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A MATHEMATICAL MODEL FOR DEFINING EXPLOSIVE YIELD 
AND MIXING PROBABILITIES OF LIQUID PROPELLANTS

Dr. E. A. Farber, Professor & Research Professor 
of Mechanical Engineering 
University of Florida 
Gainesville, Florida

Summary

This paper describes how a mathematical 
model can be constructed to fit theoretical 
or experimental data on yield and spill of 
liquid propellants. It shows how these primary 
quantities can be separated, how probability 
distributions can be found for each, and how 
probability confidence regions and confidence 
limits can be established.

The fundamental function of this very 
general mathematical model, based upon four 
independent parameters, and the character 
istics of the resulting probability surface 
are discussed in detail.

The mathematical model, programmed for 
an IBM 709 computer, is applied to some spill 
test data of liquid propellants for which the 
necessary information is available and then 
with a minimum number of assumptions to 
missile failure yield estimates.

Introduction

The yield from liquid propellant explo 
sions as a result of missile failures is of 
extreme importance in assessing the hazards 
to astronauts, launch support personnel, 
launch support facilities and surrounding 
structures.

To prepare against the effects from 
such liquid propellant explosions, methods 
must be found by which the most probable 
expected yield can be predicted.

Unfortunately many of the physical phe 
nomena involved in producing the yield are 
little understood, making the prediction of 
the expected yield difficult and complex.

One approach to this problem for the 
prediction of the overall effects by means 
of a mathematical model is suggested in 
this paper. The mathematical model devel 
oped here allows for a well balanced pro 
cedure of theoretical and experimental 
investigations with the theory guiding the 
experimentation which in turn modifies the 
theory.

The mathematical model suggested in 
this paper is very general in nature, being 
able to satisfy a wide range of either theo 
retical information or experimental data 
and has the required statistical character 
istics to make it possible to separate the 
yield and spill functions, giving probability 
distributions, confidence limits, confidence 
regions, etc.

With this model it is then possible to 
extract a maximum amount of information from 
extremely sparse data and to guide future 
experimental programs. This procedure further 
more allows the conducting of small scale,

relatively inexpensive experiments to define 
the model and to reduce the large scale, 
expensive experiments to very few in number. 
The large scale tests serve as check points 
to validate or modify the model.

In this manner it is possible to develop 
a valid scaling law for liquid propellant 
explosions through a well planned program 
with theory guiding the experimental procedure 
and to do this in the shortest possible time 
and at minimum cost.

Theory of Approach

The basis of the development of the 
mathematical model is the fundamental char 
acteristic of the sparse experimental data 
giving information on the yield and spill 
of liquid propellants. Work is under way 
to extend this data by developing theoretical 
yield-spill relationships.

With the above information it is possible, 
as is shown in this paper, to develop a very 
general mathematical model which can express 
presently available data and is flexible 
enough to incorporate future information as 
it becomes available. It also satisfies the 
statistical requirements providing for valid 
estimating procedures of the parameters 
involved and allows the separation of the 
individual characteristics of the yield 
function and the spill function. The model 
may be referred to as a modified Dirichlet 
bivariate surface.

The Yield and Spill Functions

The primary quantities used in formu 
lating the mathematical model are the yield 
function and the spill function.

The yield function is preferably defined 
as the fraction of maximum theoretical yield 
potential of the on board liquid propellants 
(also utilizing the oxygen of the atmosphere, 
where applicable) , It can also be expressed 
in therms of TNT equivalency, presently a 
common method of reporting the data.

The spill function is the fraction of 
the total on board propellants which are 
spilled, or actually mixed, at the time of 
reaction between fuel and oxidizer. In 
either case it is a time dependent variable 
different for each missile configuration and 
mode of failure.

In the formulation of the model it is 
assumed that the relationship between the 
yield function and the spill function is 
available. Information of this type can 
be found in literature, but only in very 
small quantity, representing liquid propellant 
spill tests. Preliminary investigations are
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now under way to extend this data both theo 
retically and experimentally and the indica 
tions are that the resulting yield functions 
and spill functions will have lower values 
in most cases than those reported in liter 
ature based upon tests which were designed 
to give a high degree of mixing.

