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DIGITAL FILTERING IN SPACE COMMUNICATION 
Arnfinn M. Manders 
Associate Professor 

University of Florida - GENESYS 
Cape Canaveral,Florida

Introduction

In ground receivers for space applications, 
a bank of filters is frequently used to demultiplex 
the received subcarriers. Such filter banks are 
also frequently used for measurements of the dopp- 
ler shift of the received signals. These filters 
are generally characterized by having a narrow 
bandwidth. This means that they are rather costly 
and often difficult to construct to the desired 
specifications. Since the baseband structure 
varies from mission to mission, the useful life 
of these baseband filters is short.

An alternate approach to the filtering problem 
that can cut cost and increase flexibility while at 
the same time improve system performance is there­ 
fore welcome. Such an approach exists in digital 
filtering.

A digital filter is a computer program that 
allows digital computer to be used as a linear 
filter. Such programs can now be written for a 
general purpose computer that allows the computer 
to be used as a filter bank in real time.

The block diagram of a typical digital filter 
bank is shown in fig. 1. The signals to be filtered 
are passed through an A-D converter into the com­ 
puter. The computer output is passed through a D-A 
converter thus completing the filtering operation.

Since the program can easily be modified, such 
parameters as center frequency, bandwidth, and rate 
of cut-off can be altered virtually without cost as 
the mission requirements demand. If desired, other 
operations such as demodulation and decoding can 
also be done by the computer at the same time.

This paper discusses the techniques of digital 
filtering and their application to the baseband 
filtering problem. The techniques are discussed 
with reference to the digital resonator, the digital 
equivalent of the parallel RLC network. Practical 
considerations such as performance limitations due 
to computer size and speed for real time operation 
are considered. In conclusion, two examples of 
typical digital filters and their performance is 
discussed.

Synthesis of Digital Resonators

The baseband filtering problem can frequently 
be solved by use of a suitable combination of 
single tuned circuits with proper center frequencies 
and bandwidths. Because of this central role played 
by the single tuned circuitry or resonator, the 
synthesis of digital resonators will be discussed 
in detail.

An analog single tuned circuit, or resonator, 
consisting of a parallel combination of a resistor, 
coil and capacitor is shown in fig. 2. Its response

to an input can be described by the differential 
equation:

r dv _L n dv 4. .I, r _ dic dtZ" +G dt + L v ~dt

or by the transfer function

»<" -
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(2)
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LC

For this circuit to exhibit oscillatory behaviour 
the condition

(3)

must be satisfied. When this condition is satis­ 
fied, the circuit has a pair of complex poles 
located at: _________

(4)

and zeros at s = o and s = °°

Fig. 3 shows the s-plane picture for the cir­ 
cuit in fig. 2.

When the output from the single tuned circuit 
is sampled every T sec. as indicated in fig. 4, 
we have a situation that corresponds functionally 
to the digital filtering situation. The transfer 
function of the combination of the tuned circuit 
and the sampling switch results in the s-plane 
picture shown in fig. 5.

When we are working with sampled data systems, 
as we are in this case, it is more convenient to 
work in the Z-plane rather than the s-plane, since 
the s-plane contains so much redundant information. 
The relationship between the two planes is given 
by the transformation:

sT

where T is the sampling interval.

(5)

By use of the transformation, 5, we can map 
the s-plane point by point into the Z-plane, We 
see that the origin in the s-plane maps into the 
point Z = 1 and~oo in the s-plane maps into the
origin in the Z-plane. In this manner the s-plane 
pole zero pattern for the single tuned circuit, 
fig. 5, can be mapped into the corresponding Z- 

* plane picture, fig. 6, The zero at the origin in
the Z-plane corresponds to the zero at-oo in the 
s-plane. We also see that the jco-axis in the 
s-plane maps into the unit circle in the Z-plane.

