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THE USE OF TRANSPUTERS IN PROCESSING TELEMETRY DATA 

ABSTRACT 

Hugo M. Delgado Jr. 
Electronic Engineer 

Engineering Development Directorate 
NASA, John F. Kennedy Space Center Florida 

Parallelism will be an essential ingredient of high 
performance systems of the future. The Inmos transputer is 
a high performance single-chip computer whose architecture 
facilitates the construction of parallel processing systems. 
Occam is a high level language developed for use with the 
Inmos transputer. This paper describes a project to evaluate 
the feasibility of using the transputer to implement real 
time processing of telemetry data. 

INTRODUCTION 

Since John Von Neuman discovered the principles over 40 
years ago, all digital computers have been designed in a 
fundamentally similar way. A processor which can perform a 
set of basic numeric manipulations is connected to a memory 
system which can store numbers. Some of these numbers are 
data which the computer is required to process. 
The other numbers are instructions to the processor and tell 
it which of the basic manipulations to perform. The 
instructions are passed to the processor one after the other 
and executed. Execution of a computer program is 
sequential, consisting of a series of primitive actions 
following one another in time. 

The earliest digital computers were programmed using the 
basic numeric instructions understood by the processor. 
Such programming is so tedious and error prone that computer 
scientists soon began to design "high-level" languages, 
starting with Fortran and leading to the current 
proliferation which includes Basic, Pascal, Modula 2, c, 
Ada, Forth, Lisp, Prolog and hundreds of others. 

These languages allow programmers to express the logic of a 
program in notations which use readable English (or French 
etc ... ) words, although with a tightly constrained and 
reduced syntax. A program called a compiler then translates 
these notations into the basic numeric instructions which 
the computer understands. For the majority of languages, 
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the product of the compiler is again 
instructions, to be executed one at a time 
just as if they had been produced by hand. 
these languages faithfully reflect the 
underlying sequential Von Neuman computer 
palatable to human programmers. 

a sequence of 
by the processor 

In other words, 
nature of the 

in a form more 

To adequately model the concurrency of the real world, it 
would be preferable to have many processors all working at 
the same time on the same program. There are also huge 
potential performance benefits to be derived from such 
parallel processing. For regardless of how far electronic 
engineers can push the speed of an individual processor, ten 
of them working concurrently will still execute ten times as 
many instructions in a second. 

Conventional programming languages are not well equipped to 
construct programs for such multiple processors, as their 
very design assumes the sequential execution of 
instructions. Some languages have been modified to allow 
concurrent programs to be written, but the burden of 
ensuring that concurrent parts of the program are 
synchronized (i.e. that they cooperate rather than fight) is 
placed on the programmer. This leads to such programming 
being perceived as very much more difficult than ordinary 
sequential programming. 

The Inmos transputer, using the Occam language, is the first 
product to be based upon the concept of parallel, in 
addition to sequential, execution, and to provide automatic 
communication and synchronization between concurrent 
processes. 

TRANSPUTER ARCHITECTURE 

A transputer is a microcomputer with its own local memory 
and with links for connecting one transputer to another 
transputer. The transputer architecture defines a family of 
programmable VLSI components. The definition of the 
architecture falls naturally into the "logical" aspects 
which define how a system of interconnected transputers is 
designed and programmed, and the "physical" aspects which 
define how transputers, as VLSI components, are 
interconnected and controlled. 

A typical member of the transputer product family 
single chip containing processor, memory, floating 
processor (T800 only), and communications links 
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provide point-to-point connection between transputers. In 
addition, each transputer product contains special circuitry 
and interfaces adapting it to a particular use. For 
example, a peripheral control transputer, such as a 
graphics or disk controller, has interfaces tailored to the 
requirements of a specific device. Presently there are 
three versions of the transputer: 

T212 - 16 bit address lines 
16 bit data lines 
2K byte internal RAM 
4 serial links 
17.5MHz or 20MHz internal clock speed 

T414 - 32 bit address lines 
32 bit data lines 
2K byte internal RAM 
4 serial links 
15MHz or 20MHz internal clock speed 

T800 - 32 bit address lines 
32 bit data lines 
4K byte internal RAM 
4 serial links 
floating point processor 

·20MHz or 30MHz internal clock speed 

On a chip, over 250,000 components provide all the resources 
of the processing engine, memory interface, and concurrent 
communications. The processor uses its 50-nanosecond cycle 
time to wring 10 million instructions a second out of its 
on-chip static RAM. For more memory-intensive programs, 
the processor brings to bear its 26-megabyte-per-second 
memory interface to access up to 4 gigabytes of off-chip 
memory. 

