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A significant fraction of global energy demand is met through nonrenewable petroleum 

feedstock, which increases the risk of energy security. The energy production from non-

renewable petroleum feedstocks is one of the large contributor to greenhouse gas 

emissions, which can cause climate change impacts. The energy security can be 

improved, and the greenhouse gas emissions can be reduced by deriving energy from 

domestically available renewable lignocellulosic feedstocks such as wood. 

Wood has three major components: cellulose, hemicellulose, and lignin. The cellulose is 

primarily used to produce pulp and paper. The hemicellulose is often utilized to produce 

a value-added chemical like furfural. However, lignin is an underutilized component of 

wood, which is primarily used as a boiler fuel. The current economic value of the lignin is 

very low as its application is greatly limited. The low economic value of lignin can also be 

limiting the commercialization of biorefineries to produce biofuels. Significant research 

has been conducted to valorize lignin via fast pyrolysis and catalytic pyrolysis to produce 

chemicals and fuels. However, problems such as feeding, low energy density of bio-oil 

due to a high oxygen content, irreversible deactivation of the catalyst due to the presence 
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of ash are hindering the commercialization of these processes. In this study, we explore 

the possibility of overcoming these problems with the formate assisted pyrolysis (FAsP) 

of lignin.  

The FAsP involves pretreating lignin with two formate salts (calcium formate and 

magnesium formate) before it is pyrolyzed in a reactor at a temperature of 500 °C. Two 

different mass concentrations formate salts were considered: 0.5 g and 1 g of formate 

salt per g of lignin. It was observed that lignin feeding issues can be overcome by 

pretreating lignin with the formate salts of calcium and magnesium. The highest bio-oil 

yield of pyrolysis of pretreated lignin with calcium and magnesium formate salts was found 

to be 7% and 15.5%, respectively. The O/C ratio of bio-oil was found to be 0.08 and 0.16 

for the lignin pretreatment with calcium and magnesium formate salts, respectively. By 13-

C-NMR it was detected that bio-oil has more than 75% aromatics.
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CHAPTER  1 

INTRODUCTION 

Since the industrial revolution human beings have been largely dependent on different 

kinds of fossil fuels such as coal, crude oil, and natural gas to produce energy. Of these, 

coal was the very first source that people started using for energy, followed by crude oil 

and natural gas. With the advancement in the technology, dependency on coal reduced 

and more oil was used (1). Energy and fuels are two basic needs of humans; around 81% 

of total energy is generated by fossil fuel and more than 90% of transportation fuel in the 

U.S. comes from petroleum oil (2)(3).  But along with that, we should also know that fossil 

fuels are the non-renewable source of energy, as they take millions of years to 

regenerate. As per BP’s report of 2013, the remaining oil supply will last for another 53.3 

years at the current rate of extraction, although it might vary a bit because there may still 

be undiscovered oil reserves (4). 

As per population division of the UN, there will be around 9 billion people by 2050 (5), 

meaning that the global population is increasing daily, therefore the demand for energy 

and fuel will increase, though we cannot regenerate them as they are non-renewable 

sources. The rate at which we are using fossil reserves is depleting this limited storage 

very fast. Also, there is another problem associated with the usage of crude oil. If we look 

at the life cycle (from extraction to refinement and commercial use) of petroleum products, 

they are the major source of greenhouse-gas (GHG) emissions, especially when fossil 

fuels are burnt to produce electricity, heat, and transportation fuel (6). Because of GHG’s 
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other problems arise in the form of acid rain which creates many problems, including the 

major problem of making agricultural land infertile (7).  

With the increasing usage of hydrocarbon fuels for our comfort, the negative impacts are 

increasing as well. This results in global warming because of climate change and the 

scarcity of petroleum reserves. Therefore, research is being conducted across the world 

to find an alternative solution for energy and fuels, focused on renewables that generates 

less CO2 emission as global warming is a major problem we are facing nowadays. 

Therefore, options such as solar, and wind are very appropriate as a renewable source 

to produce energy. It is predicted that after 10 years, up to 19% of electricity will be 

generated by wind energy and will cover between 25-30% of world’s energy need. And 

by this way, the limit of 2˚C rise by 2100 can also be achieved, as it will help in reducing 

the release of 3 billion tons of CO2 a year (8). Likewise, solar energy is also an important 

source for energy production, and if we look at BP’s 2016 report which has mentioned 

that solar energy is also contributing power generation, increasing steadily in use year 

after year. It was observed that there was the growth of around 30% in the year 2016 (9). 

Hence slowly but steadily it also helps in the production of energy and in reducing the 

usage of a fossil which ultimately decreases the release of harmful gases. 

As discussed above, there are many options for the generation of energy. But for 

transportation fuels and chemicals, biomass may be the sustainable source. So, what is 

biomass? It is a renewable source of energy obtained by sources such as plants, animals, 

and municipal waste. Until the mid-1800’s biomass was the important source of an energy 

and still, it is a significant material for energy in many developing countries. The 

advantage of biomass is that they are renewable and easily available worldwide (10). 
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There was approximately 450 million dry tons of biomass on the earth. Which makes them 

a cheap source as well, while also an extensively researched topic to produce renewable 

sources (11). 

Therefore, biofuels such as ethanol and biodiesel are produced from available biomass 

and blended with gasoline and diesel to reduce the amount of crude oil production and 

usage along with the reduction of GHG emissions. So, these fuels are divided into 

different categories based on the type of feedstock. First generation where sugars from 

different crops such as corn, sugar cane, barley etc. are used to produce ethanol, and 

most of the ethanol in the United States is produced from corn. In fact, now the majority 

of the gasoline sold in the U.S. is blended with 10% ethanol by volume and there is no 

need of changing the vehicle engine. According to the department of energy (DOE) report 

2016, the supply of energy crops and crops residue in 2015 was around 100 million of dry 

tons and will be approximately 600 million of dry tons by the year 2040. Similarly, biodiesel 

is made from the vegetable oils, fats etc. which can be used in a diesel engine (12). 

The second generation of bio-fuels is where lignocellulosic biomass or woody biomass 

are used to produce fuels. Therefore, renewable fuel standard (RFS) was established in 

2005 with the energy policy act (EPA) 2005, where 4 billion gallons of biofuels were 

required to be used in 2006 by blending it with the transportation fuel. These measures 

were later extended by the energy independence and security act of 2007, where a 

requirement of 36 billion gallons of renewable fuel was estimated till the year 2022, with 

a condition that a maximum limit for the renewable fuel from corn- starch was 15 billion 

gallons and 16 billion gallons from cellulosic biofuels, all in effort to reduce the emission 

of GHG (13). Now, when we talk about Maine we can say that it is one of the most 
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forested state in the United States as it is occupied by forest in more than 90% of its land 

area. The major source of biomass here is the forest residues along with the residue from 

some pulp and paper mills. Because of this, approximately 10 million metric tons of dry 

biomass is produced in Maine. Therefore, biomass contributed around 24% of total 

electricity generation in Maine in 2016 (14). Because of its vast biomass diversity, Maine 

has the potential to reduce its dependency on non-renewable fuels and use renewable 

fuel for their energy needs. So, the usage of renewables would not just help in reducing 

CO2 emissions and provide clean energy, but it would also help in the energy security of 

many nations, by reducing the imports from other countries. 

 Lignocellulosic biomass has three major components: cellulose, hemicellulose, and 

lignin. The cellulose and hemicellulose are used in pulp and paper mills and also to 

produce some value-added chemicals. Lignin is an underutilized component and is used 

as a fuel in the boiler.  But lignin has more potential, as lignin is one of the large natural 

sources of aromatic compounds, which make the lignin very ideal precursor for 

hydrocarbon fuel. In this study, we are trying to valorize lignin by pretreating with two 

formate salts (calcium formate and magnesium formate) before pyrolyzing in a reactor at 

500 ˚C, to produce bio-oil. Elemental analysis was done to determine the wt% of carbon, 

hydrogen, nitrogen, and oxygen of the oil. 13C-NMR was performed to detect the groups 

present in the bio-oil. In next chapter study of different types of lignocellulosic biomass 

was done with majorly focus on lignin, followed by different pretreatment methods and 

different thermochemical process for the production of biofuels from the lignocellulosic 

biomass. 
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CHAPTER 2 

LIGNOCELLULOSIC BIOMASS 

2.1 Introduction 

Fossil fuels are the current source of transportation, of which diesel and gasoline are used 

as fuel for ground transportation, while kerosene and heavy fuel for plane and ships 

respectively. But, the petroleum reserves are limited, although there is a sufficient amount 

of coal which can also be used to produce fuel. However, the problem with the use of 

petroleum fuel is that it is increasing the number of greenhouse gases in the environment. 

Globally now there is a demand for cleaner and more sustainable fuels. The available 

options for renewable energy/fuel in the global market are solar, biomass, wind, and 

geothermal energy. As we have to convert these energy sources into some other form of 

energy such as electricity, biofuel or hydrogen, it cannot be used directly for 

transportation. There has been advancement in electrical vehicles but there is the 

challenge of storing such huge amount of energy efficiently (15). 

Hydrogen is a promising source of clean energy as it only generates water as a waste 

product. Still, the process of converting hydrogen from its source is not very efficient, 

however, its production from biomass through catalytic conversion has been improved 

considerably (16) (17). Barriers such as energy densities closer to the petroleum 

derived fuels and proper storage of hydrogen has come a along the way. Even if these 

two hinderances are resolved, there is another problem with hydrogen as there is no 

proper infrastructure for its distribution. All these scenarios make the biomass a suitable 

candidate for the production of transportation fuels (15). Moreover, hydrogen can also be 

made from these biofuels by catalytic partial oxidation (18). 
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Biomass is available in abundance and is renewable in nature which makes it sustainable 

and a viable option for the production of liquid fuel. Hydrocarbon fuels are used for 

transportation but, they are blended with the biofuels from biomass. Examples include 

ethanol and fatty acid methyl esters for gasoline and diesel engine respectively. The 

benefit of these mixtures are that they can be used for the existing vehicle engine. The 

use of direct or the total mixture is not an option because when it is compared with the 

properties such as energy density, viscosity, octane/cetane number of fossil fuels, they 

are lagging. However, blending of biofuel can be used as it also helps in limiting the usage 

of fossil fuels (15). 