We have obtained the Z-plane picture, fig, 6, 
by periodically sampling the output of the single
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tuned circuit. From this Z-plane picture we can 
form the transfer function, H (Z) , between the in­ 
put and the sampled output:

(z) = V ; = Z(Z-l) _ Z(Z-l) 
X(Z) (Z-y )(Z-Y ) ~ Z2 - KZ - L

1 2

This transfer function can be interpreted as the 
response y(nT) of a circuit to an excitation 
x(nT), where X(Z) is the Z-transform of x(nT) 
defined by 7.

X(Z) = ? x (nT) Z" 
n=o

(7)

By clearing fractions in 6 we obtain the equation:

1 - - Y(Z > = 1 -

We notice that the frequency response is periodic 

with period —. This is due to the effect of

sampling and is only a reflection on the fact that 
the bandwidth of the sienal, W, must satisfy the 
sampling theorem

(14)

in order to avoid aliasing. Since we are only
f using the central portion - ~2T 5 2T! °^ t*ie s^ectrum > 

the periodic nature of the frequency response is 
unimportant.

We now have a digital network that, for our 
purposes, has the same response as a single tuned 
circuit. We therefore call this network a digital 
resonator.

Y(Z) = | Y(Z) + ~j Y(Z) X(Z) - 77 X(Z) (9)

By use of 7 we can easily show that this equation 
in Z corresponds to the following difference 
equation in nT:

y(nT) = K L y[(n-2)T]+ x(nT)-x[ (n-l)T] 

(10)

This is a second order difference equation. This 
equation can easily be implemented by use of a 
digital computer. The flow chart for this imple­ 
mentation is shown in fig. 7. Each time delay, T, 
corresponds to a register (or other storage unit) 
in the computer. We note that zeros in the trans­ 
fer function are caused by feed forward delays, 
while poles are caused by feedback delays.

To this flow chart will be referred to as a 
digital network. This digital network will have 
a pair of complex poles located at:

1,2

K 
2

when:

"if
L + I < 0

The network also has zeros at Z 
sT

(11)

(12) 

0 and Z = 1.

Since Z — e , where T is the sampling interval, we 
can obtain the complete frequency response of the

digital network by letting s = ju), i.e., Z = e^ .

When we make this substitution we obtain 
(after some simplification) the amplitude response
of this digital network.

« . 0)T2 sin —

for:

- 2K(l-L)cos u)T -2L cos

(13)

This amplitude response is plotted in fig. 8,

,9
and

The digital resonator can be specified in 
terms of the coefficients in the computer program, 
K and L, in terms of its pole locations or more 
usually in terms of its center frequency and band­ 
width.

When we apply the usual high 0 approximations 
for resonant circuits we obtain the following sim­ 
plified formulas for the digital resonator.

Resonant Frequency: 

,1 -1
Hz

Filter bandwidth between 3 db points:

f e = W^ Hz

(15)

(16)

For the filter designer it is usually more 
informative to know the filter design in terms of 
the desired filter parameters. When we solve for 
K and L in terms of the resonant frequency and 
bandwidth we obtain the expressions:

-TTTf D ) 5

and:

K = 2(1 -TTTfJ cos 2irf T p o

(17)

(18)

In concluding this section, we point out that 
the same technique that was used to obtain the digital 
resonator from the corresponding analog filter can 
also be used for any other filter for which an s- 
plane pole zero pattern can be obtained.

Furthermore, we note that the response of the 
network is unaffected by whether the zero in the 
transfer function occurs at the input or output. 
By use of this fact we can implement the digital
resonator as shown in fig. 9. This saves one storage 
operation without altering the response of the net­ 
work. This form of the resonator can therefore be 
implemented with one register less. Since this form 
uses the minimum number of delay elements it is 
frequently referred to as the canonical form*

L = -.81
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An Improved Digital Resonator

The digital resonator modeled after the 
parallel RLC circuit has a non-zero response

at f = -TTT. As a result the increase in attenu­ 

ation is not as rapid toward the high frequency 
end of the band as toward the low. If this effect 
is troublesome, it can very easily be remedied. 
The cure is to take the zero at the origin in the 
Z-plane and move it to Z = -1. When this is done 
we obtain the transfer function:

HD (Z) (Z+l)(Z-l) 
Z 2 - KZ - L (19)

The amplitude response of this improved digital 
resonator is:

4 0)T cos — . GOTsin —

1+K 2 +L 2 -2K(l-L)cosu)T -2L cos2coT (20)

The frequency response of the improved resonator 
for the case K = . 9, L = -.81 is shown in fig. 10.