One fundamental reason for the performance and 
implementation efficiency of the transputer is its approach 
to its instruction set, which resemble~ that of a reduced 
instruction set computer (RISC) . Instead of a minicomputer­
like instruction set with its multiple addressing modes, two 
or three address instruction, and extensive register set, 
the transputer has a lean, tightly encoded, and simple set 
of instructions. At 33 ns (T800-30MHz) per instruction, 
programs execute very quickly indeed, and the tight encoding 
significantly improves code density. 

TRANSPUTER BUSES 

The transputer uses three 
the processor's registers. 

major buses to interconnect all 
Two of these buses ship operands 
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to the arithmetic and logic unit, and the other carries the 
ALU result. A number of additional data paths allow certain 
registers to communicate directly, independent of 
transactions on the primary buses. These additional data 
paths also serve as routes for direct transfers between 
buses. The data-path registers are all specific to various 
functions of the transputer and include logic to perform 
certain data manipulations. The additional data paths allow 
multiple data transfers to occur in a single microcycle. 

Unlike conventional microprocessors, the transputer includes 
no programmer-visible register for peripheral functions like 
communications. Programmers use Occam's INPUT and OUTPUT 
primitives to send messages through interprocess 
communication channels. The transputer specifies the state 
of an executing process with a simple six-register set, an 
instruction pointer, an operand and register, and a 
workspace pointer, which indicates the area of memory where 
the local variables of the process are stored. The last 
three registers belong to a small stack attached to the ALU. 
Instructions affecting this stack fall into two major 
classes, one-address and zero-address. 

In one-address instructions, the top of the stack is one 
(implied) operand. The other is generally a location in the 
current workspace, although it can be a literal. Zero­
address instructions use the stack for all operands and 
results. For example, the ADD instruction adds the top two 
values in the evaluation stack and places the result on top 
of it. The three-word stack removes any need for 
instructions to respecify an operand's address and provides 
a good balance between code density, process-switch time, 
and implementation complexity. 

SILICON SCHEDULER 

Still, to work within Occam's process-oriented design, the 
transputer incorporates a hardware process scheduler to 
multiplex its processor among a number of active processes, 
which may exist as normal or as priority processes. 
Priority processes are typically used for interrupt handling 
chores and may receive messages (interrupts) from another 
process, a communication link, the peripheral interface, the 
on-chip timer, or from the external event pin. If a normal 
process is being executed and a message arrives for a 
priority process, the processor starts to execute it within 
6 ns typically. The execution of the normal process resumes 
only when no higher-priority process can proceed. 
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A process may be unable to proceed because it is waiting for 
I/O or the timer. When a process is blocked, its instruction 
pointer is saved in its workspace and restored when the 
process resumes. For each priority level, two registers 
maintain a list which chains together the workspaces of the 
processes that can proceed. One register points to the 
front of the list, the other to its end. 

COMMUNICATION LINKS 

The transputer's four links provide efficient point-to-point 
communication for intertransputer communications. Each link 
consists of two unidirectional signal lines that carry both 
data and control. The range of these TTL-compatible signals 
can be extended by the insertion of line drivers and 
receivers. Regardless of any transputer's internal speed 
all links will run at 10 megabits/sec or 20 megabits/sec, 
depending on the configuration of the link's speed pins. 

Each transputer link supports memory-to-memory block 
transfer for on and off-chip memory. A link controller 
accepts a pointer and block count when an Occam INPUT or 
OUTPUT statement refers to an intertransputer channel. The 
direct memory access (DMA) transfer is totally asynchronous, 
with message transfer taking place totally independently of 
the processor. A memory arbitration unit coordinates and 
assigns priorities to access memory from the processor, 
links, and the peripheral interface. Operating 
simultaneously, all the links can transfer data concurrently 
with processor execution, for a peak throughput of more than 
10 megabytes/sec. 