Biomass is the most abundant source of renewable energy, which is available in the form 

of plants, animals, and municipal wastes. The contribution of biomass as fuel in the year 

2017 in the United States was 5%, from which the share of biofuels was 47% and the 

contribution of wood and municipal waste were 44% and 10% respectively (20). The 

components of biomass are given in the figure 1. Among which cellulose, hemi-cellulose 

and lignin are the major components. 

 

Figure 2.1 Components of biomass (15) 
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Lignocellulosic biomass (also known as second generation biofuels) uses woody biomass 

as a source of energy (23), which is available in the form of agricultural residues, 

municipal wastes, and forest residues (21). Lignocellulosic biomass (L.C.B) has three 

major components: cellulose, hemicellulose, and lignin. The composition of these 

components depends on the type of plant species. The amount of cellulose is greatest in 

hardwood, while lignin is greatest in softwood (Table 1) (19). 

Table 2.1 Composition of lignocellulosic biomass (19) 

 Cellulose Hemicellulose Lignin 

Hardwoods 40-55% 24-40 18-25 

Softwoods 45-50 25-35 25-35 

Wheat straw 30 50 15 

Corn cobs 45 35 15 

Grasses 25-40 35-50 10-30 

Switchgrass 45 31.4 12 

 

2.2 Components of lignocellulosic biomass  

2.2.1 Cellulose 

Cellulose is one of the significant components of lignocellulosic biomass, which accounts 

for 40-45 % of the wood dry weight. They are a polymer of D-glucopyranose units and 

are connected by β-(1 ----> 4) glucosidic bonds (figure 2). The degree of polymerization 

can be referred to as how many glucose units are present in the cellulose molecules. An 

average degree of polymerization of cellulose can be at least 9,000 – 10,000 (22). 
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Figure 2.2 Structure of cellulose (22) 

As the cellulose molecule tend to form an intra-inter molecular hydrogen bond because 

of their random orientation, this provides them high tensile strength and hence makes 

them insoluble to most solvents (21). In cellulose, there are two regions, crystalline and 

amorphous of which there is a greater crystalline region of cellulose compared to 

amorphous. Also, because of crystalline nature, it makes cellulose inert and insoluble in 

most solvents. This structure also helps it for high thermal stability compared to 

hemicellulose. However, it can be dissolved into strong acids like sulfuric acid, 

hydrochloric acid, or phosphoric acid, but this may lead to the rapid degradation. It is 

majorly used as a raw material for pulp and paper industry (22). 

2.2.2 Hemicellulose 

Like cellulose, hemicellulose is also a polysaccharide polymer but with many different 

sugars. Hemicellulose generally accounts for 20% - 30 % of wood’s dry weight. It has an 

average degree of polymerization of 100 – 200, making them weaker than cellulose. They 

are soluble in alkali and easy to hydrolyze (22). Hardwood and softwood have a different 

composition of hemicellulose (Table 2) (21). 
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Table 2.2 Percentage of hemicellulose (21) 

Hemicellulose Hardwoods  Softwoods 

Xylan 20-30 % 10-15% 

Glucomannan 2-5% 15-18% 

Galactoglucomannan ----- 5-10% 

 

2.2.2.1 Softwood hemicellulose  

Galactoglucomannans: From the above table it can be clearly seen that 

galactoglucomannan is the main hemicellulose of softwood, comprising between 20% - 

25% of wood’s weight. The major sugars present are β-D glucopyranose, β-D 

mannopyranose which is branched linearly (21). 

 

Figure 2.3 Softwood hemicellulose: Galactoglucomannan (21) 
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2.2.2.2 Hardwood hemicellulose 

Xylans: It is the major hemicellulose which is found in hardwood hemicellulose and 

accounts for 20% - 30% of wood’s weight. β-D xylopyranose is the main sugar for the 

xylans, along with some acetyl and methylglucuronic acid groups (Figure 4) (21). 

 

Figure 2.4 Hardwood hemicellulose: Xylan (21) 

2.2.3 Lignin 

Lignin is the most significant component of lignocellulosic biomass and one of the 

abundant polymers, usually accounting for 25 – 30 weight % of wood. It is highly complex, 

amorphous, and mostly aromatic. Unlike cellulose, it does not have any repeating units. 

The polymers of lignin consist of C-O-C and C-C linkages (Figure 5). In wood, it works as 

binding material for cellulose and hemicellulose. 
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Figure 2.5 Structure of lignin (21) 

Similar to cellulose, amount of lignin varies with softwood and hardwood. For softwood it 

stands between 25% - 35%, and lignin content for hardwood is around 18% - 25%. 

Basically, Lignin consists of three main buildings blocks or monomers which are p-

hydroxyphenyl (p-coumaryl alcohol), guaiacyl (coniferyl alcohol), and syringyl (sinapyl 

alcohol) as shown in figure 2.6 (21). Its content also varies from softwood to hardwood. 

Softwood will have more of guaiacyl, whereas hardwood have more syringyl. 
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Figure 2.6 Monomers of lignin (21) 

Most of the lignin which is produced as a by-product is used as a fuel, while a much 

smaller amount is used in other applications such as cement, drilling muds, emulsifier etc. 

(21). Lignin consists of methoxyphenyl propane groups, which provides more energy than 

that of cellulose and hemicellulose. Being one of the large natural source of aromatic 

compounds, lignin is a very ideal precursors for hydrocarbon fuels and aromatic 

chemicals (24) (25). 
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CHAPTER 3 

BIOMASS CONVERSION 
 

3.1 Introduction 

The necessity of energy has increased. Due to rapid industrialization and increase in 

global population, it will not be an easy task to manage energy (26). Also, with the 

continuous usage of conventional energy, there is also concern about environment. 

Therefore, renewable energy sources can play an important role to decrease our 

dependency on fossil fuel by providing an alternative source which will also help in 

reducing the environment concerns (27). Since ancient times biomass has been used as 

a source of energy all around the world, whether it is to generate electricity or to be a heat 

source at some industrial facility. It is the only renewable source which can be either 

converted into solid, liquid and gaseous fuels. Moreover, biomass contribute to 15% of 

the worlds primary energy which makes it to the fourth largest of energy (28). Also, the 

amount of greenhouse gas emissions can be reduced by using biomass fuel sources as 

they are environmentally friendly and renewable (27). Based on the type, quality or the 

quantity of feedstock, their end use or any specific environmental conditions or the 

factors, biomass can be converted into various forms of energy using different processes 

(29). Basically thermochemical, and biochemical are two processes for converting 

biomass (30). 

3.2 Thermochemical conversion 

Thermochemical conversion of biomass is the heating of biomass at high temperature 

and depending on their end use, different processes such as combustion, gasification, 

liquefaction, hydrogenation, and pyrolysis are used (27). 
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3.2.1 Combustion 

Combustion involves the heating of biomass in air. The heat generated can be used as a 

mechanical power or electricity using different equipment. The hot gas generated during 

combustion are around 800 to 1000 ˚C. It represents oldest utilization of biomass where 

it can be used on a smaller scale for domestic purpose such as cooking, space heating 

etc., as well as on an industrial scale to produce heat or generation of steam. Also, 

generating power on industrial scale by co-combustion with coal is a good option. Upon 

complete combustion between biomass and oxygen, it produces CO2, water, and heat 

(27). Like other process, combustion also has some drawbacks. Biomass which are 

available in its natural form cannot be used for burning directly. Different pretreatment 

such as compression, chopping and grinding of biomass need to be done to improve 

combustion which results in increasing the process cost (31). 

3.2.2 Gasification 

Gasification is a process which produces mixture of combustion gas by heating biomass 

with air or steam at the temperature range of 800 to 900 ˚C. The reaction during 

gasification process are as follows: 

C + O2 → CO2 

C + ½ O2 → CO 

CO + ½ O2  → CO2 

CO2 + C → 2CO 

Also, methane and hydrogen which are formed by thermal splitting of organic matter 

may be combusted and can also reduce the carbon due to the presence of hydrogen in 

the mixture. 
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CO2 + 4H2 → CH4 + 2H2O 

So, the producer gas while contain a mixture of carbon monoxide, hydrogen, carbon 

dioxide, methane, and nitrogen. These producer or syngas produced can be either 

burned directly or can be converted into fuels such as methanol and hydrogen (32). So, 

in general different phases of gasification can be seen in figure 3.1. Where the moisture 

or water from biomass is released initially followed by volatiles, the residual carbon 

reacts slowly. Also, the reactions depend on the types of biomass. 

 

Figure 3.1 Phases of gasification (33) 

3.2.3 Liquefaction 

Liquefaction is a thermochemical process which uses catalyst along with the hydrogen to 

make liquid product from biomass at low temperature and high temperature. To secure 

the liquid phase for proper heat transfer, high pressure is used. Since the reactors and 

feeding systems are more complex and expensive, there is less interest in this process 

(34). Also, the liquid product obtained in the process is very viscous, which makes it hard 

to handle (27). 
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3.2.4 Hydrogenation 

The main product of hydrogenation process is methane which is produced by 

hydrogasification. It can be produced by two different ways. In first case the synthesis gas 

produced during the first step is reacted with hydrogen to make methane. While in second 

case, the biomass is already mixed with hydrogen from the start. Also, whatever amount 

of char is generated in first step is used to generate hydrogen containing synthesis gases 

in the second stage reactor (27). 

