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While earthquakes represent a major hazard to life and property, there are a number of open 

questions about how earthquake faults operate at depth, and how the energy released by earthquakes 

travels as elastic waves through Earth’s complexly deformed crustal rocks. The aims of my dissertation 

are to explore (a) the extent of co-seismic damage in an ancient earthquake fault exhumed from great 

depths, (b) the deformation processes and mechanics of the fault at depth during earthquake cycles, and (c) 

the role of different rock structures in determining the velocities of seismic waves. 

When tectonic plates collide, deformation tends to localize into narrow zones: frictional faults in 

the upper crust and high-temperature viscous shear zones in the lower crust. The transition in material 

behavior from the upper to lower crust is known as the frictional-to-viscous transition (FVT; ~10–20 km 

deep). During earthquake cycles, the FVT experiences transient brittle deformation followed by long-term 

viscous processes. Owing to this complex behavior over the earthquake cycle, the FVT is the most 

important horizon for understanding earthquake mechanics. Rareness of exposures of ancient earthquake 

faults at FVT depths has hindered studying of their brittle co-seismic damage structures and rheology of 

their deep portions during earthquake cycles. From the Sandhill Corner shear zone, a strand of the 

Norumbega fault system (an ancient seismogenic strike-slip fault at the FVT), I analyze fluid inclusion 

abundance in quartz as a proxy for transient co-seismic damage using secondary electron image and 

optical observation, and collect quantitative data of quartz across the shear zone such as grain-size, grain-



 

shape, crystallographic orientation, misorientation, and fabric intensity through electron backscatter 

diffraction. The results indicate that brittle co-seismic damage occurs up to at least ~90 m in width at the 

FVT, and the inner shear zone (~40 m wide) experienced cycles of co-seismic microfracture-assisted 

grain-size reduction followed by post-seismic viscous deformation dominated by grain-size-sensitive 

processes, whereas the outer shear zone was deformed dominantly by grain-size-insensitive processes 

during earthquake cycles. My findings have important implications for the strength, or mechanics, of the 

fault/shear zone system, and may help determine 3-D volume of brittle damage zone. Measuring the 

extent of damage zone is critical for estimating the potential energy that an earthquake releases because 

the co-seismic damage zone acts as a dissipative energy sink by creating fracture surface areas. 

Earthquakes not only represent hazards but radiate energy as seismic waves. Since the direction-

dependent nature of wave propagation velocities (called “seismic anisotropy”) changes in response to 

rock flow due to preferred orientation of elastically anisotropic minerals, the seismic anisotropy has been 

used to investigate Earth’s interior structure and deformation processes in tectonically active regions. 

However, this is a challenge for waves passing through the crust because their anisotropies are profoundly 

modified by macroscale folds, which are very common structures in ancient and current orogenic belts 

and shear zones. To evaluate the modification of seismic anisotropy by the deformation structures, I 

develop a new mathematical methodology for calculating bulk elastic tensors and seismic anisotropy of 

macroscale folds, assuming the seismic waves are much larger than the fold heterogeneity. The results 

show that the velocities of seismic waves propagating through macroscale folds in three dimensions are 

systematically related to fold shape and orientation. Because fold orientations are related to flow 

directions, it is now possible for real seismic observables to provide information on the directions of flow 

for actively deforming rocks at depth. 
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CHAPTER 1 

INTRODUCTION 

 

Fault zones in plate boundaries accommodate displacements within the lithosphere and act as a 

plumbing system for fluid flow as well as heat and mass transfer, and also generate natural hazards such 

as earthquakes and tsunamis that can destroy human life and infrastructure. To mitigate the impacts of 

such devastating natural disasters, we need to better understand how fault structures and deformation 

processes evolve at plate boundaries from Earth’s surface to deep interior, so that we can predict the 

tectonic processes more accurately and precisely. This is a major challenge and ultimate goal that 

geoscientists have and can be achieved by multidisciplinary studies of fault behavior and rock rheology 

(mechanical properties of rocks) during earthquake cycles throughout the lithosphere in different tectonic 

settings, exploring how deformation processes operating at different lithospheric depths are linked 

vertically (Huntington and Klepeis, 2018). The studies include, as in this dissertation, quantitative 

measures of the rock record of fault behaviors in ancient plate margins exhumed from various depths, 

which can be integrated with geological and geophysical observations in modern plate margins for better 

understanding of fault mechanics across the lithosphere. 

When an earthquake occurs, the stored potential energy, such as elastic strain energy and 

gravitational energy, is partitioned into radiated energy, frictional heat energy, and fracture energy 

(Kanamori and Rivera, 2006). While the radiated energy by elastic waves is a small fraction (5% to 20%) 

of the total energy budget, the other 80–95% energy is consumed by inelastic physical and chemical 

processes in the fault core and the surrounding damage zone (Shipton et al., 2006). The frictional heat 

energy is dissipated by sliding on the rupture surface, and the fracture energy refers to all other dissipative 

energy sinks active on the rupture surface and within the 3-D fault volume, which include plastic yielding 

at rupture tips, off-fault cracking, and various thermal processes (e.g., fluid pressurization and melting) 

(Kanamori and Rivera, 2006; Shipton et al., 2006). The frictional heat, often occupying a large 

component of the total energy, does not directly affect earthquake rupture dynamics such as rupture speed, 
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whereas the fracture energy, more precisely the relative magnitude of the radiated energy to the fracture 

energy, plays a significant role (Husseini and Randall, 1976; Venkataraman and Kanamori, 2004). 

Off-fault damage is caused by dynamic stress changes near the propagating rupture front 

(Poliakov et al., 2002; Andrews, 2005; Rice et al., 2005). In addition to its role as a dissipative energy 

sink by making new surfaces of fractures, the off-fault damage zone created by previous seismic slip 

events can have effects on state of stress, near-fault ground motion, earthquake rupture, and crustal fluid 

flow. Damage zones may rotate the stress field surrounding faults, allowing high pore fluid pressure and 

thus weakening of unfavorably oriented faults (Faulkner et al., 2006). Inside damage zones, earthquakes 

produce reflected waves and head waves, which can amplify ground motion near the fault (Spudich and 

Olsen, 2001), but also cause slip pulses and oscillations of rupture speed (e.g., Huang et al., 2014) 

possibly promoting supershear earthquakes (e.g., Huang et al., 2016; Perrin et al., 2016). Damage zones 

also affect crustal fluid flow by change in permeability, which in turn contributes to the fault strength and 

the triggering of aftershocks by change in pore fluid pressure (Miller et al., 2004). Therefore, it is 

important to determine how deep and wide the damage zone extends. 

Studies of exhumed faults from the upper crust report that the width of the damage zones around 

continental strike-slip faults can be hundreds of meters depending on fault displacement (e.g., Mitchell 

and Faulkner, 2009; Faulkner et al., 2011; Savage and Brodsky, 2011). Seismological studies of low-

velocity, fault zone-guided waves in active strike-slip faults show that damage zones extend down to only 

3–5 km (e.g., Ben-Zion et al., 2003; Lewis and Ben-Zion, 2010) or more than 7 km (e.g., Li and Malin, 

2008; Cochran et al., 2009; Ellsworth and Malin, 2011; Li et al., 2014). However, there have been no 

geological studies in deeply exhumed strike-slip faults/shear zones to assess the width of off-fault damage. 

In Chapter 2, I provide a new method to estimate how wide off-fault damage is distributed by measuring 

fluid inclusion abundance in quartz aggregates across the pseudotachylyte-bearing Sandhill Corner shear 

zone (a strand of the Paleozoic Norumbega fault system, Maine, USA) exhumed from the base of the 

seismogenic zone, where quartz experiences brittle co-seismic damage and post-/inter-seismic viscous 

deformation. 
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The base of the seismogenic zone is also called the frictional-to-viscous transition (FVT; ~10–20 

km deep) since it deforms in both brittle and viscous fashions by changes in stress and strain rate during 

an earthquake cycle. The FVT is the strongest part of the continental crust and thus controls the strength 

of tectonic plates and the mechanical decoupling between the upper and lower crust (Brace and Kohlstedt, 

1980; Kohlstedt et al., 1995; Handy et al., 2007). Therefore, a more complete study of deformation 

processes at the FVT during seismic cycles is required to understand strain localization and rheological 

changes at plate boundaries. Chapter 3 reports quantitative microfabrics of quartz from the shear zone 

core to the host rocks in the same field area as Chapter 2 using electron backscatter diffraction, and 

investigates how transient co-seismic damage affects localization mechanism in quartz. 

Seismic waves radiated from an earthquake can be utilized to observe in situ tectonic deformation 

and convective flow in the deep crust and mantle through seismic anisotropy, or the dependence of 

seismic velocity on the direction of wave propagation and polarization. However, fold structures can 

modify seismic properties of the deformed rocks by rotating rock fabrics such as foliation and lineation 

(Okaya et al., 2018). Since folds are very common tectonic structures found in ancient and current 

orogenic belts and shear zones, they should be considered when interpreting seismic anisotropy as a proxy 

for tectonic deformation or kinematics. In Chapter 4, I develop a new mathematical method to calculate 

bulk elastic tensors of idealized cylindrical folds, assuming the incident seismic waves are much larger 

than the fold heterogeneity. This allows me to investigate how the morphological change of fold affects 

the wave velocity with varying propagation direction and the magnitude and symmetry of seismic 

anisotropy. 
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CHAPTER 2 

QUARTZ FLUID INCLUSION ABUNDANCE AND OFF-FAULT DAMAGE IN A DEEPLY 

EXHUMED SEISMOGENIC FAULT 

 

2.1. Chapter Abstract 

Off-fault damage zones comprise highly fractured rocks surrounding the dynamic slip surface of 

an earthquake fault. These damage zones modify fault-zone rheology and rupture dynamics by changing 

the bulk elastic properties and modulating fluid flow. Damage zones in the brittle upper crust, reaching 

widths >100 m, are commonly characterized by measuring fracture density, but there have been no 

geological studies in deeply exhumed strike-slip faults to assess the extent of off-fault damage at depth. 

This is primarily because co-seismic fractures at depth are generally healed and, in some minerals like 

quartz, eliminated by neo- and recrystallization during post-seismic deformation. In this study, we report 

on a novel study of fluid inclusion abundance in quartz deformed at 400–500 °C from an ancient 

seismogenic strike-slip fault/shear zone to evaluate whether it can be a proxy for the width of a damage 

zone even after experiencing post- and inter-seismic viscous deformation. Based on secondary electron 

image analysis and optical observation, the shear zone has a low-high-low trend of fluid inclusion 

abundance from the shear zone core toward the host rock. Taking into account the addition of fluid 

inclusions by co-seismic deformation and their removal by recrystallization, off-fault damage occurs up to 

at least ~90 m from the shear zone core. These findings indicate that extensive co-seismic damage zones 

may extend from Earth’s surface to the base of the seismogenic zone, with important implications for 

fault strength, rupture dynamics, and transient fluid flow. 

2.2. Chapter Introduction 

Large displacement strike-slip faults display impressive off-fault damage zones with fracture 

density increasing toward the fault core, and pulverization of specific rock types (e.g., Chester et al., 1993; 

Ben-Zion and Sammis, 2003; Rempe et al., 2013). Fractured damage zones affect: (a) local stress 

distribution (Faulkner et al., 2006); (b) near-fault ground motion (Spudich and Olsen, 2001); (c) rupture 
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dynamics (e.g., Thomas et al., 2017) possibly promoting supershear earthquake (e.g., Huang et al., 2016); 

and (d) crustal fluid flow by transient changes in permeability, which in turn contributes to the fault 

strength and the triggering of aftershocks by changes in pore fluid pressure (Miller et al., 2004). In 

addition, determining 3-D volume of damage zone (i.e., the depth and width) is important for estimating 

the potential energy that an earthquake releases because the off-fault damage zone along with the fault 

core acts as significant energy sinks dissipating fracture and thermal energy, which occupy 80–95% of the 

total energy budget (e.g., Poliakov et al., 2002; Andrews, 2005; Rice et al., 2005; Kanamori and Rivera, 

2006; Shipton et al., 2006). Studies of exhumed faults from the upper 10 km of the crust report that the 

damage zones can be hundreds of meters wide (e.g., Mitchell and Faulkner, 2009; Faulkner et al., 2011; 

Savage and Brodsky, 2011). Although seismological studies of low-velocity, fault zone-guided waves 

show possible depth limits of damage zones (e.g., Ben-Zion et al., 2003; Li and Malin, 2008; Cochran et 

al., 2009; Lewis and Ben-Zion, 2010; Ellsworth and Malin, 2011; Li et al., 2014), there have been no 

geological studies in deeply exhumed strike-slip faults with large displacement to assess the extent of off-

fault damage. Characterizing the extent of brittle damage in rocks exhumed from the deeper reaches of 

the seismogenic zone, equivalent to frictional-to-viscous transition depths (e.g., Handy et al., 2007), is 

complicated owing to the fact that evidence of co-seismic damage (e.g., healed intragranular microcracks) 

in minerals like quartz is typically erased or altered by post-seismic viscous deformation (e.g., dynamic 

recrystallization). Minerals such as feldspar that undergo brittle deformation at these conditions are also 

altered by processes such as granular flow of fragments during the inter-seismic phase, making it difficult 

to parse out the co-seismic contribution to the microstructure. 

Several studies attempted to find quartz microfabrics diagnostic of transient co-seismic damage 

under conditions near the base of the seismogenic zone (10–20 km), where quartz deforms viscously 

during inter-seismic periods. Novel experiments of non-steady state behavior in quartz to simulate the co- 

and post-seismic deformation in the middle crust (Trepmann et al., 2007) and natural rock studies 

compared to it (e.g., Trepmann et al., 2017) provided narrow zones of fine recrystallized grains cutting 

through parent quartz grains, large misorientation angle between the parent and recrystallized grains, 
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and/or random crystallographic orientation of the recrystallized grains as possible evidence for transient 

co-seismic damage owing to neocrystallization (nucleation and growth) and ongoing recrystallization of 

fractured quartz. However, given that such evidence could also result from shear band formation and 

grain size-sensitive creep (e.g., combination of dynamic recrystallization and grain boundary sliding; 

Halfpenny et al., 2012), the recrystallized quartz that experienced co-seismic damage is difficult to 

distinguish from quartz deformed solely be viscous processes at non-steady state conditions. In addition, 

if the quartz is fully recrystallized during post- and inter-seismic periods or over multiple earthquake 

cycles, the evidence involving parent grains is no longer applicable to identifying transient brittle 

deformation. 

Microcracks generated in quartz by co-seismic rupture near the base of the seismogenic zone are 

expected to heal rapidly (Brantley et al., 1990), but are typically decorated with fluid inclusions (e.g., 

Anders et al., 2014). If these fluid inclusion planes were preserved, then microfracture densities could be 

measured as is done in near-surface faults (e.g., Mitchell and Faulkner, 2009), providing a measure of 

damage-zone width. However, quartz at these depths undergoes viscous deformation by processes such as 

dislocation creep, which disrupts the fluid inclusion planes. During recrystallization, trapped fluid 

inclusions can be dragged by migrating subgrain and grain boundaries, disrupting their planar structure 

(Kerrich, 1976; Drury and Urai, 1990; Schmatz and Urai, 2011). However, unless the fluid inclusions are 

destroyed, number and/or volume fraction of fluid inclusions may be related to the abundance of transient 

fractures and fracture events despite destruction of the fluid inclusion planes by viscous recovery and 

recrystallization processes. To evaluate whether fluid inclusion concentration can provide clear evidence 

for brittle co-seismic deformation of quartz at depth, we focus on fluid inclusion abundance in 

monomineralic quartz aggregates from a deeply exhumed seismogenic strike-slip fault zone (Sandhill 

Corner shear zone in the Norumbega fault system, Maine, USA; Johnson et al., 2009; Price et al., 2012, 

2016). For clarity, this study considers only distribution and abundance of fluid inclusions; their 

compositions and closure temperatures will be analyzed separately. Here we present the number density 

(count per unit area) and volume fraction of fluid inclusion measured in quartz aggregates by secondary 
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electron image analysis (Schmatz and Urai, 2011) and optical observation as proxy for evaluating the 

width of co-seismic damage adjacent to the Sandhill Corner shear zone where brittle and viscous 

deformation alternated during seismic cycles. 

2.3. Sandhill Corner Shear Zone near the Base of the Seismogenic Zone 

The Norumbega fault system is a Paleozoic, subvertical, crustal-scale strike-slip fault system in 

the northeastern Appalachians (Fig. 2.1; Ludman and West, 1999)  with estimated right-lateral slip of 25–

300 km over a period of ~100 million years (e.g., Hubbard, 1999; West, 1999). Different erosion levels 

along the Norumbega expose rocks of upper amphibolite facies in the southwest to sub-greenschist facies 

in the northeast (Ludman and West, 1999). The Sandhill Corner shear zone (SCSZ; ~230 m wide in the 

study area) located in the central part of the Norumbega fault system contains mutually overprinting 

pseudotachylyte and mylonite (Price et al., 2012), indicating alternating brittle and viscous deformation 

during seismic cycles. The shear zone core occurs at the contact between quartzo-feldspathic (QF) and 

schist units (Figs. 2.1 and 2.2a; Price et al., 2016). 

The quartz domains we analyze are deformed or folded quartz veins and ribbons from the QF 

rocks (Fig. 2.2a) and embedded in mica-rich matrix. All domains are thinner than 2 mm except one 

sample (NFS2) with a 4.5 cm-thick vein (Fig. 2.3). In the SCSZ, quartz recrystallization is dominantly by 

subgrain rotation with subsidiary grain boundary migration (Price et al., 2016). From the host rock toward 

the core, the degrees of mylonitization and recrystallization increase, and the average grain size of quartz 

decreases (Figs. 2.2b and 2.2c; see Chapter 3). The mylonitic deformation that accompanied co-seismic 

rupture occurred at temperatures of 400–500 °C, overprinting previous higher-temperature 

microstructures preserved in the host rocks outside the shear zone (Price et al., 2016). The particularly 

thick quartz vein in sample NFS2 preserves both unaltered and recrystallized fluid inclusion planes (Fig. 

2.2d). Fluid inclusions are rare in the unrecrystallized parent vein outside of fluid-inclusion-decorated 

microcracks, but are abundant where the vein has recrystallized (Fig. 2.2d). 
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Figure 2.1. Geologic setting of Sandhill Corner shear zone. 
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Figure 2.2. Sample locations and quartz microstructures. (a) Sample locations of current study and 

previous studies (Price et al., 2012, 2016). The samples used in the current study are labeled next to each 

location (white circle) (b) Area percentage of clast and pseudotachylyte (PST) and average (root-mean-

square) grain size of quartz domains with respect to distance from the shear zone core. The modal 

percentage of clast is calculated except quartz domains. The modal clast and quartz grain size generally 

decrease toward the core. Note much higher occurrence of PST in the QF unit than the schist. The clast 

and PST data include the previous studies. For details of the grain size data, see Chapter 3. The 

boundaries and core of the shear zone are marked by dashed lines, connected to (a). (c) Quartz 

photomicrographs (cross-polarized) showing an increase in recrystallization and a decrease in grain size 

toward the core. (d) Quartz photomicrographs of sample NSF2 displaying correlation of fluid inclusion 

(FI) abundance with recrystallized (rxd) grains. The parent and recrystallized (rxd) quartz has little and 

abundant fluid inclusions, respectively. Note a string of recrystallized grains along a fluid inclusion plane 

(FIP) inside the parent grain. PPL, plane-polarized light; XPL, cross-polarized light. 
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Figure 2.3. Thickness of quartz domains (veins or ribbons) analyzed in the current study. Various quartz 

domains were selected within a sample where available, showing variable degrees of recrystallization. 

