
The Space Congress® Proceedings 1987 (24th) Space - The Challenge, The
Commitment

Apr 1st, 8:00 AM

The Use of Transputers in Processing Telemetry Data The Use of Transputers in Processing Telemetry Data

Hugo M. Delgado
Electronic Engineer Engineering Development Directorate NASA, John F. Kennedy Space Center Florida

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation
Delgado, Hugo M., "The Use of Transputers in Processing Telemetry Data" (1987). The Space Congress®
Proceedings. 1.
https://commons.erau.edu/space-congress-proceedings/proceedings-1987-24th/session-8/1

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217148257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1987-24th
https://commons.erau.edu/space-congress-proceedings/proceedings-1987-24th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1987-24th%2Fsession-8%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1987-24th/session-8/1?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1987-24th%2Fsession-8%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

THE USE OF TRANSPUTERS IN PROCESSING TELEMETRY DATA

ABSTRACT

Hugo M. Delgado Jr.
Electronic Engineer

Engineering Development Directorate
NASA, John F. Kennedy Space Center Florida

Parallelism will be an essential ingredient of high
performance systems of the future. The Inmos transputer is
a high performance single-chip computer whose architecture
facilitates the construction of parallel processing systems.
Occam is a high level language developed for use with the
Inmos transputer. This paper describes a project to evaluate
the feasibility of using the transputer to implement real
time processing of telemetry data.

INTRODUCTION

Since John Von Neuman discovered the principles over 40
years ago, all digital computers have been designed in a
fundamentally similar way. A processor which can perform a
set of basic numeric manipulations is connected to a memory
system which can store numbers. Some of these numbers are
data which the computer is required to process.
The other numbers are instructions to the processor and tell
it which of the basic manipulations to perform. The
instructions are passed to the processor one after the other
and executed. Execution of a computer program is
sequential, consisting of a series of primitive actions
following one another in time.

The earliest digital computers were programmed using the
basic numeric instructions understood by the processor.
Such programming is so tedious and error prone that computer
scientists soon began to design "high-level" languages,
starting with Fortran and leading to the current
proliferation which includes Basic, Pascal, Modula 2, c,
Ada, Forth, Lisp, Prolog and hundreds of others.

These languages allow programmers to express the logic of a
program in notations which use readable English (or French
etc ...) words, although with a tightly constrained and
reduced syntax. A program called a compiler then translates
these notations into the basic numeric instructions which
the computer understands. For the majority of languages,

8-40

the product of the compiler is again
instructions, to be executed one at a time
just as if they had been produced by hand.
these languages faithfully reflect the
underlying sequential Von Neuman computer
palatable to human programmers.

a sequence of
by the processor

In other words,
nature of the

in a form more

To adequately model the concurrency of the real world, it
would be preferable to have many processors all working at
the same time on the same program. There are also huge
potential performance benefits to be derived from such
parallel processing. For regardless of how far electronic
engineers can push the speed of an individual processor, ten
of them working concurrently will still execute ten times as
many instructions in a second.

Conventional programming languages are not well equipped to
construct programs for such multiple processors, as their
very design assumes the sequential execution of
instructions. Some languages have been modified to allow
concurrent programs to be written, but the burden of
ensuring that concurrent parts of the program are
synchronized (i.e. that they cooperate rather than fight) is
placed on the programmer. This leads to such programming
being perceived as very much more difficult than ordinary
sequential programming.

The Inmos transputer, using the Occam language, is the first
product to be based upon the concept of parallel, in
addition to sequential, execution, and to provide automatic
communication and synchronization between concurrent
processes.

TRANSPUTER ARCHITECTURE

A transputer is a microcomputer with its own local memory
and with links for connecting one transputer to another
transputer. The transputer architecture defines a family of
programmable VLSI components. The definition of the
architecture falls naturally into the "logical" aspects
which define how a system of interconnected transputers is
designed and programmed, and the "physical" aspects which
define how transputers, as VLSI components, are
interconnected and controlled.