3.2.5 Pyrolysis 

Pyrolysis is a thermochemical process, which thermally decomposes biomass at a 

temperature range of 300 ˚C to 700 ˚C in the absence of oxygen and atmospheric 

pressure to give char, liquid, and gases. Different parameters such as temperature, 

pressure, heating rate etc. determine the quality and quantity of products. Low reaction 

temperature along with long residence time will give more char yield, while high 

temperature will favor more gas. The moderate temperature along with short residence 

time will give high liquid yield (35). There are some steps which need to be followed before 

doing pyrolysis of biomass. They are drying and grinding the feedstock to small particle 

sizes. Slow pyrolysis and fast pyrolysis are two types of pyrolysis that are used. 

3.2.5.1 Slow pyrolysis 

It is a conventional pyrolysis, where biomass is heated at varied rate (5 – 7 ˚C/min). The 

main product in this process is char, because of the slow heating rate. Along with char 

small amount of liquid and gas product are also produced. Many different types of 

feedstock can be used for slow pyrolysis (27). 
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3.2.5.2 Fast pyrolysis 

Fast pyrolysis is quite different than slow pyrolysis as the heating rate of fast pyrolysis is 

very high (300 – 500 ˚C/min), which decomposes biomass very rapidly to give organic 

vapors, along with char and gases. The vapors are condensed, to collect the liquid known 

as bio-oil. Fast pyrolysis gives higher liquid yield. The liquid yield depends on the 

temperature, vapor residence time and char separation (35). But, before doing fast 

pyrolysis there are some steps which need to be followed. These steps include drying to 

reduce the moisture content of feedstock (which must be around 10% or less than that to 

lower the water content in oil), as well as grinding the feedstock into smaller particles size. 

There are many different biomass feedstocks which have been tested, mostly woody 

biomass (36).  

3.3 Bio-oil properties 

Bio-oil is a dark brown, viscous, and smoky-odor liquid. It is a complex mixture of different 

oxygenated compounds and contains high oxygen (45 – 50 wt%). Also, there is significant   

amount of water present in oil, along with major groups such as aldehydes, ketones, 

carboxylic acids, phenols etc. (25). The detailed physical properties of three different 

biomass pyrolysis oil is given in the table 3.1 (37). 
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Table 3.1 Physical properties of biomass (37) 
 

 

 

3.3.1 Viscosity 

Viscosity can determine fluidity of a liquid. The bio-oil from pyrolysis is very viscous and 

it varies from the different types of feedstock, as the amount of cellulose, hemicellulose, 

and lignin, is different in different biomass (38). Therefore, even if the operating conditions 

are same for two different types of biomass their viscosity will be different. Hence, 

difference in operating conditions changes viscosity (39).  Ageing is also another factor 
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which affects its viscosity. The water or volatile material from bio-oil gets evaporated when 

it is stored for a longer duration and makes the oil viscous (40). It has been found that 

usage of vapor filter actually helps in reducing the viscosity by 13 – 38% in fresh oil and 

up to 95 % in aged bio-oil (41). Viscosity can also be reduced by adding some polar 

solvent, but it may affect to some other properties of oil (42). 

3.3.2 Heating value 

Heating value helps in determining the energy content of fuel. Bomb calorimeter can be 

used to determine this value. Basically, higher heating value (HHV) and lower heating 

value (LHV) are two different heating values (43). Factors such as oxygen content, water 

content, and operating conditions influence the heating value. Bio-oil has HHV in the 

range between 20 – 25 MJ/Kg (44 – 47). The main reason for low value is the high oxygen 

content (~50 %) and water content (~30 %) (48). Condensation temperature also plays 

very vital role in the heating value of oil. The bio-oil condensed at lower temperature has 

high calorific value compared to that of oil condensed at high temperature (49) (50). 

3.3.3 Water content 

Presence of moisture in the feedstock and dehydration reaction during pyrolysis are the 

main reasons for water content in the bio-oil, and because of water content the 

applications for bio-oil becomes difficult. Therefore, it is necessary to keep the moisture 

content of feedstock less than 10% in order to reduce the water content in oil. Because 

of the presence of water, other problems can arise including: lowering of the heating 

value, premature evaporation, reduction of combustion rate and delays in ignition (51). 

On the other hand, higher amount of water makes oil less viscous while helps in handling 



20 
 

and pumping (42). In general, water content accounts for 10 – 40 wt% of bio-oil from 

biomass. The difference in water content is due to factors like moisture content of 

biomass, temperature, vapor residence time, and the type of biomass (38). Bio-oil 

collected from condensers of low temperature have less water content compare to high 

temperature condensers (49). The usage of electrostatic precipitator (ESP) also reduces 

the water content (50). 

3.3.4 Oxygen content 

Due to the presence of water in bio-oil, there is also presence of oxygen, in the form of 

oxygenated compounds. The oil becomes immiscible with non-polar petroleum fuels due 

to such compounds (51). The presence of oxygen makes bio-oil unstable, along with that 

it also lowers the heating value of oil, and makes liquid corrosive. Therefore, to increase 

its application oxygen should be removed. It can be removed through hydrotreating where 

oxygen is removed by forming water and by catalytic cracking in which oxygen is 

eliminated by forming carbon oxides and water. The amount of oxygen in bio-oil is around 

10 – 50 wt%. This number varies because of difference in biomass or different operating 

conditions (51 – 53). The oxygen content can also be reduced if the vapors are condensed 

at lower temperature (50). 

3.3.5 Acidity/pH 

Bio-oil contains significant amount of organic acids. The bio-oil is very acidic as they have 

pH value between 2 – 4. Therefore bio-oil is very corrosive. The biomass feedstock is one 

of the factor on which value of pH depends (38). Eucalyptus wood is one of the example, 

because the pH value of its oil is between 1.8 – 2.9 (54) (55). 
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3.4 Bio-oil upgrading 

As discussed above the properties such as high viscosity or high acidity limits the 

application of bio-oil. Upon getting some heat or time they polymerize. Also, the high 

oxygen content makes the oil highly unstable which hinders its application. Despite this, 

there are various applications and end use of bio-oil, if they are upgraded properly. 

3.4.1 Solvent or water addition 

Addition of solvents or water is simple yet effective upgrading method. It controls the 

viscosity of oil by diluting the crude oil. As a result, it will be easier to handle the oil (56). 

Bridgewater et al. (57) considered adding water and organic solvents, in which they were 

adding water to bio-oil of initial water content of 17% to make it in three different 

concentration of 20, 25 and 30%. The following results were reported: i) the viscosity of 

oil reduced significantly with the addition of small amount of water. ii) No change was 

observed in the viscosity of oil with 30% water even after four months and very little 

increment with 25% water. Similar kind of result was also obtained at UCL. The most 

important result was obtained by the addition of 10% butanol, as there was no change in 

the viscosity even after eight months. Based on their observations they preferred solvent 

as better option compared to water (58). This method is easy and cheap and on other 

hand the heating value of oil is reduced by the addition of water (56). 

3.4.2 Catalytic cracking 

Another method of upgrading bio-oil is catalytic cracking, where zeolite catalyst is used; 

as it is proven for deoxygenation of small oxygen compounds dehydration and 

decarboxylation. Here oxygen was reduced in the form of CO and CO2 (59). With the 
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decrease in oxygen content it will make oil vary stable, but there are also problem 

associated with this process; such as the fact that large molecules do not have access to 

the pores and are not converted selectively. Formation of coke on the catalyst requires 

the constant regeneration, and due to the presence of alkali metals, it poisons the acidic 

zeolite, and gives low liquid yields (56). All these complications increase the overall cost. 
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CHAPTER  4 

EXPERIMENTAL SECTION 

4.1 Pyrolysis system 

The setup for formate assisted pyrolysis was built in house except for condenser which 

was purchased from chem glass. The detailed discussion for each part is done below. 

There are five major parts in the system i) feeder, ii) reactor, iii) hot gas filter, iv) 

condenser, and v) electrostatic precipitator. 

4.1.1 Parts of pyrolysis system 

The feeder is made up of stainless steel material. It has square opening from the top from 

where the pretreated feedstock is fed, figure 4.1. At the bottom of the feeder there is 

rotating screw which is attached to the motor. The motor speed is controlled by power 

supply. Which also helps in controlling the feed rate which is usually between 1.6 to 2.2 

g/min. At the exit of feeder there is inlet for nitrogen gas which carries the feedstock to 

reactor. Also, at the top of the feeder pressure gauge is put to read the pressure. 

 

Figure 4.1 Biomass feeder 
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Reactor is made up stainless steel which has 1.5 inch of I.D. and is 12-inch long (figure 

4.2). It has one inlet, from there nitrogen brings the feedstock into the reactor which is 

operated at 500 ˚C. Temperature is monitored by two k-type thermocouple which is at the 

top of the reactor. The reactor is heated by electric furnace which has three heating zones. 

The furnace has the heating capacity of 900 ˚C. Reactor is placed in chamber which has 

3-inch diameter and length of 16 inches. The bottom of the reactor is filled with sand to 

provide heat transfer medium. Pre-heated nitrogen from the bottom of the reactor is flown 

to provide fluidization to the sand and the temperature of the preheater is controlled by 

variac. After the reaction, pyrolysis vapors and gases along with char goes to the hot gas 

filter through insulated pipe. 

 

Figure 4.2 Pyrolysis reactor 
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Figure 4.3 Hot gas filter 

The pyrolysis vapors along with char and gases from the reactor goes to the hot gas filter 

which is made up of stainless steel with 1inch O.D. and 6-inch long (figure 4.3), which fits 

inside a hot gas filter unit (Bessy) and is 24 inch long with 3 inch O.D. and properly 

insulated from outside (figure 4.4). The temperature of this unit is set at 500 ˚C. The char 

will be collected outside the filter and mostly at the bottom of the unit. At the top there one 

k-type thermocouple to measure temperature.  
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Figure 4.4 Hot gas filter unit 

The vapors along with gases from hot gas filter are carried to the graham type glass 

condenser. The tubes connected to hoses have 8 mm of O.D. The condenser is set at 3 

˚C and the vapors along with some condensable gases are collected at the bottom of 

round bottom flask which has two necks as shown in figure 4.5. 
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Figure 4.5 Condenser  

 

Figure 4.6 Electrostatic precipitator 
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After passing through condenser, the non-condensable gases along with aerosols are 

passed to the electrostatic precipitator. Where aerosols are converted into bio-oil and 

non-condensable gases leave the system from the outlet of electrostatic precipitator. The 

middle and bottom part of electrostatic precipitator are made of stainless steel and top 

with plastic. 