As we see the two digital resonators differ 
only in their frequency response near the sampling 
frequency. In the high 0 case the same formulas 
for bandwidth and resonant frequency can therefore 
be used for both resonators.

The only remaining task in this section is to 
realize this resonator as a flow chart for computer 
programming. This we will do in the same manner as 
before. from the transfer function, 19, we form 
the difference equation, 21:

y(nT) = K y[(
-x[(n-2)T]

+L y[(n-2)T] + x(nT)
(21)

This difference equation gives us the flow 
chart, fig. 11. This flow chart is converted into 
the canonical form shown in fig. 12 in the same 
manner as previously. Both implementations have 
the same response but the one shown in fig. 12 is 
more conservative with respect to high speed memory.

Effects of Computer Speed and Size

That the size and speed of the computer used 
to synthesize the filter limits the complexity of 
a filter if it is to be used in real time is 
probably not so surprising. It is therefore well 
worth to look closely at the proposed filter struc­ 
ture to see if it will yield the best possible per­ 
formance for a given computer size.

In our discussion of current real time capa­ 
bility we will use the IBM 360/50 as an example of 
a modern high-speed general purpose computer. This 
computer has approximately the following execution 
times:

ADD FIXED POINT 4 ysec
ADD LOGICAL 4 ysec
ADD FLOATING POINT 7 ysec
OR EXCLUSIVE 6 psec
MULTIPLY FIXED POINT 21 ysec
MULTIPLY FLOATING POINT 25 ysec
LOAD REGISTER 3 ysec

The digital resonator described in this paper 
requires two multiplications and three additions. 
If it is implemented in floating point arithmetic 
it will therefore require approximately 71 ysec 
per processed data point (when we neglect possible 
small delays caused in loading and unloading). 
With a sampling rate of 2.10 3 samples/sec. we see 
that a bank of 6 to 7 different filters can be 
implemented by the same registers in real time by 
the IBM 360/50 computer if the operations are done 
serially. The speed of operation can be increased 
in two ways. One is by use of a higher speed com­ 
puter, the second is by use of a computer that can 
perform many operations in parallel.

Computers that perform additions in a fraction 
of a ysec and have multiplication times of about 
one ysec are currently representative of the most 
advanced machines available. With such a computer, 
it is possible to bring the execution time of the 
filter down to about 5 ysec. This will allow the 
real time use of approximately 10 filters in a 
10 KHz or 100 filters in a 1 KHz bandwidth.

Of operations that should be avoided whenever 
possible are those requiring a power series ex­ 
pansion for a solution. Of these are square rooting, 
log and the trigonometric functions. All these 
operations require repeated multiplications and 
since multiplication is a relatively slow operation 
they all require considerable time.

When sin and cos functions are needed, they 
can usually be more easily generated by periodically 
pulsing a very high Q digital resonator,

Gain, Sampling Rate and Noise

When we are working with digital networks we 
encounter many phenomena that are not present in
the analog world. One of these is pleasant and is 
the lack of interaction or loading when several
circuits are cascaded. Since we. are working with 
numbers and not voltages and currents, we can, cas­ 
cade any number of digital resonators until we 
obtain the desired frequency response. The response 
of one resonator is not affected by the circuits it 
is connected to,

Another phenomena is filter gain* A digital
filter of conventional design will usually have a 
gain of between two and ten in the passband. The
narrower the bandwidth is, the greater the gain. 