A typical member of the transputer product family
single chip containing processor, memory, floating
processor (T800 only), and communications links

8-41

is a
point
which

provide point-to-point connection between transputers. In
addition, each transputer product contains special circuitry
and interfaces adapting it to a particular use. For
example, a peripheral control transputer, such as a
graphics or disk controller, has interfaces tailored to the
requirements of a specific device. Presently there are
three versions of the transputer:

T212 - 16 bit address lines
16 bit data lines
2K byte internal RAM
4 serial links
17.5MHz or 20MHz internal clock speed

T414 - 32 bit address lines
32 bit data lines
2K byte internal RAM
4 serial links
15MHz or 20MHz internal clock speed

T800 - 32 bit address lines
32 bit data lines
4K byte internal RAM
4 serial links
floating point processor

·20MHz or 30MHz internal clock speed

On a chip, over 250,000 components provide all the resources
of the processing engine, memory interface, and concurrent
communications. The processor uses its 50-nanosecond cycle
time to wring 10 million instructions a second out of its
on-chip static RAM. For more memory-intensive programs,
the processor brings to bear its 26-megabyte-per-second
memory interface to access up to 4 gigabytes of off-chip
memory.

One fundamental reason for the performance and
implementation efficiency of the transputer is its approach
to its instruction set, which resemble~ that of a reduced
instruction set computer (RISC) . Instead of a minicomputer
like instruction set with its multiple addressing modes, two
or three address instruction, and extensive register set,
the transputer has a lean, tightly encoded, and simple set
of instructions. At 33 ns (T800-30MHz) per instruction,
programs execute very quickly indeed, and the tight encoding
significantly improves code density.

TRANSPUTER BUSES

The transputer uses three
the processor's registers.

major buses to interconnect all
Two of these buses ship operands

M2

(

to the arithmetic and logic unit, and the other carries the
ALU result. A number of additional data paths allow certain
registers to communicate directly, independent of
transactions on the primary buses. These additional data
paths also serve as routes for direct transfers between
buses. The data-path registers are all specific to various
functions of the transputer and include logic to perform
certain data manipulations. The additional data paths allow
multiple data transfers to occur in a single microcycle.

Unlike conventional microprocessors, the transputer includes
no programmer-visible register for peripheral functions like
communications. Programmers use Occam's INPUT and OUTPUT
primitives to send messages through interprocess
communication channels. The transputer specifies the state
of an executing process with a simple six-register set, an
instruction pointer, an operand and register, and a
workspace pointer, which indicates the area of memory where
the local variables of the process are stored. The last
three registers belong to a small stack attached to the ALU.
Instructions affecting this stack fall into two major
classes, one-address and zero-address.

In one-address instructions, the top of the stack is one
(implied) operand. The other is generally a location in the
current workspace, although it can be a literal. Zero
address instructions use the stack for all operands and
results. For example, the ADD instruction adds the top two
values in the evaluation stack and places the result on top
of it. The three-word stack removes any need for
instructions to respecify an operand's address and provides
a good balance between code density, process-switch time,
and implementation complexity.

SILICON SCHEDULER

Still, to work within Occam's process-oriented design, the
transputer incorporates a hardware process scheduler to
multiplex its processor among a number of active processes,
which may exist as normal or as priority processes.
Priority processes are typically used for interrupt handling
chores and may receive messages (interrupts) from another
process, a communication link, the peripheral interface, the
on-chip timer, or from the external event pin. If a normal
process is being executed and a message arrives for a
priority process, the processor starts to execute it within
6 ns typically. The execution of the normal process resumes
only when no higher-priority process can proceed.

8-43

A process may be unable to proceed because it is waiting for
I/O or the timer. When a process is blocked, its instruction
pointer is saved in its workspace and restored when the
process resumes. For each priority level, two registers
maintain a list which chains together the workspaces of the
processes that can proceed. One register points to the
front of the list, the other to its end.

COMMUNICATION LINKS

The transputer's four links provide efficient point-to-point
communication for intertransputer communications. Each link
consists of two unidirectional signal lines that carry both
data and control. The range of these TTL-compatible signals
can be extended by the insertion of line drivers and
receivers. Regardless of any transputer's internal speed
all links will run at 10 megabits/sec or 20 megabits/sec,
depending on the configuration of the link's speed pins.