4.1.2 Crucible test of pre-treated lignin with different molar ratio 

Stoichiometrically, it requires two moles of formic acid and one mole of calcium hydroxide 

to make one mole of calcium formate. Therefore, lignin was initially pretreated with two 

moles of formic acid and one mole of calcium hydroxide. The pretreated lignin sample 

was dried at room temperature followed by sieving at a particle size of 710 μm. Before 

pyrolyzing the pretreated lignin in a fluidized bed reactor, small sample was collected in 

a crucible and was heated from outside with nitrogen flowing into the top of the crucible 

to purge air while heating. The reason for this test was to check whether the pretreated 

lignin remains in the powder form or is it agglomerating or swelling. If pretreated lignin 

sample started to agglomerate or swell, that particular sample was not pyrolyzed as it 

creates plugging problem in the reactor. The stoichiometrically pretreated lignin was not 

pyrolyzed as this sample has found to be agglomerate when it is heated in a crucible. 

Similar result has found even for the lignin pretreatment with magnesium formate. Thus, 

various molar ratios of formic acid to calcium or magnesium formate were tried for the 

pretreatment of lignin. The table 4.1 and table 4.2 show the results of crucible test for both 

magnesium and calcium formate pretreatment of lignin, respectively.   
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Table 4.1 Crucible test results for pretreatment of lignin with magnesium formate 

Molar Ratio 

(F.A.: Mg(OH)2) 

Weight Ratio 

(Lignin/Formic Acid) 

Pass the Crucible Test 

(Yes/No) 

2:1 1g/ 1g No 

2:1 1g/ 0.5g No 

1.87:1 1g/ 1g No 

1.87:1 1g/ 0.5g No 

1.6:1 1g/ 1g Yes 

1.6:1 1g/ 0.5g Yes 

1.75:1 1g/ 1g Yes 

1.75:1 1g/ 0.5g Yes 

1.5:1 1g/ 1g Yes 

1.5:1 1g/ 0.5g Yes 

1.4:1 1g/ 1g No 

1.4:1 1g/ 0.5g No 

 

For the magnesium formate pretreatment, the molar ratio of formic acid to magnesium 

hydroxide was altered and at the same time for each molar ratio two different loading of 

lignin to formic acid were used. That is one gram of lignin per gram of formic acid and one 

gram of lignin per 0.5 gram of formic acid. The results of crucible test for the magnesium 

formate pretreatment has shown that the ratio of formic acid to magnesium formate as 

1.75 and 1.5 can overcome that issues of swelling necessary. Attempts were made to go 

below 1.5:1 molar ratio of formic acid to magnesium formate and above 1.75:1 molar ratio 
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of formic acid to magnesium formate. However, during crucible test they started to 

agglomerate or swell and therefore to avoid plugging problems those molar ratios were 

not used.  

Table 4.2 Crucible test results for pretreatment of lignin with calcium formate 

Molar Ratio 

(F.A.: Ca(OH)2) 

Weight Ratio 

(Lignin/Formic Acid) 

Pass the Crucible Test 

(Yes/No) 

2:1 1g/ 1g No 

2:1 1g/ 0.5g No 

1.87:1 1g/ 1g No 

1.87:1 1g/ 0.5g No 

1.6:1 1g/ 1g Yes 

1.6:1 1g/ 0.5g Yes 

1.75:1 1g/ 1g Yes 

1.75:1 1g/ 0.5g No 

1.5:1 1g/ 1g No 

1.5:1 1g/ 0.5g No 

 

Like magnesium formate pretreatment, for the calcium formate pretreatment the molar 

ratio of formic acid to calcium hydroxide was altered and at the same time for each molar 

ratio two different loading of lignin to formic acid were used. The results of crucible test 

for the calcium formate pretreatment has shown that the ratio of formic acid to calcium 

formate as 1.75 and 1.6 can overcome that issues of swelling necessary. Attempts were 
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made to go below 1.61 molar ratio and above 1.75:1. But, during crucible test faced same 

problem of agglomeration or swelling as observed in magnesium formate and therefore 

to avoid plugging problems those molar ratios were not used. 

4.2 Formate assisted pyrolysis of lignin 

The formic acid salts can provide in situ source of hydrogen for hydrodeoxygenation at 

atmospheric pressure (60). Here we present a method for the fast pyrolysis of lignin, 

where it is mixed with magnesium/ calcium formate before pyrolysis. With the addition of 

calcium formate to the lignin, the feeding problem such as agglomeration, plugging during 

conventional pyrolysis can be avoided (61). Calcium formate decomposed into calcium 

carbonate along with CO, CO2, and hydrogen (62), and magnesium formate decomposes 

at 465 ̊ C to give either 2 moles of CO and one mole of water along with magnesium oxide 

or one mole of CO, CO2, and hydrogen with magnesium oxide (63).  

Mg(HCOO)2 → MgO + 2CO + H2O 

Mg(HCOO)2→ MgO + H2 + CO + CO2 

Here we are assuming that magnesium formate decomposed and gave magnesium oxide 

along with CO, CO2, and hydrogen. In this study lignin was pretreated with the calcium 

formate or magnesium formate. After mixing, the material was dried in a pan at room 

temperature. It was then sieved with a pore size of 710 μm before feeding it in the fluidized 

bed reactor. The moisture content of the samples was measured, and it was between 5 

to 10 %. The operating temperature was 500 ˚C and atmospheric pressure. Pretreated 

lignin was fed into the screw feeder where it was connected with the motor to control the 

feed rate, usually between 1.6 – 2.2 g/min. Pressure was measured with a pressure 
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gauge installed at the top of the feeder, and two nitrogen tanks were used with a total flow 

rate of 6LPM. Of which, one was connected at the exit of feeder to carry the pretreated 

lignin to the reactor at 500 ˚C at 3LPM, and other nitrogen was connected at the bottom 

of the reactor and heated by preheater prior entering to the reactor at 3LPM. The electric 

furnace was used as a source to provide heat which three different zones. Two k - type 

thermocouples were kept at the top of the reactor to watch the reactor temperature.  At 

the bottom of the reactor, fine sand was put for the heat transfer. After the reaction in the 

reactor organic vapors, char and non-condensable gases move to the hot gas filter unit 

through insulated pipe. The unit was already set at 500 ˚C and one k – type thermocouple 

at the top observed the temperature. The char is collected at the hot gas filter and organic 

vapors along with non- condensable gases would go to the condenser which is at 3 ˚C, 

the water flows in the counter direction of the gas. Condensed water from the vapor along 

with some other organics were collected at the bottom of condenser. Finally, the bio-oil 

was collected at the electrostatic precipitator and non-condensable gases leaves the 

system from the exit of electrostatic precipitator. The schematic diagram for the same is 

shown below. 
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Figure 4.7 Schematic diagram of formate assisted pyrolysis of lignin (60) 

Thermo scientific flash 2000 elemental analyzer was used to for elemental analysis. It 

provides weight farction of carbon, hydrogen, and nitrogen in the oil and weight fraction 

of oxygen was obtained by difference.  For 13-C NMR (Nuclear Magnetic Resonance) 

analysis bio-oil samples were dissolved in DMSO-d6 solvent and analyzed using varian 

unity plus 400 NMR, to identify the functional groups present in the bio-oil. Non-

condensable gases coming out from the electrostatic precipitator were collected and 

injected in GC-FID just to detect the gases via gas chromatography (GC). The major 

gases observed were carbon monoxide, carbon dioxide and methane. The results of 

lignin pretreated with different salts under different operating conditions is discussed 

below.  
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4.3 Pretreatment of lignin with magnesium formate 

4.3.1 Molar ratio of 1.6:1 for formic acid to magnesium hydroxide 

Two feedstocks with difference in lignin to formic acid wt% (full loading 1g/1g and half 

loading 1g/0.5g) and same molar ratio (1.6:1) of formic acid to magnesium hydroxide were 

prepared. In first case 100 g of lignin was mixed with 40 g of magnesium hydroxide and 

500 g water in a beaker which is at 60 ˚C. After 1 hour 100 g of formic acid was added to 

the mixture and left for stirring another hour. After that 40 g of magnesium hydroxide was 

added to the mixture and stirred for another hour. In second case 160 g of lignin was 

mixed with 32 g of magnesium hydroxide and 500 g of water and stirred for 1 hour. After 

that 80 gm of formic acid added to the mixture and wait for another hour to add 32 g 

magnesium hydroxide. Feedstock was prepared and poured into a pan for drying at room 

temperature and then sieved at 710 μm size. In the table 4.3 below, bio-oil yield was 

calculated by the bio-oil collected from the electrostatic precipitator and fraction of 

condenser (3-6 %). Char yield was calculated by subtracting the amount of magnesium 

oxide formed during the process from total char produced, to give char formed by lignin. 