The Mathematical Model

With the relationship between the yield 
function (y) and the spill function (x) 
establishing either theoretically or by 
experiment, the model can be formulated 
resulting in a statistical function which is 
capable of incorporating the above x-y rela 
tionship and is able to provide for valid 
estimating procedures of the parameters in 
volved . Details of the development of this 
mathematical model are left to the references 
*•'' and only the high points are presented 
here.

The relationship between the yield 
function and the spill function can be ex 
pressed in terms of three parameters a, b, 
and c as shown in equation (1).

Defining

(3a)

(3b)

four simultaneous estimation equations can 
be written for the four parameters a, b s c, d. 1

(4a) 

(4b) 

(4c) 

(4d)

y = (i)

From this a statistical function can be 
developed capable of incorporating physical 
information over a rather wide range and 
which satisfies the theoretical requirements 
for statistical analysis. It is a modified 
Dirichlet bivariate surface having four 
parameters a, b, c and d, making it extremely 
flexible. This statistical surface is 
expressed mathematically as equation (2).

f(x,y) = d r (a+b+c) 
/* (a)/»(b)

b-l
(2)

where f is the Gamma function 
The only restrictions on this function are 
that

y "7 0, y x d/0

To fully define the above function for a 
specific class of information it is necessary 
to evaluate the parameters a, b, c and d on 
the basis of the particular yield function - 
spill function relationship describing the 
physical phenomena.

Evaluation of the Parameters a, b, c and d

To evaluate the parameters a, b, c and d 
for the modified Dirichlet bivariate surface 
the following statistical estimating procedure 
is used.

. In v = f (b) - <f> (b+c)

In v = In (b) - In (b+c)

In u = ^ (a) - <fS (a+b+c)

In u = In (a) - In (a+b+c)

Where a bar over an expression indicates 
the average value of all available 
values

In indicates the natural logarithm 
(base e)

vj-> is Euler's Digamma Function

The mathematical model is now ready to 
be applied to theoretical information or 
experimental data. Evaluation of the para 
meters a, b, c, and d gives the model its 
characteristic configuration and analysis 
of the resulting statistical surface produces 
a wealth of new information.

Characteristics of the Mathematical Model

The parameters a, b, c, and d give the 
mathematical model, expressed by the function 
of equation (2) its characteristics, which 
can be brought out by proper mathematical 
analysis. Some of the most significant ones 
with regard to this investigation are the

A. Probability Distribution of the 
Yield, Py

B. Probability Distribution for the 
Spill, Px

C. Confidence Regions for the Yield 
and Spill

D. Confidence Limits for the Yield 
Function

E. Confidence Limits for the Spill 
Function

A detailed discussion of how these 
characteristics can be extracted from the 
above mathematical model follows.
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A. Probability Distribution for the Yield,

h.
To obtain the probability distribution 

for the yield function it is necessary to 
determine the ordinate for the probability 
distribution for each value of y.

This ordinate for a particular value of 
y is represented by the area of the cross- 
section of the mathematical model at this 
value of y and perpendicular to the x-y 
plane. This area can be obtained graphically 
or by integration requiring a large scale 
computer.

The integral representing the probability 
ordinate is

Py (y) = f(x,y) dx (5)

The lower limit of equation (5) is the 
value at which f(x,y) becomes positive for 
the chosen value of y. The function f(x,y) 
is given in equation (2).

B. Probability Distribution for the Spill,

la
To obtain the probability distribution 

for the spill function the procedure is the 
same as in the above paragraph except that 
the variables x and y are interchanged so 
as to obtain the integral

roo =
J o

f(x,y) dy (6)

Here the upper limit is the value of 
y at which f(x,y) becomes negative for a 
chosen value of x.