Sample numbers are also displayed in the graph. The thickness is calculated by dividing the area of a 

quartz domain by the length of a median line. A logarithmic scale is used in the thickness axis. 

 

 

2.4. Methods 

Samples were cut perpendicular to local foliations and parallel to local lineations, which are sub-

parallel to the strike of the shear zone core. Doubly polished thin sections of 30–35 μm thickness were 

prepared to observe the microstructure and fluid inclusions in polarized light microscopy (mechanically 

polished with a 0.3 um alumina suspension and chemically in a 0.02 um colloidal silica suspension for 

several minutes). The number density and volume fraction of fluid inclusions were estimated from 2-D 

pores on carbon-coated polished surfaces of the thin sections using semi-automated analysis of secondary 

electron images (×4000 magnification) using a scanning electron microscope (SEM-SE images) similar to 

the techniques described in Schmatz and Urai (2011). The images were manually modified in ImageJ 

(https://imagej.nih.gov/ij/) during post-processing to eliminate uneven brightness (Fig. 2.4). Schmatz and 

Urai (2011) demonstrated that hand-polishing can provide information on real 2-D porosity within 

standard errors in comparison with measurements on broad ion beam-polished surfaces. I also optically 

https://imagej.nih.gov/ij/
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measured the number of fluid inclusions in the same analysis areas by manually counting them in a single 

focal plane to compare with the SEM-SE image analysis (Fig. 2.5). Five or six quartz domains including 

the lowest and highest degree of recrystallization in each thin section were taken for analysis. Since fluid 

inclusions are mostly located near and along grain boundaries owing to dynamic recrystallization, I 

measured enough number of whole grains (more than ten) to prevent biased results and determine 

representative fluid inclusion abundance for each domain (Fig. 2.6). Exceptions were made for 

recrystallized domains, parent grains, and quartz ribbons of the host rock with one large parent grain, in 

which only parts of grain boundaries were covered. All the analyses were carried out away from the phase 

boundaries between quartz domains and the mica-rich matrix due to substantial polishing defects at these 

boundaries. I note that only areas with fluid inclusions related to recrystallization were analyzed; I 

avoided late healed but unrecrystallized cracks at a high angle to local foliation, which presumably 

formed at shallow depths during exhumation. 
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Figure 2.4. Methodology for fluid inclusion abundance using secondary electron (SE) images. (a) Take a 

stitched SE image consisting of multiple high-resolution images (×4000 magnification) to cover enough 

number of grains. Using ImageJ, (b) set a threshold range to select pores, or fluid inclusions (darker than 

quartz in the SE images) and (c) modify manually the selected pores by comparing to the original SE 

images. From the processed images, (d) measure the number and area of fluid inclusions. The number 

density (count divided by background area), area fraction, and size of fluid inclusions are calculated from 

the measured results. The volume fraction and its error are estimated based on the area fraction, the count, 

and the mean and standard deviation of the pore areas (Underwood, 1970). 
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Figure 2.5. Optical image sequence of a single fluid inclusion (FI) with different focus levels. This helps 

to count manually fluid inclusions that are only intersected by a focal plane (in-focus) in a 

photomicrograph, being intended to get the same number density results as the SEM-SE images. 
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Figure 2.6. Sensitivity analysis to find an appropriate number of quartz grains, where the fluid inclusion 

abundance converges, by increasing the analysis area. (a) Protomylonite sample (202-QD-5) with 

relatively large grains, showing increases in optical number density and SEM volume fraction up to three 

panels. (b) Mylonite sample (201-QD-1) with relatively fine grains, displaying the same fluid inclusion 

abundance irrespective of the number of panels. Based on this sensitivity analysis, more than ~10 grains 

are required for the representative fluid inclusion abundance of each quartz domain. 
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2.5. Fluid Inclusion Abundance across the Seismogenic Shear Zone 

The number density and volume fraction of fluid inclusion from all the samples are plotted with 

respect to distance from the shear zone core to the host rock (Figs. 2.7 and 2.8). Each data point in the 

graphs (Figs. 2.7 and 2.8) represents the fluid inclusion abundance of each quartz domain. Because I 

investigate brittle damage in quartz accumulated during numerous seismic cycles with different seismic 

energy, and because post-seismic recrystallization can remove fluid inclusions from quartz domains (see 

the following sections), I consider only the maximum abundance of all the selected domains in each 

sample rather than using an average of measured abundances in each sample. The number density plot via 

SEM-SE image analysis (Fig. 2.7b) has higher values near the outer edge of the mylonite zone (~90 m 

from the core) than the other areas, which makes a low-high-low abundance trend from the shear zone 

core toward the host rock. The optical measurement of number density (Figs. 2.7a and 2.7c) reveals the 

low-high-low trend more clearly with a progressive increase toward the outer edge of the mylonite zone, 

producing a maximum value in sample NSF2. On the other hand, the volume fraction of fluid inclusion 

does not exhibit a clear relationship in the mylonite with distance from the core despite the same low 

value pattern in the protomylonite and the host rock as in the number density plots (Figs 2.7d and 2.8). 
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Figure 2.7. The abundance and average size of fluid inclusions with respect to distance from the shear 

zone core. (a) Photomicrographs to show different number densities of fluid inclusion (FI). PPL, plane-

polarized light; XPL, cross-polarized light. (b) Number density graph using the SEM-SE images. (c) 

Number density graph using the optical measurement. (d) Volume fraction of fluid inclusion and its error 

only for the quartz domains with SEM maximum number densities in (b). Some data points have error 

bars smaller than the symbol size. (e) Average size of fluid inclusions and its standard deviation (σ) only 

for the quartz domains with SEM maximum number densities in (b). 
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Figure 2.8. Volume fraction of fluid inclusion and its error for all the samples with respect to distance 

from the shear zone core. The results of the quartz domains with SEM maximum number densities in Fig. 

2.7b are marked by red circle. Some data points have error bars smaller than the symbol size. 

 

 

2.6. Discussion and Conclusions 

2.6.1. Co-Seismic Origin of the Fluid Inclusions 

I consider that the fluid inclusions observed especially in the proximity of the shear zone core 

originated from co-seismic damage for the following reasons, although the low-high-low trend that we 

document in this study is different from modern seismogenic faults showing a monotonic gradient in 

fracture density with proximity to the fault core (e.g., Mitchell and Faulkner, 2009). First, partially-

recrystallized healed cracks decorated with fluid inclusions are found only in the mylonite (e.g., samples 

NFS2 and 51; Fig. 2.2d), or away from the host rock. In Fig. 2.2d, the strong correlation between fluid 

inclusion-rich domains and recrystallized quartz, especially within fluid inclusion-poor parent grains can 

be explained by neocrystallization (nucleation and growth) and ongoing recrystallization assisted by co-

seismic fracturing, similar to an experimental study (Trepmann et al., 2007) which simulates deformation 

during co-seismic loading and post-seismic stress relaxation. Second, the low number density region in 

the proximity of the shear zone core (Figs. 2.7b and 2.7c) is correlated with occurrence of deformed 

pseudotachylyte (Fig. 2.2b). Since rupture surfaces, characterized by the deformed pseudotachylyte here, 

generate a higher number of healed cracks in their vicinity (e.g., Mitchell and Faulkner, 2009) due to 
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dynamic stress changes near the propagating rupture fronts (e.g., Poliakov et al., 2002; Andrews, 2005; 

Rice et al., 2005), the fluid inclusions in and near the pseudotachylyte-bearing rocks (within ~40 m from 

the core) are considered to originate from brittle co-seismic damage. 

2.6.2. Reliable Measure of Co-Seismic Fluid Inclusion Abundance 

The discrepancy in the number density results between the SEM-SE image analysis and the 

optical measurement (Figs. 2.7b and 2.7c) can be attributed to polishing defects and/or heterogeneous 3-D 

distributions of fluid inclusions. Polishing processes can create new cavities and/or erase preexisting pits 

(pores that had contained fluid inclusions) on thin-section surfaces, and the concentration of fluid 

inclusion along recrystallized grain boundaries may give rise to a heterogeneous distribution in 3-D 

within the thin-section. To examine these possibilities, I counted in-focus fluid inclusions from 

photomicrographs taken at different focal-plane depths. This sensitivity analysis shows fairly consistent 

values (difference of < 27 % of minimum number density in each sample) regardless of analysis areas 

from low to high number density (Fig. 2.9). Thus, the discrepancy between the SEM and optical results 

(difference of up to ~152 % of SEM data in the sensitivity analysis samples) comes mostly from polishing 

defects. The lower number densities for most samples in the SEM graph than in the optical results (Figs. 

2.7b and 2.7c) indicate that polishing eliminated pores on thin-section surfaces. However, both SEM and 

optical measurements provide an outer boundary of the high number density region at a similar location 

(~90 m from the core) and the same trend of low-high-low number density from the core outward. 

Therefore, the more efficient SEM analysis of fluid inclusion number density can be used to identify an 

outer damage-zone boundary (between high and low number density regions; see the next section) 

although the more laborious optical measurements appear to be more accurate. 

The lack of a low-high-low trend in the volume fraction data compared to the number density 

data (Figs. 2.7b, 2.7d and 2.8) implies that other mechanisms affected fluid inclusion during 

recrystallization after brittle co-seismic damage. Based on a similar trend of average fluid inclusion size 

to volume fraction with distance from the core in the mylonite (Figs. 2.7d and 2.7e), the observed trend in 

the volume fraction may be ascribed to fluid inclusion size rather than number density. Hollister (1990) 
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suggested that during dislocation creep, preferential leakage of H2O from fluid inclusions into the crystal 

lattice or grain boundaries can reduce the inclusion volume (and size). Assuming this is valid, then fluid 

inclusion volume fraction would be more sensitive than number density to viscous deformation, and thus 

the number density analysis would be the more reliable measure of fluid inclusion abundance. 

 

Figure 2.9. Sensitivity analysis of number density optically measured from photomicrographs taken at 

different focal-plane depths. 

 

 

2.6.3. Estimating Width of Off-Fault Damage in the Sandhill Corner Shear Zone 

Given that the shear zone core has the largest amount of deformed pseudotachylyate in the SCSZ 

(Figs. 2.2a and 2.2b; Price et al., 2012), co-seismic energy would likely have generated the highest 

abundance in fluid inclusion there, with continuous decrease away from the core. This pattern is similar to 

off-fault damage characteristics in the upper crust showing a logarithmic, exponential, or power decay in 

fracture density with distance from the fault core (e.g., Chester et al., 2005; Mitchell and Faulkner, 2009; 

Savage and Brodsky, 2011). However, in this case, the lower number density in the inner mylonite 

compared to the outer mylonite (Figs. 2.7b and 2.7c) can be explained by removal of fluid inclusions from 

grains through grain boundary migration during neo- and recrystallization (Kerrich, 1976; Drury and Urai, 

1990; Schmatz and Urai, 2011). Multiple stages of recrystallization during post- and inter-seismic periods 

can progressively remove fluid inclusions contributing to the drop in abundance near the core. Another 
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potential mechanism for removing fluid inclusion is for migrating grain boundaries to drag inclusions to 

the mica-rich phase boundaries adjacent to the quartz aggregates. Once the grain boundaries carrying 

fluid inclusions touch phase boundaries, the fluid inclusions are lost and no longer able to be reintroduced 

to the recrystallizing quartz aggregate. This process may partially explain the variations of number 

density in the five or six quartz domains of each sample (Figs. 2.7b and 2.7c). If quartz domain thickness 

is considered as a proxy for its strain and age (acknowledging the possibility that quartz domains initially 

formed with varying thickness), the positive correlation between number density and domain thickness 

(Fig. 2.10) may indicate that the domain thinning by strain effectively removes brittle damage-induced 

fluid inclusions from quartz domains. 

In summary, post- and inter-seismic recrystallization probably decreased the number of fluid 

inclusions more effectively in the almost fully recrystallized inner shear zone than the outer part of the 

mylonite, and thus the trend of low-high-low fluid inclusion number density with distance from the core 

may be characteristic of strike-slip faults near the base of the seismogenic zone (Fig. 2.11). Based on my 

data and interpretation, the minimum width of off-fault damage in the SCSZ can be taken as the boundary 

between high and low number density regions (~90 m from the core). A conceptual model of time-

dependent fluid inclusion abundance in quartz during an earthquake cycle is proposed in Fig. 2.11. 
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Figure 2.10. Plot between quartz domain thickness and optical number density of fluid inclusion (FI). 

Samples 51 and 201 have low and high abundance, respectively. 

 

Figure 2.11. Proposed evolution model of fluid inclusion abundance during an earthquake cycle near the 

base of the seismogenic zone. Before an earthquake (t0) in the shear zone core, uniform fluid inclusion 

abundance is assumed across the fault/shear zone. A co-seismic event (t1) produces a highest abundance 

of fluid inclusion in the core and its continuous decrease away from the core, due to a gradient in fracture 

density. During post- and inter-seismic periods (t2 and t3), more strain and recrystallization in the inner 

part of damage zone near the core remove more effectively fluid inclusions from quartz domains than in 

the outer damage zone. Consequently, a relatively large quantity of fluid inclusions is survived in the 

outer damage zone with time. From this, a minimum (min.) width of off-fault damage zone can be 

estimated (from the core to the region with the highest fluid inclusion abundance). 
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2.6.4. Implications of Off-fault Damage near the Base of the Seismogenic Zone 

This geological study to assess the width of off-fault damage in deeply exhumed strike-slip faults 

with large-displacement demonstrates that a ~90 m wide co-seismic damage zone extends to the base of 

the seismogenic zone (where quartz deforms viscously at 400–500 °C during the inter-seismic period). 

Such deep penetration of damage in mature strike-slip faults would facilitate transient fluid flow and 

rheological changes by modifying grain size (e.g., Chester et al., 2005), permeability (e.g., Mitchell and 

Faulkner, 2008), and thermal structure (e.g., Morton et al., 2012; Ben-Zion and Sammis, 2013) within and 

surrounding the fault/shear zone core. The estimated width of off-fault damage corresponds to the outer 

edge of the mylonite (Fig. 2.11), and this correlation between co-seismic damage and mylonitization 

suggests that the inner mylonite, containing fully recrystallized quartz domains, in the immediate vicinity 

of the shear zone core (Fig. 2.2b) results from intensive co-seismic fracturing (possibly pulverization). 

This implies that off-fault damage facilitates grain size reduction of quartz by dynamic recrystallization 

and thus acts as a significant factor contributing to strain localization near the base of the seismogenic 

zone, along with deformed pseudotachylyte promoting grain-size-sensitive creep (Price et al., 2012). 
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CHAPTER 3 

SEISMOGENIC CYCLES, QUARTZ MICROSTRUCTURES, AND LOCALIZATION AT THE 

FRICTIONAL-TO-VISCOUS TRANSITION IN AN EXHUMED, SEISMOGENIC, STRIKE-

SLIP FAULT, MAINE, USA 

 

3.1. Chapter Abstract 

The frictional-to-viscous transition (FVT) in the vicinity of seismogenic faults experiences co-

seismic fracturing/frictional sliding followed by post- and inter-seismic viscous creep. A more complete 

understanding of deformation processes at the FVT is important since the FVT as the strongest part in the 

crust controls the strength of tectonic plates and the mechanical decoupling between the upper and lower 

crust. Microstructural analysis of monomineralic quartz aggregates is performed on the Sandhill Corner 

shear zone in an ancient, seismogenic, strike-slip fault system in the northeastern Appalachians that was 

active at FVT depths (400–500 °C). The shear zone core with abundant pseudotachylyte occurs at the 

contact between quartzo-feldspathic (QF) and schist units, and a previous study reported a brittle co-

seismic damage zone (~90 m wide) in the QF unit, which corresponds to mylonites. Trends in 2-D grain 

size, crystallographic preferred orientation (CPO), bulk aspect ratio, and misorientation data of the QF 

unit from electron backscatter diffraction and image analysis show that quartz in the proximity of the core 

has a fine grain size (down to 8 μm), a weak CPO pattern, equant shape, and randomization in the 

misorientation of randomly selected pixel pairs (“random-pair”), which are indicative of grain-size-

sensitive creep. The calculation of fabric intensity index (M-Index) shows a progressive weakening of the 

CPO toward the core in the mylonites. Within the inner shear zone (~40 m wide) containing fully 

recrystallized quartz domains, the microstructural parameters are unusual, with near-random random-pair 

misorientations but a CPO pattern clearly indicative of basal <a> slip. The data confirm and build new 

evidence for the model that during the seismic cycle, quartz grains within the inner shear zone 

experienced cycles of (a) extensive fracturing (possibly pulverization) by co-seismic energy, (b) grain-

size reduction by neocrystallization followed by post-seismic viscous creep dominantly through grain-
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size-sensitive processes, and (c) further recrystallization with progressive grain growth, transitioning to 

basal <a> slip. This suggests that such micromechanical cycle facilitates long-term localization and 

stabilization of the shear zone at FVT depths. On the other hand, the schist unit neither has fully 

recrystallized quartz nor the microstructural characteristics of the inner shear zone except the shear zone 

core (~5 m wide). The asymmetrical spatial extent of the quartz microstructures indicative of transient 

extensive damage around the core may indicate a strongly preferred rupture propagation direction, 

commonly observed in strike-slip faults with bimaterial interfaces. 

3.2. Chapter Introduction 

Mature fault zones are strongly localized by strain weakening (e.g., Ben-Zion and Sammis, 2003). 

Processes of strain localization at various depths are a key factor for understanding crustal-scale fault 

evolution and rheology of the continental crust associated with earthquake cycles. The frictional-to-

viscous transition (FVT; ~10–20 km deep) between the brittle upper crust and the viscous lower crust is 

the strongest part of the continental lithosphere along with the upper-most part of the mantle (Brace and 

Kohlstedt, 1980; Kohlstedt et al., 1995; Handy et al., 2007). Thus, a more complete understanding of 

deformation processes at the FVT is important owing to its control over the strength of tectonic plates and 

the mechanical decoupling between the upper and lower crust. However, well-preserved microstructural 

records from this depth are rarely preserved in exhumed faults because of progressive deformation and 

metamorphism during exhumation. 

Quartz is among the most important constituents of the Earth’s continental crust because of not 

only its high volume proportion but also its significant role in controlling the crustal rheology (e.g., 

Lowry and Pérez-Gussinyé, 2011). The mechanisms by which quartz deforms at depth are dependent on 

transient fluctuations in stress and strain-rate associated with seismic cycles (e.g., Handy et al., 2007). At 

the FVT, where temperatures exceed the onset of quartz plasticity, quartz deforms viscously by, for 

example, dislocation creep in long, inter-seismic periods, but can also be fractured during co-seismic 

rupture owing to transiently high stress and strain-rate. After the rupture ceases, or during post-seismic 

stress relaxation, the fractured quartz can experience neocrystallization (nucleation and growth; Trepmann 
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et al., 2007) and recrystallization and, as a result, exhibit smaller grain size than the parent quartz. This 

grain-size reduction acts as a strain weakening process contributing to localization in mid-crustal fault 

zones. 

We investigate deformation microstructures in monomineralic quartz aggregates from the 

Sandhill Corner shear zone (SCSZ), a strand of the Norumbega fault system (an ancient large-

displacement, subvertical strike-slip fault system in the northeastern Appalachians) that has been 

exhumed from FVT depths (400–500 °C) to characterize in greater detail the previously proposed 

architecture that divides the shear zone into an outer and inner shear zone (Johnson et al., 2009; Price et 

al., 2012, 2016). The SCSZ has mutually overprinting pseudotachylite and mylonite (Price et al., 2012), 

which is clear geologic evidence for earthquake cycles at the FVT (e.g., Hobbs et al., 1986; Handy et al., 

2007). Chapter 2 also demonstrated that a brittle co-seismic damage zone with at least ~90 m width exists 

in the SCSZ. Although Price et al. (2016) showed some quantitative data of quartz such as 

crystallographic preferred orientations (CPO) and misorientations from the SCSZ, there has been no 

systematic study on deformation mechanism of each characteristic zone (e.g., extensively damaged zone, 

less damaged zone, and undamaged zone) in FVT shear zones. I provide quartz data of grain size, fabric 

intensity index (M-Index), shape preferred orientation (SPO) as well as CPO and misorientations from the 

SCSZ core to the host rocks, including additional analyses with finer sample spacing than reported in 

Price et al. (2016). Using the quantitative data, I discuss deformation processes of quartz in the SCSZ 

associated with the earthquake cycle. 