Condenser yield was calculated by subtracting the water formed due to the moisture 

content in the feed, and the water formed during the decomposition of extra magnesium 

hydroxide to give water and magnesium oxide. The gas yield was obtained by the 

difference of bio-oil yield, char yield, and condenser yield. The same calculation was used 

for other molar ratios of magnesium formate as well. Multiple experiments were performed 

for this molar ratio and the average value of yield data is presented in the table 4.3. 
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Table 4.3 Comparision of pretreatment of lignin with magnesium formate at a molar ratio 
of 1.6:1 for formic acid to magnesium hydroxide 

Feed       Lignin / Formic Acid 
          1 g / 1g 
 

      Lignin / Formic Acid 
              1 g / 0.5 g 
 

Oil Yield (Wt %) 14 (±3) 17 (±3) 

Char Yield (Wt %) 29 (±5) 41 (±3) 

Gas Yield (Wt %) 27 (± 6) 14 (±2) 

Condenser yield (Wt%) 29 (±6) 28 (±6) 

O:C 0.19 (±0.03) 0.22 (±0.02) 

H:C 1.16 (±0.04) 1.13 (±0.01) 

C Yield in oil (Wt %) 16 (±4) 18 (±1) 

 

There is not much difference in the bio-oil yield for both the feedstock. The char yield was 

more for the half loading (1g lignin/ 0.5g formic acid) and gas yield was high for full loading 

(1g lignin/ 1g formic acid). However, the O:C ratio in full loading was less compared to 

that of half loading, suggesting more hydrogen availability due to the addition of extra 

formic acid. Formate salt decomposes and provides in-situ source of hydrogen for 

hydrodeoxygenation, which helps in removing more oxygen. Probably decarboxylation, 

and dehydration have also occurred and helped in removing oxygen as well. The 

decrease in O:C ratio with varied formate salt loading/ biomass is consistent with the work 
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of Mukkamala et. al.  The molar ratio of formic acid to magnesium hydroxide is 1.6:1 for 

both cases. There is no significant difference in the H:C ratio for both oils. But, the carbon 

yield in oil for full loading was higher. Hence with all this improvement, the full loading 

seems more appropriate option for both quality and quantity of oil with the tradeoff of 

having to use more salt. There is uncertainty of about ± 3-4 % with yield of bio-oil, char, 

and gas as well as O:C content of bio-oil. The non-uniform heat distribution inside the 

pyrolyzer and non-uniform flow distribution of feedstock due to stickiness, moisture 

content of feedstock, and the pressure variation in the pyrolyzer are few reasons for the 

possible variation in the results of bio-oil, char, and gas yields and there is about ± 2-3% 

of uncertainty in O:C ratio, because in elemental analysis the average of triplicate of each 

bio-oil sample are taken. When compared the results of formate assisted pyrolysis of 

lignin with the results of lignin pyrolysis, the oxygen content of formate assisted pyrolysis 

oil is found to be lower than that of pyrolysis oil however at the cost of lower mass yields. 

When compared with results of formate assisted pyrolysis of lignin with that of pine 

sawdust, it is found that oil with a high quality (less reactive compounds because of less 

oxygen content) can be attained from lignin. This is probably due to low oxygen content 

of lignin than the whole biomass sawdust. 

4.3.2 Molar ratio of 1.75:1 for formic acid to magnesium hydroxide 

Two feedstocks with difference in lignin to formic acid wt% (full loading 1g/1g and half 

loading 1g/0.5g) and same molar ratio (1.75:1) of formic acid to magnesium hydroxide 

were prepared. Its preparation is shown in the table 4.4 below. 
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Table 4.4 Preparation of lignin with molar ratio of formic acid to magnesium hydroxide 

as 1.75:1 

Compound       Lignin / Formic Acid 
          1 g / 1g 
 

      Lignin / Formic Acid 
          1 g / 0.5 g 
 

Lignin 100 g 150 g 

Water 600 g 500 g 

Magnesium Hydroxide 36.5 g 27.5 g 

Stir for one hour 

Formic Acid  100 g 75 g 

Stir for one hour 

Magnesium Hydroxide 36 g 27.5 g 

Stir for one hour 

 

All materials were added according to the detail given in the table above, order of addition 

following from top to the bottom of the table. Feedstock prepared was then poured into a 

pan for drying at room temperature and then sieved at 710 μm size. Multiple experiments 

were performed for this molar ratio and the average value of Yield and comparison results 

for pyrolysis oil obtained from the above two feedstocks is presented in the table 4.5. 
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Table 4.5 Comparison of pretreatment of lignin with magnesium formate at a molar ratio 
of 1.75:1 for formic acid to magnesium hydroxide 

Feed       Lignin / Formic Acid 
          1 g / 1g 
 

      Lignin / Formic Acid 
                1 g / 0.5 g 
 

Oil Yield (Wt %) 12.5 14 

Char Yield (Wt %) 24.5 47 

Gas Yield (Wt %) 42.5 13 

Condenser Yield (Wt %) 20 26 

O:C 0.18 0.21 

H:C 1.2 1.14 

C Yield in oil (Wt %) 15 15.1 

 

Here the molar ratio of formic acid to magnesium hydroxide is 1.75:1. The bio-oil yield is 

slightly higher for the half loading (1g lignin/ 0.5g formic acid). Along with that it also has 

more char yield. Gas yield is higher in full loading. However, the O:C ratio in full loading 

is less compared to that of half loading, indicating extra hydrogen by the addition of extra 

formic acid which helps in removing the oxygen. The H:C ratio was slightly higher for full 

loading. 
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4.3.3 Molar ratio of 1.5:1 for formic acid to magnesium hydroxide 

Two feedstocks with difference in lignin to formic acid wt% (full loading 1g/1g and half 

loading 1g/0.5g) and same molar ratio (1.5:1) of formic acid to magnesium hydroxide were 

prepared. Its preparation is shown in the table 4.6 below. 

Table 4.6 Preparation of lignin with molar ratio of formic acid to magnesium hydroxide 
as 1.5:1 

Compound       Lignin / Formic Acid 
          1 g / 1g 
 

      Lignin / Formic Acid 
          1 g / 0.5 g 
 

Lignin 120 g 120 g 

Water 600 g 500 g 

Magnesium Hydroxide 50.5 g 25.5 g 

Stir for one hour 

Formic Acid 120 g 60 g 

Stir for one hour 

Magnesium Hydroxide 50.5 g 25 g 

Stir for one hour 

 

All materials were added according to the detail given in the table above, order of addition 

following from top to the bottom of the table. Once the feedstock was prepared it was 

poured into a pan for drying at room temperature and then sieved at 710 μm size. The 

pyrolysis yield obtained from the two different feedstocks are shown in the table 4.7. 
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Table 4.7 Comparison of pretreatment of lignin magnesium formate at a molar ratio of 

1.5:1 for formic acid to magnesium hydroxide 

Feed       Lignin / Formic Acid 
          1 g / 1g 
 

      Lignin / Formic Acid 
              1 g / 0.5 g 
 

Oil Yield (Wt %) 11 14 

Char Yield (Wt %) 27 18 

Gas Yield (Wt %) 33.5 50 

Condenser Yield (Wt %) 28.5 18 

O:C 0.18 0.23 

H:C 1.13 1.09 

C Yield in oil (Wt %) 13 15.6 

 

The bio-oil yield here also followed the same trend of previous case, where it was higher 

in half loading (1g lignin/ 0.5g formic acid). Along with that it has more gas yield compared 

to full loading. The char yield in full loading (1g lignin/ 1g of magnesium hydroxide) was 

higher. The molar ratio of formic acid to magnesium hydroxide is 1.5:1. The lower O:C 

ratio with full loading like previous two cases also suggest that having extra formic acid 

helps in providing extra hydrogen which helps in removing the oxygen. H:C ratio is high 

in full loading making full loading a better option. 
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4.4 Pretreatment of lignin with calcium formate 

4.4.1 Molar ratio of 1.6:1 for formic acid to calcium hydroxide 

Two feedstocks with difference in lignin to formic acid wt% (full loading 1g/1g and half 

loading 1g/0.5g) and same molar ratio (1.6:1) of formic acid to calcium hydroxide were 

prepared were prepared. Its preparation is shown in the table 4.8 below. 

Table 4.8 Preparation of lignin with molar ratio of formic acid to calcium hydroxide as 

1.6:1 

Compound       Lignin / Formic Acid 
          1 g / 1g 
 

      Lignin / Formic Acid 
          1 g / 0.5 g 
 

Lignin 100 g 120 g 

Water 600 g 500 g 

Calcium Hydroxide 50 g 30 g 

Stir for one hour 

Formic Acid 100 g 60 g 

Stir for one hour 

Calcium Hydroxide 50 g 30 g 

Stir for one hour 

 

All materials were added according to the detail given in the table above, order of addition 

following from top to the bottom of the table. Once the feedstock was prepared it was 

poured into a pan for drying at room temperature and then sieved at 710 μm size. In the 

table 4.9 below, bio-oil yield was calculated by the bio-oil collected from the 

electrostatic precipitator and fraction of condenser (2 - 4 %). Char yield was calculated by 
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subtracting the amount of calcium carbonate formed during the process from total char 

produced, to give char formed by lignin. Condenser yield was calculated by subtracting 

the water formed due to the moisture content in the feed, and the water formed during the 

decomposition of extra magnesium hydroxide to give water and magnesium oxide. The 

gas yield was obtained by the difference of bio-oil yield, char yield, and condenser yield. 

The same calculation was used for other molar ratios of calcium formate as well. 

Table 4.9 Comparison of pretreatment of lignin with calcium formate at a molar ratio of 

1.6:1 for formic acid to calcium hydroxide 

Feed       Lignin / Formic Acid 
          1 g / 1g 
 

      Lignin / Formic Acid 
              1 g / 0.5 g 
 

Oil Yield (Wt %) 6 5 

Char Yield (Wt %) 21.4 42.5 

Gas Yield (Wt %) 62.8 41.6 

Condenser Yield (Wt %) 9.7 10.8 

O:C 0.08 0.13 

H:C 1.18 1.16 

C Yield in oil (Wt %) 7.64 6.03 
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The bio-oil yield with calcium formate (6%) pretreated lignin is very less compared to 

magnesium formate (14%), which is possible due to large amount product converted into 

gas and gave more gas yield in both the loadings, as well as the char. The molar ratio of 

formic acid to calcium hydroxide is 1.6:1. The O:C ratio of magnesium formate pretreated 

(0.08) oil is low compared to that magnesium formate pretreatment (0.19). Calcium 

formate salt decomposes and provide an in-situ source of hydrogen for 

hydrodeoxygenation. Since full loading has more formic acid it will have more hydrogen, 

which therefore helps in lowering the O:C ratio compare to the half loading. There is no 

significant difference in H:C ratio with both feedstocks. 