C. Confidence Regions for Yield and. Spill

To obtain probability regions for spill
(x) and yield (y) it is necessary to deter 
mine the volume under the probability surface 
and then divide this volume into slabs of 
desired sub-volumes.

In this manner regions are obtained 
representing the intersections of planes, 
the sub-volumes, with the statistical surface. 
These intersections projected as regions 
simulate contour lines on a topographical 
map representing the various elevations.

The above analysis can be made by build 
ing a physical model of the mathematical 
function (using clay, putty, wood, etc.) 
and by determining the total volume and sub- 
volumes by submersion into liquid, or it 
can be done by double integration, again 
necessitating a large scale computer to 
solve integrals like

- £ JT f(x,y) dy dx (7)

for the total volume and with different limits 
for the sub-volumes. The limits of the inte 
grals have to give the required sub-volumes 
to include the desired percentages of x and y 
surface values.

D . Confidence Limits for the Yield

To obtain confidence limits for the 
yield function it is necessary to work with 
fractional areas under the yield probability 
distribution.

The peak of this curve represents the 
statistically most probable value. The 
fraction of the total area under the pro 
bability distribution lying between two 
values of y represents the fraction of all 
values in this interval. If the highest 
statistically expected yield is desired 
with a confidence, let us say of 9570 , then 
the value of y has to be found for which 9570 
of the area under the probability distri 
bution curves lie to the left of it. Many 
other questions of this type can be answered 
in this manner.

E . Confidence Limits for the Spill

The same information regarding the spill 
probabilities can be obtained as were de 
scribed above for the yield . The procedure 
is the same except that the spill probability 
distribution curve is used in this case.

Information, in addition to the above, 
can be extracted from the mathematical model 
by sectioning it and sub-sectioning it phys 
ically or mathematically in various ways .

The calculation procedures A through E 
were computerized and quantitive results 
are presented as examples for

I. The Mathematical Model Applied
to Available Experimental Data. 

II. The Mathematical Model Applied 
to Available Experimental Data 
and Missile Failure Yield 
Estimates.

III. The Mathematical Model Applied 
to Available Missile Failure 
Yield Estimates.

A comparison of the results, obtained 
by the mathematical model defined here by 
a minimum of data, from these three examples 
and the actual observations, will give 
better insight into the workings and char 
acteristics discussed above. With more 
representative, and better data, this math 
ematical model could be defined with greater 
statistical confidence, and the reliability 
of the numerical results presented increased.

I. The Mathematical Model Applied to Available 
Experimental Data

In this section the mathematical model, 
which was developed as described above, is
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applied to test results which contain the 
necessary information to make this application 
possible. These are the results presented in 
Table I. They may or may not be representative 
of actual missile failures, but they certainly 
exhibit fundamental characteristics of liquid 
propellant explosions.

Table I
Experimental Data of Liquid Propellant
Explosions

1. (D ' H )max Test Series y = 0.78 x = 1.00
2. J l Test 0.47 0.846
3. J2 Test 0.165 0.348
4. J3 Test 0.186 0.252

This very sparse experimental data is 
presented in Fig. 1 graphically. Applying 
standard curve fitting procedures the x-y 
functional relationship is obtained as also 
shown in this figure.

The estimating procedure, as outlined above, 
using equations (3a) through (4d) results in 
numerical values for the parameters a, b, c, 
and d . These values are

a = 3.1, b = 4.0, c = 1.1, d = 1.5

The values of the parameters substituted 
into equation (2) define the mathematical 
model as controlled by the input as shown. 
The resulting function becomes a three dimen 
sional configuration as seen in Fig. 2. 
It has steep sides and a flat body, best 
described as simulating a "Shark Fin".

Analysis of this surface gives much 
information about the original data, which 
was used in describing this surface, which 
could not have been obtained in any other 
way .