3.3. Geologic Setting 

The SCSZ is the longest continuous strand in the Norumbega fault system (Fig. 3.1; Johnson et 

al., 2009; Price et al., 2012, 2016). The Norumbega fault system is a long-lived, Paleozoic, large-

displacement, right-lateral strike-slip fault system in the northeastern Appalachians (Ludman and West, 

1999), and seismic reflection data reveal its penetration down to the Moho (Doll et al., 1996). Currently 

exposed rocks in the Norumbega are upper amphibolite facies in the southwest to sub-greenschist facies 

in the northeast because of different erosion levels (Ludman and West, 1999). Thus, the Norumbega is an 
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ancient analogue to active tectonic-scale strike-slip fault systems at mid-crustal depths such as the San 

Andreas fault. The SCSZ (~230 m wide in the study area) located in the central part of the Norumbega 

fault system contains mutually overprinting pseudotachylyte and mylonite (Price et al., 2012), indicating a 

seismically active zone at FVT depths (Handy et al., 2007). The shear zone inside the quartzo-feldspathic 

Cape Elizabeth Formation has its core at the contact with the schistose Crummett Mountain Formation in 

the study area (Figs. 3.1 and 3.2a; Grover and Fernandes, 2003; West and Peterman, 2004; Price et al., 

2016). The Cape Elizabeth Formation as a parent rock of the quartzo-feldspathic (QF) unit in the SCSZ is 

a quartz-plagioclase-biotite±garnet±sillimanite metasedimentary rock that underwent partial 

migmatization and upper amphibolite-facies metamorphism (Grover and Fernandes, 2003; West and 

Peterman, 2004). The Crummett Mountain Formation (West and Peterman, 2004; equivalent to Scarboro 

Formation of Grover and Fernandes, 2003) as a parent rock of the schist unit in the other side of the SCSZ 

is a quartz-plagioclase-garnet-staurolite-andalusite mica schist with discontinuous, complexly-folded 

quartz veins. The SCSZ is characterized by a ~200 m wide protomylonite to mylonite in the QF unit, a ~5 

m wide ultramlonite in the shear zone core, and a ~25 m wide highly-sheared schist in the schist unit (Fig. 

3.2a; Price et al., 2016). The lineations of previously and newly collected samples in the study area that 

have subvertical foliations are parallel to the strike of the SCSZ (Fig. 3.1). The mylonitization generally 

increases toward the shear zone core, which is demonstrated by the abundance of porphyroclasts of 

feldspars, garnet, and muscovite with respect to distance from the core (Fig. 3.2b). Chapter 2 reported a 

brittle co-seismic damage zone (~90 m wide) in the QF unit, which corresponds to mylonites (Fig. 3.2b). 

Monomineralic aggregates of quartz embedded in mica-rich matrix that we analyzed from the 

SCSZ are deformed or folded quartz veins or ribbons. However, it is unclear that the quartz domains 

originally came from felsic layers of the QF host rock in the QF unit or quartz veins formed under higher-

temperature conditions and/or during lower-temperature deformation directly related to seismic cycles in 

both units (Price et al., 2016; Chapter 2). Quartz in the host rocks shows grain boundary migration (GBM) 

recrystallization, but SCSZ quartz was recrystallized dominantly by subgrain rotation (SGR) (Fig. 3.2c; 

Price et al., 2016). The degree of SGR recrystallization increases toward the core (Fig. 3.2c). The 
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mylonitic deformation under seismic conditions at FVT depths occurred at temperatures of 400–500 °C, 

overprinting previous higher-temperature microstructures preserved in the host rocks outside the shear 

zone (Price et al., 2016). 

 

Figure 3.1. Geologic setting of Sandhill Corner shear zone. 
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Figure 3.2. Sample locations and quartz microstructures. (a) Sample locations and rock types. (b) Area 

percentage of clast and pseudotachylyte (PST) with respect to distance from the shear zone core. The 

modal percentage of clast is calculated except quartz domains. The modal clast generally decreases from 

each host rock toward the core. Note much higher occurrence of PST in the QF unit than the schist. The 

clast and PST data include the previous studies (Price et al., 2012, 2016). The boundaries and core of the 

shear zone are marked by dashed lines, connected to (a). A ~90 m wide transient co-seismic damage zone 

exists in the QF unit (Chapter 2). (c) Quartz photomicrographs (cross-polarized) showing an increase in 

recrystallization toward the core. 

 

 

3.4. Possible Evidence for Co-Seismic Damage 

Quartz in the FVT does not record direct evidence of co-seismic brittle damage such as 

microfracturing due to post- and inter-seismic viscous deformation and dynamic recrystallization. 

However, the SCSZ abounds with well-preserved microstructural evidence for what I interpret as co-

seismic damage such as deformed pseudotachylyte and shattered grains of brittle minerals. These 

microstructures are commonly interpreted to reflect cycles of co-seismic stress loading and post- or inter-

seismic stress relaxation. 
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3.4.1. Deformed Pseudotachylyte 

Pseudotachylyte is a glassy or very fine-grained rock, interpreted as quenched frictional melt, and 

most widely accepted as evidence for earthquake slip in ancient faults (Sibson, 1975; Kirkpatrick and 

Rowe, 2013). Almost pristine pseudotachylyte and pseudotachylyte-derived ultramylonite are found in 

the SCSZ (Price et al., 2012). New samples collected from the inner shear zone in the study area also have 

deformed (Fig. 3.3a) and less-deformed pseudotachylyte (Fig. 3.3b); each cuts porphyroclast of 

plagioclase and fragmented garnet, respectively. The less-deformed pseudotachylyte contains wall-rock 

fragments with a wide range of size (Fig. 3.3b). The ~5 m wide shear zone core with ultramylonite 

derived from pseudotachlyte (Fig. 3.2a) is considered as evidence for a long history of repeated co-

seismic brittle and inter-seismic viscous deformation at the FVT (e.g., Sibson, 1980; Passchier, 1982; 

Hobbs et al., 1986; Price et al., 2012). The abundance of deformed pseudotachylyte in the SCSZ generally 

increases toward the core (Price et al., 2012), but being asymmetrically distributed between the QF and 

schist units (Fig. 3.2b). 
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Figure 3.3. Possible evidence for co-seismic damage. (a) Pseudotachylyte (PST) from the QF mylonite 

(sample BB44). (b) PST from the highly sheared schist (sample BB54) (c) Shattered garnet porphyroclast 

from the shear zone core (sample 41). (d) Shattered plagioclase porphyroclast from the QF mylonite 

(sample BB16). pl, plagioclase; grt, garnet; qtz, quartz; PPL, plane-polarized light, XPL, cross-polarized 

light, Reflect, reflected light; BSE, backscattered electron; CL, cathodoluminescence. 
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3.4.2. Shattered Mineral Grains 

Co-seismic loading can shatter mineral grains such as garnet and feldspar porphyroclasts (e.g., 

Trepmann and Stöckhert, 2002; Austrheim et al., 2017; Sullivan and Peterman, 2017). The SCSZ core 

and inner shear zone have fragmented garnet and shattered feldspars (Figs 3.3c and 3.3d). Figure 2c is 

backscattered electron (BSE) image of a shattered garnet grain with fragments down to the sub-micron 

scale from the core, showing shear displacement. Figure 3.3d shows optical and cathodoluminescence 

(CL) images of a shattered plagioclase grain from the inner shear zone. Optically, the grain shows two or 

three generations of cross-cutting quartz-filled cracks, and in the CL image, thin line networks are 

extensive tensile microcracks in plagioclase, which are overprinted by quartz-filled cracks (Fig. 3.3d). 

3.5. Analytical Methods 

Samples collected from the QF host rock, the SCSZ, and the schist host rock (Fig. 3.2a) were cut 

perpendicular to local foliations and parallel to local lineations, which are sub-parallel to the contact 

between both units. Thin sections were polished mechanically with a 0.3 μm alumina suspension and 

chemically in a 0.02 μm colloidal silica suspension for at least an hour to remove surface damage. To 

investigate ‘unbiased’ deformation records in quartz accumulated during many seismic cycles, we 

analyzed a number of quartz veins and ribbons, if present, in a thin section, which have differently 

accumulated strains in a sample depending on their ages. Due to heterogeneous deformation on thin-

section scale (folding or different strain around porphyroclasts), analysis areas in quartz domains were 

determined avoiding fold hinges and proximity of porphyroclasts. Electron backscatter diffraction (EBSD) 

data were obtained on thin carbon coated samples to prevent electron charging, using the Tescan Vega II 

Scanning Electron Microscope equipped with an EDAX-TSL EBSD system at the University of Maine, 

USA. Simultaneous chemical analysis was performed via EDAX Genesis Energy Dispersive 

Spectroscopy to identify and filter other phases in and around quartz domains. Diffraction patterns were 

acquired using EDAX-TSL OIM Data Collection 5.31 software at an acceleration voltage of 20 kV, a 

beam current of ~6 nA, a 70° sample tilt, and high-vacuum conditions. EBSD data were collected with a 
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square grid at step size between 2 and 8 μm depending on average grain size. Raw indexing rates of 

quartz were >98 %. 

Post-processing of quartz EBSD data were conducted by EDAX-TSL OIM Analysis 5.31 

software based on confidence index (CI) and neighboring orientations to produce clean EBSD maps. 

Non- and poor-indexed pixels (CI < 0.1) were replaced with well-indexed neighboring pixels of CI > 0.1. 

The well-indexed pixels ranged between 62% and 96% of analyzed pixels. Grains in post-processing are 

defined by an internal misorientation <10° and a minimum grain size of 4 pixels. The cleaned EBSD data 

are used to present CPO and misorientation distribution, and calculate grain size, recrystallization fraction, 

and fabric strength (M-index; Skemer et al., 2005). Misorientation-angle distributions are derived from all 

neighboring pixels (“neighbor-pair”) and the same amount of randomly selected pixels (“random-pair”) as 

the neighboring pixels. For grain size calculation and CPO presentation, Dauphiné twins in quartz are 

removed, and they are applied to whole and recrystallized quartz. To determine recrystallized small grains, 

grain size distributions by area fraction are used, in which maximum size of recrystallized grain is 

selected before the second peak when showing bimodal distribution. Such separation between small 

recrystallized and large parent grains is confirmed in the EBSD maps based on their sizes and shapes. 

Grain size in grain size distributions is defined by equivalent circular diameter of measured grain area, but 

2-D average grain size of each quartz domain is calculated by the root mean square for use of 

paleopiezometer of Stipp and Tullis (2003). For pole figures, single average orientation per grain is 

plotted in equal area, upper-hemisphere projection, and their contouring is also presented by multiples of 

uniform distribution. In each pole figure, the local lineation (X) and the pole to the local foliation (Z) are 

oriented east-west and north-south, respectively. For SPO analysis, PAROR (Panozzo, 1983) and 

SURFOR (Panozzo, 1984) are used in calculating a bulk aspect ratio (long/short) of all grains in each 

quartz domain, and displaying their shape fabrics on a rose diagram, respectively. Before using PAROR 

and SURFOR programs, ‘pixelated’ grain boundary images from the EBSD maps are smoothed by a 

macro program (Jazy XY export header) in ImageJ (https://imagej.nih.gov/ij/). The programs PAROR, 

SURFOR, and the macro program are available at https://earth.unibas.ch/micro/. 

https://imagej.nih.gov/ij/
https://earth.unibas.ch/micro/
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3.6. Quartz Microfabrics across Sandhill Corner Shear Zone (SCSZ) 

This section focuses on the quantification of microstructure parameters (e.g., size and shape) and 

crystallographic orientation. The optical observation of quartz microstructure in the SCSZ is well 

described in Price et al. (2016). 

3.6.1. Grain Size and Recrystallization Fraction 

Host rocks of both QF and schist units have large quartz grains up to mm-scale, and the range of 

quartz grain size decreases to a few tens of micrometers toward the shear zone core (Fig. 3.4). Grain size 

distributions of recrystallized quartz in each sample follow a log-normal distribution (Fig. 3.4), which is 

typical for dynamically recrystallized tectonites (Ranalli, 1984). Average grain size of whole quartz 

(parent and recrystallized grains) in each quartz domain (Fig. 3.5a) reveals that the pattern of variation in 

grain size correlates to recrystallization fraction (Fig. 3.5c). With increasing recrystallization fraction 

toward the shear zone core, the average grain size of whole quartz also decreases. However, the average 

grain size of recrystallized quartz shows fairly uniform ranges of 13–38 μm and 18–51 μm, respectively, 

for the QF and schist units in the outer parts of the shear zone, but drops to 8–21 μm in the inner part of 

the shear zone within ~40 m of the core (Fig. 3.5b). Here I call the inner part of the SCSZ (~40 m wide 

around the core) an “inner shear zone”, containing fully recrystallized quartz domains, and the other parts 

of the SCSZ a “QF or schist outer shear zone”. Different data points at a same distance from the core in 

Fig. 3.5 represent different quartz domains in a thin section. The variations in recrystallized grain size and 

fraction from each sample reflect heterogeneous deformation or differently accumulated strain at the thin-

section scale. 
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Figure 3.4. Grain size distributions of whole and recrystallized quartz. Equivalent circular diameter of 

measured grain area is used as 2-D grain size here. 
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Figure 3.5. 2-D average grain size and recrystallized area fraction. The average grain size is calculated by 

the root mean square. (a) Average grain size of whole quartz. (b) Average grain size of recrystallized 

quartz. (c) Area fraction of recrystallized quartz. The inner shear zone (SZ) contains fully recrystallized 

quartz domains. 

 

 

3.6.2. Shape Preferred Orientation (SPO) 

The degree of SPO can be estimated by calculating a bulk aspect ratio of polycrystalline quartz 

aggregates. Fig. 3.6 shows preferred orientation of particles (PAROR) and of grain surfaces (SURFOR) 

presented as orientation distribution functions (i.e., length weighted rose diagrams) of long axes (defined 

by the projection normal to the shortest) and surface elements, respectively. The bulk aspect ratio is 

determined by the ratio of the maximum to the minimum of a projection curve in PAROR program (i.e., 1 

is equant shape, infinite is line) and is shown in Fig. 3.7 for all the samples. The QF host rock shows a 

relatively weak SPO (bulk aspect ratio of 1.2–1.4), but the mylonite in the outer shear zone displays high 

bulk aspect ratios up to ~2.5 for whole quartz due to very highly elongated parent grains (aspect ratio > 20) 

parallel to the foliation. The inner shear zone that contains fully recrystallized quartz has very weak SPO 

or equant grains (minimum bulk aspect ratio of ~1.1). The schist unit reveals similar trend to the QF rock 

for whole quartz; highest bulk aspect ratio of ~2.1 in the center of the highly-sheared schist decreases 
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toward the core and the schist host rock (bulk aspect ratio of ~1.4) (Fig. 3.7a). Recrystallized quartz in the 

outer shear zones has fairly uniform SPO around aspect ratio of ~1.8 with some variations (Fig. 3.7b). 

 

Figure 3.6. Surface (SURFOR) and particle (PAROR) orientation distribution functions. Bulk aspect 

ratio (long/short) is indicated for the particle fabric. 
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Figure 3.7. Bulk aspect ratio (long/short) from PAROR program. (a) Bulk aspect ratio of whole quartz. (b) 

Bulk aspect ratio of recrystallized quartz. 

 

 

3.6.3. Crystallographic Preferred Orientation (CPO) 

Host rock quartz and parent quartz in the SCSZ show a strong CPO with a c-axis maximum in the 

center or between the center and the peripheral of the pole figures (Fig. 3.8). The c-axis pole figures of 

recrystallized quartz in the outer shear zone display single or Type I crossed girdle fabrics (Schmid and 

Casey, 1986) (see the discrete pole figure plots in Fig. 3.8), but still have the same maximum orientations 

as the parent quartz (see the contoured pole figures). Fully recrystallized quartz domains in the inner shear 

zone have a c-axis maximum close to the foliation pole (Z) in the pole figures. I note that sample 76 in the 

inner shear zone exhibits wide scattering of crystallographic orientation in the discrete pole figure (Fig. 

3.8).  
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Figure 3.8. Contoured and discrete pole figures of quartz c-axis (0001) and a-axis (11-21). One point per 

grain is plotted. 

 

 

3.6.4. Misorientation Angle 

Fig. 3.9 describes histograms of neighbor-pair (correlated) and random-pair (uncorrelated) 

misorientations overlaid on theoretical random graph of quartz with a bin size of 5°. For recrystallized 

quartz, only random-pair profile is plotted to calculate fabric strength (see the next section). In neighbor-

pair profile of whole quartz, misorientation angles at <10° and the 60° peak indicate subgrain boundaries 
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and Dauphiné twinning, respectively (Wheeler et al., 2001). In the host rocks, both neighbor-pair and 

random-pair profiles have low fraction at 10°–40° and >70°. In the outer shear zones, with increasing 

strain and recrystallization toward the inner shear zone, the fraction at low angles (10°–40°) for both 

neighbor-pair and random-pair profiles increases but remains low at high angles (>70°), making an 

increased deviation of random-pair profile from the theoretical random (Fig. 3.9). The fully recrystallized 

quartz in the inner shear zone shows random-pair profile close to the theoretical random and neighbor-

pair misorientation with high fraction at high angles (>70°) (Fig. 3.9). 
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Figure 3.9. Misorientation angle histogram plots. They show the neighbor-pair (red dotted line), random-

pair (blue solid line), and theoretical random (green dashed line) profiles. 
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3.6.5. Fabric Strength 

Fabric strength is measured by the M-index (Skemer et al., 2005), which is defined as the 

difference between the observed random-pair misorientation and the theoretical random misorientation, 

and thus indicates the degree of randomness in the crystallographic orientation fabric (0 is random and 1 

is single orientation). The plots of M-index values with distance from the shear zone core exhibits a trend 

(Fig. 3.10) although there are variations at same distances, resulting from different rock samples or 

different quartz domains in the same thin section. The M-index values in both the whole and 

recrystallized quartz plots (Fig. 3.10) maintain intermediate values in the protomylonite, and then 

progressively decrease through the mylonite toward the core. The inner shear zone has low M-index 

values of <0.1, indicating nearly random crystallographic orientations. For the whole quartz graph (Fig. 

10a), the fabric strength near the boundary between the protomylonite and the mylonite shows higher 

values than the host rock. In the schist unit, there is a wide range of M-index values. 

 

Figure 3.10. Fabric strength M-index. In M-index, 0 and 1 mean random and single orientation, 

respectively. (a) M-index of whole quartz. (b) M-index of recrystallized quartz. 
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3.7. Discussion 

3.7.1. Quartz CPO and Misorientation Evolution and Deformation Mechanisms 

The strong clustering of c-axis in the center or between the center and the peripheral of the pole 

figures for the host rock quartz and parent quartz in the SCSZ (Fig. 3.8) indicates prism <a> or rhomb 

<a> slip active at high-temperature, predating the SCSZ development (Price et al., 2016). In the host rock 

misorientation plots (Fig. 3.9), the low fractions of both neighbor-pair and random-pair profiles at 10°–40° 

and >70° are explained by GBM recrystallization because SGR recrystallization and dislocation creep 

produce high and low fractions, respectively, at the low (10°–40°) and high (>70°) misorientation angles. 