4.4.2 Molar ratio of 1.75:1 for formic acid to calcium hydroxide 

Two different feedstocks were attempted to made with difference in lignin to calcium 

hydroxide wt % (full loading 1g/1g and half loading 1g/0.5g) but only full loading was able 

to pyrolyze and other started to swell and agglomerate during crucible testing of the 

sample. Hence, only one type of feedstock was prepared and pyrolyzed and the detailed 

feedstock preparation is shown in table 4.10 below.  
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Table 4.10 Preparation of lignin with molar ratio of formic acid to calcium hydroxide as 

1.75:1 

Compound Lignin / Formic Acid 
1 g / 1g 

 

Lignin 100 g 

Water 600 g 

Calcium Hydroxide 46 g 

Stir for one hour 

Formic Acid 100 g 

Stir for one hour 

Calcium Hydroxide 46 g 

Stir for one hour 

 

All materials were added according to the detail given in the table above, order of addition 

following from top to the bottom of the table. Feedstock prepared was then poured into a 

pan for drying at room temperature and then sieved at 710 μm size. The yield and 

composition results for pyrolysis is shown in the table 4.11 below. 
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Table 4.11 Pretreatment of lignin with calcium formate at a molar ratio of 1.75:1 for 

formic acid to calcium hydroxide 

Feed Lignin / Formic Acid 
1 g / 1g 

 

Oil Yield (Wt %) 6.6 

Char Yield (Wt %) 31.1 

Gas Yield (Wt %) 47.4 

Condenser Yield (Wt %) 4.7 

O:C 0.11 

H:C 1.16 

C Yield in oil (Wt %) 8.1 

 

Here the half loading (1g lignin/ 0.5g formic acid) started to swell and agglomerate and 

hence it was not able to pyrolyze. But, full loading had no problem. The molar ratio of 

formic acid to calcium hydroxide is 1.75:1. The difference in bio-oil yield in this case is 

very less compared to previous feedstock for calcium formate pretreated lignin (1g/ 1g). 

Other attempts were also made to pretreat lignin with calcium formate with full and half 

loading and molar ratio of 1.5:1. But, during the crucible test material started to form 
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sticky. Hence it was avoided for pyrolysis as it may cause the plugging problem. Hence 

the molar ratio of 1.6:1 was appropriate option for calcium formate as well. 

4.5 Pretreatment of lignin with magnesium and calcium formate 

In this pretreatment lignin was pretreated with both calcium and magnesium formate 

separately but, after the feedstock preparation both the mixtures were mixed while in 

aqueous phase and then poured into pan for drying at room temperature. Then sieved at 

710 μm size. The molar ratio was kept 1.6:1 for both formic acid to magnesium hydroxide 

and formic acid to calcium hydroxide. Detailed preparation is given in table 4.12 below. 

Table 4.12 Preparation of lignin with molar ratio of formic acid to calcium hydroxide and 

formic acid to magnesium hydroxide as 1.6:1 

Compound       Lignin / Formic Acid 
1 g / 0.5 g 

(Magnesium Hydroxide) 

      Lignin / Formic Acid 
1 g / 0.5 g 

(Calcium Hydroxide) 

Lignin 120 g 120 g 

Water 600 g 600 g 

 Hydroxide (Mg/ Ca) 24.5 g 30 g 

Stir for one hour 

Formic Acid 60 g 60 g 

Stir for one hour 

Hydroxide (Mg/ Ca) 23 g 30 g 

Stir for one hour 

 

All materials were added according to the detail given in the table above, order of addition 

following from top to the bottom of the table. Feedstock prepared was then poured into a 
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pan for drying at room temperature and then sieved at 710 μm size. The yield data is 

shown in the table 4.13 below. 

Table 4.13 Pretreatment of lignin with calcium formate and magnesium formate 

Feed Lignin / Formic Acid 
1 g / 0.5 g 

 

Oil Yield (Wt %) 13.6 

Char Yield (Wt %) 28.9 

Gas Yield (Wt %) 38.1 

Condenser Yield (Wt %) 19.3 

O:C 0.19 

H:C 1.15 

C Yield in oil (Wt %) 15.6 

 

After finding the yield data separately with calcium and magnesium formate as discussed 

previously, lignin was mixed with both calcium and magnesium formate in order to find 

out if the salt mixture has any significant effect. Determining such effect can enable us to 

improve the oil yield as well as the quality. The result shown in figure 4.8 has shown that 

calcium formate results in a low liquid oil yield. The liquid oil yield increases as the amount 

of magnesium formate increases in the salt mixture. However, the amount of oxygen 
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increases and the quality of oil decreases with increase in the amount of magnesium 

formate increases in the salt mixture (Figure 4.9). We observed the similar trend with the 

carbon yield for the salt mixture and the individual components (table 4.3, 4.9 and 4.13). 

Future work is necessary to find optimal ration of calcium and magnesium formate that 

will result in the high liquid yield with low oxygen content.  

 

Figure 4.8. Liquid yield comparison of three different salts 
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Figure 4.9. O:C ratio comparison of three different salts 

4.6 Pretreatment of lignin with magnesium hydroxide 

Two different feedstocks were prepared. In first feedstock lignin was mixed with 

magnesium hydroxide at a wt % of 1g/ 1g. And for second feedstock 1g/ 0.5g ratio was 

kept to mix lignin and magnesium hydroxide. The detailed preparation is shown in table 

4.14 below. 
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Table 4.14 Preparation of lignin with magnesium hydroxide 

Compound         Lignin /               
Magnesium Hydroxide 
          1 g / 1g 
 

        Lignin /               
Magnesium Hydroxide 
          1 g / 0.5 g 
 

Lignin 100 g 120 g 

Water 450 g 400 g 

Magnesium Hydroxide 50 g 30 g 

Stir for one hour 

Magnesium Hydroxide 50 g 30 g 

Stir for one hour 

 

All the materials were mixed in the order discussed int the table. The feedstock prepared 

were dried at room temperature and the sieved at 710μm size. The pretreated lignin was 

then pyrolyzed and the yields obtained from the two different feedstocks are shown in the 

table 4.15 below. 
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Table 4.15 Comparison of pretreatment of lignin with magnesium hydroxide 

Feed Lignin /          
Magnesium Hydroxide 

          1 g / 1g 
 

           Lignin /         
Magnesium Hydroxide 
              1 g / 0.5 g 
 

Oil Yield (Wt %) 10 18 

Char Yield (Wt %) 46 45 

Gas Yield (Wt %) 43 33 

Condenser Yield (Wt %) 2 4 

O:C 0.21 0.23 

H:C 1.23 1.11 

C Yield in oil (Wt %) 10.9 19.1 

 

After finding the optimized condition with magnesium formate, lignin was pretreated with 

magnesium hydroxide with both full loading (1g lignin/ g magnesium hydroxide) and half 

loading (1g lignin/ 0.5 g magnesium hydroxide). The oil yield of half loading is very high 

compare to the full loading, probably the rate of decomposition is higher in full loading 

and half loading have more controlled stoichiometry therefore its rate of decomposition is 

relatively low and gives more bio-oil yield. The char yield was almost same for both. 

However, the trend of less O:C ratio with full loading was also observed here (0.21 

compared to 0.23 for full and half loading respectively). Still, the ratio was high compared 
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to magnesium formate (0.16 and 0.21 for full and half loading respectively) indicating less 

deoxygenation occurred. Also, the H:C ratio for full loading was high (1.23 and 1.11 for 

full and half loading respectively). 

4.7 Pretreatment of lignin with calcium hydroxide 

Two different feedstocks were prepared. In first feedstock lignin was mixed with calcium 

hydroxide at a wt % of 1:1. And for second feedstock 1g/ 0.5g ratio was kept to mix lignin 

and calcium hydroxide. The detailed preparation is shown in table 4.16 below. 

Table 4.16 Preparation of lignin with calcium hydroxide 

Compound         Lignin /               
Calcium Hydroxide 
          1 g / 1g 
 

        Lignin /               
Calciium Hydroxide 
          1 g / 0.5 g 
 

Lignin 100 g 120 g 

Water 450 g 400 g 

Calcium Hydroxide 50 g 30 g 

Stir for one hour 

Calcium Hydroxide 50 g 30 g 

Stir for one hour 

 

All the materials were mixed in the order discussed in the table. The feedstock prepared 

were dried at room temperature and the sieved at 710μm size. The pretreated lignin was 

then pyrolyzed. But no oil was obtained when 1:1 ratio was used for calcium hydroxide 

and lignin. However, with second feedstock (1:0.5) bio-oil was obtained and the result is 

shown below in table 4.17. 
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Table 4.17 Yield data for pretreatment of lignin with calcium hydroxide 

Feed Lignin /                       
Calcium Hydroxide 

              (1 g / 0.5 g) 
 

Oil Yield (Wt %) 2 

Char Yield (Wt %) 44 

Gas Yield (Wt %) 52 

Condenser Yield (Wt %) 2 

O:C 0.17 

H:C 1.22 

C Yield in oil (Wt %) 2.23 

 

Similarly, to magnesium hydroxide, lignin was also pretreated with calcium hydroxide 

hydroxide with both full loading (1g lignin/ g calcium hydroxide) and half loading (1g lignin/ 

0.5 g calcium hydroxide). But, no oil was obtained with the full loading. The amount of oil 

with half loading is also very less as it has very high gas and char yield. However 

significant amount of deoxygenation was observed as their O:C ratio is less (0.17) 

compared to magnesium hydroxide (0.23).  

