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Purdue University 
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ABSTRACT

Experiments involving sequential recognition tech­ 
niques and feature ordering schemes were performed 
on 23 feature samples of vowel spectra and 12 fea­ 
ture samples of remotely sensed agricultural crop 
data. Since each experiment dealt with two pattern 
classes, Wald's sequential probability ratio test 
was used. The test was implemented with both fixed 
and time-varying stopping boundaries. Feature 
ordering was accomplished by both dispersion analy­ 
sis and the divergence criterion.

p(x|«,.)=[(2.)N/2 |K.| 1/2 ]-1 axp

[-| (X - M.)^1 (X - It}] , i = 1,2 (2)

then the above discriminant function yields

D^X) - log P( BI ) - i log | K4 | - |(X - Mjf

INTRODUCTION

A pattern recognition system consists of a feature 
extractor and a classifier (see Figure l). The 
feature extractor makes measurements of salient 
characteristics of the input patterns. These are 
called feature measurements and based on them, the 
classifier assigns each input pattern to one of the 
possible pattern classes. We are concerned with 
those classifiers that are sequential in nature. 
That is, those that utilize the feature measurements 
one at a time in performing the classification. 
The advantages of sequential techniques are realized 
when the cost of taking feature measurements is high 
or the speed of classification is important.

TECHNIQUES

The problem of classifying patterns from two classes 
is formulated here as a statistical decision pro­ 
blem. N feature measurements, denoted by X^X^,*-*, 
Xjj, are given for each pattern. The two pattern 
classes are called u>j_ and u£. For each pattern 
class u>j, j = 1,2, it is assumed that the probabili­ 
ty density function of this feature vector X,p(XJ u>.)> 
is known* A /^•?<-.«•«•?»-?v»«*%4- isiv*«%4-•?*%*•> *JA discriminant function,

Di (X) = log 1,2 (1)

is now defined which can easily be implemented by 
a Bayes classifyer. When DI(X) >Dj(X), i,j = 1,2, 
then X is said to be in class o^.

When p(X | u^) i a 1,2, is a nmltivariate Gaussian 
density function with mean vector % and covariance 
matrix B, i.e.,

(5)

This is the discriminant function used as the 
samples to be classified are assumed to be Gaussian 
in nature. In all recognition schemes used in 
this paper, the training procedure has: been to 
compute M^ and K. from the first 75 sannleB of 
each clsss. x

For each sample to be classified, B^ and Bg were 
computed. If D^X) - B2: (X) was positive, tte 
sample was placed in class. 1 and, if" negjative in 
class 2.

In the above procedure it is necessaxy to me •' 
measurements from, each, pattern to be classified. 
Quite often this is inconvenient (because of «r 
time consumption) and it becomes desirable to 
a scheme using less feature measurements* Mien 
there are only two pattern classes to be recognised* 
Wald's sequential probability ratio "best (SRf) can 
be applied. Here the feature measurements can De 
taken one at a time* At the nth stage- of the 
sequential process, that is, after the nth ftefcure 
measurement is taken, the classifier computes the 
sequential probability ratio

An -

where p(X | ittj), i = 1,2 is the (moltivariate BI- 
dimenslonal)' conditional probability density frac­ 
tion of X for pattern class «^» lm is then com­ 
pared with two stopping boundaries" A and 1* If 1B 
> A, then the decision is; that X is in class u^j 
and if "kn < B, then the decision is X is In *
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class u£. If B < Xn < A then an additional fea­ 
ture measurement will be taken and the process 
will proceed to the (n+l)st stage (see Figure 2). 
The two stopping boundaries are related to the 
error (misrecognition) probabilities by the follow­ 
ing expressions

1 - e21 and B =C12
"21 

1 - e.12
(5)

where eij is the probability of deciding X is in 
class w±, when actually X is in class oug is true, 
i,j, = 1,2.

The above sequential probability ratio test can be 
generalized to the case where the stopping bound­ 
aries become time varying instead of remaining 
constant. Let g-^(n) and g2(n) be either.constants 
or monotonically nonincreasing and nondecreasing 
functions of n, respectively. The classifier 
continuously takes measurements as long as the 
sequential probability ratio Xn lies between 
e&iv ; an^ e&2v / y that is, the sequential process 
continues by taking additional feature measurements 
as long as

eg2 (n) <x <egi<n)^ n = 1,2) ... (6)

If Xn > ebj- v *', then the decision is that X is in 
class a>L and if Xn < egg(a), then the decision is 
that X is in class u£. If gi(n) and gp(n) are 
constants it is easily seen that the standard 
Wald's SPRT can be considered as a special case of 
this modified SPRT. The fact that, in general, 
gl(n) and g2 (n) can be made functions of n enables 
the sequential classifier to be designed such that 
the expected number of features measurements in 
reaching a terminal decision and the probability 
of misrecognition may be controlled in advance.

