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BIOMEDICAL REQUIREMENTS FOR SPACE CABIN ENVIRONMENTS

William B. Dye, Major, USAF, MC 
Office of Deputy for Bioastronautics

Air Force Missile Test Center 
Patrick Air Force Base Florida

Introduction

In this paper I plan to discuss the physiological needs of space crews that must 
be provided for by the life support systems of space craft* I will make no effort to 
define how the space crew's physiological needs will be met. This is a task for the 
designers of life support systems, one involving all of the scientific disciplines and 
a subject far too broad and technical for me, as a physician, to attempt. I can only 
hope to present %the more urgent physiological requirements of space crews for which 
provision must be made when man travels in space,

I have divided these physiological requirements into several categories, each of 
which will be discussed independently. Listed in order of decreasing priority, the 
space crew will require:

1. A livable atmosphere.

2. Food and water.

3. Radiation protection.

4. Provision for personal hygiene.

5. Provision for control of fatigue.

6. Protection from the effects of weightlessness.

For even the shortest space mission, the first of these, a livable atmosphere, 
is absolutely essential. The others assume increasing importance with increased 
length and complexity of the space mission.

A Livable Atmosphere . The ideal atmosphere would be that which exists in an 
air-conditioned building at sea level in which the individual can select the most com 
fortable temperature and humidity to suit himself. However, with proper clothing 
and some acclimatization, man can adapt himself to rather extreme atmospheric 
conditions Man can, and does, live in the desert, the jungle and the arctic. He 
can live a> sea level or at altitudes of two to three miles above sea level, yet 
there are < unhabitable areas on earth as a result of temperature and altitude 
extremes to which man is unable to adapt. Somewhere between the extremes of 
temperature, humidity and atmospheric pressure that exist in the desert, jungle
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or mountains, and that of the air-conditioned sea level building, we will find the 
conditions in our space cabin. Our problem is to determine the most ideal at 
mosphere for the space cabin.

The ideal atmosphere for man on earth is not necessarily the best atmosphere 
for use in space cabins. I would suggest we look first at the minimum requirements 
a space cabin atmosphere must provide for, if man is to survive in space, and then 
see what can be added to this minimum atmosphere to improve upon it.

The single most important function of man's atmosphere is the provision of 
oxygen for respiration. For oxygen to be useful to man it must be of sufficient 
partial pressure when it reaches the alveoli of the lungs so that it is picked up by 
hemoglobin and circulated to body tissues, It is desirable that hemoglobin be 
100 per cent saturated with oxygen as the blood circulates through the capillaries 
of the lungs. The minimum partial pressure of oxygen required in the alveoli of 
the lungs to provide for 100 per cent saturation of hemoglobin is approximately 
100 mm of mercury, Two other constituents are always present in alveolar gas: 
water vapor and carbon dioxide. For this reason, breathing 100 per cent oxygen 
at 100 mm of mercury, pressure will not provide for 100 per cent saturation of hemo 
globin with oxygen. Normally, depending upon the atmosphere breathed, between 30 
and 40 mm of carbon dioxide is always present in the alveoli and 47 mm of water 
vapor, the vapor pressure of water at body temperature. The partial pressure of 
carbon dioxide and water vapor in the alveoli is normally about 87 mm of mercury. 
Therefore, to provide a partial pressure of oxygen of 100 mm of mercury in the 
alveoli, the total pressure must be 187 mm in the alveoli and, thus, 100 per cent 
oxygen at 187 mm of pressure must be inhaled to provide for 100 per cent satura 
tion of hemoglobin. This is roughly the environment to which todays crews are ex 
posed when wearing full pressure suits, a 100 per cent oxygen environment at 3. 5 
psi or 183 mm of mercury.

At this point it might be best, from the standpoint of clarity, to change units. 
Conventionally, when discussing respired gases, the partial pressures of gases 
are measured in mm of mercury. When discussing cabin pressures, the most 
commonly used unit is pounds per square inch.