Figure 4.10 shows the comparison of bio-oil yields for lignin pretreated with different 

magnesium salts. The brown and blue bars in figure 4.10 indicate the results of lignin 
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pretreatment with magnesium hydroxide and remaining bar graphs represent the results 

of lignin pretreatment with magnesium at different molar ratios. The highest bio-oil yield 

was obtained when lignin was pretreated with magnesium hydroxide (1g/ 0.5g) (Figure 

4.10). However, the oxygen content of the resulting bio-oil for the lignin pretreatment with 

magnesium hydroxide (1g/ 0.5g) is found to be higher than that of other tested samples 

(Figure 4.11). The second highest bio-oil yield was obtained when the molar ratio for 

formic acid to magnesium hydroxide was 1.6:1 and full loading (1g/ 1g) and while sample 

has lowest O:C ratio compared to all other samples making it most favorable option.  

 

 

Figure 4.10 Bio-oil yield comparison for lignin pretreated with magnesium salts 
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Figure 4.11 O:C ratio comparison for lignin pretreated with magnesium salts 
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obtained when lignin was pretreated with calcium formate at molar ratio of 1.75:1 and 

1.6:1. Since the minimum oxygen content of bio-oil is found to be low with the molar ratio 

of calcium formate to lignin of 1.6:1, making the bio-oil sample with 1.6:1 molar ratio and 

full loading (1g/ 1g) makes favorable option for the production of oil from lignin with less 

oxygen content and more oil yield.  
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Figure 4.12 Bio-oil yield comparison for lignin pretreated with calcium salts 

 

Figure 4.13 O:C ratio comparison for lignin pretreated with calcium salts 
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4.8 Conclusion 

Lignin was pretreated with both magnesium formate and calcium formate. The reason for 

pretreating lignin with different molar ratios was to find their optimized ratios which gives 

both high yield as well as higher quality of oil. Among all different ratios, 1.6:1 molar ratio 

of formic acid to magnesium/calcium hydroxide showed the best results. The oxygen is 

removed by hydrodeoxygenation, decarboxylation and decarbonylation. The bio-oil yield 

was higher in magnesium formate (15.5%) compared to that of calcium formate (6%). 

Similar to calcium formate, magnesium formate pretreated lignin also showed 

deoxygenation but the amount of oxygen removed by magnesium formate was less. 

Hence their O:C ratio was higher in magnesium formate (0.16) compared to calcium 

formate (0.08). By the addition of proper amount of formate salt, O:C ratio is decreased 

and H:C ratio is increased with the addition of more formic acid i.e. in full loading 

compared to half loading. Hence, oil with magnesium formate is good in quantity and oil 

with calcium formate is good in quality as it has oxygen which makes oil stable. Also, 

calcium salt may create more reactive atmosphere than magnesium salt and therefore 

more cracking reaction occurs with calcium. This cracking phenomenon explains the 

result of a high gas yields. In addition to the cracking, decarboxylation and dehydration 

can also be dominant with calcium, therefore the O:C ratio of resulting bio-oil is less when 

lignin is pretreated with calcium formate. 

4.9 13-C NMR Data  

The 13-C NMR was done on the collected bio-oil samples and their spectra is shown in 

figure 4.14. The fraction of aromatic groups was the highest among all the samples 

obtained and were observed in the range between 102 to 160 ppm. The highest fraction 
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observed was aromatic group in the oil. From the magnesium formate pretreated lignin 

oil bio-oil, the integrated area in the table 4.18, it was observed that ratio of aromatic to 

alkyl group was 4.8:1 for full loading (1g/1g) and 6:1 for half loading(1g/0.5g) for molar 

ratio of 1.6:1. More deoxygenation was observed in full loading compared to half loading 

as we can see the amount of methoxy/hydroxy group is 0.9% for full loading and 3.7% for 

half loading. It is also supported by the elemental analysis as O:C ratio for full loading 

(0.16) is less to that of half loading (0.21). For table 4.19 the molar ratios were 1.75:1 and 

1.5:1 for full loading. The ratio of aromatic to alkyl group was same 7.5:1 for both molar 

ratios. More deoxygenation was observed in 1.5:1 molar ratio compared to 1.75:1 molar 

ratio as we can see the amount of methoxy/hydroxy group is 1.4% for 1.5:1 molar ratio 

and 3.5% for 1.75:1 molar ratio. It is also supported by the elemental analysis as O:C 

ratio for 1.5:1 molar ratio (0.18) is less to that of 1.75:1 (0.19). From all the four different 

feedstocks, oil with full loading and molar ratio of 1.6:1 is better option as it showed the 

highest amount of deoxygenation and makes bio-oil more stable.  

 

Figure 4.14 13-C NMR spectra of magnesium formate pretreatment of lignin bio-oil.  

The integrated area for the above four different feedstocks is tabulated below. 

Aromatics Alkyl Methoxy/ 

Hydroxy 
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Table 4.18 13-C NMR data for magnesium formate pretreated lignin pyrolysis oil (molar 

ratio of 1.6:1) 

Type of carbon Chemical Shifts 
Lignin/F.A. (1g/1g) 

F.A./Mg(OH)2 (1.6:1 moles) 
Lignin/F.A. (1g/0.5g) 

F.A./Mg(OH)2 (1.6:1 moles) 

Alkyl 0-54 16.8% 13.7% 

Methoxy/Hydroxy 54-70 1.2% 3.0% 

Aromatic 103-163 82.0% 83.3% 

Carbonyl 163-215 0.0% 0.0% 
 

Table 4.19 13-C NMR data for magnesium formate pretreated lignin pyrolysis oil (molar 

ratio of 1.75:1 and 1.5:1) 

Type of carbon Chemical Shifts 
Lignin/F.A. (1g/ 1g) 

F.A./Mg(OH)2 (1.75:1 moles) 
Lignin/F.A. (1g/1g) 

F.A./Mg(OH)2 (1.5:1 moles) 

Alkyl 0-54 11.2% 11.5% 

Methoxy/Hydroxy 54-70 3.5% 1.4% 

Aromatic 103-163 85.4% 87.2% 

Carbonyl 163-215 0.0% 0.0% 

 

From the calcium formate pretreated lignin oil bio-oil, the integrated area in the table 4.20, 

it was observed that ratio of aromatic to alkyl group was 3:1 for full loading (1g/1g) and 

5:1 for half loading (1g/0.5g). More deoxygenation was observed in full loading compared 

to half loading as we can see the presence of methoxy/hydroxy group is very negligible 

for full loading, therefore it was not able to detect in full loading and 0.5% for half loading. 

It is also supported by the elemental analysis as O:C ratio for full loading (0.08) is less to 

that of half loading (0.13). From the two different feedstocks of calcium formate, oil with 

full loading and molar ratio of 1.6:1 is better option as it showed the highest amount of 

deoxygenation and makes bio-oil more stable  
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Figure 4.15 13-C NMR spectra of calcium formate pretreatment of lignin bio-oil 

The integrated area for two different feedstocks is tabulated below. 

Table 4.20 13-C NMR data for calcium formate pretreated lignin pyrolysis oil (molar ratio 

of 1.6:1) 

Type of carbon Chemical Shifts 
Lignin/F.A. (1g/g) 

F.A./Ca(OH)2 (1.6:1 moles) 
Lignin/F.A. (1g/0.5g) 

F.A./Ca(OH)2 (1.6:1 moles) 

Alkyl 0-54 25.8% 16.5% 

Methoxy/Hydroxy 54-70 0.0% 0.5% 

Aromatic 103-163 74.2% 83.0% 

Carbonyl 163-215 0.0% 0.0% 

 

From the salt mixture pretreated lignin pyrolysis oil (half loading and molar ratio 1.6:1) the 

integrated area result is shown in table 4.21 which shows that ratio of aromatic to alkyl 

group was 6.5:1. The fraction of methoxy/hydroxy group was 1.9% in the oil. This amount 

of hydroxy/methoxy is less than magnesium formate pretreated oil (3.7%) and more than 

calcium formate pretreated oil (0.5%). So, after comparing the data for all formate 

pretreated lignin, it was found that lignin pretreated with calcium formate (full loading and 

1.6:1 molar ratio) gave the best quality of oil as it showed highest deoxygenation. Hence, 

it has very negligible methoxy/ hydroxy groups.  

Aromatics 
Alkyl 
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Figure 4.16 13-C NMR spectra of pretreated lignin bio-oil. (Mixture of two salts) 

The area for above spectra is integrated and tabulated below 

Table 4.21 13-C NMR data for salt mixture pretreated lignin pyrolysis oil (molar ratio of 

1.6:1) 

Type of carbon Chemical Shifts 

Lignin/F.A. (1g/0.5g) 
F.A./Ca(OH)2, F.A/Mg(OH)2 

(1.6:1 moles) 

Alkyl 0-54 12.7% 

Methoxy/Hydroxy 54-70 1.9% 

Aromatic 103-163 85.4% 

Carbonyl 163-215 0.0% 

 

The integrated area for 13-C-NMR spectra for bio-oil collected by the pretreatment of 

magnesium and calcium hydroxide are shown in table 4.22. Oil was not formed when full 

loading i.e. 1g/1g of calcium hydroxide to lignin was taken. Here also the trend is similar 

as that of calcium and magnesium formate pretreatment. As the relative abundance of 

aromatic fraction was highest. The ratio of aromatic to alkyl group was 5:1 for full loading 

(1g/1g) and 7.5:1 for half loading. More deoxygenation was observed in full loading 

compared to half loading as we can see the amount of methoxy/hydroxy group is 2.1% 

Alkyl 
Aromatics Methoxy/ 

Hydroxy 
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for full loading and 4.1% for half loading. Similar, comparison was done with half loading 

of calcium and magnesium hydroxide.  The ratio of aromatic to alkyl group was 4.6:1 for 

half loading of calcium hydroxide. More deoxygenation was observed in calcium 

hydroxide compared to magnesium hydroxide pretreated lignin bio-oil as we can see the 

amount of methoxy/hydroxy group is 3.4% for calcium hydroxide and 4.1% for magnesium 

hydroxide.  