Here, the following two functions have been used:

(7)

DIVERGENCE CRITERION FOR FEATURE ORDERING

The divergence between two pattern classes, whose 
samples are assumed to be Miltivariate Gaussian 
Distributed, with equal covariance matrices, can 
be expressed as t 1 ':

(9)

M. and ^ are the mean vectors 
inverse of the covariance matrix.

— T

and K" is the
In the present 

study, the covariance matrices for the two classes 
were unequal, so the average was used.

The above relationship was used to find optimal 
feature subsets of 1,2, ...,n-l features from 
feature sets of 2,3>«««>n features respectively, 
in the following way (see Figure k):

1. The divergence between classes, for all n 
possible n-1 feature subsets of the original fea­ 
ture set, was computed.

2. The subsets corresponding to the largest 
value of divergence was chosen as optimal and the 
feature, which was deleted from the original set 
to form this subset, was placed at the end of the 
list of ordered features.

3- The divergence between classes, for all n-1 
possible n-2 feature subsets of the new feature 
set, was computed.

I*. The subset corresponding to the largest value 
of divergence was chosen as optimal and the feature, 
which was deleted to form this subset, was placed 
next to last on the ordered feature list.

5. This procedure was continued until finally the 
best subset consisting of one feature was selected 
and the ordered feature list was completed.

It should be noted that this technique is restric­ 
tive in that any feature discarded at a given level 
cannot be a member of a smaller optimal subset. 
To overcome this limitation, the divergence between 
classes would have to be computed for nCn-1 possible 
subsets to find optimal subsets of 1,2, ...,n-l 
features.

where 0 < r < 1, a' > 0, and N is the prespecified 
number of feature measurements where the truncation 
occurs and the classifier is forced to reach a 
terminal decision (see Figure 3). The value of a' 
was obtained from the relation

= e"a ! 1
ra

(8)

where E-^(n) is the expected member of features to 
be used for the modified SPRT when X is in class 
1. E'(n) was obtained by using the average number 
of features found in the truncated case.

DISPERSION ANALYSIS FOR FEATURE ORDERING '

Vowel data was obtained (see Acknowledgement) in 
which the features had been ordered via a linear 
transformation. The technique utilized can be 
described as follows:

1. A sample covariance matrix was computed as an 
approximation to the true covariance matrix of the 
data .

2* The eigenvalues and corresponding eigenvectors 
of this matrix were determined and the eigenvectors 
were subsequently normalized and arranged according 
to the descending order of their associated eigen­ 
values. The resulting set of vectors constituted 
a generalized Kahunen-Loeve coordinate system.
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3« Each input feature vector was transformed by 
this coordinate system, and the first fifteen com­ 
ponents were retained.

EXPERIMENTAL RESULTS AND DISCUSSION

The data employed in the described recognition 
schemes consisted of vowel samples and remotely 
sensed agricultural crop data.

Vowel samples were obtained by band-pass filtering 
recorded utterances of the form /h^CVC/, of each 
vowel, in each of the 23 consonantal environments, 
at 35 frequencies covering the range of the speech 
spectrum (250 to 10,000 hz). Filter outputs were 
rectified, smoothed, sampled and subsequently 
passed through an analog-to-digital converter. The 
data for each vowel in its final form consisted of 
a deck of IBM cards, each one containing the ampli­ 
tude, in decimal form, of each filter output during 
a particular sample interval. In all instances of 
the use of untransformed vowel data, 23 features 
were selected, corresponding to the first 23 filter 
outputs, These features were chosen because they 
cover the range of possible values for the 1st and 
2nd formant frequencies of the vowels under con­ 
sideration (see Table k).

Agricultural crop data was obtained by the de­ 
tection and recording of both reflected and emitted 
electromagnetic radiation energy, from specific 
earth surface areas. Spatially scanning radio­ 
meters were used to obtain relative measurements 
of energy from, the ground in 12 discrete spectral 
bands. The first ten bands encompassed visible 
wave lengths and the last two covered the reflect­ 
ive infrared portion of the spectrum. The data, 
first recorded on a 12-channel magnetic tape, 
underwent analog-to-digital conversion, and was 
then formatted and recorded on a data storage tape. 
IBM cards were punched from this tape such that 
each crop was characterized by a deck of cards, each 
one containing the relative energy in each spectral 
band, for a particular region of ground surface.