In the outer shear zone, the single or Type I crossed girdle fabrics (Fig. 3.8), formed by spreading of 

recrystallized quartz c-axes from the parent quartz, indicate the activation of different dominant slip 

system (basal <a> slip) during SGR recrystallization. Basal <a> slip is favored at lower temperature than 

prism <a> or rhomb <a> slip of the host rock and SCSZ parent quartz owing to its lower critical resolved 

shear stress than the other two slip systems at the lower temperature (Hobbs, 1985). The SGR 

recrystallization in the outer shear zone is also demonstrated by the CPO patterns with similar maximum 

orientations between recrystallized and parent quartz (Fig. 3.8) and the misorientation profiles having 

higher fraction at low angles (10°–40°) for both neighbor-pair and random-pair profiles than the host rock 

(Fig. 3.9). Dislocation creep during the SGR recrystallization, as a dominant deformation mechanism, 

maintains low fraction at high angles (>70°) for both neighbor-pair and random-pair profiles (Fig. 3.9). 

On the other hand, the inner shear zone shows basal <a> slip with a c-axis maximum close to the foliation 

pole (Z) in the pole figures (Fig. 3.8) but high fraction at high angles (>70°) for both neighbor-pair and 

random-pair profiles (Fig. 3.9), which makes flat neighbor-pair profile and near-random random-pair 

profile. The flat neighbor-pair profile indicates that adjacent grains are not related by a 

crystallographically controlled processes (dislocation creep), and thus can result from grain-size-sensitive 

deformation such as grain boundary sliding (Price et al., 2016). This is supported by the near-random 

random-pair profile and very weak fabric strength (e.g., Fliervoet et al., 1997; Okudaira et al., 2010). 

Typical microstructural conditions and effect of grain boundary sliding include (1) small grain size (<10 
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μm), (2) equant, polygonal shapes, (3) smooth grain boundaries, (4) weakening of CPO, and (5) 

randomization of grain boundary misorientation axes (e.g., White, 1979; Behrmann, 1985; Jiang et al., 

2000; Bestmann and Prior, 2003; Halfpenny et al., 2006). The inner shear zone (~40 m wide) with fully 

recrystallized quartz domains has all of these microstructural features indicative of grain boundary sliding 

(e.g., minimum grain size of 8 μm, minimum bulk aspect ratio of 1.1, and wide scattering of 

crystallographic orientation in sample 76). 

Another factor to consider in determining deformation mechanism of the SCSZ is the effect of 

brittle co-seismic damage, which was present throughout the mylonite (Fig. 3.2b; Chapter 2), on post-

seismic viscous deformation. The widespread occurrence of deformed pseudotachylyte in the inner shear 

zone with its highest modal percentage at the core (Fig. 3.2b) suggests different impacts of the transient 

brittle damage on different parts of the shear zone since co-seismic fracture density decreases away from 

rupture surface (deformed pseudotachylyte). Based on the division of the inner and outer shear zones and 

the spatial limit of damage zone, corresponding to the mylonite zone, I divide the QF unit in the SCSZ 

into three regions (Fig. 3.11): (a) undamaged region (protomylonite), (b) less damaged region (outer 

mylonite), and (c) extensively damaged region (inner mylonite and ultramylonite). Each region 

experiences different deformation processes during earthquake cycles. While the undamaged region 

deforms only viscously along with SGR recrystallization (dislocation creep) during the seismic cycle, the 

extensively damaged region undergoes extensive fracturing (possibly pulverization) in the co-seismic 

period followed by neo- and recrystallization during post-seismic stress relaxation (Trepmann et al., 

2007), leading to extreme grain-size reduction and thus grain-size-sensitive flow (Fig. 3.11b). The 

extensive fracturing and then nucleation randomized random-pair misorientation profile in the inner shear 

zone, which is distinguished from the outer shear zone. The less damaged region is considered to have 

mixed deformation styles of the undamaged and extensively damaged regions, but exhibits dislocation 

creep fabrics (e.g., misorientation profile) as a dominant deformation mechanism in the inter-seismic 

period due to low co-seismic fracture density (Fig. 3.11b). 
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Figure 3.11. Deformation processes in three subdivisions during the earthquake cycle. (a) Three 

subdivisions indicated in the SCSZ. (b) Deformation processes of quartz represented by schematic 

diagrams showing co-seismic fracturing, post-seismic recrystallization and nucleation, and inter-seismic 

further viscous deformation. Random-pair misorientation profiles are added for indication of deformation 

mechanisms. 

 

 

3.7.2. Comparison between Schist and QF units 

The SCSZ shows the asymmetrical occurrence of deformed pseudotachylyte and quartz 

microfabrics (e.g., near-random random-pair profile and very low M-index values) indicative of transient 

high stresses around the shear zone core (Figs 3.2b and 3.10). In the QF unit, the pseudotachylyte-rich 

inner shear zone with very low M-index values is ~40 m wide. On the other hand, the schist unit shows 

only local distribution of pseudotachylyte and has very low M-index values only within the core. Such 

asymmetry is commonly observed around mature strike-slip faults where different rock types are 

juxtaposed (e.g., Dor et al., 2006; Mitchell et al., 2011; Rempe et al., 2013) since a preferred rupture 

propagation direction causes the greatest damage in the tensile quadrant of the rupture tip (e.g., Ben-Zion 

and Shi, 2005; Xu and Ben-Zion, 2017). If the strong asymmetry in development of pseudotachylyte and 

quartz microfabrics reflects rupture dynamics, then the right-lateral slip along the northeast-striking of the 
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SCSZ (Fig. 3.1) would indicate a strongly preferred rupture propagation direction through the study area 

toward the southwest. 

3.7.3. Correlation with Shallow Crustal Levels 

The detailed studies across the SCSZ presented in Chapters 2 and 3 provide a cross-sectional 

view of a mature strike-slip fault near the base of the seismogenic zone, which can be correlated with a 

fault structure at the near surface. Figure 3.12 compares the SCSZ structure in the QF unit as a strike-slip 

fault at 10–15 km depth to the San Andreas fault structure at the surface (based on Rempe et al., 2013). 

The San Andreas fault consists of a 50 cm wide fault core, a 50 m wide pulverized zone, and a 50 m wide 

fractured zone. Clear correlations can be drawn from the boundary between the intact granite and the San 

Andreas fault zone to the boundary between the QF host rock and the SCSZ as well as from the fault core 

to the shear zone core (Fig. 3.12). However, the outer mylonite zone (~50 m wide) of the SCSZ, or the 

less damaged zone, may also be comparable to the fractured zone at the surface in terms of co-seismic 

damage based on the fluid inclusion abundance study (Chapter 2). The inner shear zone (~40 m wide) of 

the SCSZ, or the extensively damaged zone (fully recrystallized mylonite and ultramylonite), can 

correlate with the fault core and pulverization zone at the surface (Fig. 3.12). This proposed correlation of 

the SCSZ structure with the modern fault observed at the surface highlights extending of a 40–50 m wide 

pulverization zone, within a 90–100 m wide damage zone, throughout the entire depth of the seismogenic 

zone in mature strike-slip faults. This in turn has important implications for transient fluid flow and 

rheological changes during earthquake cycles due to modification of permeability (e.g., Mitchell and 

Faulkner, 2008) and thermal structure (e.g., Morton et al., 2012; Ben-Zion and Sammis, 2013) within and 

surrounding the fault/shear zone core. 
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Figure 3.12. Proposed correlation between the near surface and FVT faults. 

 

 

3.8. Conclusions 

(1) Quartz misorientation angle distributions and fabric strength (M-index) provide valuable information 

for deciphering the complex deformation processes during the earthquake cycle at the FVT. 

(2) Within the inner SCSZ (~40 m wide), extensive co-seismic damage (pulverization) affects dominant 

viscous deformation mechanism in post- and inter-seismic periods, unlike the outer shear zone 

showing dislocation creep fabrics. Cyclic grain-size reduction by extensive damage keeps quartz in 

the grain-size-sensitive regime. This micromechanical cycle facilitates long-term strain localization 

(weakening) and stabilization of the shear zone at FVT depths. 

(3) The asymmetrical spatial extent of the deformed pseudotachylyte and quartz microfabrics indicative 

of transient extensive damage around the SCSZ core may suggest a strongly preferred rupture 

propagation direction. 
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CHAPTER 4 

EFFECT OF CYLINDRICAL FOLDS ON SEISMIC ANISOTROPY IN THE MIDDLE AND 

LOWER CONTINENTAL CRUST 

 

4.1. Chapter Abstract 

Folds are one of the most common tectonic structures developed in deformed rocks, especially of 

orogenic belts, and should be considered to link observed seismic anisotropy with middle-to-lower crustal 

deformation since they rotate existing rock fabrics such as foliation, lineation, and crystal lattice-preferred 

orientation and, as a result, modify intrinsic seismic properties of the rocks. For instance, where the length 

scale of seismic waves is much larger than the scale of a fold structure, the bulk elastic stiffness of the 

fold can be obtained by averaging the local stiffness tensors of a representative rock rotated along the 

structure. New tensor formulations via the Voigt and Reuss averages, separating the bulk fold stiffness 

into a geometry tensor and the local rock stiffness, allow efficient and direct investigation of how fold 

geometry affects seismic properties. To validate the methodology, the results are compared to a precise 

numerical solution such as asymptotic expansion homogenization. We analytically and numerically 

compute the geometry tensors for different types of cylindrical folds such as sinusoidal, chevron, 

parabolic, box and cuspate. The bulk fold stiffness can have different symmetry from the local rock 

stiffness. The seismic velocity is highly sensitive to the fold orientation and morphology, and hence the 

seismic anisotropy of a fold depends on limb angle and hinge shape. This study contributes to not only 

understanding the kinematics of in-situ crustal deformation from real seismic observables owing to close 

relationship between fold orientation and flow kinematics, but also better interpreting mantle dynamics 

based on teleseismic waves passing through orogenic belts. 

4.2. Chapter Introduction 

Seismic anisotropy, or the dependence of seismic velocity on the direction of wave propagation 

and polarization, is observed throughout the earth and has been used to interpret the earth’s dynamic 

processes. In the upper crust, seismic anisotropy due to aligned dry or fluid-filled cracks may be 
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indicative of principal stress orientations (e.g., O'Connell and Budiansky, 1974; Crampin, 1981; Crampin 

and Chastin, 2003). Upper mantle seismic anisotropy caused by deformation-induced lattice-preferred 

orientation (LPO; also known as crystallographic preferred orientation) of anisotropic minerals may be a 

direct indicator of convective flow and plate tectonics (e.g., Hess, 1964; Silver, 1996; Savage, 1999; 

Karato et al., 2008). Recently, seismic anisotropy in the middle and lower continental crust has been 

studied as a tool to assess and interpret tectonic deformation and metamorphism (e.g., Christensen and 

Mooney, 1995; Weiss et al., 1999; Godfrey et al., 2000; Okaya and Christensen, 2002; Mahan, 2006; 

Meissner et al., 2006; Tatham et al., 2008; Lloyd et al., 2009, 2011a, 2011b; Dempsey et al., 2011; Ward 

et al., 2012). Because microcracks are closed below about 6–10 km depth (e.g., Siegesmund et al., 1989; 

Kern et al., 2008), LPO of constituent minerals is considered the main source of seismic anisotropy in the 

middle to lower crust (e.g., Mainprice and Nicolas, 1989). LPO is typically produced by dislocation creep 

and/or rigid body rotation during plastic and viscous deformation (e.g., Hobbs et al., 1976, chapter 2; 

Nicolas and Poirier, 1976; Wenk, 1985; Mainprice and Nicolas, 1989), but may also be developed by 

preferential dissolution-precipitation (e.g., Bons and den Brok, 2000; Imon et al., 2004). Thus, seismic 

anisotropies resulting from LPO can be used to better understand the kinematics and dynamics of crustal 

deformation and metamorphism. 

Existing methodologies for calculating rock anisotropy employ petrophysical or thin-section-

based measurements on the scale of rock samples. Rock fabrics such as foliations and lineations are 

pervasively developed in orogenic belts and profoundly impact anisotropy. Larger-scale structures such as 

folds, domes and shear zones that reorient existing foliations and lineations can also profoundly affect the 

bulk macroscale anisotropy, and should therefore be considered when interpreting seismic anisotropy as a 

proxy for tectonic deformation (Okaya et al., 2018). Of the larger-scale structural geometries, folds are 

very common in orogenic belts and shear zones, ranging from millimeter to multi-kilometer scales. Okaya 

and McEvilly (2003) used synthetic seismic experiments to show that material tilt associated with 

macroscale folding can produce strong effects on seismic wave propagation. Bleibinhaus and Gebrande 

(2006) interpreted seismic anisotropy observed within the Tauern Window of the Eastern Alps to be 
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generated by folded foliations. Naus-Thijssen et al. (2011a) used electron backscatter diffraction (EBSD) 

measurements and a novel new computational method for calculating anisotropy to show that microscale 

folding (crenulation) of a mica-rich foliation leads to a strongly muted seismic anisotropy. These studies 

have shed some light on the importance of folding in the development or modification of seismic 

anisotropy, setting the stage for a more systematic investigation of how macroscale fold geometries 

influence anisotropy, which is the topic of the current study. 

The treatment of a macroscale structure is dependent on its size relative to the seismic wavelength. 

In instances where the seismic wavelength is much larger than the structure, the analysis is greatly 

simplified since a single bulk stiffness tensor can be used by treating the structure as a homogeneous 

anisotropic medium, or “effective medium” that has the same seismic response as a complex earth volume 

of interest (Fig. 4.1). This treatment allows relatively simple calculation of wave speeds for fold structures 

with various hinge shapes and limb angles. This study uses the effective medium theory, which is valid 

only when the seismic wavelength (λ) is much larger than the scale (L) of heterogeneity, or anisotropic 

structure, L << λ (e.g., Backus, 1962; Babuška and Cara, 1991, chapter 2; Mavko et al., 2009; Okaya et al., 

2018). If a body wave from an earthquake at regional distance has a 1 km wavelength, for example, the 

seismic velocities in fold structures at scales up to ~100 m could be predicted by the effective medium 

theory. In this case, the wave is influenced by the bulk elastic properties of the fold volume containing 

fold limbs and hinges and its bulk anisotropy can be estimated by averaging methods of local elastic 

properties such as the Voigt and Reuss bounds (Voigt, 1928; Reuss, 1929). Although modern numerical 

homogenization methods can compute effective media with complex structures at various scales (e.g., 

Guedes and Kikuchi, 1990; Capdeville and Marigo, 2007; Capdeville et al., 2010a, 2010b; Guillot et al., 

2010; Vel and Goupee, 2010; Naus-Thijssen et al., 2011b; Vel et al., 2016), they requires still 

considerably higher computational cost (time), compared to the methodology presented in this study. 

Here the fold volume that behaves as an effective homogeneous medium is called “structural effective 

medium,” or EMS. 
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Okaya et al. (2018) presented the concept of EMS and structural geometries to be considered in 

the crust. They developed a new tensor formulation of the EMS stiffness via the Voigt average to 

incorporate local rock stiffness tensors rotated by larger-scale structures, which has an algebraic 

separation of the EMS stiffness into two components – the local rock stiffness and what they call a 

“structural geometry operator”. This separation allows one to directly investigate how geometry has an 

impact on seismic wave velocities and anisotropies. They used sinusoidal cylindrical folds to demonstrate 

the effect of the macroscale structures on seismic properties. However, other common fold types such as 

chevron and parabolic should be considered, and how the shape of fold hinge affects seismic anisotropy 

need to be investigated to delimit the variations of seismic properties depending on fold morphology. In 

addition, a comparative examination between homogenization techniques for fold EMS is required since 

different homogenization may result in a significant variation of predicted seismic velocity. 

In this study, we compute the structural geometry operators of a full family of single-layered 

cylindrical folds (e.g., Fig. 4.1a), including sinusoidal, chevron, parabolic, box and cuspate, via the Voigt 

and Reuss averages, and systematically investigate their influence on seismic anisotropy as functions of 

both limb angle and fold type. The results are also compared to one of the modern numerical 

homogenization methods, asymptotic expansion homogenization (e.g., Vel and Goupee, 2010; Naus-

Thijssen et al., 2011b; Vel et al., 2016). This comparison provides the validation and usefulness of my 

methodology in studying how the morphological change of fold consisting of a rock affects the magnitude 

and symmetry of seismic anisotropy with markedly reduced computational cost. The estimation of the 

rock stiffness at hand-specimen scale has been well studied via an ultrasonic pulse transmission technique 

(e.g., Godfrey et al., 2000) or homogenization from EBSD-based LPO and single-crystal elastic 

parameters (e.g., Lloyd and Kendall, 2005). Thus, we focus on how larger-scale fold geometries modify 

the seismic properties of a given rock that makes up single-layered folds. We then discuss how the EMS 

can be expanded to multi-layered folds (e.g., Fig. 4.1c). 
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Figure 4.1. Schematic diagrams illustrating 3-D cylindrical folds and the concept of effective medium. (a) 

A single-layer, periodic, cylindrical folds with a scale of L, which is much smaller than the wavelength (λ) 

of seismic waves. One spatial cycle of the fold structure can be chosen as an effective medium. (b) 

Effective medium of the fold shown in (a). This can be represented by the bulk stiffness and density of the 

fold without describing structural details and exhibits the same seismic response as the folds in (a). We 

call this “structural effective medium,” or EMS. (c) A multi-layer, periodic, cylindrical folds with a scale 

of L (<< λ). Representative rock of each layer can have different seismic properties. A single spatial cycle 

of the multi-layered fold can be selected as EMS. 

 

 

4.3. Methods 

We first describe mathematical expressions of cylindrical fold geometries, and then briefly 

review homogenization techniques of rock elastic symmetry rotated along the folds for the EMS. After 

recalling the algebraic separation of geometry from rock stiffness presented by Okaya et al. (2018), we 

calculate structural geometry operators of all the cylindrical folds to investigate the solely geometrical 

effect on seismic anisotropy. For simplicity, we employ periodic and symmetric cylindrical folds with 
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horizontal hinge lines and adopt one full spatial cycle (wavelength) of each fold as the representative 

volume (Figs 4.2b, 4.2c and 4.2d). In the case of a general cylindrical fold (e.g., Fig. 4.2a), e.g., periodic 

asymmetric folds, the EMS can be computed in the same way as this section, which will be discussed in 

section 4.7.2. 

 

Figure 4.2. Nomenclature of a general cylindrical fold and reference systems used in this study. 

Mathematical functions describe periodic and symmetric fold geometries. (a) A general cylindrical fold 

with horizontal hinge line and its geographical frame (x-y-z). Modified from Hobbs et al. (1976, Fig. 

4.4.2). (b) Reference system for one spatial cycle of a symmetric sinusoidal fold in the profile plane. (c) 

Reference system for one spatial cycle of symmetric chevron, parabolic, and box folds in the profile plane. 

(d) Reference system for one spatial cycle of a symmetric cuspate fold in the profile plane. 
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4.3.1. Mathematical Expression of Fold Geometries 

Cylindrical fold geometries with a straight hinge line can be mathematically expressed in the fold 

profile plane perpendicular to the hinge line (Fig. 4.2a). In general, the selected reference system for 

describing fold geometries has the tangent line to the profile curve of a fold surface at a hinge point as x 

axis and its normal line through the hinge point as z axis (Figs 4.2c and 4.2d). In the case of sinusoidal 

folds, the coordinate origin is assumed to be at an inflection point for mathematical convenience (Fig. 

4.2b). The midpoint of the fold surface profile between both hinges is chosen as the coordinate origin in 

the case of double-hinge folds, or box folds. 