Evaluation of equation (5), using the 
above values for the parameters a, b, c, 
and d results in the yield probability 
distribution shown in Fig. 1-1. Closer 
inspection of this distribution indicates 
that the most probable yield value for 
these experiments, as predicted by the model, 
is about 0.43, and analysis to obtain con 
fidence limits indicates that, for instance, 
95%, of all yield values fall statistically 
below 0.8. From this yield probability 
distribution, other confidence limits can 
be obtained as desired.

Evaluation of equation (6) results in 
the probability distribution for the spill 
function. It is graphically presented in 
Fig. 1-2. Using the same analysis procedures 
as above, the most probable spill value, as 
predicted by the model, is about 0.8, and 
95% of all spill values lie below a spill 
value of 0.94. Again other confidence regions 
can be obtained as desired.

Confidence regions for both yield and 
spill can be obtained from the model by 
solving integrals of the type of equation 
(7) for the total volume and the required

sub-volumes with the results as shown in 
Fig. 1-3. In this figure, all x-y values 
fall into an approximate triangular region 
bounded by points (0,0), (0.1), and (1,1); 
80% of all x-y values fall into the next 
smaller region; 60% into the next smaller 
region; and so on. The peak point of the 
surface is also indicated.

Other relationships and information 
could be obtained by sectioning the math 
ematical model in different ways.

II. The Mathematical Model Applied to Avail 
able Experimental Data and Missile 
Failure Yield Estimates

The mathematical model is next applied 
to both the available experimental data 
and actual missile failure yield estimates. 
Unfortunately no actual missile failures 
have been instrumented thus far to provide 
the required information. For this reason 
a basic assumption had to be made before 
the missile failure information could be 
used. This assumption is that the relation 
ship between the quantity of propellants 
mixed and the resulting yield is a fund 
amental characteristic of liquid propellant 
explosions. Preliminary investigations 
now under way seem to support this assump 
tion.

The results presented in this section 
are based upon the data presented in Table I, 
the estimates of Table II, and the above 
stated basic assumption.

Table II
Yield Esimates: and Data of Missile

y = 0.185. Atlas 9-C
6. Atlas 48-D 0.08
7. Atlas 0.06
8. Titan 1 ~ 0.02
9. Titan 1 "> 0.01
10. Atlas 0.0088
11. Centaur 0.029 Quad. 0.089,

0.017, 0.007, 
0.003

12. Jupiter #9 (Impact) 0.11 
13.S-IV Failure 0.01 
14.S-IV Test (Pyro) 0.03 - 0.06

Evaluating the parameters a, b, c, and 
d for the new input information in the same 
manner as for section I gives

a = 21, b = 4.0, c = 1.1, d = 1.5

Comparing the new values with those 
obtained in section I shows that only the 
value for parameter a changed, the others 
remained the same. Again more and better 
data would determine these parameters with 
greater accuracy defining the mathematical 
model with greater statistical reliability.
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The results for the above numerical 
set of parameter values are presented graphically 
in Fig. II-l, the yield probability distri 
bution; Fig. II-2, the spill probability 
distribution; and Fig. II-3, the confidence 
regions for yield and spill.

From these results the most probable 
yield value as predicted by the model is now 
about 0.13 with 95% of all yield values falling 
below a yield value of about 0.29.

The most probable spill value as pre 
dicted by this model is about 0.32 with 95% 
of all spill values falling below about 0.48,

The yield-spill confidence regions are 
much smaller than before, as can be seen by 
comparing Fig. 1-3 and II-3, and are much 
closer to the origin. Again the regions 
containing 100%, 80%, 60%, 40% and 20% of 
all x and y values are shown.

III. The Mathematical Model Applied to 
Available Missile Failure Yield 
Estimates

Law11 .

Expressing the parameter a as a function 
of the scale (s)

Applying the mathematical model as 
developed above to the data shown in Table 
II and the assumption made in Section II, 
the parameters take on the following values:

a = 70, b = 4.0, c = 1.1, d 1.5

The statistical surface described by 
these new parameter values gives, when ana 
lyzed, the results presented in Fig. III-l, 
the yield probability distribution; Fig. HI-2, 
the spill probability distribution; and Fig. 
HI-3, the confidence regions for yield and 
spill.

