M84 in the

Virgo cluster of galaxies 50 million light years away.5 The left image is a WFPC picture of the
center of the galaxy with the position of the STIS slit superposed. Spectra as a function of position
along the slit were recorded in the emission lines of H alpha, [NII] and [SII], and a strong wave-
length shift was seen across the nucleus, 400 km/s within 26 light years, as shown on the right.
Only a black hole has mass sufficiently concentrated to produce such a large shift in such a small
distance. As the gas is sucked in to the black hole, it orbits around it, glowing from the energy it
gains from the gravitational field. The mass of the black hole is greater than one  billion suns, and
may be larger depending on the tilt angle of the axis of rotation to us.

Figure 4. Black hole in the center of the Virgo cluster galaxy M84.
Left: WFPC image with STIS 0.2 arcsec wide slit superposed. Right:
Plot of center wavelength of emission lines along the slit shows a
black hole mass at least one billion suns.



2.3. Funnel clouds from a galaxy nucleus
If a black hole at the center of a galaxy is fed rapidly with gas and stars it exhibits a variety

of violent behaviors, and is called an active galactic nucleus (AGN). Spiral galaxies with AGNs are
called Seyfert galaxies.

If an emission line object is sufficiently isolated and free of continuum light, spectra may be
taken with a large aperture, and the separate images in the emission lines recorded. In Figure 5
the upper left shows an image taken by WFPC in the [OIII] filter of the nearby Seyfert galaxy NGC
4151. Many knots are seen to the lower left and upper right of the nucleus. STIS spectra were
taken in the G430M mode, and the lower right image shows the spectral image with two [OIII]
lines.6  The weaker image to the left was subtracted, leaving the image shown on the upper right.
Comparing this with the WFPC filter image in the same line, we see the inner knots are streaked
out in the spectral direction in STIS. Below the nuclear continuum line spectrum, the knots are
streaked out to the left or short wavelength side, and above the line are shifted to longer wave-
lengths. By comparing the positions of each knot we find its velocity towards or away from us. This
reveals a pattern of knots flowing out in a double cone, with the material in the lower cone flowing
towards us and in the upper cone away from us, at up to 1000 km/s.

Further out the more distant knots do not share in this outflow. The velocities are reversed,
possibly from general motions of the galaxy or a backflow into the central cone.

Figure 5.  Bipolar outflows from the Seyfert nucleus in NGC 4151. Top left: WFPC [OIII]5007 image.
Top right: STIS [OIII]5007 spectral image, showing knots smeared by doppler shift near the nucleus.
Bottom right: [OIII]5959 and 5007 spectral image. Bottom left: UV spectral image showing doppler
shifted CIV emission close to the nucleus.



2.4. Absorption spectra of supernova shells

UV spectra of a star show absorption features due to the intervening interstellar medium.
STIS spectra of a star behind the Vela supernova remnant were taken in the FUV high resolution
echelle mode E140H, which has an approximate resolving power R=150,000 (2 km/s).7 We used
a time-tag mode of data collection where each event’s position and time (x,y,t) are telemetered
down. The doppler shift contribution due to the orbital motion of 14 km/s was removed on the
ground. The resulting spectrum is shown in Figure 6, showing that 50 echelle orders were re-
corded in one exposure. Several blocks of complex absorption line structure are seen. Each block
is due to the absorption in a different spectral line from the complex velocity structure of the ex-
panding filamentary shells formed by the shock waves from the supernova explosion impacting
interstellar clouds. The velocity range is 210 km/s.

Figure 6 . Echelle spectrum of a star behind the Vela supernova remnant. Broad absorption line
blocks are each spectral lines broken up by the velocity structure of the high velocity shocks from
the supernova shells interacting with the interstellar medium.