Regardless of the word length of the communicating devices, 
a message is transmitted as a sequence of bytes through the 
link on a pair of wires. For transfer in a single 
direction, the sending transputer initiates traffic by 
transmitting a byte on one wire. The sender then waits for 
acknowledgment, which is sent through the other wire and 
which signifies that the receiving link can receive another 
byte and that a process is waiting to receive it. The 
sending link reschedules the sending process only after it 
has received an acknowledgment for the final byte of the 
message. 

For duplex communication on a single link, a transputer 
interleaves the byte it is sending with acknowledgments for 
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the bytes it is receiving on the other link wire. An 
acknowledgment can be transmitted as soon as the reception 
of a data byte starts if there is room to buff er another 
one. Transmission can therefore be continuous, without any 
delay between data bytes. 

OCCAM 

In Occam, processes are connected to form concurrent 
systems. Each process can be regarded as a black box with 
internal state which can communicate with other processes 
using the point-to-point channels. Processes can be used to 
represent the behavior of many things; for example, a logic 
gate, a microprocessor, a machine tool or an office. 

The processes themselves are finite. Each process starts, 
performs a number of actions, and then terminates. An action 
may be a set of sequential processes performed one after 
another, as in conventional programming language, or a set 
of parallel processes to be performed at the same time as 
one another. Since a process is itself composed of 
processes, some of which may be executed in parallel, a 
process may contain any amount of internal concurrence, and 
this may change with time as processes start and terminate. 

The key concept is that communication is synchronized and 
unbuffered. If a channel is used for input in one process 
and output in another, communication takes place when both 
processes are ready. The value to be output is copied from 
the outputting process to the inputting process, and the 
inputting and outputting processes then proceed. Thus, 
communication between processes is like the handshake method 
of communication used in hardware systems. Since a process 
may have internal concurrency, it may have many input 
channels and output channels performing communications at 
the same time. 

Occam can be used to program an individual transputer or to 
program a network of transputers. When Occam is used to 
program an individual transputer, the transputer shares its 
time between the concurrent processes and channel 
communication is implemented by moving data within the 
memory. When Occam is used to program a network of 
transputers, each transputer executes the process allocated 
to it. Communication between Occam processes on different 
transputers is implemented directly on transputer links. 
Thus, the same Occam program can be implemented on a variety 
of transputer configurations, with one optimized for cost, 
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another for performance, or another for an appropriate 
balance of cost and performance. 

PRIMITIVE PROCESSES AND CONSTRUCTORS 

Occam programs are 
processes: assignment, 

v := e 

constructed from 
input and output. 

three primitive 
The assignment 

sets the variable v 
output 

to the value of the expression e. The 

c e 
outputs the value of e to the channel c, and the input 

c ? v 
sets the variable v to a value input from the channel c. 

Constructors are used to combine processes to form larger 
processes. The SEQuential constructor causes its components 
to be executed one after another, terminating when the last 
component terminates. The PARallel constructor causes its 
components to be executed concurrently, terminating only 
after all of the components have terminated. The ALTernative 
constructor chooses one component process for execution, 
terminating when the chosen component terminates. Finally, 
IF and WHILE constructs are provided. 

The example of the sequential construct below is a simple 
buff er which repeatedly inputs a value from the channel 
buffer.in, then outputs it to the channel buffer.out. The 
sequential construct ensures that the input is complete 
before the output starts. WHILE TRUE causes the whole 
sequential construct to be executed repeatedly. VAR x 
introduces the variable x for use in the input and output 
processes. 

WHILE TRUE 
VAR x : 
SEQ 

buffer.in? x 
buffer.out ! x 

Occam has a simple, regul~r syntax. Each primitive process 
and each constructor occupies a line by itself, and the 
components of a construct are indented. Declarations, like 
VAR, are prefixed to constructs. The variables they declare 
have the scope of the construct to which the declaration is 
prefixed. 

The parallel constructor is often used to combine sequential 
processes. In the example below it combines two simple 
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buffer processes to form a buffer which can hold two values. 
Each of the two simple buffer processes has its own variable 
x, and the buffers communicate using the channel caroms. 
CHAN caroms introduces the channel caroms for use between the 
simple buffer processes. 