As just mentioned, the minimum atmosphere that can be used which will main 
tain space crews 1 oxygenation at 100 per cent is 3. 5 psi, the pressure used in 
todays pressure suits. In order to provide a margin of safety in the event of a 
cabin leak or puncture, todays space craft, Mercury and Gemini, were designed 
to operate at 5 psi. For the shorter space missions, the use of 100 per cent 
oxygen at 5 psi has proven quite satisfactory.

There are two good reasons for not selecting cabin pressurizations of less 
than 5 psi. First, as already mentioned, the use of lower pressures would be 
quite hazardous in the event of an undetected cabin leak or puncture. If a minimum 
pressure of 3. 5 psi were used, for example, and a puncture occurred, the space 
crew might become hypoxic too rapidly to take corrective action. Another problem 
with selecting cabin pressures below 5 psi is related to bends. Whenever air crews 

are pressurized below 5 psi, bends occur quite frequently. However, at pressuri-
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zation above 5 psi, bends are extremely rare. Pre-breathing, prior to launch, 
of 100 per cent oxygen for several hours can greatly reduce the incident of bends 
following depressurization to below 5 psi, but does not completely eliminate this 
possibility. I feel that both of these factors were important considerations in 
the solution of a cabin pressure of 5 psi for Mercury and Gemini.

Using a single gas system, that is 100 per cent oxygen, it is impractical to 
use a pressure of more than 5 psi because of the problem of oxygen toxicity. For 
prolonged missions there may even be a problem with oxygen toxicity with the 5 
psi 100 per cent oxygen system. Low pressure chamber runs with such an atmos 
phere have indicated there may be some minor problems after exposure of two 
weeks or more. Low pressure chamber studies have been conducted with the 5 
psi 100 per cent oxygen atmosphere by the Air Force, Navy and Republic Aviation. *• 
In all of these studies there have been some indications of oxygen toxicity, as 
manifested by eye irritation, coughing, substernal pain and aural atelectasis. In 
the Republic Aviation studies, there were some hematological and urinary changes 
which are requiring further investigation. In the Navy studies, some change in 
peripheral vision has been noted during night adaptation after subjects were re 
turned to sea level. However, it has not been felt that any of these problems are of 
sufficient magnitude as to prevent the use of the 5 psi 100 per cent oxygen atmos 
phere for missions of up to two weeks in length. For longer missions, further study 
is required to determine the suitability of this atmosphere.

Another serious problem with the use of the 5 psi 100 per cent oxygen atmosphere 
is the increased fire hazard. Although there have been no fires aboard the Mercury 
space craft, two fires have occurred in altitude chambers using this atmosphere, one 
at the Air Force School of Aerospace Medicine and one at the Navy Aircrew Equip 
ment Laboratory. A study at the Naval School of Aviation Medicine has shown that 
in this atmosphere, paper ignites at a lower temperature and burns approximately 
six times faster than in our normal sea level atmosphere. It was also found that 
neoprene coated nylon twill, lightweight nylon and vinyl plastic all ignited in this 
atmosphere, whereas, with the normal sea level atmosphere, these materials melt 
but do not ignite.