For sinusoidal fold geometry, the sine wave function is given by 
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where A and L are the amplitude and wavelength, respectively, of the sinusoidal fold (Fig. 4.2b). The fold 

amplitude can be described in terms of the limb angle (θ) defined as the acute angle between the x axis 

and a tangent line to an inflection point (Fig. 4.2b), and θ is related to the aspect ratio, or normalized 

amplitude h (= A / L): 

 arctan(2 )h   (2) 

Fig. 4.3c illustrates two spatial cycles of the sinusoidal fold geometry when θ = 45°. 

To depict other fold profile geometries including chevron, parabolic and box folds, a power 

function is used (Bastida et al., 1999): 
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where z0 is the fold amplitude. Equation (3) is defined within the interval [0, x0]; m, x0 and z0 are positive 

numbers. In order to represent one-complete fold cycle, modifications of equation (3) are used for other 

intervals: 
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The set of equations (3), (4), (5) and (6) describes a full cycle of the cylindrical fold profile within the 

interval [0, 4x0] and its wavelength (L) is 4x0 (Fig. 4.2c). Various fold morphologies can be obtained by 

two parameters: the exponent (m) and the normalized height or amplitude (h = z0 / x0). Common fold 

types are characterized by the following values of m: (1) m = 1, chevron folds; (2) m = 2 / (π − 2) ≈ 1.75, 

fit of sinusoidal folds; (3) m = 2, parabolic folds; (4) m > 2, box folds (or double-hinge folds; here the 

word ‘box’ is used to describe double-hinge folds although a perfect box fold requires m → ∞) (Bastida et 

al., 1999). The fold limb angle (θ) measured at the inflection point is related to the normalized amplitude 

(h): 

 arctan( )hm    (7) 

Figs 4.3b, 4.3d and 4.3e illustrate the geometry of chevron, parabolic and box folds, respectively, when θ 

= 45°. 

Cuspate folds are expressed using equation (3) within [0, x0] and the following equation within the 

interval [x0, 2x0]: 

 
0

0 0 0

0

2
( ) ; ][ ,2

m
x x

z x z x x x
x

  
   

 
  (8) 

When m < 1, equations (3) and (8) describe one spatial cycle of a cuspate-lobate fold and its wavelength 

(L) is 2x0 (Fig. 4.2d). The limb angle (θ) is measured at the lowest point of a lobe and its relationship to 

the normalized amplitude (h) is the same as equation (7). An example of cuspate (cuspate-lobate) shapes 

is illustrated in Fig. 4.3a. 
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Figure 4.3. The five types of fold geometries in the profile plane at the same length scale (2L) and limb 

angle (θ = 45°). They show two cycles and are presented in order of decreasing hinge curvature. Folds 

with sharper hinges (e.g., cuspate fold) have a larger ratio of height to wavelength. (a) Cuspate fold 

profile with m = 0.5. (b) Chevron fold profile. (c) Sinusoidal fold profile. The same geometry can be 

described by power functions with m = 2 / (π − 2) ≈ 1.75. When compared with the parabolic shape, the 

sinusoidal has slightly larger curvature in the hinge area that can be difficult to visually distinguish. (d) 

Parabolic fold profile. (e) Box fold profile with m = 3. 

 

 

4.3.2. Setup of Tensorial Computation for Fold Structural Effective Medium (EMS): Rotation of 

Rock Elastic Symmetry 

The phase velocities of monochromatic plane waves in an anisotropic homogeneous elastic 

medium can be obtained using the Christoffel equation (Christoffel, 1877): 

  2 0ijkl j l ik kC n n v p     (9) 

where Cijkl is the fourth-order elastic stiffness tensor, nj is the unit vector in the propagation direction, ρ is 

the mass density, v is the phase velocity, δik is the Kronecker delta, pk is the amplitude vector defining the 

polarization of particle motion (displacement direction), and the indices (ijkl) range from one to three. 

Three body waves, or one quasi-longitudinal (qVP) and the two quasi-shear wave velocities (qVSH and 

qVSV) can be identified based on their orthogonal polarization (or displacement) vectors with respect to 

the external x-y-z coordinate frame. The body waves may also be classified based on their relative 

velocities as qVP, qVS1 and qVS2 with qVP  qVS1  qVS2 irrespective of their polarization. qVS1 and qVS2 are 
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used for seismic anisotropy calculation because they are not dependent on the reference frame. If rocks 

are folded and the fold structure is modeled as an EMS, then seismic wave velocities depend on the bulk 

elastic stiffness tensor (C*) and bulk density (ρ*) of the fold EMS. Below we describe how to compute the 

EMS stiffness of a fold structure from the stiffness tensors of its constituent rocks. 

In a cylindrical fold, the elastic symmetry axes (denoted by a-b-c) of the rock are rotated along 

the fold surface profile relative to the geographical frame (denoted by x-y-z) as shown in Fig. 4.4a. For 

instance, at point 1, the rock symmetry axes form a positive angle of  with respect to the geographical 

axes, and at point 2, the a-b-c rock axes are oriented at a negative angle of  with the x-y-z frame (Fig. 

4.4b). Thus, the angle () between the a and x axes is a function of position x and defines the rotation of 

the rock symmetry axes from the geographical frame: 
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where z(x) can be any form of the fold equations in section 4.3.1. The angular relation between the two 

axis systems is described by the direction cosine matrix (a): 
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The elastic stiffness tensor C′ of each rotated rock at each position x in the geographical frame can be 

obtained from its elastic stiffness tensor C in the symmetry axes using fourth-order tensor transformation, 

which employs the direction cosines of equation (11) (e.g., Nye, 1985, chapter 8): 

 ( , , ) (( , , ) { )} , ,ijkl im jn ko lp x y z mnopC' x y z a a a a C x y z   (12) 

where C′ijkl(x, y, z) is the rotated stiffness tensor at location (x, y, z) in the geographical frame, Cmnop(x, y, z) 

is the local rock stiffness tensor at location (x, y, z) in the rock symmetry frame, and the Einstein 

summation convention is used wherein a repeated index implies summation over the range of the index. A 

single EMS stiffness tensor of a fold structure (C*ijkl) can be computed by averaging, or homogenizing, the 

stiffness tensors of the rotated rocks (C′ijkl) in the structure volume.  
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Figure 4.4. Schematic representation showing the relationship between the elastic symmetry axes (a-b-c) 

of local rocks and the geographical frame (x-y-z) of the fold EMS. (a) The rock symmetry axes rotate on 

the b axis, which is perpendicular to the a-c and x-z axes, along the fold surface profile relative to the 

geographical frame. A and L are the fold amplitude and wavelength, respectively. θ is the fold limb angle 

measured at the fold inflection point. (b) The angle () between two reference systems is measured 

between the a and x axes. Their relationships at points 1 and 2 in (a) are displayed as examples. 

 

 

4.3.3. Homogenization Techniques for Fold EMS 

The simplest averaging techniques are the Voigt (1928) and Reuss (1929) estimates, which use 

only modal volumes and stiffness tensors of the constituent materials. They provide upper and lower 

bounds for the bulk stiffness by assuming iso-strain and iso-stress throughout the volume, respectively. 

Due to heterogeneity, however, rocks or structures generally do not have uniform stress and strain fields. 

Although the arithmetic mean (Hill, 1952) and the geometric mean (Matthies and Humbert, 1993) of the 

two bounds have been proposed, they lack physical justification by not taking into account elastic 

interactions between elements. Recently, a precise numerical solution for the bulk elastic properties via 

asymptotic expansion homogenization has been developed (e.g., Vel and Goupee, 2010; Naus-Thijssen et 

al., 2011b; Vel et al., 2016). Since the advanced numerical homogenization considers the mechanical 

interactions between the elastic elements in the volume to provide a full-field solution for the 

heterogeneous stresses and strains, it allows more precise analysis of bulk stiffness at various scales. Only 

the Voigt and Reuss methods allow a separation of structural geometry operator from rock stiffness tensor. 
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The asymptotic expansion homogenization, completely different from the Voigt and Reuss approaches, 

will be used to validate my methodology by comparing fold EMS and seismic wave velocities. 

4.3.3.1. Voigt Averaging of Elastic Stiffness 

The Voigt method averages the rotated stiffness tensors (C′ijkl) at every location (x, y, z) in the 

effective medium volume (V) to obtain the fold EMS stiffness tensor (
*Voigt
ijklC ): 
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This Voigt method will be first considered to compute structural geometry operators of folds and their 

seismic anisotropies owing to its simplicity. 

4.3.3.2. Reuss Averaging of Elastic Stiffness 

The Reuss bound of the bulk stiffness ( *Reuss
ijklC ) is given by inverting the Reuss bulk compliance 

( *Reuss
ijklS ) which is calculated by averaging local compliances of a fold structure. A compliance tensor 

(S′ijkl) rotated into the geographical frame is obtained from a local rock compliance tensor (Smnop) at every 

location (x, y, z) using fourth-order tensor transformation (e.g., Nye, 1985, chapter 8): 

 ( , , ) (( , , ) { )} , ,ijkl im jn ko lp x y z mnopS' x y z a a a a S x y z   (14) 

The Reuss bulk compliance ( *Reuss
ijklS ) is given by 
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The Reuss method to compute fold geometry tensors and its results will be presented and compared to the 

Voigt bounds in section 4.7.1. 
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4.3.3.3. Asymptotic Expansion Homogenization 

Asymptotic expansion homogenization (AEH), which has a strong mathematical basis 

(Bensoussan et al., 1978), explicitly accounts for elastic interactions in heterogeneous materials and has 

been extensively validated and used to numerically homogenize heterogeneous material properties in 

engineering and geology (e.g., Guedes and Kikuchi, 1990; Fish and Wagiman, 1992; Vel and Goupee, 

2010; Naus-Thijssen et al., 2011a, 2011b; Vel et al., 2016). 

When a fold is subjected to deformation, the resulting internal stresses and strains will be 

heterogeneously distributed due to the spatial variation of rotated rock stiffness tensors in the fold. In the 

AEH method, the heterogeneous distribution of stresses and strains are resolved using 18 location-

dependent proportionality constants (χi
kl
(x, y, z); also known as characteristic functions) that map the 6 

average strains to the 3 components of the displacement fluctuations at a point. The 3-D elastic 

equilibrium equations in conjunction with the constitutive equations for anisotropic materials yield a 

system of partial differential equations for the characteristic functions that are solved using the finite 

element method. The AEH EMS stiffness tensor ( *AEH
ijklC ) is obtained using the characteristic functions 

and the rotated elastic stiffness tensors through volume or area (Y) integration as follows (seeVel and 

Goupee, 2010 and Naus-Thijssen et al. (2011b) for details): 

   * 1
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The expression for the AEH EMS stiffness tensor contains two terms in the integrand. The first term 

corresponds to the traditional Voigt average. The second term, involving the 18 characteristic functions, 

captures the elastic interactions between the heterogeneities. As such, the AEH method provides a precise 

solution for the 3-D EMS stiffness tensor ( *AEH
ijklC ). Since the AEH method uses the finite element method 

to calculate the characteristic functions, it is computationally more expensive than traditional averaging 

schemes, such as the Voigt and the Reuss, and it does not yield a closed-form solution for the EMS 

stiffness tensor. We use graphical user interface software, named “Elastic and Seismic Properties (ESP) 
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Toolbox”, that has been developed to calculate bulk elastic properties and plot seismic wave speeds using 

equations (16) and (9). The software package and manual are currently available for download at the 

following address: http://umaine.edu/mecheng/faculty-and-staff/senthil-vel/software/ESP_Toolbox/. The 

AEH results for sinusoidal folds will be used to validate the Voigt and Reuss methods by comparing to 

their EMS and seismic properties in sections 4.4 and 4.7.1, and below is the detailed design of the AEH 

method. 

To numerically calculate the bulk fold stiffness through the AEH method, we first discretize the 

analysis domain full of a sinusoidal fold (Fig. 4.5). The spatial increments in the x and z directions (Δx 

and Δz, respectively) are 
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where L and H are the length (= fold wavelength) and height of the analysis domain, respectively, and Nx 

and Nz are the number of analysis (or sampling) points in each direction. Using more points will yield 

more accurate bulk EMS (here 500 points are adopted for Nx and Nz). The discrete x and z coordinates of 

the points (xp and zp, respectively) are as follows: 
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The next step is to determine the orientation of the rock elastic symmetry axes (a and c in Fig. 4.5a) along 

the fold surface profile relative to the analysis (or geographical) frame (x and z in Fig. 4.5a) at each 

sampling point. As shown in section 4.3.2, the rotation angle () is a function of x or xp in the idealized 

cylindrical fold. In the case of sinusoidal folds, from equations (1), (2) and (10), 
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In Fig. 4.5a, three rotation angles at their sampling points are illustrates as examples (they have the same 

 owing to their same xp). Finally, the AEH stiffness tensor for sinusoidal fold with a specific limb angle 

http://umaine.edu/mecheng/faculty-and-staff/senthil-vel/software/ESP_Toolbox/
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(θ) can be obtained using equation (16) and the rotated Haast schist stiffness (C′) at each point that is 

calculated from the Haast schist stiffness (C
rep

) and the rotation angle (). For the purpose of using the 

ESP Toolbox, we also define the Euler angles with Bunge convention corresponding to , which is {-π/2, 

, π/2}. Fig. 4.51b shows a finite element mesh used to numerically calculate the AEH stiffness of the 

sinusoidal folds by the ESP Toolbox, which adopts six-noded triangular elements with quadratic shape 

functions for accurate results (Cook et al., 2002). To get all the AEH fold stiffness tensors for limb angles 

ranging from 0° to 90°, the numerical AEH analysis described above is repeated for each limb angle. 

 

Figure 4.5. Design of the asymptotic expansion homogenization (AEH) analysis combined with finite 

element for the EMS of a single-layered sinusoidal fold. (a) Discretization of the analysis domain and 

calculation of the rotation angle () of the rock elastic symmetry axes (a-b-c) at each discretized 

coordinate (xp, zp) relative to the analysis frame (x-y-z). The sinusoidal fold trace (dashed curve) is 

provided for illustrative purposes. (b) Finite element mesh used to calculate the AEH stiffness for the 

sinusoidal fold domain in (a). 
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4.3.4. Separation of Fold EMS into Structural Geometry Operator (SGO) and Rock Stiffness via the 

Voigt Method 

In situations where the rock type within a fold structure is uniform or the variation is at a spatial 

scale much finer than the wavelength dimensions of seismic waves, the local rock stiffness tensor (Cmnop(x, 

y, z)) can be replaced by a representative rock stiffness tensor ( rep
mnopC ) throughout the fold volume (V). In 

such cases, the rep
mnopC  can be factored out of the integral in equation (13) since it is assumed to be the 

same at every location (x, y, z) within the fold: 

 ( , , )
* 1

{ }Voigt rep
im jn ko lp x y z mnopijklC a a a a dV C

V

 
  
 
   (21) 

By introducing a structural geometry operator (SGO), the Voigt EMS stiffness tensor (C*
Voigt

) in equation 

(21) can be expressed as the product of the SGO and the representative rock stiffness tensor (C
rep

): 

  reVoigt Voig ptC* SGO C   (22) 

where the superscript Voigt in SGO
Voigt

 denotes the structural geometry operator for stiffness in the Voigt 

calculation, which will be distinguished from SGO
Reuss

 for compliance in the Reuss method (see section 

4.7.1). The SGO in equation (22) can be viewed as an operator that replaces the need to reorient C
rep

 at 

each location of the fold and carry out the volume averaging of the reoriented stiffness tensors. The SGO 

is solely contingent on the fold geometry and independent of the rock stiffness tensor. Therefore, the 

separation of the EMS stiffness into SGO and C
rep

 allows for a direct investigation of structural geometry 

effects on seismic wave velocities. 

Using matrix-vector operations, equation (22) becomes 

 21 1 21 21 21 1[ ] [ ] [ ]VoVoigt repigtC* CSGO     (23) 

where the subscripts denote the size of the arrays and matrices, and [C*
Voigt

]21×1 and [C
rep

]21×1 are the fold 

EMS stiffnesses and the representative rock elastic constants, respectively, arranged as 21×1 column 

arrays. The elements of the 21×21 SGO matrix in equation (23) are obtained through a volumetric 

averaging of the products of the direction cosines in equation (21). [SGO
Voigt

]21×21 in generalized form has 
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441 terms. The full 21-element structure is valid for the lowest material symmetry (triclinic). An increase 

in rock symmetry of C
rep

 will lower the number of non-zero elements and thus simplify the SGO. We 

illustrate the simplest case of the fold SGO in the following section by assuming hexagonal (equivalent to 

transversely isotropic) symmetry rock tensor in C
rep

. 

4.3.5. Calculation of the SGO
Voigt

 for Folds made of Hexagonally Symmetric Rocks 

Even though we can theoretically acquire the SGO of any geometry that can be expressed 

mathematically, it is possible to obtain the SGO analytically only for fold geometries defined by 

elementary functions. In the case of folds that can be described only through more complex functions, as 

is the case for box and cuspate folds, the SGO can be computed numerically by discretizing the 

representative volume into smaller volume elements and subsequently averaging the local rotation tensor 

at the element centers. The integrations required to obtain the SGO matrices were performed 

symbolically using Mathematica (Wolfram Research, 2012). 

Since single-layered 3-D cylindrical fold morphology is defined by one-dimensional 

mathematical functions in the profile plane (see section 4.3.1), the volumetric averaging in equation (21) 

is simplified to one-dimensional integrations: 

 ( )
0

* 1
{ }

L
Voigt rep

im jn ko lp x mnopijklC a a a a dx C
L

 
  
 
   (24) 

It is possible to obtain closed-form expressions for the components of the SGO matrix for simple fold 

geometries by performing the integrations in equation (24) analytically. If the representative rock in a fold 

is assumed to have hexagonal symmetry with the c axis being the symmetry axis, the stiffness tensor of 

the rock (C
rep

) has five independent components (e.g., Nye, 1985, chapter 8). However, due to tensor 

transformation, the resulting fold EMS stiffness (C*
Voigt

) exhibits orthorhombic symmetry with 9 

components. This relationship can be written in column vector forms as follows: 
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  (25) 

In equation (25), the component of the stiffness tensors are expressed using the Voigt contracted notation 

(i.e., Cijkl → Cαβ where α and β range from one to six) (e.g., Nye, 1985, chapter 8). The SGO matrix is of 

dimension 9×5. 

For sinusoidal folds defined by the sine wave function (equation (1)), the SGO matrix is 

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

0

(2 3) 11 2 4
0

1 1 2
1

2 4
1

1 1 2
1 2

(2 3) 1 2 1 4

1 1

0

0

1 0 0 0 0

1

2 4
1

0 0[ ]

0

0 0 0

0

0 0 0
1 1

1

Voigt
sinusoidal

B D DB B B

D D D D

D D D
B B B B

D D D D

D D D
B D D B B B

D D D D

D D
B B B B

D D D D

S

D D
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 

  


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 
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  



 




 
 
 
 

  (26) 

where B and D are non-dimensional parameters defined as 2(1/ 2) tanB   and 21 tanD   , and 

θ is the limb angle. 

The SGO matrix of chevron folds, which are described by the power function with m = 1 

(equations (3), (4), (5) and (6)), is as follows: 
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where c and s are non-dimensional parameters defined as cosc   and sins  , and θ is the limb 

angle. 

In the case of parabolic folds described by the power function with m = 2 (equations (3), (4), (5) 

and (6)), the SGO matrix is given by 
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  (28) 

where c and s are non-dimensional parameters defined as  and , and θ is the limb 

angle in radians. 