CHAN caroms : 
PAR 

WHILE TRUE 
VAR x : 
SEQ 

buffer.in ? x 
caroms ! x 

WHILE TRUE 
VAR x : 
SEQ 

caroms ? x 
buffer.out x 

TELEMETRY PROCESSING 

One of the capabilities that ground stations like Kennedy 
Space Center (KSC) and Johnson Space Center (JSC) must have 
is the ability to process data transmitted from the flight 
hardware.. Telemetry data received by the ground stations 
is in PCM (pulse code modulation) form. As an example, the 
Space Shuttle PCM stream major frames occur once a second. 
Within major frames there are minor frames which occur 
every lOms (milli-seconds) . The ground systems "lock-on" to 
the data stream when they detect and recognize major frame 
and minor frame sync. The actual data starts after each 
minor frame sync and is in consecutive bytes with 160 bytes 
per minor frame. The bytes can contain eight measurements 
per byte, as is the case of discrete type measurements, or 
can be one of the bytes of a multiple byte measurement. 
Eventually all 128Kbits/sec. of the PCM stream must be 
processed and presented to the user. 

Traditionally, KSC processing of Orbiter PCM data has been 
done in the Firing Room. The Firing Room has three Front End 
Processors (FEP) to process the incoming PCM stream. For 
Space Station elements, the processing of the telemetry data 
will be done by the Ground Data Management System (GDMS) . 
The subset of GDMS that will process PCM data will be the 
Data Acquisition Module (DAM). 

The DAM provides the unique hardware interface between the 
GDMS and the incoming PCM stream. The functions that will be 
performed on the data include data acquisition, various data 
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checks, updating of values in the rest of GDMS, and 
initiation of notification messages when data values are out 
of limits. 

There are four basic data checks and manipulations that must 
be performed on the incoming data. These are compression, 
limit checking, linearization, and trend checking. 

compression is the function of reducing the data rate by 
transmitting only those data values which have changed by a 
significant amount. There are tables which define the 
significant change value for each measurement. 

Limit checking is the function of testing an incoming data 
value against pairs of high and low limits and notifying the 
responsible application program if it is out of those 
limits. These limits are contained in a table and are 
subject to real-time update by operator or program request. 
There are three set of limits: design limits (specified by 
the design agency), test limits (imposed by the test 
agency), and program limits (set by a user or a program). 

Linearization is the function of converting incoming raw 
non-linear data values to a linear form. It also removes 
offset. This function require~ calculating up to a fifth 
order polynomial with 32 bit real coefficients in real-time 
(I.E. 
y = A5(x**5) + A4(x**4) + A3(x**3) + A2(x**2) + Al(x) +AO 
Where AO thru AS are 32 bit real coefficients and "x" is the 
data received from the PCM stream.) 

Trend checking is the function of estimating the value of 
the measurements at some delta time in the future and 
warning of potential violations. 

It is expected that the Space Station telemetry data rates 
will be higher than present Orbiter data rates. There is a 
high possibility that the data rate will be 256Kbits/sec. or 
higher. Assuming that the data rate is 256Kbits/sec. Then 
the incoming bytes that must be processed arrive at a rate 
of 31.25 micro-seconds/byte. This implies that the 
compression, limit checking, trend checking, and 
linearization must be completed before the next byte 
arrives. It is obvious that parallel processing and high 
performance processing is needed. At the moment the Inmos 
transputer and Occam have proven the best product for this 
task. 
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Present development at KSC has shown that the fifth order 
polynomial calculation using the T414-20 (20 Mega-hertz) 
requires about 100 micro-seconds. The T414-20.uses software 
routines to perform the 32 bit multiplication. The T800-30 
(30 Mega-hertz) will be available from Inmos in the fall of 
1987. It is expected that the T800-30, with the hardware 
floating point processor, will take between 10-15 micro­
seconds to perform the fifth order polynomial. 

The present design of the Filter Card (hardware card that 
performs compression, limit checking, trend checkinq, and 
linearization) calls for six transputers working in 
parallel. The theoretical limit of the card for processing 
telemetry data is 1.6 Mega-bits/second. Further development 
and testing will determine the actual limit of the card. 
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