For prolonged space missions, it appears that, from the point of view of the 
space crew f s well-being, our sea level atmosphere would be best. Such an atmos 
phere gets around the oxygen toxicity problems and drastically reduces the fire 
hazard. At the same time, a new hazard is introduced, the problem of bends in the 
event of loss of cabin pressure. This does not necessarily mean that a sea level 
atmosphere is still not most desirable from a physiological standpoint. We can get 
around the bends problem by developing pressure suits that operate at 5 psi or more. 
Even so, the sea atmosphere is not the most practical. Healthy individuals function 
very well in cities like Denver, Colorado, where the ambient pressure is about 12 
psi. For that matter, many of us have camped in the mountains on hunting and fish 
ing excursions at altitudes of 10, 000 feet where the ambient pressure is down to 10 
psi. At this altitude, breathing our normal earth atmosphere, the alveolar partial 
pressure of oxygen drops to about 61 mm of mercury but, because of the affinity of 
hemoglobin for oxygen, our arterial oxygen situation remains at about 90 per cent. 
Such an altitude is tolerated quite well by healthy individuals, the only measurable
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effect being some loss of dark adaptation by the retina of the eye and, thus, a 
loss of night vision. A slight enrichment of the atmosphere with oxygen can easily 
correct this. Such an atmosphere would greatly reduce the likelihood of bends in 
the event cabin pressure is lost and the 3. 5 psi pressure suit must be relied upon. 
Also, the fire hazard is much lower than with the 5 psi 100 per cent oxygen system. 
I feel rather safe in predicting that man could function at 100 per cent efficiency 
for an indefinite period of time in space with a 30 per cent oxygen, 70 per cent 
nitrogen atmosphere at 10 psi. Probably, an atmosphere of 50 p6r cent oxygen, 
50 per cent nitrogen at 7 psi could be tolerated for an indefinite period of time, but 
more work needs to be done on such atmospheres in altitude chambers before this 
can be said with impunity. I think it highly doubtful that the present 5 psi, 100 per 
cent oxygen system will suffice for prolonged space missions.

For a more detailed approach to the selection of space cabin atmospheres, I 
would refer you to the article in the August 1963 issue of Astronautics and Aerospace 
Engineering by Parker and Ekberg. However, before leaving the subject of a 
livable atmosphere and moving on to the other aspects of life support systems, some 
mention of carbon dioxide management, control of toxic materials and the control of 
temperature and humidity must be made.

The present threshold limit value for carbon dioxide, as recommended by the 
American Conference of Governmental Industrial Hygienists, is 5000 parts per 
million. This is based on exposure at sea level, 8 hours per day, 40 hours per 
week. This corresponds to a partial pressure of carbon dioxide in respired gases 
of 3.8 mm of mercury. This is a safe level at which no symptoms would be expected. 
The anesthetic level for carbon dioxide is about 75 mm of mercury. At levels of 20 
to 25 mm of mercury, corresponding to an early submarine level, symptoms have 
been described of a biphasic excitation-depression reaction in humans. The mini 
mum level at which symptoms of carbon dioxide toxicity might be expected lies 
somewhere between the 3. 8 mm partial pressure, as recommended in the threshold 
limit values, and the 20 to 25 mm level. I would suggest that, for planning purposes, 
one should strive for the 3. 8 mm level or less.

For other contaminates of the space cabin atmosphere, I would suggest that the 
threshold limit values for toxic substances, as recommended by the American Con 
ference of Governmental Industrial Hygienists, be used as a guide, keeping in mind 
that these levels are based on the 40 hour work week and not the 168 hour week to 
which astronauts will be exposed. As in the nuclear submarine program, every 
effort must be made to keep all contaminates out of the space cabin atmosphere. 
When contaminates are unavoidable, they must be identified and dealt with on an 
individual basis, keeping in mind that two or more contaminates might act syner- 
gistically.

The remaining variable, so far as a livable atmosphere is concerned, is that 
of temperature and humidity. In order for the space crew to maintain heat balance, 
it will be necessary for them to exercise some degree of control over the tempera 
ture and humidity of their atmosphere. Maintaining heat balance is a function of 
heat gain vs. heat loss by the body. The more important sources of heat gain are
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metabolic activity and absorption of infrared radiation from the surroundings. 
Heat loss is primarily controlled by the evaporation of water and the irradiation 
of infrared radiation by the body. The rate of heat loss by the evaporation of 
water is dependent upon the temperature and humidity of the air and the rate of 
circulation of air over the skin. With this many variables to consider, it is 
impossible to choose any one temperature and humidity standard for the space 
cabin atmosphere. Heat loss or gain by radiation will be dependent upon the 
clothing worn by the space crew and the effective temperature of the walls of 
the space cabin. Heat gain from metabolism will depend upon the activity of the 
space crew. The amount of clothing worn, the heat load on the space cabin and 
the activity of the crew will all vary over rather wide ranges during prolonged 
space flight. The life support engineers must consider all of these factors, in 
light of the particular mission, in their design of the degree of control the space 
crew must have over the temperature and humidity of the space cabin.