It can be seen (Table l) that for the data under 
consideration, high recognition accuracies are 
achieved with the Bayes fixed sample size classi­ 
fier. However, the Bayes classifier necessitates 
the use of all feature measurements, which is 
quite inefficient.

Table 2 shows the results of applying a sequential 
recognition technique and feature ordering. In 
the case of £ and & the number of features 
required for classification has decreased 8oA$ 
from the fixed sample size classifier without 
ordering and 83*6$ with ordering by divergence 
while recognition accuracy has dropped no more 
than 1.2#.

The results for faf and /z>/ in Table 2 are a con­ 
clusive demonstration of the value of feature 
ordering. In the unordered sequential case, the 
number of features used is 81$ less than in the 
fixed sample size case. However, along with this 
is a decrease in accuracy of 27-3^» This startling 
decrease is understandable if one considers the 
rank of the various features (filter outputs)

after ordering* !fbe sad fea­ 
ture* placed %'ftij.
the first four features on the classifier 
was trained and hosed decisions were found 
to be poor and/or odsleadiog* The classification 
accuracy using' ordered feature* Is seen to he 
comparable to that of the fiicsd saoQiLe 
the average nturiher of 1* for 
the divergence criterion and 90*1^ 
analysis*

In the case of the agrictd&ural 2)
there is again, a substantial reduction in the num­ 
ber of features without erf" 
This result also indicates of 
in conjunction with sequential teehniqpie* 10 
powerful than the of sequential 
alone *

Through considerations of 3 5* It
is seen that the use of
boundaries causes a trade-off hetween the
of recognition and the average of
used to reach, a decision* to
the average nuriber of f mtqr be reduced
only a slight drop in, accuracy*
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TABLE I. 
BAYES FIXED SAMPLE SIZE RESULTS

CLASSES

|£|.

|Q|.
X

0
CORN 
SOYBEANS

NUMBER OF 
SAMPLES

171

166

370

% ACCURACY

96.5

99.0

87.5

NUMBER OF 
FEATURES USED

23

23

12

TABLE 2.

SEQUENTIAL RESULTS WITH TRUNCATED 
STOPPING BOUNDARIES

CLASSES

\c\.
lei.
\al
W.
lol.

ae
x\
0
0
0

CORN 
SOY BEANS
CORN 
SOY BEANS

FEATURE ORDERING

UNORDERED
DIVERGENCE 

CRITERION

UNORDERED
DIVERGENCE 

CRITERION
DISPERSION 

ANALYSIS

UNORDERED

DIVERGENCE 
CRITERION

NUMBER OF 
SAMPLES

171

171

166

166

132

370

370

% ACCURACY

97.0

95.3

71.7

98.6

98.5

90.0

85.1

AVERAGE NUMBER 
OF FEATURES

4.59

3.78

4.32

1.00

2.27

10.313

3.43
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TABLE 3.

SEQUENTIAL RESULTS WITH TIME VARYIU6 
STOPPING BOUNDARIES

r

1.00

0.50

0.25

1.00

0.50

0.25

1.00

0.50

0.25

CLASSES

\a\. o
Ifl|.|3|
l#l, 3|

|0|. 0
|#|,|0|
l#|.|3

CORN 
SOYBEANS
CORN 
SOYBEANS
CORN 
SOYBEANS

FEATURE ORDERING

UNORDERED

UNORDERED

UNORDERED

DISPERSION ANAL

DISPERSION ANAL.

DISPERSION ANAL.

UNORDERED

UNORDERED

UNORDERED

NUMBER OF 
SAMPLES

166

66

166

132

32

132

370

370

370

% ACCURACY

71.7

72.9

72.9

96.2

96.9

96.9

79.2

88.4

89.7

AVERAGE NUMBER 
Of' FEATURES

4.20 .

4.36

4.43

1.66

; 1.71

172

8.98

10.28

1 1 .OO

TABLE 4.

FEATURES SELECTED181

FILTER 
NUMBER

i
2
3
4
5
6
7
8
9

10
1
12

CENTER FREQUENCY 
OF FILTER

286
317
368
428
473
526
585
643
707
780
864
966

FILTER 
NUMBER

13
14
15
16
17
18
19
20
21
22
23

CENTER FREQUENCY 
OF FILTER

1070
1157
1290
1425
1560
1713
1901
2087
2316
2550
2814
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