 

 

Figure 4.17 13-CNMR spectra of magnesium hydroxide pretreatment of lignin bio-oil 

 

 

 

Aromatics 
Methoxy/ 

Hydroxy 

 

Alkyl 
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Figure 4.18 13-C NMR spectra of calcium hydroxide pretreatment of lignin bio-oil. 

 

The area for above spectra is integrated and tabulated below 

Table 4.22 13-C NMR data for magnesium and calcium hydroxide pretreated lignin 

pyrolysis oil 

Type of carbon Chemical Shifts 
Lignin/Mg(OH)2 

(1g / g) 
Lignin/Mg(OH)2 

(1g / 0.5g) 
Lignin/Ca(OH)2 

(1g / 0.5g) 

Alkyl 0-54 16.8% 11.4% 17.2% 

Methoxy/Hydroxy 54-70 2.1% 4.1% 3.4% 

Aromatic 103-163 81.1% 84.5% 79.4% 

Carbonyl 163-215 0.0% 0.0% 0.0% 
 

Carbon – 13 isotopes in nature is only 1.1% abundant, therefore 13C-NMR is less sensitive 

then other nucleus such as proton or fluorine. 13C NMR signal for aromatic carbons and 

carbons attached to heteroatoms is usually weak. In addition, a significantly higher 

number of scans need to be done to get a higher signal to noise ratio. Due to these 

limitations 13C-NMR is more qualitative than quantitative. 
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CHAPTER  5 

CONCLUSION 

In this study, the various problems with lignin such as agglomeration, plugging was 

handled. Along with maintaining the proper pressure and temperature for the process.  

Lignin was pretreated with magnesium formate as well as calcium formate. The maximum 

oil yield (15.5 wt%) was observed with magnesium formate (with 1.6:1 molar ratio) 

pretreated lignin. And lowest O:C ratio (0.08) was obtained with calcium formate (with 

1.6:1 molar ratio) which means more deoxygenation was observed. The formate salt 

decomposes and provide in-situ source of hydrogen for hydrodeoxygenation to remove 

oxygen. Because of the same reason of decreasing oxygen content, methoxy/hydroxy 

groups proportion was also reduced in the oil. The addition of appropriate amount of 

formic acid with calcium/magnesium hydroxide will give better oil both in terms of quality 

and the quantity. The optimized molar ratio was obtained, and it was 1.6:1 for formic acid 

to calcium/magnesium hydroxide, because at this ratio the oil yield as well as O:C ratio is 

better compared to other molar ratios. Apart from that knowledge of pyrolyzing lignin with 

the mixture of both salts was also gained. And with the pretreatment of magnesium and 

calcium hydroxide more possibilities can be explored. The oil obtained during pyrolysis 

can also be used to make aromatic chemicals. Hence, formate assisted pyrolysis of lignin 

is simple yet promising method for reducing the oxygen from bio-oil. Also, it does not 

require any catalyst and can operate at atmospheric pressure for deoxygenation. 
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APPENDIX A. ELEMENTAL ANALYSIS OF BIO-OIL 

The elemental analysis of bio-oil was done to determine carbon, hydrogen, nitrogen, 

and oxygen. Flash 2000 elemental analyzer was used for analysis. 

Operating procedure 

• Turn on the computer 

• Open the eager xperience software 

• Open the analyzer 

• If the instrument is in standby mode off, then it can be turn on by following these 

steps. First go to edit option → edit elemental analyzer parameter → send 

• After instrument is started, leak test is performed before running analysis. 

Leak testing 

• Click view 

• After that select view elemental analyzer status 

• Click on special function tab 

• Click on leak test 

• Start and click OK 

It takes about 90 seconds to complete the leak test. 

Creating sample table 

• Go to edit then click sample table 

• Name the sample 

• Click on unknown for the sample type 

• Click on weight to receive the weight of the sample 

Sample preparation 

• All instruments must be clean with acetone before using, also the counter 

• Before running actual sample, a standard check run is done 

• The sample for standard check is prepared as follows: 

• Turn on the helium gas and set the flow at 300 ml/min 

• Open the balance door 

• Put an empty capsule in the balance and close the balance door 

• Zero/tare the weight of capsule 

• Take the capsule out 

• Add 1-2 mg sample in the capsule 

• If the weight is not between 1-2 mg make another sample and if it between the 

range, then put the capsule in capsule sealing device 

• Purge the sample with helium gas inside the device for 30 seconds 

• Seal the capsule and take it out  
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• Put it in balance and close the balance door 

• Wave the hand from left side of the balance to add the weight of your sample in 

the sample table 

• Place sample in the first auto sampler position  

• Each sample is prepared three times by the same procedure 

• After running standard sample, the bio-oil samples will be prepared and run by 

same procedure mention above 

• The approximate time for each sample is 360 seconds. 

 

Figure A.1 Elemental analyzer for CHNO 
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APPENDIX B. GAS CHROMATOGRAPHY 

Gas Chromatography done to detect the non-condensable gases leaving the system 

during pyrolysis. GC analyzer has TCD detector and FID mechanizer. It has two packed 

column and equipped with four channels pick simple data system. Columns used are 

molecular sieve and Hayesep-D column. Helium was used as a carrier gas. 

Operating procedure 

• Turn on helium and hydrogen gas 

• Turn on GC 

• Four channels will display on the computer screen 

• Right click on the channel 1 and click on events to add events 

• Right click on channel 1 and click on temperature to add the temperature 

• Temperature was set at 40 ˚C, and held for 15 minutes 

• After that wait for 40 – 50 minutes until everything gets stable 

• The standard scott gas mixture with following specifications was used as 

calibration gas 

Table B.1 Gas component and concentrations 

 

After that the non-condensable gases from pyrolysis is injected in the analyzer and 

usually performed thrice. 
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Figure B.1 GC analyzer 
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APPENDIX C. NMR SAMPLE PREPARATION AND MEASUREMENT 

PROTOCOL 

Bio-oil sample (15-20 mg) was pipetted into a vial and dissolved in d6-DMSO (0.8-1.0 mL) 

(Sigma-Aldrich©). Sample was transferred to an NMR tube and capped. NMR-sample 

was loaded onto a green spinner (gradient 4-nuke broadband type probe) and depth of 

the solution was measured with the golden depth gauge (minimum volume ~0.7 mL). 

NMR-sample with probe was inserted into a Varian/Agilent NMR (400 MHz). 1H-NMR was 

done on the sample with gradient shimming and ‘nt’ (number of transients) equal to 8. 

Gradient shimming was done for 13C nucleus for a sample in DMSO. While setting up the 

experiment, 1H- decoupler was used to avoid splitting of carbon peaks and to reduce NOE 

(Nuclear Overhauser Effect). Delay time between successive scans was kept at two 

seconds and number of transients was kept >5000 to get better signal to noise ratio, as 

the 13C abundance is low (~1%). Once the NMR scan was done, the results were 

analyzed by M-Nova version 12.0. Baseline correction and phase corrections were done, 

followed by referencing the d6-DMSO peak at 39.52(±0.06) ppm. For qualitative analysis 

alkyl (0-35 ppm), alkoxy/hydroxy (50-70 ppm), aromatic (100-165 ppm) and carbonyl 

(165-215 ppm) were integrated. Area integration intensities were normalized and 

tabulated. 
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Figure C.1 Varian Unity NMR 
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APPENDIX D. YIELD DATA OF ALL EXPERIMENTS 

      Table D.1 Molar ratio of 1.6:1 for formic acid to magnesium hydroxide (1g lignin/ 1g formic acid) 

 
Feed 

 
Run-1 

 

 
Run-2 

 

 
Run-3 

 
Run-4 

 
Run-5 

 
Run-6 

Oil Yield 
(Wt %) 

15.5 13 12 14 14 11 

Char Yield 
(Wt %) 

33.5 33 20 31 31 28 

Gas Yield 
(Wt %) 

15.7 21 43 26 30 32 

Condenser 
yield (Wt%) 

35.2 32 25 29 25 30 

O:C 0.16 0.17 0.22 0.20 0.17 0.18 

H:C 1.13 1.21 1.11 1.14 1.25 1.11 

C Yield in 
oil (Wt %) 

18.2 15.4 13.1 15.5 16.6 12.8 
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       Table D.2 Molar ratio of 1.6:1 for formic acid to magnesium hydroxide (1g lignin/ 0.5g formic acid) 

 
Feed 

 
Run-1 

 

 
Run-2 

 

 
Run-3 

Oil Yield (Wt %) 15 18 17 

Char Yield (Wt %) 40 40 44 

Gas Yield (Wt %) 13 13 16 

Condenser yield 
(Wt%) 

32 32 22 

O:C 0.21 0.21 0.23 

H:C 1.12 1.13 1.13 

C Yield in oil (Wt %) 17 19.7 18.5 
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Table D.3 Molar ratio of 1.75:1 for formic acid to magnesium hydroxide (1g lignin/ 1g formic acid) 

 
Feed 

 
Run-1 

 

 
Run-2 

 

Oil Yield (Wt %) 12 13 

Char Yield (Wt %) 34 15 

Gas Yield (Wt %) 25 50 

Condenser yield (Wt%) 29 11 

O:C 0.19 0.15 

H:C 1.14 1.37 

C Yield in oil (Wt %) 13.9 15.7 
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Table D.4 Molar ratio of 1.5:1 for formic acid to magnesium hydroxide (1g lignin/ 1g formic acid) 

 
Feed 

 
Run-1 

 

 
Run-2 

 

Oil Yield (Wt %) 11 11 

Char Yield (Wt %) 29 25 

Gas Yield (Wt %) 33 34 

Condenser yield (Wt%) 27 30 

O:C 0.18 0.18 

H:C 1.12 1.13 

C Yield in oil (Wt %) 12.9 12.2 
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