Each transputer link supports memory-to-memory block
transfer for on and off-chip memory. A link controller
accepts a pointer and block count when an Occam INPUT or
OUTPUT statement refers to an intertransputer channel. The
direct memory access (DMA) transfer is totally asynchronous,
with message transfer taking place totally independently of
the processor. A memory arbitration unit coordinates and
assigns priorities to access memory from the processor,
links, and the peripheral interface. Operating
simultaneously, all the links can transfer data concurrently
with processor execution, for a peak throughput of more than
10 megabytes/sec.

Regardless of the word length of the communicating devices,
a message is transmitted as a sequence of bytes through the
link on a pair of wires. For transfer in a single
direction, the sending transputer initiates traffic by
transmitting a byte on one wire. The sender then waits for
acknowledgment, which is sent through the other wire and
which signifies that the receiving link can receive another
byte and that a process is waiting to receive it. The
sending link reschedules the sending process only after it
has received an acknowledgment for the final byte of the
message.

For duplex communication on a single link, a transputer
interleaves the byte it is sending with acknowledgments for

8-44

the bytes it is receiving on the other link wire. An
acknowledgment can be transmitted as soon as the reception
of a data byte starts if there is room to buff er another
one. Transmission can therefore be continuous, without any
delay between data bytes.

OCCAM

In Occam, processes are connected to form concurrent
systems. Each process can be regarded as a black box with
internal state which can communicate with other processes
using the point-to-point channels. Processes can be used to
represent the behavior of many things; for example, a logic
gate, a microprocessor, a machine tool or an office.

The processes themselves are finite. Each process starts,
performs a number of actions, and then terminates. An action
may be a set of sequential processes performed one after
another, as in conventional programming language, or a set
of parallel processes to be performed at the same time as
one another. Since a process is itself composed of
processes, some of which may be executed in parallel, a
process may contain any amount of internal concurrence, and
this may change with time as processes start and terminate.

The key concept is that communication is synchronized and
unbuffered. If a channel is used for input in one process
and output in another, communication takes place when both
processes are ready. The value to be output is copied from
the outputting process to the inputting process, and the
inputting and outputting processes then proceed. Thus,
communication between processes is like the handshake method
of communication used in hardware systems. Since a process
may have internal concurrency, it may have many input
channels and output channels performing communications at
the same time.

Occam can be used to program an individual transputer or to
program a network of transputers. When Occam is used to
program an individual transputer, the transputer shares its
time between the concurrent processes and channel
communication is implemented by moving data within the
memory. When Occam is used to program a network of
transputers, each transputer executes the process allocated
to it. Communication between Occam processes on different
transputers is implemented directly on transputer links.
Thus, the same Occam program can be implemented on a variety
of transputer configurations, with one optimized for cost,

&45

another for performance, or another for an appropriate
balance of cost and performance.

PRIMITIVE PROCESSES AND CONSTRUCTORS

Occam programs are
processes: assignment,

v := e

constructed from
input and output.

three primitive
The assignment

sets the variable v
output

to the value of the expression e. The

c e
outputs the value of e to the channel c, and the input

c ? v
sets the variable v to a value input from the channel c.

Constructors are used to combine processes to form larger
processes. The SEQuential constructor causes its components
to be executed one after another, terminating when the last
component terminates. The PARallel constructor causes its
components to be executed concurrently, terminating only
after all of the components have terminated. The ALTernative
constructor chooses one component process for execution,
terminating when the chosen component terminates. Finally,
IF and WHILE constructs are provided.

The example of the sequential construct below is a simple
buff er which repeatedly inputs a value from the channel
buffer.in, then outputs it to the channel buffer.out. The
sequential construct ensures that the input is complete
before the output starts. WHILE TRUE causes the whole
sequential construct to be executed repeatedly. VAR x
introduces the variable x for use in the input and output
processes.

WHILE TRUE
VAR x :
SEQ

buffer.in? x
buffer.out ! x

Occam has a simple, regul~r syntax. Each primitive process
and each constructor occupies a line by itself, and the
components of a construct are indented. Declarations, like
VAR, are prefixed to constructs. The variables they declare
have the scope of the construct to which the declaration is
prefixed.

The parallel constructor is often used to combine sequential
processes. In the example below it combines two simple

~46

buffer processes to form a buffer which can hold two values.
Each of the two simple buffer processes has its own variable
x, and the buffers communicate using the channel caroms.
CHAN caroms introduces the channel caroms for use between the
simple buffer processes.