2.5. Parallel spectra of high redshift galaxies

Much of the early data taken by STIS will be in parallel with prime operations of the WFPC
and NICMOS instruments. While we cannot select the field of view, we can take spectra of many
objects at once by using the 50 x 50 arcsec aperture in the low resolution grating modes, com-
bined with a direct image to provide a wavelength reference. We are currently using the G750L
mode, primarily to capture compact emission line galaxies which should show up as near point-
like sources in the spectra, at a variety of redshifts in the emission lines of [OII]3727, [OIII]5007, H
alpha and Lyman alpha. Figure 7 shows an image and spectrum of a galaxy at redshift 0.804,
emitting in the [OIII]5007 and 4959 lines redshifted to above 9000A.8  The upper right panel is a
direct image, the lower panel is a spectrum of the same region with the [OIII] lines standing out
clearly, and the upper left is a close-up of those emission lines.



2.6 Planetary aurorae.

The UV detectors in STIS are insensitive to the visible, and so can select out the faint  far UV
emission  from the aurorae of planets from the much brighter reflected light from the Sun in the
visible. The improved UV sensitivity and higher spatial resolution of STIS enables planetary auro-
rae to be seen without rotational blurring and with  more detail than before, and enables variations
with time to be followed.

Figure 8 shows STIS far UV images of Jupiter’s polar regions superposed on a WFPC
visible image of the disk 9. The high latitude rings are aurorae from particles originally generated
from volcanoes on Jupiter’s satellite Io falling in down Jupiter’s magnetic field lines. The slightly
lower latitude streaks are due to particles directly from Io, which is magnetically connected to the
surface of Jupiter at these latitudes.  The emission in each case is from the Lyman alpha line of
hydrogen.  The structures rotate with Jupiter, since the magnetic axis is offset from the rotational
axis.

Figure 6 . Echelle spectrum of a star behind the Vela
supernova remnant.

Broad absorption line blocks are each spectral
lines broken up by the velocity structure of the high ve-
locity shocks from the supernova shells interacting with
the interstellar medium.

Figure 7. Emission line galaxy at redshift 0.8 in STIS
parallel data.

Top right: CCD clear image, 2100 sec ex-
posure, 50 x 50 arcsec field. Note compact objects
just above the center near the left edge.

Bottom: Wide field spectrum of the same
area as the image, 8400 sec exposure. Most galax-
ies show continuum spectra. The compact objects
noted show emission lines of [OIII]4959 and 5007,
and possibly of H beta, yielding a redshift of 0.804.



Figure 9 shows the auroral rings formed above the surface of Saturn  in this far UV image.
The rings shown here are due to molecular hydrogen , selected by a cut-off filter to remove the
atomic hydrogen Lyman alpha10. This time-tagged image has been subdivided in time to reveal
flickering structures in the aurorae. A similar image in the light of atomic hydrogen shows more
extensive structure.

2.7. Protoplanetary disks .
Planetary systems are thought to be formed from equatorial gas and dust disks, them-

selves formed as the forming star condenses from interstellar clouds. The best studied protoplanetary
disk, that around the star Beta Pictoris, was observed by STIS using its coronagraphic mask ,
which removes most of the light from the star, allowing the much fainter reflected light from the disk
to be seen (Figure 10). This allowed the disk to be seen closer to the star than in previous obser-
vations, into a distance equivalent to that of Neptune from the Sun. The warp may be due to
planets forming within the disk, or due to a companion white dwarf or a passing star.

Figure 9.  Aurorae on Saturn.
The auroral rings formed above the surface of Saturn, shown

in this far UV image, are due to molecular hydrogen , selected by a
cut-off filter to remove the atomic hydrogen Lyman alpha.

Figure 10.  The warped protoplanetary disk  around
Beta Pictoris.

The warped disk, observed with the STIS
coronagraphic mask, is seen closer to the star than
in previous observations, equivalent to the distance
of Neptune from the Sun. The warp may be due to
planets forming within the disk, or due to a passing
star.

Top: WFPC2 image, showing the outer
parts of the disk.

Bottom: STIS image, showing the inner
parts of the disk.
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