The SGO matrices for box and cuspate folds are numerically computed because those fold 

geometries do not yield closed-form symbolic expressions. As a numerical method for one-dimensional 

integration, we use an N-point Gaussian quadrature rule to approximate the value of the integral by a 

weighted sum of the integrand f(x) evaluated at optimal abscissas (nodes) xq (e.g., Olver et al., 2010): 

cosc  sins 
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( ( ))
Nb

q q
a

q

f x dx w f x


   (29) 

where wq are the weights at xq. Unlike other quadratures using evenly spaced nodes, Gaussian quadrature 

chooses the nodes and weights to yield the best possible accuracy. Higher accuracy can also be obtained 

by increasing N. Here 550 Gaussian points (N) are used within one-complete fold cycle, and the Gaussian 

locations (xq) and corresponding weights (wq) are determined through the Mathematica function 

“GaussianQuadratureWeights.” We calculate the numerical SGO matrices of box folds defined by the 

power function with m = 3 (equations (3), (4), (5) and (6)) and cuspate folds with m = 0.5 (equations (3) 

and (8)). Although an ideal box fold requires m → ∞, the exponent m = 3 is chosen for systematic 

comparison with the other fold types of m ≤ 2. In the numerical computation of SGO, all the fold 

parameters such as limb angle (θ) need to be specified a priori unlike the analytical expressions for the 

SGO described earlier. Thus, numerical SGO matrices on specific θ are expressed in numbers. 

To examine the accuracy of my numerical integration, we compared the numerically computed 

SGO of the sinusoidal fold at θ = 89° with the analytically calculated SGO of the same fold shape 

because higher limb angles are expected to lead to larger errors in the numerical calculation. The 

maximum difference between the corresponding elements of analytical and numerical EMS stiffness (C*) 

at θ = 89° was 3.08 × 10
-5

 GPa (~0.00009% of the analytical value) when the stiffness tensor of the Haast 

schist (Okaya and Christensen, 2002) (see the next section) was used as C
rep

. 

As seen above, the SGO is a function of the limb angle (θ) and dependent on hinge shape, but is 

scale-independent. Thus, it is possible to investigate variations of the EMS stiffness with variation in θ 

and fold types over a full range of relevant scales. This SGO concept allows efficient seismic modeling 

aimed at evaluating the effect of folding on seismic properties from rocks representative of target areas. 

Using my analytical and numerical solutions, one can obtain variations and limits of seismic velocities, 

shear wave splitting and seismic anisotropies including magnitude and symmetry, depending on fold limb 

angle, as shown in the following sections.  
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4.4. Validation of Fold EMS Stiffnesses (C*) from the Calculated SGO 

In this section, the Voigt and Reuss methods for the calculations of bulk elastic stiffness are 

validated using the AEH method for sinusoidal folds. Once the accuracy of the Voigt and Reuss methods 

has been established, comprehensive results will be presented for seismic velocity and anisotropy as 

functions of fold type and limb angle via the Voigt and Reuss schemes. The Reuss formulation will be 

presented in section 4.7.1. 

In order to validate and investigate the influence of fold geometry on the stiffnesses of its EMS 

and the velocities of seismic waves propagating through the EMS, we take the stiffness tensor of the Haast 

schist of South Island, New Zealand (Okaya and Christensen, 2002) as an example of the representative 

rock stiffness (C
rep

). The density of the Haast schist (2718 kg/m
3
) is used as the EMS density (ρ*). The 

Haast schist has a strong foliation caused by the preferred orientation of micaceous minerals and exhibits 

hexagonal symmetry with the c axis being the slow symmetry axis, and its elastic constants were derived 

from petrophysical measurements at 600 MPa (Okaya and Christensen, 2002). From the velocity and 

density data in Okaya and Christensen (2002), we obtain the 6×6 Haast schist stiffness tensor (C
rep

 = C): 

 

114.87 30.87 23.86 0 0 0

30.87 114.87 23.86 0 0 0

23.86 23.86 89.86 0 0 0

0 0 0 30.18 0 0

0 0 0 0 30.18 0

0 0 0 0 0 42.00

Haast schist

(Unit is GPa)

 
 
 
  
 
 
  

repC C   (30) 

Based on equations (25) and (26), the EMS stiffness (C*
Voigt

) for sinusoidal folds of the Haast 

schist is orthorhombic in symmetry and can be plotted as a function of limb angle (θ). Fig. 4.7a illustrates 

strong variations of Voigt EMS stiffness components for sinusoidal folds with respect to θ ranging from 0° 

to 90°, and also compares them with Reuss and AEH results. With increasing θ, the stiffness in the 

horizontal direction ( 11
*VoigtC ) decreases and the vertical stiffness ( 33

*VoigtC ) increases trigonometrically. 

The stiffnesses are directly related to velocity of quasi-P waves propagating in the x and z directions, 

respectively, in the geographical frame (e.g., see Auld (1990, appendix 3) for relationship between 
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velocities and elastic constants in orthorhombic symmetry). The two elastic stiffnesses cross over at a 

limb angle of 60°, and thus the symmetry of the EMS stiffness tensor increases at the crossover limb angle. 

This crossover limb angle (θc) is solely a property of the SGO and independent of the C
rep

. For instance, 

the chevron fold has θc of 45°. In Fig. 4.7a, the Voigt and Reuss values have only minor (second-order) 

differences and are almost identical to the AEH results, compared with substantial (first-order) variations 

in EMS stiffnesses with respect to θ. For example, while the maximum first-order change in C*11 with all 

θ is 25.01 GPa, the difference between the Voigt and Reuss values for C*11 is at most 2.41 GPa (~9.64% 

of the maximum first-order change) when θ ≈ 38°. In addition, the maximum C*11 differences of the 

Voigt and Reuss from the AEH results are, respectively, only 2.16 GPa (~8.64% of the maximum first-

order change) when θ ≈ 37° and 0.28 GPa (~1.12% of the maximum first-order change) when θ ≈ 46°. 

The quasi-P wave velocities in three different propagation directions relative to the geographical axes (x-

y-z) are plotted in Fig. 4.7b as a function of θ. In the Voigt graph, the wave speed at a propagation angle 

of 45° (qVP45°) is faster than the wave speeds in the horizontal (qVP90°) and vertical direction (qVP0°) over 

~48° ≤ θ ≤ ~67°. The Reuss and AEH plots also show very similar behavior to the Voigt. The percent 

anisotropy of a fold structure is expected to show a strong dependence on θ. As seen in Fig. 4.7, the AEH 

stiffness and wave speed values lie between the Voigt and the Reuss bounds and their close relationship 

indicate that my methodology for fold EMS is mathematically correct and the approach using the Voigt or 

Reuss methods provide useful values for bulk fold stiffness. 
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Figure 4.6. Comparison of stiffness and wave speed among Voigt, Reuss, and AEH for sinusoidal fold. (a) 

Strong variations of EMS stiffnesses (C*) for sinusoidally folded Haast schist with respect to limb angle 

(θ) ranging from 0° to 90°. Four bulk elastic stiffnesses are selectively plotted and compared between the 

Voigt, Reuss and AEH results. Note a very close relationship between the three bounds. The crossover 

limb angle (θc; marked by black dashed line) at C*11 = C*33 is solely a property of the SGO, irrespective 

of the C
rep

. (b) Sharp dependence of quasi-P wave speeds on θ in three different propagation directions 

for sinusoidally folded Haast schist. Here qVP0°, qVP45°, and qVP90° denote the quasi-P wave velocities in 

the vertical (i.e., z axis), 45° to the vertical geographical axis, and the horizontal direction (i.e., x axis), 

respectively, in the x-z plane. The seismic velocities from different homogenization methods (Voigt, 

Reuss and AEH) exhibit only minor second-order differences, compared with substantial first-order 

changes in wave speed with respect to θ. 

 

 

4.5. Effect of Fold Structure on 2-D Seismic Velocity 

In this section, we show the velocity results of three body waves from the Voigt EMS calculation 

with respect to propagation direction and fold limb angle. Fig. 4.8 illustrates qVP, qVSH and qVSV in the x-z 

axial plane for sinusoidal folds at specific limb angles (θ = 0°, 30°, 60°, 90°). Propagation angle  is 

measured from the vertical z axis in the sagittal plane and is shown for the range of 0° to 90° owing to its 

orthorhombic symmetry. 
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At θ = 0° (Fig. 4.8a), the EMS is equivalent to the Haast schist with horizontal foliation. In Fig. 

4.6a, qVP and qVSH increase with increasing  since their propagation and polarization directions draw 

closer to the foliation, and qVSV shows the minimum in the x and z axes because either its propagation or 

polarization direction is perpendicular to the foliation. In the fold at θ = 30° (Fig. 4.8b), the crossover of 

qVSH and qVSV occurs at a smaller  and the variation in shear velocities is less pronounced compared with 

the original rock in Fig. 4.8a. At the crossover limb angle (θc = 60°) of the sinusoidal fold, the graph in 

the x-z plane shows symmetrical velocity behavior with respect to  of 45° (Fig. 4.8c). This is because the 

EMS stiffness at the θc has only 6 components indicating a form of tetragonal symmetry ( 11 33
* *Voigt VoigtC C , 

44 66
* *Voigt VoigtC C  and 12 23

* *Voigt VoigtC C ). Since the variation in qVP for the fold at its θc is less than those at 

any other θ, a minimum seismic anisotropy is expected. When θ = 90°, the EMS is equivalent to vertically 

orientated Haast schist and thus the 90° rotated C
rep

 on the y axis (hinge line) is used as the EMS stiffness. 

Consequently, the velocity graph when θ = 90° is the mirror image of the plot when θ = 0° in the x-z plane 

(Fig. 4.8d). 

If the velocity graphs in a plane are assembled for all limb angles between 0° to 90°, a surface 

plot with three axes of limb angle, propagation angle and velocity allows simultaneous investigation of 

the effect of both the propagation and limb angles on seismic velocity in a plane (Fig. 4.9a). Fig. 4.9b 

illustrates seismic velocity surface plots of the EMS for the five fold types with respect to  and θ in the x-

z, y-z and x-y axial planes.  in the x-y plane is defined as the angle measured counterclockwise from the 

horizontal x axis to the wave propagation direction (n) in the transverse plane. For a specific fold type, the 

surface plots of the seismic velocities show clear distinction between the three axial planes. Additionally, 

in a given plane, the velocity surfaces vary with different fold types for all θ except 0° and 90°, as shown 

by the crossover lines of qVSH (denoted by blue surface) and qVSV (denoted by green surface) in Fig. 4.9b. 

The results of my analyses using idealized fold structures suggest that folds much smaller than 

the seismic wavelength can be detected given appropriate station deployments even though they cannot be 

directly imaged. It might also be possible to identify limb dip and orientation of subsurface folds in the 
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crust based on specific velocity patterns. This in turn may shed additional light on the kinematics of in 

situ crustal deformation in orogenic belts. 

 

Figure 4.7. 2-D seismic velocity plot of the Voigt EMS for single-layered sinusoidal folds. The velocity 

graphs are plotted at specific limb angles (θ = (a) 0°, (b) 30°, (c) 60° and (d) 90°) with propagation angle 

 in the x-z plane. qVSH and qVSV are the shear wave velocities with the largest polarization component in 

the directions normal and parallel, respectively, to their sagittal planes. In the schematic diagrams, each 

cube illustrates an effective medium (bulk stiffness tensor and density) representing the fold with specific 

θ. Planar and folded foliation forms are provided only for illustrative purposes and do not represent layers. 

The fold EMS when θ = 0° has the same stiffness as the representative rock (Haast schist with horizontal 

foliation), i.e., C
rep

, and thus the geographical axes (x-y-z) are identical to the rock symmetry axes (a-b-c). 

When θ = 90°, the fold EMS displays vertical foliation and the 90° rotated C
rep

 on the y axis is used as the 

EMS stiffness. A propagation direction (n) is denoted by red arrow. 
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Figure 4.8. Seismic velocity surface plots of the Voigt EMS as functions of propagation angle () and 

limb angle (θ). qP and two qS velocities are shown for the three axial planes. (a) Conceptual method to 

create each set of velocity surface plots. Two horizontal axes are propagation angle and fold limb angle; 

one vertical axis is seismic velocity. A velocity versus propagation angle graph in an axial plane such as 

Fig. 4.6 is drawn for a given limb angle. When the graphs for all θ from 0° to 90° are assembled, seismic 

velocity surfaces for the axial plane are produced. As an example, four graphs for sinusoidal folds at θ = 

0°, 30°, 60°, 90° in the x-z plane are illustrated. (b) Velocity surface plots for the five fold types in the x-z, 

y-z, and x-y planes. They are presented in order of decreasing hinge curvature (i.e., from cuspate to box 

fold). The grid (marked by black solid lines) on the colored surfaces represents propagation and limb 

angles from 0° to 90° in 5° intervals. Note the crossover of qVSH and qVSV (i.e., the intersection of the blue 

and green surfaces), explicitly showing variations of velocity patterns between the different fold types in 

each axial plane as well as between the three axial planes for a fold type. The employed axial planes are 

marked by pink color in the schematic diagrams. The cube in the diagrams illustrates a sinusoidal fold 

EMS as an example of the idealized folds. 
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4.6. Effect of Fold Structure on 3-D seismic Properties and Anisotropy 

Seismic anisotropy of a fold EMS at a specific limb angle is calculated from seismic wave 

velocities propagating in all possible directions through the 3-D fold structure. Fig. 4.9 displays the 3-D 

seismic velocity of quasi-P wave (qVP) and 3-D shear wave splitting (δt) for the EMS at specific limb 

angles (θ = 0°, 15°, 30°, 45°, 60°, 75°, 90°) on spherical surfaces in the x-y-z geographical frame. Shear 

wave splitting (δt) is defined by the difference in fast (qVS1) and slow (qVS2) shear wave velocities and 

expressed in split time per propagation distance (s/km): 

 
2 1

1 1

S S

t
qV qV

     (31) 

Seismic anisotropy (A) is defined as follows (Birch, 1961) and the quasi-P wave anisotropy (AVP) is 

presented below each velocity sphere in Fig. 4.9: 
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A

qV qV


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 
  (32) 

In the foliated Haast schist showing slow-axis hexagonal symmetry, the fastest propagation 

direction of quasi-P wave (qP) is parallel to the foliation and the slowest qP direction is normal to the 

foliation. The chevron fold geometry composed solely of locally planar foliation provides relatively 

simple interpretation of the relationship between qVP and foliation orientation (Fig. 4.9b). qVP in the y 

direction is fastest for all θ since the y axis as the hinge line is always parallel to the foliation. qVP in the x 

direction decreases with increasing θ and is minimum when θ = 90° because the angle between the x axis 

and foliation increases during progressive folding. On the other hand, qVP behavior in the z axis is 

opposite to that in the x axis. When θ = 45° (crossover limb angle (θc) for chevron folds), qVP in the x and 

z directions show the same minimum velocity but higher value than other minimum velocities in the qVP 

spheres at other θ since both axes make an angle of 45° with the foliation. Consequently, the chevron fold 

at its θc has minimum seismic anisotropy (AVP = 10.39%). The symmetry of velocity patterns also differ 

based on fold limb angle. At θ = 0° and 90°, the fold represents vertical-axis hexagonal symmetry equal 

to the Haast schist and horizontal-axis hexagonal symmetry, respectively. However, the fold symmetry is 
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changed to tetragonal at the θc and orthorhombic at all other θ, even though the internal rock filling the 

fold is still hexagonal. 

For other fold types, although aspects of qVP variations during progressive folding are similar to 

the chevron fold, velocity distributions on the spherical surfaces are different from the chevron fold at the 

same θ owing to differences in fold hinge curvature. In the sinusoidal fold at θ = 45°, qVP in the x 

direction is faster than in the z direction because the curved foliation in the hinge area forms smaller 

angles with the x axis than with the z axis (Fig. 4.9c). Thus, a sinusoidal fold at a limb angle larger than 

45° will have an equivalent effect on qVP in the x and z directions. In this case, the θc is 60°. Similarly, 

lower θc in cuspate fold than that of chevron fold is expected due to its sharper hinge shape, and parabolic 

and box folds will have larger θc than sinusoidal fold (see Figs 4.9a, 4.9d, 4.9e, and 4.10). Thus, the 

seismic anisotropy of a fold is influenced by its hinge shape as well as its limb dip. 

Since the degree of anisotropy can be determined from a measurement of shear wave splitting at a 

single station, splitting delay time (δt) is used as a powerful tool for investigating the seismic anisotropy 

of an area of interest. In the case of θ = 0°, shear waves propagating parallel to foliation exhibit maximum 

splitting delay (0.0457 s/km) and there is no shear wave splitting in the z direction (Fig. 4.9). The chevron 

fold at θ = 45° has maximum splitting of 0.0306 s/km, which is ~70% of the original rock maximum δt. 

However, the maximum δt direction is not parallel to the foliation of the chevron fold but tilted by 45° 

from all three (x-y-z) axes (Fig. 4.9b). As seen in all the δt plots, the δt patterns and maximum values of 

folds are changed based on fold type and limb angle, which are clearly different from the original rock 

(Fig. 4.9). We note that these splitting values reflect the idealized fold geometries, and would vary 

accordingly in real folds owing to variable foliation orientations and other geometrical and compositional 

variability. 

Fig. 4.11 illustrates seismic anisotropies (A) of three body waves (qP, qS1 and qS2) with respect 

to limb angle (θ) for the five fold types made of the Haast schist. Each anisotropy value is computed using 

equation (32) and plotted at each integer θ from 0° to 90° and also at the crossover limb angle (θc). 

Folding lowers the seismic anisotropy of the original Haast schist. The seismic anisotropies for qP and 
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qS1 generally decrease approaching θc and show minimum values at the θc. Difference in anisotropy 

graph patterns with θ between fold types in Fig. 4.11 indicates that seismic anisotropy is obviously 

affected by fold geometry including limb angle and hinge shape. 

 

Figure 4.9. 3-D seismic velocity of quasi-P wave (qVP) and shear wave splitting (δt) for the Voigt EMS of 

single-layered folds. The velocity spheres are plotted for (a) cuspate with m = 0.5, (b) chevron, (c) 

sinusoidal, (d) parabolic and (e) box with m = 3 (in order of increasing fold crossover limb angle) at 

specific limb angles (θ = 0°, 15°, 30°, 45°, 60°, 75° and 90°). They were computed and plotted at 64800 

(=360×180) points for full 360°×180° coverage (i.e., 1° interval plot in all propagation directions on 

spherical surfaces). The 3-D seismic properties for each EMS were visualized using the same color scale 

to emphasize relative values and distributions (i.e., maximum 6.5010 km/s and minimum 5.7218 km/s for 

qVP; maximum 0.0457 s/km and minimum 0 s/km for δt). The EMS schematic diagrams display the 

foliation orientation and the fold geometries at their θ. The x-y-z geographical frame and legends of qVP 

and δt are also shown in the rightmost column. The maximum and minimum velocities and seismic 

anisotropy (AVP) for the EMS at each θ are rounded off to two decimal places and presented below each 

velocity sphere. The maximum δt is shown below each δt sphere. Note variations in value and pattern 

(symmetry) of qVP and δt based on fold type and limb angle. 
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Figure 4.9. (continued) 
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Figure 4.10. 3-D seismic velocity of quasi-P wave (qVP) and shear wave splitting (δt) at critical limb 

angles (θc). The velocity spheres are plotted for the Voigt EMS of the five types of single-layered folds 

made of the Haast schist. They were computed and plotted in the same way as Fig. 4.9. The schematic 

diagrams display the fold geometries at their θc. Because all the EMS at θc have tetragonal symmetry, the 

seismic properties exhibit similar patterns between the different fold types. However, the values of 

seismic properties are different. 
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Figure 4.11. Seismic anisotropy plots of the Voigt EMS for the five fold types with respect to limb angle 

(θ). They are presented in order of increasing fold crossover angle (i.e., from cuspate to box fold). A 

single seismic anisotropy value is computed from a 3-D seismic velocity sphere and plotted at each 

integer θ from 0° to 90° including the crossover limb angle (θc) at which the horizontal and vertical 

stiffnesses are equal. Our idealized folds made of the Haast schist show minimum seismic anisotropies for 

both qP and qS1 waves at their θc except that box fold with m = 3 displays a minimum anisotropy for qP 

at θ = 77° and for qS1 at its θc. 