CHAN caroms :
PAR

WHILE TRUE
VAR x :
SEQ

buffer.in ? x
caroms ! x

WHILE TRUE
VAR x :
SEQ

caroms ? x
buffer.out x

TELEMETRY PROCESSING

One of the capabilities that ground stations like Kennedy
Space Center (KSC) and Johnson Space Center (JSC) must have
is the ability to process data transmitted from the flight
hardware.. Telemetry data received by the ground stations
is in PCM (pulse code modulation) form. As an example, the
Space Shuttle PCM stream major frames occur once a second.
Within major frames there are minor frames which occur
every lOms (milli-seconds) . The ground systems "lock-on" to
the data stream when they detect and recognize major frame
and minor frame sync. The actual data starts after each
minor frame sync and is in consecutive bytes with 160 bytes
per minor frame. The bytes can contain eight measurements
per byte, as is the case of discrete type measurements, or
can be one of the bytes of a multiple byte measurement.
Eventually all 128Kbits/sec. of the PCM stream must be
processed and presented to the user.

Traditionally, KSC processing of Orbiter PCM data has been
done in the Firing Room. The Firing Room has three Front End
Processors (FEP) to process the incoming PCM stream. For
Space Station elements, the processing of the telemetry data
will be done by the Ground Data Management System (GDMS) .
The subset of GDMS that will process PCM data will be the
Data Acquisition Module (DAM).

The DAM provides the unique hardware interface between the
GDMS and the incoming PCM stream. The functions that will be
performed on the data include data acquisition, various data

8-47

checks, updating of values in the rest of GDMS, and
initiation of notification messages when data values are out
of limits.

There are four basic data checks and manipulations that must
be performed on the incoming data. These are compression,
limit checking, linearization, and trend checking.

compression is the function of reducing the data rate by
transmitting only those data values which have changed by a
significant amount. There are tables which define the
significant change value for each measurement.

Limit checking is the function of testing an incoming data
value against pairs of high and low limits and notifying the
responsible application program if it is out of those
limits. These limits are contained in a table and are
subject to real-time update by operator or program request.
There are three set of limits: design limits (specified by
the design agency), test limits (imposed by the test
agency), and program limits (set by a user or a program).

Linearization is the function of converting incoming raw
non-linear data values to a linear form. It also removes
offset. This function require~ calculating up to a fifth
order polynomial with 32 bit real coefficients in real-time
(I.E.
y = A5(x**5) + A4(x**4) + A3(x**3) + A2(x**2) + Al(x) +AO
Where AO thru AS are 32 bit real coefficients and "x" is the
data received from the PCM stream.)

Trend checking is the function of estimating the value of
the measurements at some delta time in the future and
warning of potential violations.

It is expected that the Space Station telemetry data rates
will be higher than present Orbiter data rates. There is a
high possibility that the data rate will be 256Kbits/sec. or
higher. Assuming that the data rate is 256Kbits/sec. Then
the incoming bytes that must be processed arrive at a rate
of 31.25 micro-seconds/byte. This implies that the
compression, limit checking, trend checking, and
linearization must be completed before the next byte
arrives. It is obvious that parallel processing and high
performance processing is needed. At the moment the Inmos
transputer and Occam have proven the best product for this
task.

8-48

Present development at KSC has shown that the fifth order
polynomial calculation using the T414-20 (20 Mega-hertz)
requires about 100 micro-seconds. The T414-20.uses software
routines to perform the 32 bit multiplication. The T800-30
(30 Mega-hertz) will be available from Inmos in the fall of
1987. It is expected that the T800-30, with the hardware
floating point processor, will take between 10-15 micro
seconds to perform the fifth order polynomial.

The present design of the Filter Card (hardware card that
performs compression, limit checking, trend checkinq, and
linearization) calls for six transputers working in
parallel. The theoretical limit of the card for processing
telemetry data is 1.6 Mega-bits/second. Further development
and testing will determine the actual limit of the card.

S49

	The Use of Transputers in Processing Telemetry Data
	Scholarly Commons Citation

	tmp.1397073181.pdf.d3mDJ