Food and Water. After provision of the space crew with a livable atmosphere, 
the next most important biomedical requirement will be that for food and water. 
I feel that the most important factor to consider in provision of a diet for space 
crews is that of palatability. The food must be appetizing and palatable, or it will 
not be eaten. This is important, not only from a nutritional standpoint but also 
it is an important morale factor. This will be especially true for the longer space 
missions. Aside from providing space crews with food that is sufficiently palatable 
to be eaten, other prime factors to be considered are providing adequate nutrition 
and avoidance of foodstuffs that might cause gastrointestinal disturbances such as 
diarrhea or constipation. The food must also be provided in such a manner that it 
requires a minimum of storage space, will not spoil, is readily prepared for consump 
tion and can be consumed under weightless conditions.

So far as content is concerned, the space diet must provide for a total calorie 
intake of between 2500 arid 3000 calories. It should be a high protein, low bulk, 
low residue diet, containing all of the essential amino acids, fats, minerals and 
vitamins. Foodstuffs that are diuretic or of high cellulose content must be avoided 
in order to keep the space crews 1 output.of urine and feces at a nominal value. The 
problem of urination or defecation while wearing a pressure suit is still a major one 
with no easy solution. Not only is there a problem in removing and donning of pres 
sure suits, but also one of collection and disposition of these body wastes in the 
cramped quarters that can be provided the space crew.

The requirement for water will depend on a number of factors, such as the loss 
of water from the body by evaporation, perspiration, urination and defecation, and 
the water gained by the body from that contained in foodstuffs and from the metabo 
lism of food. It is estimated that space crews will require from five to ten pounds 
of water per day for drinking and reconstitution of foodstuffs. The lower value is 
for the shirt-sleeve environment where heat balance is controlled primarily by con 
trol of the environmental temperature. The higher value, ten pounds per man per 
day, is an estimate of the water requirement when wearing pressure suits where 
heat balance is maintained by evaporation of perspiration.
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Radiation Protection. I have listed radiation protection as next in priority 

after provision for a livable atmosphere and for food and water. This is not a 

very critical consideration for earth orbital missions, but is a factor of con 

siderable importance for moon probes and especially deep space probes. It is 

outside the scope of this presentation to discuss the amounts and types of ionizing 

radiation that might be encountered on a space mission, or how much of what kind 

of shielding will be required. Rather, it is my purpose to outline the limits to 

which crews might be exposed and the risks entailed by such exposure.

At present, the limits for exposure to whole body ionizing radiation for 
workers in industry where radiation exposure is a hazard is set at 5 rem per year. 

Such an exposure entails no measurable risk. Approximately the lowest level of 

exposure to ionizing radiation at which some measurable effect can be detected in 

man is about 50 rem. Clinically, about all that can be detected following an ex 

posure to 50 rem are some slight changes in the morphology of the cellular elements 

of the blood. Even this is only a transitory effect. However, statistically, it is 

estimated that this level of exposure to the entire population would approximately 

double the incidence of genetic mutations and of leukemia. For the crew of a space 

craft, this is a rather small risk in comparison to other risks entailed on deep 

space probes. 1 would think that designing shielding to prevent an acute exposure 

in'excess of 50 rem in the event of an unpredicted solar flare would not be un 

reasonable. This is less than half the dose of whole body ionizing radiation that 

might produce symptoms of radiation sickness. It would require an acute exposure 

to something on the order of 150 to 200 rem to produce any symptoms of radiation 

sickness among the members of a space crew.