 

 

4.7. Discussion 

4.7.1. Comparison to Reuss Estimate 

We have used the Voigt estimate to calculate the bulk stiffness tensors of fold EMS (equation 

(13)). The Voigt estimate assumes uniform elastic strain and provides an upper bound of effective 

stiffness (Voigt, 1928). The Reuss estimate on the other hand assumes uniform elastic stress and gives a 

lower bound of effective stiffness (Reuss, 1929). The true bulk stiffness of a fold EMS will fall 

somewhere between the two theoretical bounds depending on its geometric details as shown in section 4.4 

and Fig. 4.6. Here we compare the Reuss lower bound for chevron, sinusoidal and parabolic folds made 

of the Haast schist to my previous results. 
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Similar to the Voigt averaging scheme, if the local rock compliance tensor (S) can be replaced by 

a representative rock compliance tensor (S
rep

) in equation (15), the bulk compliance (S*
Reuss

) is given by 

the product of a SGO
Reuss

 and the S
rep

: 

 ( , , )
* 1

{ }Reuss rep
im jn ko lp x y z mnopijklS a a a a dV S

V

 
  
 
   (33) 

or 

  reReuss Reus psS* SGO S   (34) 

This can be expressed using matrix operations as 

 21 1 21 21 21 1[ ] [ ] [ ]ReReuss repussS* SSGO     (35) 

It is noted that the SGO
Reuss

 matrix for the compliance in equation (34) is different from the SGO
Voigt

 

matrix for the stiffness in equation (22) because the Voigt contraction of the elastic compliances is not the 

same as those for the elastic stiffnesses (e.g., Nye, 1985, chapter 8; Ting, 1996, chapter 2). Finally, the 

EMS bulk stiffness tensor (C*
Reuss

) for the Reuss bound is obtained by 

 Reuss Reuss -1C* = [S* ]   (36) 

4.7.1.1. SGO
Reuss

 for Folds Made of Hexagonally Symmetric Rocks 

If the S
rep

 for a cylindrical fold is assumed to have hexagonal symmetry with 5 independent 

components, which can be calculated from the representative rock stiffness (C
rep

), the SGO matrix for the 

elastic compliances is of dimension 9×5. Each SGO
Reuss

 for chevron, sinusoidal and parabolic folds is as 

follows: 
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where B and D are non-dimensional parameters that have been previously defined in section 4.3.5, and θ 

is the limb angle. 
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where c and s are non-dimensional parameters that have been previously defined in section 4.3.5, and θ is 

the limb angle in radians. 

4.7.1.2. Comparison of Seismic Velocity and Anisotropy among Voigt, Reuss, and AEH Estimates 

We first compare the Reuss results to Voigt estimate. Fig. 4.12 shows the axial quasi-P and S 

wave velocities from Voigt and Reuss estimates for the EMS of cylindrical chevron, sinusoidal and 

parabolic folds made of the Haast schist with hexagonal symmetry. Both estimates exhibit same velocity 

patterns with respect to limb angle (θ). For instance, the Reuss quasi-P wave velocities in the horizontal 

(Px) and vertical directions (Pz) trigonometrically decrease and increase, respectively, with increasing θ, 

and they cross over at their crossover limb angles (45° for chevron; 60° for sinusoidal; ~66.78° for 

parabolic), which are identical to the Voigt bound. At θ = 0° and 90°, the Voigt and Reuss bounds have 

the same wave speed because the bulk stiffness for both estimates is the same as the representative rock 

stiffness. At other θ, Reuss velocities are slightly lower than Voigt. The differences from the two bounds 

are minuscule compared with the first-order variations (the maximum change of ~0.75 km/s for qP and 

~0.60 km/s for qS) caused by folding. In chevron folds, a maximum difference in quasi-P wave velocity 

between Voigt and Reuss bounds is ~0.07 km/s (~9.33% of the maximum first-order change) at θ = 27° 

for Px and at θ = 63° for Pz. In sinusoidal folds, a maximum difference of ~0.07 km/s between them is 

shown at θ = 39° for Px and at θ = 74° for Pz, and in parabolic folds, the same maximum difference 
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(~0.07 km/s) is at θ = 47° for Px and at θ = 78° for Pz. For horizontal (Sxy) and vertical quasi-shear waves 

(Syz), the Reuss velocities are lower than the Voigt by ~0.05 km/s (~8.33% of the maximum first-order 

change), which is a maximum difference between the two bounds, at their θc in the chevron, sinusoidal 

and parabolic folds. 

Seismic anisotropies through the Ruess approach are also plotted and compared with the Voigt 

anisotropies in Fig. 4.13. The Reuss seismic anisotropies in the chevron, sinusoidal and parabolic folds 

display less variation with limb angle (θ) than the Voigt bounds. As expected from the velocity graphs of 

Fig. 4.13, a maximum difference in qP anisotropy between two estimates is shown at the crossover limb 

angle (θc), where Reuss anisotropy is higher by ~0.40% in the chevron fold, ~0.66% in the sinusoidal fold 

and ~0.71% in the parabolic fold (Fig. 4.13). A faster shear wave (qS1) has a similar pattern to qP seismic 

anisotropy. For instance, a difference in qS1 anisotropy between two bounds increases approaching θc, at 

which the chevron, sinusoidal and parabolic folds have differences of ~1.06%, ~0.96% and ~0.95%, 

respectively (Fig. 4.13). For a slower shear wave (qS2), there is a maximum difference in anisotropy 

between two estimates near θc (35° and 55° for chevron; 53° for sinusoidal; 63° for parabolic). Therefore, 

if a fold limb angle is close to its θc, both the Voigt and Reuss approaches may need to be considered 

when studying seismic responses of the fold structure through a seismic anisotropy analysis. However, 

the differences in seismic anisotropy between the averaging methods (e.g., maximum of ~0.66% in qP 

anisotropy of the sinusoidal fold) are considerably smaller than the anisotropy variations caused by 

geometry, or limb angle (e.g., maximum of ~3.55% (= 12.75% − 9.20%) for Voigt and ~2.89% (= 12.75% 

− 9.86%) for Reuss in qP anisotropy of the sinusoidal fold) (Fig. 4.13). 
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Figure 4.12. Comparison of axial velocities between Voigt and Reuss estimates. The velocities are 

plotted for the EMS of the (a) chevron, (b) sinusoidal and (c) parabolic folds made of the Haast schist. The 

wave speeds are plotted as a function of limb angle (θ). Propagation directions and particle motion of qP 

and qS waves are labeled relative to the geographical axes (x-y-z). For instance, Sxy denotes qS wave 

propagating in the x direction and polarized in the y direction. Solid and dotted curves represent the Voigt 

and Reuss bounds, respectively. The AEH velocities are also plotted for sinusoidal folds in (b) and 

marked by dashed curve. Note only minor differences between the Voigt and Reuss velocities for the 

three fold types and also that the AEH graphs lie between the Voigt and Reuss bounds in (b). 
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Figure 4.13. Comparison of seismic anisotropies between Voigt and Reuss estimates The seismic 

anisotropies are plotted for the EMS of the (a) chevron, (b) sinusoidal and (c) parabolic folds made of the 

Haast schist. The Reuss seismic anisotropies (dotted curves) are plotted on the Voigt anisotropy graphs 

(solid curves) in Fig. 4.10 and exhibit less variation with limb angle than the Voigt anisotropies. The 

AEH anisotropies (dashed curves) are also shown for sinusoidal folds in (b). Note that the differences 

between the three bounds are considerably smaller than the anisotropy variations caused by folding. 
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Figs 4.11b and 4.13b also include the AEH results. In Fig. 4.12b, the AEH axial velocities with 

respect to limb angle lie between the Voigt and Reuss bounds, but are closer to the Reuss, and have 

maximum differences in qP and qS waves, respectively, of ~0.07 km/s and ~0.05 km/s from the Voigt, 

and ~0.02 km/s and ~0.04 km/s from the Reuss. The AEH seismic anisotropy graphs for the sinusoidal 

fold show interesting results. In Fig. 4.13b, the AEH values with respect to limb angle are not consistently 

placed between the Voigt and Reuss bounds. While the AEH anisotropies of qP are closer to the Reuss 

through almost all the limb angles, the qS1 AEH values are closer to the Reuss until θ = 60° (crossover 

limb angle of sinusoidal fold) and after its θc, to the Voigt anisotropies. However, the differences of the 

AEH anisotropies in all the seismic waves from the Voigt or Reuss are far smaller than the first-order 

anisotropy variations due to folding. The AEH qP and qS1 anisotropies have maximum differences, 

respectively, of ~0.60% and ~0.82% from the Voigt, and ~0.08% and ~0.76% from the Reuss (Fig. 4.13b). 

The comparisons of seismic velocities and anisotropies between the three bounds reemphasize 

that the Voigt and Reuss estimates for EMS are quite close to the precise AEH solution and hence provide 

reliable results. 

4.7.2. Natural Fold Geometries 

Folds are very common geological structures developed at a variety of scales and depths and in 

varied tectonic settings. Geologists have investigated their geometries and formation mechanisms for a 

long time to obtain information on rheology, strain, kinematics, and deformation history in ancient and 

modern orogenic belts from the foreland fold-and-thrust belt to high-grade metamorphic rocks of the 

central crystalline core complex, and natural fold examples are found in their literature and textbooks (e.g., 

Ramsay, 1967; Ramsay and Huber, 1987; references within Hudleston and Treagus, 2010; Poblet and 

Lisle, 2011; Bastida et al., 2014). Fold structures are also recognized in ductile shear zones (e.g., Carreras 

et al., 2005) and in extensional tectonic settings (e.g., Harris et al., 2002). However, it is not 

straightforward to predict natural fold geometry based on tectonic settings or locations, since 

inhomogeneous rheology and strain form various structures from consistently oriented rocks with 

foliation to complex fold structures. 
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Recently, a few studies quantified geometries of natural folds in greenschist and amphibolite 

facies rocks from the ancient Variscan orogenic belt of Europe (Baratoux et al., 2005; Bastida et al., 2010) 

and turbidites from the Pyrenees of the Alpine orogenic belt (Bastida et al., 2012). Those folds mainly 

range from chevron to parabolic shape, based on area balance and Fourier harmonic analyses (e.g., 

Bastida et al., 1999; Bastida et al., 2005), and their limb angles mostly show 40° to 80° (inferred from 

aspect ratio and interlimb angle data). The natural folds are rarely upright symmetric as described in the 

previous sections, which may be found in an initial stage of buckle folding, but inclined to recumbent or 

plunged. In such a case, their EMS can be obtained by simple transformation of bulk stiffness tensors 

calculated for upright symmetric folds. If rock layers are not parallel to the principle shortening direction, 

or shearing deformation is involved, then asymmetric folds can be developed (e.g., Treagus, 1973; 

Anthony and Wickham, 1978; Carreras et al., 2005; Aller et al., 2010). Practically, both fold asymmetry 

and inclined axial surfaces are common in nature. We analyze geometry and seismic velocities of simple 

asymmetric cylindrical folds in section 4.7.2.1 below. 

Meso- and macro-scale folds of mica-rich rocks in the middle crust often have complex structures 

at microscopic scale, for instance, asymmetric and symmetric microfolds (crenulation cleavage) in the 

limb and hinge area, respectively, of the large-scale folds, since the folding is accommodated by internal 

deformation such as dissolution-precipitation (e.g., Williams et al., 2001; Naus-Thijssen et al., 2011a). To 

get EMS of such large-scale folds using the methodology in the present study, elastic properties of local 

rocks distributed throughout the folds may need to be averaged for the representative rock stiffness. 

Another consideration to investigate natural fold seismic anisotropy is non-cylindrical folds such 

as superimposed folds. Two generations of folds may form during a continuous deformation or during 

two periods of deformation separated by a large time interval (e.g., Ramsay, 1967, chapter 10; Simón, 

2004). Okaya et al. (2018) provided an example of doubly-plunging folds, their 3-D mathematical 

expressions and seismic property results.  
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4.7.2.1. Asymmetric Cylindrical Folds 

This section introduces simple periodic asymmetric fold geometries with planar enveloping 

surfaces (Fig. 4.14a). They can be generated by shearing a symmetric cylindrical fold, but the resulting 

geometries may be used in asymmetric folds with same morphology caused by other mechanisms for a 

seismic anisotropy analysis. A degree of fold asymmetry is measured by angular shear strain (ψ), called 

tilt angle here, ranging between −90° and 90° (Fig. 4.14a). When ψ > 45° or ψ < −45°, the asymmetric 

fold is overturned. New rotation angle (′) between the rock symmetry axes and the asymmetric fold 

reference frame is a function of ψ and  (old rotation angle in symmetric fold): 
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where (x) is from equation (10). Thus, the direction cosine matrix in the asymmetric cylindrical fold is as 

follows: 
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We numerically compute the Voigt EMS of asymmetric folds with specific tilt angles (ψ = 30°, 

45°, 60°, 75°) made from all types of original symmetric fold at θ = 45°, due to their complex geometries. 

Fig. 4.14b illustrates the geometries and seismic velocities of the asymmetric sinusoidal folds and the 

symmetric fold for comparison. With varying ψ, the seismic anisotropy and the minimum velocity 

direction are changed. Additionally, the asymmetric fold volumes no longer represent orthorhombic but 

monoclinic velocity patterns, although the same hexagonal internal rock is used. In the bottom row of Fig. 

4.14b, while the velocity graph in the x-z plane of the symmetric fold is symmetrical with respect to  of 

45° (orthorhombic), the asymmetric velocity graphs do not have any line of symmetry in the x-z plane. 

Other types of asymmetric folds are shown in Fig. 4.15. 
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Figure 4.14. Design of asymmetric fold geometry and seismic velocities for the Voigt EMS of single-

layered asymmetric sinusoidal folds. (a) Simple periodic asymmetric fold made by shearing a symmetric 

cylindrical fold. Depending on the tilt angle (ψ), degree of fold asymmetry and new rotation angle (′) are 

determined. (b) Geometry and 3-D seismic velocity of quasi-P wave (qVP) (top row) and 2-D velocity 

plot with propagation angle  in the x-z plane (bottom row) with specific tilt angles (ψ = 30°, 45°, 60° and 

75°) made from symmetric sinusoidal fold at a limb angle (e.g., θ = 45°). Two limb angles (θ′1 and θ′2) of 

asymmetric fold are provided. The original symmetric fold geometry and seismic results are shown in the 

leftmost column for comparison. Note that the asymmetric fold EMS exhibit monoclinic symmetry. 
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Figure 4.15. Seismic velocity plot for the Voigt EMS of single-layered asymmetric folds. 3-D seismic 

velocity of quasi-P wave (qVP) (top row) and 2-D velocity plot with propagation angle  in the x-z plane 

(bottom row) are plotted for asymmetric (a) cuspate (m = 0.5), (b) chevron, (c) parabolic, and (d) box (m 

= 3) folds with specific tilt angles (ψ = 30°, 45°, 60° and 75°) made from symmetric sinusoidal fold at a 

limb angle (e.g., θ = 45°). Two limb angles (θ′1 and θ′2) of asymmetric fold are provided. The original 

symmetric fold geometry and seismic results are shown in the leftmost column for comparison. Note that 

all the asymmetric fold EMS exhibit monoclinic symmetry. While the velocity graph in the x-z plane of 

the symmetric fold is symmetrical with respect to  of 45° (orthorhombic), the asymmetric velocity 

graphs do not have any line of symmetry in the x-z plane. 
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Figure 4.15. (continued) 

 

 

4.7.3. EMS for Multi-Layered Cylindrical Folds 

Thus far, the EMS stiffness tensors have been computed for single-layered folds (Fig. 4.1a). It has 

been well known for decades that stacked isotropic or anisotropic thin layers produce another anisotropic 

property (e.g., Backus, 1962; Levshin and Ratnikova, 1984; Schoenberg and Muir, 1989). Given that the 

crust is a layered medium, multi-layered folds are very common. Let me consider a cylindrical fold with 

multiple layers (Fig. 4.1c) where the representative rock of each layer can have different elastic stiffness. 

One solution for EMS stiffness tensors of the multi-layered fold is to first obtain the representative rock 

stiffness incorporating all the layers, and then use the same SGO tensors as the single-layered folds. As 

illustrated in Figs 4.1c and 4.16, we assume that a multi-layered cylindrical fold consists of two kinds of 



91 

layers (Layer 1 and Layer 2) with different representative rock stiffness (C
rep

L1 and C
rep

L2) and the 

thickness of layers (l) is much smaller than the seismic wavelength. Now the representative rock of the 

multiple layers (C
repm

) in Fig. 4.16b can be treated as a finely layered, horizontally stratified, elastic 

medium. Homogenization techniques for stiffness calculation of a finely layered medium are presented by 

Backus (1962) in the case of isotropic or transversely isotropic (hexagonal) symmetry with vertical 

symmetry axis (called the “Backus average”) and by Schoenberg and Muir (1989) in the case of generally 

anisotropic symmetry. Alternatively, the homogenized representative rock stiffness (C
repm

) of multiple 

layers for all the cases can be obtained numerically via the AEH method (e.g., Vel and Goupee, 2010; 

Naus-Thijssen et al., 2011a; Vel et al., 2016). Once the C
repm

 incorporating the multiple layers is obtained, 

the bulk elastic stiffness (C*) of the multi-layered EMS can be computed using the same SGO tensors as 

the single-layered folds (e.g., equation (22) for the Voigt estimate). For instance, a multi-layered 

sinusoidal fold consists of schist (Layer 1; e.g., the Haast schist) and gneiss (Layer 2; e.g., the Nanga 

Parbat gneiss from Okaya and Christensen (2002)) with same volume fraction, and we want to know the 

qP seismic anisotropy of the fold with limb angle of 45°. Since the Haast schist in Layer 1 and the Nanga 

Parbat gneiss in Layer 2 have hexagonal symmetry (Okaya and Christensen, 2002), the homogenized 

C
repm

 of the two layers by the Backus average also has hexagonal symmetry (Figs 4.17a, 4.17b, and 

4.17c). Using the C
repm

 and the sinusoidal SGO for the Voigt (equation (26)), the fold EMS with limb 

angle of 45° can be easily calculated, and thus its qP seismic anisotropy (7.24%) for the Voigt bound is 

obtained (Fig. 4.17d). 
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Figure 4.16. Multi-layered fold and its representative rock. Schematic diagrams show (a) the structural 

effective medium (EMS) and (b) the selected representative rock (C
repm

) for the multi-layered cylindrical 

fold of Fig. 4.1c in the profile plane. The fold consists of two kinds of layers (Layer 1 and Layer 2) with 

different representative rock stiffness (C
rep

L1 and C
rep

L2). The thickness of layers (l) is assumed to be 

much smaller than the seismic wavelength to calculate the C
repm

 using homogenization techniques. The 

local rock symmetry axes (a-b-c) and the geographical frame (x-y-z) are also illustrated. 
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Figure 4.17. Example of strategy to obtain a multi-layered fold EMS with a specific limb angle (e.g., θ = 

45°). Seismic velocity (qVP) and anisotropy (AVP) are shown at each step. From (a) Layer 1 of the Haast 

schist and (b) Layer 2 of the Nanga Parbat gneiss (Okaya and Christensen, 2002), (c) the homogenized 

representative rock stiffness (C
repm

) incorporating the two layers can be computed via the Backus average 

(Backus, 1962) since all the layers have hexagonal symmetry. And then (d) the EMS of the multi-layered 

fold can be obtained from (c) using the same SGO as for single-layered folds. In (d), the Voigt EMS 

velocity result for sinusoidal fold at θ = 45° is presented as an example. Shear wave splitting (δt) results at 

all the steps are also provided in the bottom row. 