This analysis shows the most probable 
yield value, as predicted by this model, 
centers around a value of about 0.04 with 
95% of the yield values falling below about 
0.11.

The most probable spill function value, 
as predicted by this model, is about 0.16 
with 95% of all spill falling below 
about 0.27.

The yield-spill confidence regions are 
now getting quite small so only the 
100% the 80% regions are The peak 
point of statistical surface has now 

close to origin.

A Possible Scaling as
by Mathematical Model

Closer scrutiny of the numerical results 
that for information

used, only parameter a changed between sections 
I, II, and

of major differences underlying
of is 

of propellants involved,
fact, a 

the only to be to 
redefine to it applicable to
the various sections,
variation with quantity of propellants invol 
ved constitute a ''Scaling

a = F (s) (8)

which is an exponential relationship for the 
data and estimates presented here, and sub 
stituting this relationship into equation (2) , 
gives the mathematical model described in 
terms of the scale (s) and the previous para 
meters b, c, and d.

Analysis of the mathematical model as 
described by equations (2) and (8) give the 
required scaling law for liquid propellant 
explosions .

Closure

From the work discussed and presented in 
this paper it is seen how a mathematical 
model can be constructed based upon the general 
characteristics of theoretical and experimental 
results of liquid propellant explosions, how 
this model can be applied to experimental 
results and the wealth of information which 
can be obtained in this manner.

The mathematical model developed and 
used here is very general in nature containing 
four controlling parameters and can therefore 
satisfy a wide range of data. It is not 
overly sensitive to changes in these parameters.

To demonstrate how this model can be 
used it was applied to the very sparse 
experimental data available and with a basic 
assumption, that the yield-spill relationship 
is a fundamental characteristic of liquid 
propellant explosions, to actual missile 
yield estimates.

The quantitative results predicted by 
this analysis such as probability distributions, 
confidence regions, confidence limits, etc. 
should be considered preliminary since the 
model used here was defined by very little 
data even though the obtained results are in 
general agreement with the limited actual 
experience .

The results obtained from the mathematical 
analysis of the model seem to suggest the 
parameter a as a "scaling factor" allowing 
the prediction of the characteristics of 
liquid propellant explosions as a function 
of scale, or quantities of propellants 
involved.

The reliability of the model should be 
improved for prediction purposes by better 
theoretical information and better experimental 
results, which describe and define the model 
more precisely by giving better values to the 
parameters .

In conclusion it may be well to say again 
that the mathematical model presented here, 
and others like it can help in guiding future 
experimental program, indicating what infor 
mation is needed and where, and in reducing 
the cost of these programs by reducing the 
number of expensive test necessary. Further 
more the approach through a mathematical 
model may well indicate tne most direct route
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to follow to obtain a valid scaling law for 
yield prediction for liquid propellant explo-
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Figure 2 Mathematical Model 
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The Mathematical Model, a = 3.1, 4.0, c = 1.1, d = 1.5
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Figure 1-1
Probability Distribution for 
the Yield Function 
(Experimental Results)

Figure 1-2
Probability Distribution for 
the Spill Function 
(Experimental Results)

Figure 1-3
Yield - Spill Probability
Regions
(Experimental Results)



The Model, a = 21, b = 4.0, c = 1.1, d = 1.5
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Figure II-l
Probability Distribution for 
the Yield Function (Experimental 
Results and Missile Failures)

Figure II-2
Probability Distribution for 
the Spill Function (Experimental 
Results and Missile Failures)

Figure II-3
Yield - Spill Probability 
Regions (Experimental Results 
and Missile Failures)



The Mathematical Model, a = 70, b = 4.0, c = 1.1, 1.5
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Figure III-l
Probability Distribution for
the Yield Function (Missile
Failures)
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Figure HI-2
Probability Distribution for
the Spill Function (Missile
Failures)

Figure HI-3
Yield - Spill Probability
Regions (Missile Failures)
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