Another type of electromagnetic irradiation from which crews must be pro 

tected are the direct rays of the sun. Provision must be made to prevent crews 

from inadvertently looking into the sun. Also, adequate protection must be pro 

vided from the intense infrared radiation to which crews will be exposed during 

extravehicular activities in space.

Provision for Personal Hygiene. I have listed next, in order of importance 

so far as biomedical requirements are concerned, the provision for personal hy 

giene. For prolonged space missions, provision for personal hygiene is important 

as both a biomedical and morale factor. This entails provision for elimination of 

urine and feces, cleansing of the skin, shaving and cleansing of the teeth. For 

missions of a few weeks, I suppose the crew can get by without haircuts, but for 

extremely long missions some provision may even be necessary for haircutting.

For short missions, up to two days, the crew can manage without removal of 

the pressure suit. However, for anything longer than this, provision must be made 

for at least partial removal or opening of the pressure suit for purposes of urina 

tion, defecation and cleansing of the skin. For the long range missions, more than 

two weeks, provision must be made for complete removal of the pressure suit 

and for a shirt-sleeved environment. We must also provide for changing into clean 

clothing. If we are to prevent skin disease, it is just as important to have clean 

clothing as it is to bathe.

In providing for personal hygiene, the importance of preventing contamination
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of the cabin atmosphere should be emphasized, especially in reference to such 
details as whiskers from shaving and/or materials used in cleaning the skin that 
might be toxic in recirculated air.

Provision for Control of Fatigue. For shorter space missions, control of 
fatigue has not been a serious problem. Astronaut Gordon Cooper reported having 
no difficulty in sleeping during the MA-9 flight. At this point in time, I don't 
feel that we can say much about sleep during space flight, other than that it is 
possible to sleep while strapped in one's seat wearing a pressure suit during the 
weightless state. Whether adequate sleep can be obtained in this manner to prevent 
fatigue as a result of inadequate rest over a period of days is still a matter of con 
jecture. The programmed two week Gemini missions should prove very enlightening 
regarding the requirements for sleep over prolonged periods of space flight.

Fatigue is a difficult thing to measure. Sleep, recreation and work are all 
factors influencing fatigue. For certain critical phases of space flight it is im 
portant that crews are alert and at their peak, so far as performance goes. To 
insure that this is so, it will be necessary to work out cycles for work, rest, 
recreation and sleep. However, since it is impossible to simulate the conditions 
of space flight, especially the weightless state and the anxiety which influences all 
of these to an unknown degree, we must wait for the longer Gemini flights before 
defining the requirement for rest, recreation and sleep during longer missions,

Protection from the Effects of Weightlessness. I have listed as the last of the 
biomedical requirements for space cabin environments, protection from the effects 
of weightlessness. Before the first orbital flight, there was considerable specu 
lation regarding the possible adverse effects that might result from prolonged 
weightlessness. However, at least for these shorter flights, exposure to the 
weightless state has had no ill effects, For longer flights, one might still specu 
late that there may be undesirable effects. There may be some problem as a 
result of disuse of certain muscles., the lack of weight bearing on the skeletal 
system, or the lack of stimulation of the proprioceptive reflexes for control of 
balance. However, if such effects should result from longer exposure to the weight 
less state, I feel certain that exercises can be utilized to prevent most, if not all, 
of these ill effects.

Conclusion

In conclusion, I have attempted to outline the biomedical requirements for the 
space cabin environment. I have discussed the more important factors bearing on 
the selection of the cabin atmosphere, food and water requirements, protection 
from radiation, provision for personal hygiene, control of fatigue and the effects 
of weightlessness. The satisfactory solution to the many problems entailed in 
providing for these biomedical requirements for prolonged space flight is a con 
siderable task, but one that the designers of life support systems are accomplish 
ing in an admirable manner.
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