 

 

4.7.4. Work Flow for EMS Analysis and Associated Uncertainties 

The EMS analysis intrinsically involves multiscale homogenization (approximation) and hence 

cumulative uncertainties from microscale fabric heterogeneity to larger-scale structure. Fig. 4.18 shows a 

flow diagram for the multiscale analysis of fold EMS and highlights possible sources of uncertainty. To 

calculate bulk stiffness tensors of polycrystalline rocks at hand-specimen or thin-section scales (Fig. 

4.18a), two types of approaches are widely used: petrophysical measurements, and fabric (e.g., LPO) 

measurements using X-ray/neutron diffraction or EBSD. Petrophysical measurements produce a single 

value of the bulk rock stiffness under specific pressure and temperature, but it is relatively challenging to 

measure full 3-D seismic properties especially for low symmetry rocks. On the other hand, the thin-

section-based approaches can estimate bulk elastic properties of any symmetry rocks from single crystals, 

but the resulting values are dependent on homogenization methods for arriving at a bulk stiffness tensor. 
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There are cases in which homogenized properties of same polycrystalline rocks are quite different 

between the Voigt (1928) and Reuss (1929) estimates. For instance, highly anisotropic rocks such as mica 

schists can show a large difference more than 1 km/s in seismic velocity between the two bounds (e.g., 

Mainprice and Humbert, 1994; Naus-Thijssen et al., 2011a). This is because the rocks do not have 

uniform stress and strain fields due to heterogeneous microstructure and elastically anisotropic grains. 

Thus, it is important to determine an appropriate homogenization technique to compute a reasonable bulk 

stiffness for a specific rock at the sample scale. The AEH-finite element method explicitly considers 

cumulative effects of grain-scale elastic interactions throughout the heterogeneous rock, incorporating the 

effects of LPO, grain size, shape, shape-preferred orientation and spatial arrangement of grains. Naus-

Thijssen et al. (2011a) provided methodologies for determining rock elastic properties using the AEH 

method coupled with EBSD data. Using precise methods such as AEH can reduce the uncertainty that 

arises from averaging techniques for the bulk rock stiffness at micro to mesoscales, especially for highly 

anisotropic rocks. 

We have assumed that a fold structure has relatively uniform rock type throughout the fold 

volume, so that a local rock stiffness tensor (C), determined from petrophysical laboratory or thin-section 

methods, could be used as a representative rock stiffness tensor (C
rep

) (e.g., equations (13) and (21)). 

However, there would be situations when the local rock variation is considerable along the fold. For 

instance, when foliated or finely laminated rocks are folded, small-scale folds and crenulation cleavage 

may form in the hinge area and its rock stiffness could be markedly different from the more planar 

foliated limb (e.g., Naus-Thijssen et al., 2011a). In such a case, an appropriate homogenization strategy is 

required to obtain the representative rock stiffness from variable local rocks (Fig. 4.18b). 

In multi-layered folds, assuming that C
rep

 of each layer is appropriately obtained using the 

methods in Figs 4.18a and 4.18b, an accurate homogenized representative rock stiffness of the multiple 

layers (C
repm

) may be computed as discussed in section 4.7.3 (Fig. 4.18c). 

In computing the bulk fold EMS (C*), the separation of geometry (SGO) from rock property (C
rep

) 

allows us to efficiently investigate the variations of fold seismic properties depending on its geometry 
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(e.g., fold type and limb angle) regardless of the rock type (Fig. 4.18d). This approach will greatly reduce 

computational time of a number of EMS with various fold geometries compared with time-intensive 

numerical methods such as AEH (see section 4.3.3.3). It is also possible to explore various types of 

representative rocks if the fold morphology is known. Although my approximations for EMS using the 

Voigt and Reuss methods produce uncertainties, the differences between the upper and lower bounds are 

minor relative to the limb angle variation (Figs 4.12 and 4.13). Interestingly, the fold EMS uncertainty 

(e.g., up to ~0.07 km/s; Fig. 4.12) arising from different averaging methods is considerably smaller than 

the rock EM uncertainty (e.g., up to ~1 km/s in highly anisotropic rocks; see Mainprice and Humbert 

(1994) and Naus-Thijssen et al. (2011a)). 

Lastly, we have used the effective medium theory for predicting the bulk fold elastic properties 

assuming that the size of the structural heterogeneity (L) is much smaller that the seismic wavelength (λ) 

(Fig. 4.1). However, the influence of various seismic wavelengths from the scattering regime to the 

effective medium would be an interesting topic for further investigation. 

 

Figure 4.18. Flow diagram for multiscale analysis of the fold EMS. (a) to (d) indicate homogenization for 

effective medium (EM) at each scale and possible sources of uncertainty (gray boxes). See the text in 

section 4.7.4 for details. 
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4.8. Conclusions and Implications 

(4) New tensor formulations via the Voigt and Reuss averages are presented for calculating bulk stiffness 

tensors (structural effective medium, or EMS) of single-layered macroscale folds that can modify 

(rotate) intrinsic rock fabric. The formulations effectively highlight the influence of the macroscale 

geometries on seismic properties by defining a structural geometry operator (SGO) which is solely 

dependent on the geometry and separated from the constituent rock stiffness tensor. 

(5) The SGO can be analytically or numerically computed if a structure of interest can be expressed 

mathematically. For idealized cylindrical folds (sinusoidal, chevron, parabolic, box and cuspate), the 

SGO is a function of both limb angle and hinge shape, and in turn the velocity and anisotropy of 

seismic waves propagating through the folds vary with different limb angle and fold type even if they 

are comprised of the same rock. 

(6) Seismic waves propagating through the cylindrical folds in different directions show different 

velocity patterns. Consequently, the comparison of real seismic observables to my model results may 

provide information about folding at depth and therefore on the kinematics of crustal deformation. 

(7) Seismic anisotropies for quasi-P and fast quasi-S waves decrease approaching the crossover limb 

angle (θc) at which the horizontal and vertical stiffnesses for a cylindrical fold are equal, and the θc for 

each fold type increases with decreasing hinge curvature; for example, θc of chevron and sinusoidal 

folds are 45° and 60°, respectively. This indicates that the fold seismic anisotropy is strongly affected 

by limb angle and hinge shape. 

(8) In instances where the local rock has hexagonal (or transversely isotropic) symmetry, the calculated 

EMS for the symmetric cylindrical folds range from tetragonal to orthorhombic symmetry depending 

on limb angle, and the asymmetric folds exhibit monoclinic symmetry. When the folds display 

tetragonal symmetry at their θc, the seismic anisotropies are effectively muted, for example, decreased 

by ~19% to 35% of the original rock anisotropy of the Haast schist in quasi-P wave. This implies the 

possibility of further muted seismic anisotropy for non-cylindrical folds such as superimposed folds 

with different shortening directions. 
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(9) Fold EMS from the two different averaging techniques (Voigt and Reuss) show only minor variances 

compared with that caused by fold morphology changes, and are considerably close to a precise 

numerical solution such as asymptotic expansion homogenization. This indicates that my approach is 

efficient and valuable for exploring the influence of various fold geometries on seismic velocity and 

anisotropy in varied tectonic settings. 

(10) A more complete understanding of crustal seismic anisotropy modified by natural folds might 

help better interpret mantle dynamics based on teleseismic waves passing through orogenic belts 

where crustal thickening occurs. 

4.9. Supporting Information 

The supporting information contains the Voigt and Reuss SGOs of folds filled with an 

orthorhombic symmetry rock. 

4.9.1. SGO
Voigt

 for Folds Made of Rocks with Orthorhombic Symmetry 

This section describes the analytical SGO matrices for single-layered sinusoidal, chevron and 

parabolic folds using the Voigt method when the representative rock (C
rep

) has orthorhombic symmetry 

with 9 independent components. The resulting fold EMS stiffness (C*
Voigt

) also exhibits orthorhombic 

symmetry. This relationship (equation (24)) can be written in column vector forms as follows: 
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  (42) 

The SGO matrix is of dimension 9×9. 

For sinusoidal folds defined by the sine wave function (equation (1)), the SGO matrix is 
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where B and D are non-dimensional parameters defined as 2(1/ 2) tanB   and 21 tanD   , and 

θ is the limb angle. 

The SGO matrix of chevron folds, which are described by the power function with m = 1 

(equations (3), (4), (5) and (6)), is as follows: 
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  (44) 

where c and s are non-dimensional parameters defined as cosc   and sins  , and θ is the limb 

angle. 

In the case of parabolic folds described by the power function with m = 2 (equations (3), (4), (5) 

and (6)), the SGO matrix is given by 
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where c and s are non-dimensional parameters defined as  and , and θ is the limb 

angle in radians. 

4.9.2. SGO
Reuss

 for Folds Made of Rocks with Orthorhombic Symmetry 

This section describes the analytical SGO matrices for single-layered sinusoidal, chevron and 

parabolic folds using the Reuss method when the representative rock compliance tensor (S
rep

) has 

orthorhombic symmetry with 9 independent components, the SGO matrix for the compliance is of 

dimension 9×9, and equation (33) can be written in column vector forms as follows: 
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Each SGO
Reuss

 for chevron, sinusoidal and parabolic folds is as follows 

cosc  sins 
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where B and D are non-dimensional parameters defined as 2(1/ 2) tanB   and 21 tanD   , and 

θ is the limb angle. 
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where c and s are non-dimensional parameters defined as  and , and θ is the limb 

angle in radians. 

  

cosc  sins 
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APPENDIX. BASIC TUTORIAL OF THERMOELASTIC AND SEISMIC ANALYSIS (TESA) 

TOOLBOX VERSION 2.1 

 

This basic tutorial was written on April 26, 2018 for Stress/Strain Analysis, describing Phase 

Information, Mesh Options, AEH-FE Homogenization, and Stress/Strain Analysis in TESA toolbox. Heat 

Conduction analysis and Seismic Speed Wave Analysis will be explained in the future. 

A.1. Install TESA Toolbox (standalone program) 

Go to the web page (https://umaine.edu/mecheng/vel/software/tesa_toolbox/; Fig. A1), download, 

and install the program (see the instructions in the web page). 

 

Figure A1. Screen capture of the web page to download the TESA Toolbox. 

  

https://umaine.edu/mecheng/vel/software/tesa_toolbox/
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A.2. Homogenization Analysis using EBSD Data 

This tutorial is to analyze grain-scale stresses and strains of a polycrystalline material subjected to 

macroscale loads. Thus, we consider here only Asymptotic Expansion Homogenization (AEH) using a 

finite element mesh. 

A.2.1. Open TESA Toolbox 

The standalone GUI (graphic user interface) program (Fig. A2) and other two windows (Fig. A3) 

will open. Do not close the ‘black’ window during analysis, which is linked to the GUI program. 

 

Figure A2. The standalone TESA program. 
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Figure A3. Additional windows when opening TESA Toolbox. 

 

 

A.2.2. Load Analysis File 

Open the sample file, “TestSample1.ang” in the folder of “Tutorial_TestSample” (Fig. A4). The 

Electron backscatter diffraction (EBSD) data must be acquired in square grid format. Note that EBSD 

data file for TESA Toolbox should be made using single orientation per grain. In other words, all the 

crystallographic orientations (Euler angles) within a grain should be same. 

 

Figure A4. Loading analysis file. 
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A.2.3. Choose the type of analysis 

After loading the sample file, select “Wave Speeds and Microfields” of the analysis types. 

 

Figure A5. Choosing the type of analysis. 

 

 

A.2.4. EBSD Data Input 

The input file must have three Euler angle, x- and y-coordinates, and phase information. 

Typical .ang files exported from EDAX OIM software have the phase information in 8th column, but the 

sample file has it in 6th column. Enter “1”, “4”, “6” (default values) in each entry (Fig. A6). 

 

Figure A6. EBSD data input. 
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A.2.5. Input Reference Frame Orientation 

The current version supports only .ang file format. If the file was converted from .ctf format 

exported from Oxford HKL CHANNEL system, note that OIM and HKL systems generally use different 

reference frames. The reference direction in OIM is the Ypixel direction and in HKL is the Xpixel 

direction. Typically, the OIM system needs 90 degrees for the reference frame orientation in TESA 

Toolbox, and the HKL system requires 180 degrees assuming CS0=CS1. See below. 

Reference direction = RD (OIM) = X0 (HKL) = R (HKL) 

Transverse direction = TD (OIM) = Y0 (HKL) = T (HKL) 

Reference frame options and their orientations for TESA Toolbox 

(a) RD (OIM) is coincident with the –Ypixel direction (upward on screen) 

(b) RD (OIM) is coincident with the +Ypixel direction (downward on screen) 

(c) Y0 (HKL) is coincident with the +Ypixel direction (downward on screen) 

(d) Y0 (HKL) is coincident with the –Ypixel direction (upward on screen) 

  90 

–90 

180 

    0 

 

For EBSD file from EDAX OIM system, enter “90” (default value) to specify the orientation of 

the reference frame (Fig. A7). 

 

Figure A7. Input of reference frame orientation. 
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A.2.6. (Optional) Remove Small Grains 

You can remove small grains by defining the number of pixels for the minimum grain size. Here 

“10” pixels per grain is selected (default values; Fig. A8). 

 

Figure A8. Removing small grains. 

 

 

Now, the toolbox will be shown as below (Fig. A9). 

 

Figure A9. TESA Toolbox after loading an EBSD file and deciding basic options for the EBSD data. 
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A.2.7. Assign Properties to Each Phase 

For TestSample1, select “alpha-Quartz_2006_Ohno.txt” for Phase 1 and 

“Plagioclase_An25_2016_Brown.txt” for Phase 2, from the folder of “Tutorial_TestSample” (Fig. A10). 

 

Figure A10. TESA Toolbox after assigning properties for each phase. 

 

 

Note that Property files for TESA Toolbox should contain the five items: phase name, density 

(kg/m3), elastic stiffness matrix (Pascals), thermal expansion coefficients (1/K), and thermal conductivity 

matrix (W/(m K)). If there is no information of the last two items for the phase, type any numbers, and do 

not use the items in your analysis. Property file must be written in the same format as the provided 

property files (do not add or delete lines between items) (Fig. A11). 
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Figure A11. An example of property file. Elements of the thermal expansion tensor are arranged as 11, 

22, 33, 23, 13, and 12 from top to bottom. 

 

 

A.2.8. Select Mesh Options 

Click “Build Conforming Non-Uniform Mesh” with default options (“conforming non-uniform” 

for mesh type and “fewest elements” for mesh density) (Fig. A12). 

 

Figure A12. Mesh options. 
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A.2.9. Mesh Size Function Parameters 

Enter “0.007” for the first entry and select default values for the other entries, or you may select 

default for all the entries (Fig. A13). 

 

Figure A13. Mesh size function parameters. 

 

 

After clicking OK, you can see the following windows (Fig. A14). 

 

Figure A14. Meshing progress and information. 
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If your EBSD file has relatively small data points and simple grain boundary shapes, you can see 

the meshing routine is complete and stops automatically in some time (e.g., several hours or a day). 

However, in the case of relatively big file size, you may need to stop the meshing routine by yourself after 

the initial mesh. 

After building the mesh, the toolbox will be shown as below (Fig. A15). You can save or export 

the mesh plot as MATLAB figure (.fig) or bitmap format after “Open in a New Window”. Similarly, you 

can also “Plot Grains” and save it. 

 

Figure A15. TESA Toolbox when completing meshing. 
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A.2.10. AEH-FE Homogenization 

For the analysis of grain-scale stresses and strains, “Run Homogenization Analysis” using AEH 

with Hill Estimate (default option) (Fig. A16). 

 

Figure A16. AEH-FE homogenization. 

 

 

And then, progress bars will be displays as below (Fig. A17). 

 

Figure A17. Progress bars related to AEH-FE homogenization. 
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A.2.11. (Optional) Save Processed Files 

 You can take and save the following two files for future sensitivity test and analysis information: 

(a) “TestSample1_post_homog.mat” in the folder of “Auto Saves” (Fig. A18) and (b) “Analysis Info - 

TestSample.txt” in the folder of “Saved Analyses” (Fig. A19). You may want to move them to a folder 

(e.g., “12Apr2018_TestSample1_1”) created automatically in “Saved Analyses” during analysis. To see 

the text file of “Analysis Info” in a well-organized display, open it through MATLAB, not just double-

click it in the windows folder.  

 

Figure A18. Automatically saved processed files. 

 

 

Figure A19. Automatically saved analysis information file. 
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During analysis, a new folder (e.g., “12Apr2018_TestSample1_1”) in the “Saved Analyses” 

folder is created, in which you can see all the homogenization results and the used property files after the 

analysis is finished (Fig. A20). 

 

Figure A20. A new folder and files created during the analysis under the “Saved Analyses” folder. 

 

 

And also in the “Effective Stiffnesses and Anisotropies” folder, a new folder (e.g., 

“12Apr2018_23h_7m_TestSample1”) is created, in which all the homogenization results are saved. 

 

Figure A21. A new folder created during the analysis under the “Effective Stiffnesses and Anisotropies” 

folder. 
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A.3. Stress/Strain Analysis 

After homogenization analysis using AEH, select “Macrofield Type” (“Stress” here), and enter 

values in “Macrofield Components”. For example, -270MPa (-270e6) hydrostatic confining pressure 

(negative for compression) and 0 temperature change (no temperature change in this example) (Fig. 

A22). If you have ‘thermal expansion coefficients’ for the phases in their property files, put a value of 

temperature change you desire. Note that to the macrofield stress tensor is related to the reference frame 

of TESA Toolbox (“1” is to the right; “2” is to the top). 

 

Figure A22. Macrofield options for stress/strain analysis. 
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You can plot 23 components (Stress 11 ~ Volumetric Strain) in TESA Toolbox. Select an item 

you want to plot in “Microfield Components” and then “Plot Microfield” (Fig. A23). 

 

Figure A23. Microfield components. Here, ‘Princ. Stress 1’ (maximum principal stress) is selected. 
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After clicking “Plot Microfield”, the following progress bars will be displayed (Fig. A24). 

 

Figure A24. Progress bars related to stress/strain analysis. 

 

 

 

Now, the toolbox will be shown as below (Fig. A25). 

 

Figure A25. TESA Toolbox after plotting microfield. In the plot, the min and max values (here in pascals) 

below the resulting plot are from the min and max values of the interpolated fields at the nodal points 

(interpolated from the quadrature point values). The quadrature points (four points) are located within 

each element. 
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To save the current plot, “Open in a New Window” (Fig. A26). And then save the plot as 

MATLAB figure (.fig) for later modification in MATLAB. You can also export it as bitmap formats. 

 

Figure A26. Opening in a new window to save the current plot. 
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You can also plot meshed grains by clicking “Plot Grains”, which can be saved after “Open in a 

New Window” (Fig. A27). But, note that you cannot go back to the microfield plot (for this, you need to 

“Plot Microfield” again; thus make sure to save the microfield plot after microfield analysis). 

 

Figure A27. TESA Toolbox after plotting grains. 
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After you finish Stress/Strain Analysis, “Save Current Analysis” for future additional analyses by 

clicking the second icon from left in TESA Toolbox (Fig. A28). When saving, add the information of the 

“Macrofield Components” to file name. For example, “TestSample1_T=Zero-270MPaHydro.mat” (Fig. 

A29). 

 

Figure A28. Save icon (the second from left) in the top left corner of TESA Toolbox. 

 

 

Figure A29. An example of file name when saving the final analysis file. 
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