' will be. If we perform several filtering operations 
on a signal its amplitude may be so large as to 
cause an overflow. We must therefore be on the 
lookout for this contingency and. if • necessary t 
multiply the signal by an appropriate fraction to 
prevent an overflow from occurring. If we work in 
floating point arithmetic the danger of overflow 
4.S greatly reduced as compared to fixed point 
arithmetic. The price of this advantage is more 
complex hardware and somewhat slower operation*

Since a digital filter works with numbers,.
not with voltages and currents, it Is subject to 
the effects of roundoff errors* The effect of 
roundoff errors is similar to quantizing moi.se*
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The noise caused by roundoff errors is reduced by 
using a longer word length.

The sampling rate places a limitation on the 
high frequency content of the input signal. The 
sampling theorem, 14, says that at least two samples 
must be taken per sec. for each Hz of bandwidth of 
the signal. When an ideal filter is used to limit 
the bandwidth of the input signals this definition 
poses new difficulties. When a real filter is used 
there is a big question as to how the bandwidth 
should be defined. The higher the sampling rate 
is, the smaller the aliasing error will be. In 
order to keep the aliasing and reconstruction 
errors to about 1 to 2%, it is necessary that 
the bandwidth, W, is defined as the point at which 
the response of the filter is down 20 db.

A Typical Digital Resonator

In order to demonstrate the techniques of 
designing a digital resonator, a computer program 
was written for a resonator with a center frequency

f = —Hz and a 3 db bandwidth of f o 6T ft lOirT Hz

The digital resonator satisfying these requirements 
has K = .9 and L ~ -.81. The frequency response 
for this resonator is shown in fig. 8. Fig. 13 
shows an input signal consisting of a step with a 
finite rise time followed by a rised sinewave with 
a frequency approximately equal to f . The result­ 
ing output from the digital resonator is shown 
below the input. The actual signals consist of 
sample points but the curves have been drawn 
continuous for convenience in observation,.

Conclusions

In this paper we have outlined a system capable
of implementing a large number of different filter
structures on a digital computer. The filtering 
problem can in most cases be conveniently and easily 
solved by use of a combination of digital resonators.
The parameters of the digital resonator K, and L, 
have been directly related to the center frequency 
and bandwidth of the digital resonator,

Examples of digital resonators and -plots of
frequency response and input and output waveforms 
have been presented. It is seen that the digital 
resonator acts like a parallel RLC circuit driven 
by a current source. The validity of the approxi­ 
mate formulas developed for center frequency and 
bandwidth can easily be established by measuring 
these parameters on the given curves'.

Some of the problems associated with computer
speed and word length have been pointed out. In
conclusion it should also be pointed out that con­ 
trary to the situation in the analog world, it is 
no more difficult to build a very low frequency 
digital filter than one operating at moderate fre­ 
quencies. This is due to the fact that the response 
of the digital filter is determined by numerical 
constants and not by enormous coils and capacitors. 
The digital filter is therefore very well suited for 
use when the specifications call for narrow band- 
widths at low frequencies.
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1. Block diagram of a digital filter.
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3* S-plane pole-zero pattern, for the analog resonator.
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5. S-plane pole-zero pattern for the analog resonator with sampled output,
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6. Z-plane pole-zero pattern for the analog resonator with sampled output. This 
is also the pole-zero pattern for the digital resonator shown in fig. 7.

X("T)

i. Flow diagram for a digital resonator* T is a delay of one sampling interval, 
This digital resonator has the same pulse response (at the sampling tines) as
the RLC network in fig, 2.
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11. An improved digital resonator. This resonator has zero response both for 

f = o and for f = —.

12. Canonical form of the improved digital resonator*

5.5-13



N

4IO

OUT

13. 
Input-Output Waveforms 

for 
the 

digital 
resonator 

in 
fig, 

9,


	Digital Filtering in Space Communication
	Scholarly Commons Citation

	tmp.1400178302.pdf.plaaT

